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CHAPTER OVERVIEW

1: Fast Fourier Transforms

This page titled 1: Fast Fourier Transforms is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney Burrus.

1.1: Introduction
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1.1: Introduction
The development of fast algorithms usually consists of using special properties of the algorithm of interest to remove redundant or unnecessary operations of a direct implementation. Because of the
periodicity, symmetries, and orthogonality of the basis functions and the special relationship with convolution, the discrete Fourier transform (DFT) has enormous capacity for improvement of its
arithmetic efficiency.

There are four main approaches to formulating efficient DFT algorithms. The first two break a DFT into multiple shorter ones. This is done in Multidimensional Index Mapping by using an index map
and in Polynomial Description of Signals by polynomial reduction. The third is Factoring the Signal Processing Operators which factors the DFT operator (matrix) into sparse factors. The DFT as
Convolution or Filtering develops a method which converts a prime-length DFT into cyclic convolution. Still another approach is interesting where, for certain cases, the evaluation of the DFT can be
posed recursively as evaluating a DFT in terms of two half-length DFTs which are each in turn evaluated by a quarter-length DFT and so on.

The very important computational complexity theorems of Winograd are stated and briefly discussed in Winograd's Short DFT Algorithms. The specific details and evaluations of the Cooley-Tukey
FFT and Split-Radix FFT are given in The Cooley-Tukey Fast Fourier Transform Algorithm, and PFA and WFTA are covered in The Prime Factor and Winograd Fourier Transform Algorithms. A
short discussion of high speed convolution is given in Convolution Algorithms, both for its own importance, and its theoretical connection to the DFT. We also present the chirp, Goertzel, QFT, NTT,
SR-FFT, Approx FFT, Autogen, and programs to implement some of these.

Ivan Selesnick gives a short introduction in Winograd's Short DFT Algorithms to using Winograd's techniques to give a highly structured development of short prime length FFTs and describes a
program that will automaticlly write these programs. Markus Pueschel presents his
" role="presentation" style="position:relative;" tabindex="0"> Algebraic Signal Processing" in DFT and FFT - An Algebraic View on describing the various FFT algorithms. And Steven Johnson describ

The organization of the book represents the various approaches to understanding the FFT and to obtaining efficient computer programs. It also shows the intimate relationship between theory and implem

A fairly long list of references is given but it is impossible to be truly complete. I have referenced the work that I have used and that I am aware of. The collection of computer programs is also somewhat
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CHAPTER OVERVIEW

2: Multidimensional Index Mapping
A powerful approach to the development of efficient algorithms is to break a large problem into multiple small ones. One method
for doing this with both the DFT and convolution uses a linear change of index variables to map the original one-dimensional
problem into a multi-dimensional problem. This approach provides a unified derivation of the Cooley-Tukey FFT, the prime factor
algorithm (PFA) FFT, and the Winograd Fourier transform algorithm (WFTA) FFT. It can also be applied directly to convolution to
break it down into multiple short convolutions that can be executed faster than a direct implementation. It is often easy to translate
an algorithm using index mapping into an efficient program.
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2.1: Introduction

A change of index variable or an index mapping is used to uncouple the calculations of the discrete Fourier transform (DFT).
This can result is a significant reduction in the required arithmetic and the resulting algorithm is called the fast Fourier transform (FFT).

A powerful approach to the development of efficient algorithms is to break a large problem into multiple small ones. One method for doing this with both the DFT and convolution uses a linear
change of index variables to map the original one-dimensional problem into a multi-dimensional problem. This approach provides a unified derivation of the Cooley-Tukey FFT, the prime factor
algorithm (PFA) FFT, and the Winograd Fourier transform algorithm (WFTA) FFT. It can also be applied directly to convolution to break it down into multiple short convolutions that can be executed
faster than a direct implementation. It is often easy to translate an algorithm using index mapping into an efficient program.

The basic definition of the discrete Fourier transform (DFT) is

where nn" role="presentation" style="position:relative;" tabindex="0">n, k and N are integers,

the basis functions are the NN" role="presentation" style="position:relative;" tabindex="0">N roots of unity,

NN" role="presentation" style="position:relative;" tabindex="0">

and k=0,1,2,...,N-1

If the NN" role="presentation" style="position:relative;" tabindex="0"> values of the transform are calculated from the  values of the data, , it is easily seen that  complex multiplications an
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2.2: The Index Map
For a length-  sequence, the time index takes on the values .

When the length of the DFT is not prime,  can be factored as  and two new independent variables can be defined over the ranges  and 
.

A linear change of variables is defined which maps  and  to  and is expressed by

where  are integers and the notation  denotes the integer residue of  modulo . This map defines a relation between all possible combinations
ofn1n1" role="presentation" style="position:relative;" tabindex="0">  and  as shown in the equations below. The question as to whether all of the n are represented, i.e., whether the map is one-to-o

Case 1

 and  are relatively prime, i.e., the greatest common divisor 

The integer map of the equation is one-to-one if and only if:

where  and  are integers.

Case 2
 and  are not relatively prime, i.e., 

The integer map of the above equation is one-to-one if and only if:

or

Two classes of index maps are defined from these conditions.

Type-One Index Map
The map of the above equation is called a type-one map when when integers a and b exist such that

Type-Two Index Map
The map of the above equation is called a type-two map when when integers a and b exist such that

The type-one can be used only if the factors of  are relatively prime, but the type-two can be used whether they are relatively prime or not. Good, Thomas and Winograd all used the type-one map in th

The frequency index is defined by a map similar to the equation as

where the same conditions are used for determining the uniqueness of this map in terms of the integers  and K3K3" role="presentation" style="position:relative;" tabindex="0">.

Two-dimensional arrays for the input data and its DFT are defined using these index maps to give

In some of the following equations, the residue reduction notation will be omitted for clarity. These changes of variables applied to the definition of the DFT given in the equation in section 2.1 give:

where all of the exponents are evaluated modulo NN" role="presentation" style="position:relative;" tabindex="0">.

The amount of arithmetic required to calculate the above equation is the same as in the direct calculation of that equation. However, because of the special nature of the DFT, the integer constants  can

When this condition and those for uniqueness in the equation are applied, it is found that the  may always be chosen such that one of the terms in the equation is zero. If the  are relatively prime, it 

An example of the Cooley-Tukey radix-4 FFT for a length-16 DFT uses the type-two map with

giving

The residue reduction in the equation is not needed here since n does not exceed  as  and  take on their values. Since, in this example, the factors of  have a common factor, only one of the cond

Note the definition of W  in the equation allows the simple form of

W16K1K3=W4W16K1K3=W4" role="presentation" style="position:relative;" tabindex="0">

This has the form of a two-dimensional DFT with an extra term , called a “twiddle factor". The inner sum over represents four length-4 DFTs, the  term represents 16 complex multiplications
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Fig. 2.2.1 Uncoupling of the Row and Column Calculations (Rectangles are Data Arrays)

The left 4-by-4 array is the mapped input data, the center array has the rows transformed, and the right array is the DFT array. The row DFTs and the column DFTs are independent of each other. The twi

This uncoupling feature reduces the amount of arithmetic required and allows the results of each row DFT to be written back over the input data locations, since that input row will not be needed again. T

An example of the type-two map used when the factors of  are relatively prime is given for  as

The residue reduction is again not explicitly needed. Although the factors 3 and 5 are relatively prime, use of the type-two map sets only one of the terms in Equation to zero. The DFT in the equation be

which has the same form as the equation, including the existence of the twiddle factors (TF). Here the inner sum is five length-3 DFTs, one for each value of . This is illustrated in the equation where th

Fig. 2.2.2 Uncoupling of the Row and Column Calculations (Rectangles are Data Arrays)

The type-one map is illustrated next on the same length-15 example. This time the situation of the equation with the “and" condition is used in the equation using an index map of

and

The residue reduction is now necessary. Since the factors of  are relatively prime and the type-one map is being used, both terms in the equation are zero, and the equation becomes

which is similar to the equation, except that now the type-one map gives a pure two-dimensional DFT calculation with no TFs, and the sums can be done in either order. the above figures also describe th

The purpose of index mapping is to improve the arithmetic efficiency. For example a direct calculation of a length-16 DFT requires 16  or 256 real multiplications (recall, one complex multiplication req

Algorithms of practical interest use short DFT's that require fewer than  multiplications. For example, length-4 DFTs require no multiplications and, therefore, for the length-16 DFT, only the TFs mu

The concept of using an index map can also be applied to convolution to convert a length

one-dimensional cyclic convolution into a N by N two-dimensional cyclic convolution. There is no savings of arithmetic from the mapping alone as there is with the DFT, but savings can be obtained b
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2.3: In-Place Calculation of the DFT and Scrambling
Because use of both the type-one and two index maps uncouples the calculations of the rows and columns of the data array, the
results of each short length  DFT can be written back over the data as it will not be needed again after that particular row or
column is transformed. This is easily seen from Figures in section 2.2 where the DFT of the first row of  can be put back
over the data rather written into a new array. After all the calculations are finished, the total DFT is in the array of the original data.
This gives a significant memory savings over using a separate array for the output.

Unfortunately, the use of in-place calculations results in the order of the DFT values being permuted or scrambled. This is because
the data is indexed according to the input map equation and the results are put into the same locations rather than the locations
dictated by the output map equation. For example with a length-8 radix-2 FFT, the input index map is

which to satisfy the equation requires an output map of

The in-place calculations will place the DFT results in the locations of the input map and these should be reordered or unscrambled
into the locations given by the output map. Examination of these two maps shows the scrambled output to be in a “bit reversed"
order.

For certain applications, this scrambled output order is not important, but for many applications, the order must be unscrambled
before the DFT can be considered complete. Because the radix of the radix-2 FFT is the same as the base of the binary number
representation, the correct address for any term is found by reversing the binary bits of the address. The part of most FFT programs
that does this reordering is called a bit-reversed counter. Examples of various unscramblers are found in the appendices.

The development here uses the input map and the resulting algorithm is called “decimation-in-frequency". If the output rather than
the input map is used to derive the FFT algorithm so the correct output order is obtained, the input order must be scrambled so that
its values are in locations specified by the output map rather than the input map. This algorithm is called “decimation-in-time". The
scrambling is the same bit-reverse counting as before, but it precedes the FFT algorithm in this case. The same process of a post-
unscrambler or pre-scrambler occurs for the in-place calculations with the type-one maps. It is possible to do the unscrambling
while calculating the FFT and to avoid a separate unscrambler. This is done for the Cooley-Tukey FFT and for the PFA.

If a radix-2 FFT is used, the unscrambler is a bit-reversed counter. If a radix-4 FFT is used, the unscrambler is a base-4 reversed
counter, and similarly for radix-8 and others. However, if for the radix-4 FFT, the short length-4 DFTs (butterflies) have their
outputs in bit-revered order, the output of the total radix-4 FFT will be in bit-reversed order, not base-4 reversed order. This means
any radix-  FFT can use the same radix-2 bit-reversed counter as an unscrambler if the proper butterflies are used.
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2.4: Efficiencies Resulting from Index Mapping with the DFT
In this section the reductions in arithmetic in the DFT that result from the index mapping alone will be examined. In practical algorithms several methods are always combined, but it is helpful in
understanding the effects of a particular method to study it alone.

The most general form of an uncoupled two-dimensional DFT is given by

where the inner sum calculates  length-  DFT's and, if for a type-two map, the effects of the TFs. If the number of arithmetic operations for a length-  DFT is denoted by , the number of
operations for this inner sum is

F=N2F(N1)F=N2F(N1)" role="presentation" style="position:relative;" tabindex="0">

The outer sum which gives  length-  DFT's requires  operations. The total number of arithmetic operations is then

The first question to be considered is for a fixed length , what is the optimal relation of  and  in the sense of minimizing the required amount of arithmetic. To answer this question, and a

Thus Efficiencies Resulting from Index Mapping with the DFT becomes

To find the minimum of  over , the derivative of  with respect to  is set to zero (temporarily assuming the variables to be continuous) and the result requires 

This result is also easily seen from the symmetry of , and in , in . If a more general model of the arithmetic complexity of the short DFT's is used, the same result is obtained, but a clos

N1=N2N1=N2" role="presentation" style="position:relative;" tabindex="0">If only the effects of the index mapping are to be considered, then the  model is used and the equation states tha

F(N)=N2F(N)=N2" role="presentation" style="position:relative;" tabindex="0">

there are now  length-  DFT's and, since the factors are all equal, the index map must be type two. This means there must be twiddle factors.

In order to simplify the analysis, only the number of multiplications will be considered. If the number of multiplications for a length-  DFT is , then the formula for operation counts in the equatio

for 

This is a very important formula which was derived by Cooley and Tukey in their famous paper on the FFT. It states that for a given  which is called the radix, the number of multiplications (and additi

In order to get some idea of the “best" radix, the number of multiplications to compute a length-  DFT is assumed to be

If this is used with the equation, the optimal  can be found.

For  this gives , with the closest integer being three.

The result of this analysis states that if no other arithmetic saving methods other than index mapping are used, and if the length-  DFT's plus TFs requireF=R2F=R2" role="presentation" style="position

While this is an interesting result from the analysis of the effects of index mapping alone, in practice, index mapping is almost always used in conjunction with special algorithms for the short length-  

and the operation count  in "Efficiencies Resulting from Index Mapping with the DFT" is independent of . Therefore, the derivative of  is zero for all . Obviously, these particular cases must be
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2.5: The FFT as a Recursive Evaluation of the DFT
It is possible to formulate the DFT so a length-  DFT can be calculated in terms of two length-( ) DFTs.

And, if  each of those length-( ) DFTs can be found in terms of length-( ) DFTs. This allows the DFT to be
calculated by a recursive algorithm with  recursions, giving the familiar order  arithmetic complexity.

Calculate the even indexed DFT values from the equation by:

and a similar argument gives the odd indexed values as:

Together, these are recursive DFT formulas expressing the length-N DFT of  in terms of length-N/2 DFTs:

This is a “decimation-in-frequency" (DIF) version since it gives samples of the frequency domain representation in terms of blocks
of the time domain signal.

A recursive Matlab program which implements this is given by:

A DIT version can be derived in the form:

which gives blocks of the frequency domain from samples of the signal.

A recursive Matlab program which implements this is given by:
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Similar recursive expressions can be developed for other radices and and algorithms. Most recursive programs do not execute as
efficiently as looped or straight code, but some can be very efficient, e.g. parts of the FFTW.

Note a length-  sequence will require  recursions, each of which will require  multiplications. This give the 
formula that the other approaches also derive.
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3: Polynomial Description of Signals
Polynomials are important in digital signal processing because calculating the DFT can be viewed as a polynomial evaluation
problem and convolution can be viewed as polynomial multiplication This is indeed the basis for the important results of Winograd
discussed in Winograd’s Short DFT Algorithms.

This page titled 3: Polynomial Description of Signals is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney
Burrus.
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3.1: Introduction

Polynomials are important in digital signal processing because calculating the DFT can be viewed as a polynomial
evaluation problem and convolution can be viewed as polynomial multiplication

This is indeed the basis for the important results of Winograd discussed in Winograd's Short DFT Algorithms. A length-  signal 
 will be represented by an  degree polynomial  defined by:

This polynomial  is a single entity with the coefficients being the values of . It is somewhat similar to the use of matrix
or vector notation to efficiently represent signals which allows use of new mathematical tools.

The convolution of two finite length sequences,  and , gives an output sequence defined by

This is exactly the same operation as calculating the coefficients when multiplying two polynomials. The equation is the same as

In fact, convolution of number sequences, multiplication of polynomials, and the multiplication of integers (except for the carry
operation) are all the same operations. To obtain cyclic convolution, where the indices in the equation are all evaluated modulo ,
the polynomial multiplication in the equation is done modulo the polynomial:

This is seen by noting that  therefore,  and the polynomial modulus is .
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3.2: Polynomial Reduction and the Chinese Remainder Theorem
Residue reduction of one polynomial modulo another is defined similarly to residue reduction for integers. A polynomial  has a residue polynomial  modulo 
if, for a given  and , a  and  exist such that:

with

The notation that will be used is:

For example,

The concepts of factoring a polynomial and of primeness are an extension of these ideas for integers. For a given allowed set of coefficients (values of ), any polynomial
has a unique factored representation:

where the  are relatively prime. This is analogous to the fundamental theorem of arithmetic.

There is a very useful operation that is an extension of the integer Chinese Remainder Theorem (CRT) which says that if the modulus polynomial can be factored into
relatively prime factors:

then there exist two polynomials,  and , such that any polynomial  can be recovered from its residues by:

where  and  are the residues given by:

and

if the order of  is less than . This generalizes to any number of relatively prime factors of  and can be viewed as a means of representing  by several lower
degree polynomials, .

This decomposition of  into lower degree polynomials is the process used to break a DFT or convolution into several simple problems which are solved and then
recombined using the CRT of the above equation. This is another form of the “divide and conquer" or “organize and share" approach similar to the index mappings in
Multidimensional Index Mapping.

One useful property of the CRT is for convolution. If cyclic convolution of  and  is expressed in terms of polynomials by:

where

and if  is factored into two relatively prime factors

P=P1P2P=P1P2" role="presentation" style="position:relative;" tabindex="0">

using residue reduction of  and  modulo  and , the lower degree residue polynomials can be multiplied and the results recombined with the CRT. This is done by:

where

and  and  are the CRT coefficient polynomials from the above equation. This allows two shorter convolutions to replace one longer one.

Another property of residue reduction that is useful in DFT calculation is polynomial evaluation. To evaluate  at ,  is reduced modulo .

This is easily seen from the definition in the equation.

Evaluating , gives  which is a constant. For the DFT this becomes:
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3.3: The DFT as a Polynomial Evaluation
The -transform of a number sequence  is defined as:

which is the same as the polynomial description in Equation 3.1.1 but with a negative exponent. For a finite length-  sequence the
above equation becomes

This  order polynomial takes on the values of the DFT of  when evaluated at

which gives

In terms of the positive exponent polynomial from the above equation, the DFT is:

where

is an  root of unity (raising  to the power gives one). The  values of the DFT are found from  evaluated at the 
 roots of unity which are equally spaced around the unit circle in the complex s plane.

One method of evaluating  is the so-called Horner's rule or nested evaluation. When expressed as a recursive calculation,
Horner's rule becomes the Goertzel algorithm which has some computational advantages especially when only a few values of the
DFT are needed.

Another method for evaluating  is the residue reduction modulo ( ) as shown in Equation 3.3.1 above. Each evaluation
requires  multiplications and therefore,  multiplications for the  values of .

A considerable reduction in required arithmetic can be achieved if some operations can be shared between the reductions for
different values of . This is done by carrying out the residue reduction in stages that can be shared rather than done in one step for
each  in the above equation.

The  values of the DFT are values of  evaluated at  equal to the  roots of the polynomial

which are . First, assuming  is even, factor  as:

 is reduced modulo these two factors to give two residue polynomials,  and . This process is repeated by
factoring  and further reducing then factoring  and reducing . This is continued until the factors are of first degree
which gives the desired DFT values as in Equation. This is illustrated for a length-8 DFT. The polynomial whose roots are ,
factors as
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where

Reducing  by the first factoring gives two third degree polynomials:

gives the residue polynomials

Two more levels of reduction are carried out to finally give the DFT. Close examination shows the resulting algorithm to be the
decimation-in-frequency radix-2 Cooley-Tukey FFT. Martens has used this approach to derive an efficient DFT algorithm.

Other algorithms and types of FFT can be developed using polynomial representations and some are presented in the generalization
in DFT and FFT - An Algebraic View.
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4: The DFT as Convolution or Filtering
A major application of the FFT is fast convolution or fast filtering where the DFT of the signal is multiplied term-by-term by the
DFT of the impulse (helps to be doing finite impulse response (FIR) filtering) and the time-domain output is obtained by taking the
inverse DFT of that product. What is less well-known is the DFT can be calculated by convolution. There are several different
approaches to this, each with different application.

This page titled 4: The DFT as Convolution or Filtering is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney
Burrus.
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4.1: Introduction

Calculating DFT by convolution

A major application of the FFT is fast convolution or fast filtering where the DFT of the signal is multiplied term-by-term by the
DFT of the impulse (helps to be doing finite impulse response (FIR) filtering) and the time-domain output is obtained by taking the
inverse DFT of that product. What is less well-known is the DFT can be calculated by convolution. There are several different
approaches to this, each with different application.

Contributor 
ContribEEBurrus

This page titled 4.1: Introduction is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney Burrus.

Learning Objectives

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/1979?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/04%3A_The_DFT_as_Convolution_or_Filtering/4.01%3A_Introduction
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/04%3A_The_DFT_as_Convolution_or_Filtering/4.01%3A_Introduction
https://creativecommons.org/licenses/by/
https://eceweb.rice.edu/people/sidney-burrus


4.2.1 https://eng.libretexts.org/@go/page/1980

4.2: Rader's Conversion of the DFT into Convolution
In this section a method quite different from the index mapping or polynomial evaluation is developed. Rather than dealing with the DFT directly, it is converted into a cyclic convolution which must
then be carried out by some efficient means. Those means will be covered later, but here the conversion will be explained. This method requires use of some number theory.

The DFT and cyclic convolution are defined by

For both, the indices are evaluated modulo . In order to convert the DFT in Equation 4.2.1 into the cyclic convolution of Equation 4.2.2, the  product must be changed to the  difference.
With real numbers, this can be done with logarithms, but it is more complicated when working in a finite set of integers modulo . From number theory it can be shown that if the modulus is a prime
number, a base (called a primitive root) exists such that a form of integer logarithm can be defined. This is stated in the following way. If  is a prime number, a number r called a primitive roots
exists such that the integer equation

creates a unique, one-to-one map of the  member set  and the  member set . This is because the multiplicative group of integers modulo a prime, ,
is isomorphic to the additive group of integers modulo ( ) and is illustrated for  below.

n={1,...,N-1}n={1,...,N-1}" role="presentation" style="position:relative;" tabindex="0">

n={1,...,N-1}n={1,...,N-1}" role="presentation" style="position:relative;" tabindex="0">The above Table is an array of values of  modulo  and it is easy to see that there are two primitive roots, 2 an

and

where the term with the negative exponent (the inverse) is defined as the integer that satisfies

If  is a prime number,  always exists. For example

The Equation 4.2.1 now becomes

for  and

New functions are defined, which are simply a permutation in the order of the original functions, as

The above equation then becomes

which is cyclic convolution of length  (plus  and is denoted as

Applying this change of variables (use of logarithms) to the DFT can best be illustrated from the matrix formulation of the DFT. The equation is written for a length-5 DFT as:

where the square matrix should contain the terms of  but for clarity, only the exponents nknk" role="presentation" style="position:relative;" tabindex="0"> are shown. Separating the  term, a

Definition

C(k) = x(n)∑
n=0

N−1

W nk

y(k) = x(n)h(k −n)∑
n=0

N−1

N nk k −n

N

N

n = (( )rm )N

N −1 m = 0, . . . , N −2 N −1 n = 1, . . . , N −1 p

p −1 N = 5

rm N

n = r−m

k = rs

(( ) = 1r−mrm )N

N r−m

(( ) = 32−1 )5

C( ) = x( ) +x(0)rs ∑
m=0

N−2

r−m W r−mrs

s = 0, 1, . . . , N −2

C(0) = x(n)∑
n=0

N−1

(m) = x( ), (s) = C( ), (n) = W ( )x′ r−m C ′ rs W ′ rn

(s) = (m) (s −m) +x(0)C ′ ∑
m=0

N−2

x′ W ′

N −1 x(0)

(k) = (k) ∗ (k) +x(0)C ′ x′ W ′

=

⎡

⎣

⎢⎢
⎢⎢⎢
⎢

C(0)

C(1)

C(2)

C(3)

C(4)

⎤

⎦

⎥⎥
⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

0

0

0

0

0

0

1

2

3

4

0

2

4

1

3

0

3

1

4

2

0

4

3

2

1

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢
⎢⎢⎢
⎢

x(0)

x(1)

x(2)

x(3)

x(4)

⎤

⎦

⎥⎥
⎥⎥⎥
⎥

W nk nk x(0)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/1980?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/04%3A_The_DFT_as_Convolution_or_Filtering/4.02%3A_Rader's_Conversion_of_the_DFT_into_Convolution


4.2.2 https://eng.libretexts.org/@go/page/1980
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and

which can be seen to be a reordering of the structure in the above equation. This is in the form of cyclic convolution as indicated in the above equation. Rader first showed this in 1968, stating that a prim

Until 1976, this conversion approach received little attention since it seemed to offer few advantages. It has specialized applications in calculating the DFT if the cyclic convolution is done by distributed
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4.3: The Chirp Z-Transform or Bluestein's Algorithm
The DFT of  evaluates the -transform of  on  equally spaced points on the unit circle in the  plane. Using a nonlinear change of variables, one can create a structure which is equivalent
to modulation and filtering  by a “chirp" signal.

The mathematical identity

gives

which substituted into the definition of the DFT in Multidimensional Index Mapping Equation gives

This equation can be interpreted as first multiplying (modulating) the data  by a chirp sequence  then convolving (filtering) it, then finally multiplying the filter output by the chirp
sequence to give the DFT.

Define the chirp sequence or signal as h(n)=Wn2/2h(n)=Wn2/2" role="presentation" style="position:relative;" tabindex="0">

which is called a chirp because the squared exponent gives a sinusoid with changing frequency. Using this definition, we have:

We know that convolution can be carried out by multiplying the DFTs of the signals, here we see that evaluation of the DFT can be carried out by convolution. Indeed, the convolution represented by **"

As developed here, the chirp -transform evaluates the -transform at equally spaced points on the unit circle. A slight modification allows evaluation on a spiral and in segments and allows savings with

Two Matlab programs to calculate an arbitrary length DFT using the chirp -transform is shown in Pre.
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4.4: Goertzel's Algorithm or A Better DFT Algorithm
Goertzel's algorithm is another methods that calculates the DFT by converting it into a digital filtering problem. The method looks
at the calculation of the DFT as the evaluation of a polynomial on the unit circle in the complex plane. This evaluation is done by
Horner's method which is implemented recursively by an IIR filter.

The First-Order Goertzel Algorithm 
The polynomial whose values on the unit circle are the DFT is a slightly modified -transform of  given by

which for clarity in this development uses a positive exponent . This is illustrated for a length-4 sequence as a third-order
polynomial by

The DFT is found by evaluating the equation at  which can be written as

The most efficient way of evaluating a general polynomial without any pre-processing is by “Horner's rule" which is a nested
evaluation. This is illustrated for the polynomial in the equation below:

This nested sequence of operations can be written as a linear difference equation in the form of

with initial condition , and the desired result being the solution at m=N. The value of the polynomial is given by

This equation can be viewed as a first-order IIR filter with the input being the data sequence in reverse order and the value of the
polynomial at  being the filter output sampled at . Applying this to the DFT gives the Goertzel algorithm:

with

where

When comparing this program with the direct calculation of equation, it is seen that the number of floating-point multiplications
and additions are the same. In fact, the structures of the two algorithms look similar, but close examination shows that the way the
sines and cosines enter the calculations is different. In the equation, new sine and cosine values are calculated for each frequency
and for each data value, while for the Goertzel algorithm in the equation, they are calculated only for each frequency in the outer
loop. Because of the recursive or feedback nature of the algorithm, the sine and cosine values are “updated" each loop rather than
recalculated. This results in  trigonometric evaluations rather than . It also results in an increase in accumulated
quantization error.

It is possible to modify this algorithm to allow entering the data in forward order rather than reverse order. The difference in the
equation becomes

z x(n)

X(z) = x(n)∑
n=0

N−1

z−n

X(z) = x(3) +x(2) +x(1)z+x(0)z3 z2

z = W k

C(k) = X(z) = DFT {x(n)} where W =∣z=W k e−j2π/N

X(z) = {[x(3)z+x(2)]z+x(1)z} +x(0)

y(m) = zy(m−1) +x(N −m)

y(0) = 0

X(z) = y(N)

z m = N

y(m) = y(m−1) +x(N −m)W k

y(0) = 0 and C(k) = y(n)

C(k) = x(n)∑
n=0

N−1

W nk

2N 2N 2

y(m) = y(m−1) +x(m−1)z−1
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if the equation becomes

for . This is the algorithm programmed later.

The Second-Order Goertzel Algorithm 
One of the reasons the first-order Goertzel algorithm does not improve efficiency is that the constant in the feedback or recursive
path is complex and, therefore, requires four real multiplications and two real additions. A modification of the scheme to make it
second-order removes the complex multiplications and reduces the number of required multiplications by two.

