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1.1: Signal Classifications and Properties

Introduction 

This module will begin our study of signals and systems by laying out some of the fundamentals of signal classification. It is
essentially an introduction to the important definitions and properties that are fundamental to the discussion of signals and systems,
with a brief discussion of each.

Classifications of Signals 

Continuous-Time vs. Discrete-Time 

As the names suggest, this classification is determined by whether or not the time axis is discrete (countable) or continuous
(Figure ). A continuous-time signal will contain a value for all real numbers along the time axis. In contrast to this, a discrete-
time signal, often created by sampling a continuous signal, will only have values at equally spaced intervals along the time axis.

Figure 

Analog vs. Digital 

The difference between analog and digital is similar to the difference between continuous-time and discrete-time. However, in this
case the difference involves the values of the function. Analog corresponds to a continuous set of possible function values, while
digital corresponds to a discrete set of possible function values. An common example of a digital signal is a binary sequence, where
the values of the function can only be one or zero.

Figure 

Periodic vs. Aperiodic 

Periodic signals repeat with some period , while aperiodic, or nonperiodic, signals do not (Figure ). We can define a
periodic function through the following mathematical expression, where  can be any number and  is a positive constant:

fundamental period of our function, , is the smallest value of  that the still allows Equation  to be true.

(a)

(b)
Figure : (a) A periodic signal with period  (b) An
aperiodic signal
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1.1.1

1.1.2
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Finite vs. Infinite Length 

Another way of classifying a signal is in terms of its length along its time axis. Is the signal defined for all possible values of time,
or for only certain values of time? Mathematically speaking,  is a finite-length signal if it is defined only over a finite interval

where . Similarly, an infinite-length signal, , is defined for all values:

Causal vs. Anticausal vs. Noncausal 

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for all positive time.
Noncausal signals are signals that have nonzero values in both positive and negative time (Figure ).

(a)

(b)

(c)
Figure : (a) A causal signal (b) An anticausal signal (c) A
noncausal signal

Even vs. Odd 

An even signal is any signal  such that . Even signals can be easily spotted as they are symmetric around the
vertical axis. An odd signal, on the other hand, is a signal  such that  (Figure ).

(a)

(b)
Figure : (a) An even signal (b) An odd
signal

Using the definitions of even and odd signals, we can show that any signal can be written as a combination of an even and odd
signal. That is, every signal has an odd-even decomposition. To demonstrate this, we have to look no further than a single equation.

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that  fulfills the
requirement of an even function, while  fulfills the requirement of an odd function (Figure ).

f(t)

< t <t1 t2

<t1 t2 f(t)

−∞ < t < ∞

1.1.4

1.1.4

f f(t) = f(−t)

f f(t) = −f(−t) 1.1.5

1.1.5

f(t) = (f(t) +f(−t)) + (f(t) −f(−t))
1

2

1

2
(1.1.2)

f(t) +f(−t)

f(t) −f(−t) 1.1.6
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(a)

(b)

(c)

(d)

Figure : (a) The signal we will decompose using odd-even decomposition (b) Even part:  (c) Odd
part:  (d) Check: 

Deterministic vs. Random 

A deterministic signal is a signal in which each value of the signal is fixed, being determined by a mathematical expression, rule,
or table. On the other hand, the values of a random signal are not strictly defined, but are subject to some amount of variability.

(a)

(b)
Figure : (a) Deterministic signal (b) Random signal

Consider the signal defined for all real  described by

This signal is continuous time, analog, aperiodic, infinite length, causal, neither even nor odd, and, by definition, deterministic.

1.1.6 e(t) = (f(t) + f(−t))1
2

o(t) = (f(t) − f(−t))1
2

e(t) + o(t) = f(t)

1.1.7

t

f(t) = {
sin(2πt)/t

0

t ≥ 1

t < 1
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Signal Classifications Summary 

This module describes just some of the many ways in which signals can be classified. They can be continuous time or discrete time,
analog or digital, periodic or aperiodic, finite or infinite, and deterministic or random. We can also divide them based on their
causality and symmetry properties.

This page titled 1.1: Signal Classifications and Properties is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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1.2: Signal Size and Norms

Introduction 

The "size" of a signal would involve some notion of its strength. We use the mathematical concept of the norm to quantify this
concept for both continuous-time and discrete-time signals. As there are several types of norms that can be defined for signals,
there are several different conceptions of signal size.

Signal Energy 

Infinite Length, Continuous Time Signals 

The most commonly encountered notion of the energy of a signal defined on  is the  norm defined by the square root of the
integral of the square of the signal, for which the notation

However, this idea can be generalized through definition of the  norm, which is given by

for all . Because of the behavior of this expression as  approaches , we furthermore define

which is the least upper bound of . A signal  is said to belong to the vector space .

For example, consider the function defined by

The  norm is

The  norm is

The  norm is

Finite Length, Continuous Time Signals 

The most commonly encountered notion of the energy of a signal defined on  is the  norm defined by the square root of
the integral of the square of the signal, for which the notation

However, this idea can be generalized through definition of the  norm, which is given by

R L2

∥f = .∥2 ( |f(t) dt)∫
∞

−∞
|2

1/2

(1.2.1)

Lp

∥f =∥p ( |f(t) dt)∫
∞

−∞
|p

1/p

(1.2.2)

1 ≤ p < ∞ p ∞

∥f = [f(t)|,∥∞ sup
t∈R

(1.2.3)

|f(t)| f (R) if ∥f < ∞Lp ∥p

Example 1.2.1

f(t) ={
1/t

0

1 ≤ t

 otherwise 
(1.2.4)

L1

∥f = |f(t)|dt = dt = ∞.∥1 ∫
∞

−∞
∫

∞

−∞

1

t

L2

∥f = = = 1.∥2 ( |f(t) dt)∫
∞

−∞
|2

1/2

( dt)∫
∞

−∞

1

t2

1/2

L∞

∥f = |f(t)| = = 1.∥∞ sup
t∈R

sup
t∈R[1,∞)

1

t

R[a, b] L2

∥f = .∥2 ( |f(t) dt)∫
b

a

|2
1/2

(1.2.5)

Lp
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for all . Because of the behavior of this expression as  approaches , we furthermore define

which is the least upper bound of . A signal  is said to belong to the vector space  if . The periodic
extension of such a signal would have infinite energy but finite power.

For example, consider the function defined on  by

The  norm is

The  norm is

The  norm is

Infinite Length, Discrete Time Signals 

The most commonly encountered notion of the energy of a signal defined on  is the  norm defined by the square root of the
sumation of the square of the signal, for which the notation

However, this idea can be generalized through definition of the  norm, which is given by

for all . Because of the behavior of this expression as  approaches , we furthermore define

which is the least upper bound of . A signal  is said to belong to the vector space  if .

For example, consider the function defined by

The  norm is

∥f =∥p ( |f(t) dt)∫
b

a

|p
1/p

(1.2.6)

1 ≤ p < ∞ p ∞

∥f = |f(t)|∥∞ sup
t∈R[a,b]

(1.2.7)

|f(t)| f (R[a, b])Lp ∥f < ∞∥p

Example 1.2.2

R[−5, 3]

f(t) ={ .
t

0

−5 < t < 3

 otherwise 
(1.2.8)

L1

∥f = |f(t)|dt = |t|dt = 17.∥1 ∫
3

−5
∫

3

−5

L2

∥f = = ≈ 7.12∥2 ( |f(t) dt)∫
3

−5
|2

1/2

( |t dt)∫
3

−5
|2

1/2

L∞

∥f = |t| = 5.∥∞ sup
t∈R[−5,3]

Z l2

∥x[n] = .∥2 ( |x[n] )∑
n=−∞

∞

|2
1/2

(1.2.9)

lp

∥x[n] =∥p ( |x[n] )∑
n=−∞

∞

|p
1/p

(1.2.10)

1 ≤ p < ∞ p ∞

∥x[n] = |x[n]|,∥∞ sup
n∈Z

(1.2.11)

|x[n]| x (Z)lp ∥x[n] < ∞∥p

Example 1.2.3

x[n] ={ .
1/n

0

1 ≤ n

 otherwise 
(1.2.12)
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The  norm is

The  norm is

Finite Length, Discrete Time Signals 

The most commonly encountered notion of the energy of a signal defined on  is the  norm defined by the square root of the
sumation of the square of the signal, for which the notation

However, this idea can be generalized through definition of the  norm, which is given by

for all . Because of the behavior of this expression as  approaches , we furthermore define

which is the least upper bound of . In this case, this least upper bound is simply the maximum value of . A signal 
is said to belong to the vector space  if . The periodic extension of such a signal would have infinite energy
but finite power.

For example, consider the function defined on  by

The  norm is

The  norm is

The  norm is

∥x[n] =∑n = − |x[n]| = = ∞.∥1 ∞∞ ∑
n=1

∞ 1

n
(1.2.13)

l2

∥x[n] = = =∥2 ( |x[n] )∑
n=−∞

∞

|2
1/2

( )∑
n=1

∞ 1

n2

1/2
π 6–√

6
(1.2.14)

l∞

∥x[n] = |x[n]| = = 1.∥∞ sup
n∈Z

sup
n∈Z[1,∞)

1

n
(1.2.15)

Z[a, b] l2

∥x[n] = .∥2 ( |x[n] )∑
n=a

b

|2
1/2

(1.2.16)

lp

∥x[n] =∥p ( |x[n] )∑
n=a

b

|p
1/p

(1.2.17)

1 ≤ p < ∞ p ∞

∥x[n] = |x[n]|,∥∞ sup
n∈Z[a,b]

(1.2.18)

|x[n]| |x[n]| x[n]
(Z[a, b])lp ∥x[n] < ∞∥p

Example 1.2.4

Z[−5, 3]

x[n] ={ .
n

0

−5 < n < 3

 otherwise 
(1.2.19)

l1

∥x[n] = |x[n]| =∑− |n| = 21.∥1 ∑
n=−5

3

53 (1.2.20)

l2

∥x[n] = = ≈ 8.31∥2 ( |x[n] )∑
−5

3

|2
1/2

( |n dt)∑
−5

3

|2
1/2

(1.2.21)

l∞

∥x[n] = |x[n]| = 5.∥∞ sup
n∈Z[−5,3]

(1.2.22)
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Signal Norms Summary 

The notion of signal size or energy is formally addressed through the mathematical concept of norms. There are many types of
norms that can be defined for signals, some of the most important of which have been discussed here. For each type norm and each
type of signal domain (continuous or discrete, and finite or infinite) there are vector spaces defined for signals of finite norm.
Finally, while nonzero periodic signals have infinite energy, they have finite power if their single period units have finite energy.

This page titled 1.2: Signal Size and Norms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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1.3: Signal Operations

Introduction 

This module will look at two signal operations affecting the time parameter of the signal, time shifting and time scaling. These
operations are very common components to real-world systems and, as such, should be understood thoroughly when learning about
signals and systems.

Manipulating the Time Parameter 

Time Shifting 

Time shifting is, as the name suggests, the shifting of a signal in time. This is done by adding or subtracting a quantity of the shift
to the time variable in the function. Subtracting a fixed positive quantity from the time variable will shift the signal to the right
(delay) by the subtracted quantity, while adding a fixed positive amount to the time variable will shift the signal to the left
(advance) by the added quantity.

Figure :  moves (delays)  to the right by .

Time Scaling 

Time scaling compresses or dilates a signal by multiplying the time variable by some quantity. If that quantity is greater than one,
the signal becomes narrower and the operation is called compression, while if the quantity is less than one, the signal becomes
wider and is called dilation.

Figure :  compresses  by .

Given  we would like to plot .

Solution

The figure below describes a method to accomplish this.

1.3.1 f(t − T ) f T

1.3.2 f(at) f a

Example 1.3.1

f(t) f(at −b)
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(a)

(b)

(c)

Figure : (a) Begin with  (b) Then replace  with  to get  (c) Finally, replace  with 
 to get 

Time Reversal 

A natural question to consider when learning about time scaling is: What happens when the time variable is multiplied by a
negative number? The answer to this is time reversal. This operation is the reversal of the time axis, or flipping the signal over the
y-axis.

Figure : Reverse the time axis

Time Scaling and Shifting Demonstration 

1.3.3 f(t) t at f(at) t

t − b
a f(a(t − )) = f(at −b)b

a

1.3.4
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Figure : Download or Interact (when online) with a Mathematica CDF demonstrating Discrete Harmonic Sinusoids.

Signal Operations Summary 
Some common operations on signals affect the time parameter of the signal. One of these is time shifting in which a quantity is
added to the time parameter in order to advance or delay the signal. Another is the time scaling in which the time parameter is
multiplied by a quantity in order to dilate or compress the signal in time. In the event that the quantity involved in the latter
operation is negative, time reversal occurs.

This page titled 1.3: Signal Operations is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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1.4: Common Continuous Time Signals

Introduction 

Before looking at this module, hopefully you have an idea of what a signal is and what basic classifications and properties a signal
can have. In review, a signal is a function defined with respect to an independent variable. This variable is often time but could
represent any number of things. Mathematically, continuous time analog signals have continuous independent and dependent
variables. This module will describe some useful continuous time analog signals.

Important Continuous Time Signals 

Sinusoids 

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its continuous-time form, we write
the general expression as

where  is the amplitude,  is the frequency, and  is the phase. Thus, the period of the sinusoid is

Figure : Sinusoid with , , and .

Complex Exponentials 

As important as the general sinusoid, the complex exponential function will become a critical part of your study of signals and
systems. Its general continuous form is written as

where  is a complex number in terms of , the attenuation constant, and  the angular frequency.

Unit Impulses 

The unit impulse function, also known as the Dirac delta function, is a signal that has infinite height and infinitesimal width.
However, because of the way it is defined, it integrates to one. While this signal is useful for the understanding of many concepts, a
formal understanding of its definition more involved. The unit impulse is commonly denoted δ(t)δ t.

More detail is provided in the section on the continuous time impulse function. For now, it suffices to say that this signal is
crucially important in the study of continuous signals, as it allows the sifting property to be used in signal representation and signal
decomposition.

Unit Step 

Another very basic signal is the unit-step function that is defined as

A cos(ωt +φ) (1.4.1)

A ω φ

T =
2π

ω
(1.4.2)

1.4.1 A = 2 w = 2 φ = 0

Aest

s = σ +jω σ ω

u(t) = {
0 if t < 0

1 if t ≥ 0
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Figure : Continuous-Time Unit-Step Function

The step function is a useful tool for testing and for defining other signals. For example, when different shifted versions of the step
function are multiplied by other signals, one can select a certain portion of the signal and zero out the rest.

Common Continuous Time Signals Summary 

Some of the most important and most frequently encountered signals have been discussed in this module. There are, of course,
many other signals of significant consequence not discussed here. As you will see later, many of the other more complicated
signals will be studied in terms of those listed here. Especially take note of the complex exponentials and unit impulse functions,
which will be the key focus of several topics included in this course.

This page titled 1.4: Common Continuous Time Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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1.5: Common Discrete Time Signals

Introduction 

Before looking at this module, hopefully you have an idea of what a signal is and what basic classifications and properties a signal
can have. In review, a signal is a function defined with respect to an independent variable. This variable is often time but could
represent any number of things. Mathematically, discrete time analog signals have discrete independent variables and continuous
dependent variables. This module will describe some useful discrete time analog signals.

Important Discrete Time Signals 

Sinusoids 

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its discrete-time form, we write
the general expression as

where  is the amplitude,  is the frequency, and  is the phase. Because  only takes integer values, the resulting function is only
periodic if  is a rational number.

Discrete-Time Cosine Signal

Figure : A discrete-time cosine signal is plotted as a stem plot.

Note that the equation representation for a discrete time sinusoid waveform is not unique.

Complex Exponentials 

As important as the general sinusoid, the complex exponential function will become a critical part of your study of signals and
systems. Its general discrete form is written as

where , is a complex number. The set of complex exponentials for which  are a special class, expressed as , (where 
is the angular position on the unit circle, in radians).

The discrete time complex exponentials have the following property.

Given this property, if we have a complex exponential with frequency , then this signal "aliases" to a complex exponential
with frequency , implying that the equation representations of discrete complex exponentials are not unique.

Unit Impulses 

The second-most important discrete-time signal is the unit sample, which is defined as

Unit Sample

Figure : The unit sample.

More detail is provided in the section on the discrete time impulse function. For now, it suffices to say that this signal is crucially
important in the study of discrete signals, as it allows the sifting property to be used in signal representation and signal
decomposition.

A cos(ωn +φ)

A ω φ n
2π
ω

1.5.1

zn

z |z| = 1 ejωn ω

=ejωn ej(ω+2π)n

ω +2π

ω

δ[n] = {
1 if n = 0

0 otherwise 

1.5.2
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Unit Step 

Another very basic signal is the unit-step function defined as

Figure : Discrete-Time Unit-Step Function

The step function is a useful tool for testing and for defining other signals. For example, when different shifted versions of the step
function are multiplied by other signals, one can select a certain portion of the signal and zero out the rest.

