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9.1: Introduction to Numerical Solutions of Schödinger's Equation
Solving Schrödinger's equation is the primary task of chemists in the field of quantum chemistry. However, exact solutions for
Schrödinger's equation are available only for a small number of simple systems. Therefore the purpose of this tutorial is to illustrate
one of the computational methods used to obtain approximate solutions.
Mathcad offers the user a variety of numerical differential equation solvers. We will use Mathcad's ordinary differential equation
solver, Odesolve, because it allows one to type Schrödinger's equation just as it appears on paper or on the blackboard; in other
words it is pedagogically friendly. In what follows the use of Odesolve will be demonstrated for the one-dimensional harmonic
oscillator. All applications of Odesolve naturally require the input of certain parameters: integration limits, mass, force constant,
etc. Therefore the first part of the Mathcad worksheet will be reserved for this purpose.

Integration limit: x  := 5
Effective mass: µ := 1
Force constant: k := 1

The most important thing distinguishing one quantum mechanical problem from another is the potential energy term, . It is
entered below.
Potential energy:

Entering the potential energy separately, as done above, allows one to write a generic form for the Schrödinger equation applicable
to any one-dimensional problem. This creates a template that is easily edited when moving from one quantum mechanical problem
to another. All that is necessary is to type in the appropriate potential energy expression and edit the input parameters. This is the
most valuable feature of the numerical approach - you don't need a new mathematical tool or trick for each new problem, a single
template works for all one-dimensional problems after minor editing.
Mathcad's syntax for solving the Schrödinger equation is given below. As it may be necessary to do subsequent calculations, the
wavefunction is normalized. Note that seed values for an initial value for the wavefunction and its first derivative are required. It is
also important to note that the numerical integration is carried out in atomic units:

Given

with  and .

Normalize wavefunction:

Numerical solutions also require an energy guess. If the correct energy is entered the integration algorithm will generate a
wavefunction that satisfies the right-hand boundary condition. If the right boundary condition is not satisfied another energy guess
is made. In other words it is advisable to sit on the energy input place holder, type a value and press F9 to recalculate.
Energy guesses that are too small yield wavefunctions that miss the right boundary condition on the high side, while high energy
guesses miss the right boundary condition on the low side. Therefore it is generally quite easy to bracket the correct energy after a
few guesses.
Enter energy guess: E ≡ .5
Of course the solution has to be displayed graphically to determine whether a solution (an eigenstate) has been found. The
graphical display is shown below. It is frequently instructive to also display the potential energy function.

max

V (x)

V (x) = k
1

2
x2

h/2π = me = e = 1.

ψ(x) +V (x)ψ(x) = Eψ(x)
−1

2μ

d2

dx2

ψ(− ) = 0xmax (− ) = 0.1ψ′ xmax

ψ = Odesolve(x, )xmax

ψ(x) =
ψ(x)

ψ(x dx∫
xmax

−xmax

)2

− −−−−−−−−−−−

√
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9.1.2 https://chem.libretexts.org/@go/page/135863

run restart restart & run all

wavefunction:

Potential energy:

%matplotlib inline

 

from scipy.integrate import odeint

import matplotlib.pyplot as plt  

import numpy as np

 

 

mu=1

k=1

E=.5

xmax=-5

 

def psi(y,x):

    psi1, psi2_dx2 = y 

    return [psi2_dx2, ((2*mu)/(-1))*(E*psi1 - (1/2)*x**2*psi1)]

 

x0 = [0.0, 0.1]

val = np.linspace(-5,5,101)

sol = odeint(psi, x0, val)

#plot, legends, and titles 

plt.plot(val,sol[:,0],color = "red",label = " ")

plt.title("Wave Function")

leg = plt.legend(title = "(x)  ", loc = "center", bbox_to_anchor=[-.11,.5],frameon=Fal

 

plt.show()

%matplotlib inline  

 

import matplotlib.pyplot as plt

import numpy as np

import math

 

# initialize constants k and create x array

k = 1 

x = np.linspace(-5,5,100)

 

# set boundaries

plt.xticks([-5,5])
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run restart restart & run all