Define the variable  so that

This substituted into the right-hand side of the above equation gives

Combining the two equations gives the second order difference equation

which together with the output equation, comprise the second-order Goertzel algorithm where

for initial conditions

A similar development starting with the equation gives a second-order algorithm with forward ordered input as

with

Note that both the equations are not changed if  is replaced with , only the output Equation and Equation are different. This
means that the polynomial  may be evaluated at a particular  and its inverse  from one solution of the two equations using
the output equations

and

Clearly, this allows the DFT of a sequence to be calculated with half the arithmetic since the outputs are calculated two at a time.
The second-order DE actually produces a solution  that contains two first-order components. The output equations are, in
effect, zeros that cancel one or the other pole of the second-order solution to give the desired first-order solution. In addition to
allowing the calculating of two outputs at a time, the second-order DE requires half the number of real multiplications as the first-
order form. This is because the coefficient of the  is unity and the coefficient of the  is real if  and  are
complex conjugates of each other which is true for the DFT.

Analysis of Arithmetic Complexity and Timings 

Analysis of the various forms of the Goertzel algorithm from their programs gives the following operation count for real
multiplications and real additions assuming real data.

C(k) = y(N)zN−1

y(0) = 0

q(m)

y(m) = q(m) − q(m−1)z−1

y(m) = zq(m−1) −q(m−2) +x(N −m)

q(m) = (z+ )q(m−1) −q(m−2) +x(N −m)z−1

X(z) = Y (n)

q(0) = q(−1) = 0

q(m) = (z+ )q(m−1) −q(m−2) +x(m−1)z−1

y(m) = q(m) −zq(−1)

X(z) = y(N) for q(0) = q(−1) = 0zN−1

z z
−1

X(z) z z
−1

X(z) = q(N) − q(N −1)z−1

X(1/z) = (q(N) −zq(N −1))zN−1

q(m)

q(m−2) q(m−1) z z
−1
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Algorithm Real Mults. Real Adds Trig Eval.

Direct DFT 4N 4N 2N

First-Order 4N 4N - 2N 2N

Second-Order 2N  + 2N 4N 2N

Second-Order 2 N  + N 2N  + N N

Timings of the algorithms on a PC in milliseconds are given in the following table.

Algorithm N=125 N=257

Direct DFT 4.90 19.83

First-Order 4.01 16.70

Second-Order 2.64 11.04

Second-Order 2 1.32 5.55

These timings track the floating point operation counts fairly well.

Conclusions 
Goertzel's algorithm in its first-order form is not particularly interesting, but the two-at-a-time second-order form is significantly
faster than a direct DFT. It can also be used for any polynomial evaluation or for the DTFT at unequally spaced values or for
evaluating a few DFT terms. A very interesting observation is that the inner-most loop of the Glassman-Ferguson FFT is a first-
order Goertzel algorithm even though that FFT is developed in a very different framework.

In addition to floating-point arithmetic counts, the number of trigonometric function evaluations that must be made or the size of a
table to store precomputed values should be considered. Since the value of the  terms in the equation are iteratively calculate
in the IIR filter structure, there is round-off error accumulation that should be analyzed in any application.

It may be possible to further improve the efficiency of the second-order Goertzel algorithm for calculating all of the DFT of a
number sequence. Perhaps a fourth order DE could calculate four output values at a time and they could be separated by a
numerator that would cancel three of the zeros. Perhaps the algorithm could be arranged in stages to give an  operation
count. The current algorithm does not take into account any of the symmetries of the input index.
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4.5: The Quick Fourier Transform (QFT)
One stage of the QFT can use the symmetries of the sines and cosines to calculate a DFT more efficiently than directly
implementing the equation in Multidimensional Index Mapping. Similar to the Goertzel algorithm, the one-stage QFT is a better 

 DFT algorithm for arbitrary lengths. See The Cooley-Tukey Fast Fourier Transform Algorithm .
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5.1: Introduction

To introduce a third approach to removing redundancy in an algorithm to express the algorithm as an operator and then
factor that operator into sparse factors

A third approach to removing redundancy in an algorithm is to express the algorithm as an operator and then factor that operator
into sparse factors. This approach is used by Tolimieri, Egner, Selesnick, Elliott and others. It is presented in a more general form
in DFT and FFT: An Algebraic View The operators may be in the form of a matrix or a tensor operator.

The following sections briefly describe this approach.
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5.2: The FFT from Factoring the DFT Operator
The definition of the DFT in Multidimensional Index Mapping can written as a matrix-vector operation by 

which clearly requires  complex multiplications and  additions. A factorization of the DFT operator, , gives .

Expanding on that gives

where the  matrices are sparse. Note that each has  non-zero terms and  and  have  non-unity terms. If , then the number of factors is . In another
form with the twiddle factors separated so as to count the complex multiplications we have

which is in the form

C=A1M1A2M2A3XC=A1M1A2M2A3X" role="presentation" style="position:relative;" tabindex="0">

described by the index map. , , and  each represents  additions, or, in general,  additions.  and  each represent  (or ) multiplications.

This is a very interesting result showing that implementing the DFT using the factored form requires considerably less arithmetic than the single factor definition. Indeed, the form of the formula that Coo

Much of the theory of the FFT can be developed using operator factoring and it has some advantages for implementation of parallel and vector computer architectures. The eigenspace approach is somew
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5.3: Algebraic Theory of Signal Processing Algorithms
A very general structure for all kinds of algorithms can be generalized from the approach of operators and operator decomposition.
This is developed as “Algebraic Theory of Signal Processing" discussed in the module DFT and FFT - An Algebraic View by
Püschel and others.
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CHAPTER OVERVIEW

6: Winograd's Short DFT Algorithms
In 1976, S. Winograd presented a new DFT algorithm which had significantly fewer multiplications than the Cooley-Tukey FFT
which had been published eleven years earlier. This new Winograd Fourier Transform Algorithm (WFTA) is based on the type- one
index map from Multidimensional Index Mapping with each of the relatively prime length short DFT's calculated by very efficient
special algorithms. It is these short algorithms that this section will develop. They use the index permutation of Rader described in
the another module to convert the prime length short DFT's into cyclic convolutions. Winograd developed a method for calculating
digital convolution with the minimum number of multiplications. These optimal algorithms are based on the polynomial residue
reduction techniques of Polynomial Description of Signals to break the convolution into multiple small ones.
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6.1: Introduction

To study the Winograd Fourier Transform Algorithm (WFTA)

In 1976, S. Winograd presented a new DFT algorithm which had significantly fewer multiplications than the Cooley-Tukey FFT
which had been published eleven years earlier. This new Winograd Fourier Transform Algorithm (WFTA) is based on the type- one
index map from Multidimensional Index Mapping with each of the relatively prime length short DFT's calculated by very efficient
special algorithms. It is these short algorithms that this section will develop. They use the index permutation of Rader described in
the another module to convert the prime length short DFT's into cyclic convolutions. Winograd developed a method for calculating
digital convolution with the minimum number of multiplications. These optimal algorithms are based on the polynomial residue
reduction techniques of Polynomial Description of Signals to break the convolution into multiple small ones.
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6.2: Winograd Fourier Transform Algorithm (WFTA)
The operation of discrete convolution defined by

is called a bilinear operation because, for a fixed ,  is a linear function of  and for a fixed  it is a linear function of . The operation of cyclic convolution is the same but with
all indices evaluated modulo .

Recall from Polynomial Description of Signals that length-  cyclic convolution of  and  can be represented by polynomial multiplication

This bilinear operation can also be expressed in terms of linear matrix operators and a simpler bilinear operator denoted by  which may be only a simple element-by-element multiplication of the two
vectors. This matrix formulation is

where ,  and  are length-  vectors with elements of , , and  respectively. The matrices  and  have dimension , and  is \[N\times M\) with .

The elements of , , and  are constrained to be simple; typically small integers or rational numbers. It will be these matrix operators that do the equivalent of the residue reduction on the
polynomials in the equation.

In order to derive a useful algorithm consider the polynomial formulation equation again. To use the residue reduction scheme, the modulus is factored into relatively prime factors. Fortunately the
factoring of this particular polynomial, , has been extensively studied and it has considerable structure. When factored over the rationals, which means that the only coefficients allowed are
rational numbers, the factors are called cyclotomic polynomials. The most interesting property for our purposes is that most of the coefficients of cyclotomic polynomials are zero and the others are
plus or minus unity for degrees up to over one hundred. This means the residue reduction will generally require no multiplications.

The operations of reducing  and  in the equation are carried out by the matrices  and  in the equation. The convolution of the residue polynomials is carried out by the  operator and the
recombination by the CRT is done by the  matrix. The important fact is that the  and  matrices usually contain only zero and plus or minus unity entries and the  matrix only contains rational
numbers. The only general multiplications are those represented by . Indeed, in the theoretical results from computational complexity theory, these real or complex multiplications are usually the
only ones counted. In practical algorithms, the rational multiplications represented by  could be a limiting factor.

The  terms are fixed for a digital filter, or they represent the  terms from Multidimensional Index Mapping if the convolution is being used to calculate a DFT. Because of this,  in the
equation can be precalculated and only the  and  operators represent the mathematics done at execution of the algorithm. In order to exploit this feature, it was shown that the properties of the
equation allow the exchange of the more complicated operator  with the simpler operator . Specifically this is given by

where  has the same elements as , but in a permuted order, and likewise  and . This very important property allows precomputing the more complicated  in the equation rather than 
 as in the above equation.

Because  or  can be precomputed, the bilinear form of the above equations can be written as a linear form. If an  diagonal matrix  is formed from , or in the case of the
equation, , assuming a commutative property for , the equations become

In most cases there is no reason not to use the same reduction operations on  and , therefore,  can be the same as  and the equation then becomes

In order to illustrate how the residue reduction is carried out and how the  matrix is obtained, the length-  DFT algorithm started in The DFT as Convolution or Filtering will be continued. The DFT
is first converted to a length-  cyclic convolution by the index permutation from The DFT as Convolution or Filtering to give the cyclic convolution in The DFT as Convolution or Filtering. To avoid
confusion from the permuted order of the data  in The DFT as Convolution or Filtering, the cyclic convolution will first be developed without the permutation, using the polynomial 

and then the results will be converted back to the permuted . The length-  cyclic convolution in terms of polynomials is

and the modulus factors into three cyclotomic polynomials

Both  and  are reduced modulo these three polynomials. The reduction modulo  and  is done in two stages. First it is done modulo ( ), then that residue is further reduced modulo
( ) and ( .

The reduction in the equation of the data polynomial equation can be denoted by a matrix operation on a vector which has the data as entries.

and the reduction in the equation is
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Combining the two equations gives one operator

Further reduction of  is not possible because  cannot be factored over the rationals. However  can be factored into  and, therefore,  can
be further reduced as was done in the above equations by

Combining all the equations gives

The same reduction is done to  and then the convolution of the equation is done by multiplying each residue polynomial of  and  modulo each corresponding cyclotomic factor of 
 and finally a recombination using the polynomial Chinese Remainder Theorem (CRT) as in Polynomial Description of Signals.

where  and  are constants and  is a first degree polynomial.  times  and  times  are easy, but multiplying times  modulo ( ) is more
difficult.

The multiplication of times  times  can be done by the Toom-Cook algorithm which can be viewed as Lagrange interpolation or polynomial multiplication modulo a special polynomial
with three arbitrary coefficients. To simplify the arithmetic, the constants are chosen to be plus and minus one and zero.

For this example it can be verified that

which by the Toom-Cook algorithm or inspection is

where  signifies point-by-point multiplication. The total  matrix in is a combination of

where the matrix  gives the residue reduction ( ) and ( ) , the upper left-hand part of  gives the reduction modulo  and , and the lower right-hand part of carries out the
Toom-Cook algorithm modulo  with the multiplication in the  equation. Notice that by calculating the equation in the three stages, seven additions are required. Also notice that is not
square. It is this “expansion" that causes more than  multiplications to be required in  or  in the  equation. This staged reduction will derive the  operator.

The method described above is very straight-forward for the shorter DFT lengths. For , both of the residue polynomials are constants and the multiplication given by  in the equation is trivial. For 
, which is the example used here, there is one first degree polynomial multiplication required but the Toom-Cook algorithm uses simple constants and, therefore, works well as indicated in the

equation. For , there are two first degree residue polynomials which can each be multiplied by the same techniques used in the  example. Unfortunately, for any longer lengths, the
residue polynomials have an order of three or greater which causes the Toom-Cook algorithm to require constants of plus and minus two and worse. For that reason, the Toom-Cook method is not
used, and other techniques such as index mapping are used that require more than the minimum number of multiplications, but do not require an excessive number of additions. The resulting
algorithms still have the structure of the equation. Blahut and Nussbaumer have a good collection of algorithms for polynomial multiplication that can be used with the techniques discussed here to
construct a wide variety of DFT algorithms.

The constants in the diagonal matrix  can be found from the CRT matrix  in the equation using  for the diagonal terms in . As mentioned above, for the smaller prime lengths of , ,
and  this works well but for longer lengths the CRT becomes very complicated. An alternate method for finding  uses the fact that since the linear form of the equations calculates the DFT, it is
possible to calculate a known DFT of a given  from the definition of the DFT in Multidimensional Index Mapping and, given the  matrix in the equation, solve for  by solving a set of
simultaneous equations.

A modification of this approach also works for a length which is an odd prime raised to some power: . This is a bit more complicated but has been done for lengths of , and . For longer
lengths, the conventional Cooley-Tukey type- two index map algorithm seems to be more efficient. For powers of two, there is no primitive root, and therefore, no simple conversion of the DFT into
convolution. It is possible to use two generators to make the conversion and there exists a set of length , , and  DFT algorithms of the form in the equation.

In Table 6.2.1 below, an operation count of several short DFT algorithms is presented. These are practical algorithms that can be used alone or in conjunction with the index mapping to give longer
DFT's as shown in The Prime Factor and Winograd Fourier Transform Algorithms. Most are optimized in having either the theoretical minimum number of multiplications or the minimum number of
multiplications without requiring a very large number of additions. Some allow other reasonable trade-offs between numbers of multiplications and additions. There are two lists of the number of
multiplications. The first is the number of actual floating point multiplications that must be done for that length DFT. Some of these (one or two in most cases) will be by rational constants and the
others will be by irrational constants. The second list is the total number of multiplications given in the diagonal matrix  in the equation. At least one of these will be unity ( the one associated with 

) and in some cases several will be unity (for ). The second list is important in programming the WFTA in The Prime Factor and Winograd Fourier Transform Algorithms.
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5 10 12 34

7 16 18 72

8 4 16 52

9 20 22 84

11 40 42 168

13 40 42 188

16 20 36 148

17 70 72 314

19 76 78 372

25 132 134 420

32 68 - 388

Table 6.2.1 Number of Real Multiplications and Additions for a Length-N DFT of Complex Data

Because of the structure of the short DFTs, the number of real multiplications required for the DFT of real data is exactly half that required for complex data. The number of real additions required is
slightly less than half that required for complex data because ( ) of the additions needed when  is prime add a real to an imaginary, and that is not actually performed. When , there
are ( ) of these pseudo additions.

The structure of these algorithms are in the form of X'=CDAXX'=CDAX" role="presentation" style="position:relative;" tabindex="0">

The A and B matrices are generally  by  with  and have elements that are integers, generally  or . A pictorial description is given in the figures below:

Fig. 6.2.1 Flow Graph for the Length-5 DFT

Fig. 6.2.2 Block Diagram of a Winograd Short DFT

The flow graph in Fig. 6.2.1 should be compared with the matrix description of the above equations, and with the programs and the appendices. The shape in Fig. 6.2.2 illustrates the expansion of the dat

An important characteristic of the  operator in the calculation of the DFT is its entries are either purely real or imaginary. The reduction of the  vector by

separates the real and the imaginary constants. The number of multiplications for complex data is only twice those necessary for real data, not four times.

Although this discussion has been on the calculation of the DFT, very similar results are true for the calculation of convolution and correlation, and these will be further developed in Algorithms for Data
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6.3: The Bilinear Structure
The bilinear form introduced in earlier and the related linear form in are very powerful descriptions of both the DFT and
convolution.

Since the equation is a bilinear operation defined in terms of a second bilinear operator , this formulation can be nested. For
example if  is itself defined in terms of a second bilinear operator , , by

The equation then becomes

For convolution, if , represents the polynomial residue reduction modulo the cyclotomic polynomials, then , is square (e.g. the
equation and , represents multiplication of the residue polynomials modulo the cyclotomic polynomials. If , represents the
reduction modulo the cyclotomic polynomials plus the Toom-Cook reduction as was the case in the example of the equation, then 

, is  and , is term-by- term simple scalar multiplication. In this case , can be thought of as a transform of  and  is
the inverse transform. This is called a rectangular transform because  is rectangular. The transform requires only additions and
convolution is done with  multiplications. The other extreme is when  represents reduction over the  complex roots of 

. In this case  is the DFT itself, as in the example of ( ), and  is point by point complex multiplication and  is the
inverse DFT. A trivial case is where ,  and  are identity operators and  is the cyclic convolution.

This very general and flexible bilinear formulation coupled with the idea of nesting in the equation gives a description of most
forms of convolution.
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6.4: Winograd's Complexity Theorems
Because Winograd's work has been the foundation of the modern results in efficient convolution and DFT algorithms, it is
worthwhile to look at his theoretical conclusions on optimal algorithms. Most of his results are stated in terms of polynomial
multiplication as Polynomial Description of Signals. The measure of computational complexity is usually the number of
multiplications, and only certain multiplications are counted. This must be understood in order not to misinterpret the results.

This section will simply give a statement of the pertinent results and will not attempt to derive or prove anything. A short
interpretation of each theorem will be given to relate the result to the algorithms developed in this chapter. The indicated references
should be consulted for background and detail.

Theorem 1 

Given two polynomials,  and , of degree  and  respectively, each with indeterminate coefficients that are elements of
a field ,  multiplications are necessary to compute the coefficients of the product polynomial .
Multiplication by elements of the field (the field of constants), which is contained in , are not counted and  contains at least 

 distinct elements.

The upper bound in this theorem can be realized by choosing an arbitrary modulus polynomial  of degree 
composed of  distinct linear polynomial factors with coefficients in  which, since its degree is greater than the
product , has no effect on the product, and by reducing  and  to  residues modulo the 
factors of . These residues are multiplied by each other, requiring  multiplications, and the results recombined
using the Chinese remainder theorem (CRT). The operations required in the reduction and recombination are not counted, while the
residue multiplications are. Since the modulus  is arbitrary, its factors are chosen to be simple so as to make the reduction and
CRT simple. Factors of zero, plus and minus unity, and infinity are the simplest. Plus and minus two and other factors complicate
the actual calculations considerably, but the theorem does not take that into account. This algorithm is a form of the Toom-Cook
algorithm and of Lagrange interpolation. For our applications,  is the field of reals and  the field of rationals.

Theorem 2 

If an algorithm exists which computes  in  multiplications, all but one of its multiplication steps must
necessarily be of the form

where  are distinct elements of ; and  and  are arbitrary elements of .

This theorem states that the structure of an optimal algorithm is essentially unique although the factors of  may be chosen
arbitrarily.

Theorem 3 

Let  be a polynomial of degree  and be of the form , where  is an irreducible polynomial with
coefficients in  and  is a positive integer. Let  and  be two polynomials of degree at least  with coefficients from 

, then  multiplications are required to compute the product  modulo .

This theorem is similar to Theorem 1 with the operations of the reduction of the product modulo  not being counted.

Theorem 4 

Any algorithm that computes the product  modulo  according to the conditions stated in Theorem 3 and requires 
 multiplications will necessarily be of one of three structures, each of which has the form of Theorem 2 internally.

As in Theorem 2, this theorem states that only a limited number of possible structures exist for optimal algorithms.

Theorem 5 

If the modulus polynomial  has degree  and is not irreducible, it can be written in a unique factored form
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where each of the  are irreducible over the allowed coefficient field .  multiplications are necessary to compute the
product  modulo  where  and  have coefficients in  and are of degree at least . All algorithms that
calculate this product in  multiplications must be of a form where each of the k residue polynomials of  and  are
separately multiplied modulo the factors of  via the CRT.

Corollary 

If the modulus polynomial is  then  multiplications are necessary to compute  modulo ,
where  is the number of positive divisors of .

Theorem 5 is very general since it allows a general modulus polynomial. The proof of the upper bound involves reducing  and 
 modulo the  factors of . Each of the  irreducible residue polynomials is then multiplied using the method of Theorem

4 requiring  multiplies and the products are combined using the CRT. The total number of multiplies from the  parts is 
. The theorem also states the structure of these optimal algorithms is essentially unique. The special case of 

is interesting since it corresponds to cyclic convolution and, as stated in the corollary,  is easily determined. The factors of 
are called cyclotomic polynomials and have interesting properties.

Theorem 6 
Consider calculating the DFT of a prime length real-valued number sequence. If  is chosen as the field of rational numbers, the
number of real multiplications necessary to calculate a length-  DFT is

This theorem not only gives a lower limit on any practical prime length DFT algorithm, it also gives practical algorithms for 
. Consider the operation counts inthe Table to understand this theorem. In addition to the real multiplications

counted by complexity theory, each optimal prime-length algorithm will have one multiplication by a rational constant. That
constant corresponds to the residue modulo ( ) which always exists for the modulus . In a practical algorithm,
this multiplication must be carried out, and that accounts for the difference in the prediction of Theorem 6 and count in the Table.
In addition, there is another operation that for certain applications must be counted as a multiplication. That is the calculation of the
zero frequency term  in the first row of the example in The DFT as Convolution or Filtering. For applications to the WFTA
discussed in The Prime Factor and Winograd Fourier Transform Algorithms, that operation must be counted as a multiply. For
lengths longer than , optimal algorithms require too many additions, so compromise structures are used.

Theorem 7 

If  is chosen as the field of rational numbers, the number of real multiplications necessary to calculate a length-  DFT where 
is a prime number raised to an integer power: , is given by

where  is the number of divisors of ( ) .

This result seems to be practically achievable only for , or perhaps . In the case of , there are two rational
multiplies that must be carried out and are counted in the Table but are not predicted by Theorem 7. Experience indicates that even
for , an algorithm based on a Cooley-Tukey FFT using a type 2 index map gives an over-all more balanced result.

Theorem 8 

If  is chosen as the field of rational numbers, the number of real multiplications necessary to calculate a length-  DFT where 
 is given by

This result is not practically useful because the number of additions necessary to realize this minimum of multiplications becomes
very large for lengths greater than . Nevertheless, it proves the minimum number of multiplications required of an optimal
algorithm is a linear function of  rather than of  which is that required of practical algorithms. The best practical power-
of-two algorithm seems to the Split-Radix FFT discussed in The Cooley-Tukey Fast Fourier Transform Algorithm.

All of these theorems use ideas based on residue reduction, multiplication of the residues, and then combination by the CRT. It is
remarkable that this approach finds the minimum number of required multiplications by a constructive proof which generates an
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algorithm that achieves this minimum; and the structure of the optimal algorithm is, within certain variations, unique. For shorter
lengths, the optimal algorithms give practical programs. For longer lengths the uncounted operations involved with the
multiplication of the higher degree residue polynomials become very large and impractical. In those cases, efficient suboptimal
algorithms can be generated by using the same residue reduction as for the optimal case, but by using methods other than the
Toom-Cook algorithm of Theorem 1 to multiply the residue polynomials.

Practical long DFT algorithms are produced by combining short prime length optimal DFT's with the Type 1 index map from
Multidimensional Index Mapping to give the Prime Factor Algorithm (PFA) and the Winograd Fourier Transform Algorithm
(WFTA) discussed in The Prime Factor and Winograd Fourier Transform Algorithms. It is interesting to note that the index
mapping technique is useful inside the short DFT algorithms to replace the Toom-Cook algorithm and outside to combine the short
DFT's to calculate long DFT's.
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6.5: The Automatic Generation of Winograd's Short DFTs

Introduction 

Efficient prime length DFTs are important for two reasons. A particular application may require a prime length DFT and secondly, the maximum length and the variety of lengths of a PFA or WFTA
algorithm depend upon the availability of prime length modules.

This discusses automation of the process Winograd used for constructing prime length FFTs for  and that Johnson and Burrus extended to . It also describes a program that will design
any prime length FFT in principle, and will also automatically generate the algorithm as a C program and draw the corresponding flow graph.

Winograd's approach uses Rader's method to convert a prime length DFT into a  length cyclic convolution, polynomial residue reduction to decompose the problem into smaller convolutions,
and the Toom-Cook algorithm. The Chinese Remainder Theorem (CRT) for polynomials is then used to recombine the shorter convolutions. Unfortunately, the design procedure derived directly from
Winograd's theory becomes cumbersome for longer length DFTs, and this has often prevented the design of DFT programs for lengths greater than .

Here we use three methods to facilitate the construction of prime length FFT modules. First, the matrix exchange property is used so that the transpose of the reduction operator can be used rather than
the more complicated CRT reconstruction operator. This is then combined with the numerical method for obtaining the multiplication coefficients rather than the direct use of the CRT. We also deviate
from the Toom-Cook algorithm, because it requires too many additions for the lengths in which we are interested. Instead we use an iterated polynomial multiplication algorithm. We have
incorporated these three ideas into a single structural procedure that automates the design of prime length FFTs.

Matrix Description 

It is important that each step in the Winograd FFT can be described using matrices. By expressing cyclic convolution as a bilinear form, a compact form of prime length DFTs can be obtained.

If  is the cyclic convolution of  and , then  can be expressed as

where, using the Matlab convention, .* represents point by point multiplication. When ,  and  are allowed to be complex,  and  are seen to be the DFT operator and , the inverse DFT.
When only real numbers are allowed, ,  and  will be rectangular. Using the matrix exchange property this form can be written as

where  is the permutation matrix that reverses order.

When  is fixed, as it is when considering prime length DFTs, the term  can be precomputed and a diagonal matrix  formed by

This is advantageous because in general,  is more complicated than , so the ability to “hide"  saves computation. Now
y=RBTDAxy=RBTDAx" role="presentation" style="position:relative;" tabindex="0">

since  and  can be the same; they implement a polynomial reduction. The form  can also be used for the prime length DFTs, it is only necessary to permute the entries of  and to ensu

Johnson observes that by permuting the elements on the diagonal of , the output can be permuted, so that the  matrix can be hidden in , and

DFT{x}=ATDAxDFT{x}=ATDAx" role="presentation" style="position:relative;" tabindex="0">

From the knowledge of this form, once  is found,  can be found numerically.

Programming the Design Procedure
Because each of the above steps can be described by matrices, the development of a prime length FFTs is made convenient with the use of a matrix oriented programming language such as Matlab. After

Each matrix is a section of one stage of the flow graph that corresponds to the DFT program. The four stages are:

1. Permutation Stage: Permutes input and output sequence.
2. Reduction Stage: Reduces the cyclic convolution to smaller polynomial products.
3. Polynomial Product Stage: Performs the polynomial multiplications.
4. Multiplication Stage: Implements the point-by-point multiplication in the bilinear form.

Each of the stages can be clearly seen in the flow graphs for the DFTs. Fig. 6.5.1 shows the flow graph for a length  DFT algorithm that was automatically drawn by the program.

Fig. 6.5.1 Flowgraph of length-17 DFT

The programs that accomplish this process are written in Matlab and C. Those that compute the appropriate matrices are written in Matlab. These matrices are then stored as two ASCII files, with the dim

The Reduction Stage
The reduction of an  degree polynomial, , modulo the cyclotomic polynomial factors of ( ) requires only additions for many , however, the actual number of additions depends upon the

where the double parenthesis denote polynomial reduction modulo (s-1)(s-1)" role="presentation" style="position:relative;" tabindex="0">
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then in the first step

((X(s)))s2-1((X(s)))s2-1" role="presentation" style="position:relative;" tabindex="0">

should be computed.

In the second step,

((Xs)))s-1((Xs)))s-1" role="presentation" style="position:relative;" tabindex="0">

can be found by reducing ((X(s)))s2-1((X(s)))s2-1" role="presentation" style="position:relative;" tabindex="0">

This process is described by the diagram in Fig. 6.5.2 below.

Fig. 6.5.2 Factorization of s -1 in steps

When  is even, the appropriate first factorization is

(SN/2-1)(sN/2+1)(SN/2-1)(sN/2+1)" role="presentation" style="position:relative;" tabindex="0">

However, the next appropriate factorization is frequently less obvious. The following procedure has been found to generate a factorization in steps that coincides with the factorization that minimizes the 

where  is the  cyclotomic polynomial.