Common Discrete Time Signals Summary 
Some of the most important and most frequently encountered signals have been discussed in this module. There are, of course,
many other signals of significant consequence not discussed here. As you will see later, many of the other more complicated
signals will be studied in terms of those listed here. Especially take note of the complex exponentials and unit impulse functions,
which will be the key focus of several topics included in this course.

This page titled 1.5: Common Discrete Time Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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0

1

 if n < 0

 if n ≥ 0
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1.6: Continuous Time Impulse Function

Introduction 

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at a point in space or some other
signal at a point in time, it becomes worth while to develop some way of quantitatively defining this. This leads us to the idea of a
unit impulse, probably the second most important function, next to the complex exponential, in this systems and signals course.

Dirac Delta Function 
The Dirac delta function, often referred to as the unit impulse or delta function, is the function that defines the idea of a unit
impulse in continuous-time. Informally, this function is one that is infinitesimally narrow, infinitely tall, yet integrates to one.
Perhaps the simplest way to visualize this is as a rectangular pulse from  to  with a height of . As we take the limit of
this setup as  approaches 0, we see that the width tends to zero and the height tends to infinity as the total area remains constant at
one. The impulse function is often written as .

Figure : This is one way to visualize the Dirac Delta Function.

Figure : Since it is quite difficult to draw something that is infinitely tall, we represent the Dirac with an arrow centered at the
point it is applied. If we wish to scale it, we may write the value it is scaled by next to the point of the arrow. This is a unit impulse
(no scaling).

Below is a brief list a few important properties of the unit impulse without going into detail of their proofs.

Unit Impulse Properties

, where  is the unit step.

The last of these is especially important as it gives rise to the sifting property of the dirac delta function, which selects the value of
a function at a specific time and is especially important in studying the relationship of an operation called convolution to time
domain analysis of linear time invariant systems. The sifting property is shown and derived below.

Unit Impulse Limiting Demonstration 

a− ε

2
a+ ε

2
1
ε

ε

δ(t)

δ(t)dt = 1∫
∞

−∞

1.6.1

1.6.2

δ(αt) = δ(t)1

|α|

δ(t) = δ(−t)

δ(t) = u(t)d

dt
u(t)

f(t)δ(t) = f(0)δ(t)

f(t)δ(t)dt = f(0)δ(t)dt = f(0) δ(t)dt = f(0)∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
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Figure : Click on the above thumbnail image (when online) to download an interactive Mathematica Player demonstrating the
Continuous Time Impulse Function.

Continuous Time Unit Impulse Summary 
The continuous time unit impulse function, also known as the Dirac delta function, is of great importance to the study of signals
and systems. Informally, it is a function with infinite height ant infinitesimal width that integrates to one, which can be viewed as
the limiting behavior of a unit area rectangle as it narrows while preserving area. It has several important properties that will appear
again when studying systems.

This page titled 1.6: Continuous Time Impulse Function is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

1.6.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22842?pdf
https://cnx.org/resources/09ad97833da75a88dc7f5e871bdf4f20b16bb580/ContinuousTimeImpulse_display.cdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/01%3A_Introduction_to_Signals/1.06%3A_Continuous_Time_Impulse_Function
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


1.7.1 https://eng.libretexts.org/@go/page/23113

1.7: Discrete Time Impulse Function

Introduction 

In engineering, we often deal with the idea of an action occurring at a point. Whether it be a force at a point in space or some other
signal at a point in time, it becomes worth while to develop some way of quantitatively defining this. This leads us to the idea of a
unit impulse, probably the second most important function, next to the complex exponential, in this systems and signals course.

Unit Sample Function 
The unit sample function, often referred to as the unit impulse or delta function, is the function that defines the idea of a unit
impulse in discrete time. There are not nearly as many intricacies involved in its definition as there are in the definition of the Dirac
delta function, the continuous time impulse function. The unit sample function simply takes a value of one at  and a value of
zero elsewhere. The impulse function is often written as .

Unit Sample

Figure : The unit sample.

Below we will briefly list a few important properties of the unit impulse without going into detail of their proofs.

Unit Impulse Properties

Discrete Time Impulse Response Demonstration 

n = 0

δ[n]

δ[n] = {
1 if n = 0

0 otherwise 

1.7.1

δ[n] = δ[−n]

δ[n] = u[n] −u[n −1]

x[n]δ[n] = x[0]δ[n]

x[n]δ[n] = x[0]δ[n] = x[0] δ[n] = x[0]∑
n=−∞

∞

∑
n=−∞

∞

∑
n=−∞

∞
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Figure : Interact(when online) with a Mathematica CDF demonstrating the Discrete Time Impulse Function.

Discrete Time Unit Impulse Summary 

The discrete time unit impulse function, also known as the unit sample function, is of great importance to the study of signals and
systems. The function takes a value of one at time  and a value of zero elsewhere. It has several important properties that will
appear again when studying systems.

This page titled 1.7: Discrete Time Impulse Function is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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1.8: Continuous Time Complex Exponential

Introduction 

Complex exponentials are some of the most important functions in our study of signals and systems. Their importance stems from
their status as eigenfunctions of linear time invariant systems. Before proceeding, you should be familiar with complex numbers.

The Continuous Time Complex Exponential 

Complex Exponentials 

The complex exponential function will become a critical part of your study of signals and systems. Its general continuous form is
written as

where  is a complex number in terms of , the attenuation constant, and  the angular frequency.

Euler's Formula 

The mathematician Euler proved an important identity relating complex exponentials to trigonometric functions. Specifically, he
discovered the eponymously named identity, Euler's formula, which states that

which can be proven as follows.

In order to prove Euler's formula, we start by evaluating the Taylor series for  about , which converges for all complex , at
. The result is

because the second expression contains the Taylor series for  and  about , which converge for all real . Thus,
the desired result is proven.

Choosing  this gives the result

which breaks a continuous time complex exponential into its real part and imaginary part. Using this formula, we can also derive
the following relationships.

Continuous Time Phasors 

It has been shown how the complex exponential with purely imaginary frequency can be broken up into its real part and its
imaginary part. Now consider a general complex frequency  where  is the attenuation factor and  is the frequency.
Also consider a phase difference . It follows that

Thus, the real and imaginary parts of  appear below.

Aest

s = σ + iω σ ω

= cos(x) +jsin(x)ejx

ez z = 0 z

z = jx

ejx =∑
k=0

∞ (jx)k

k!

= (−1 +j (−1∑
k=0

∞

)k x2k

(2k)!
∑
k=0

∞

)k x2k+1

(2k +1)!

= cos(x) +jsin(x) (1.8.1)

cos(x) sin(x) t = 0 x

x = ωt

= cos(ωt) +jsin(ωt)ejωt

cos(ωt) = +
1

2
ejωt 1

2
e−jωt

sin(ωt) = −
1

2j
ejωt 1

2j
e−jωt

s = σ +ωj σ ω

θ

= (cos(ωt +θ) +jsin(ωt +θ))e(σ+jω)t+jθ eσt
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Using the real or imaginary parts of complex exponential to represent sinusoids with a phase delay multiplied by real exponential is
often useful and is called attenuated phasor notation.

We can see that both the real part and the imaginary part have a sinusoid times a real exponential. We also know that sinusoids
oscillate between one and negative one. From this it becomes apparent that the real and imaginary parts of the complex exponential
will each oscillate within an envelope defined by the real exponential part.

(a)

(b)

(c)
Figure : The shapes possible for the real part of a complex exponential. Notice that the oscillations are the result of a cosine,
as there is a local maximum at . (a) If  is negative, we have the case of a decaying exponential window. (b) If  is positive,
we have the case of a growing exponential window. (c) If  is zero, we have the case of a constant window.

Complex Exponential Demonstration 

Re{ } = cos(ωt +θ)e(σ+jω)t+jθ eσt

Im{ } = sin(ωt +θ)e(σ+jω)t+jθ eσt

1.8.1
t = 0 σ σ

σ
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Continuous Time Complex Exponential. To
Download, right-click and save target as .cdf.

Continuous Time Complex Exponential Summary 

Continuous time complex exponentials are signals of great importance to the study of signals and systems. They can be related to
sinusoids through Euler's formula, which identifies the real and imaginary parts of purely imaginary complex exponentials. Eulers
formula reveals that, in general, the real and imaginary parts of complex exponentials are sinusoids multiplied by real exponentials.
Thus, attenuated phasor notation is often useful in studying these signals.

This page titled 1.8: Continuous Time Complex Exponential is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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1.9: Discrete Time Complex Exponential

Introduction 

Complex exponentials are some of the most important functions in our study of signals and systems. Their importance stems from
their status as eigenfunctions of linear time invariant systems; as such, it can be both convenient and insightful to represent signals
in terms of complex exponentials. Before proceeding, you should be familiar with complex numbers.

The Discrete Time Complex Exponential 

Complex Exponentials 

The complex exponential function will become a critical part of your study of signals and systems. Its general discrete form is
written as

where  is a complex number. Recalling the polar expression of complex numbers,  can be expressed in terms of its magnitude 
and its angle (or argument)  in the complex plane: . Thus . In the context of complex exponentials,  is
referred to as frequency. For the time being, let's consider complex exponentials for which .

These discrete time complex exponentials have the following property, which will become evident through discussion of Euler's
formula.

Given this property, if we have a complex exponential with frequency , then this signal "aliases" to a complex exponential
with frequency , implying that the equation representations of discrete complex exponentials are not unique.

Euler's Formula 

The mathematician Euler proved an important identity relating complex exponentials to trigonometric functions. Specifically, he
discovered the eponymously named identity, Euler's formula, which states that for any real number ,

which can be proven as follows.

In order to prove Euler's formula, we start by evaluating the Taylor series for  about , which converges for all complex , at
. The result is

because the second expression contains the Taylor series for  and  about , which converge for all real . Thus,
the desired result is proven.

Choosing , we have:

which breaks a discrete time complex exponential into its real part and imaginary part. Using this formula, we can also derive the
following relationships.

zn
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Real and Imaginary Parts of Complex Exponentials 

Now let's return to the more general case of complex exponentials, . Recall that . We can express this in terms of
its real and imaginary parts:

We see now that the magnitude of  establishes an exponential envelope to the signal, with  controlling rate of the sinusoidal
oscillation within the envelope.

(a)

(b)

(c)
Figure : (a) If , we have the case of a decaying exponential envelope. (b) If , we have the case of a growing
exponential envelope. (c) If , we have the case of a constant envelope.

Discrete Complex Exponential Demonstration 

zn = (|z|zn )nejωn

Re{ } = (|z| cos(ωn)z
n )n

Im{ } = (|z| sin(ωn)z
n )n

z ω

1.9.1 |z| < 1 |z| > 1
|z| = 1
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Discrete Time Complex Exponential. To
Download, right-click and save target as .cdf.

Discrete Time Complex Exponential Summary 

Discrete time complex exponentials are signals of great importance to the study of signals and systems. They can be related to
sinusoids through Euler's formula, which identifies the real and imaginary parts of complex exponentials. Eulers formula reveals
that, in general, the real and imaginary parts of complex exponentials are sinusoids multiplied by real exponentials.

This page titled 1.9: Discrete Time Complex Exponential is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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2.1: System Classifications and Properties

Introduction 

In this module some of the basic classifications of systems will be briefly introduced and the most important properties of these
systems are explained. As can be seen, the properties of a system provide an easy way to distinguish one system from another.
Understanding these basic differences between systems, and their properties, will be a fundamental concept used in all signal and
system courses. Once a set of systems can be identified as sharing particular properties, one no longer has to reprove a certain
characteristic of a system each time, but it can simply be known due to the the system classification.

Classification of Systems 

Continuous vs. Discrete 

One of the most important distinctions to understand is the difference between discrete time and continuous time systems. A system
in which the input signal and output signal both have continuous domains is said to be a continuous system. One in which the input
signal and output signal both have discrete domains is said to be a discrete system. Of course, it is possible to conceive of signals
that belong to neither category, such as systems in which sampling of a continuous time signal or reconstruction from a discrete
time signal take place.

Linear vs. Nonlinear 

A linear system is any system that obeys the properties of scaling (first order homogeneity) and superposition (additivity) further
described below. A nonlinear system is any system that does not have at least one of these properties.

To show that a system  obeys the scaling property is to show that

Figure : A block diagram demonstrating the scaling property of linearity

To demonstrate that a system  obeys the superposition property of linearity is to show that

Figure : A block diagram demonstrating the superposition property of linearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine the first two steps to get

Time Invariant vs. Time Varying 

A system is said to be time invariant if it commutes with the parameter shift operator defined by  for all ,
which is to say

for all real . Intuitively, that means that for any input function that produces some output function, any time shift of that input
function will produce an output function identical in every way except that it is shifted by the same amount. Any system that does
not have this property is said to be time varying.

H

H(kf(t)) = kH(f(t))

2.1.1

H

H ( (t) + (t)) = H ( (t)) +H ( (t))f1 f2 f1 f2

2.1.2

H ( (t) + (t)) = H ( (t)) + H ( (t))k1f1 k2f2 k1 f1 k2 f2

(f(t)) = f(t −T )ST T

H = HST ST

T

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22844?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/02%3A_Introduction_to_Systems/2.01%3A_System_Classifications_and_Properties


2.1.2 https://eng.libretexts.org/@go/page/22844

Figure : This block diagram shows what the condition for time invariance. The output is the same whether the delay is put on
the input or the output.

Causal vs. Noncausal 

A causal system is one in which the output depends only on current or past inputs, but not future inputs. Similarly, an anticausal
system is one in which the output depends only on current or future inputs, but not past inputs. Finally, a noncausal system is one in
which the output depends on both past and future inputs. All "realtime" systems must be causal, since they can not have future
inputs available to them.

One may think the idea of future inputs does not seem to make much physical sense; however, we have only been dealing with time
as our dependent variable so far, which is not always the case. Imagine rather that we wanted to do image processing. Then the
dependent variable might represent pixel positions to the left and right (the "future") of the current position on the image, and we
would not necessarily have a causal system.

(a)

(b)

Figure : (a) For a typical system to be causal... (b) ...the output at time , , can only depend on the portion
of the input signal before .

Stable vs. Unstable 

There are several definitions of stability, but the one that will be used most frequently in this course will be bounded input, bounded
output (BIBO) stability. In this context, a stable system is one in which the output is bounded if the input is also bounded.
Similarly, an unstable system is one in which at least one bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where  is the input and  is the output.
The output must satisfy the condition

whenever we have an input to the system that satisfies

 and  both represent a set of finite positive numbers and these relationships hold for all of . Otherwise, the system is
unstable.

2.1.3

2.1.4 t0 y( )t0

t0

x(t) y(t)

|y(t)| ≤ < ∞My

|x(t)| ≤ < ∞Mx

Mx My t
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System Classifications Summary 

This module describes just some of the many ways in which systems can be classified. Systems can be continuous time, discrete
time, or neither. They can be linear or nonlinear, time invariant or time varying, and stable or unstable. We can also divide them
based on their causality properties. There are other ways to classify systems, such as use of memory, that are not discussed here but
will be described in subsequent modules.

This page titled 2.1: System Classifications and Properties is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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2.2: Linear Time Invariant Systems

Introduction 

Linearity and time invariance are two system properties that greatly simplify the study of systems that exhibit them. In our study of
signals and systems, we will be especially interested in systems that demonstrate both of these properties, which together allow the
use of some of the most powerful tools of signal processing.

Linear Time Invariant Systems 

Linear Systems 

If a system is linear, this means that when an input to a given system is scaled by a value, the output of the system is scaled by the
same amount.

Linear Scaling

(a)

(b)

Figure 

In Figure (a) above, an input  to the linear system  gives the output . If  is scaled by a value  and passed through this
same system, as in Figure (b), the output will also be scaled by .

A linear system also obeys the principle of superposition. This means that if two inputs are added together and passed through a
linear system, the output will be the sum of the individual inputs' outputs.

(a)

(b)

Figure 

Superposition Principle

Figure : If Figure  is true, then the principle of superposition says that Figure  is true as well. This holds for linear
systems.

That is, if Figure  is true, then Figure  is also true for a linear system. The scaling property mentioned above still holds in
conjunction with the superposition principle. Therefore, if the inputs x and y are scaled by factors  and , respectively, then the
sum of these scaled inputs will give the sum of the individual scaled outputs:

2.2.1

2.2.1 x L y x α

2.2.1 α

2.2.2

2.2.3 2.2.2 2.2.3

2.2.2 2.2.3

α β
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(a)

(b)

Figure 

Superposition Principle with Linear Scaling

Figure : Given Figure  for a linear system, Figure  holds as well.