It is quite easy, as shown below, to generate the momentum-space wavefunction by a Fourier transform of its coordinate-space
counterpart.

p := −4, −3.9..5

Φ(p) = ψ(x)dx
1

2π
−−

√
∫

xmax

−xmax

e−ipx

plt.yticks([0,5,10,15])

 

# plot

plt.plot(x,(.5)*k*(x**2), color = "red",label = " ")

 

# add titles and legend

plt.title("Potential Energy")

leg = plt.legend(title = "\u03A8  ", loc = "center", bbox_to_anchor=[-.11,.5],frameon=

 

plt.show()

%matplotlib inline  

 

import numpy as np

import matplotlib.pyplot as plt 

from scipy.integrate import odeint

import scipy.integrate as integrate

import math

 

#set constants

mu=1

k=1

E=.5

xmax=5

 

#create ode 

def psi(y,x):

    psi1, psi2_dx2 = y 

    return [psi2_dx2, ((2*mu)/(-1))*(E*psi1 - (1/2)*x**2*psi1)]

 

#create space 

x0 = [0.0, 0.001]

val = np.linspace(-xmax,xmax,101)
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run restart restart & run all

This page titled 9.1: Introduction to Numerical Solutions of Schödinger's Equation is shared under a CC BY 4.0 license and was authored,
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#solve ode using odeint

sol = odeint(psi, x0, val)

 

#format plot

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

 

#show tick marks to the left and lower axes only

plt.yticks([])

plt.axis(xmin = -4,xmax = 4,ymin = 0,ymax = 30)

 

#move left yaxis passing through origin

ax.spines["left"].set_position("center")

 

#eliminate upper and right axes

ax.spines["right"].set_color("none")

ax.spines["top"].set_color("none")

 

#plot graph

plt.plot(val,sol[:,0],color = "red",label = " ")

 

 

#add titles and legend

plt.title("Momentum Distribution")

leg = plt.legend(title = "(|\u03A6(p)|\u00b2)", loc = "center", bbox_to_anchor=[-.10,

 

plt.show()
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9.2: Particle in an Infinite Potential Well

Numerical Solutions for Schrödinger's Equation 

Integration limit: x  := 1 Effective mass:  := 1

Potential energy: V(x) := 0

Numerical integration of Schrödinger's equation:

Given:   

 Normalize wave function: 

Enter energy guess: E = 4.934

Fourier transform coordinate wave function into momentum space:

p := -20, -19.5 .. 20

This page titled 9.2: Particle in an Infinite Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank
Rioux via source content that was edited to the style and standards of the LibreTexts platform.

max μ

Ψ(x) +V (x)Ψ(x) = EΨ(x)1
2μ

d2

dx2 Ψ(0) = 0 (0) = 0.1Ψ′

Ψ := Odesolve(x, xmax Ψ(x) :=
Ψ(x)

Ψ(x dx∫ xmax
0√ )2

Φ(p) := exp(−i ⋅ p ⋅ x) ⋅ Ψ(x)dx1
2μ

∫ xmax

0
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9.3: Particle in a Gravitational Field

The Unhindered Quantized Bouncing Particle 
Integration limit: 
Mass: 
Acceleration due to gravity: 

The first 10 roots of the Airy function are as follows:

a  = 2.33810 a  = 4.08794 a  = 5.52055 a  = 6.78670 a  = 7.94413

a  = 8.02265 a  = 10.04017 a  = 11.00852 a  = 11.93601 a  = 12.82877

Calculate energy analytically by selecting the appropriate Airy function root:

i = 1 E =  E = 2.338

Generate the associated wavefunction numerically: Potential energy: 

Given 

Given, 

Normalize wavefunction: 

This page titled 9.3: Particle in a Gravitational Field is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank
Rioux via source content that was edited to the style and standards of the LibreTexts platform.