We first introduce the following two functions defined on the positive integers,

Suppose  is equal to either ( ) or an intermediate noncyclotomic polynomial appearing in the factorization process, for example, ( ), above. Write  in terms of its cyclotomic factors

(sN-1)(sN-1)" role="presentation" style="position:relative;" tabindex="0">

define the two sets,  and , by

and define the two integers,  and , by

Then form two new sets,

The factorization of ,

has been found useful in the procedure for factoring ( ). This is best illustrated with an example.

Example

Step 1:

Let

Since

Hence the factorization of  into two intermediate polynomials is as expected,

(s−1), (s+1), and ( +1)s2

((X(s)) and ((X(s))) −1s2 ) +1s2

((X(s)) and ((X(s)))s−1 )s+1
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If a  degree polynomial, , is represented by a vector of coefficients,

is given by test which entails  additions.

Step 2:

This procedure is repeated with P(s)=s18-1P(s)=s18-1" role="presentation" style="position:relative;" tabindex="0">

We will just show it for the later. Let P(s)=s18+1P(s)=s18+1" role="presentation" style="position:relative;" tabindex="0">

Since

This yields the two intermediate polynomials

In the notation used above,

entailing  additions. Continuing this process results in a factorization in steps.

In order to see the number of additions this scheme uses for numbers of the form  (which is relevant to prime length FFT algorithms).

The Polynomial Product Stage
The iterated convolution algorithm can be used to construct an  point linear convolution algorithm from shorter linear convolution algorithms. Suppose the linear convolution , of the n point vectors 

where  is an “expansion" matrix the elements of which are 's and 's and  is an appropriate diagonal matrix. Because the only multiplications in this expression are by the elements of , the num

Given a matrix and a matrix , the iterated algorithm gives a method for combining  and  to construct a valid expansion matrix, , for

Specifically,

The product  may be greater than , for zeros can be (conceptually) appended to . The operation count associated with  is

Although they are both valid expansion matrices,

Because Mn1,n2&#x2260;Mn2,n1Mn1,n2≠Mn2,n1" role="presentation" style="position:relative;" tabindex="0">

it is desirable to chose an ordering of factors to minimize the additions incurred by the expansion matrix.

Multiple Factors

Note that a valid expansion matrix, , can be constructed from  and , for

N&#x2264;n1n2n3N≤n1n2n3" role="presentation" style="position:relative;" tabindex="0">

In general, any number of factors can be used to create larger expansion matrices. The operation count associated with is  is

These equations generalize in the predicted way when more factors are considered. Because the ordering of the factors is relevant in the equation for  but not for , it is again desirable to order th

Reservation of Optimal Ordering

Suppose

, then

1.

(s) = −1, (s) = +1∏
k ϵ A

Ck s18 ∏
k ϵ B

Ck s18

36th X(s)

X = ( , . . . then ((X(s)) represented by and ((X(s)) represented byx35 x0)′ ) −1s18 X ′ ) +1s18 X ′′

36

P (s) = −1 and P (s) = +1s18 s18

P (s) = +1s18

P = C4C12C36

G= {4, 12, 36} and = {1, 3, 9}G′

t = min 3 = 3

T = max ν(k, 3) : k ϵ G= max 1, 3, 9 = 9

A = {k ϵ G : 9 ∣ k} = {4, 12}

B = {k ϵ G : 9 ∣ k} = {36}

+1 and − +1s6 s12 s6

[ ] = XX ′ X ′′
⎡

⎣
⎢

I6

I6

−I6

−I6

I6

I6

I6

⎤

⎦
⎥

24

N = P −1

N y x

y = D xET
n En

En ±1 0 D D

En1 En2 En1 En2 En

N ≤ n1n2

= ( ⊗ )( × )E ,n1 n2
Im( )n2

En1
En2

In1

n1n2 N x En1En2

A( , ) = n!A( ) +A( )M( )n1 n2 n2 n1 n2

M( , ) = M( )M( )n1 n2 n1 n2

≠ and ≠E ,n1 n2 E ,n2 n1 A ,n1 n2 A ,n2 n1

≠M ,n1 n2 M ,n2 n1

En E ,n1 n2
En3

N ≤ n1n2n3

E , ,n1 n2 n3

A( , , ) = A( ) + A( )M( ) +A( )M( )M( )n1 n2 n3 n1n2 n3 n1 n2 n3 n1 n2 n3

M( , , ) = M( )M( )M( )n1 n2 n3 n1 n2 n3

A(⋅) M(⋅)

A( , , ) ≤ min{A( , , ) , , ∈ {1, 2, 3} and distinct}n1 n2 n3 nk1 nk2 nk3 k1 k2 k3

A( , ) ≤ A( , )n1 n2 n2 n1
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2.

3.

The generalization of this property to more than two factos revelas that an optimal ordering of  is preserved in an optimal ordering of . Therefore, if  is an op

for all .

This immediately suggests that an optimal ordering of , to minimize the number of additions incurred by  simply involves computing the appropriate ratios.

Discussion and Conclusion

We have designed prime length FFTs up to length  that are as good as the previous designs that only went up to . Table 1 gives the operation counts for the new and previously designed modules, ass

It is interesting to note that the operation counts depend on the factorability of . The primes , , and  are all of the form  making the design of efficient FFTs for these lengths more di

Further deviations from the original Winograd approach than we have made could prove useful for longer lengths. We investigated, for example, the use of twiddle factors at appropriate points in the dec

N Mult Adds

7 16 72

11 40 168

13 40 188

17 82 274

19 88 360

23 174 672

29 190 766

31 160 984

37 220 920

41 282 1140

43 304 1416

47 640 2088

53 556 2038

Operation counts for prime length DFTs

The approach in writing a program that writes another program is a valuable one for several reasons. Programming the design process for the design of prime length FFTs has the advantages of being pra

More details on the generation of programs for prime length FFTs can be found in the 1993 Technical Report.

Contributor
ContribEEBurrus

This page titled 6.5: The Automatic Generation of Winograd's Short DFTs is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney Burrus.

A( , ) ≤ A( , )n2 n3 n3 n2

A( , ) ≤ A( , )n1 n3 n3 n1

{ , … , }n1 nL−i { , … , }n1 nL ( , … , )n1 nL−i

≤
A( )nk

M( ) −nk nk

A( )nk+1

M( ) −nk+1 nk+1

k = 1, 2, … ,L−1
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7.1: Introduction

To study the algebraic description of the DFT and on the algebraic derivation of the general-radix Cooley-Tukey FFT from
Factoring the Signal Processing Operators.

by Markus Pueschel, Carnegie Mellon University

In infinite, or non-periodic, discrete-time signal processing, there is a strong connection between the -transform, Laurent series,
convolution, and the discrete-time Fourier transform (DTFT). As one may expect, a similar connection exists for the DFT but bears
surprises. Namely, it turns out that the proper framework for the DFT requires modulo operations of polynomials, which means
working with so-called polynomial algebras. Associated with polynomial algebras is the Chinese remainder theorem, which
describes the DFT algebraically and can be used as a tool to concisely derive various FFTs as well as convolution algorithms (see
also Winograd’s Short DFT Algorithms). The polynomial algebra framework was fully developed for signal processing as part of
the algebraic signal processing theory (ASP). ASP identifies the structure underlying many transforms used in signal processing,
provides deep insight into their properties, and enables the derivation of their fast algorithms. Here we focus on the algebraic
description of the DFT and on the algebraic derivation of the general-radix Cooley-Tukey FFT from Factoring the Signal
Processing Operators. The derivation will make use of and extend the Polynomial Description of Signals. We start with motivating
the appearance of modulo operations.

The -transform associates with infinite discrete signals  a Laurent series:

Here we used  to simplify the notation in the following. The DTFT of  is the evaluation of  on the unit circle

Finally, filtering or (linear) convolution is simply the multiplication of Laurent series,

and that the DFT is an evaluation of these polynomials. Indeed, the definition of the DFT in Winograd’s Short DFT Algorithms
shows that

i.e., the DFT computes the evaluations of the polynomial  at the  roots of unity. 
The problem arises with the equivalent of Equation, since the multiplication  of two polynomials of degree  yields
one of degree . Also, it does not coincide with the circular convolution known to be associated with the DFT. The solution
to both problems is to reduce the product modulo :

Concept Infinite Time Finite Time

Signal

Filter

Convolution

Fourier transform

Learning Objectives

z

z X +(… , x(−1), x(0), x(1), …)

X ↦ X(s) = x(n)∑
n∈Z

sn

s = z−1 X X(s)

X( ), −π < ω ≤ πe−jw

X ↦ X(s) = x(n)∑
n∈Z

N−1

sn

C(k) = X( ) = X , 0 ≤ k < NW k
N

⎛

⎝
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2πk
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⎞

⎠
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H(s)X(s) H(s)X(s)mod( − 1)sn
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⎛
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Infinite and finite discrete time signal processing

The resulting polynomial then has again degree  and this form of convolution becomes equivalent to circular convolution of
the polynomial coefficients. We also observe that the evaluation points in Equation are precisely the roots of . This
connection will become clear in this chapter.

The discussion is summarized in Table.

The proper framework to describe the multiplication of polynomials modulo a fixed polynomial are polynomial algebras. Together
with the Chinese remainder theorem, they provide the theoretical underpinning for the DFT and the Cooley-Tukey FFT.

In this chapter, the DFT will naturally arise as a linear mapping with respect to chosen bases, i.e., as a matrix. Indeed, the definition
shows that if all input and outputs are collected into vectors  and , then
Winograd’s Short DFT Algorithms is equivalent to

where

The matrix point of view is adopted in the FFT books.
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N −1

−1sn
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C = DF X,TN

DF =TN [ ]W kn
N 0≤k,n<N .

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/2000?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/07%3A_DFT_and_FFT_-_An_Algebraic_View/7.01%3A_Introduction
https://creativecommons.org/licenses/by/
https://eceweb.rice.edu/people/sidney-burrus


7.2.1 https://eng.libretexts.org/@go/page/2001

7.2: Polynomial Algebras and the DFT
In this section we introduce polynomial algebras and explain how they are associated to transforms. Then we identify this connection for the DFT. Later we use polynomial algebras to derive the
Cooley-Tukey FFT.

Polynomial Algebra 
An algebra  is a vector space that also provides a multiplication of its elements such that the distributivity law holds (see link for a complete definition). Exampels include the sets off complex or
real numbers  or , and the sets of complex or real polynomials in the variable  or 

The key player in this chapter is the polynomial algebra. Given a fixed polynomial  of degree , we define a polynomial algebra as the set

of polynomials of degree smaller than  with addition and multiplication modulo . Viewed as a vector space,  hence has dimension .

Every polynomial  is reduced to a unique polynomial  modulo  of degree smaller than  is computed using division with rest, namely

Regarding this equation modulo  becomes zero, and we get

We read this equation as "  is congruent (or equal)  modulo ." We will also write  to denote that  is reduced modulo . Obviously,

As a simple example we consider A=C[s]/(s2-1)A=C[s]/(s2-1)" role="presentation" style="position:relative;" tabindex="0">

which has dimension . A possible basis is b=(1,s)b=(1,s)" role="presentation" style="position:relative;" tabindex="0"> . In , for example,

obtained through division with rest

or simply by replacing  with 1 (since  implies ).

Chinese Remainder Theorem (CRT)
Assume  factors into two coprime (no common factors) polynomials  and . Then the Chinese remainder theorem (CRT) for polynomials is the linear mapping, more precisely, isom

Here,  is the Cartesian product of vector spaces with elementwise operation (also called outer direct sum). In words, the CRT asserts that computing (addition, multiplication, scalar multiplication) in 

If we choose bases  in the three polynomial algebras, then  can be expressed as a matrix. As usual with linear mapping, this matrix is obtained by mapping every element of  with , expressing 

As an example, we consider again the polynomial P(s)=s2-1=(s-1)(s+1)P(s)=s2-1=(s-1)(s+1)" role="presentation" style="position:relative;" tabindex="0">

and the CRT decomposition

As bases, we choose  with the same coordinate vector in . Further, because of  and , 

Polynomial Transforms
Assume  has pairwise distinct zeros &#x3B1;=(&#x3B1;0,&#x22EF;,&#x3B1;N-1)α=(α0,⋯,αN-1)" role="presentation" style="position:relative;" tabindex="0"> . The

If we choose a basis b=(P0(s),&#x22EF;,PN-1(s))b=(P0(s),⋯,PN-1(s))" role="presentation" style="position:relative;" tabindex="0">  in C[s]/P(s)C[s]/P(s)" role="presentation

and is called the polynomial transform for A=C[s]/P(s)A=C[s]/P(s)" role="presentation" style="position:relative;" tabindex="0">  with basis 

If, in general, we choose bi=(&#x3B2;i)bi=(βi)" role="presentation" style="position:relative;" tabindex="0">  as spectral basis, then the matrix corresponding to the decomposition equation is th

where  denotes a diagonal matrix with diagonal entries &#x3B3;nγn" role="presentation" style="position:relative;" tabindex="0"> .

We jointly refer to polynomial transforms, scaled or not, as Fourier transforms.

DFT as a Polynomial Transform

We show that the DFTNDFTN" role="presentation" style="position:relative;" tabindex="0">  is a polynomial transform for A=C[s]/(sN-1)A=C[s]/(sN-1)" role="presentation" style="position:rela

which means that  takes the form

A

C R s : C[s] R[s].

P (s) deg(P ) = N

C[s]/P (s) = {X(s) | deg (X) < deg(P )}

N P C[s]/P (s) N

X(s) ∈ C[s] R(s) P (s) N . R(s)

X(s) = Q(s)P (s) +R(s), deg (R) < deg (P )

P ,P (s)

X(s) ≡ R(s) modP (s)

X(s) R(s) P (s) X(s) modP (s) X(s) P (s)

P (s) ≡ 0 modP (s)

A =C[s]/( −1)s2

2 b = (1, s) A

s ⋅ (s+1) = +s ≡ s+1 mod ( −1)s2 s2

+s = 1 ⋅ ( −1) +(s+1)s2 s2

s2 ( −1) = 0s2 = 1s2

P (S) = Q(s)R(s) Q R

Δ : C[s]/P (s) →C[s]/Q(s) ⊕C[s]/R(s)

X(s) ↦ (X(s) modQ(s),X(s) modR(s))

⊕ C

b, c, d Δ b Δ

P (s) = −1 = (s−1)(s+1)s2

Δ : C[s]/( −1) →C[s]/(s−1) ⊕C[s]/(s+1)s2

b = (1, x), c = (1), d = (1). Δ(1) = (1, 1) c∪ d = (1, 1) x ≡ 1 mod (x−1) x ≡ −1 mod (x+1) Δ(x) = (x, x) ≡

DF = [ ]T2
1

1

1

−1

P (s) ∈ C[s] α = , . . . , −1α0 αN

Δ : C[s]/P (s) →C[s]/(s− )⊕. . . ⊕C[s]/(s− )α0 αN−1

X(s) ↦ (X(s) mod (s− ), . . . ,X(s) mod (s− )) = (s( ), . . . , s( ))α0 αN−1 α0 αN−1

b = ( (s), . . . , (s))P0 PN−1

=Pb,α [ ( )]Pn αk 0≤k,n<N

A =C[s]/P (s) b

= ( )bi βi

(1/ )diag0≤k<N βn Pb,α

( )diag0≤k<N γn γn

DFTN

= (x− )sN−1 ∏
0≤k<N

W k
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N W N−1

N

X(s) ↦ (X(s) mod (s− ), . . . ,X(s) mod (s− )) = (X( ), . . . ,X( ))W 0
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The associated polynomial transform hence becomes

This interpretation of the DFT has been known for a long time and clarifies the connection between the evaluation points in and the circular convolution in the equations.

DFTs of types  are defined, with type  being the standard DFT. In the algebraic framework, type  is obtained by choosing A=C[s]/(sN+1)A=C[s]/(sN+1)" role="presentation" style="position:rela

The DFTs of type  and  are scaled polynomial transforms.
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7.3: Algebraic Derivation of the Cooley-Tukey FFT
Knowing the polynomial algebra underlying the DFT enables us to derive the Cooley-Tukey FFT algebraically. This means that instead of manipulating the DFT definition, we manipulate the
polynomial algebra
C[s]/(sN-1)C[s]/(sN-1)" role="presentation" style="position:relative;" tabindex="0"> . The basic idea is intuitive. We showed that the DFT is the matrix representation of the complete dec

Fig. 7.3.1 Basic idea behind the algebraic derivation of Cooley-Tukey type algorithms

This stepwise decomposition can be formulated generically for polynomial transforms. Here, we consider only the DFT. We first introduce the matrix notation we will use and in particular the Kronecker

Matrix Notation
We denote the N&#xD7;NN×N" role="presentation" style="position:relative;" tabindex="0">  identity matrix with ININ" role="presentation" style="position:relative;" tabindex="0"> , and dia

The N&#xD7;NN×N" role="presentation" style="position:relative;" tabindex="0">  stride permutation matrix is defined for N=KMN=KM" role="presentation" style="position:relative;" tabind

for . This definition shows that LMNLMN" role="presentation" style="position:relative;" tabindex="0">  transposes a  matrix stored in row-major order. Alternativel

For example (·means 0),

 is sometimes called the perfect shuffle.

Further, we use matrix operators; namely the direct sum

and the Kronecker or tensor product

In particular,

is block-diagonal.

We may also construct a larger matrix as a matrix of matrices, e.g.,

If an algorithm for a transform is given as a product of sparse matrices built from the constructs above, then an algorithm for the transpose or inverse of the transform can be readily derived using mathem

Permutation matrices are orthogonal, i.e., . The transposition or inversion of diagonal matrices is obvious.

Radix-2 FFT
The DFT decomposes  with basis b=(1,s,&#x22EF;,sN-1)b=(1,s,⋯,sN-1)" role="presentation" style="position:relative;" tabindex="0">  as shown in the equation. 

factors and we can apply the CRT in the following steps:
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As bases in the smaller algebras  and , we choose . The derivation of an algorithm for DFTNDFTN" role="presentation" style="position:relative;"

First, we derive the base change matrix BB" role="presentation" style="position:relative;" tabindex="0">  corresponding to the equation. To do so, we have to express the base elements sn&#x2208;bsn

where the entries  are determined next. For the base elements , we have

which yields the final result

Next, we consider step equation.  is decomposed by DFTMDFTM" role="presentation" style="position:relative;" tabindex="0">  and  by  in the equatio

Finally, the permutation in step in the equation is the perfect shuffle LMNLMN" role="presentation" style="position:relative;" tabindex="0"> , which interleaves the even and odd spectral component

The final algorithm obtained is

The last expression is the radix-  decimation-in-frequency Cooley-Tukey FFT. The corresponding decimation-in-time version is obtained by transposition using the equation and the symmetry of the DF

The entries of the diagonal matrix IM&#x2295;DMIM⊕DM" role="presentation" style="position:relative;" tabindex="0">  are commonly called twiddle factors.

General-radix FFT

To algebraically derive the general-radix FFT, we use the decomposition property of sN-1sN-1" role="presentation" style="position:relative;" tabindex="0"> . Namely, if N=KMN=KM" role="p

Decomposition means that the polynomial is written as the composition of two polynomials: here,  is inserted into . Note that this is a special property: most polynomials do not decompose.

Based on this polynomial decomposition, we obtain the following stepwise decomposition of , which is more general than the previous one in the equations. The basic idea is to first decom

As bases in the smaller algebras  we choose ci=(1,s,&#x22EF;,sM-1)ci=(1,s,⋯,sM-1)" role="presentation" style="position:relative;" tabindex="0"> . As before, the

The first decomposition step requires us to compute . To do so, we decompose the index  as  and compute

This shows that the matrix for is given by: 

In step equation, each  is completely decomposed by its polynomial transform

At this point,  is completely decomposed, but the spectrum is ordered according to jK+ijK+i" role="presentation" style="position:relative;" tabindex="0">

Thus, in step equation, we need to apply the permutation , which is exactly the stride permutation LMNLMN" role="presentation" style="position:relative;" tabindex="0">  in the e

In summary, we obtain the Cooley-Tukey decimation-in-frequency FFT with arbitrary radix:

The matrix TMNTMN" role="presentation" style="position:relative;" tabindex="0">  is diagonal and usually called the twiddle matrix. Transposition using the equation yields the corresponding dec
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7.4: Discussion and Further Reading
This chapter only scratches the surface of the connection between algebra and the DFT or signal processing in general. We provide a few references for further reading.

Algebraic Derivation of Transform Algorithms 
As mentioned before, the use of polynomial algebras and the CRT underlies much of the early work on FFTs and convolution algorithms. For example, Winograd's work on FFTs minimizes the
number of non-rational multiplications. This and his work on complexity theory in general makes heavy use of polynomial algebras (see Chapter Winograd's Short DFT Algorithms for more
information and references).

Since  can be viewed a group algebra for the cyclic group, the methods shown in this chapter can be translated into the context of group representation theory. However,
Fourier transforms for groups have found only sporadic applications. Along a related line of work, using group theory it is possible that to discover and generate certain algorithms for trigonometric
transforms, such as discrete cosine transforms (DCTs), automatically using a computer program.

More recently, the polynomial algebra framework was extended to include most trigonometric transforms used in signal processing, besides the DFT, the discrete cosine and sine transforms and
various real DFTs including the discrete Hartley transform. It turns out that the same techniques shown in this chapter can then be applied to derive, explain, and classify most of the known algorithms
for these transforms and even obtain a large class of new algorithms including general-radix algorithms for the discrete cosine and sine transforms (DCTs/DSTs).

This latter line of work is part of the algebraic signal processing theory briefly discussed next.

Algebraic Signal Processing Theory 
The algebraic properties of transforms used in the above work on algorithm derivation hints at a connection between algebra and (linear) signal processing itself. This is indeed the case and was fully
developed in a recent body of work called algebraic signal processing theory (ASP).

ASP first identifies the algebraic structure of (linear) signal processing: the common assumptions on available operations for filters and signals make the set of filters an
algebraAA" role="presentation" style="position:relative;" tabindex="0">  and the set of signals an associated AA" role="presentation" style="position:relative;" tabindex="0"> -module AA" role="p

Signal model Infinite time Finite time

AA" role="presentation" style="position:relative;" tabindex="0">

Table 7.4.1 Infinite and finite time models as defined in ASP

ASP shows that many signal models are in principle possible, each with its own notion of filtering and Fourier transform. Those that support shift-invariance have commutative algebras. Since finite-dim
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8: The Cooley-Tukey Fast Fourier Transform Algorithm
The publication by Cooley and Tukey in 1965 of an efficient algorithm for the calculation of the DFT was a major turning point in
the development of digital signal processing. During the five or so years that followed, various extensions and modifications were
made to the original algorithm. By the early 1970's the practical programs were basically in the form used today. The standard
development shows how the DFT of a length-N sequence can be simply calculated from the two length-N/2 DFT's of the even
index terms and the odd index terms. This is then applied to the two half-length DFT's to give four quarter-length DFT's, and
repeated until N scalars are left which are the DFT values. Because of alternately taking the even and odd index terms, two forms
of the resulting programs are called decimation-in-time and decimation-in-frequency. For a length of , the dividing process is
repeated  times and requires N multiplications each time. This gives the famous formula for the computational
complexity of the FFT of  which was derived in Multidimensional Index Mapping.
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8.1: Introduction

To develop the Cooley-Tukey FFT using index map from Multidimensional Index Mapping

The publication by Cooley and Tukey in 1965 of an efficient algorithm for the calculation of the DFT was a major turning point in
the development of digital signal processing. During the five or so years that followed, various extensions and modifications were
made to the original algorithm. By the early 1970's the practical programs were basically in the form used today. The standard
development shows how the DFT of a length-N sequence can be simply calculated from the two length-N/2 DFT's of the even
index terms and the odd index terms. This is then applied to the two half-length DFT's to give four quarter-length DFT's, and
repeated until N scalars are left which are the DFT values. Because of alternately taking the even and odd index terms, two forms
of the resulting programs are called decimation-in-time and decimation-in-frequency. For a length of , the dividing process is
repeated  times and requires N multiplications each time. This gives the famous formula for the computational
complexity of the FFT of  which was derived in Multidimensional Index Mapping.

Although the decimation methods are straightforward and easy to understand, they do not generalize well. For that reason it will be
assumed that the reader is familiar with that description and this chapter will develop the FFT using the index map from
Multidimensional Index Mapping.
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8.2: Basic Cooley-Tukey FFT
The Cooley-Tukey FFT always uses the Type 2 index map from Multidimensional Index Mapping. This is necessary for the most popular forms that have , but is also used even when the
factors are relatively prime and a Type 1 map could be used. The time and frequency maps from Multidimensional Index Mapping are

Type-2 conditions in the 2.2: The Index Map become

and

The row and column calculations in 2.2: The Index Map are uncoupled by Type-two index map which for this case are

To make each short sum a DFT, the KiKi" role="presentation" style="position:relative;" tabindex="0">  must satisfy

In order to have the smallest values for KiKi" role="presentation" style="position:relative;" tabindex="0">  the constants in the equation are chosen to be

which makes the index maps of the equations to become

These index maps are all evaluated modulo , but in the equation, explicit reduction is not necessary since  never exceeds . The reduction notation will be omitted for clarity. From Multidimensiona

This map of the equation and the form of the DFT in the equation are the fundamentals of the Cooley-Tukey FFT.

The order of the summations using the Type 2 map in the above equation cannot be reversed as it can with the Type-1 map. This is because of the  terms, the twiddle factors.

Turning the equation into an efficient program requires some care. From Efficiencies Resulting from Index Mapping with the DFT we know that all the factors should be equal. If , with R calle

The twiddle factor array will always have unity in the first row and first column.

To complete the equation at this point, after the row DFT's are multiplied by the TF array, the  length-  DFT's of the columns are calculated. However, since the columns DFT's are of length ,

Fig. 8.2.1 A Radix-2 Butterfly

Fig. 8.2.2 Length-8 Radix-2 FFT Flow Graph

This flow-graph, the twiddle factor map of the above equation, and the basic equation should be completely understood before going further.

A very efficient indexing scheme has evolved over the years that results in a compact and efficient computer program. A FORTRAN program is given below that implements the radix-2 FFT. It should b
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This discussion, the flow graph of Winograd's Short DFT Algorithms and the program of Pre are all based on the input index map of The Index Map and the calculations are performed in-place. Accordin
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8.3: Modifications to the Basic Cooley-Tukey FFT
Soon after the paper by Cooley and Tukey, there were improvements and extensions made. One very important discovery was the
improvement in efficiency by using a larger radix of 4, 8 or even 16. For example, just as for the radix-2 butterfly, there are no
multiplications required for a length-4 DFT, and therefore, a radix-4 FFT would have only twiddle factor multiplications. Because
there are half as many stages in a radix-4 FFT, there would be half as many multiplications as in a radix-2 FFT. In practice, because
some of the multiplications are by unity, the improvement is not by a factor of two, but it is significant. A radix-4 FFT is easily
developed from the basic radix-2 structure by replacing the length-2 butterfly by a length-4 butterfly and making a few other
modifications. Programs can be found in and operation counts will be given in Evaluation of the Cooley-Tukey FFT Algorithms.

Increasing the radix to 8 gives some improvement but not as much as from 2 to 4. Increasing it to 16 is theoretically promising but
the small decrease in multiplications is somewhat offset by an increase in additions and the program becomes rather long. Other
radices are not attractive because they generally require a substantial number of multiplications and additions in the butterflies.

The second method of reducing arithmetic is to remove the unnecessary TF multiplications by plus or minus unity or by plus or
minus the square root of minus one. This occurs when the exponent of  is zero or a multiple of . A reduction of additions
as well as multiplications is achieved by removing these extraneous complex multiplications since a complex multiplication
requires at least two real additions. In a program, this reduction is usually achieved by having special butterflies for the cases where
the TF is one or . As many as four special butterflies may be necessary to remove all unnecessary arithmetic, but in many cases
there will be no practical improvement above two or three.

In addition to removing multiplications by one or , there can be a reduction in multiplications by using a special butterfly for TFs
with , which have equal real and imaginary parts. Also, for computers or hardware with multiplication considerably slower
than addition, it is desirable to use an algorithm for complex multiplication that requires three multiplications and three additions
rather than the conventional four multiplications and two additions. Note that this gives no reduction in the total number of
arithmetic operations, but does give a trade of multiplications for additions. This is one reason not to use complex data types in
programs but to explicitly program complex arithmetic.