Consider the system  in which

for all signals . Given any two signals ,  and scalars , 

for all real . Thus,  is a linear system.

Consider the system  in which

for all signals . Because

for nonzero ,  is not a linear system.

Time Invariant Systems 

A time-invariant system has the property that a certain input will always give the same output (up to timing), without regard to
when the input was applied to the system.

Time-Invariant Systems

(a)

(b)

Figure : Figure (a) shows an input at time  while Figure (b) shows the same input  seconds later. In a time-
invariant system both outputs would be identical except that the one in Figure (b) would be delayed by .

In this figure,  and  are passed through the system TI. Because the system TI is time-invariant, the inputs  and 
 produce the same output. The only difference is that the output due to  is shifted by a time .

2.2.4

2.2.5 2.2.4 2.2.5

Example 2.2.1

H1

(f(t)) = tf(t)H1

f f g a b

(af(t) +bg(t))) = t(af(t) +bg(t)) = atf(t) +btg(t) = a (f(t)) +b (g(t))H1 H1 H1

t H1

Example 2.2.2

H2

(f(t)) = (f(t)H2 )2

f

(2t) = 4 ≠ 2 = 2 (t)H2 t2 t2 H2

t H2

2.2.6 2.2.6 t 2.2.6 t0
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Whether a system is time-invariant or time-varying can be seen in the differential equation (or difference equation) describing it.
Time-invariant systems are modeled with constant coefficient equations. A constant coefficient differential (or difference)
equation means that the parameters of the system are not changing over time and an input now will give the same result as the
same input later.

Consider the system  in which

for all signals . Because

for nonzero ,  is not a time invariant system.

Consider the system  in which

for all signals . For all real  and signals ,

for all real . Thus,  is a time invariant system.

Linear Time Invariant Systems 

Certain systems are both linear and time-invariant, and are thus referred to as LTI systems.

Linear Time-Invariant Systems

(a)

(b)

Figure : This is a combination of the two cases above. Since the input to Figure (b) is a scaled, time-shifted version of
the input in Figure (a), so is the output.

As LTI systems are a subset of linear systems, they obey the principle of superposition. In the figure below, we see the effect of
applying time-invariance to the superposition definition in the linear systems section above.

(a)

(b)

Figure 

Example 2.2.3

H1

(f(t)) = tf(t)H1

f

( (f(t))) = (tf(t)) = (t −T )f(t −T ) ≠ tf(t −T ) = (f(t −T )) = ( (f(t)))ST H1 ST H1 H1 ST

T H1

Example 2.2.4

H2

(f(t)) = (f(t)H2 )2

f T f

( (f(t))) = (f(t ) = (f(t −T ) = (f(t −T )) = ( (f(t)))ST H2 ST )2 )2 H2 H2 ST

t H2

2.2.7 2.2.7
2.2.7

2.2.8
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Superposition in Linear Time-Invariant Systems

Figure : The principle of superposition applied to LTI systems

LTI Systems in Series

If two or more LTI systems are in series with each other, their order can be interchanged without affecting the overall output of the
system. Systems in series are also called cascaded systems.

Cascaded LTI Systems

(a)

(b)

Figure : The order of cascaded LTI systems can be interchanged without changing the overall effect.

LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is defined as the sum of these
individual systems.

Parallel LTI Systems

(a)

(b)

Figure : Parallel systems can be condensed into the sum of systems.

Consider the system  in which

for all signals . Given any two signals ,  and scalars , 

for all real . Thus,  is a linear system. For all real  and signals ,

for all real . Thus,  is a time invariant system. Therefore,  is a linear time invariant system.

2.2.9

2.2.10

2.2.11

Example 2.2.5

H3

(f(t)) = 2f(t)H3

f f g a b

(af(t) +bg(t))) = 2(af(t) +bg(t)) = a2f(t) +b2g(t) = a (f(t)) +b (g(t))H3 H3 H3

t H3 T f

( (f(t))) = (2f(t)) = 2f(t −T ) = (f(t −T )) = ( (f(t)))ST H3 ST H3 H3 ST

t H3 H3
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As has been previously shown, each of the following systems are not linear or not time invariant.

Thus, they are not linear time invariant systems.

Linear Time Invariant Demonstration 

Example 2.2.6

(f(t)) = tf(t)H1

(f(t)) = (f(t)H2 )2
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Interact(when online) with the Mathematica CDF above demonstrating Linear Time Invariant systems. To download, right click
and save file as .cdf.

LTI Systems Summary 
Two very important and useful properties of systems have just been described in detail. The first of these, linearity, allows us the
knowledge that a sum of input signals produces an output signal that is the summed original output signals and that a scaled input
signal produces an output signal scaled from the original output signal. The second of these, time invariance, ensures that time
shifts commute with application of the system. In other words, the output signal for a time shifted input is the same as the output
signal for the original input signal, except for an identical shift in time. Systems that demonstrate both linearity and time
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invariance, which are given the acronym LTI systems, are particularly simple to study as these properties allow us to leverage some
of the most powerful tools in signal processing.

This page titled 2.2: Linear Time Invariant Systems is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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3.1: Continuous Time Systems

Introduction 

As you already now know, a continuous time system operates on a continuous time signal input and produces a continuous time
signal output. There are numerous examples of useful continuous time systems in signal processing as they essentially describe the
world around us. The class of continuous time systems that are both linear and time invariant, known as continuous time LTI
systems, is of particular interest as the properties of linearity and time invariance together allow the use of some of the most
important and powerful tools in signal processing.

Continuous Time Systems 

Linearity and Time Invariance 

A system  is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals ,  that 
. The second, homogeneity of degree one, states for every signal  and scalar  we have 

. It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is
said to be linear if for every signals ,  and scalars ,  we have that

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as
bases, eigenvectors, and eigenvalues, in their study.

A system  is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise
words, the system  commutes with the time shift operator  for every . That is,

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should
react the same to identical inputs at different times.

When a system exhibits both of these important properties it allows for a more straigtforward analysis than would otherwise be
possible. As will be explained and proven in subsequent modules, computation of the system output for a given input becomes a
simple matter of convolving the input with the system's impulse response signal. Also proven later, the fact that complex
exponential are eigenvectors of linear time invariant systems will enable the use of frequency domain tools such as the various
Fourier transforms and associated transfer functions, to describe the behavior of linear time invariant systems.

Consider the system  in which

for all signals . Given any two signals ,  and scalars , 

for all real . Thus,  is a linear system. For all real  and signals ,

for all real . Thus,  is a time invariant system. Therefore,  is a linear time invariant system.

Differential Equation Representation 

It is often useful to to describe systems using equations involving the rate of change in some quantity. For continuous time systems,
such equations are called differential equations. One important class of differential equations is the set of linear constant coefficient
ordinary differential equations, which are described in more detail in subsequent modules.

H x y

H(x+y) = H(x) +H(y) x a

H(ax) = aH(x)

x y a b

H(ax+by) = aH(x) +bH(y)

H

H ST T ∈ R

H = HST ST

Example 3.1.1

H

H(f(t)) = 2f(t)

f f g a b

H(af(t) +bg(t))) = 2(af(t) +bg(t)) = a2f(t) +b2g(t) = aH(f(t)) +bH(g(t))

t H T f

(H(f(t))) = (2f(t)) = 2f(t−T ) = H(f(t−T )) = H ( (f(t)))ST ST ST

t H H
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Consider the series RLC circuit shown in Figure . This system can be modeled using differential equations. We can use
the voltage equations for each circuit element and Kirchoff's voltage law to write a second order linear constant coefficient
differential equation describing the charge on the capacitor.

The voltage across the battery is simply . The voltage across the capacitor is . The voltage across the resistor is .

Finally, the voltage across the inductor is . Therefore, by Kirchoff's voltage law, it follows that

Figure : A series RLC circuit.

Continuous Time Systems Summary 
Many useful continuous time systems will be encountered in a study of signals and systems. This course is most interested in those
that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most
powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant
coefficient ordinary differential equations.

This page titled 3.1: Continuous Time Systems is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk
et al..

Example 3.1.2

3.1.1

V q1
C

R
dq

dt

L
qd2

dt2

L +R + q = V
qd2

dt2

dq

dt

1

C
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3.2: Continuous Time Impulse Response

Introduction 

The output of an LTI system is completely determined by the input and the system's response to a unit impulse.

System Output

Figure : We can determine the system's output, , if we know the system's impulse response, , and the input, .

The output for a unit impulse input is called the impulse response.

Figure 

Example Approximate Impulses 
1. Hammer blow to a structure
2. Hand clap or gun blast in a room
3. Air gun blast underwater

LTI Systems and Impulse Responses 

Finding System Outputs 

By the sifting property of impulses, any signal can be decomposed in terms of an integral of shifted, scaled impulses.

 peaks up where .

Figure 

Since we know the response of the system to an impulse and any signal can be decomposed into impulses, all we need to do to find
the response of the system to any signal is to decompose the signal into impulses, calculate the system's output for every impulse

3.2.1 y(t) h(t) f(t)

3.2.2

f(t) = f(τ)δ(t −τ)dτ∫
∞

−∞

δ(t −τ) t = τ

3.2.3
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and add the outputs back together. This is the process known as Convolution. Since we are in Continuous Time, this is the
Continuous Time Convolution Integral.

Finding Impulse Responses 

Theory:

1. Solve the system's differential equation for  with 
2. Use the Laplace transform

Practice:

1. Apply an impulse-like input signal to the system and measure the output
2. Use Fourier methods

We will assume that  is given for now.

The goal now is to compute the output  given the impulse response  and the input .

Figure 

Impulse Response Summary 
When a system is "shocked" by a delta function, it produces an output known as its impulse response. For an LTI system, the
impulse response completely determines the output of the system given any arbitrary input. The output can be found using
continuous time convolution.

This page titled 3.2: Continuous Time Impulse Response is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

y(t) f(t) = δ(t)

h(t)

y(t) h(t) f(t)

3.2.4
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3.3: Continuous Time Convolution

Introduction 

Convolution, one of the most important concepts in electrical engineering, can be used to determine the output a system produces
for a given input signal. It can be shown that a linear time invariant system is completely characterized by its impulse response. The
sifting property of the continuous time impulse function tells us that the input signal to a system can be represented as an integral of
scaled and shifted impulses and, therefore, as the limit of a sum of scaled and shifted approximate unit impulses. Thus, by linearity,
it would seem reasonable to compute of the output signal as the limit of a sum of scaled and shifted unit impulse responses and,
therefore, as the integral of a scaled and shifted impulse response. That is exactly what the operation of convolution accomplishes.
Hence, convolution can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

Convolution and Circular Convolution 

Convolution 

Operation Definition

Continuous time convolution is an operation on two continuous time signals defined by the integral

for all signals ,  defined on . It is important to note that the operation of convolution is commutative, meaning that

for all signals ,  defined on . Thus, the convolution operation could have been just as easily stated using the equivalent
definition

for all signals ,  defined on . Convolution has several other important properties not listed here but explained and derived in a
later module.

Definition Motivation

The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to
see this, consider a linear time invariant system  with unit impulse response . Given a system input signal  we would like to
compute the system output signal . First, we note that the input can be expressed as the convolution

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

where

approximates the properties of . By linearity

which evaluated as an integral gives

(f ∗ g)(t) = f(τ)g(t−τ)dτ∫
∞

−∞

f g R

g = ff ∗ g∗

f g R

( g) (t) = f(t−τ)g(τ)dτf ∗ ∫
∞

−∞

f g R

H h x

H(x)

x(t) = x(τ)δ(t−τ)dτ∫
∞

−∞

x(t) = x(nΔ) (t−nΔ)Δlim
Δ→0

∑
n

δΔ

(t) = {δΔ
1/Δ

0

0 ≤ t < Δ

 otherwise 

δ(t)

Hx(t) = x(nΔ)H (t−nΔ)Δlim
Δ→0

∑
n

δΔ
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Since  is the shifted unit impulse response , this gives the result

Hence, convolution has been defined such that the output of a linear time invariant system is given by the convolution of the
system input with the system unit impulse response.

Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes. Consider the convolution
of two functions ,  given by

The first step in graphically understanding the operation of convolution is to plot each of the functions. Next, one of the functions
must be selected, and its plot reflected across the  axis. For each real , that same function must be shifted left by . The
product of the two resulting plots is then constructed. Finally, the area under the resulting curve is computed.

Recall that the impulse response for the capacitor voltage in a series RC circuit is given by

and consider the response to the input voltage

We know that the output for this input voltage is given by the convolution of the impulse response with the input signal

We would like to compute this operation by beginning in a way that minimizes the algebraic complexity of the expression.
Thus, since  is the simpler of the two signals, it is desirable to select it for time reversal and shifting. Thus, we
would like to compute

The step functions can be used to further simplify this integral by narrowing the region of integration to the nonzero region of
the integrand. Therefore,

Hence, the output is

which can also be written as

Hx(t) = x(τ)Hδ(t−τ)dτ∫
∞

−∞

Hδ(t−τ) h(t−τ)

Hx(t) = x(τ)h(t−τ)dτ = ( h) (t)∫
∞

−∞

x∗

f g

(f ∗ g)(t) = f(τ)g(t−τ)dτ = f(t−τ)g(τ)dτ∫
∞

−∞

∫
∞

−∞

τ = 0 t t

Example 3.3.1

h(t) = u(t),
1

RC
e−t/RC

x(t) = u(t).

y(t) = x(t) ∗ h(t)

x(t) = u(t)

y(t) = u(τ)u(t−τ)dτ∫
∞

−∞

1

RC
e−τ/RC

y(t) = dτ∫
max{0,t}

0

1

RC
e−τ/RC

y(t) = {
0

1 −e−t/RC

t ≤ 0

t > 0

y(t) = (1 − )u(t).e−t/RC
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Circular Convolution 

Continuous time circular convolution is an operation on two finite length or periodic continuous time signals defined by the
integral

for all signals ,  defined on  where ,  are periodic extensions of  and . It is important to note that the operation of
circular convolution is commutative, meaning that

for all signals ,  defined on . Thus, the circular convolution operation could have been just as easily stated using the
equivalent definition

for all signals ,  defined on  where ,  are periodic extensions of  and . Circular convolution has several other
important properties not listed here but explained and derived in a later module.

Alternatively, continuous time circular convolution can be expressed as the sum of two integrals given by

for all signals ,  defined on .

Meaningful examples of computing continuous time circular convolutions in the time domain would involve complicated algebraic
manipulations dealing with the wrap around behavior, which would ultimately be more confusing than helpful. Thus, none will be
provided in this section. However, continuous time circular convolutions are more easily computed using frequency domain tools
as will be shown in the continuous time Fourier series section.

Definition Motivation

The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to
see this, consider a linear time invariant system  with unit impulse response . Given a finite or periodic system input signal 
we would like to compute the system output signal . First, we note that the input can be expressed as the circular convolution

by the sifting property of the unit impulse function. Writing this integral as the limit of a summation,

where

approximates the properties of . By linearity

which evaluated as an integral gives

Since  is the shifted unit impulse response , this gives the result

(f ∗ g)(t) = (τ) (t−τ)dτ∫
T

0

f̂ ĝ

f g R[0,T ] f̂ ĝ f g

g = ff ∗ g∗

f g R[0,T ]

(f ∗ g)(t) = (t−τ) (τ)dτ∫
T

0

f̂ ĝ

f g R[0,T ] f̂ ĝ f g

(f ∗ g)(t) = f(τ)g(t−τ)dτ + f(τ)g(t−τ +T )dτ∫
t

0
∫

T

t

f g R[0,T ]

H h x

H(x)

x(t) = (τ) (t−τ)dτ∫
T

0

x̂ δ̂

x(t) = (nΔ) (t−nΔ)Δlim
Δ→0

∑
n

x̂ δ̂Δ

(t) = {δΔ
1/Δ

0

0 ≤ t < Δ

 otherwise 

δ(t)

Hx(t) = (nΔ)H (t−nΔ)Δlim
Δ→0

∑
n

x̂ δ̂Δ

Hx(t) = (τ)H (t−τ)dτ∫
T

0

x̂ δ̂

Hδ(t−τ) h(t−τ)
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Hence, circular convolution has been defined such that the output of a linear time invariant system is given by the convolution of
the system input with the system unit impulse response.

Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical processes. Consider the
circular convolution of two finite length functions ,  given by

The first step in graphically understanding the operation of convolution is to plot each of the periodic extensions of the functions.
Next, one of the functions must be selected, and its plot reflected across the  axis. For each , that same function
must be shifted left by . The product of the two resulting plots is then constructed. Finally, the area under the resulting curve on 

 is computed.