= 3zmax

m = 2

g = 1

1 2 3 4 5

6 7 8 9 10

mg2

2

1
3
a1

V (z) = mgz

ψ(z) +V (z)ψ(z) ≡ Eψ(z)−1
2⋅m

d2

dz2

ψ(0.0) = 0.0

(0.0) = 0.1ψ′

ψ = Odesolve(z, )zmax

ψ(z) =
ψ(z)

ψ(z dz∫ zmax
0 )2√
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9.4: Particle in a One-dimensional Egg Carton
Numerical Solutions for Schrödinger's Equation

Integration limit: x  = 10 Effective mass:  = 1

Potential energy: V  = 2 atoms = 2 

Numerical integration of Schrödinger's equation:

Given   

 Normalize wave function: 

Enter energy guess: E = 0.83583

Fourier transform coordinate wave function into momentum space.

p = -10, -9.9 .. 10 

This page titled 9.4: Particle in a One-dimensional Egg Carton is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

max μ

o V (x) = (cos(atoms2π ) +1)Vo
x

xmax

ψ(x) +V (x)ψ(x) = Eψ(x)−1
2μ

ψ(0) = 0 = 0.1ψ′

ψ = Odesolve(x, )xmax ψ(x) =
ψ(x)

ψ(x dx∫ xmax
0 )2√

Φ(p) = exp(−ipx)ψ(x) dx1
2π√

∫ xmax

0
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9.5: Particle in a Finite Potential Well

Numerical Solutions for the Finite Potential Well 

Schrödinger's equation is integrated numerically for the first three energy states for a finite potential well. The integration algorithm
is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

n = 100 xmin = -3 xmax = 3

 = 1 lb = -1 rb = 1 V  = 4

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

 

Form Hamiltonian energy matrix: H = TV

Find eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 3

E  =

Calculate associated eigenfunctions: k = 1 .. 2 (k) = eigenvec(H, E )

Plot the potential energy and bound state eigenfunctions: 

This page titled 9.5: Particle in a Finite Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank
Rioux via source content that was edited to the style and standards of the LibreTexts platform.

Δ = xmax−xmin

n−1

μ 0

i Δ

= if [( ≥ lb)( ≤ rb), 0, ]Vi,i xi xi V0 = if [i = j, , ]Ti,j
π2

6μΔ2

(−1)
i−j

(i−j μ)2 Δ2

m

0.63423174

2.39691438

4.4105828

ψ k

:=Vpot1 Vi,i
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9.6: Particle in a Semi-infinite Potential Well

Numerical Solutions to Schrödinger's Equation for the Particle in the Semi-infinite Box 

Parameters go here:    

Potential energy 

Given   

 

Enter energy guess: E = 0.766

Calculate the probability that the particle is in the barrier: 

Calculate the probability that the particle is not in the barrier: 

Calculate and display the momentum distribution:

Fourier transform: p = -10,-9.9 .. 10 

This page titled 9.6: Particle in a Semi-infinite Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

= 0xmin = 5xmax m = 1 lb = 2

V (x) = if [(x ≥ lb), , 0]V0

ψ(x) = 2m(V (x) −E)ψ(x)d2

dx2
ψ( ) = 0xmin (0) = 0.1ψ′

ψ := Odesolve(x, )xmax ψ =
ψ(x)

ψ(x dx∫ xmax
xmin

√ )
2

ψ(x dx = 0.092∫ 5
2 )2

ψ(x dx = 0.908∫
2

0 )2

Φ(p) = exp(−1px)ψ(x) dx∫ xmax

−xmin
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9.7.1 https://chem.libretexts.org/@go/page/135869

9.7: Particle in a Slanted Well Potential

Numerical Solutions for Schrödinger's Equation for the Particle in the Slanted Box 

Parameters go here:   

Potential energy 

Given

with these boundary conditions:  and 

 Normalize wavefunction: 

Enter energy guess: E = 5.925

Calculate most probably position: x = 0.5 Given  Find (x) = 0.485

Calculate average position:  

Calculate potential and kinetic energy:

 

 

This page titled 9.7: Particle in a Slanted Well Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank
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= 1xmax μ = 1 = 2V0

V (x) = xV0

ψ(x) +V (x)ψ(x) = Eψ(x)
−1

2μ

d2

dx2

ψ(0) = 0 (0) = 0.1ψ′

ψ = Odesolve(x, )xmax ψ(x) =
ψ(x)