A time-consuming and unnecessary part of the execution of a FFT program is the calculation of the sine and cosine terms which are
the real and imaginary parts of the TFs. There are basically three approaches to obtaining the sine and cosine values. They can be
calculated as needed which is what is done in the sample program above. One value per stage can be calculated and the others
recursively calculated from those. That method is fast but suffers from accumulated round-off errors. The fastest method is to fetch
precalculated values from a stored table. This has the disadvantage of requiring considerable memory space.

If all the N DFT values are not needed, special forms of the FFT can be developed using a process called pruning which removes
the operations concerned with the unneeded outputs.

Special algorithms are possible for cases with real data or with symmetric data. The decimation-in-time algorithm can be easily
modified to transform real data and save half the arithmetic required for complex data. There are numerous other modifications to
deal with special hardware considerations such as an array processor or a special microprocessor such as the Texas Instruments
TMS320.
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8.4: The Split-Radix FFT Algorithm
Recently several papers have been published on algorithms to calculate a length-  DFT more efficiently than a Cooley-Tukey FFT of any radix. They all have the same computational complexity
and are optimal for lengths up through 16 and until recently was thought to give the best total add-multiply count possible for any power-of-two length. Yavne published an algorithm with the same
computational complexity in 1968, but it went largely unnoticed. Johnson and Frigo have recently reported the first improvement in almost 40 years. The reduction in total operations is only a few
percent, but it is a reduction.

The basic idea behind the split-radix FFT (SRFFT) as derived by Duhamel and Hollmann is the application of a radix-2 index map to the even-indexed terms and a radix-4 map to the odd- indexed
terms. The basic definition of the DFT is:

with W=e-j2&#x3C0;/NW=e-j2π/N" role="presentation" style="position:relative;" tabindex="0">  gives

for the even index terms, and

and

for the odd index terms. This results in an L-shaped “butterfly" shown in Fig. 8.4.1 which relates a length-N DFT to one length-N/2 DFT and two length-N/4 DFT's with twiddle factors. Repeating this p

Fig. 8.4.1 SRFFT Butterfly

Fig. 8.4.2 Length-8 SRFFT

Unlike the fixed radix, mixed radix or variable radix Cooley-Tukey FFT or even the prime factor algorithm or Winograd Fourier transform algorithm , the Split-Radix FFT does not progress completely s

A FORTRAN program is given below which implements the basic decimation-in-frequency split-radix FFT algorithm. The indexing scheme of this program gives a structure very similar to the Cooley-T

SUBROUTINE FFT(X,Y,N,M) 
N2 = 2*N 
DO 10 K = 1, M-1 
N2 = N2/2 
N4 = N2/4 

2M

=Ck ∑
n=0

N−1

xnW nk

W = e−j2π/N

= [ + ]C2k ∑
n=0

N/2−1

xn xn+N/2 W 2nk

= [( − ) −j( − )]C4k+1 ∑
n=0

N/4−1

xn xn+N/2 xn+N/4 xn+3N/4 W nW 4nk

= [( − ) −j( − )]C4k+3 ∑
n=0

N/4−1

xn xn+N/2 xn+N/4 xn+3N/4 W 3nW 4nk

FORTRAN Program implementing split-radix FFT algorithm
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E = 6.283185307179586/N2 
A = 0 
DO 20 J = 1, N4 
A3 = 3*A 
CC1 = COS(A) 
SS1 = SIN(A) 
CC3 = COS(A3) 
SS3 = SIN(A3) 
A = J*E 
IS = J 
ID = 2*N2 
40 DO 30 I0 = IS, N-1, ID 
I1 = I0 + N4 
I2 = I1 + N4 
I3 = I2 + N4 
R1 = X(I0) - X(I2) 
X(I0) = X(I0) + X(I2) 
R2 = X(I1) - X(I3) 
X(I1) = X(I1) + X(I3) 
S1 = Y(I0) - Y(I2) 
Y(I0) = Y(I0) + Y(I2) 
S2 = Y(I1) - Y(I3) 
Y(I1) = Y(I1) + Y(I3) 
S3 = R1 - S2 
R1 = R1 + S2 
S2 = R2 - S1 
R2 = R2 + S1 
X(I2) = R1*CC1 - S2*SS1 
Y(I2) =-S2*CC1 - R1*SS1 
X(I3) = S3*CC3 + R2*SS3 
Y(I3) = R2*CC3 - S3*SS3 
30 CONTINUE 
IS = 2*ID - N2 + J 
ID = 4*ID 
IF (IS.LT.N) GOTO 40 
20 CONTINUE 
10 CONTINUE 
IS = 1 
ID = 4 
50 DO 60 I0 = IS, N, ID 
I1 = I0 + 1 
R1 = X(I0) 
X(I0) = R1 + X(I1) 
X(I1) = R1 - X(I1) 
R1 = Y(I0) 
Y(I0) = R1 + Y(I1) 
60 Y(I1) = R1 - Y(I1) 
IS = 2*ID - 1 
ID = 4*ID 
IF (IS.LT.N) GOTO 50 

NOT_CONVERTED_YET: caption

Split-Radix FFT FORTRAN Subroutine

As was done for the other decimation-in-frequency algorithms, the input index map is used and the calculations are done in place resulting in the output being in bit-reversed order. It is the three statemen

An improvement in operation count has been reported by Johnson and Frigo which involves a scaling of multiplying factors. The improvement is small but until this result, it was generally thought the S
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8.5: Evaluation of the Cooley-Tukey FFT Algorithms
The evaluation of any FFT algorithm starts with a count of the real (or floating point) arithmetic. The Table 8.5.1 below gives the
number of real multiplications and additions required to calculate a length-N FFT of complex data. Results of programs with one,
two, three and five butterflies are given to show the improvement that can be expected from removing unnecessary multiplications
and additions. Results of radices two, four, eight and sixteen for the Cooley-Tukey FFT as well as of the split-radix FFT are given
to show the relative merits of the various structures. Comparisons of these data should be made with the table of counts for the PFA
and WFTA programs in The Prime Factor and Winograd Fourier Transform Algorithms . All programs use the four-multiply-two-
add complex multiply algorithm. A similar table can be developed for the three-multiply-three-add algorithm, but the relative
results are the same.

From the table it is seen that a greater improvement is obtained going from radix-2 to 4 than from 4 to 8 or 16. This is partly
because length 2 and 4 butterflies have no multiplications while length 8, 16 and higher do. It is also seen that going from one to
two butterflies gives more improvement than going from two to higher values. From an operation count point of view and from
practical experience, a three butterfly radix-4 or a two butterfly radix-8 FFT is a good compromise. The radix-8 and 16 programs
become long, especially with multiple butterflies, and they give a limited choice of transform length unless combined with some
length 2 and 4 butterflies.

N M1 M2 M3 M5 A1 A2 A3 A5

2 4 0 0 0 6 4 4 4

4 16 4 0 0 24 18 16 16

8 48 20 8 4 72 58 52 52

16 128 68 40 28 192 162 148 148

32 320 196 136 108 480 418 388 388

64 768 516 392 332 1152 1026 964 964

128 1792 1284 1032 908 2688 2434 2308 2308

256 4096 3076 2568 2316 6144 5634 5380 5380

512 9216 7172 6152 5644 13824 12802 12292 12292

1024 20480 16388 14344 13324 30720 28674 27652 27652

2048 45056 36868 32776 30732 67584 63490 61444 61444

4096 98304 81924 73736 69644 147456 139266 135172 135172

4 12 0 0 0 22 16 16 16

16 96 36 28 24 176 146 144 144

64 576 324 284 264 1056 930 920 920

256 3072 2052 1884 1800 5632 5122 5080 5080

1024 15360 11268 10588 10248 28160 26114 25944 25944

4096 73728 57348 54620 53256 135168 126978 126296 126296

8 32 4 4 4 66 52 52 52

64 512 260 252 248 1056 930 928 928

512 6144 4100 4028 3992 12672 11650 11632 11632

4096 65536 49156 48572 48280 135168 126978 126832 126832

16 80 20 20 20 178 148 148 148
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256 2560 1540 1532 1528 5696 5186 5184 5184

4096 61440 45060 44924 44856 136704 128514 128480 128480

2 0 0 0 0 4 4 4 4

4 8 0 0 0 20 16 16 16

8 24 8 4 4 60 52 52 52

16 72 32 28 24 164 144 144 144

32 184 104 92 84 412 372 372 372

64 456 288 268 248 996 912 912 912

128 1080 744 700 660 2332 2164 2164 2164

256 2504 1824 1740 1656 5348 5008 5008 5008

512 5688 4328 4156 3988 12060 11380 11380 11380

1024 12744 10016 9676 9336 26852 25488 25488 25488

2048 28216 22760 22076 21396 59164 56436 56436 56436

4096 61896 50976 49612 48248 129252 123792 123792 123792

Table 8.5.1: Number of Real Multiplications and Additions for Complex Single Radix FFTs

In Table 8.2.1 Mi and Ai refer to the number of real multiplications and real additions used by an FFT with i separately written
butterflies. The first block has the counts for Radix-2, the second for Radix-4, the third for Radix-8, the fourth for Radix-16, and
the last for the Split-Radix FFT. For the split-radix FFT, M3 and A3 refer to the two- butterfly-plus program and M5 and A5 refer
to the three-butterfly program.

The first evaluations of FFT algorithms were in terms of the number of real multiplications required as that was the slowest
operation on the computer and, therefore, controlled the execution speed. Later with hardware arithmetic both the number of
multiplications and additions became important. Modern systems have arithmetic speeds such that indexing and data transfer times
become important factors. Morris has looked at some of these problems and has developed a procedure called autogen to write
partially straight-line program code to significantly reduce overhead and speed up FFT run times. Some hardware, such as the
TMS320 signal processing chip, has the multiply and add operations combined. Some machines have vector instructions or have
parallel processors. Because the execution speed of an FFT depends not only on the algorithm, but also on the hardware
architecture and compiler, experiments must be run on the system to be used.

In many cases the unscrambler or bit-reverse-counter requires 10% of the execution time, therefore, if possible, it should be
eliminated. In high-speed convolution where the convolution is done by multiplication of DFT's, a decimation-in-frequency FFT
can be combined with a decimation-in-time inverse FFT to require no unscrambler. It is also possible for a radix-2 FFT to do the
unscrambling inside the FFT but the structure is not very regular.

Although there can be significant differences in the efficiencies of the various Cooley-Tukey and Split-Radix FFTs, the number of
multiplications and additions for all of them is on the order of . That is fundamental to the class of algorithms.
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8.6: The Quick Fourier Transform - An FFT based on Symmetries
The development of fast algorithms usually consists of using special properties of the algorithm of interest to remove redundant or
unnecessary operations of a direct implementation. The discrete Fourier transform (DFT) defined by

where

has enormous capacity for improvement of its arithmetic efficiency. Most fast algorithms use the periodic and symmetric properties
of its basis functions. The classical Cooley-Tukey FFT and prime factor FFT exploit the periodic properties of the cosine and sine
functions. Their use of the periodicities to share and, therefore, reduce arithmetic operations depends on the factorability of the
length of the data to be transformed. For highly composite lengths, the number of floating-point operation is of order 
and for prime lengths it is of order .

This section will look at an approach using the symmetric properties to remove redundancies. This possibility has long been
recognized but has not been developed in any systematic way in the open literature. We will develop an algorithm, called the quick
Fourier transform (QFT), that will reduce the number of floating point operations necessary to compute the DFT by a factor of two
to four over direct methods or Goertzel's method for prime lengths. Indeed, it seems the best general algorithm available for prime
length DFTs. One can always do better by using Winograd type algorithms but they must be individually designed for each length.
The Chirp Z-transform can be used for longer lengths.

Input and Output Symmetries 

We use the fact that the cosine is an even function and the sine is an odd function. The kernel of the DFT or the basis functions of
the expansion is given by

which has an even real part and odd imaginary part. If the data  are decomposed into their real and imaginary parts and those
into their even and odd parts, we have

where the even part of the real part of  is given by

and the odd part of the real part is

with corresponding definitions of  and . Using Convolution Algorithms with a simpler notation, the DFT of
Convolution Algorithms becomes

The sum over an integral number of periods of an odd function is zero and the sum of an even function over half of the period is
one half the sum over the whole period. This causes the equations to become

for 

The evaluation of the DFT using the convolution algorithm equation requires half as many real multiplication and half as many real
additions as evaluating it using the other equations. We have exploited the symmetries of the sine and cosine as functions of the

C(k) = x(n)∑
n=0

N−1

W nk
N

=WN e−j2π/N

N log(N)

N 2

= = cos(2πnk/N) +jsin(2πnk/N)W nk
N e−j2πnk/N

x(n)
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time index . This is independent of whether the length is composite or not. Another view of this formulation is that we have used
the property of associatively of multiplication and addition. In other words, rather than multiply two data points by the same value
of a sine or cosine then add the results, one should add the data points first then multiply the sum by the sine or cosine which
requires one rather than two multiplications.

Next we take advantage of the symmetries of the sine and cosine as functions of the frequency index . . Using these symmetries
on the equation gives

for . This again reduces the number of operations by a factor of two, this time because it calculates two
output values at a time. The first reduction by a factor of two is always available. The second is possible only if both DFT values
are needed. It is not available if you are calculating only one DFT value. The above development has not dealt with the details that
arise with the difference between an even and an odd length. That is straightforward.

Further Reductions if the Length is Even 

If the length of the sequence to be transformed is even, there are further symmetries that can be exploited. There will be four data
values that are all multiplied by plus or minus the same sine or cosine value. This means a more complicated pre-addition process
which is a generalization of the simple calculation of the even and odd parts in the equations will reduce the size of the order 
part of the algorithm by still another factor of two or four. It the length is divisible by 4, the process can be repeated. Indeed, it the
length is a power of 2, one can show this process is equivalent to calculating the DFT in terms of discrete cosine and sine
transforms with a resulting arithmetic complexity of order  and with a structure that is well suited to real data
calculations and pruning.

If the flow-graph of the Cooley-Tukey FFT is compared to the flow-graph of the QFT, one notices both similarities and differences.
Both progress in stages as the length is continually divided by two. The Cooley-Tukey algorithm uses the periodic properties of the
sine and cosine to give the familiar horizontal tree of butterflies. The parallel diagonal lines in this graph represent the parallel
stepping through the data in synchronism with the periodic basis functions. The QFT has diagonal lines that connect the first data
point with the last, then the second with the next to last, and so on to give a “star" like picture. This is interesting in that one can
look at the flow graph of an algorithm developed by some completely different strategy and often find section with the parallel
structures and other parts with the star structure. These must be using some underlying periodic and symmetric properties of the
basis functions.

Arithmetic Complexity and Timings 

A careful analysis of the QFT shows that  additions are necessary to compute the even and odd parts of the input data. This is
followed by the length  inner product that requires  real multiplications and an equal number of additions.
This is followed by the calculations necessary for the simultaneous calculations of the first half and last half of  which
requires  real additions. This means the total QFT algorithm requires  real multiplications and  real
additions. These numbers along with those for the Goertzel algorithm and the direct calculation of the DFT are included in the
following table. Of the various order-  DFT algorithms, the QFT seems to be the most efficient general method for an arbitrary
length .

Algorithm Real Mults. Real Adds Trig Eval.

Direct DFT

Mod. 2nd Order Goertzel

QFT

Timings of the algorithms on a PC in milliseconds are given in the following table.

n

k
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Algorithm

Direct DFT 4.90 19.83

Mod. 2O. Goertzel 1.32 5.55

QFT 1.09 4.50

Chirp + FFT 1.70 3.52

These timings track the floating point operation counts fairly well.

Conclusions 

The QFT is a straight-forward DFT algorithm that uses all of the possible symmetries of the DFT basis function with no
requirements on the length being composite. These ideas have been proposed before, but have not been published or clearly
developed. It seems that the basic QFT is practical and useful as a general algorithm for lengths up to a hundred or so. Above that,
the chirp z-transform or other filter based methods will be superior. For special cases and shorter lengths, methods based on
Winograd's theories will always be superior. Nevertheless, the QFT has a definite place in the array of DFT algorithms and is not
well known. A Fortran program is included in the appendix.

It is possible, but unlikely, that further arithmetic reduction could be achieved using the fact that  has unity magnitude as was
done in second-order Goertzel algorithm. It is also possible that some way of combining the Goertzel and QFT algorithm would
have some advantages. A development of a complete QFT decomposition of a DFT of length-  shows interesting structure and
arithmetic complexity comparable to average Cooley-Tukey FFTs. It does seem better suited to real data calculations with pruning.
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9.1: Introduction

To study the Prime Factor Algorithm and the Winograd Fourier Transform Algorithm

The prime factor algorithm (PFA) and the Winograd Fourier transform algorithm (WFTA) are methods for efficiently calculating the DFT which use, and in fact, depend on the Type-1 index map
from Multidimensional Index Mapping. The use of this index map preceded Cooley and Tukey's paper but its full potential was not realized until it was combined with Winograd's short DFT
algorithms.

The number theoretic basis for the indexing in these algorithms may, at first, seem more complicated than in the Cooley-Tukey FFT; however, if approached from the general index mapping point of
view of Multidimensional Index Mapping, it is straightforward, and part of a common approach to breaking large problems into smaller ones. The development in this section will parallel that in The
Cooley-Tukey Fast Fourier Transform Algorithm.

The general index maps of Multidimensional Index Mapping must satisfy the Type-1 conditions which are

The row and column calculations in The Index Map are uncoupled by which for this case are

In addition, to make each short sum a DFT, the KiKi" role="presentation" style="position:relative;" tabindex="0">  must also satisfy

In order to have the smallest values for KiKi" role="presentation" style="position:relative;" tabindex="0"> , the constants in the equation are chosen to be

KiKi" role="presentation" style="position:relative;" tabindex="0">

which gives for the index maps in the equation

The frequency index map is a form of the Chinese remainder theorem. Using these index maps, the DFT in Multidimensional Index Mapping becomes

which is a pure two-dimensional DFT with no twiddle factors and the summations can be done in either order. Choices other than the equation could be used. For example  will cause

An important feature of the short Winograd DFT's described in Winograd's Short DFT Algorithms that is useful for both the PFA and WFTA is the fact that the multiplier constants in Winograd's Short D

DD" role="presentation" style="position:relative;" tabindex="0">Contributor 
ContribEEBurrus

This page titled 9.1: Introduction is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney Burrus.

Learning Objectives

= a and = b with ( ) = ( ) = 1K1 N2 K2 N1 K1N1 K2N2

= c and = d with ( ) = ( ) = 1K3 N2 K4 N1 K3N1 K4N2

(( ) = (( ) = 0K1K4 )N K2K3 )N

Ki

(( ) = and (( ) =K1K3 )N N2 K2K4 )N N1

Ki

a = b = 1, c = (( ) , d = (( )N
−1
2 )N N

−1
1 )N

n = (( + )N2n1 N1n2 )N

k = (( + )K3k1 K4k2 )N

X = x∑
=0n2

−1N2

∑
=0n1

−1N1

W
n1k1

N1
W

n2k2

N2

a = b = c = d = 1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/2014?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/09%3A_The_Prime_Factor_and_Winograd_Fourier_Transform_Algorithms/9.01%3A_Introduction
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/09%3A_The_Prime_Factor_and_Winograd_Fourier_Transform_Algorithms/9.01%3A_Introduction
https://creativecommons.org/licenses/by/
https://eceweb.rice.edu/people/sidney-burrus


9.2.1 https://eng.libretexts.org/@go/page/2015

9.2: The Prime Factor Algorithm
If the DFT is calculated directly using the equation in 9.1: Introduction, the algorithm is called a prime factor algorithm and was
discussed in Winograd's Short DFT Algorithms. When the short DFT's are calculated by the very efficient algorithms of Winograd
discussed in Factoring the Signal Processing Operators, the PFA becomes a very powerful method that is as fast or faster than the
best Cooley-Tukey FFT's.

A flow graph is not as helpful with the PFA as it was with the Cooley-Tukey FFT, however, the following representation in Fig.
9.2.1 below, which combines the figures in The Index Map and Winograd Fourier Transform Algorithm (WFTA) gives a good
picture of the algorithm with the example of Multidimensional Index Mapping.

Fig. 9.2.1 A Prime Factor FFT for N = 15

If  is factored into three factors, the DFT of the equation would have three nested summations and would be a three-dimensional
DFT. This principle extends to any number of factors; however, recall that the Type-1 map requires that all the factors be relatively
prime. A very simple three-loop indexing scheme has been developed which gives a compact, efficient PFA program for any
number of factors. The basic program structure is illustrated below with the short DFT's being omitted for clarity. Complete
programs are given in the appendices.

As in the Cooley-Tukey program, the DO 10 loop steps through the M stages (factors of N) and the DO 20 loop calculates the
N/N1 length-N1 DFT's. The input index map of the equation is implemented in the DO 30 loop and the statement just before label
20. In the PFA, each stage or factor requires a separately programmed module or butterfly. This lengthens the PFA program but an
efficient Cooley-Tukey program will also require three or more butterflies.

N
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Because the PFA is calculated in-place using the input index map, the output is scrambled. There are five approaches to dealing
with this scrambled output. First, there are some applications where the output does not have to be unscrambled as in the case of
high-speed convolution. Second, an unscrambler can be added after the PFA to give the output in correct order just as the bit-
reversed-counter is used for the Cooley-Tukey FFT. The third method does the unscrambling in the modules while they are being
calculated. This is probably the fastest method but the program must be written for a specific length. A fourth method is similar and
achieves the unscrambling by choosing the multiplier constants in the modules properly. The fifth method uses a separate indexing
method for the input and output of each module.
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9.3: The Winograd Fourier Transform Algorithm
The Winograd Fourier transform algorithm (WFTA) uses a very powerful property of the Type-1 index map and the DFT to give a further reduction of the number of multiplications in the PFA. Using
an operator notation where  represents taking row DFT's and  represents column DFT's, the two-factor PFA of the equation is represented by

It has been shown that if each operator represents identical operations on each row or column, they commute. Since  and  represent length  and  DFT's, they commute and the equation can
also be written

N1N1" role="presentation" style="position:relative;" tabindex="0">F1F1" role="presentation" style="position:relative;" tabindex="0">

If each short DFT in FF" role="presentation" style="position:relative;" tabindex="0"> is expressed by three operators as in Winograd's Short DFT Algorithms FF" role="presentation" style="position

FF" role="presentation" style="position:relative;" tabindex="0">

where FF" role="presentation" style="position:relative;" tabindex="0"> represents the set of additions done on each row or column that performs the residue reduction as Winograd's Short DFT Algori

This is the PFA of the equation and Fig. 9.2.1 where  represents the row DFT's on the array formed from . Because these operators commute, the equation can also be written as

or

but the two adjacent multiplication operators can be premultiplied and the result represented by one operator  which is no longer the same for each row or column. The equation then becomes

This is the basic idea of the Winograd Fourier transform algorithm. The commuting of the multiplication operators together in the center of the algorithm is called nesting and it results in a significant dec

Fig. 9.3.1 A Length-15 WFTA with Nested Multiplications

The rectangular structure of the preweave addition operators causes an expansion of the data in the center of the algorithm. The 15 data points in Fig. 9.3.1 become 18 intermediate values. This expansion

From Fig. 9.3.1 and the idea of premultiplying the individual multiplication operators, it can be seen why the multiplications by unity had to be considered in Winograd Fourier Transform Algorithm (WF

The number of additions depends on the order of the pre- and postweave operators. For example in the length-15 WFTA in Fig. 9.3.1, if the length-5 had been done first and last, there would have been s

A program for the WFTA is not as simple as for the FFT or PFA because of the very characteristic that reduces the number of multiplications, the nesting. The same lengths are possible with the PFA and
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9.4: Modifications of the PFA and WFTA Type Algorithms
In the previous section it was seen how using the permutation property of the elementary operators in the PFA allowed the nesting of the multiplications to reduce their number. It was also seen that a
proper ordering of the operators could minimize the number of additions. These ideas have been extended in formulating a more general algorithm optimizing problem. If the DFT operator 
FF" role="presentation" style="position:relative;" tabindex="0"> in the equation is expressed in a still more factored form obtained from Winograd's Short DFT Algorithms, a greater variety of ordering 

FF" role="presentation" style="position:relative;" tabindex="0">

The DFT in the equation becomes

The operator notation is very helpful in understanding the central ideas, but may hide some important facts. It has been shown that operators in different FiFi" role="presentation" style="position:relati

FiFi" role="presentation" style="position:relative;" tabindex="0">This formulation allows a very large set of possible orderings, in fact, the number is so large that some automatic technique must be use

FiFi" role="presentation" style="position:relative;" tabindex="0">Results obtained applying the dynamic programming method to the design of fairly long DFT algorithms gave algorithms that had fewe

FiFi" role="presentation" style="position:relative;" tabindex="0">There are other modifications of the basic structure of the Type-1 index map DFT algorithm. One is to use the same index structure and 
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9.5: Evaluation of the PFA and WFTA
As for the Cooley-Tukey FFT's, the first evaluation of these algorithms will be on the number of multiplications and additions required. The number of multiplications to compute the PFA in the
equation is given by Multidimensional Index Mapping. Using the notation that  is the number of multiplications or additions necessary to calculate a length-N DFT, the total number for a four-
factor PFA of length-N, where N=N1N2N3N4N=N1N2N3N4" role="presentation" style="position:relative;" tabindex="0">  is

The count of multiplies and adds in the Table 9.5.1 below are calculated from (105) with the counts of the factors taken from Winograd Fourier Transform Algorithm (WFTA) Table 6.2.1. The list of leng

The number of multiplications necessary for the WFTA is simply the product of those necessary for the required modules, including multiplications by unity. The total number may contain some unity m

Calculating the number of additions for the WFTA is more complicated than for the PFA because of the expansion of the data moving through the algorithm. For example the number of additions, TA, fo

where the number of multiplies for the length-3 module and hence the expansion factor. As mentioned earlier there is an optimum ordering to minimize additions. The orderin

Table 9.5.1: Number of Real Multiplications and Additions for Complex PFA and WFTA FFTs

Length PFA PFA WFTA WFTA WFTA

N Mults Adds Mults RMults Adds

10 20 88 24 20 88

12 16 96 24 16 96

14 32 172 36 32 172

15 50 162 36 34 162

18 40 204 44 40 208

20 40 216 48 40 216

21 76 300 54 52 300

24 44 252 48 36 252

28 64 400 72 64 400

30 100 384 72 68 384

35 150 598 108 106 666

36 80 480 88 80 488

40 100 532 96 84 532

42 152 684 108 104 684

45 190 726 132 130 804

48 124 636 108 92 660

56 156 940 144 132 940

60 200 888 144 136 888

63 284 1236 198 196 1394

70 300 1336 216 212 1472

72 196 1140 176 164 1156

80 260 1284 216 200 1352

84 304 1536 216 208 1536

90 380 1632 264 260 1788

105 590 2214 324 322 2418

112 396 2188 324 308 2332

120 460 2076 288 276 2076

126 568 2724 396 392 3040

140 600 2952 432 424 3224

144 500 2676 396 380 2880

168 692 3492 432 420 3492

180 760 3624 528 520 3936

210 1180 4848 648 644 5256

240 1100 4812 648 632 5136

252 1136 5952 792 784 6584

280 1340 6604 864 852 7148

315 2050 8322 1188 1186 10336

336 1636 7908 972 956 8508

360 1700 8148 1056 1044 8772

420 2360 10536 1296 1288 11352

504 2524 13164 1584 1572 14428

T (N)

N =N1N2N3N4

T (N) = T ( )+ T ( )+ T ( )+ T ( )N1N2N3 N4 N2N3N4 N1 N3N4N1 N2 N4N1N2 N3

TA(N) = TA( )+T TA( )N2 N1 M1 N2

= 3, = 5, T =N1 N2 M1
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Length PFA PFA WFTA WFTA WFTA

560 3100 14748 1944 1928 17168

630 4100 17904 2376 2372 21932

720 3940 18276 2376 2360 21132

840 5140 23172 2592 2580 24804

1008 5804 29100 3564 3548 34416

1260 8200 38328 4752 4744 46384

1680 11540 50964 5832 5816 59064

2520 17660 82956 9504 9492 99068

5040 39100 179772 21384 21368 232668

From the Table 9.5.1 we see that compared to the PFA or any of the Cooley-Tukey FFT's, the WFTA has significantly fewer multiplications. For the shorter lengths, the WFTA and the PFA have approxi

The size of the Cooley-Tukey program is the smallest, the PFA next and the WFTA largest. The PFA requires the smallest number of stored constants, the Cooley-Tukey or split-radix FFT next, and the W
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10.1: Introduction

Discussion of the considerations involved in high-performance FFT implementations, which center largely on memory access and other non-arithmetic concerns, as illustrated by a case study
of the FFTW library.

by Steven G. Johnson (Department of Mathematics, Massachusetts Institute of Technology) and Matteo Frigo (Cilk Arts, Inc.)