Convolution Demonstration 

Hx(t) = (τ) (t−τ)dτ = (x ∗ h)(t).∫
T

0

x̂ ĥ

f g

( g) (t) = (τ) (t−τ)dτ = (t−τ) (τ)dτf ∗ ∫
T

0

f̂ ĝ ∫
T

0

f̂ ĝ

τ = 0 t ∈ R[0,T ]

t

R[0,T ]
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Figure : Interact (when online) with a Mathematica CDF demonstrating Convolution. To Download, right-click and save
target as .cdf.

Convolution Summary 
Convolution, one of the most important concepts in electrical engineering, can be used to determine the output signal of a linear
time invariant system for a given input signal with knowledge of the system's unit impulse response. The operation of continuous
time convolution is defined such that it performs this function for infinite length continuous time signals and systems. The
operation of continuous time circular convolution is defined such that it performs this function for finite length and periodic

3.3.1
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continuous time signals. In each case, the output of the system is the convolution or circular convolution of the input signal with
the unit impulse response.

This page titled 3.3: Continuous Time Convolution is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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3.4: Properties of Continuous Time Convolution

Introduction 

We have already shown the important role that continuous time convolution plays in signal processing. This section provides
discussion and proof of some of the important properties of continuous time convolution. Analogous properties can be shown for
continuous time circular convolution with trivial modification of the proofs provided except where explicitly noted otherwise.

Continuous Time Convolution Properties 

Associativity 

The operation of convolution is associative. That is, for all continuous time signals  the following relationship holds.

In order to show this, note that

proving the relationship as desired through the substitution .

Commutativity 

The operation of convolution is commutative. That is, for all continuous time signals ,  the following relationship holds.

In order to show this, note that

proving the relationship as desired through the substitution .

Distributivity 

The operation of convolution is distributive over the operation of addition. That is, for all continuous time signals , ,  the
following relationship holds.

In order to show this, note that

proving the relationship as desired.

, ,x1 x2 x3

∗ ( ∗ ) = ( ∗ ) ∗x1 x2 x3 x1 x2 x3

( ∗ ( ∗ )) (t)x1 x2 x3 = ( ) ( ) ((t− ) − )d d∫
∞

−∞

∫
∞

−∞

x1 τ1 x2 τ2 x3 τ1 τ2 τ2 τ1

= ( ) (( + ) − ) (t−( + ))d d∫
∞

−∞

∫
∞

−∞

x1 τ1 x2 τ1 τ2 τ1 x3 τ1 τ2 τ2 τ1

= ( ) ( − ) (t− )d d∫
∞

−∞

∫
∞

−∞

x1 τ1 x2 τ3 τ1 x3 τ3 τ1 τ3

= (( ∗ ) ∗ ) (t)x1 x2 x3 (3.4.1)

= +τ3 τ1 τ2

x1 x2

∗ = ∗x1 x2 x2 x1

( ∗ ) (t)x1 x2 = ( ) (t− )d∫
∞

−∞

x1 τ1 x2 τ1 τ1

= (t− ) ( )d∫
∞

−∞

x1 τ2 x2 τ2 τ2

= ( ∗ ) (t)x2 x1

= t−τ2 τ1

x1 x2 x3

∗ ( + ) = ∗ + ∗x1 x2 x3 x1 x2 x1 x3

( ∗ ( + )) (t)x1 x2 x3 = (τ) ( (t−τ) + (t−τ))dτ∫
∞

−∞

x1 x2 x3

= (τ) (t−τ)dτ + (τ) (t−τ)dτ∫
∞

−∞

x1 x2 ∫
∞

−∞

x1 x3

= ( ∗ + ∗ ) (t)x1 x2 x1 x3 (3.4.2)
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Multilinearity 

The operation of convolution is linear in each of the two function variables. Additivity in each variable results from distributivity of
convolution over addition. Homogenity of order one in each variable results from the fact that for all continuous time signals , 
and scalars  the following relationship holds.

In order to show this, note that

proving the relationship as desired.

Conjugation 

The operation of convolution has the following property for all continuous time signals , .

In order to show this, note that

proving the relationship as desired.

Time Shift 

The operation of convolution has the following property for all continuous time signals ,  where  is the time shift operator.

In order to show this, note that

proving the relationship as desired.

x1 x2

a

a ( ∗ ) = (a ) ∗ = ∗ (a )x1 x2 x1 x2 x1 x2

(a ( ∗ )) (t)x1 x2 = a (τ) (t−τ)dτ∫
∞

−∞

x1 x2

= (a (τ)) (t−τ)dτ∫
∞

−∞

x1 x2

= ((a ) ∗ ) (t)x1 x2

= (τ) (a (t−τ))dτ∫
∞

−∞

x1 x2

= ( ∗ (a )) (t)x1 x2 (3.4.3)

x1 x2

= ∗x∗
1x2

¯ ¯¯̄¯̄¯̄¯̄
x1
¯ ¯¯̄¯ x2

¯ ¯¯̄¯

( )(t)∗x1 x2
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯ = (τ) (t−τ)dτ∫

∞

−∞

x1 x2

¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

= dτ∫
∞

−∞

(τ) (t−τ)x1 x2
¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

= (τ) (t−τ)dτ∫
∞

−∞

x1
¯ ¯¯̄¯ x2

¯ ¯¯̄¯

= ( ∗ )(t)x1
¯ ¯¯̄¯ x2

¯ ¯¯̄¯ (3.4.4)

x1 x2 ST

( ∗ ) = ( ) ∗ = ∗ ( )ST x1 x2 STx1 x2 x1 STx2

( ∗ ) (t)ST x1 x2 = (τ) ((t−T ) −τ)dτ∫
∞

−∞

x2 x1

= (τ) (t−τ)dτ∫
∞

−∞

x2 STx1

= (( ) ∗ ) (t)STx1 x2

= (τ) ((t−T ) −τ)dτ∫
∞

−∞

x1 x2

= (τ) (t−τ)dτ∫
∞

−∞

x1 STx2

= ∗ ( ) (t)x1 STx2 (3.4.5)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22854?pdf


3.4.3 https://eng.libretexts.org/@go/page/22854

Differentiation 

The operation of convolution has the following property for all continuous time signals , .

In order to show this, note that

proving the relationship as desired.

Impulse Convolution 

The operation of convolution has the following property for all continuous time signals  where  is the Dirac delta funciton.

In order to show this, note that

proving the relationship as desired.

Width 

The operation of convolution has the following property for all continuous time signals ,  where Duration( ) gives the
duration of a signal .

In order to show this informally, note that  is nonzero for all tt for which there is a  such that  is
nonzero. When viewing one function as reversed and sliding past the other, it is easy to see that such a  exists for all  on an
interval of length Duration( ) + Duration( ). Note that this is not always true of circular convolution of finite length and periodic
signals as there is then a maximum possible duration within a period.

Convolution Properties Summary 

As can be seen the operation of continuous time convolution has several important properties that have been listed and proven in
this module. With slight modifications to proofs, most of these also extend to continuous time circular convolution as well and the
cases in which exceptions occur have been noted above. These identities will be useful to keep in mind as the reader continues to
study signals and systems.

This page titled 3.4: Properties of Continuous Time Convolution is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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3.5: Eigenfunctions of Continuous Time LTI Systems

Introduction 

Prior to reading this module, the reader should already have some experience with linear algebra and should specifically be familiar
with the eigenvectors and eigenvalues of linear operators. A linear time invariant system is a linear operator defined on a function
space that commutes with every time shift operator on that function space. Thus, we can also consider the eigenvector functions, or
eigenfunctions, of a system. It is particularly easy to calculate the output of a system when an eigenfunction is the input as the
output is simply the eigenfunction scaled by the associated eigenvalue. As will be shown, continuous time complex exponentials
serve as eigenfunctions of linear time invariant systems operating on continuous time signals.

Eigenfunctions of LTI Systems 
Consider a linear time invariant system  with impulse response  operating on some space of infinite length continuous time
signals. Recall that the output  of the system for a given input  is given by the continuous time convolution of the
impulse response with the input

Now consider the input  where . Computing the output for this input,

Thus,

where

is the eigenvalue corresponding to the eigenvector .

There are some additional points that should be mentioned. Note that, there still may be additional eigenvalues of a linear time
invariant system not described by  for some . Furthermore, the above discussion has been somewhat formally loose as 
may or may not belong to the space on which the system operates. However, for our purposes, complex exponentials will be
accepted as eigenvectors of linear time invariant systems. A similar argument using continuous time circular convolution would
also hold for spaces finite length signals.

Eigenfunction of LTI Systems Summary 
As has been shown, continuous time complex exponential are eigenfunctions of linear time invariant systems operating on
continuous time signals. Thus, it is particularly simple to calculate the output of a linear time invariant system for a complex
exponential input as the result is a complex exponential output scaled by the associated eigenvalue. Consequently, representations
of continuous time signals in terms of continuous time complex exponentials provide an advantage when studying signals. As will
be explained later, this is what is accomplished by the continuous time Fourier transform and continuous time Fourier series, which
apply to aperiodic and periodic signals respectively.

This page titled 3.5: Eigenfunctions of Continuous Time LTI Systems is shared under a CC BY license and was authored, remixed, and/or curated
by Richard Baraniuk et al..
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3.6: BIBO Stability of Continuous Time Systems

Introduction 

BIBO stability stands for bounded input, bounded output stability. BIBO stablity is the system property that any bounded input
yields a bounded output. This is to say that as long as we input a signal with absolute value less than some constant, we are
guaranteed to have an output with absolute value less than some other constant.

Continuous Time BIBO Stability 
In order to understand this concept, we must first look more closely into exactly what we mean by bounded. A bounded signal is
any signal such that there exists a value such that the absolute value of the signal is never greater than some value. Since this value
is arbitrary, what we mean is that at no point can the signal tend to infinity, including the end behavior.

Figure : A bounded signal is a signal for which there exists a constant  such that 

Time Domain Conditions 

Now that we have identified what it means for a signal to be bounded, we must turn our attention to the condition a system must
possess in order to guarantee that if any bounded signal is passed through the system, a bounded signal will arise on the output. It
turns out that a continuous time LTI (Section 2.1) system with impulse response  is BIBO stable if and only if

Continuous-Time Condition for BIBO Stability

This is to say that the impulse response is absolutely integrable.

Laplace Domain Conditions 

Stability is very easy to infer from the pole-zero plot of a transfer function. The only condition necessary to demonstrate stability is
to show that the -axis is in the region of convergence. Consequently, for stable causal systems, all poles must be to the left of the
imaginary axis.

3.6.1 A ∀t : (|f(t)| < A)

h(t)

|h(t)|dt < ∞∫
∞

−∞

iω
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(a)

(b)
Figure : (a) Example of a pole-zero plot for a stable continuous-time system. (b) Example of a pole-zero plot for an unstable
continuous-time system.

BIBO Stability Summary 

Bounded input bounded output stability, also known as BIBO stability, is an important and generally desirable system
characteristic. A system is BIBO stable if every bounded input signal results in a bounded output signal, where boundedness is the
property that the absolute value of a signal does not exceed some finite constant. In terms of time domain features, a continuous
time system is BIBO stable if and only if its impulse response is absolutely integrable. Equivalently, in terms of Laplace domain
features, a continuous time system is BIBO stable if and only if the region of convergence of the transfer function includes the
imaginary axis.

This page titled 3.6: BIBO Stability of Continuous Time Systems is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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3.7: Linear Constant Coefficient Differential Equations

Introduction: Ordinary Differential Equations 

In our study of signals and systems, it will often be useful to describe systems using equations involving the rate of change in some
quantity. Such equations are called differential equations. For instance, you may remember from a past physics course that an
object experiences simple harmonic motion when it has an acceleration that is proportional to the magnitude of its displacement
and opposite in direction. Thus, this system is described as the differential equation shown in Equation .

Because the differential equation in Equation  has only one independent variable and only has derivatives with respect to that
variable, it is called an ordinary differential equation. There are more complicated differential equations, such as the Schrödinger
equation, which involve derivatives with respect to multiple independent variables. These are called partial differential equations,
but they are not within the scope of this module.

Given a sufficiently descriptive set of initial conditions or boundary conditions, if there is a solution to the differential equation,
that solution is unique and describes the behavior of the system. Of course, the results are only accurate to the degree that the
model mirrors reality.

Linear Constant Coefficient Ordinary Differential Equations 

An important subclass of ordinary differential equations is the set of linear constant coefficient ordinary differential equations.
These equations are of the form

where  is a differential operator of the form given in Equation .

Note that operators of this type satisfy the linearity conditions, and  are real constants. Furthermore, Equation  with
these operators has derivatives with respect to only one variable, making it an ordinary differential equation.

A similar concept for a discrete time setting, difference equations, is discussed in the chapter on time domain analysis of discrete
time systems. There are many parallels between the discussion of linear constant coefficient ordinary differential equations and
linear constant coefficient difference equations.

Applications of Differential Equations 

Consider the decay model in which a quantity of an unstable isotope decreases at a rate proportional to the quantity of unstable
isotope remaining. Thus, the decay of the isotope is modeled by the first order linear constant coefficient differential equation

where  is some real rate.

Now consider the series RLC circuit shown in Figure . This system can be modeled using differential equations. We can use
the voltage equations for each circuit element and Kirchoff's voltage law to write a second order linear constant coefficient
differential equation describing the charge on the capacitor.

The voltage across the battery is simply . The voltage across the capacitor is . The voltage across the resistor is . Finally,

the voltage across the inductor is . Therefore, by Kirchoff's voltage law, it follows that

3.7.1
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Figure : A series RLC circuit.

The section Solving Linear Constant Coefficient Differential Equations will describe in depth how solutions to differential
equations like those in the examples may be obtained.

Linear Constant Coefficient Ordinary Differential Equations Summary 
Differential equations are an important mathematical tool for modeling continuous time systems. An important subclass of these is
the class of linear constant coefficient ordinary differential equations. Linear constant coefficient ordinary differential equations are
often particularly easy to solve as will be described in the module on solutions to linear constant coefficient ordinary differential
equations and are useful in describing a wide range of situations that arise in electrical engineering and in other fields.

This page titled 3.7: Linear Constant Coefficient Differential Equations is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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3.8: Solving Linear Constant Coefficient Differential Equations

Introduction 

The approach to solving linear constant coefficient ordinary differential equations is to find the general form of all possible
solutions to the equation and then apply a number of conditions to find the appropriate solution. The two main types of problems
are initial value problems, which involve constraints on the solution and its derivatives at a single point, and boundary value
problems, which involve constraints on the solution or its derivatives at several points.

The number of initial conditions needed for an th order differential equation, which is the order of the highest order derivative, is
, and a unique solution is always guaranteed if these are supplied. Boundary value problems can be slightly more complicated

and will not necessarily have a unique solution or even a solution at all for a given set of conditions. Thus, this module will focus
exclusively on initial value problems.

Solving Linear Constant Coefficient Ordinary Differential Equations 

Consider some linear constant coefficient ordinary differential equation given by , where  is a differential operator
of the form

Let  and  be two functions such that  and . By the linearity of , note that 
. Thus, the form of the general solution  to any linear constant coefficient ordinary

differential equation is the sum of a homogeneous solution  to the equation  and a particular solution  that is
specific to the forcing function .

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in order to avoid incorrectly
restricting the form of the solution before applying any conditions. Otherwise, a valid set of initial or boundary conditions might
appear to have no corresponding solution trajectory. The following discussion shows how to accomplish this for linear constant
coefficient ordinary differential equations.

Finding the Homogeneous Solution 

In order to find the homogeneous solution to , consider the differential equation . We know that the
solutions have the form  for some complex constants , . Since  for a solution, it follows that

so it also follows that

Therefore, the parameters of the solution exponents are the roots of the above polynomial, called the characteristic polynomial.

For equations of order two or more, there will be several roots. If all of the roots are distinct, then the the general form of the
homogeneous solution is simply

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each powers of  from 0 to one less
than the root multiplicity (in order to ensure linearly independent solutions). For instance, if  had multiplicity 2 and  had
multiplicity 3, the homogeneous solution would be
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Consider the decay model in which a quantity of an unstable isotope decreases at a rate proportional to the quanity of unstable
isotope remaining. Thus, the decay of the isotope is modeled by the first order linear constant coefficient differential equation

where  is some real rate. This differential equation could easily be solved through straightforward integration. However, the
methods described above will be used instead. Note that the forcing function is zero, so only a homogenous solution is needed.
It is easy to see that the characteristic polynomial is , so there is one root . Thus the solution is of the form

Given a rate and an initial condition, this can be applied to a specific situation. For instance, we know that carbon-14 decays at
a rate of approximately  year , and if we normalize the natural concentration of carbon-14 to  the
solution becomes . Knowledge of this curve would be useful for radioisotope based dating.