ψ(x dx∫ xmax
0 )2√

ψ(x) = 0d
dx

= ψ(x)(x)ψ(x)dxXavg ∫ 1
0 = 0.491Xavg

=Vavg V0Xavg = 0.983Vavg

= E−Tavg Vavg = 4.942Tavg
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9.8: Numerical Solutions for a Particle in a V-Shaped Potential Well
Schrödinger's equation is integrated numerically for a particle in a V-shaped potential well. The integration algorithm is taken from
J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

n = 100 xmin = -4 xmax = 4   = 1 Vo = 2

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

V  = V  |x | T  = if 

Hamiltonian matrix: H = T + V

Calculate eigenvalues: E = sort(eigenvals(H))

Selected eigenvalues: m = 1 .. 6

E  =

Display solution:

For V = ax  the virial theorem requires the following relationship between the expectation values for kinetic and potential energy:
<T> = 0.5n<V>. The calculations below show the virial theorem is satisfied for this potential for which n = 1.

Δ =
xmax−xmin

n−1
μ

i Δ

i, i o i i,j [i = j, , ]π2

6μΔ2

(−1)
i−j

(i−j μ)2 Δ2

m

1.284

2.946

4.093

5.153

6.089

7.030

n
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9.9.1 https://chem.libretexts.org/@go/page/137727

9.9: Numerical Solutions for the Harmonic Oscillator
Schrödinger's equation is integrated numerically for the first three energy states for the harmonic oscillator. The integration
algorithm is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

Increments: n = 100

Integration limits: xmin = -5

xmax = 5

Effective mass:  = 1

Force constant: k = 1

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 3

E  =

Calculate associated eigenfunctions:

k = 1 .. 3

Plot the potential energy and selected eigenfunctions:

Δ =
xmax −xmin

n −1

μ

i Δ

= if[i = j,   k(x ,  0]Vi, j
1

2
)2

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m

0.5000

1.5000

2.5000

ψ(k) = eigenvec(H, )Ek
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For V = ax  the virial theorem requires the following relationship between the expectation values for kinetic and potential energy:
<T> = 0.5n<V>. The calculations below show the virial theorem is satisfied for the harmonic oscillator for which n = 2.
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9.10.1 https://chem.libretexts.org/@go/page/137728

9.10: Numerical Solutions for a Double-Minimum Potential Well
Schrödinger's equation is integrated numerically for a double minimum potential well: . The integration algorithm
is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

Increments: n = 100

Integration limits: xmin = -4

xmax = 4

Effective mass:  = 1

Constants: b = 1 c = 6

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix:

Calculate eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 5

E  =

Calculate selected eigenvectors:

k = 1 .. 4

Display results:

First two even solutions:

V = b −cx4 x2

Δ =
xmax −xmin

n −1

μ

i Δ

= if[i = j,  b( −c( ,  0]Vi, j xi)
4 xi)

2

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

H = T +V

m

−6.64272702

−6.64062824

−2.45118605

−2.3155705

0.41561275

ψ(k) = eigenvec(H, )Ek
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First two odd solutions:
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9.11: Numerical Solutions for the Quartic Oscillator
Schrödinger's equation is integrated numerically for the first three energy states for the quartic oscillator. The integration algorithm
is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

Increments: n = 100

Integration limits: xmin = -3

xmax = 3

Effective mass:  = 1

Force constant: k = 1

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 3

E  =

Calculate associated eigenfunctions:

k = 1 .. 3

Plot the potential energy and selected eigenfunctions:

Δ =
xmax −xmin

n −1

μ

i Δ

= if[i = j,  k( ,  0]Vi, j xi)
4

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m

0.6680

2.3936

4.6968

ψ(k) = eigenvec(H, )Ek
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For V = ax  the virial theorem requires the following relationship between the expectation values for kinetic and potential energy:
<T> = 0.5n<V>. The calculations below show the virial theorem is satisfied for the harmonic oscillator for which n = 4.
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9.12.1 https://chem.libretexts.org/@go/page/137730