Although there are a wide range of fast Fourier transform (FFT) algorithms, involving a wealth of mathematics from number theory to polynomial algebras, the vast majority of FFT implementations
in practice employ some variation on the Cooley-Tukey algorithm. The Cooley-Tukey algorithm can be derived in two or three lines of elementary algebra. It can be implemented almost as easily,
especially if only power-of-two sizes are desired; numerous popular textbooks list short FFT subroutines for power-of-two sizes, written in the language du jour. The implementation of the Cooley-
Tukey algorithm, at least, would therefore seem to be a long-solved problem. In this chapter, however, we will argue that matters are not as straightforward as they might appear.

For many years, the primary route to improving upon the Cooley-Tukey FFT seemed to be reductions in the count of arithmetic operations, which often dominated the execution time prior to the
ubiquity of fast floating-point hardware (at least on non-embedded processors). Therefore, great effort was expended towards finding new algorithms with reduced arithmetic counts, from Winograd's
method to achieve  multiplications  (at the cost of many more additions) to the split-radix variant on Cooley-Tukey that long achieved the lowest known total count of additions and
multiplications for power-of-two sizes (but was recently improved upon). The question of the minimum possible arithmetic count continues to be of fundamental theoretical interest—it is not even
known whether better than  complexity is possible, since
&#x3A9;(nlogn)Ω(nlogn)" role="presentation" style="position:relative;" tabindex="0">  lower bounds on the count of additions have only been proven subject to restrictive assumptions about

Fig. 10.1.1 The ratio of speed (1/time) between a highly optimized FFT (FFTW 3.1.2 ) and a typical textbook radix-2 implementation (Numerical Recipes in C on a 3 GHz Intel Core Duo with the Intel C

And yet there is a vast gap between this basic mathematical theory and the actual practice—highly optimized FFT packages are often an order of magnitude faster than the textbook subroutines, and the i

In particular, in this chapter we will discuss some of the lessons learned and the strategies adopted in the FFTW library. FFTW is a widely used free-software library that computes the discrete Fourier tra

This chapter is structured as follows. First Review of the Cooley-Tukey FFT we briefly review the basic ideas behind the Cooley-Tukey algorithm and define some common terminology, especially focu

Footnotes

 We employ the standard asymptotic notation of  for asymptotic upper bounds,  for asymptotic tight bounds, and  for asymptotic lower bounds

 We won't address the question of parallelization on multi-processor machines, which adds even greater difficulty to FFT implementation—although multi-processors are increasingly important, achievi
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10.2: Review of the Cooley-Tukey FFT
The (forward, one-dimensional) discrete Fourier transform (DFT) of an array
XX" role="presentation" style="position:relative;" tabindex="0">   complex numbers is the array XX" role="presentation" style="position:relative;" tabindex="0">  given by

YY" role="presentation" style="position:relative;" tabindex="0">

where  and  is a primitive root of unity. Implemented directly, the equation would require &#x398;(n2)Θ(n2)" role="presentation" style="position:relative;" tabindex="0">

The Cooley-Tukey algorithm can be derived as follows. If n1n1" role="presentation" style="position:relative;" tabindex="0">  can be factored into n=n1n2n=n1n2" role="presentation" style="position:r

where . Thus, the algorithm computes n1n1" role="presentation" style="position:relative;" tabindex="0">  DFTs of size n1n1" role="presentation" style="position:relative;" tabind

Many well-known variations are distinguished by the radix alone. A decimation in time (DIT) algorithm uses n1n1" role="presentation" style="position:relative;" tabindex="0">n1n1" role="presentatio

A key difficulty in implementing the Cooley-Tukey FFT is that the n1n1" role="presentation" style="position:relative;" tabindex="0">  dimension corresponds to discontiguous inputs &#x2113;1ℓ1" r

n2n2" role="presentation" style="position:relative;" tabindex="0">

Fig. 10.2.1 Schematic of traditional breadth-first (left) vs. recursive depth-first (right) ordering for radix-2 FFT of size 8: the computations for each ne

One ordering distinction is between recursion and iteration. As expressed above, the Cooley-Tukey algorithm could be thought of as defining a tree of smaller and smaller DFTs, as depicted in Fig. 10.2.1

A second ordering distinction lies in how the digit-reversal is performed. The classic approach is a single, separate digit-reversal pass following or preceding the arithmetic computations; this approach is

Finally, we should mention that there are many FFTs entirely distinct from Cooley-Tukey. Three notable such algorithms are the prime-factor algorithm for  along with Rader's and Blu
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10.3: Goals and Background of the FFTW Project
The FFTW project, begun in 1997 as a side project of the authors Frigo and Johnson as graduate students at MIT, has gone through several major revisions, and as of 2008 consists of more than
40,000 lines of code. It is difficult to measure the popularity of a free-software package, but (as of 2008) FFTW has been cited in over 500 academic papers, is used in hundreds of shipping free and
proprietary software packages, and the authors have received over 10,000 emails from users of the software. Most of this chapter focuses on performance of FFT implementations, but FFTW would
probably not be where it is today if that were the only consideration in its design. One of the key factors in FFTW's success seems to have been its flexibility in addition to its performance. In fact,
FFTW is probably the most flexible DFT library available:

FFTW is written in portable C and runs well on many architectures and operating systems.
FFTW computes DFTs in
O(nlogn)O(nlogn)" role="presentation" style="position:relative;" tabindex="0">  time for any length nn" role="presentation" style="position:relative;" tabindex="0"> . (Most other DFT im
FFTW imposes no restrictions on the rank (dimensionality) of multi-dimensional transforms. (Most other implementations are limited to one-dimensional, or at most two- and three-dimensional data.
FFTW supports multiple and/or strided DFTs; for example, to transform a 3-component vector field or a portion of a multi-dimensional array. (Most implementations support only a single DFT of con
FFTW supports DFTs of real data, as well as of real symmetric/anti-symmetric data (also called discrete cosine/sine transforms).

Our design philosophy has been to first define the most general reasonable functionality, and then to obtain the highest possible performance without sacrificing this generality. In this section, we offer a 

FFTW's generality is partly a consequence of the fact the FFTW project was started in response to the needs of a real application for one of the authors (a spectral solver for Maxwell's equations, which f

Even for one-dimensional DFTs, there is a common misperception that one should always choose power-of-two sizes if one cares about efficiency. Thanks to FFTW's code generator (described in Genera

One initially missing feature was efficient support for large prime sizes; the conventional wisdom was that large-prime algorithms were mainly of academic interest, since in real applications (including o

Another form of flexibility that deserves comment has to do with a purely technical aspect of computer software. FFTW's implementation involves some unusual language choices internally (the FFT-ker

Ultimately, very few scientific-computing applications should have performance as their top priority. Flexibility is often far more important, because one wants to be limited only by one's imagination, ra
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10.4: FFTs and the Memory Hierarchy
There are many complexities of computer architectures that impact the optimization of FFT implementations, but one of the most pervasive is the memory hierarchy. On any modern general-purpose
computer, memory is arranged into a hierarchy of storage devices with increasing size and decreasing speed: the fastest and smallest memory being the CPU registers, then two or three levels of
cache, then the main-memory RAM, then external storage such as hard disks.  Most of these levels are managed automatically by the hardware to hold the most-recently-used data from the next level
in the hierarchy.  There are many complications, however, such as limited cache associativity (which means that certain locations in memory cannot be cached simultaneously) and cache lines (which
optimize the cache for contiguous memory access), which are reviewed in numerous textbooks on computer architectures. In this section, we focus on the simplest abstract principles of memory
hierarchies in order to grasp their fundamental impact on FFTs.

Because access to memory is in many cases the slowest part of the computer, especially compared to arithmetic, one wishes to load as much data as possible in to the faster levels of the hierarchy, and
then perform as much computation as possible before going back to the slower memory devices. This is called temporal locality: if a given datum is used more than once, we arrange the computation
so that these usages occur as close together as possible in time.

Understanding FFTs with an ideal cache 

To understand temporal-locality strategies at a basic level, in this section we will employ an idealized model of a cache in a two-level memory hierarchy. This ideal cache stores  data items from
main memory (e.g. complex numbers for our purposes): when the processor loads a datum from memory, the access is quick if the datum is already in the cache (a cache hit) and slow otherwise (a
cache miss, which requires the datum to be fetched into the cache). When a datum is loaded into the cache,  it must replace some other datum, and the ideal-cache model assumes that the optimal
replacement strategy is used: the new datum replaces the datum that will not be needed for the longest time in the future; in practice, this can be simulated to within a factor of two by replacing the
least-recently used datum, but ideal replacement is much simpler to analyze. Armed with this ideal-cache model, we can now understand some basic features of FFT implementations that remain
essentially true even on real cache architectures. In particular, we want to know the cache complexity, the number
Q(n;Z)Q(n;Z)" role="presentation" style="position:relative;" tabindex="0">  of cache misses for an FFT of size nn" role="presentation" style="position:relative;" tabindex="0">  with an ideal c

ZZ" role="presentation" style="position:relative;" tabindex="0">First, consider a textbook radix-2 algorithm, which divides nn" role="presentation" style="position:relative;" tabindex="0">  by 2 at eac

One traditional solution to this problem is blocking: the computation is divided into maximal blocks that fit into the cache, and the computations for each block are completed before moving on to the ne

In fact, this complexity is rigorously optimal for Cooley-Tukey FFT algorithms, and immediately points us towards large radices (not radix 2!) to exploit caches effectively in FFTs.

However, there is one shortcoming of any blocked FFT algorithm: it is cache aware, meaning that the implementation depends explicitly on the cache size . The implementation must be modified (e.g.

The goal of cache-obliviousness is to structure the algorithm so that it exploits the cache without having the cache size as a parameter: the same code achieves the same asymptotic cache complexity rega

For instance, Fig 10.2.1 (right) and the algorithm of Pre shows a way to obliviously exploit the cache with a radix-2 Cooley-Tukey algorithm, by ordering the computation depth-first rather than breadth-

The key property is this: once the recursion reaches a size n&#x2264;Zn≤Z" role="presentation" style="position:relative;" tabindex="0"> , the subtransform fits into the cache and no further misse

This is worse than the theoretical optimum  from the equation, but it is cache-oblivious (  never entered the algorithm) and exploits at least some temporal locality.  On the other hand, when it

There exists a different recursive FFT that is optimal cache-oblivious, however, and that is the radix-  “four-step” Cooley-Tukey algorithm (again executed recursively, depth-first). The cache comple

That is, at each stage one performs  DFTs of size  (recursively), then multiplies by the &#x398;(n)Θ(n)" role="presentation" style="position:relative;" tabindex="0">  twiddle factors (and do

nn" role="presentation" style="position:relative;" tabindex="0">

the same as the optimal cache complexity equation!

These algorithms illustrate the basic features of most optimal cache-oblivious algorithms: they employ a recursive divide-and-conquer strategy to subdivide the problem until it fits into cache, at which p

Cache-obliviousness in practice
Even though the radix-  algorithm is optimal cache-oblivious, it does not follow that FFT implementation is a solved problem. The optimality is only in an asymptotic sense, ignoring constant factors,

Perhaps most importantly, one needs to perform an optimization that has almost nothing to do with the caches: the recursion must be “coarsened” to amortize the function-call overhead and to enable com

One might get the impression that there is a strict dichotomy that divides cache-aware and cache-oblivious algorithms, but the two are not mutually exclusive in practice. Given an implementation of a ca

Memory strategies in FFTW

The recursive cache-oblivious strategies described above form a useful starting point, but FFTW supplements them with a number of additional tricks, and also exploits cache-obliviousness in less-obvio

We currently find that the general radix-  algorithm is beneficial only when  becomes very large, on the order of 220&#x2248;106220≈106" role="presentation" style="position:relative;" tabindex="

Thus, for more moderate , FFTW uses depth-first recursion with a bounded radix, similar in spirit to the algorithm of Pre but with much larger radices (radix 32 is common) and base cases (size 32 or 6

For small  (including the radix butterflies and the base cases of the recursion), hard-coded FFTs (FFTW's codelets) are employed. However, this gives rise to an interesting problem: a codelet for (e.g.) 

(When implementing hard-coded base cases, there is another choice because a loop of small transforms is always required. Is it better to implement a hard-coded FFT of size 64, for example, or an unroll

In addition, there are many other techniques that FFTW employs to supplement the basic recursive strategy, mainly to address the fact that cache implementations strongly favor accessing consecutive da

Footnotes

 A hard disk is utilized by “out-of-core” FFT algorithms for very large nn" role="presentation" style="position:relative;" tabindex="0"> , but these algorithms appear to have been largely superseded in

 This includes the registers: on current “x86” processors, the user-visible instruction set (with a small number of floating-point registers) is internally translated at runtime to RISC-like "μ-ops" with a m

 More generally, one can assume that a cache line of LL" role="presentation" style="position:relative;" tabindex="0">  consecutive data items are loaded into the cache at once, in order to exploit spat

 Of course,  additional storage may be required for twiddle factors, the output data (if the FFT is not in-place), and so on, but these only affect the nn" role="presentation" style="position:relative;"

 This advantage of depth-first recursive implementation of the radix-2 FFT was pointed out many years ago by Singleton (where the “cache” was core memory)

 In principle, it might be possible for a compiler to automatically coarsen the recursion, similar to how compilers can partially unroll loops. We are currently unaware of any general-purpose compiler th

 One practical difficulty is that some “optimizing” compilers will tend to greatly re-order the code, destroying FFTW's optimal schedule. With GNU gcc, we circumvent this problem by using compiler f
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10.5: Adaptive Composition of FFT Algorithms
As alluded to several times already, FFTW implements a wide variety of FFT algorithms (mostly rearrangements of Cooley-Tukey) and selects the “best” algorithm for a given  automatically. In this
section, we describe how such self-optimization is implemented, and especially how FFTW's algorithms are structured as a composition of algorithmic fragments. These techniques in FFTW are
described in greater detail elsewhere, so here we will focus only on the essential ideas and the motivations behind them.

An FFT algorithm in FFTW is a composition of algorithmic steps called a plan. The algorithmic steps each solve a certain class of problems (either solving the problem directly or recursively
breaking it into sub-problems of the same type). The choice of plan for a given problem is determined by a planner that selects a composition of steps, either by runtime measurements to pick the
fastest algorithm, or by heuristics, or by loading a pre-computed plan. These three pieces: problems, algorithmic steps, and the planner, are discussed in the following subsections.

The problem to be solved 

In early versions of FFTW, the only choice made by the planner was the sequence of radices, and so each step of the plan took a DFT of a given size , possibly with discontiguous input/output, and
reduced it (via a radix
rr" role="presentation" style="position:relative;" tabindex="0"> ) to DFTs of size n/rn/r" role="presentation" style="position:relative;" tabindex="0"> , which were solved recursively. That is, each st

The difficulty with our initial (n,I,&#x3B9;,O,o)(n,I,ι,O,o)" role="presentation" style="position:relative;" tabindex="0">  problem definition was that it forced each algorithmic step to addre

DFT problems in FFTW are expressed in terms of structures called I/O tensors,  which in turn are described in terms of ancillary structures called I/O dimensions. An I/O dimension  is a triple d=(n,&

OO" role="presentation" style="position:relative;" tabindex="0">For simplicity, let us consider only one-dimensional DFTs, so that  implies a DFT of length  on input data with stride &

is recursively defined as a “loop” of  problems: for all 0&#x2264;k&lt;n0≤k&lt;n" role="presentation" style="position:relative;" tabindex="0"> , do all computations in

The case of multi-dimensional DFTs is defined more precisely elsewhere, but essentially each I/O dimension in  gives one dimension of the transform.

We call  the size of the problem. The rank of a problem is defined to be the rank of its size (i.e., the dimensionality of the DFT). Similarly, we call  the vector size of the problem, a

DFT problem examples
A more detailed discussion of the space of problems in FFTW can be found, but a simple understanding can be gained by examining a few examples demonstrating that the I/O tensor representation is su

As a more complicated example, suppose we have an n1&#xD7;n2n1×n2" role="presentation" style="position:relative;" tabindex="0">  matrix  stored as n1n1" role="presentation" style="pos

A size-1 DFT is simply a copy Y[0]=X[0]Y[0]=X[0]" role="presentation" style="position:relative;" tabindex="0"> , and here this can also be denoted by N=N=" role="presentation" style="

The space of plans in FFTW

Here, we describe a subset of the possible plans considered by FFTW; while not exhaustive, this subset is enough to illustrate the basic structure of FFTW and the necessity of including the vector loop(s

Roughly speaking, to solve a general DFT problem, one must perform three tasks. First, one must reduce a problem of arbitrary vector rank to a set of loops nested around a problem of vector rank 0, i.e.

Rank-0 plans

The rank-0 problem dft(,V,I,O)dft(,V,I,O)" role="presentation" style="position:relative;" tabindex="0">  denotes a permutation of the input array into the output array. FFTW does not so

When  and , FFTW produces a plan that copies the input array into the output array. Depending on the strides, the plan consists of a loop or, possibly, of a call to the ANSI C function m
When  and , and the strides denote a matrix-transposition problem, FFTW creates a plan that transposes the array in-place. FFTW implements the square transposition 

Rank-1 plans

Rank-1 DFT problems denote ordinary one-dimensional Fourier transforms. FFTW deals with most rank-1 problems as follows.

Direct plans

When the DFT rank-1 problem is “small enough” (usually, , FFTW produces a direct plan that solves the problem directly. These plans operate by calling a fragment of C code (a codelet) specia

Cooley-Tukey plans

For problems of the form  where , FFTW generates a plan that implements a radix-  Cooley-Tukey algorithm Review of the Cooley-Tukey FFT . Both decimation-in-tim

The most common case is a decimation in time (DIT) plan, corresponding to a radix r=n2r=n2" role="presentation" style="position:relative;" tabindex="0">  (and thus m=n1m=n1" role="presen

Plans for higher vector ranks

These plans extract a vector loop to reduce a DFT problem to a problem of lower vector rank, which is then solved recursively. Any of the vector loops of VV" role="presentation" style="position:relativ

Formally, to solve , where , FFTW generates a loop that, for all  such that 0&#x2264;k&lt;n0≤k&lt;n" role="presentation" style="position:relative;" tabindex="0

Indirect plans

Indirect plans transform a DFT problem that requires some data shuffling (or discontiguous operation) into a problem that requires no shuffling plus a rank-0 problem that performs the shuffling.

Formally, to solve dft(N,V,I,O)dft(N,V,I,O)" role="presentation" style="position:relative;" tabindex="0">  where , FFTW generates a plan that first solves \[\text{dft}(\left \{ \rig

Plans for prime sizes

As discussed in Goals and Background of the FFTW Project it turns out to be surprisingly useful to be able to handle large prime  (or large prime factors). Rader plans implement the algorithm from ab

Discussion

Although it may not be immediately apparent, the combination of the recursive rules in The space of plans in FFTW above, can produce a number of useful algorithms. To illustrate these compositions,
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Fig. 10.5.1 Two possible decompositions for a size-30 DFT, both for the arbitrary choice of DIT radices 3 then 2 then 5, and prime-size codelets. Items grouped by a " " result from the plan for a single s

As discussed previously in sections Review of the Cooley-Tukey FFT and Understanding FFTs with an ideal cache, the same Cooley-Tukey decomposition can be executed in either traditional breadth-fi

Another example of the effect of loop reordering is a style of plan that we sometimes call vector recursion (unrelated to “vector-radix” FFTs). The basic idea is that, if one has a loop (vector-rank 1) of t

In-place 1d transforms (with no separate bit reversal pass) can be obtained as follows by a combination DIT and DIF plans Cooley-Tukey plans with transposes "Rank-0 plans". First, the transform is de

The FFTW planner
Given a problem and a set of possible plans, the basic principle behind the FFTW planner is straightforward: construct a plan for each applicable algorithmic step, time the execution of these plans, and s

A direct implementation of this approach, however, faces an exponential explosion of the number of possible plans, and hence of the planning time, as mm" role="presentation" style="position:relative;"

Alternatively, there is an estimate mode that performs no timing measurements whatsoever, but instead minimizes a heuristic cost function. This can reduce the planner time by several orders of magnitu

Footnote

 I/O tensors are unrelated to the tensor-product notation used by some other authors to describe FFT algorithms.
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10.6: Generating Small FFT Kernels
The base cases of FFTW's recursive plans are its codelets, and these form a critical component of FFTW's performance. They
consist of long blocks of highly optimized, straight-line code, implementing many special cases of the DFT that give the planner a
large space of plans in which to optimize. Not only was it impractical to write numerous codelets by hand, but we also needed to
rewrite them many times in order to explore different algorithms and optimizations. Thus, we designed a special-purpose “FFT
compiler” called genfft that produces the codelets automatically from an abstract description.

A typical codelet in FFTW computes a DFT of a small, fixed size  (usually,  possibly with the input or output multiplied
by twiddle factors Cooley-Tukey plans. Several other kinds of codelets can be produced by genfft , but we will focus here on this
common case.

In principle, all codelets implement some combination of the Cooley-Tukey algorithm from the equation and/or some other DFT
algorithm expressed by a similarly compact formula. However, a high-performance implementation of the DFT must address many
more concerns than the equation alone suggests. For example, the equation contains multiplications by 1 that are more efficient to
omit. The equation entails a run-time factorization of  which can be precomputed if  is known in advance. The equation operates
on complex numbers, but breaking the complex-number abstraction into real and imaginary components turns out to expose certain
non-obvious optimizations. Additionally, to exploit the long pipelines in current processors, the recursion implicit in the equation
should be unrolled and re-ordered to a significant degree. Many further optimizations are possible if the complex input is known in
advance to be purely real (or imaginary). Our design goal for genfft was to keep the expression of the DFT algorithm independent
of such concerns. This separation allowed us to experiment with various DFT algorithms and implementation strategies
independently and without (much) tedious rewriting.

Genfft is structured as a compiler whose input consists of the kind and size of the desired codelet, and whose output is C code.
genfft operates in four phases: creation, simplification, scheduling, and unparsing.

In the creation phase, genfft produces a representation of the codelet in the form of a directed acyclic graph (dag). The dag is
produced according to well-known DFT algorithms: Cooley-Tukey equation, prime-factor, split-radix and Rader. Each algorithm is
expressed in a straightforward math-like notation, using complex numbers, with no attempt at optimization. Unlike a normal FFT
implementation, however, the algorithms here are evaluated symbolically and the resulting symbolic expression is represented as a
dag, and in particular it can be viewed as a linear network (in which the edges represent multiplication by constants and the
vertices represent additions of the incoming edges).

In the simplification phase, genfft applies local rewriting rules to each node of the dag in order to simplify it. This phase performs
algebraic transformations (such as eliminating multiplications by 1) and common-subexpression elimination. Although such
transformations can be performed by a conventional compiler to some degree, they can be carried out here to a greater extent
because genfft can exploit the specific problem domain. For example, two equivalent subexpressions can always be detected, even
if the subexpressions are written in algebraically different forms, because all subexpressions compute linear functions. Also, genfft
can exploit the property that network transposition (reversing the direction of every edge) computes the transposed linear
operation, in order to transpose the network, simplify, and then transpose back—this turns out to expose additional common
subexpressions. In total, these simplifications are sufficiently powerful to derive DFT algorithms specialized for real and/or
symmetric data automatically from the complex algorithms. For example, it is known that when the input of a DFT is real (and the
output is hence conjugate-symmetric), one can save a little over a factor of two in arithmetic cost by specializing FFT algorithms
for this case—with genfft , this specialization can be done entirely automatically, pruning the redundant operations from the dag, to
match the lowest known operation count for a real-input FFT starting only from the complex-data algorithm. We take advantage of
this property to help us implement real-data DFTs, to exploit machine-specific “SIMD” instructions SIMD instructions , and to
generate codelets for the discrete cosine (DCT) and sine (DST) transforms. Furthermore, by experimentation we have discovered
additional simplifications that improve the speed of the generated code. One interesting example is the elimination of negative
constants: multiplicative constants in FFT algorithms often come in positive/negative pairs, but every C compiler we are aware of
will generate separate load instructions for positive and negative versions of the same constants.  We thus obtained a 10–15%
speedup by making all constants positive, which involves propagating minus signs to change additions into subtractions or vice
versa elsewhere in the dag (a daunting task if it had to be done manually for tens of thousands of lines of code).

In the scheduling phase, genfft produces a topological sort of the dag (a schedule). The goal of this phase is to find a schedule such
that a C compiler can subsequently perform a good register allocation. The scheduling algorithm used by genfft offers certain
theoretical guarantees because it has its foundations in the theory of cache-oblivious algorithms (here, the registers are viewed as a

n n ≤ 64

n n
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form of cache), as described in Memory strategies in FFTW . As a practical matter, one consequence of this scheduler is that
FFTW's machine-independent codelets are no slower than machine-specific codelets generated by SPIRAL.

In the stock genfft implementation, the schedule is finally unparsed to C. A variation from this implements the rest of a compiler
back end and outputs assembly code.

Footnote

 Floating-point constants must be stored explicitly in memory; they cannot be embedded directly into the CPU instructions like
integer “immediate” constants.
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10.7: SIMD instructions
Unfortunately, it is impossible to attain nearly peak performance on current popular processors while using only portable C code.
Instead, a significant portion of the available computing power can only be accessed by using specialized SIMD (single-instruction
multiple data) instructions, which perform the same operation in parallel on a data vector. For example, all modern “x86”
processors can execute arithmetic instructions on “vectors” of four single-precision values (SSE instructions) or two double-
precision values (SSE2 instructions) at a time, assuming that the operands are arranged consecutively in memory and satisfy a 16-
byte alignment constraint. Fortunately, because nearly all of FFTW's low-level code is produced by genfft , machine-specific
instructions could be exploited by modifying the generator—the improvements are then automatically propagated to all of FFTW's
codelets, and in particular are not limited to a small set of sizes such as powers of two.

SIMD instructions are superficially similar to “vector processors”, which are designed to perform the same operation in parallel on
an all elements of a data array (a “vector”). The performance of “traditional” vector processors was best for long vectors that are
stored in contiguous memory locations, and special algorithms were developed to implement the DFT efficiently on this kind of
hardware. Unlike in vector processors, however, the SIMD vector length is small and fixed (usually 2 or 4). Because
microprocessors depend on caches for performance, one cannot naively use SIMD instructions to simulate a long-vector algorithm:
while on vector machines long vectors generally yield better performance, the performance of a microprocessor drops as soon as
the data vectors exceed the capacity of the cache. Consequently, SIMD instructions are better seen as a restricted form of
instruction-level parallelism than as a degenerate flavor of vector parallelism, and different DFT algorithms are required.

The technique used to exploit SIMD instructions in genfft is most easily understood for vectors of length two (e.g., SSE2). In this
case, we view a complex DFT as a pair of real DFTs:

where  and  are two real arrays. Our algorithm computes the two real DFTs in parallel using SIMD instructions, and then it
combines the two outputs according to the equation. This SIMD algorithm has two important properties. First, if the data is stored
as an array of complex numbers, as opposed to two separate real and imaginary arrays, the SIMD loads and stores always operate
on correctly-aligned contiguous locations, even if the the complex numbers themselves have a non-unit stride. Second, because the
algorithm finds two-way parallelism in the real and imaginary parts of a single DFT (as opposed to performing two DFTs in
parallel), we can completely parallelize DFTs of any size, not just even sizes or powers of 2.

Contributor 
ContribEEBurrus

This page titled 10.7: SIMD instructions is shared under a CC BY license and was authored, remixed, and/or curated by C. Sidney Burrus.