Finding the Particular Solution 

Finding the particular solution is slightly more complicated task than finding the homogeneous solution. A formal method, called
variation of parameters accomplishes this, and there are also several heuristics that can be used. It can also be found through
convolution of the input with the unit impulse response, once the unit impulse response is known. Finding the particular solution to
a differential equation is discussed further in the chapter concerning the Laplace transform, which greatly simplifies the procedure
for solving linear constant coefficient ordinary differential equations using frequency domain tools.

Consider the series RLC circuit shown in Figure . This system can be modeled using differential equations. We can use
the voltage equations for each circuit element and Kirchoff's voltage law to write a second order linear constant coefficient
differential equation describing the charge on the capacitor.

The voltage across the battery is simply . The voltage across the capacitor is . The voltage across the resistor is .

Finally, the voltage across the inductor is . Therefore, by Kirchoff's voltage law, it follows that

Figure : A series RLC circuit.

First, the homogeneous solution is found. It is easy to see that the characteristic polynomial is . Therefore,

the two roots are  and . Often, these are stated in terms of the attenuation factor 

 and the resonant frequency . Thus,  and .

Thus, the homogeneous equation is of the form
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It turns out that the response to the constant voltage source forcing function is a constant, so

Hence, the general solution is

where  and  depend on the initial conditions. The system demonstrates a rich array of behaviors based on the relative
values of  and , which the reader is encouraged to explore.

Solving Differential Equations Summary 
Linear constant coefficient ordinary differential equations are useful for modeling a wide variety of continuous time systems. The
approach to solving them is to find the general form of all possible solutions to the equation and then apply a number of conditions
to find the appropriate solution. This is done by finding the homogeneous solution to the differential equation that does not depend
on the forcing function input and a particular solution to the differential equation that does depend on the forcing function input.

This page titled 3.8: Solving Linear Constant Coefficient Differential Equations is shared under a CC BY license and was authored, remixed,
and/or curated by Richard Baraniuk et al..
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4.1: Discrete Time Systems

Introduction 

As you already now know, a discrete time system operates on a discrete time signal input and produces a discrete time signal
output. There are numerous examples of useful discrete time systems in digital signal processing, such as digital filters for images
or sound. The class of discrete time systems that are both linear and time invariant, known as discrete time LTI systems, is of
particular interest as the properties of linearity and time invariance together allow the use of some of the most important and
powerful tools in signal processing.

Discrete Time Systems 

Linearity and Time Invariance 

A system  is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals ,  that 
. The second, homogeneity of degree one, states for every signal  and scalar  we have 

. It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is
said to be linear if for every signals ,  and scalars ,  we have that

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as
bases, eigenvectors, and eigenvalues, in their study.

A system  is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise
words, the system  commutes with the time shift operator  for every . That is,

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should
react the same to identical inputs at different times.

When a system exhibits both of these important properties it opens. As will be explained and proven in subsequent modules,
computation of the system output for a given input becomes a simple matter of convolving the input with the system's impulse
response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time invariant systems will
encourage the use of frequency domain tools such as the various Fourier transforms and associated transfer functions, to describe
the behavior of linear time invariant systems.

Consider the system  in which

for all signals . Given any two signals ,  and scalars , 

for all integers . Thus,  is a linear system. For all integers  and signals ,

for all integers . Thus,  is a time invariant system. Therefore,  is a linear time invariant system.

Difference Equation Representation 

It is often useful to to describe systems using equations involving the rate of change in some quantity. For discrete time systems,
such equations are called difference equations, a type of recurrence relation. One important class of difference equations is the set
of linear constant coefficient difference equations, which are described in more detail in subsequent modules.

H x y

H(x +y) = H(x) +H(y) x a

H(ax) = aH(x)

x y a b

H(ax +by) = aH(x) +bH(y).

H

H ST T ∈ Z

H = H .ST ST

Example 4.1.1

H

H(x[n]) = 2x[n]

f f g a b

H(af [n] +bg[n])) = 2(af [n] +bg[n]) = a2f [n] +b2g[n] = aH(f [n]) +bH(g[n])

n H T x

(H(x[n])) = (2x[n]) = 2x[n −T ] = H(x[n −T ]) = H ( (x[n]))ST ST ST

n H H
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Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a pair rabbits get left alone in a
black box... The assumptions are that a pair of rabbits never die and produce a pair of offspring every month starting on their
second month of life. This system is defined by the recursion relation for the number of rabbit pairs  at month 

with the initial conditions  and . The result is a very fast growth in the sequence. This is why we never leave
black boxes open.

Discrete Time Systems Summary 
Many useful discrete time systems will be encountered in a study of signals and systems. This course is most interested in those
that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most
powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant
coefficient difference equations, a type of recurrence relation.

This page titled 4.1: Discrete Time Systems is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..

Example 4.1.2

y[n] n

y[n] = y[n −1] +y[n −2]

y[0] = 0 y[1] = 1
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4.2: Discrete Time Impulse Response

Introduction 

The output of a discrete time LTI system is completely determined by the input and the system's response to a unit impulse.

System Output

Figure : We can determine the system's output, , if we know the system's impulse response, , and the input, .

The output for a unit impulse input is called the impulse response.

Figure 

(a)

(b)

Figure 

4.2.1 y[n] h[n] x[n]

4.2.2

4.2.3
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Example Impulses 

Since we are considering discrete time signals and systems, an ideal impulse is easy to simulate on a computer or some other digital
device. It is simply a signal that is 1 at the point  = 0, and 0 everywhere else.

LTI Systems and Impulse Responses 

Finding System Outputs 

By the sifting property of impulses, any signal can be decomposed in terms of an infinite sum of shifted, scaled impulses.

The function  peaks up where .

(a)

(b)

Figure 

Since we know the response of the system to an impulse and any signal can be decomposed into impulses, all we need to do to find
the response of the system to any signal is to decompose the signal into impulses, calculate the system's output for every impulse
and add the outputs back together. This is the process known as Convolution. Since we are in Discrete Time, this is the Discrete
Time Convolution Sum.

Finding Impulse Responses 

Theory:

1. Solve the system's Difference Equation for y[n] with f[n] = δ[n]
2. Use the Z-Transform

Practice:

n

x[n] = x[k] [n]∑
k=−∞

∞

δk

= x[k]δ[n −k]∑
k=−∞

∞

(4.2.1)

[n] = δ[n−k]δk n = k

4.2.4
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1. Apply an impulse input signal to the system and record the output
2. Use Fourier methods

We will assume that  is given for now. The goal is now to compute the output  given the impulse response  and the
input .

Figure 

Impulse Response Summary 
When a system is "shocked" by a delta function, it produces an output known as its impulse response. For an LTI system, the
impulse response completely determines the output of the system given any arbitrary input. The output can be found using discrete
time convolution.

This page titled 4.2: Discrete Time Impulse Response is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

h[n] y[n] h[n]

x[n]

4.2.5

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22859?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/04%3A_Time_Domain_Analysis_of_Discrete_Time_Systems/4.02%3A_Discrete_Time_Impulse_Response
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


4.3.1 https://eng.libretexts.org/@go/page/22860

4.3: Discrete Time Convolution

Introduction 

Convolution, one of the most important concepts in electrical engineering, can be used to determine the output a system produces
for a given input signal. It can be shown that a linear time invariant system is completely characterized by its impulse response. The
sifting property of the discrete time impulse function tells us that the input signal to a system can be represented as a sum of scaled
and shifted unit impulses. Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and
shifted unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution can be used to
determine a linear time invariant system's output from knowledge of the input and the impulse response.

Convolution and Circular Convolution 

Convolution 

Operation Definition

Discrete time convolution is an operation on two discrete time signals defined by the integral

for all signals ,  defined on . It is important to note that the operation of convolution is commutative, meaning that

for all signals ,  defined on . Thus, the convolution operation could have been just as easily stated using the equivalent
definition

for all signals ,  defined on . Convolution has several other important properties not listed here but explained and derived in a
later module.

Definition Motivation

The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to
see this, consider a linear time invariant system  with unit impulse response . Given a system input signal  we would like to
compute the system output signal . First, we note that the input can be expressed as the convolution

by the sifting property of the unit impulse function. By linearity

Since  is the shifted unit impulse response , this gives the result

Hence, convolution has been defined such that the output of a linear time invariant system is given by the convolution of the
system input with the system unit impulse response.

Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes. Consider the convolution
of two functions ,  given by

(f ∗ g)[n] = f [k]g[n −k]∑
k=−∞

∞

f g Z

f ∗ g = g ∗ f

f g Z

(f ∗ g)[n] = f [n −k]g[k]∑
k=−∞

∞

f g Z

H h x

H(x)

x[n] = x[k]δ[n −k]∑
k=−∞

∞

H(x[n]) = x[k]H(δ[n −k]).∑
k=−∞

∞

H(δ[n −k]) h[n −k]

H(x[n]) = x[k]h[n −k] = (x ∗ h)[n].∑
k=−∞

∞

f g
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The first step in graphically understanding the operation of convolution is to plot each of the functions. Next, one of the functions
must be selected, and its plot reflected across the  axis. For each real , that same function must be shifted left by . The
point-wise product of the two resulting plots is then computed, and then all of the values are summed.

Recall that the impulse response for a discrete time echoing feedback system with gain  is

and consider the response to an input signal that is another exponential

We know that the output for this input is given by the convolution of the impulse response with the input signal

We would like to compute this operation by beginning in a way that minimizes the algebraic complexity of the expression.
However, in this case, each possible choice is equally simple. Thus, we would like to compute

The step functions can be used to further simplify this sum. Therefore,

for  and

for . Hence, provided , we have that

Circular Convolution 

Discrete time circular convolution is an operation on two finite length or periodic discrete time signals defined by the sum

for all signals ,  defined on  where ,  are periodic extensions of  and . It is important to note that the operation
of circular convolution is commutative, meaning that

for all signals ,  defined on . Thus, the circular convolution operation could have been just as easily stated using the
equivalent definition

(f ∗ g)[n] = f [k]g[n −k] = f [n −k]g[k].∑
k=−∞

∞

∑
k=−∞

∞

k = 0 n n

Example 4.3.1

a

h[n] = u[n],an

x[n] = u[n].bn

y[n] = x[n] ∗ h[n].

y[n] = u[k] u[n −k].∑
k=−∞

∞

ak bn−k

y[n] = 0

n < 0

y[n] = [ab∑
k=0

n

]k

n ≥ 0 ab ≠ 1

y[n] = {
0

1−(ab)
n+1

1−(ab)

n < 0

n ≥ 0

(f ⊛g)[n] = [k] [n −k]∑
k=0

N−1

f̂ ĝ

f g Z[0, N −1] f̂ ĝ f g

f ⊛g = g ⊛f

f g Z[0, N −1]

(f ⊛g)[n] = [n −k] [k]∑
k=0

N−1

f̂ ĝ
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for all signals ,  defined on  where ,  are periodic extensions of  and . Circular convolution has several other
important properties not listed here but explained and derived in a later module.

Alternatively, discrete time circular convolution can be expressed as the sum of two summations given by

for all signals ,  defined on .

Meaningful examples of computing discrete time circular convolutions in the time domain would involve complicated algebraic
manipulations dealing with the wrap around behavior, which would ultimately be more confusing than helpful. Thus, none will be
provided in this section. Of course, example computations in the time domain are easy to program and demonstrate. However,
discrete time circular convolutions are more easily computed using frequency domain tools as will be shown in the discrete time
Fourier series section.

Definition Motivation

The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to
see this, consider a linear time invariant system  with unit impulse response . Given a periodic system input signal  we would
like to compute the system output signal . First, we note that the input can be expressed as the circular convolution

by the sifting property of the unit impulse function. By linearity,

Since  is the shifted unit impulse response , this gives the result

Hence, circular convolution has been defined such that the output of a linear time invariant system is given by the convolution of
the system input with the system unit impulse response.

Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical processes. Consider the
circular convolution of two finite length functions ,  given by

The first step in graphically understanding the operation of convolution is to plot each of the periodic extensions of the functions.
Next, one of the functions must be selected, and its plot reflected across the  axis. For each , that same
function must be shifted left by . The point-wise product of the two resulting plots is then computed, and finally all of these
values are summed.

Interactive Element 

f g Z[0, N −1] f̂ ĝ f g

(f ⊛g)[n] = f [k]g[n −k] + f [k]g[n −k +N ]∑
k=0

n

∑
k=n+1

N−1

f g Z[0, N −1]

H h x

H(x)

x[n] = [k] [n −k]∑
k=0

N−1

x̂ δ̂

H(x[n]) = [k]H( [n −k]).∑
k=0

N−1

x̂ δ̂

H(δ[n −k]) h[n −k]

H(x[n]) = [k] [n −k] = (x ⊛h)[n].∑
k=0

N−1

x̂ ĥ

f g

(f ⊛g)[n] = [k] [n −k] = [n −k] [k]∑
k=0

N−1

f̂ ĝ ∑
k=0

N−1

f̂ ĝ

k = 0 n ∈ Z[0, N −1]

n
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Figure : Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convolution. To download, right4.3.1
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click and save file as .cdf

Convolution Summary 

Convolution, one of the most important concepts in electrical engineering, can be used to determine the output signal of a linear
time invariant system for a given input signal with knowledge of the system's unit impulse response. The operation of discrete time
convolution is defined such that it performs this function for infinite length discrete time signals and systems. The operation of
discrete time circular convolution is defined such that it performs this function for finite length and periodic discrete time signals.
In each case, the output of the system is the convolution or circular convolution of the input signal with the unit impulse response.

This page titled 4.3: Discrete Time Convolution is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk
et al..
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4.4: Properties of Discrete Time Convolution

Introduction 

We have already shown the important role that discrete time convolution plays in signal processing. This section provides
discussion and proof of some of the important properties of discrete time convolution. Analogous properties can be shown for
discrete time circular convolution with trivial modification of the proofs provided except where explicitly noted otherwise.

Discrete Time Convolution Properties 

Associativity 

The operation of convolution is associative. That is, for all discrete time signals  the following relationship holds.

In order to show this, note that

proving the relationship as desired through the substitution .

Commutativity 

The operation of convolution is commutative. That is, for all discrete time signals  the following relationship holds.

In order to show this, note that

proving the relationship as desired through the substitution .

Distribitivity 

The operation of convolution is distributive over the operation of addition. That is, for all discrete time signals  the
following relationship holds.

In order to show this, note that

, ,f1 f2 f3

∗ ( ∗ ) = ( ∗ ) ∗f1 f2 f3 f1 f2 f3

( ∗ ( ∗ )) [n]f1 f2 f3 = [ ] [ ] [(n − ) − ]∑
=−∞k1

∞

∑
=−∞k2

∞

f1 k1 f2 k2 f3 k1 k2

= [ ] [( + ) − ] [n −( + )]∑
=−∞k1

∞

∑
=−∞k2

∞

f1 k1 f2 k1 k2 k1 f3 k1 k2

= [ ] [ − ] [n − ]∑
=−∞k3

∞

∑
=−∞k1

∞

f1 k1 f2 k3 k1 f3 k3

= (( ∗ ) ∗ ) [n]f1 f2 f3 (4.4.1)

= +k3 k1 k2

,f1 f2

∗ = ∗f1 f2 f2 f1

( ∗ ) [n]f1 f2 = [ ] [n − ]∑
=−∞k1

∞

f1 k1 f2 k1

= [n − ] [ ]∑
=−∞k2

∞

f1 k2 f2 k2

= ( ∗ ) [n]f2 f1 (4.4.2)

= n −k2 k1

, ,f1 f2 f3

∗ ( + ) = ∗ + ∗f1 f2 f3 f1 f2 f1 f3

( ∗ ( + )) (n)f1 f2 f3 = (k) ( (n −k) + (n −k))∑
k=−∞

∞

f1 f2 f3

= (k) (n −k) + (k) (n −k)∑
k=−∞

∞

f1 f2 ∑
k=−∞

∞

f1 f3

= ( ∗ + ∗ ) (n)f1 f2 f1 f3 (4.4.3)
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proving the relationship as desired.

Multilinearity 

The operation of convolution is linear in each of the two function variables. Additivity in each variable results from distributivity of
convolution over addition. Homogenity of order one in each variable results from the fact that for all discrete time signals 
and scalars aa the following relationship holds.

In order to show this, note that

proving the relationship as desired.

Conjugation 

The operation of convolution has the following property for all discrete time signals .

In order to show this, note that

proving the relationship as desired.

Time Shift 

The operation of convolution has the following property for all discrete time signals  where  is the time shift operator with
.