9.12: Numerical Solutions for Morse Oscillator
Schrödinger's equation is integrated numerically for the first three energy states for the Morse oscillator. The integration algorithm
is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

n = 300

xmin = -2

xmax = 12

 = 1

D = 2

 = 2

x  = 0

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 3

E  =

Calculate associated eigenfunctions:

k = 1 .. 3

Plot the potential energy and selected eigenfunctions:

Δ =
xmax −xmin

n −1

μ

β

e

i Δ

= if[i = j,  D[1 −exp[β( − )] ,  0]Vi, j xi xe ]2

= if [i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m

0.8750

1.8750

2.0596

ψ(k) = eigenvec(H, )Ek

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/137730?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Tutorials_(Rioux)/09%3A_Numerical_Solutions_for_Schrodinger's_Equation/9.12%3A_Numerical_Solutions_for_Morse_Oscillator


9.12.2 https://chem.libretexts.org/@go/page/137730

For , the virial theorem requires the following relationship between the expectation values for kinetic and potential
energy:

The calculations below show that virial theorem is not satisfied for the Morse oscillator. The reason is revealed in the following
series expansion in . The expansion contains cubic, quartic and higher order terms in , so the virial theorem does not apply to
the quartic oscillator.

 converts to the series 

This page titled 9.12: Numerical Solutions for Morse Oscillator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.
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x x

D(1 −exp(−βx))2 D +(−D) + D +O( )β2x2 β3x3 7
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9.13.1 https://chem.libretexts.org/@go/page/137731

9.13: Numerical Solutions for the Lennard-Jones Potential
Merrill (Am. J. Phys. 1972, 40, 138) showed that a Lennard-Jones 6-12 potential with these parameters had three bound states. This
is verified by numerical integration of Schrödinger's equation. The integration algorithm is taken from J. C. Hansen, J. Chem.
Educ. Software, 8C2, 1996.

Set parameters:

n = 200

 = 1
 = 1
 = 100

Numerical integration algorithm:

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display three eigenvalues: m = 1 .. 4

E  =

Calculate eigenvectors:

k = 1 .. 3

Display results:

= 0.75xmin

= 3.5xmax

Δ =
xmax−xmin

n−1

μ

σ

ε

i Δ

= if[i = j,  4ε[ 2 − ], 0 ]Vi, j ( )
σ

xi

1

( )
σ

xi

6

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m

−66.269

−22.981

−4.132

1.096

ψ(k) = eigenvec(H, )Ek
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9.14: Numerical Solutions for the Double Morse Potential
Schrödinger's equation is integrated numerically for the first four energy states for the double Morse oscillator. The integration
algorithm is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

Set parameters:

n = 200

xmin = -10

xmax = 10

 = 1

D = 2

 = 1

x  = 1

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display four eigenvalues: m = 1 .. 4

E  =

Calculate associated eigenfunctions:

k = 1 .. 4

Plot the potential energy and bound state eigenfunctions:

Δ =
xmax −xmin

n −1

μ

β

0

i Δ

= if[i = j,  D[1 −exp[ −β(| | − )] ,  0]Vi, j xi x0 ]2

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m
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ψ(k) = eigenvec(H, )Ek
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9.15: Particle in a Box with an Internal Barrier
Numerical integration of Schrödinger's equation:

Potential energy:

Given:

(0) = 0

'(0) = 0.1

 = Odesolve(x, x )

Normalize wave function:

Integration limit: x  = 1

Effective mass:  = 1

Barrier height: V  = 100

Barrier boundaries: lb = 0.45

rb = 0.55

Enter energy guess: E = 15.45

Calculate potential energy:  PE = 4.932 

Calculate kinetic energy:  E = 10.518

Ratio of potential energy to total energy: 

Calculate probability in barrier: 

1. Find the first four energy levels, sketch  for each state, and fill in the table below. KE, PE and the probability in the electron is
in the barrier are calculated above.