DFT(A + i. B) = DFT(A) + i. DFT(B)

A B

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/2799?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/10%3A_Implementing_FFTs_in_Practice/10.07%3A_SIMD_instructions
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/10%3A_Implementing_FFTs_in_Practice/10.07%3A_SIMD_instructions
https://creativecommons.org/licenses/by/
https://eceweb.rice.edu/people/sidney-burrus


10.8.1 https://eng.libretexts.org/@go/page/2800

10.8: Numerical Accuracy in FFTs
An important consideration in the implementation of any practical numerical algorithm is numerical accuracy: how quickly do floating-point roundoff errors accumulate in the course of the
computation? Fortunately, FFT algorithms for the most part have remarkably good accuracy characteristics. In particular, for a DFT of length  computed by a Cooley-Tukey algorithm with finite-
precision floating-point arithmetic, the worst-case error growth is
O(logn)O(logn)" role="presentation" style="position:relative;" tabindex="0">  and the mean error growth for random inputs is only . This is so good that, in practical applications, a 

The amazingly small roundoff errors of FFT algorithms are sometimes explained incorrectly as simply a consequence of the reduced number of operations: since there are fewer operations compared to a

However, these encouraging error-growth rates only apply if the trigonometric “twiddle” factors in the FFT algorithm are computed very accurately. Many FFT implementations, including FFTW and co

O(n)O(n)" role="presentation" style="position:relative;" tabindex="0">There are, in fact, trigonometric recurrences with the same logarithmic error growth as the FFT, but these seem more difficult to im

There are a few non-Cooley-Tukey algorithms that are known to have worse error characteristics, such as the “real-factor” algorithm but these are rarely used in practice (and are not used at all in FFTW

Footnote

 In an FFT, the twiddle factors are powers of &#x3C9;nωn" role="presentation" style="position:relative;" tabindex="0"> , so &#x3B8;θ" role="presentation" style="position:relative;" tabindex="0">
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10.9: Concluding Remarks
It is unlikely that many readers of this chapter will ever have to implement their own fast Fourier transform software, except as a
learning exercise. The computation of the DFT, much like basic linear algebra or integration of ordinary differential equations, is so
central to numerical computing and so well-established that robust, flexible, highly optimized libraries are widely available, for the
most part as free/open-source software. And yet there are many other problems for which the algorithms are not so finalized, or for
which algorithms are published but the implementations are unavailable or of poor quality. Whatever new problems one comes
across, there is a good chance that the chasm between theory and efficient implementation will be just as large as it is for FFTs,
unless computers become much simpler in the future. For readers who encounter such a problem, we hope that these lessons from
FFTW will be useful:

Generality and portability should almost always come first.
The number of operations, up to a constant factor, is less important than the order of operations.
Recursive algorithms with large base cases make optimization easier.
Optimization, like any tedious task, is best automated.
Code generation reconciles high-level programming with low-level performance.

We should also mention one final lesson that we haven't discussed in this chapter: you can't optimize in a vacuum, or you end up
congratulating yourself for making a slow program slightly faster. We started the FFTW project after downloading a dozen FFT
implementations, benchmarking them on a few machines, and noting how the winners varied between machines and between
transform sizes. Throughout FFTW's development, we continued to benefit from repeated benchmarks against the dozens of high-
quality FFT programs available online, without which we would have thought FFTW was “complete” long ago.
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11.1: Introduction

Study various approaches to developing special algorithms or to modifying complex algorithms for real data

Many applications involve processing real data. It is inefficient to simply use a complex FFT on real data because arithmetic would
be performed on the zero imaginary parts of the input, and, because of symmetries, output values would be calculated that are
redundant. There are several approaches to developing special algorithms or to modifying complex algorithms for real data.

In the next section we will take a look at all such approaches.
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11.2: Various Approaches to Developing Special Methods
There are two methods which use a complex FFT in a special way to increase efficiency. The first method uses a length-N complex FFT to compute two length-N real FFTs by putting the two real
data sequences into the real and the imaginary parts of the input to a complex FFT. Because transforms of real data have even real parts and odd imaginary parts, it is possible to separate the
transforms of the two inputs with 2N-4 extra additions. This method requires, however, that two inputs be available at the same time.

The second method uses the fact that the last stage of a decimation-in-time radix-2 FFT combines two independent transforms of length N/2 to compute a length-N transform. If the data are real, the
two half length transforms are calculated by the method described above and the last stage is carried out to calculate the total length-N FFT of the real data. It should be noted that the half-length FFT
does not have to be calculated by a radix-2 FFT. In fact, it should be calculated by the most efficient complex-data algorithm possible, such as the SRFFT or the PFA. The separation of the two half-
length transforms and the computation of the last stage requires  real multiplications and
(5/2)N-6(5/2)N-6" role="presentation" style="position:relative;" tabindex="0">  real additions.

It is possible to derive more efficient real-data algorithms directly rather than using a complex FFT. The basic idea is from Bergland and Sande which, at each stage, uses the symmetries of a constant rad

Special versions of both the PFA and WFTA can also be developed for real data. Because the operations in the stages of the PFA can be commuted, it is possible to move the combination of the transform
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11.3: Special Algorithms for input Data that is mostly Zero
In some cases, most of the data to be transformed are zero. It is clearly wasteful to do arithmetic on that zero data. Another special
case is when only a few DFT values are needed. It is likewise wasteful to calculate outputs that are not needed. We use a process
called “pruning" to remove the unneeded operations.

In other cases, the data are non-uniform sampling of a continuous time signal.

There are certain applications where approximations to the DFT are all that is needed.
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12.1: Introduction

Learn methods to do convolution by FFT more efficiently.

One of the main applications of the FFT is to do convolution more efficiently than the direct calculation from the definition which is:

which, with a change of variables, can also be written as:

This is often used to filter a signal
x(n)x(n)" role="presentation" style="position:relative;" tabindex="0">  with a filter whose impulse response is x(n)x(n)" role="presentation" style="position:relative;" tabindex="0"> h(n)h(n)" r

Because the DFT converts convolution to multiplication:

can be calculated with the FFT and bring the order of arithmetic operations down to Nlog(N)Nlog(N)" role="presentation" style="position:relative;" tabindex="0">  which can be significant for

NN" role="presentation" style="position:relative;" tabindex="0">This approach, which is called “fast convolutions", is a form of block processing since a whole block or segment of x(n)x(n)" role="pres

For filtering and some other applications, one wants “on going" convolution where the filter response x(n)x(n)" role="presentation" style="position:relative;" tabindex="0">  may be finite in length o
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12.2: Fast Convolution by Overlap-Add and Overlap-Save

Fast Convolution by Overlap-Add 

In order to use the FFT to convolve (or filter) a long input sequence
x(n)x(n)" role="presentation" style="position:relative;" tabindex="0">  with a finite length-M impulse response, x(n)x(n)" role="presentation" style="position:relative;" tabindex="0"> , we part

The reason this procedure is not totally straightforward, is the length of the output of convolving a length-L block with a length-M filter is of length . This means the output blocks cannot sim

The second issue that must be taken into account is the fact that the overlap-add steps need non-cyclic convolution and convolution by the FFT is cyclic. This is easily handled by appending L-1L-1" role

The savings in arithmetic can be considerable when implementing convolution or performing FIR digital filtering. However, there are two penalties. The use of blocks introduces a delay of one block len

The efficiency in terms of number of arithmetic operations per output point increases for large blocks because of the  requirements of the FFT. However, the blocks become very large (

LL" role="presentation" style="position:relative;" tabindex="0">Usually, the block convolutions are done by the FFT, but they could be done by any efficient, finite length method. One could use “rectan

LL" role="presentation" style="position:relative;" tabindex="0">Fast Convolution by Overlap-SaveLL" role="presentation" style="position:relative;" tabindex="0

An alternative approach to the Overlap-Add can be developed by starting with segmenting the output rather than the input. If one considers the calculation of a block of output, it is seen that not only the 
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12.3: Block Processing - a Generalization of Overlap Methods
Convolution is intimately related to the DFT. It was shown in The DFT as Convolution or Filtering that a prime length DFT could be converted to cyclic convolution. It has been long known that
convolution can be calculated by multiplying the DFTs of signals.

An important question is what is the fastest method for calculating digital convolution. There are several methods that each have some advantage. The earliest method for fast convolution was the use
of sectioning with overlap-add or overlap-save and the FFT. In most cases the convolution is of real data and, therefore, real-data FFTs should be used. That approach is still probably the fastest
method for longer convolution on a general purpose computer or microprocessor. The shorter convolutions should simply be calculated directly.

Introduction 

The partitioning of long or infinite strings of data into shorter sections or blocks has been used to allow application of the FFT to realize on-going or continuous convolution. This section develops the
idea of block processing and shows that it is a generalization of the overlap-add and overlap-save methods. They further generalize the idea to a multidimensional formulation of convolution. Moving
in the opposite direction, it is shown that, rather than partitioning a string of scalars into blocks and then into blocks of blocks, one can partition a scalar number into blocks of bits and then include the
operation of multiplication in the signal processing formulation. This is called distributed arithmetic and since it describes operations at the bit level, is completely general. These notes try to present a
coherent development of these ideas.

Block Signal Processing 
In this section the usual convolution and recursion that implements FIR and IIR discrete-time filters are reformulated in terms of vectors and matrices. Because the same data is partitioned and
grouped in a variety of ways, it is important to have a consistent notation in order to be clear. The
nthnth" role="presentation" style="position:relative;" tabindex="0">  element of a data sequence is expressed h(n)h(n)" role="presentation" style="position:relative;" tabindex="0">  or, in some c

Block Convolution

The operation of a finite impulse response (FIR) filter is described by a finite convolution as

where  is causal,  is causal and of length LL" role="presentation" style="position:relative;" tabindex="0"> , and the time index LL" role="presentation" style="position:relative;" tabindex="0"

which can be expressed as a matrix operation by

The  matrix of impulse response values is partitioned into  by  square sub matrices and the  and  vectors are partitioned into length-  blocks or sections. This is illustrated for  by

Substituting these definitions into the equation gives

The general expression for the  output block is

which is a vector or block convolution. Since the matrix-vector multiplication within the block convolution is itself a convolution, the equation is a sort of convolution of convolutions and the finite lengt

The equation for one output block can be written as the product

and the effects of one input block can be written

These are generalize statements of overlap save and overlap ad. The block length can be longer, shorter, or equal to the filter length.

Block Recursion

Although less well-known, IIR filters can also be implemented with block processing. The block form of an IIR filter is developed in much the same way as for the block convolution implementation of t

using both functional notation and subscripts, depending on which is easier and clearer. The impulse response  is
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which can be written in matrix operator form

In terms of N by N submatrices and length-N blocks, this becomes

From the partitioned rows of the equation, one can write the block recursive relation

Solving for  gives

which is a first order vector difference equation. This is the fundamental block recursive algorithm that implements the original scalar difference equation in the equation. It has several important charact

The block recursive formulation is similar to a state variable equation but the states are blocks or sections of the output.
The eigenvalues of K are the poles of the original scalar problem raised to the N power plus others that are zero. The longer the block length, the “more stable" the filter is, i.e. the further the poles are
If the block length were shorter than the denominator, the vector difference equation would be higher than first order. There would be a non zero A2 . If the block length were shorter than the numerat
The actual arithmetic that goes into the calculation of the output is partly recursive and partly convolution. The longer the block, the more the output is calculated by convolution and, the more arithm
It is possible to remove the zero eigenvalues in K by making K rectangular or square and N by N This results in a form even more similar to a state variable formulation. This is briefly discussed below
There are several ways of using the FFT in the calculation of the various matrix products in the equations. Each has some arithmetic advantage for various forms and orders of the original equation. It
By choosing the block length equal to the period, a periodically time varying filter can be made block time invariant. In other words, all the time varying characteristics are moved to the finite matrix 

Block State Formulation

It is possible to reduce the size of the matrix operators in the block recursive description equation to give a form even more like a state variable equation. If K in the equation has several zero eigenvalues

where H0 is the same N by N convolution matrix, N1 is a rectangular L by N partition of the convolution matrix H , K1 is a square N by N matrix of full rank, and K2 is a rectangular N by L matrix.

This is now a minimal state equation whose input and output are blocks of the original input and output. Some of the matrix multiplications can be carried out using the FFT or other techniques.

Block Implementations of Digital Filters

The advantage of the block convolution and recursion implementations is a possible improvement in arithmetic efficiency by using the FFT or other fast convolution methods for some of the multiplicati

These methods could also be used in the various filtering methods for evaluating the DFT. This the chirp z-transform, Rader's method, and Goertzel's algorithm.

Multidimensional Formulation

This process of partitioning the data vectors and the operator matrices can be continued by partitioning the equations and creating blocks of blocks to give a higher dimensional structure. One should use 

Periodically Time-Varying Discrete-Time Systems

Most time-varying systems are periodically time-varying and this allows special results to be obtained. If the block length is set equal to the period of the time variations, the resulting block equations are

Multirate Filters, Filter Banks, and Wavelets

Another area that is related to periodically time varying systems and to block processing is filter banks. Recently the area of perfect reconstruction filter banks has been further developed and shown to be

Parks has noted that design of multirate filters has some elements in common with complex approximation and of 2-D filter design and is looking at using Tang's method for these designs.

Distributed Arithmetic

Rather than grouping the individual scalar data values in a discrete-time signal into blocks, the scalar values can be partitioned into groups of bits. Because multiplication of integers, multiplication of po
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12.4: Direct Fast Convolution and Rectangular Transforms
A relatively new approach uses index mapping directly to convert a one dimensional convolution into a multidimensional
convolution. This can be done by either a type-1 or type-2 map. The short convolutions along each dimension are then done by
Winograd's optimal algorithms. Unlike for the case of the DFT, there is no savings of arithmetic from the index mapping alone. All
the savings comes from efficient short algorithms. In the case of index mapping with convolution, the multiplications must be
nested together in the center of the algorithm in the same way as for the WFTA. There is no equivalent to the PFA structure for
convolution. The multidimensional convolution can not be calculated by row and column convolutions as the DFT was by row and
column DFTs.

It would first seem that applying the index mapping and optimal short algorithms directly to convolution would be more efficient
than using DFTs and converting them to convolution to be calculated by the same optimal algorithms. In practical algorithms,
however, the DFT method seems to be more efficient.

A method that is attractive for special purpose hardware uses distributed arithmetic. This approach uses a table look up of
precomputed partial products to produce a system that does convolution without requiring multiplications.

Another method that requires special hardware uses number theoretic transforms to calculate convolution. These transforms are
defined over finite fields or rings with arithmetic performed modulo special numbers. These transforms have rather limited
flexibility, but when they can be used, they are very efficient.
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12.5: Number Theoretic Transforms for Convolution
Here we look at the conditions placed on a general linear transform in order for it to support cyclic convolution. The form of a linear transformation of a length-N sequence of number is given by

for . The definition of cyclic convolution of two sequences is given by

for  and all indices evaluated modulo . We would like to find the properties of the transformation such that it will support the cyclic convolution. This means that if 
 are the transforms of  respectively,

The conditions are derived by taking the transform defined in the above equations of both sides of the equation which gives

Making the change of index variables,  gives

But from the equation, this must be

This must be true for all  and , therefore from the above equations we have

For  we have

Therefore, . For  we have

For  we likewise have

Therefore,

But

Therefore,

Defining  gives the form for our general linear transform equation as

where  is a root of order 
NN" role="presentation" style="position:relative;" tabindex="0">, which means that NN" role="presentation" style="position:relative;" tabindex="0"> is the smallest integer such that &#x3B1;N=1

Theorem 1 The transform equation supports cyclic convolution if and only if &#x3B1;α" role="presentation" style="position:relative;" tabindex="0"> is a root of order  and  is defined.

Theorem 2 The transform equation supports cyclic convolution if and only if

where

and

This theorem is a more useful form of Theorem 1. Notice that Nmax=O(M)Nmax=O(M)" role="presentation" style="position:relative;" tabindex="0"> .

One needs to find appropriate ,  and NN" role="presentation" style="position:relative;" tabindex="0"> such that

 should be appropriate for a fast algorithm and handle the desired sequence lengths.
 should allow the desired dynamic range of the signals and should allow simple modular arithmetic.

 should allow a simple multiplication for &#x3B1;nkx(n)αnkx(n)" role="presentation" style="position:relative;" tabindex="0"> .

X(k) = t(n, k)x(n)∑
n=0

N−1

k = 0, 1, . . . , (N −1)

y(n) = x(m)h(n −m)∑
m=0

N−1

n = 0, 1, . . . , (N −1) N

X(k), H(k), Y (k) x(n), h(n), y(n)

Y (k) = X(k)H(k)

Y (k) = t(n, k) x(m)h(n −m)∑
n=0

N−1

∑
m=0

N−1

Y (k) = x(m)h(n −m)t(n, k)∑
m=0

N−1

∑
n=0

N−1

l = n −m

Y (k) = x(m)h(l)t(l +m, k)∑
m=0

N−1

∑
l=0

N−1

Y (k) = x(n)t(n, k) x(m)t(m, k)∑
n=0

N−1

∑
m=0

N−1

Y (k) = x(m)h(l)t(n, k)t(l, k)∑
m=0

N−1

∑
l=0

N−1

\(x(n), h(n) k

t(m + l, k) = t(m, k)t(l, k)

l = 0

t(m, k) = t(m, k)t(0, k)

t(0, k) = 1 l = m

t(2m, k) = t(m, k)t(m, k) = (m, k)t2

l = pm

t(pm, k) = (m, k)tp

(m, k) = t(Nm, k) = t(0, k) = 1tN

t(m, k) = (1, k) = (m, 1)tm tk

t(m, k) = (1, 1)tmk

t(1, 1) = α

X(k) = x(n)∑
n=0

N−1

αnk

α

N N

α N N −1

N ∣ O(M)

O(M) = gcd { −1, −1, . . . , −1}p1 p2 pl

M = . . .pr1
1 pr2

2 prl

l

= O(M)Nmax

N M α

N

M

α x(n)αnk

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/2039?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Fast_Fourier_Transforms_(Burrus)/12%3A_Convolution_Algorithms/12.05%3A_Number_Theoretic_Transforms_for_Convolution


12.5.2 https://eng.libretexts.org/@go/page/2039

We see that if MM" role="presentation" style="position:relative;" tabindex="0">  is even, it has a factor of 2 and, therefore  which implies MM" role="presentation" style="positio

2p2p" role="presentation" style="position:relative;" tabindex="0">For  and  odd, 3 divides  and the maximum possible transform length is 2. Thus we consider only even . Let 

Since Fermat numbers up to F4F4" role="presentation" style="position:relative;" tabindex="0">  are prime,  where  and we can have a Fermat number transform for any length 

The following table gives possible parameters for various Fermat number moduli.

t b

3 8 16 32 256 3

4 16 32 64 65536 3

5 32 64 128 128

6 64 128 256 256

Table 12.5.1 Fermat number moduli

This table gives values of NN" role="presentation" style="position:relative;" tabindex="0">  for the two most important values of &#x3B1;α" role="presentation" style="position:relative;" tabindex="0
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13.1: Comments
This section comes from a note describing results on efficient algorithms to calculate the discrete Fourier transform (DFT) that were collected over years. Perhaps the most interesting is the discovery
that the Cooley-Tukey FFT was described by Gauss in 1805. That gives some indication of the age of research on the topic, and the fact that a 1995 compiled bibliography on efficient algorithms
contains over 3400 entries indicates its volume. Three IEEE Press reprint books contain papers on the FFT. An excellent general purpose FFT program has been described in and is used in Matlab and
available over the internet.

In addition to this book there are several others that give a good modern theoretical background for the FFT, one book that gives the basic theory plus both FORTRAN and TMS 320 assembly
language programs, and other books that contain chapters on advanced FFT topics. There is a good up-to-date, on-line reference with both theory and programming techniques. The history of the FFT
and excellent survey articles can also be found. The foundation of much of the modern work on efficient algorithms was done by S. Winograd.

Efficient FFT algorithms for length-  were described by Gauss and discovered in modern times by Cooley and Tukey. These have been highly developed and good examples of FORTRAN
programs can be found. Several new algorithms have been published that require the least known amount of total arithmetic. Of these, the split-radix FFT seems to have the best structure for
programming, and an efficient program has been written to implement it. A mixture of decimation-in-time and decimation-in-frequency with very good efficiency is given in and one called the Sine-
Cosine FT. Recently a modification to the split-radix algorithm has been described that has a slightly better total arithmetic count. Theoretical bounds on the number of multiplications required for the
FFT based on Winograd's theories and schemes for calculating an in-place, in-order radix-2 FFT can be found. Also found are various forms of unscramblers. A discussion of the relation of the
computer architecture, algorithm and compiler can be found. A modification would be to allow lengths of  for .

The “other” FFT is the prime factor algorithm (PFA) which uses an index map originally developed by Thomas and by Good. The theory of the PFA was derived in and further developed and an
efficient in-order and in-place program. A method has been developed to use dynamic programming to design optimal FFT programs that minimize the number of additions and data transfers as well
as multiplications. This new approach designs custom algorithms for a particular computer architecture. An efficient and practical development of Winograd's ideas has given a design method that
does not require the rather difficult Chinese remainder theorem for short prime length FFT's. These ideas have been used to design modules of length 11, 13, 17, 19, and 25. Other methods for
designing short DFT's can be found. A program that implements the nested Winograd Fourier transform algorithm (WFTA) is also found but it has not proven as fast or as versatile as the PFA. An
interesting use of the PFA was announced in searching for large prime numbers.

These efficient algorithms can not only be used on DFT's but on other transforms with a similar structure. They have been applied to the discrete Hartley transform and the discrete cosine transform.

The fast Hartley transform has been proposed as a superior method for real data analysis but that has been shown not to be the case. A well-designed real-data FFT is always as good as or better than a
well-designed Hartley transform. The Bruun algorithm also looks promising for real data applications as does the Rader-Brenner algorithm.

Apart from the general length algorithms, for lengths that are not highly composite or prime, the chirp z-transform in a good candidate for longer lengths and an efficient order-  algorithm called the
QFT for shorter lengths. A method which automatically generates near-optimal prime length Winograd based programs is available. This gives the same efficiency for shorter lengths (i.e.
N&#x2264;19N≤19" role="presentation" style="position:relative;" tabindex="0">  and new algorithms for much longer lengths and with well-structured algorithms. Special methods are availabl

The use of the FFT to calculate discrete convolution was one of its earliest uses. Although the more direct rectangular transform would seem to be more efficient, use of the FFT or PFA is still probably t

Various approaches to calculating approximate DFTs have been based on cordic methods, short word lengths, or some form of pruning. A new method that uses the characteristics of the signals being tra

The study of efficient algorithms not only has a long history and large bibliography, it is still an exciting research field where new results are used in practical applications.
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13.2: Conclusion
This book has developed a class of efficient algorithms based on index mapping and polynomial algebra. This provides a
framework from which the Cooley-Tukey FFT, the split-radix FFT, the PFA, and WFTA can be derived. Even the programs
implementing these algorithms can have a similar structure. Winograd's theorems were presented and shown to be very powerful in
both deriving algorithms and in evaluating them. The simple radix-2 FFT provides a compact, elegant means for efficiently
calculating the DFT. If some elaboration is allowed, significant improvement can be had from the split-radix FFT, the radix-4 FFT
or the PFA. If multiplications are expensive, the WFTA requires the least of all.

Several method for transforming real data were described that are more efficient than directly using a complex FFT. A complex
FFT can be used for real data by artificially creating a complex input from two sections of real input. An alternative and slightly
more efficient method is to construct a special FFT that utilizes the symmetries at each stage.

As computers move to multiprocessors and multicore, writing and maintaining efficient programs becomes more and more
difficult. The highly structured form of FFTs allows automatic generation of very efficient programs that are tailored specifically to
a particular DSP or computer architecture.

For high-speed convolution, the traditional use of the FFT or PFA with blocking is probably the fastest method although
rectangular transforms, distributed arithmetic, or number theoretic transforms may have a future with special VLSI hardware.

The ideas presented in these notes can also be applied to the calculation of the discrete Hartley transform, the discrete cosine
transform, and to number theoretic transforms.

There are many areas for future research. The relationship of hardware to algorithms, the proper use of multiple processors, the
proper design and use of array processors and vector processors are all open. There are still many unanswered questions in multi-
dimensional algorithms where a simple extension of one-dimensional methods will not suffice.
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14.1: Appendix 1 - FFT Flowgraphs
The following four figures are flow graphs for Radix-2 Cooley-Tukey FFTs. The first is a length-16, decimation-in-frequency
Radix-2 FFT with the input data in order and output data scrambled. The first stage has 8 length-2 "butterflies" (which overlap in
the figure) followed by 8 multiplications by powers of W which are called "twiddle factors". The second stage has 2 length-8 FFTs
which are each calculated by 4 butterflies followed by 4 multiplies. The third stage has 4 length-4 FFTs, each calculated by 2
butterflies followed by 2 multiplies and the last stage is simply 8 butterflies followed by trivial multiplies by one. This flow graph
should be compared with the index map in Polynomial Description of Signals , the polynomial decomposition in The DFT as
Convolution or Filtering , and the program in Appendix 3. In the program, the butterflies and twiddle factor multiplications are
done together in the inner most loop. The outer most loop indexes through the stages. If the length of the FFT is a power of two, the
number of stages is that power (log N).

The second figure below is a length-16, decimation-in-time FFT with the input data scrambled and output data in order. The first
stage has 8 length-2 "butterflies" followed by 8 twiddle factors multiplications. The second stage has 4 length-4 FFTs which are
each calculated by 2 butterflies followed by 2 multiplies. The third stage has 2 length-8 FFTs, each calculated by 4 butterflies
followed by 8 multiplies and the last stage is simply 8 length-2 butterflies. This flow graph should be compared with the index map
in Polynomial Description of Signals, the polynomial decomposition in The DFT as Convolution or Filtering, and the program in
Appendix 3. Here, the FFT must be preceded by a scrambler.

The third and fourth figures below are a length-16 decimation-in-frequency and a decimation-in-time but, in contrast to the figures
above, the DIF has the output in order which requires a scrambled input and the DIT has the input in order which requires the
output be unscrambled. Compare with the first two figures. Note the order of the twiddle factors. The number of additions and
multiplications in all four flow graphs is the same and the structure of the three-loop program which executes the flow graph is the
same.

Fig. 14.1.1 Length-16, Decimation-in-Frequency, In-order input, Radix-2 FFT
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Fig. 14.1.2 Length-16, Decimation-in-Frequency, In-order output, Radix-2 FFT

Fig. 14.1.3 Length-16, Decimation-in-Frequency, In-order output, Radix-2 FFT
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Fig. 14.1.4 Length-16, Decimation-in-Frequency, In-order output, Radix-2 FFT

The following is a length-16, decimation-in-frequency Radix-4 FFT with the input data in order and output data scrambled. There
are two stages with the first stage having 4 length-4 "butterflies" followed by 12 multiplications by powers of W which are called
"twiddle factors. The second stage has 4 length-4 FFTs which are each calculated by 4 butterflies followed by 4 multiplies. Note,
each stage here looks like two stages but it is one and there is only one place where twiddle factor multiplications appear. This flow
graph should be compared with the index map in Polynomial Description of Signals, the polynomial decomposition in The DFT as
Convolution or Filtering, and the program in Appendix 3 - FFT Computer Programs. Log to the base 4 of 16 is 2. The total number
of twiddle factor multiplication here is 12 compared to 24 for the radix-2. The unscrambler is a base-four reverse order counter
rather than a bit reverse counter, however, a modification of the radix four butterflies will allow a bit reverse counter to be used
with the radix-4 FFT as with the radix-2.

Fig. 14.1.5 Length-16, Decimation-in-Frequency, In-order output, Radix-4 FFT

The following two flowgraphs are length-16, decimation-in-frequency Split Radix FFTs with the input data in order and output data
scrambled. Because the "butterflies" are L shaped, the stages do not progress uniformly like the Radix-2 or 4. These two figures are
the same with the first drawn in a way to compare with the Radix-2 and 4, and the second to illustrate the L shaped butterflies.
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These flow graphs should be compared with the index map in Polynomial Description of Signals and the program in Appendix 3 -
FFT Computer Programs. Because of the non-uniform stages, the program indexing is more complicated. Although the number of
twiddle factor multiplications is 12 as was the radix-4 case, for longer lengths, the split-radix has slightly fewer multiplications than
the radix-4.

Because the structures of the radix-2, radix-4, and split-radix FFTs are the same, the number of data additions is same for all of
them. However, each complex twiddle factor multiplication requires two real additions (and four real multiplications) the number
of additions will be fewer for the structures with fewer multiplications.

Fig. 14.1.6 Length-16, Decimation-in-Frequency, In-order output, Split-Radix FFT

Fig. 14.1.5 Length-16, Decimation-in-Frequency,Split-Radix with special BFs FFT
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14.2: Appendix 2 - Operation Counts for General Length FFT
The Glassman-Ferguson FFT is a compact implementation of a mixed-radix Cooley-Tukey FFT with the short DFTs for each factor
being calculated by a Goertzel-like algorithm. This means there are twiddle factor multiplications even when the factors are
relatively prime, however, the indexing is simple and compact. It will calculate the DFT of a sequence of any length but is efficient
only if the length is highly composite. The figures contain plots of the number of floating point multiplications plus additions vs.
the length of the FFT. The numbers on the vertical axis have relative meaning but no absolute meaning.