In order to show this, note that

,f1 f2

a ( ∗ ) = (a ) ∗ = ∗ (a )f1 f2 f1 f2 f1 f2

(a ( ∗ )) [n]f1 f2 = a [k] [n −k]∑
k=−∞

∞

f1 f2

= (a [k]) [n −k]∑
k=−∞

∞

f1 f2

= ((a ) ∗ ) [n]f1 f2

= [k] (a [n −k])∑
k=−∞

∞

f1 f2

= ( ∗ (a )) [n]f1 f2 (4.4.4)

,f1 f2

= ∗f ∗
1 f2

¯ ¯¯̄¯̄¯̄¯̄
f1
¯ ¯¯̄¯

f2
¯ ¯¯̄¯

( )[n]∗f1 f2
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄

= [k] [n −k]∑
k=−∞

∞

f1 f2

¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

= ∑
k=−∞

∞

[k] [n −k]f1 f2
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

= [k] [n −k]∑
k=−∞

∞

f1
¯ ¯¯̄¯

f2
¯ ¯¯̄¯

= ( ∗ )[n]f1
¯ ¯¯̄¯

f2
¯ ¯¯̄¯

(4.4.5)

,f1 f2 ST

T ∈ Z

( ∗ ) = ( ) ∗ = ∗ ( )ST f1 f2 ST f1 f2 f1 ST f2
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proving the relationship as desired.

Impulse Convolution 

The operation of convolution has the following property for all discrete time signals  where  is the unit sample function.

In order to show this, note that

proving the relationship as desired.

Width 

The operation of convolution has the following property for all discrete time signals  where Duration( ) gives the duration of
a signal .

In order to show this informally, note that  is nonzero for all  for which there is a  such that  is
nonzero. When viewing one function as reversed and sliding past the other, it is easy to see that such a  exists for all  on an
interval of length Duration( ) + Duration( ) − 1. Note that this is not always true of circular convolution of finite length and
periodic signals as there is then a maximum possible duration within a period.

Convolution Properties Summary 
As can be seen the operation of discrete time convolution has several important properties that have been listed and proven in this
module. With silight modifications to proofs, most of these also extend to discrete time circular convolution as well and the cases in
which exceptions occur have been noted above. These identities will be useful to keep in mind as the reader continues to study
signals and systems.

This page titled 4.4: Properties of Discrete Time Convolution is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

( ∗ ) [n]ST f1 f2 = [k] [(n −T ) −k]∑
k=−∞

∞

f2 f1

= [k] [n −k]∑
k=−∞

∞

f2 ST f1

= (( ) ∗ ) [n]ST f1 f2

= [k] [(n −T ) −k]∑
k=−∞

∞

f1 f2

= [k] [n −k]∑
k=−∞

∞

f1 ST f2

= ∗ ( ) [n]f1 ST f2 (4.4.6)

f δ

f ∗ δ = f

(f ∗ δ)[n] = f [k]δ[n −k]∑
k=−∞

∞

= f [n] δ[n −k]∑
k=−∞

∞

= f [n] (4.4.7)

,f1 f2 f

f

Duration( ∗ ) =  Duration( ) + Duration( ) −1f1 f2 f1 f2

( ∗ )[n]f1 f2 n k [k] [n −k]f1 f2

k n

f1 f2
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4.5: Eigenfunctions of Discrete Time LTI Systems

Introduction 

Prior to reading this module, the reader should already have some experience with linear algebra and should specifically be familiar
with the eigenvectors and eigenvalues of linear operators. A linear time invariant system is a linear operator defined on a function
space that commutes with every time shift operator on that function space. Thus, we can also consider the eigenvector functions, or
eigenfunctions, of a system. It is particularly easy to calculate the output of a system when an eigenfunction is the input as the
output is simply the eigenfunction scaled by the associated eigenvalue. As will be shown, discrete time complex exponentials serve
as eigenfunctions of linear time invariant systems operating on discrete time signals.

Eigenfunctions of LTI Systems 
Consider a linear time invariant system  with impulse response hh operating on some space of infinite length discrete time
signals. Recall that the output  of the system for a given input  is given by the discrete time convolution of the impulse
response with the input

Now consider the input  where . Computing the output for this input,

Thus,

where

is the eigenvalue corresponding to the eigenvector .

There are some additional points that should be mentioned. Note that, there still may be additional eigenvalues of a linear time
invariant system not described by  for some . Furthermore, the above discussion has been somewhat formally loose as 
may or may not belong to the space on which the system operates. However, for our purposes, complex exponentials will be
accepted as eigenvectors of linear time invariant systems. A similar argument using discrete time circular convolution would also
hold for spaces finite length signals.

Eigenfunction of LTI Systems Summary 
As has been shown, discrete time complex exponential are eigenfunctions of linear time invariant systems operating on discrete
time signals. Thus, it is particularly simple to calculate the output of a linear time invariant system for a complex exponential input
as the result is a complex exponential output scaled by the associated eigenvalue. Consequently, representations of discrete time
signals in terms of discrete time complex exponentials provide an advantage when studying signals. As will be explained later, this
is what is accomplished by the discrete time Fourier transform and discrete time Fourier series, which apply to aperiodic and
periodic signals respectively.
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4.6: BIBO Stability of Discrete Time Systems

Introduction 

BIBO stability stands for bounded input, bounded output stability. BIBO stability is the system property that any bounded input
yields a bounded output. This is to say that as long as we input a signal with absolute value less than some constant, we are
guaranteed to have an output with absolute value less than some other constant.

Discrete Time BIBO Stability 
In order to understand this concept, we must first look more closely into exactly what we mean by bounded. A bounded signal is
any signal such that there exists a value such that the absolute value of the signal is never greater than some value. Since this value
is arbitrary, what we mean is that at no point can the signal tend to infinity, including the end behavior.

Figure : A bounded signal is a signal for which there exists a constant  such that 

Time Domain Conditions 

Now that we have identified what it means for a signal to be bounded, we must turn our attention to the condition a system must
possess in order to guarantee that if any bounded signal is passed through the system, a bounded signal will arise on the output. It
turns out that a continuous-time LTI (Section 2.1) system with impulse response  is BIBO stable if and only if it is absolutely
summable. That is

Discrete-Time Condition for BIBO Stability

Z-Domain Conditions 

Stability for discrete-time signals (Section 1.1) in the z-domain is about as easy to demonstrate as it is for continuous-time signals
in the Laplace domain. However, instead of the region of convergence needing to contain the -axis, the ROC must contain the
unit circle. Consequently, for stable causal systems, all poles must be within the unit circle.
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(a)

(b)
Figure : (a) A stable discrete-time system. (b) An unstable discrete-
time system.

BIBO Stability Summary 
Bounded input bounded output stability, also known as BIBO stability, is an important and generally desirable system
characteristic. A system is BIBO stable if every bounded input signal results in a bounded output signal, where boundedness is the
property that the absolute value of a signal does not exceed some finite constant. In terms of time domain features, a discrete time
system is BIBO stable if and only if its impulse response is absolutely summable. Equivalently, in terms of z-domain features, a
continuous time system is BIBO stable if and only if the region of convergence of the transfer function includes the unit circle.
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4.7: Linear Constant Coefficient Difference Equations

Introduction: Difference Equations 

In our study of signals and systems, it will often be useful to describe systems using equations involving the rate of change in some
quantity. In discrete time, this is modeled through difference equations, which are a specific type of recurrance relation. For
instance, recall that the funds in an account with discretely compounded interest rate  will increase by  times the previous
balance. Thus, a discretely compounded interest system is described by the first order difference equation shown in Equation .

Given a sufficiently descriptive set of initial conditions or boundary conditions, if there is a solution to the difference equation, that
solution is unique and describes the behavior of the system. Of course, the results are only accurate to the degree that the model
mirrors reality.

Linear Constant Coefficient Difference Equations 
An important subclass of difference equations is the set of linear constant coefficient difference equations. These equations are of
the form

where  is a difference operator of the form given

in which  is the first difference operator

Note that operators of this type satisfy the linearity conditions, and  are real constants.

However, Equation  can easily be written as a linear constant coefficient recurrence equation without difference operators.
Conversely, linear constant coefficient recurrence equations can also be written in the form of a difference equation, so the two
types of equations are different representations of the same relationship. Although we will still call them linear constant coefficient
difference equations in this course, we typically will not write them using difference operators. Instead, we will write them in the
simpler recurrence relation form

where  is the input to the system and  is the output. This can be rearranged to find  as

The forms provided by Equation  and Equation  will be used in the remainder of this course.

A similar concept for continuous time setting, differential equations, is discussed in the chapter on time domain analysis of
continuous time systems. There are many parallels between the discussion of linear constant coefficient ordinary differential
equations and linear constant coefficient difference equations.

Applications of Difference Equations 
Difference equations can be used to describe many useful digital filters as described in the chapter discussing the z-transform. An
additional illustrative example is provided here.
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Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a pair rabbits get left alone in a
black box... The assumptions are that a pair of rabbits never die and produce a pair of offspring every month starting on their
second month of life. This system is defined by the recursion relation for the number of rabbit pairs  at month 

with the initial conditions  and . The result is a very fast growth in the sequence. This is why we do not open
black boxes.

Linear Constant Coefficient Difference Equations Summary 
Difference equations are an important mathematical tool for modeling discrete time systems. An important subclass of these is the
class of linear constant coefficient difference equations. Linear constant coefficient difference equations are often particularly easy
to solve as will be described in the module on solutions to linear constant coefficient difference equations and are useful in
describing a wide range of situations that arise in electrical engineering and in other fields.
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4.8: Solving Linear Constant Coefficient Difference Equations

Introduction 

The approach to solving linear constant coefficient difference equations is to find the general form of all possible solutions to the
equation and then apply a number of conditions to find the appropriate solution. The two main types of problems are initial value
problems, which involve constraints on the solution at several consecutive points, and boundary value problems, which involve
constraints on the solution at nonconsecutive points.

The number of initial conditions needed for an th order difference equation, which is the order of the highest order difference or
the largest delay parameter of the output in the equation, is , and a unique solution is always guaranteed if these are supplied.
Boundary value problems can be slightly more complicated and will not necessarily have a unique solution or even a solution at all
for a given set of conditions. Thus, this section will focus exclusively on initial value problems.

Solving Linear Constant Coefficient Difference Equations 

Consider some linear constant coefficient difference equation given by , in which  is a difference operator of the
form

where  is the first difference operator

Let  and  be two functions such that  and . By the linearity of , note that 
. Thus, the form of the general solution  to any linear constant coefficient ordinary

differential equation is the sum of a homogeneous solution  to the equation  and a particular solution  that is
specific to the forcing function .

We wish to determine the forms of the homogeneous and nonhomogeneous solutions in full generality in order to avoid incorrectly
restricting the form of the solution before applying any conditions. Otherwise, a valid set of initial or boundary conditions might
appear to have no corresponding solution trajectory. The following sections discuss how to accomplish this for linear constant
coefficient difference equations.

Finding the Homogeneous Solution 

In order to find the homogeneous solution to a difference equation described by the recurrence relation

consider the difference equation

We know that the solutions have the form  for some complex constants . Since  for a solution it follows
that

so it also follows that

Therefore, the solution exponential are the roots of the above polynomial, called the characteristic polynomial.
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For equations of order two or more, there will be several roots. If all of the roots are distinct, then the general form of the
homogeneous solution is simply

If a root has multiplicity that is greater than one, the repeated solutions must be multiplied by each power of  from 0 to one less
than the root multiplicity (in order to ensure linearly independent solutions). For instance, if  had a multiplicity of 2 and  had
multiplicity 3, the homogeneous solution would be

Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a pair rabbits get left alone in a
black box... The assumptions are that a pair of rabits never die and produce a pair of offspring every month starting on their
second month of life. This system is defined by the recursion relation for the number of rabit pairs  at month 

with the initial conditions  and .

Note that the forcing function is zero, so only the homogenous solution is needed. It is easy to see that the characteristic

polynomial is , so there are two roots with multiplicity one. These are  and . Thus, the
solution is of the form

Using the initial conditions, we determine that

and

Hence, the Fibonacci sequence is given by

Finding the Particular Solution 

Finding the particular solution is a slightly more complicated task than finding the homogeneous solution. It can be found through
convolution of the input with the unit impulse response once the unit impulse response is known. Finding the particular solution ot
a differential equation is discussed further in the chapter concerning the z-transform, which greatly simplifies the procedure for
solving linear constant coefficient differential equations using frequency domain tools.

Consider the following difference equation describing a system with feedback

In order to find the homogeneous solution, consider the difference equation

It is easy to see that the characteristic polynomial is , so  is the only root. Thus the homogeneous solution is of
the form
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In order to find the particular solution, consider the output for the  unit impulse case

By inspection, it is clear that the impulse response is . Hence, the particular solution for a given  is

Therefore, the general solution is

Initial conditions and a specific input can further tailor this solution to a specific situation.

Solving Difference Equations Summary 

Linear constant coefficient difference equations are useful for modeling a wide variety of discrete time systems. The approach to
solving them is to find the general form of all possible solutions to the equation and then apply a number of conditions to find the
appropriate solution. This is done by finding the homogeneous solution to the difference equation that does not depend on the
forcing function input and a particular solution to the difference equation that does depend on the forcing function input.

This page titled 4.8: Solving Linear Constant Coefficient Difference Equations is shared under a CC BY license and was authored, remixed,
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CHAPTER OVERVIEW

5: Introduction to Fourier Analysis
5.1: Introduction to Fourier Analysis
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5.1: Introduction to Fourier Analysis

Fourier's Daring Leap 

Fourier postulated around 1807 that any periodic signal (equivalently finite length signal) can be built up as an infinite linear
combination of harmonic sinusoidal waves.

i.e. Given the collection

any

can be approximated arbitrarily closely by

Now, The issue of exact convergence did bring Fourier much criticism from the French Academy of Science (Laplace, Lagrange,
Monge and LaCroix comprised the review committee) for several years after its presentation on 1807. It was not resolved for also a
century, and its resolution is interesting and important to understand from a practical viewpoint. See more in the section on Gibbs
Phenomena.

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of the fact that sinusoids are
Eigenfunctions (Section 14.5) of linear, time-invariant (LTI) (Section 2.2) systems. This is to say that if we pass any particular
sinusoid through a LTI system, we get a scaled version of that same sinusoid on the output. Then, since Fourier analysis allows us
to redefine the signals in terms of sinusoids, all we need to do is determine how any given system effects all possible sinusoids (its
transfer function) and we have a complete understanding of the system. Furthermore, since we are able to define the passage of
sinusoids through a system as multiplication of that sinusoid by the transfer function at the same frequency, we can convert the
passage of any signal through a system from convolution (Section 3.4) (in time) to multiplication (in frequency). These ideas are
what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must examine exactly what we mean by Fourier
analysis. The four Fourier transforms that comprise this analysis are the Fourier Series, Continuous-Time Fourier Transform
(Section 8.2), Discrete-Time Fourier Transform (Section 9.2), and Discrete Fourier Transform. For this document, we will view the
Laplace Transform (Section 11.1) and Z-Transform as simply extensions of the CTFT and DTFT respectively. All of these
transforms act essentially the same way, by converting a signal in time to an equivalent signal in frequency (sinusoids). However,
depending on the nature of a specific signal i.e. whether it is finite- or infinite-length and whether it is discrete- or continuous-time)
there is an appropriate transform to convert the signal into the frequency domain. Below is a table of the four Fourier transforms
and when each is appropriate. It also includes the relevant convolution for the specified space.

Table : Table of Fourier Representations
Transform Time Domain Frequency Domain Convolution

Continuous-Time Fourier Series Continuous-Time Circular

Continuous-Time Fourier
Transform

Continuous-Time Linear

Discrete-Time Fourier Transform Discrete-Time Linear

Discrete Fourier Transform Discrete-Time Circular

This page titled 5.1: Introduction to Fourier Analysis is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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6: Continuous Time Fourier Series (CTFS)
6.1: Continuous Time Periodic Signals
6.2: Continuous Time Fourier Series (CTFS)
6.3: Common Fourier Series
6.4: Properties of the CTFS
6.5: Continuous Time Circular Convolution and the CTFS
6.6: Convergence of Fourier Series
6.7: Gibbs Phenomena
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6.1: Continuous Time Periodic Signals

Introduction 

This module describes the type of signals acted on by the Continuous Time Fourier Series.

Relevant Spaces 
The Continuous-Time Fourier Series maps finite-length (or -periodic), continuous-time signals in  to infinite-length, discrete-
frequency signals in .

Figure : Mapping  in the time domain to  in the frequency domain.

Periodic Signals 
When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic function can be
mathematically defined as:

where  represents the fundamental period of the signal, which is the smallest positive value of  for the signal to repeat.
Because of this, you may also see a signal referred to as a -periodic signal. Any function that satisfies this equation is said to be
periodic with period T.

We can think of periodic functions (with period ) two different ways:

1. as functions on all of 

Figure : Continuous time periodic function over all of  where 

2. or, we can cut out all of the redundancy, and think of them as functions on an interval  (or, more generally, ). If
we know the signal is -periodic then all the information of the signal is captured by the above interval.

Figure : Remove the redundancy of the period function so that  is undefined outside .

An aperiodic CT function , on the other hand, does not repeat for any ; i.e. there exists no  such that Equation 
holds.