V (x) = ∣∣
 if  (x≥lb)(x≤rb)V0

0 otherwise

ψ(x) +V (x)ψ(x) = Eψ(x)
−1

2μ

d2

dx2

ψ

ψ

ψ max

ψ(x) =
ψ(x)

ψ(x dx∫
x

0 )2
− −−−−−−−−

√

max

μ

0

PE = V (x)ψ(x dx∫ 1

0
)2 ψ(x dx = 1.00∫ 1

0
)2

KE = E−PE

= 0.319PE
E

= 0.049PE
V0

P = ψ(x dx = 0.049∫
rb

lb

)2

ψ2
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2. Interpret the results for energy in light of the fact that a 100 E  (2720 eV) potential barrier of finite thickness exists in the center
of the box.

This is an excellent example of quantum mechanical tunneling. For the first four energy states the particle has probability of
being found in the tunnel in spite of the fact that its energy is less than the barrier energy.

3. Explain the obvious bunching of energy states in pair in terms of the impact of the internal barrier. In other words why is the
probability of being in the potential barrier larger for the n = 1 and 3 states than it is for the n = 2 and 4 states.

The PIB energy levels without an internal barrier are: 

The bunching can be seen by comparing the two energy manifolds. The n = 2 and 4 states have nodes at the middle of the
box where the internal barrier is situated. Thus their potential energy does not increase as much as the n = 1 and 3 states
which do not have nodes in the barrier.

4. Find the ground state energy for particle masses of 0.5 and 1.5. Record your results in the table below and interpret them.

The higher the mass the lower the energy because in quantum mechanics in . The greater the mass the lower the
probability that tunneling will occur. This is due to the fact that the deBroglie wavelength is inversely proportional to mass.

5. Find the ground state energy for a m = 1 particle for barrier heights 50 and 150 Eh. Record your results in the table below and
interpret them.

The higher the barrier energy the higher the ground-state energy and the lower the tunneling probability.

6. On the basis of your calculations in this exercise describe quantum mechanical tunneling. In your answer you should consider
the importance of particle mass, barrier height and barrier width. Perform calculations for widths of 0.05 and 0.15 in atomic units.

Tunneling is inversely proportional to mass, barrier height and barrier width.

⎛

⎝

⎜⎜⎜⎜⎜⎜

E

15.45

20.30

62.20

80.80

KE

10.518

19.827

47.745

78.968

PE

4.932

0.473

14.455

1.832

P

0.049

0.0047

0.145

0.018

⎞

⎠

⎟⎟⎟⎟⎟⎟

h

E(n) = π2

2
n2

⎛

⎝

⎜⎜⎜

Mass

0.5

1.0

1.5

E

23.95

15.45

11.55

T

14.411

10.518

8.684

V

9.539

4.932

2.866

P

0.095

0.049

0.029

⎞

⎠

⎟⎟⎟

E ∼ 1
mass

⎛

⎝

⎜⎜⎜

V0

50

100

150

E

11.97

15.45

17.32

T

7.203

10.518

13.024

V

4.767

4.932

4.296

P

0.095

0.049

0.029

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

Width

0.05

0.10

0.15

E

11.65

15.45

18.35

T

7.326

10.518

13.317

V

4.324

4.932

5.033

P

0.043

0.049

0.050

P

Width

0.860

0.490

0.333

⎞

⎠

⎟⎟⎟⎟
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9.16: Another Look at the in a Box with an Internal Barrier
The purpose of this tutorial is to explore the impact of the presence of a large (100 E ) thin (0.10 a ) internal barrier on the
solutions to the particle-in-a-box (PIB) problem. Schrödinger's equation is integrated numerically for the first five energy states.
(Integration algorithm taken form J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.)

For the one-bohr PIB the energy eigenvalues are:

m = 1 .. 5

E  = 

E  = (4.935 19.739 44.413 78.957 123.37)

Set parameters:

n = 100

xmin = 0

xmax = 1

 = 1

Vo = 100

lb = .45

rb = .55

Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

i = 1 .. n j = 1 .. n x  = xmin + (i - 1) 

Potential energy:

Kinetic energy:

Hamiltonian matrix: H = T + V

Find eigenvalues: E = sort(eigenvals(H))