Fig. 14.2.1 Flop-Count vs Length for the Glassman-Ferguson FFT

Note the parabolic shape of the curve for certain values. The upper curve is for prime lengths, the next one is for lengths that are
two times a prime, and the next one is for lengths that are for three times a prime, etc. The shape of the lower boundary is roughly 

. The program that generated these two figures used a Cooley-Tukey FFT if the length is two to a power which accounts
for the points that are below the major lower boundary.

Fig. 14.2.1 Flop-Count vs Length for the Glassman-Ferguson FFT
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14.3: Appendix 3 - FFT Computer Programs

Goertzel Algorithm 

A FORTRAN implementation of the first-order Goertzel algorithm with in-order input is given below.

C---------------------------------------------- 
C GOERTZEL'S DFT ALGORITHM 
C First order, input inorder 
C C. S. BURRUS, SEPT 1983 
C--------------------------------------------- 
SUBROUTINE DFT(X,Y,A,B,N) 
REAL X(260), Y(260), A(260), B(260) 
Q = 6.283185307179586/N 
DO 20 J=1, N 
C = COS(Q*(J-1)) 
S = SIN(Q*(J-1)) 
AT = X(1) 
BT = Y(1) 
DO 30 I = 2, N 
T = C*AT - S*BT + X(I) 
BT = C*BT + S*AT + Y(I) 
AT = T 
30 CONTINUE 
A(J) = C*AT - S*BT 
B(J) = C*BT + S*AT 
20 CONTINUE 
RETURN 
END 
NOT_CONVERTED_YET: caption

First Order Goertzel Algorithm

Second Order Goertzel Algorithm 
Below is the program for a second order Goertzel algorithm.

C---------------------------------------------- 
C GOERTZEL'S DFT ALGORITHM 
C Second order, input inorder 
C C. S. BURRUS, SEPT 1983 
C--------------------------------------------- 
SUBROUTINE DFT(X,Y,A,B,N) 
REAL X(260), Y(260), A(260), B(260) 
C 
Q = 6.283185307179586/N 
DO 20 J = 1, N 
C = COS(Q*(J-1)) 
S = SIN(Q*(J-1)) 
CC = 2*C 
A2 = 0 
B2 = 0 
A1 = X(1) 
B1 = Y(1) 
DO 30 I = 2, N 
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T = A1 
A1 = CC*A1 - A2 + X(I) 
A2 = T 
T = B1 
B1 = CC*B1 - B2 + Y(I) 
B2 = T 
30 CONTINUE 
A(J) = C*A1 - A2 - S*B1 
B(J) = C*B1 - B2 + S*A1 
20 CONTINUE 
C 
RETURN 
END 
NOT_CONVERTED_YET: caption

Second Order Goertzel Algorithm

Second Order Goertzel Algorithm 2 
Second order Goertzel algorithm that calculates two outputs at a time.

C------------------------------------------------------- 
C GOERTZEL'S DFT ALGORITHM, Second order 
C Input inorder, output by twos; C.S. Burrus, SEPT 1991 
C------------------------------------------------------- 
SUBROUTINE DFT(X,Y,A,B,N) 
REAL X(260), Y(260), A(260), B(260) 
Q = 6.283185307179586/N 
DO 20 J = 1, N/2 + 1 
C = COS(Q*(J-1)) 
S = SIN(Q*(J-1)) 
CC = 2*C 
A2 = 0 
B2 = 0 
A1 = X(1) 
B1 = Y(1) 
DO 30 I = 2, N 
T = A1 
A1 = CC*A1 - A2 + X(I) 
A2 = T 
T = B1 
B1 = CC*B1 - B2 + Y(I) 
B2 = T 
30 CONTINUE 
A2 = C*A1 - A2 
T = S*B1 
A(J) = A2 - T 
A(N-J+2) = A2 + T 
B2 = C*B1 - B2 
T = S*A1 
B(J) = B2 + T 
B(N-J+2) = B2 - T 
20 CONTINUE 
RETURN 
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END 
 
Figure. Second Order Goertzel Calculating Two Outputs at a Time

Basic QFT Algorithm 

A FORTRAN implementation of the basic QFT algorithm is given below to show how the theory is implemented. The program is
written for clarity, not to minimize the number of floating point operations.

C 
SUBROUTINE QDFT(X,Y,XX,YY,NN)
REAL X(0:260),Y(0:260),XX(0:260),YY(0:260) 
C 
N1 = NN - 1 
N2 = N1/2 
N21 = NN/2 
Q = 6.283185308/NN 
DO 2 K = 0, N21 
SSX = X(0) 
SSY = Y(0) 
SDX = 0
SDY = 0
IF (MOD(NN,2).EQ.0) THEN 
SSX = SSX + COS(3.1426*K)*X(N21) 
SSY = SSY + COS(3.1426*K)*Y(N21) 
ENDIF 
DO 3 N = 1, N2 
SSX = SSX + (X(N) + X(NN-N))*COS(Q*N*K) 
SSY = SSY + (Y(N) + Y(NN-N))*COS(Q*N*K) 
SDX = SDX + (X(N) - X(NN-N))*SIN(Q*N*K) 
SDY = SDY + (Y(N) - Y(NN-N))*SIN(Q*N*K) 
3 CONTINUE 
XX(K) = SSX + SDY 
YY(K) = SSY - SDX 
XX(NN-K) = SSX - SDY 
YY(NN-K) = SSY + SDX 
2 CONTINUE 
RETURN 
END 
 
NOT_CONVERTED_YET: caption

Simple QFT Fortran Program

Basic Radix-2 FFT Algorithm 
Below is the Fortran code for a simple Decimation-in-Frequency, Radix-2, one butterfly Cooley-Tukey FFT followed by a bit-
reversing unscrambler.

C 
C A COOLEY-TUKEY RADIX-2, DIF FFT PROGRAM 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983 
C--------------------------------------------------------- 
SUBROUTINE FFT (X,Y,N,M) 
REAL X(1), Y(1) 
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C--------------MAIN FFT LOOPS----------------------------- 
C 
N2 = N 
DO 10 K = 1, M 
N1 = N2 
N2 = N2/2 
E = 6.283185307179586/N1 
A = 0 
DO 20 J = 1, N2 
C = COS (A) 
S = SIN (A) 
A = J*E 
DO 30 I = J, N, N1 
L = I + N2 
XT = X(I) - X(L) 
X(I) = X(I) + X(L) 
YT = Y(I) - Y(L) 
Y(I) = Y(I) + Y(L) 
X(L) = C*XT + S*YT 
Y(L) = C*YT - S*XT 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 
C 
C------------DIGIT REVERSE COUNTER----------------- 
100 J = 1 
N1 = N - 1 
DO 104 I=1, N1 
IF (I.GE.J) GOXTO 101 
XT = X(J) 
X(J) = X(I) 
X(I) = XT 
XT = Y(J) 
Y(J) = Y(I) 
Y(I) = XT 
101 K = N/2 
102 IF (K.GE.J) GOTO 103 
J = J - K 
K = K/2 
GOTO 102 
103 J = J + K 
104 CONTINUE 
RETURN 
END 
 
Figure: Radix-2, DIF, One Butterfly Cooley-Tukey FFT

Basic DIT Radix-2 FFT Algorithm 

Below is the Fortran code for a simple Decimation-in-Time, Radix-2, one butterfly Cooley-Tukey FFT preceeded by a bit-reversing
scrambler.

C 
C A COOLEY-TUKEY RADIX-2, DIT FFT PROGRAM 
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C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C C. S. BURRUS, RICE UNIVERSITY, SEPT 1985 
C 
C--------------------------------------------------------- 
SUBROUTINE FFT (X,Y,N,M) 
REAL X(1), Y(1) 
C------------DIGIT REVERSE COUNTER----------------- 
C 
100 J = 1 
N1 = N - 1 
DO 104 I=1, N1 
IF (I.GE.J) GOTO 101 
XT = X(J) 
X(J) = X(I) 
X(I) = XT 
XT = Y(J) 
Y(J) = Y(I) 
Y(I) = XT 
101 K = N/2 
102 IF (K.GE.J) GOTO 103 
J = J - K 
K = K/2 
GOTO 102 
103 J = J + K 
104 CONTINUE 
C--------------MAIN FFT LOOPS----------------------------- 
C 
N2 = 1 
DO 10 K = 1, M 
E = 6.283185307179586/(2*N2) 
A = 0 
DO 20 J = 1, N2 
C = COS (A) 
S = SIN (A) 
A = J*E 
DO 30 I = J, N, 2*N2 
L = I + N2 
XT = C*X(L) + S*Y(L) 
YT = C*Y(L) - S*X(L) 
X(L) = X(I) - XT 
X(I) = X(I) + XT 
Y(L) = Y(I) - YT 
Y(I) = Y(I) + YT 
30 CONTINUE 
20 CONTINUE 
N2 = N2+N2 
10 CONTINUE 
C 
RETURN 
END 
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DIF Radix-2 FFT Algorithm 

Below is the Fortran code for a Decimation-in-Frequency, Radix-2, three butterfly Cooley-Tukey FFT followed by a bit-reversing
unscrambler.

C A COOLEY-TUKEY RADIX 2, DIF FFT PROGRAM 
C THREE-BF, MULT BY 1 AND J ARE REMOVED 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C TABLE LOOK-UP OF W VALUES 
C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983 
C--------------------------------------------------------- 
SUBROUTINE FFT (X,Y,N,M,WR,WI) 
REAL X(1), Y(1), WR(1), WI(1) 
C--------------MAIN FFT LOOPS----------------------------- 
C 
N2 = N 
DO 10 K = 1, M 
N1 = N2 
N2 = N2/2 
JT = N2/2 + 1 
DO 1 I = 1, N, N1 
L = I + N2 
T = X(I) - X(L) 
X(I) = X(I) + X(L) 
X(L) = T 
T = Y(I) - Y(L) 
Y(I) = Y(I) + Y(L) 
Y(L) = T 
1 CONTINUE 
IF (K.EQ.M) GOTO 10 
IE = N/N1 
IA = 1 
DO 20 J = 2, N2 
IA = IA + IE 
IF (J.EQ.JT) GOTO 50 
C = WR(IA) 
S = WI(IA) 
DO 30 I = J, N, N1 
L = I + N2 
T = X(I) - X(L) 
X(I) = X(I) + X(L) 
TY = Y(I) - Y(L) 
Y(I) = Y(I) + Y(L) 
X(L) = C*T + S*TY 
Y(L) = C*TY - S*T 
30 CONTINUE 
GOTO 25 
50 DO 40 I = J, N, N1 
L = I + N2 
T = X(I) - X(L) 
X(I) = X(I) + X(L) 
TY = Y(I) - Y(L) 
Y(I) = Y(I) + Y(L) 
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X(L) = TY 
Y(L) =-T 
40 CONTINUE 
25 A = J*E 
20 CONTINUE 
10 CONTINUE 
C------------DIGIT REVERSE COUNTER Goes here---------- 
RETURN 
END 

Basic DIF Radix-4 FFT Algorithm 

Below is the Fortran code for a simple Decimation-in-Frequency, Radix-4, one butterfly Cooley-Tukey FFT to be followed by an
unscrambler.

C A COOLEY-TUKEY RADIX-4 DIF FFT PROGRAM 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C LENGTH IS N = 4 ** M 
C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983 
C--------------------------------------------------------- 
SUBROUTINE FFT4 (X,Y,N,M) 
REAL X(1), Y(1) 
C--------------MAIN FFT LOOPS----------------------------- 
N2 = N 
DO 10 K = 1, M 
N1 = N2 
N2 = N2/4 
E = 6.283185307179586/N1 
A = 0 
C--------------------MAIN BUTTERFLIES------------------- 
DO 20 J=1, N2 
B = A + A 
C = A + B 
CO1 = COS(A) 
CO2 = COS(B) 
CO3 = COS(C) 
SI1 = SIN(A) 
SI2 = SIN(B) 
SI3 = SIN(C) 
A = J*E 
C----------------BUTTERFLIES WITH SAME W--------------- 
DO 30 I=J, N, N1 
I1 = I + N2 
I2 = I1 + N2 
I3 = I2 + N2 
R1 = X(I ) + X(I2) 
R3 = X(I ) - X(I2) 
S1 = Y(I ) + Y(I2) 
S3 = Y(I ) - Y(I2) 
R2 = X(I1) + X(I3) 
R4 = X(I1) - X(I3) 
S2 = Y(I1) + Y(I3) 
S4 = Y(I1) - Y(I3) 
X(I) = R1 + R2 
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R2 = R1 - R2 
R1 = R3 - S4 
R3 = R3 + S4 
Y(I) = S1 + S2 
S2 = S1 - S2 
S1 = S3 + R4 
S3 = S3 - R4 
X(I1) = CO1*R3 + SI1*S3 
Y(I1) = CO1*S3 - SI1*R3 
X(I2) = CO2*R2 + SI2*S2 
Y(I2) = CO2*S2 - SI2*R2 
X(I3) = CO3*R1 + SI3*S1 
Y(I3) = CO3*S1 - SI3*R1 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 
C-----------DIGIT REVERSE COUNTER goes here----- 
RETURN 
END 
 

Basic DIF Radix-4 FFT Algorithm 

Below is the Fortran code for a Decimation-in-Frequency, Radix-4, three butterfly Cooley-Tukey FFT followed by a bit-reversing
unscrambler. Twiddle factors are precalculated and stored in arrays WR and WI.

C 
C A COOLEY-TUKEY RADIX-4 DIF FFT PROGRAM 
C THREE BF, MULTIPLICATIONS BY 1, J, ETC. ARE REMOVED 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C LENGTH IS N = 4 ** M 
C TABLE LOOKUP OF W VALUES 
C 
C C. S. BURRUS, RICE UNIVERSITY, SEPT 1983 
C 
C--------------------------------------------------------- 
C 
SUBROUTINE FFT4 (X,Y,N,M,WR,WI) 
REAL X(1), Y(1), WR(1), WI(1) 
DATA C21 / 0.707106778 / 
C 
C--------------MAIN FFT LOOPS----------------------------- 
C 
N2 = N 
DO 10 K = 1, M 
N1 = N2 
N2 = N2/4 
JT = N2/2 + 1 
C---------------SPECIAL BUTTERFLY FOR W = 1--------------- 
DO 1 I = 1, N, N1 
I1 = I + N2 
I2 = I1 + N2 
I3 = I2 + N2 
R1 = X(I ) + X(I2) 
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R3 = X(I ) - X(I2) 
S1 = Y(I ) + Y(I2) 
S3 = Y(I ) - Y(I2) 
R2 = X(I1) + X(I3) 
R4 = X(I1) - X(I3) 
S2 = Y(I1) + Y(I3) 
S4 = Y(I1) - Y(I3) 
C 
X(I) = R1 + R2 
X(I2)= R1 - R2 
X(I3)= R3 - S4 
X(I1)= R3 + S4 
C 
Y(I) = S1 + S2 
Y(I2)= S1 - S2 
Y(I3)= S3 + R4 
Y(I1)= S3 - R4 
C 
1 CONTINUE 
IF (K.EQ.M) GOTO 10 
IE = N/N1 
IA1 = 1 
 
C--------------GENERAL BUTTERFLY----------------- 
DO 20 J = 2, N2 
IA1 = IA1 + IE 
IF (J.EQ.JT) GOTO 50 
IA2 = IA1 + IA1 - 1 
IA3 = IA2 + IA1 - 1 
CO1 = WR(IA1) 
CO2 = WR(IA2) 
CO3 = WR(IA3) 
SI1 = WI(IA1) 
SI2 = WI(IA2) 
SI3 = WI(IA3) 
C----------------BUTTERFLIES WITH SAME W--------------- 
DO 30 I = J, N, N1 
I1 = I + N2 
I2 = I1 + N2 
I3 = I2 + N2 
R1 = X(I ) + X(I2) 
R3 = X(I ) - X(I2) 
S1 = Y(I ) + Y(I2) 
S3 = Y(I ) - Y(I2) 
R2 = X(I1) + X(I3) 
R4 = X(I1) - X(I3) 
S2 = Y(I1) + Y(I3) 
S4 = Y(I1) - Y(I3) 
C 
X(I) = R1 + R2 
R2 = R1 - R2 
R1 = R3 - S4 
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R3 = R3 + S4 
C 
Y(I) = S1 + S2 
S2 = S1 - S2 
S1 = S3 + R4 
S3 = S3 - R4 
C 
X(I1) = CO1*R3 + SI1*S3 
Y(I1) = CO1*S3 - SI1*R3 
X(I2) = CO2*R2 + SI2*S2 
Y(I2) = CO2*S2 - SI2*R2 
X(I3) = CO3*R1 + SI3*S1 
Y(I3) = CO3*S1 - SI3*R1 
30 CONTINUE 
GOTO 20 
C------------------SPECIAL BUTTERFLY FOR W = J----------- 
50 DO 40 I = J, N, N1 
I1 = I + N2 
I2 = I1 + N2 
I3 = I2 + N2 
R1 = X(I ) + X(I2) 
R3 = X(I ) - X(I2) 
S1 = Y(I ) + Y(I2) 
S3 = Y(I ) - Y(I2) 
R2 = X(I1) + X(I3) 
R4 = X(I1) - X(I3) 
S2 = Y(I1) + Y(I3) 
S4 = Y(I1) - Y(I3) 
C 
X(I) = R1 + R2 
Y(I2)=-R1 + R2 
R1 = R3 - S4 
R3 = R3 + S4 
C 
Y(I) = S1 + S2 
X(I2)= S1 - S2 
S1 = S3 + R4 
S3 = S3 - R4 
C 
X(I1) = (S3 + R3)*C21 
Y(I1) = (S3 - R3)*C21 
X(I3) = (S1 - R1)*C21 
Y(I3) =-(S1 + R1)*C21 
40 CONTINUE 
20 CONTINUE 
10 CONTINUE 
C-----------DIGIT REVERSE COUNTER---------- 
100 J = 1 
N1 = N - 1 
DO 104 I = 1, N1 
IF (I.GE.J) GOTO 101 
R1 = X(J) 
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X(J) = X(I) 
X(I) = R1 
R1 = Y(J) 
Y(J) = Y(I) 
Y(I) = R1 
101 K = N/4 
102 IF (K*3.GE.J) GOTO 103 
J = J - K*3 
K = K/4 
GOTO 102 
103 J = J + K 
104 CONTINUE 
RETURN 
END 

Basic DIF Split Radix FFT Algorithm 

Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix, one butterfly FFT to be followed by a bit-reversing
unscrambler.

C A DUHAMEL-HOLLMANN SPLIT RADIX FFT PROGRAM 
C FROM: ELECTRONICS LETTERS, JAN. 5, 1984 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C LENGTH IS N = 2 ** M 
C C. S. BURRUS, RICE UNIVERSITY, MARCH 1984 
C 
C--------------------------------------------------------- 
SUBROUTINE FFT (X,Y,N,M) 
REAL X(1), Y(1) 
C--------------MAIN FFT LOOPS----------------------------- 
C 
N1 = N 
N2 = N/2 
IP = 0 
IS = 1 
A = 6.283185307179586/N 
DO 10 K = 1, M-1 
JD = N1 + N2 
N1 = N2 
N2 = N2/2 
J0 = N1*IP + 1 
IP = 1 - IP 
DO 20 J = J0, N, JD 
JS = 0 
JT = J + N2 - 1 
DO 30 I = J, JT 
JSS= JS*IS 
JS = JS + 1 
C1 = COS(A*JSS) 
C3 = COS(3*A*JSS)
S1 = -SIN(A*JSS) 
S3 = -SIN(3*A*JSS) 
I1 = I + N2 
I2 = I1 + N2 
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I3 = I2 + N2 
R1 = X(I ) + X(I2) 
R2 = X(I ) - X(I2) 
R3 = X(I1) - X(I3) 
X(I2) = X(I1) + X(I3) 
X(I1) = R1 
C 
R1 = Y(I ) + Y(I2) 
R4 = Y(I ) - Y(I2) 
R5 = Y(I1) - Y(I3) 
Y(I2) = Y(I1) + Y(I3) 
Y(I1) = R1 
C 
R1 = R2 - R5 
R2 = R2 + R5 
R5 = R4 + R3 
R4 = R4 - R3 
C 
X(I) = C1*R1 + S1*R5 
Y(I) = C1*R5 - S1*R1 
X(I3) = C3*R2 + S3*R4 
Y(I3) = C3*R4 - S3*R2 
30 CONTINUE 
20 CONTINUE 
IS = IS + IS 
10 CONTINUE 
IP = 1 - IP 
J0 = 2 - IP 
DO 5 I = J0, N-1, 3 
I1 = I + 1 
R1 = X(I) + X(I1) 
X(I1) = X(I) - X(I1) 
X(I) = R1 
R1 = Y(I) + Y(I1) 
Y(I1) = Y(I) - Y(I1) 
Y(I) = R1 
5 CONTINUE 
RETURN 
END 

DIF Split Radix FFT Algorithm 

Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix, two butterfly FFT to be followed by a bit-reversing
unscrambler. Twiddle factors are precalculated and stored in arrays WR and WI.

C--------------------------------------------------------------C 
C A DUHAMEL-HOLLMAN SPLIT RADIX FFT C 
C REF: ELECTRONICS LETTERS, JAN. 5, 1984 C 
C COMPLEX INPUT AND OUTPUT DATA IN ARRAYS X AND Y C 
C LENGTH IS N = 2 ** M, OUTPUT IN BIT-REVERSED ORDER C 
C TWO BUTTERFLIES TO REMOVE MULTS BY UNITY C 
C SPECIAL LAST TWO STAGES C 
C TABLE LOOK-UP OF SINE AND COSINE VALUES C 
C C.S. BURRUS, RICE UNIV. APRIL 1985 C 
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C--------------------------------------------------------------C 
C 
SUBROUTINE FFT(X,Y,N,M,WR,WI) 
REAL X(1),Y(1),WR(1),WI(1) 
C81= 0.707106778 
N2 = 2*N 
DO 10 K = 1, M-3 
IS = 1 
ID = N2 
N2 = N2/2 
N4 = N2/4 
2 DO 1 I0 = IS, N-1, ID 
I1 = I0 + N4 
I2 = I1 + N4 
I3 = I2 + N4 
R1 = X(I0) - X(I2) 
X(I0) = X(I0) + X(I2) 
R2 = Y(I1) - Y(I3) 
Y(I1) = Y(I1) + Y(I3) 
X(I2) = R1 + R2 
R2 = R1 - R2 
R1 = X(I1) - X(I3) 
X(I1) = X(I1) + X(I3) 
X(I3) = R2 
R2 = Y(I0) - Y(I2) 
Y(I0) = Y(I0) + Y(I2) 
Y(I2) =-R1 + R2 
Y(I3) = R1 + R2 
1 CONTINUE 
IS = 2*ID - N2 + 1 
ID = 4*ID 
IF (IS.LT.N) GOTO 2 
IE = N/N2 
IA1 = 1 
DO 20 J = 2, N4 
IA1 = IA1 + IE 
IA3 = 3*IA1 - 2 
CC1 = WR(IA1) 
SS1 = WI(IA1) 
CC3 = WR(IA3) 
SS3 = WI(IA3) 
IS = J 
ID = 2*N2 
40 DO 30 I0 = IS, N-1, ID 
I1 = I0 + N4 
I2 = I1 + N4 
I3 = I2 + N4 
C 
R1 = X(I0) - X(I2) 
X(I0) = X(I0) + X(I2) 
R2 = X(I1) - X(I3) 
X(I1) = X(I1) + X(I3) 
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S1 = Y(I0) - Y(I2) 
Y(I0) = Y(I0) + Y(I2) 
S2 = Y(I1) - Y(I3) 
Y(I1) = Y(I1) + Y(I3) 
C 
S3 = R1 - S2 
R1 = R1 + S2 
S2 = R2 - S1 
R2 = R2 + S1 
X(I2) = R1*CC1 - S2*SS1 
Y(I2) =-S2*CC1 - R1*SS1 
X(I3) = S3*CC3 + R2*SS3 
Y(I3) = R2*CC3 - S3*SS3 
30 CONTINUE 
IS = 2*ID - N2 + J 
ID = 4*ID 
IF (IS.LT.N) GOTO 40 
20 CONTINUE 
10 CONTINUE 
C 
IS = 1 
ID = 32 
50 DO 60 I = IS, N, ID 
I0 = I + 8 
DO 15 J = 1, 2 
R1 = X(I0) + X(I0+2) 
R3 = X(I0) - X(I0+2) 
R2 = X(I0+1) + X(I0+3) 
R4 = X(I0+1) - X(I0+3) 
X(I0) = R1 + R2 
X(I0+1) = R1 - R2 
R1 = Y(I0) + Y(I0+2) 
S3 = Y(I0) - Y(I0+2) 
R2 = Y(I0+1) + Y(I0+3) 
S4 = Y(I0+1) - Y(I0+3) 
Y(I0) = R1 + R2 
Y(I0+1) = R1 - R2 
Y(I0+2) = S3 - R4 
Y(I0+3) = S3 + R4 
X(I0+2) = R3 + S4 
X(I0+3) = R3 - S4 
I0 = I0 + 4 
15 CONTINUE 
60 CONTINUE 
IS = 2*ID - 15 
ID = 4*ID 
IF (IS.LT.N) GOTO 50 
C 
IS = 1 
ID = 16 
55 DO 65 I0 = IS, N, ID 
R1 = X(I0) + X(I0+4) 
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R5 = X(I0) - X(I0+4) 
R2 = X(I0+1) + X(I0+5) 
R6 = X(I0+1) - X(I0+5) 
R3 = X(I0+2) + X(I0+6) 
R7 = X(I0+2) - X(I0+6) 
R4 = X(I0+3) + X(I0+7) 
R8 = X(I0+3) - X(I0+7) 
T1 = R1 - R3 
R1 = R1 + R3 
R3 = R2 - R4 
R2 = R2 + R4 
X(I0) = R1 + R2 
X(I0+1) = R1 - R2 
C 
R1 = Y(I0) + Y(I0+4) 
S5 = Y(I0) - Y(I0+4) 
R2 = Y(I0+1) + Y(I0+5) 
S6 = Y(I0+1) - Y(I0+5) 
S3 = Y(I0+2) + Y(I0+6) 
S7 = Y(I0+2) - Y(I0+6) 
R4 = Y(I0+3) + Y(I0+7) 
S8 = Y(I0+3) - Y(I0+7) 
T2 = R1 - S3 
R1 = R1 + S3
S3 = R2 - R4 
R2 = R2 + R4 
Y(I0) = R1 + R2 
Y(I0+1) = R1 - R2 
X(I0+2) = T1 + S3 
X(I0+3) = T1 - S3 
Y(I0+2) = T2 - R3 
Y(I0+3) = T2 + R3 
C 
R1 = (R6 - R8)*C81 
R6 = (R6 + R8)*C81 
R2 = (S6 - S8)*C81 
S6 = (S6 + S8)*C81 
C 
T1 = R5 - R1 
R5 = R5 + R1 
R8 = R7 - R6 
R7 = R7 + R6 
T2 = S5 - R2 
S5 = S5 + R2 
S8 = S7 - S6 
S7 = S7 + S6 
X(I0+4) = R5 + S7 
X(I0+7) = R5 - S7 
X(I0+5) = T1 + S8 
X(I0+6) = T1 - S8 
Y(I0+4) = S5 - R7 
Y(I0+7) = S5 + R7 
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Y(I0+5) = T2 - R8 
Y(I0+6) = T2 + R8 
65 CONTINUE 
IS = 2*ID - 7 
ID = 4*ID 
IF (IS.LT.N) GOTO 55 
C 
C------------BIT REVERSE COUNTER----------------- 
C 
100 J = 1 
N1 = N - 1 
DO 104 I=1, N1 
IF (I.GE.J) GOTO 101 
XT = X(J) 
X(J) = X(I) 
X(I) = XT 
XT = Y(J) 
Y(J) = Y(I) 
Y(I) = XT 
101 K = N/2 
102 IF (K.GE.J) GOTO 103 
J = J - K 
K = K/2 
GOTO 102 
103 J = J + K 
104 CONTINUE 
RETURN 
END 

Prime Factor FFT Algorithm 

Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT allowing factors of the length of 2, 3, 4, 5, and 7. It is followed
by an unscrambler.