Demonstration 
Here's an example demonstrating a periodic sinusoidal signal with various frequencies, amplitudes and phase delays:

T L2

l2

6.1.1 ([0, T ))L2 (Z)l2

f(t) = f(t +mT )∀m : (m ∈ Z) (6.1.1)

T > 0 T

T

T

R

6.1.1 R f( ) = f( + T )t0 t0

[0, T ] [a, a +T ]

T

6.1.2 f(t) [0, T ]

f(t) T ∈ R T 6.1.1
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Figure : Interact (when online) with a Mathematica CDF demonstrating a Periodic Sinusoidal Signal with various frequencies,
amplitudes, and phase delays. To download, right click and save file as .cdf.

To learn the full concept behind periodicity, see the video below.

Khan Lecture on Periodic
Signals

video
from

Khan Academy
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Conclusion 

A periodic signal is completely defined by its values in one period, such as the interval .

This page titled 6.1: Continuous Time Periodic Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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6.2: Continuous Time Fourier Series (CTFS)

Introduction 

In this module, we will derive an expansion for continuous-time, periodic functions, and in doing so, derive the Continuous Time
Fourier Series (CTFS).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Section 14.5), calculating the
output of an LTI system  given  as an input amounts to simple multiplication, where  is the eigenvalue
corresponding to . As shown in the figure, a simple exponential input would yield the output

Figure : Simple LTI system.

Using this and the fact that  is linear, calculating  for combinations of complex exponentials is also straightforward.

The action of  on an input such as those in the two equations above is easy to explain.  independently scales each exponential
component  by a different complex number . As such, if we can write a function  as a combination of complex
exponentials it allows us to easily calculate the output of a system.

Fourier Series Synthesis 

Joseph Fourier demonstrated that an arbitrary  can be written as a linear combination of harmonic complex sinusoids

where  is the fundamental frequency. For almost all  of practical interest, there exists  to make Equation  true.
If  is finite energy , then the equality in Equation  holds in the sense of energy convergence; if  is
continuous, then Equation  holds pointwise. Also, if  meets some mild conditions (the Dirichlet conditions), then
Equation  holds pointwise everywhere except at points of discontinuity.

The  - called the Fourier coefficients - tell us "how much" of the sinusoid  is in . The formula shows  as a sum of
complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system).
Mathematically, it tells us that the set of complex exponentials  form a basis for the space of -periodic
continuous time functions.

We know from Euler's formula that .

Synthesis with Sinusoids Demonstration 

H est H(s) ∈ C

s

y(t) = H(s)est

6.2.1

H y(t)

+c1e
ts1 c2e

ts2

∑
n

cne
tsn

→ H ( ) + H ( )c1 s1 e ts1 c2 s2 e ts2

→ H ( )∑
n

cn sn e tsn

(6.2.1)

(6.2.2)

H H

e tsn H ( ) ∈ Csn f(t)

f(t)

f(t) = ∑
n=−∞

∞

cne
j ntω0 (6.2.3)

=ω0
2π
T

f(t) cn 6.2.3

f(t) (f(t) ∈ [0,T ])L2 6.2.3 f(t)

6.2.3 f(t)

6.2.3

cn ej ntω0 f(t) f(t)

{∀n,n ∈ Z : ( )}ej ntω0 T

Example 6.2.1
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2
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Figure : Interact(when online) with a Mathematica CDF demonstrating sinusoid synthesis. To download, right click and save
as .cdf.

Fourier Series Analysis 
Finding the coefficients of the Fourier series expansion involves some algebraic manipulation of the synthesis formula. First of all
we will multiply both sides of the equation by , where .

Now integrate both sides over a given period, :

On the right-hand side we can switch the summation and integral and factor the constant out of the integral.

Now that we have made this seemingly more complicated, let us focus on just the integral, , on the right-hand side
of the above equation. For this integral we will need to consider two cases:  and . For  we will have:

For , we will have:

But  has an integer number of periods, , between 0 and . Imagine a graph of the cosine; because it has an
integer number of periods, there are equal areas above and below the x-axis of the graph. This statement holds true for 

 as well. What this means is

which also holds for the integral involving the sine function. Therefore, we conclude the following about our integral of interest:

Now let us return our attention to our complicated equation, Equation , to see if we can finish finding an equation for our
Fourier coefficients. Using the facts that we have just proven above, we can see that the only time Equation  will have a
nonzero result is when  and  are equal:

Finally, we have our general equation for the Fourier coefficients:

Consider the square wave function given by

6.2.2

e−(j kt)ω0 k ∈ Z

f(t) =e−(j kt)ω0 ∑
n=−∞

∞

cne
j ntω0 e−(j kt)ω0 (6.2.4)

T

f(t) dt = dt∫
T

0

e−(j kt)ω0 ∫
T

0

∑
n=−∞

∞

cne
j ntω0 e−(j kt)ω0 (6.2.5)

f(t) dt = dt∫
T

0

e−(j kt)ω0 ∑
n=−∞

∞

cn ∫
T

0

ej (n−k)tω0 (6.2.6)

dt∫ T

0
ej (n−k)tω0

n = k n ≠ k n = k

∀n,n = k : ( dt = T)∫
T

0

ej (n−k)tω0 (6.2.7)

n ≠ k

∀n,n ≠ k : ( dt = cos( (n−k)t)dt+j sin( (n−k)t)dt)∫
T

0

ej (n−k)tω0 ∫
T

0

ω0 ∫
T

0

ω0 (6.2.8)

cos( (n−k)t)ω0 n−k T

sin( (n−k)t)ω0

cos( (n−k)t)dt = 0∫
T

0

ω0

dt ={∫
T

0

ej (n−k)tω0
T  if n = k

0 otherwise 

6.2.6

6.2.6

k n
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T

0
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= f(t) dtcn
1

T
∫

T

0

e−(j nt)ω0
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on the unit interval .

Thus, the Fourier coefficients of this function found using the Fourier series analysis formula are

Fourier Series Summary 
Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex
exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the
sum of continuous time, discrete frequency complex exponentials.

The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.

In both of these equations  is the fundamental frequency.

This page titled 6.2: Continuous Time Fourier Series (CTFS) is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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6.3: Common Fourier Series

Introduction 

Once one has obtained a solid understanding of the fundamentals of Fourier series analysis and the General Derivation of the
Fourier Coefficients, it is useful to have an understanding of the common signals used in Fourier Series Signal Approximation.

Deriving the Fourier Coefficients 
Consider a square wave  of length 1. Over the range [0,1), this can be written as

Fourier series approximation of a square wave

Figure : Fourier series approximation to . The number of terms in the Fourier sum is indicated in each plot, and the
square wave is shown as a dashed line over two periods.

Real Even Signals

Given that the square wave is a real and even signal,

 EVEN
 REAL

therefore,

 EVEN
 REAL

Consider this mathematical question intuitively: Can a discontinuous function, like the square wave, be expressed as a sum, even an
infinite one, of continuous signals? One should at least be suspicious, and in fact, it can't be thus expressed.

The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's phenomenon after the American
physicist Josiah Willard Gibbs. They occur whenever the signal is discontinuous, and will always be present whenever the signal
has jumps.

Deriving the Fourier Coefficients for Other Signals 
The Square wave is the standard example, but other important signals are also useful to analyze, and these are included here.

f(x)

x(t) ={ .
1

−1

t ≤ 1
2

t > 1
2

6.3.1 sq(t)

f(t) = f(−t)

f(t) = (t)f ∗

=cn c−n

=cn c∗
n
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Constant Waveform 

This signal is relatively self-explanatory: the time-varying portion of the Fourier Coefficient is taken out, and we are left simply
with a constant function over all time.

Sinusoid Waveform 

With this signal, only a specific frequency of time-varying Coefficient is chosen (given that the Fourier Series equation includes a
sine wave, this is intuitive), and all others are filtered out, and this single time-varying coefficient will exactly match the desired
signal.

Triangle Waveform 

This is a more complex form of signal approximation to the square wave. Because of the Symmetry Properties of the Fourier
Series, the triangle wave is a real and odd signal, as opposed to the real and even square wave signal. This means that

 ODD
 REAL

therefore,

 IMAGINARY

Fourier series approximation of a triangle wave

Figure

Sawtooth Waveform 

Because of the Symmetry Properties of the Fourier Series, the sawtooth wave can be defined as a real and odd signal, as opposed
to the real and even square wave signal. This has important implications for the Fourier Coefficients.

x(t) = 1

x(t) = sin(πt)
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⎧

⎩
⎨
⎪

⎪

t

2 −4t

−7/4 +4t

t ≤ 1/4
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f(t) = −f(−t)

f(t) = (t)f ∗
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Fourier series approximation of a sawtooth wave

Figure

Fourier Series Approximation VI 

6.3.3
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Figure : Interact (when online) with a Mathematica CDF demonstrating the common Fourier Series. To download, right click
and save file as .cdf.

Summary 
To summarize, a great deal of variety exists among the common Fourier Transforms. A summary table is provided here with the
essential information.

Table : Common Continuous-Time Fourier Series
Description Time Domain Signal for Frequency Domain Signal

Constant Waveform

6.3.4

6.3.1

t ∈ [0,1)

x(t) = 1 = {ck

1

0

k = 0

k ≠ 0
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Description Time Domain Signal for Frequency Domain Signal

Sinusoid Waveform

Square Waveform

Triangle Waveform

Sawtooth Waveform

This page titled 6.3: Common Fourier Series is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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6.4: Properties of the CTFS

Introduction 

In this module we will discuss the basic properties of the Continuous-Time Fourier Series. We will begin by refreshing your
memory of our basic Fourier series equations:

Let  denote the transformation from  to the Fourier coefficients

 maps complex valued functions to sequences of complex numbers.

Linearity 
 is a linear transformation.

If  and . Then

and

Proof

Easy. Just linearity of integral.

Shifting 
Shifting in time equals a phase shift of Fourier coefficients.

 if , then

Proof
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Parseval's Relation 

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Parseval tells us that the Fourier series maps  to .

Figure 

For  to have "finite energy," what do the  do as ?

Answer

 for  to have finite energy.

If , is ?

Answer

Yes, because , which is summable.

Now, if  is ?

Answer

No, because , which is not summable.

The rate of decay of the Fourier series determines if  has finite energy.
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Parsevals Theorem Demonstration 

Figure : Interact (when online) with a Mathematica CDF demonstrating Parsevals Theorem. To download, right click and save
file as .cdf.
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Symmetry Properties 

Even Signals

Proof

Odd Signals

Proof

Real Signals

Proof

Differentiation in Fourier Domain 
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Rule : Real Signals6.4.3
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1
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Since

then

A differentiator attenuates the low frequencies in  and accentuates the high frequencies. It removes general trends and
accentuates areas of sharp variation.

A common way to mathematically measure the smoothness of a function  is to see how many derivatives are finite energy.

This is done by looking at the Fourier coefficients of the signal, specifically how fast they decay as . If  and 

 has the form , then  and has the form . So for the  derivative to have finite energy, we

need

thus  decays faster than  which implies that

or

Thus the decay rate of the Fourier series dictates smoothness.

Fourier Differentiation Demonstration 

f(t) = ∑
n=−∞

∞

cne
j ntω0

f(t)
d

dt
= ∑

n=−∞

∞

cn
dej ntω0

dt

= j n∑
n=−∞

∞

cn ω0 ei ntω0 (6.4.3)
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Figure : Interact (when online) with a Mathematica CDF demonstrating Differentiation in the Fourier Domain. To download,
right click and save file as .cdf.

Integration in the Fourier Domain 

If

6.4.3

F(f(t)) = cn
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then

If , this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the general trends in signals and
suppress short term variation (which is noise in many cases). Integrators are much nicer than differentiators.

Fourier Integration Demonstration 

Figure : Interact (when online) with a Mathematica CDF demonstrating Integration in the Fourier Domain. To download, right
click and save file as .cdf.

F ( f(τ)dτ) =∫
t

−∞

1

j nω0
cn

Note

≠ 0c0

6.4.4
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Signal Multiplication and Convolution 

Given a signal  with Fourier coefficients  and a signal  with Fourier coefficients , we can define a new signal, ,
where . We find that the Fourier Series representation of , , is such that . This is to say
that signal multiplication in the time domain is equivalent to signal convolution in the frequency domain, and vice-versa: signal
multiplication in the frequency domain is equivalent to signal convolution in the time domain. The proof of this is as follows

for more details, see the section on Signal convolution and the CTFS (Section 4.3).

Conclusion 
Like other Fourier transforms, the CTFS has many useful properties, including linearity, equal energy in the time and frequency
domains, and analogs for shifting, differentiation, and integration.

Table : Properties of the CTFS

Property Signal CTFS

Linearity

Time Shifting

Time Modulation

Multiplication

Continuous Convolution

This page titled 6.4: Properties of the CTFS is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..

f(t) cn g(t) dn y(t)
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i=−∞ ckdn−k

en = f(t)g(t) dt
1

T
∫

T

0
e−(j nt)ω0
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= ∑
k=−∞

∞

ckdn−k (6.4.4)
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6.5: Continuous Time Circular Convolution and the CTFS

Introduction 

This module relates circular convolution of periodic signals in the time domain to multiplication in the frequency domain.

Signal Circular Convolution 
Given a signal  with Fourier coefficients  and a signal  with Fourier coefficients , we can define a new signal, ,
where . We find that the Fourier Series representation of , , is such that .  is the
circular convolution (Section 7.5) of two periodic signals and is equivalent to the convolution over one interval, i.e. 

.

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients.

This is proved as follows

Exercise 
Take a look at a square pulse with a period of .

Figure 

For this signal

Take a look at a triangle pulse train with a period of .

f(t) cn g(t) dn v(t)

v(t) = f(t) ⊛g(t) v(t) an =an cndn f(t) ⊛g(t)
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0 ∫ T

0

Note
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1

T
∫

T

0

e−(j nt)ω0
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T 2
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∫
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∫
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Figure 

This signal is created by circularly convolving the square pulse with itself. The Fourier coefficients for this signal are 
.

Find the Fourier coefficients of the signal that is created when the square pulse and the triangle pulse are convolved.

Answer

Conclusion 

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients in the frequency domain.

This page titled 6.5: Continuous Time Circular Convolution and the CTFS is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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6.6: Convergence of Fourier Series

Introduction 

Before looking at this module, hopefully you have become fully convinced of the fact that any periodic function, , can be
represented as a sum of complex sinusoids (Section 1.4). If you are not, then try looking back at eigen-stuff in a nutshell (Section
14.4) or eigenfunctions of LTI systems (Section 14.5). We have shown that we can represent a signal as the sum of exponentials
through the Fourier Series equations below:

Joseph Fourier insisted that these equations were true, but could not prove it. Lagrange publicly ridiculed Fourier, and said that
only continuous functions can be represented by Equation  (indeed he proved that Equation  holds for continuous-time
functions). However, we know now that the real truth lies in between Fourier and Lagrange's positions.

Understanding the Truth 
Formulating our question mathematically, let

where  equals the Fourier coefficients of  (see Equation ).

 is a "partial reconstruction" of  using the first  Fourier coefficients.  approximates , with the

approximation getting better and better as  gets large. Therefore, we can think of the set  as a

sequence of functions, each one approximating  better than the one before.

The question is, does this sequence converge to ? Does  as ? We will try to answer this question by
thinking about convergence in two different ways:

1. Looking at the energy of the error signal:

2. Looking at  at each point and comparing to .

Approach #1 

Let  be the difference (i.e. error) between the signal  and its partial reconstruction 

If  (finite energy), then the energy of  as  is

We can prove this equation using Parseval's relation:

where the last equation before zero is the tail sum of the Fourier Series, which approaches zero because . Since
physical systems respond to energy, the Fourier Series provides an adequate representation for all  equaling finite
energy over one period.
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Approach #2 

The fact that  says nothing about  and  being equal at a given point. Take the two functions graphed

below for example:

(a)

(b)

Figure 

Given these two functions,  and , then we can see that for all , , but

From this we can see the following relationships:

energy convergence  pointwise convergence

pointwise convergence  convergence in 

However, the reverse of the above statement does not hold true.

It turns out that if  has a discontinuity (as can be seen in figure of  above) at , then

But as long as  meets some other fairly mild conditions, then

if  is continuous at . 
 
These conditions are known as the Dirichlet Conditions.

Dirichlet Conditions 
Named after the German mathematician, Peter Dirichlet, the Dirichlet conditions are the sufficient conditions to guarantee
existence and energy convergence of the Fourier Series.

The Weak Dirichlet Condition for the Fourier Series 

For the Fourier Series to exist, the Fourier coefficients must be finite. The Weak Dirichlet Condition guarantees this. It essentially
says that the integral of the absolute value of the signal must be finite.