Display selected eigenvalues: m = 1 .. 5

E  =

h 0

m
m2π2

2

T

Δ = xmax−xmin

n−1

μ

i Δ

= if [( ≥ lb)( ≤ rb), V o,  0]Vi j xi xi

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

= if[i = j,  D[1 −exp[ −β(| | − )] ,  0]Vi, j xi x0 ]
2

= if[i = j, , ]Ti, j
π2

6μΔ2

(−1)i−j

(i −j μ)2 Δ2

m
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Calculate selected eigenvectors:

k = 1 .. 4

Display probability distributions and energy level manifold in the presence of the internal potential barrier:

n = 1 and n = 3 states:

n = 2 and n = 4 states:

It is clear from the numeric and graphic display of the energy manifold that the presence of the internal barrier causes a bunching of
the energy eigenstates for the four lowest levels. This is frequently called "inversion doubling" because of an identical effect that
appears in the analysis of the ammonia umbrella inversion. This gives the impression that a second set of quantized energy levels is
created by the internal barrier. However, the correct explanation for this bunching is evident in the display of the four lowest wave
functions. The presence of the barrier raises all energy levels relative to the simple PIB, but the n = 2 and n = 4 states have nodes in
the barrier, thus reducing the barrier's effect on raising the energy. Thus the odd states are raised in energy more than the even
states, causing the bunching.

This page titled 9.16: Another Look at the in a Box with an Internal Barrier is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

15.011
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60.453
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9.17: Particle in a Box with Multiple Internal Barriers
Integration limit: x  = 1

Effective mass:  = 1

Barrier height: V  = 100

Potential energy:

Numerical integration of Schrödinger's equation:

Given

Normalize wave function:

Enter energy guess: E = 18.85

Calculate kinetic energy:

Calculate potential energy:

Tunneling probability:

This page titled 9.17: Particle in a Box with Multiple Internal Barriers is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

max

μ

0

V (x) =
∣
∣
∣

 if  (x≥.185)(x≤.215)+(x≥.385)(x≤.415)+(x≥.585)(x≤.615)+(x≥.785)(x≤.815)V0

0 otherwise

ψ(x) +V (x)ψ(x) = Eψ(x)
−1

2μ

d2

dx2

ψ(0) = 0

(0) = 0.1ψ′

ψ = Odesolve(x, xmax

ψ(x) =
ψ(x)

ψ(x dx∫ xmax

0 )2
− −−−−−−−−−−

√

T = ψ(x) ψ(x)dx = 5.926∫
1

0

−1

2

d2

dx2

V = E−T = 12.924

×100 = 12.924
V

V0
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9.18: Particle in an Infinite Spherical Potential Well
Reduced mass:  = 1

Angular momentum: L = 2

Integration limit: r  = 1

Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:

Given

Normalize the wavefunction:

Energy guess: E = 16.51

r = 0, .001 .. r

This page titled 9.18: Particle in an Infinite Spherical Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

μ

max

ψ(r) − ψ(r) +[ ]ψ(r) = Eψ(r)   ψ(.0001) = .1    (.0001) = 0
−1

2μ

d2

dr2

1

rμ

d

dr

L(L+1)

2μr2
ψ′

ψ = Odesolve(r, )rmax

ψ(r) = ψ(r)( ψ(r 4π dr)∫
rmax

0

)2 r2

−1

2

max
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9.19: Numerical Solutions for the Two-Dimensional Harmonic Oscillator
Reduced mass:  = 1

Angular momentum: L = 2

Integration limit: r  = 5

Force constant: k = 1

Energy guess: E = 3

Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:

Given

This page titled 9.19: Numerical Solutions for the Two-Dimensional Harmonic Oscillator is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

μ

max

ψ(r) − ψ(r) +( + k )ψ(r) = Eψ(r)   ψ(.001) = 1    (.001) = 0.1
−1

2μ

d2

dr2

1

2μ

d

dr

L2

2μr2

1

2
r2 ψ′

ψ = Odesolve(r, , .001)rmax

ψ(r) = ψ(r)( ψ(r 4π dr)∫
rmax

0

)2 r2

−1

2
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9.20: Numerical Solutions for the Three-Dimensional Harmonic Oscillator
Reduced mass:  = 1