C--------------------------------------------------- 
C 
C A PRIME FACTOR FFT PROGRAM WITH GENERAL MODULES 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C COMPLEX OUTPUT IN A AND B 
C LENGTH N WITH M FACTORS IN ARRAY NI 
C N = NI(1)*NI(2)* ... *NI(M) 
C UNSCRAMBLING CONSTANT UNSC 
C UNSC = N/NI(1) + N/NI(2) +...+ N/NI(M), MOD N 
C C. S. BURRUS, RICE UNIVERSITY, JAN 1987 
C 
C-------------------------------------------------- 
C 
SUBROUTINE PFA(X,Y,N,M,NI,A,B,UNSC) 
C 
INTEGER NI(4), I(16), UNSC 
REAL X(1), Y(1), A(1), B(1) 
C 
DATA C31, C32 / -0.86602540,-1.50000000 / 
DATA C51, C52 / 0.95105652,-1.53884180 / 
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DATA C53, C54 / -0.36327126, 0.55901699 / 
DATA C55 / -1.25 / 
DATA C71, C72 / -1.16666667,-0.79015647 / 
DATA C73, C74 / 0.055854267, 0.7343022 / 
DATA C75, C76 / 0.44095855,-0.34087293 / 
DATA C77, C78 / 0.53396936, 0.87484229 / 
C 
C-----------------NESTED LOOPS---------------------- 
C 
DO 10 K=1, M 
N1 = NI(K) 
N2 = N/N1 
DO 15 J=1, N, N1 
IT = J 
DO 30 L=1, N1 
I(L) = IT 
A(L) = X(IT) 
B(L) = Y(IT) 
IT = IT + N2 
IF (IT.GT.N) IT = IT - N 
30 CONTINUE 
GOTO (20,102,103,104,105,20,107), N1 
C 
C----------------WFTA N=2-------------------------------- 
C 
102 R1 = A(1) 
A(1) = R1 + A(2) 
A(2) = R1 - A(2) 
C 
R1 = B(1) 
B(1) = R1 + B(2) 
B(2) = R1 - B(2) 
C 
GOTO 20 
C----------------WFTA N=3-------------------------------- 
C 
103 R2 = (A(2) - A(3)) * C31 
R1 = A(2) + A(3) 
A(1)= A(1) + R1 
R1 = A(1) + R1 * C32 
C 
S2 = (B(2) - B(3)) * C31 
S1 = B(2) + B(3) 
B(1)= B(1) + S1 
S1 = B(1) + S1 * C32 
C 
A(2) = R1 - S2 
A(3) = R1 + S2 
B(2) = S1 + R2 
B(3) = S1 - R2 
C 
GOTO 20 
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C 
C----------------WFTA N=4--------------------------------- 
C 
104 R1 = A(1) + A(3) 
T1 = A(1) - A(3) 
R2 = A(2) + A(4) 
A(1) = R1 + R2 
A(3) = R1 - R2 
C 
R1 = B(1) + B(3) 
T2 = B(1) - B(3) 
R2 = B(2) + B(4) 
B(1) = R1 + R2 
B(3) = R1 - R2 
C 
R1 = A(2) - A(4) 
R2 = B(2) - B(4) 
C 
A(2) = T1 + R2 
A(4) = T1 - R2 
B(2) = T2 - R1 
B(4) = T2 + R1 
C 
GOTO 20 
C 
C----------------WFTA N=5-------------------------------- 
C 
105 R1 = A(2) + A(5) 
R4 = A(2) - A(5) 
R3 = A(3) + A(4) 
R2 = A(3) - A(4) 
C 
T = (R1 - R3) * C54
R1 = R1 + R3 
A(1) = A(1) + R1 
R1 = A(1) + R1 * C55 
C 
R3 = R1 - T 
R1 = R1 + T 
C 
T = (R4 + R2) * C51 
R4 = T + R4 * C52 
R2 = T + R2 * C53 
C 
S1 = B(2) + B(5) 
S4 = B(2) - B(5) 
S3 = B(3) + B(4) 
S2 = B(3) - B(4) 
C 
T = (S1 - S3) * C54 
S1 = S1 + S3 
B(1) = B(1) + S1 
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S1 = B(1) + S1 * C55 
C 
S3 = S1 - T 
S1 = S1 + T 
C 
T = (S4 + S2) * C51 
S4 = T + S4 * C52 
S2 = T + S2 * C53 
C 
A(2) = R1 + S2 
A(5) = R1 - S2 
A(3) = R3 - S4 
A(4) = R3 + S4 
C 
B(2) = S1 - R2 
B(5) = S1 + R2 
B(3) = S3 + R4 
B(4) = S3 - R4 
C 
GOTO 20 
C-----------------WFTA N=7-------------------------- 
C 
107 R1 = A(2) + A(7) 
R6 = A(2) - A(7) 
S1 = B(2) + B(7) 
S6 = B(2) - B(7) 
R2 = A(3) + A(6) 
R5 = A(3) - A(6) 
S2 = B(3) + B(6) 
S5 = B(3) - B(6) 
R3 = A(4) + A(5) 
R4 = A(4) - A(5) 
S3 = B(4) + B(5) 
S4 = B(4) - B(5) 
C 
T3 = (R1 - R2) * C74 
T = (R1 - R3) * C72
R1 = R1 + R2 + R3 
A(1) = A(1) + R1 
R1 = A(1) + R1 * C71 
R2 =(R3 - R2) * C73 
R3 = R1 - T + R2 
R2 = R1 - R2 - T3 
R1 = R1 + T + T3 
T = (R6 - R5) * C78
T3 =(R6 + R4) * C76 
R6 =(R6 + R5 - R4) * C75 
R5 =(R5 + R4) * C77 
R4 = R6 - T3 + R5 
R5 = R6 - R5 - T 
R6 = R6 + T3 + T 
C 
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T3 = (S1 - S2) * C74 
T = (S1 - S3) * C72 
S1 = S1 + S2 + S3 
B(1) = B(1) + S1 
S1 = B(1) + S1 * C71 
S2 =(S3 - S2) * C73 
S3 = S1 - T + S2 
S2 = S1 - S2 - T3 
S1 = S1 + T + T3 
T = (S6 - S5) * C78 
T3 = (S6 + S4) * C76 
S6 = (S6 + S5 - S4) * C75 
S5 = (S5 + S4) * C77 
S4 = S6 - T3 + S5 
S5 = S6 - S5 - T 
S6 = S6 + T3 + T 
C 
A(2) = R3 + S4 
A(7) = R3 - S4 
A(3) = R1 + S6 
A(6) = R1 - S6 
A(4) = R2 - S5 
A(5) = R2 + S5 
B(4) = S2 + R5 
B(5) = S2 - R5 
B(2) = S3 - R4 
B(7) = S3 + R4 
B(3) = S1 - R6 
B(6) = S1 + R6 
C 
20 IT = J 
DO 31 L=1, N1 
I(L) = IT 
X(IT) = A(L) 
Y(IT) = B(L) 
IT = IT + N2 
IF (IT.GT.N) IT = IT - N 
31 CONTINUE 
15 CONTINUE 
10 CONTINUE 
C 
C-----------------UNSCRAMBLING---------------------- 
C 
L = 1 
DO 2 K=1, N 
A(K) = X(L) 
B(K) = Y(L) 
L = L + UNSC 
IF (L.GT.N) L = L - N 
2 CONTINUE 
RETURN 
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END 
C 

In Place, In Order Prime Factor FFT Algorithm 

Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT allowing factors of the length of 2, 3, 4, 5, 7, 8, 9, and 16. It is
both in-place and in-order, so requires no unscrambler.

C 
C A PRIME FACTOR FFT PROGRAM 
C IN-PLACE AND IN-ORDER 
C COMPLEX INPUT DATA IN ARRAYS X AND Y 
C LENGTH N WITH M FACTORS IN ARRAY NI 
C N = NI(1)*NI(2)*...*NI(M) 
C REDUCED TEMP STORAGE IN SHORT WFTA MODULES 
C Has modules 2,3,4,5,7,8,9,16 
C PROGRAM BY C. S. BURRUS, RICE UNIVERSITY 
C SEPT 1983 
C---------------------------------------------------- 
C 
SUBROUTINE PFA(X,Y,N,M,NI) 
INTEGER NI(4), I(16), IP(16), LP(16) 
REAL X(1), Y(1) 
DATA C31, C32 / -0.86602540,-1.50000000 / 
DATA C51, C52 / 0.95105652,-1.53884180 / 
DATA C53, C54 / -0.36327126, 0.55901699 / 
DATA C55 / -1.25 / 
DATA C71, C72 / -1.16666667,-0.79015647 / 
DATA C73, C74 / 0.055854267, 0.7343022 / 
DATA C75, C76 / 0.44095855,-0.34087293 / 
DATA C77, C78 / 0.53396936, 0.87484229 / 
DATA C81 / 0.70710678 / 
DATA C95 / -0.50000000 / 
DATA C92, C93 / 0.93969262, -0.17364818 / 
DATA C94, C96 / 0.76604444, -0.34202014 / 
DATA C97, C98 / -0.98480775, -0.64278761 / 
DATA C162,C163 / 0.38268343, 1.30656297 / 
DATA C164,C165 / 0.54119610, 0.92387953 / 
C 
C-----------------NESTED LOOPS---------------------------------- 
C 
DO 10 K=1, M 
N1 = NI(K) 
N2 = N/N1 
L = 1 
N3 = N2 - N1*(N2/N1) 
DO 15 J = 1, N1 
LP(J) = L 
L = L + N3 
IF (L.GT.N1) L = L - N1 
15 CONTINUE 
C 
DO 20 J=1, N, N1 
IT = J 
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DO 30 L=1, N1 
I(L) = IT 
IP(LP(L)) = IT 
IT = IT + N2 
IF (IT.GT.N) IT = IT - N 
30 CONTINUE 
GOTO (20,102,103,104,105,20,107,108,109, 
+ 20,20,20,20,20,20,116),N1 
 
C----------------WFTA N=2-------------------------------- 
C 
102 R1 = X(I(1)) 
X(I(1)) = R1 + X(I(2)) 
X(I(2)) = R1 - X(I(2)) 
C 
R1 = Y(I(1)) 
Y(IP(1)) = R1 + Y(I(2)) 
Y(IP(2)) = R1 - Y(I(2)) 
C 
GOTO 20 
C 
C----------------WFTA N=3-------------------------------- 
C 
103 R2 = (X(I(2)) - X(I(3))) * C31 
R1 = X(I(2)) + X(I(3)) 
X(I(1))= X(I(1)) + R1 
R1 = X(I(1)) + R1 * C32 
C 
S2 = (Y(I(2)) - Y(I(3))) * C31 
S1 = Y(I(2)) + Y(I(3)) 
Y(I(1))= Y(I(1)) + S1 
S1 = Y(I(1)) + S1 * C32 
C 
X(IP(2)) = R1 - S2 
X(IP(3)) = R1 + S2 
Y(IP(2)) = S1 + R2 
Y(IP(3)) = S1 - R2 
C 
GOTO 20 
C 
C----------------WFTA N=4--------------------------------- 
C 
104 R1 = X(I(1)) + X(I(3)) 
T1 = X(I(1)) - X(I(3)) 
R2 = X(I(2)) + X(I(4)) 
X(IP(1)) = R1 + R2 
X(IP(3)) = R1 - R2 
C 
R1 = Y(I(1)) + Y(I(3)) 
T2 = Y(I(1)) - Y(I(3)) 
R2 = Y(I(2)) + Y(I(4)) 
Y(IP(1)) = R1 + R2 
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Y(IP(3)) = R1 - R2 
C 
R1 = X(I(2)) - X(I(4)) 
R2 = Y(I(2)) - Y(I(4)) 
C 
X(IP(2)) = T1 + R2 
X(IP(4)) = T1 - R2 
Y(IP(2)) = T2 - R1 
Y(IP(4)) = T2 + R1 
C 
GOTO 20 
 
C----------------WFTA N=5-------------------------------- 
C 
105 R1 = X(I(2)) + X(I(5)) 
R4 = X(I(2)) - X(I(5)) 
R3 = X(I(3)) + X(I(4)) 
R2 = X(I(3)) - X(I(4)) 
C 
T = (R1 - R3) * C54
R1 = R1 + R3 
X(I(1)) = X(I(1)) + R1 
R1 = X(I(1)) + R1 * C55 
C 
R3 = R1 - T 
R1 = R1 + T 
C 
T = (R4 + R2) * C51 
R4 = T + R4 * C52 
R2 = T + R2 * C53 
C 
S1 = Y(I(2)) + Y(I(5)) 
S4 = Y(I(2)) - Y(I(5)) 
S3 = Y(I(3)) + Y(I(4)) 
S2 = Y(I(3)) - Y(I(4)) 
C 
T = (S1 - S3) * C54 
S1 = S1 + S3 
Y(I(1)) = Y(I(1)) + S1 
S1 = Y(I(1)) + S1 * C55 
C 
S3 = S1 - T 
S1 = S1 + T 
C 
T = (S4 + S2) * C51 
S4 = T + S4 * C52 
S2 = T + S2 * C53 
C 
X(IP(2)) = R1 + S2 
X(IP(5)) = R1 - S2 
X(IP(3)) = R3 - S4 
X(IP(4)) = R3 + S4 
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C 
Y(IP(2)) = S1 - R2 
Y(IP(5)) = S1 + R2 
Y(IP(3)) = S3 + R4 
Y(IP(4)) = S3 - R4 
C 
GOTO 20 
 
C-----------------WFTA N=7-------------------------- 
C 
107 R1 = X(I(2)) + X(I(7)) 
R6 = X(I(2)) - X(I(7)) 
S1 = Y(I(2)) + Y(I(7)) 
S6 = Y(I(2)) - Y(I(7)) 
R2 = X(I(3)) + X(I(6)) 
R5 = X(I(3)) - X(I(6)) 
S2 = Y(I(3)) + Y(I(6)) 
S5 = Y(I(3)) - Y(I(6)) 
R3 = X(I(4)) + X(I(5)) 
R4 = X(I(4)) - X(I(5)) 
S3 = Y(I(4)) + Y(I(5)) 
S4 = Y(I(4)) - Y(I(5)) 
C 
T3 = (R1 - R2) * C74 
T = (R1 - R3) * C72
R1 = R1 + R2 + R3 
X(I(1)) = X(I(1)) + R1 
R1 = X(I(1)) + R1 * C71 
R2 =(R3 - R2) * C73 
R3 = R1 - T + R2 
R2 = R1 - R2 - T3 
R1 = R1 + T + T3 
T = (R6 - R5) * C78
T3 =(R6 + R4) * C76 
R6 =(R6 + R5 - R4) * C75 
R5 =(R5 + R4) * C77 
R4 = R6 - T3 + R5 
R5 = R6 - R5 - T 
R6 = R6 + T3 + T 
C 
T3 = (S1 - S2) * C74 
T = (S1 - S3) * C72 
S1 = S1 + S2 + S3 
Y(I(1)) = Y(I(1)) + S1 
S1 = Y(I(1)) + S1 * C71 
S2 =(S3 - S2) * C73 
S3 = S1 - T + S2 
S2 = S1 - S2 - T3 
S1 = S1 + T + T3 
T = (S6 - S5) * C78 
T3 = (S6 + S4) * C76 
S6 = (S6 + S5 - S4) * C75 
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S5 = (S5 + S4) * C77 
S4 = S6 - T3 + S5 
S5 = S6 - S5 - T 
S6 = S6 + T3 + T 
C 
X(IP(2)) = R3 + S4 
X(IP(7)) = R3 - S4 
X(IP(3)) = R1 + S6 
X(IP(6)) = R1 - S6 
X(IP(4)) = R2 - S5 
X(IP(5)) = R2 + S5 
Y(IP(4)) = S2 + R5 
Y(IP(5)) = S2 - R5 
Y(IP(2)) = S3 - R4 
Y(IP(7)) = S3 + R4 
Y(IP(3)) = S1 - R6 
Y(IP(6)) = S1 + R6 
C 
GOTO 20 
 
C-----------------WFTA N=8-------------------------- 
C 
108 R1 = X(I(1)) + X(I(5)) 
R2 = X(I(1)) - X(I(5)) 
R3 = X(I(2)) + X(I(8)) 
R4 = X(I(2)) - X(I(8)) 
R5 = X(I(3)) + X(I(7)) 
R6 = X(I(3)) - X(I(7)) 
R7 = X(I(4)) + X(I(6)) 
R8 = X(I(4)) - X(I(6)) 
T1 = R1 + R5 
T2 = R1 - R5 
T3 = R3 + R7 
R3 =(R3 - R7) * C81 
X(IP(1)) = T1 + T3 
X(IP(5)) = T1 - T3 
T1 = R2 + R3 
T3 = R2 - R3 
S1 = R4 - R8 
R4 =(R4 + R8) * C81 
S2 = R4 + R6
S3 = R4 - R6 
R1 = Y(I(1)) + Y(I(5)) 
R2 = Y(I(1)) - Y(I(5)) 
R3 = Y(I(2)) + Y(I(8)) 
R4 = Y(I(2)) - Y(I(8)) 
R5 = Y(I(3)) + Y(I(7)) 
R6 = Y(I(3)) - Y(I(7)) 
R7 = Y(I(4)) + Y(I(6)) 
R8 = Y(I(4)) - Y(I(6)) 
T4 = R1 + R5 
R1 = R1 - R5 
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R5 = R3 + R7 
R3 =(R3 - R7) * C81 
Y(IP(1)) = T4 + R5 
Y(IP(5)) = T4 - R5 
R5 = R2 + R3 
R2 = R2 - R3 
R3 = R4 - R8 
R4 =(R4 + R8) * C81 
R7 = R4 + R6 
R4 = R4 - R6 
X(IP(2)) = T1 + R7 
X(IP(8)) = T1 - R7 
X(IP(3)) = T2 + R3 
X(IP(7)) = T2 - R3 
X(IP(4)) = T3 + R4 
X(IP(6)) = T3 - R4 
Y(IP(2)) = R5 - S2 
Y(IP(8)) = R5 + S2 
Y(IP(3)) = R1 - S1 
Y(IP(7)) = R1 + S1 
Y(IP(4)) = R2 - S3 
Y(IP(6)) = R2 + S3 
C 
GOTO 20 
 
C-----------------WFTA N=9----------------------- 
C 
109 R1 = X(I(2)) + X(I(9)) 
R2 = X(I(2)) - X(I(9)) 
R3 = X(I(3)) + X(I(8)) 
R4 = X(I(3)) - X(I(8)) 
R5 = X(I(4)) + X(I(7)) 
T8 =(X(I(4)) - X(I(7))) * C31 
R7 = X(I(5)) + X(I(6)) 
R8 = X(I(5)) - X(I(6)) 
T0 = X(I(1)) + R5 
T7 = X(I(1)) + R5 * C95 
R5 = R1 + R3 + R7 
X(I(1)) = T0 + R5 
T5 = T0 + R5 * C95 
T3 = (R3 - R7) * C92 
R7 = (R1 - R7) * C93 
R3 = (R1 - R3) * C94 
T1 = T7 + T3 + R3 
T3 = T7 - T3 - R7 
T7 = T7 + R7 - R3 
T6 = (R2 - R4 + R8) * C31 
T4 = (R4 + R8) * C96 
R8 = (R2 - R8) * C97 
R2 = (R2 + R4) * C98 
T2 = T8 + T4 + R2 
T4 = T8 - T4 - R8 
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T8 = T8 + R8 - R2 
C 
R1 = Y(I(2)) + Y(I(9)) 
R2 = Y(I(2)) - Y(I(9)) 
R3 = Y(I(3)) + Y(I(8)) 
R4 = Y(I(3)) - Y(I(8)) 
R5 = Y(I(4)) + Y(I(7)) 
R6 =(Y(I(4)) - Y(I(7))) * C31 
R7 = Y(I(5)) + Y(I(6)) 
R8 = Y(I(5)) - Y(I(6)) 
T0 = Y(I(1)) + R5 
T9 = Y(I(1)) + R5 * C95 
R5 = R1 + R3 + R7 
Y(I(1)) = T0 + R5 
R5 = T0 + R5 * C95 
T0 = (R3 - R7) * C92 
R7 = (R1 - R7) * C93 
R3 = (R1 - R3) * C94 
R1 = T9 + T0 + R3 
T0 = T9 - T0 - R7 
R7 = T9 + R7 - R3 
R9 = (R2 - R4 + R8) * C31 
R3 = (R4 + R8) * C96 
R8 = (R2 - R8) * C97 
R4 = (R2 + R4) * C98 
R2 = R6 + R3 + R4 
R3 = R6 - R8 - R3 
R8 = R6 + R8 - R4 
C 
X(IP(2)) = T1 - R2 
X(IP(9)) = T1 + R2 
Y(IP(2)) = R1 + T2 
Y(IP(9)) = R1 - T2 
X(IP(3)) = T3 + R3 
X(IP(8)) = T3 - R3 
Y(IP(3)) = T0 - T4 
Y(IP(8)) = T0 + T4 
X(IP(4)) = T5 - R9 
X(IP(7)) = T5 + R9 
Y(IP(4)) = R5 + T6 
Y(IP(7)) = R5 - T6 
X(IP(5)) = T7 - R8 
X(IP(6)) = T7 + R8 
Y(IP(5)) = R7 + T8 
Y(IP(6)) = R7 - T8 
C 
GOTO 20 
 
C-----------------WFTA N=16------------------------ 
C 
116 R1 = X(I(1)) + X(I(9)) 
R2 = X(I(1)) - X(I(9)) 
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R3 = X(I(2)) + X(I(10)) 
R4 = X(I(2)) - X(I(10)) 
R5 = X(I(3)) + X(I(11)) 
R6 = X(I(3)) - X(I(11)) 
R7 = X(I(4)) + X(I(12)) 
R8 = X(I(4)) - X(I(12)) 
R9 = X(I(5)) + X(I(13)) 
R10= X(I(5)) - X(I(13)) 
R11 = X(I(6)) + X(I(14)) 
R12 = X(I(6)) - X(I(14)) 
R13 = X(I(7)) + X(I(15)) 
R14 = X(I(7)) - X(I(15)) 
R15 = X(I(8)) + X(I(16)) 
R16 = X(I(8)) - X(I(16)) 
T1 = R1 + R9 
T2 = R1 - R9 
T3 = R3 + R11 
T4 = R3 - R11 
T5 = R5 + R13 
T6 = R5 - R13 
T7 = R7 + R15 
T8 = R7 - R15 
R1 = T1 + T5 
R3 = T1 - T5 
R5 = T3 + T7 
R7 = T3 - T7 
X(IP( 1)) = R1 + R5 
X(IP( 9)) = R1 - R5 
T1 = C81 * (T4 + T8) 
T5 = C81 * (T4 - T8) 
R9 = T2 + T5 
R11= T2 - T5 
R13 = T6 + T1 
R15 = T6 - T1 
T1 = R4 + R16 
T2 = R4 - R16 
T3 = C81 * (R6 + R14) 
T4 = C81 * (R6 - R14) 
T5 = R8 + R12 
T6 = R8 - R12 
T7 = C162 * (T2 - T6) 
T2 = C163 * T2 - T7 
T6 = C164 * T6 - T7 
T7 = R2 + T4 
T8 = R2 - T4 
R2 = T7 + T2 
R4 = T7 - T2 
R6 = T8 + T6 
R8 = T8 - T6 
T7 = C165 * (T1 + T5) 
T2 = T7 - C164 * T1 
T4 = T7 - C163 * T5 
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T6 = R10 + T3 
T8 = R10 - T3 
R10 = T6 + T2 
R12 = T6 - T2 
R14 = T8 + T4 
R16 = T8 - T4 
R1 = Y(I(1)) + Y(I(9)) 
S2 = Y(I(1)) - Y(I(9)) 
S3 = Y(I(2)) + Y(I(10)) 
S4 = Y(I(2)) - Y(I(10)) 
R5 = Y(I(3)) + Y(I(11)) 
S6 = Y(I(3)) - Y(I(11)) 
S7 = Y(I(4)) + Y(I(12)) 
S8 = Y(I(4)) - Y(I(12)) 
S9 = Y(I(5)) + Y(I(13)) 
S10= Y(I(5)) - Y(I(13)) 
S11 = Y(I(6)) + Y(I(14)) 
S12 = Y(I(6)) - Y(I(14)) 
S13 = Y(I(7)) + Y(I(15)) 
S14 = Y(I(7)) - Y(I(15)) 
S15 = Y(I(8)) + Y(I(16)) 
S16 = Y(I(8)) - Y(I(16)) 
T1 = R1 + S9 
T2 = R1 - S9 
T3 = S3 + S11 
T4 = S3 - S11 
T5 = R5 + S13 
T6 = R5 - S13 
T7 = S7 + S15 
T8 = S7 - S15 
R1 = T1 + T5 
S3 = T1 - T5 
R5 = T3 + T7 
S7 = T3 - T7 
Y(IP( 1)) = R1 + R5 
Y(IP( 9)) = R1 - R5 
X(IP( 5)) = R3 + S7 
X(IP(13)) = R3 - S7 
Y(IP( 5)) = S3 - R7 
Y(IP(13)) = S3 + R7 
T1 = C81 * (T4 + T8) 
T5 = C81 * (T4 - T8) 
S9 = T2 + T5 
S11= T2 - T5 
S13 = T6 + T1 
S15 = T6 - T1
T1 = S4 + S16 
T2 = S4 - S16 
T3 = C81 * (S6 + S14) 
T4 = C81 * (S6 - S14) 
T5 = S8 + S12 
T6 = S8 - S12 
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T7 = C162 * (T2 - T6) 
T2 = C163 * T2 - T7 
T6 = C164 * T6 - T7 
T7 = S2 + T4 
T8 = S2 - T4 
S2 = T7 + T2 
S4 = T7 - T2 
S6 = T8 + T6 
S8 = T8 - T6 
T7 = C165 * (T1 + T5) 
T2 = T7 - C164 * T1 
T4 = T7 - C163 * T5 
T6 = S10 + T3 
T8 = S10 - T3
S10 = T6 + T2 
S12 = T6 - T2
S14 = T8 + T4 
S16 = T8 - T4
X(IP( 2)) = R2 + S10 
X(IP(16)) = R2 - S10 
Y(IP( 2)) = S2 - R10 
Y(IP(16)) = S2 + R10 
X(IP( 3)) = R9 + S13 
X(IP(15)) = R9 - S13 
Y(IP( 3)) = S9 - R13 
Y(IP(15)) = S9 + R13 
X(IP( 4)) = R8 - S16 
X(IP(14)) = R8 + S16 
Y(IP( 4)) = S8 + R16 
Y(IP(14)) = S8 - R16 
X(IP( 6)) = R6 + S14 
X(IP(12)) = R6 - S14 
Y(IP( 6)) = S6 - R14 
Y(IP(12)) = S6 + R14 
X(IP( 7)) = R11 - S15 
X(IP(11)) = R11 + S15 
Y(IP( 7)) = S11 + R15 
Y(IP(11)) = S11 - R15 
X(IP( 8)) = R4 - S12 
X(IP(10)) = R4 + S12 
Y(IP( 8)) = S4 + R12 
Y(IP(10)) = S4 - R12 
C 
GOTO 20 
C 
20 CONTINUE 
10 CONTINUE 
RETURN 
END 
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14.4: Appendix 4 - Programs for Short FFTs
This appendix will discuss efficient short FFT programs that can be used in both the The Cooley-Tukey Fast Fourier Transform Algorithm and the The Prime Factor and Winograd Fourier Transform
Algorithms. Links and references are given to Fortran listings that can be used "as is" or put into the indexed loops of existing programs to give greater efficiency and/or a greater variety of allowed
lengths. Special programs have been written for lengths: 

In the early days of the FFT, multiplication was done in software and was, therefore, much slower than an addition. With modem hardware, a floating point multiplication can be done in one clock
cycle of the computer, microprocessor, or DSP chip, requiring the same time as an addition. Indeed, in some computers and many DSP chips, both a multiplication and an addition (or accumulation)
can be done in one cycle while the indexing and memory access is done in parallel. Most of the algorithms described here are not hardware architecture specific but are designed to minimize both
multiplications and additions.

The most basic and often used length FFT (or DFT) is for
N=2N=2" role="presentation" style="position:relative;" tabindex="0"> . In the Cooley Tukey FFT, it is called a "butterfly" and its reason for fame is requiring no multiplications at all, only one co

Code for other short lengths such as the primes N=3, 5, 7, 11, 13, 17, and 19N=3, 5, 7, 11, 13, 17, and 19" role="presentation" style="position:relative;" tabindex="0">  and the 

If these short FFTs are used as modules in the basic prime factor algorithm (PFA), then the straight forward development used for the modules in Figure 17.12 are used. However if the more complicated

For each of the indicated lengths, the computer code is given in a Connexions module.

They are not in the collection Fast Fourier Transforms as the printed version would be too long. However, one can link to them on-line from the following buttons: N=2 N=3 N=4 N=5 N=7 N= 8 
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