Angular momentum: L = 0

Integration limit: r  = 6

Force constant: k = 1

Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:

Given

Energy guess: E = 7.5

This page titled 9.20: Numerical Solutions for the Three-Dimensional Harmonic Oscillator is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

μ

max

ψ(r) − ψ(r) +[ + k ]ψ(r) = Eψ(r)   ψ(.001) = 1    (.001) = 0.1
−1

2μ

d2

dr2

1

rμ

d

dr

L(L+1)

2μr2

1

2
r2 ψ′

ψ = Odesolve(r, )rmax

ψ(r) = ψ(r)( ψ(r 4π dr)∫
rmax

0
)2 r2

−1

2
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9.21: Numerical Solutions for the Hydrogen Atom Radial Equation
Reduced mass:  = 1

Angular momentum: L = 0

Integration limit: r  = 18

Nuclear charge: Z = 1

Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:

Given

Normalize wave function:

Energy guess:

E = -.125 r = 0, .001 .. r

Calculate average position:

Calculate kinetic energy:

Calculate potential energy:

This page titled 9.21: Numerical Solutions for the Hydrogen Atom Radial Equation is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

μ

max

ψ(r) − ψ(r) +[ + k ]ψ(r) = Eψ(r)   ψ(.0001) = .1    (.0001) = 0.1
−1

2μ

d2

dr2

1

rμ

d

dr

L(L+1)

2μr2

1

2
r2 ψ′

ψ = Odesolve(r, )rmax

ψ(r) = ψ(r)( ψ(r 4π dr)∫
rmax

0

)2 r2

−1

2

max

ψ(r)rψ(r)4π dr = 5.997∫
rmax

0

r2

ψ(r)[ ψ(r) − ψ(r) +[ ]ψ(r)]4π dr = 0.125∫
rmax

0

−1

2μ

d2

dr2

1

rμ

d

dr

L(L+1)

2μr2
r2

ψ(r) ψ(r)4π dr = −0.25∫
rmax

0

−Z

r
r2
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9.22: Numerical Solutions for a Modified Harmonic Potential
This tutorial deals with the following potential function:

If d = 0 we have the harmonic oscillator on the half-line with eigenvalues 1.5, 3.5, 5.5, ... for k =  = 1. For large values of d we
have the full harmonic oscillator problem displaced in the x-direction by d with eigenvalues 0.5, 1.5, 2.5, ... for k =  = 1. For small
to intermediate values of d the potential can be used to model the interaction of an atom or molecule with a surface.

Integration limit: x  = 10

Effective mass:  = 1

Force constant: k = 1

Potential energy minimum: d = 5

Potential energy:

Integration algorithm:

Given

Normalize wavefunction:

Energy guess: E = 0.5

Calculate average position:

Calculate potential and kinetic energy:

Exercises:

For d = 0, k =  = 1 confirm that the first three energy eigenvalues are 1.5, 3.5 and 5.5 E . Start with x  = 5, but be prepared
to adjust to larger values if necessary. xmax is effectively infinity.
For d = 5, k =  = 1 confirm that the first three energy eigenvalues are 0.5, 1.5 and 2.5 Eh. Start with x  = 10, but be prepared
to adjust to larger values if necessary.

V (x, d) =
∣
∣
∣

k(x−d  if  x≥0+d≤01
2

)2

∞ otherwise

μ

μ

max

μ

V (x, d) = (x−d
k

2
)2

ψ(x) =
ψ(x)

ψ(x dx∫
xmax

0 )2
− −−−−−−−−−−

√

= ψ(x)xψ(x)dx = 5Xavg ∫
xmax

0

= ψ(x)V (x, d)ψ(x)dx = 0.25Vavg ∫
xmax

0

= E− = 0.25Tavg Vavg

μ h max

μ max
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Determine and compare the virial theorem for the exercises above.
Calculate the probability that tunneling is occurring for the ground state for the first two exercises. (Answers: 0.112, 0.157)

This page titled 9.22: Numerical Solutions for a Modified Harmonic Potential is shared under a CC BY 4.0 license and was authored, remixed,
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