The coefficients of the Fourier Series are finite if

Proof

→ 0eN f(t) lim
N→∞

d (t)fN

d

6.6.1

f(t) g(t) t f(t) ≠ g(t)
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0
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f ( ) =t′ lim
N→∞
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Theorem : Weak Dirichlet Condition for the Fourier Series6.6.1
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This can be shown from the magnitude of the Fourier Series coefficients:

Remembering our complex exponentials (Section 1.8), we know that in the above equation , which gives us:

If we have the function:

then you should note that this function fails the above condition because:

The Strong Dirichlet Conditions for the Fourier Series 

For the Fourier Series to exist, the following two conditions must be satisfied (along with the Weak Dirichlet Condition):

1. In one period,  has only a finite number of minima and maxima.
2. In one period,  has only a finite number of discontinuities and each one is finite.

These are what we refer to as the Strong Dirichlet Conditions. In theory we can think of signals that violate these conditions, 
 for instance. However, it is not possible to create a signal that violates these conditions in a lab. Therefore, any real-

world signal will have a Fourier representation.

Let us assume we have the following function and equality:

If  meets all three conditions of the Strong Dirichlet Conditions, then

at every  at which  is continuous. And where  is discontinuous,  is the average of the values on the right and
left.

(a)

(b)

Figure : Discontinuous functions, 
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The functions that fail the strong Dirchlet conditions are pretty pathological - as engineers, we are not too interested in them.

This page titled 6.6: Convergence of Fourier Series is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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6.7: Gibbs Phenomena

Introduction 

The Fourier Series is the representation of continuous-time, periodic signals in terms of complex exponentials. The Dirichlet
conditions suggest that discontinuous signals may have a Fourier Series representation so long as there are a finite number of
discontinuities. This seems counter-intuitive, however, as complex exponentials (Section 1.8) are continuous functions. It does not
seem possible to exactly reconstruct a discontinuous function from a set of continuous ones. In fact, it is not. However, it can be if
we relax the condition of 'exactly' and replace it with the idea of 'almost everywhere'. This is to say that the reconstruction is
exactly the same as the original signal except at a finite number of points. These points, not necessarily surprisingly, occur at the
points of discontinuities.

History 

In the late 1800s, many machines were built to calculate Fourier coefficients and re-synthesize:

Albert Michelson (an extraordinary experimental physicist) built a machine in 1898 that could compute  up to , and
he re-synthesized

The machine performed very well on all tests except those involving discontinuous functions. When a square wave, like that
shown in Figure , was inputted into the machine, "wiggles" around the discontinuities appeared, and even as the number of
Fourier coefficients approached infinity, the wiggles never disappeared - these can be seen in the last plot in Figure . J.
Willard Gibbs first explained this phenomenon in 1899, and therefore these discontinuous points are referred to as Gibbs
Phenomenon.

Explanation 

We begin this discussion by taking a signal with a finite number of discontinuities (like a square pulse) and finding its Fourier
Series representation. We then attempt to reconstruct it from these Fourier coefficients. What we find is that the more coefficients
we use, the more the signal begins to resemble the original. However, around the discontinuities, we observe rippling that does not
seem to subside. As we consider even more coefficients, we notice that the ripples narrow, but do not shorten. As we approach an
infinite number of coefficients, this rippling still does not go away. This is when we apply the idea of almost everywhere. While
these ripples remain (never dropping below 9% of the pulse height), the area inside them tends to zero, meaning that the energy of
this ripple goes to zero. This means that their width is approaching zero and we can assert that the reconstruction is exactly the
original except at the points of discontinuity. Since the Dirichlet conditions assert that there may only be a finite number of
discontinuities, we can conclude that the principle of almost everywhere is met. This phenomenon is a specific case of nonuniform
convergence.

Below we will use the square wave, along with its Fourier Series representation, and show several figures that reveal this
phenomenon more mathematically.

Square Wave 

The Fourier series representation of a square signal below says that the left and right sides are "equal." In order to understand Gibbs
Phenomenon we will need to redefine the way we look at equality.

Figure  shows several Fourier series approximations of the square wave using a varied number of terms, denoted by KK:
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Fourier series approximations of a square wave

Figure : Fourier series approximation to . The number of terms in the Fourier sum is indicated in each plot, and the
square wave is shown as a dashed line over two periods.

When comparing the square wave to its Fourier series representation in Figure , it is not clear that the two are equal. The fact
that the square wave's Fourier series requires more terms for a given representation accuracy is not important. However, close
inspection of Figure  does reveal a potential issue: Does the Fourier series really equal the square wave at all values of tt? In
particular, at each step-change in the square wave, the Fourier series exhibits a peak followed by rapid oscillations. As more terms
are added to the series, the oscillations seem to become more rapid and smaller, but the peaks are not decreasing. Consider this
mathematical question intuitively: Can a discontinuous function, like the square wave, be expressed as a sum, even an infinite one,
of continuous ones? One should at least be suspicious, and in fact, it can't be thus expressed. This issue brought Fourier much
criticism from the French Academy of Science (Laplace, Legendre, and Lagrange comprised the review committee) for several
years after its presentation on 1807. It was not resolved for also a century, and its resolution is interesting and important to
understand from a practical viewpoint.

The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's phenomenon after the American
physicist Josiah Willard Gibbs. They occur whenever the signal is discontinuous, and will always be present whenever the signal
has jumps.

Redefine Equality 

Let's return to the question of equality; how can the equal sign in the definition of the Fourier series (Section 4.3) be justified? The
partial answer is that pointwise--each and every value of --equality is not guaranteed. What mathematicians later in the nineteenth
century showed was that the rms error of the Fourier series was always zero.

What this means is that the difference between an actual signal and its Fourier series representation may not be zero, but the square
of this quantity has zero integral! It is through the eyes of the rms value that we define equality: Two signals ,  are said
to be equal in the mean square if rms . These signals are said to be equal pointwise if  for all values of
. For Fourier series, Gibb's phenomenon peaks have finite height and zero width: The error differs from zero only at isolated

points--whenever the periodic signal contains discontinuities--and equals about 9% of the size of the discontinuity. The value of a
function at a finite set of points does not affect its integral. This effect underlies the reason why defining the value of a
discontinuous function at its discontinuity is meaningless. Whatever you pick for a value has no practical relevance for either the
signal's spectrum or for how a system responds to the signal. The Fourier series value "at" the discontinuity is the average of the
values on either side of the jump.

Visualizing Gibb's Phenomena 
The following VI demonstrates the occurrence of Gibb's Phenomena. Note how the wiggles near the square pulse to the left remain
even if you drastically increase the order of the approximation, even though they do become narrower. Also notice how the
approximation of the smooth region in the middle is much better than that of the discontinuous region, especially at lower orders.

6.7.1 sq(t)

6.7.1

6.7.1

t

rms( ) = 0lim
K→∞

εK

(t)s1 (t)s2
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Figure : Interact (when online) with a Mathematica CDF demonstrating Gibbs Phenomena. To download, right click and save
as .cdf.

Conclusion 

We can approximate a function by re-synthesizing using only some of the Fourier coefficients (truncating the F.S.)

This approximation works well where  is continuous, but not so well where  is discontinuous. In the regions of
discontinuity, we will always find Gibb's Phenomena, which never decrease below 9% of the height of the discontinuity, but
become narrower and narrower as we add more terms.

This page titled 6.7: Gibbs Phenomena is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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7.1: Discrete Time Periodic Signals

Introduction 

This module describes the type of signals acted on by the Discrete Time Fourier Series.

Relevant Spaces 
The Discrete Time Fourier Series maps finite-length (or -periodic), discrete time signals in  to finite-length, discrete-frequency
signals in .

Figure 

Periodic signals in discrete time repeats themselves in each cycle. However, only integers are allowed as time variable in discrete
time. We denote signals in such case as , 

Periodic Signals 
When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic function can be
mathematically defined as:

where  represents the fundamental period of the signal, which is the smallest positive value of N for the signal to repeat.
Because of this, you may also see a signal referred to as an N-periodic signal. Any function that satisfies this equation is said to be
periodic with period N. Here's an example of a discrete-time periodic signal with period N:

discrete-time periodic signal

Figure : Notice the function is the same after a time shift of N

We can think of periodic functions (with period ) two different ways:

N L2

l2

7.1.1

x[n] n = … , −2, −1, 0, 1, 2, …

f [n] = f [n +mN ]∀m : (m ∈ Z) (7.1.1)

N > 0

7.1.2

N
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1. as functions on all of 

Figure : discrete time periodic function over all of  where 

2. or, we can cut out all of the redundancy, and think of them as functions on an interval  (or, more generally, ). If
we know the signal is N-periodic then all the information of the signal is captured by the above interval.

Figure : Remove the redundancy of the period function so that  is undefined outside .

An aperiodic DT function  does not repeat for any ; i.e. there exists no  such that Equation  holds.

SinDrillDiscrete Demonstration 
Here's an example demonstrating a periodic sinusoidal signal with various frequencies, amplitudes and phase delays:

R

7.1.3 R f[ ] = f[ + N ]n0 n0

[0, N ] [a, a +N ]

7.1.4 f[n] [0, N ]

f [n] N ∈ R N 7.1.1
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Figure : Interact (when online) with a Mathematica CDF demonstrating a discrete periodic sinusoidal signal with various
frequencies, amplitudes and phase delays.

Conclusion 

A discrete periodic signal is completely defined by its values in one period, such as the interval [0,N].

This page titled 7.1: Discrete Time Periodic Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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7.2: Discrete Time Fourier Series (DTFS)

Introduction 

In this module, we will derive an expansion for discrete-time, periodic functions, and in doing so, derive the Discrete Time
Fourier Series (DTFS), or the Discrete Fourier Transform (DFT).

DTFS 

Eigenfunction analysis 

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Section 14.5), calculating the
output of an LTI system  given  as an input amounts to simple multiplication, where , and where  is the
eigenvalue corresponding to . As shown in the figure, a simple exponential input would yield the output

Figure : Simple LTI system.

Using this and the fact that  is linear, calculating  for combinations of complex exponentials is also straightforward.

The action of  on an input such as those in the two equations above is easy to explain.  independently scales each exponential
component  by a different complex number . As such, if we can write a function  as a combination of complex
exponentials it allows us to easily calculate the output of a system.

DTFS synthesis 

It can be demonstrated that an arbitrary Discrete Time-periodic function  can be written as a linear combination of harmonic
complex sinusoids

where  is the fundamental frequency. For almost all  of practical interest, there exists  to make Equation  true.
If  is finite energy ( ), then the equality in Equation  holds in the sense of energy convergence; with
discrete-time signals, there are no concerns for divergence as there are with continuous-time signals.

The  - called the Fourier coefficients - tell us "how much" of the sinusoid  is in . The formula shows  as a sum of
complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system).
Mathematically, it tells us that the set of complex exponentials  form a basis for the space of N-periodic
discrete time functions.

DFT Synthesis Demonstration 

H ejωn =ω0
2πk

N
H[k] ∈ C

k

y[n] = H[k]ejωn

7.2.1
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H H
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f [n]
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Figure : Download or Interact (when online) with a Mathematica CDF demonstrating Discrete Harmonic Sinusoids. To
download, right click and save as .cdf.

DTFS Analysis 
Say we have the following set of numbers that describe a periodic, discrete-time signal, where :

7.2.2

N = 4

{… , 3, 2, −2, 1, 3, …}
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Such a periodic, discrete-time signal (with period ) can be thought of as a finite set of numbers. For example, we can represent
this signal as either a periodic signal or as just a single interval as follows:

(a)

(b)
Figure : Here we can look at just one period of the signal that has a vector length of four and is contained in . (a) Periodic
Function (b) Function on the interval

The cardinalsity of the set of discrete time signals with period  equals .

Here, we are going to form a basis using harmonic sinusoids. Before we look into this, it will be worth our time to look at the
discrete-time, complex sinusoids in a little more detail.

Complex Sinusoids 

If you are familiar with the basic sinusoid signal and with complex exponentials (Section 1.8) then you should not have any
problem understanding this section. In most texts, you will see the the discrete-time, complex sinusoid noted as:

Figure : Complex sinusoid with frequency 

Figure : Complex sinusoid with frequency 

In the Complex Plane

The complex sinusoid can be directly mapped onto our complex plane, which allows us to easily visualize changes to the complex
sinusoid and extract certain properties. The absolute value of our complex sinusoid has the following characteristic:

which tells that our complex sinusoid only takes values on the unit circle. As for the angle, the following statement holds true:

For more information, see the section on the Discrete Time Complex Exponential to learn about Aliasing, Negative
Frequencies, and the formal definition of the Complex Conjugate .

Now that we have looked over the concepts of complex sinusoids, let us turn our attention back to finding a basis for discrete-time,
periodic signals. After looking at all the complex sinusoids, we must answer the question of which discrete-time sinusoids do we

N

7.2.3 C
4

[0, T ]

Note

N C
N

ejωn

7.2.4 ω = 0

7.2.5 ω = π

4

= 1, n ∈ R∣∣e
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https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22880?pdf
https://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4:348d7e59-cadb-48f1-a2ad-9976f40b3147


7.2.4 https://eng.libretexts.org/@go/page/22880

need to represent periodic sequences with a period .

Find a set of vectors  such that  are a basis for 

In answer to the above question, let us try the "harmonic" sinusoids with a fundamental frequency :

Harmonic Sinusoid

(a)

(b)

(c)

Figure : Examples of our Harmonic Sinusoids (a) Harmonic sinusoid with  (b) Imaginary
part of sinusoid, , with  (c) Imaginary part of sinusoid, , with 

 is periodic with period  and has  "cycles" between  and .

If we let

where the exponential term is a vector in , then  is an orthonormal basis (Section 15.8) for .

Proof

First of all, we must show  is orthonormal, i.e. 

If , then

If  then we must use the "partial summation formula" shown below:

N

Equivalent Question
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where in the above equation we can say that , and thus we can see how this is in the form needed to utilize our
partial summation formula.

So,

Therefore:  is an orthonormal set.  is also a basis (Section 14.1), since there are  vectors which are linearly independent
(Section 14.1 - Linear Independence) (orthogonality implies linear independence).

And finally, we have shown that the harmonic sinusoids  form an orthonormal basis for 

Periodic Extension to DTFS 

Now that we have an understanding of the discrete-time Fourier series (DTFS), we can consider the periodic extension of  (the
Discrete-time Fourier coefficients). Figure  shows a simple illustration of how we can represent a sequence as a periodic
signal mapped over an infinite number of intervals.

(a)

(b)
Figure : (a) vectors (b) periodic sequences

Why does a periodic (Section 6.1) extension to the DTFS coefficients  make sense?

Answer

Aliasing: 
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Examples

Figure 

the DTFS  using:

Just like continuous time Fourier series, we can take the summation over any interval, so we have

Let  (so we can get a geometric series starting at 0)

Now, using the "partial summation formula"

bk+N = e
j (k+N)n2π

N

= e
j kn

2π

N ej2πn

= ej n
2π

N

= bk (7.2.3)

Example : Discrete Time Square Wave7.2.1
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Manipulate to make this look like a sinc function (distribute):

It's periodic! Figure , Figure , and Figure  how our above function and coefficients for various values of 
.

(a)

(b)
Figure :  (a) Plot of . (b) Plot of 

(a)

(b)
Figure :  (a) Plot of . (b) Plot of .

(a)

(b)
Figure :  (a) Plot of . (b) Plot of .
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DTFS conclusion 

Using the steps shown above in the derivation and our previous understanding of Hilbert Spaces (Section 15.4) and Orthogonal
Expansions (Section 15.9), the rest of the derivation is automatic. Given a discrete-time, periodic signal (vector in ) , we can
write:

Note: Most people collect both the  terms into the expression for .

Here is the common form of the DTFS with the above note taken into account:

This is what the  command in MATLAB does.

This page titled 7.2: Discrete Time Fourier Series (DTFS) is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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7.3: Common Discrete Fourier Series

Introduction

Once one has obtained a solid understanding of the fundamentals of Fourier series analysis and the General Derivation of the
Fourier Coefficients, it is useful to have an understanding of the common signals used in Fourier Series Signal Approximation.

Deriving the Coefficients 
Consider a square wave  of length 1. Over the range [0,1), this can be written as

Fourier series approximation of a square wave

Figure : Fourier series approximation to . The number of terms in the Fourier sum is indicated in each plot, and the
square wave is shown as a dashed line over two periods.

Real Even SignalsGiven that the square wave is a real and even signal,

 EVEN
 REAL

therefore,

 EVEN
 REAL

Deriving the Coefficients for other signals 
The Square wave is the standard example, but other important signals are also useful to analyze, and these are included here.

Constant Waveform 

This signal is relatively self-explanatory: the time-varying portion of the Fourier Coefficient is taken out, and we are left simply
with a constant function over all time.

f(x)
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−1
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2

t > 1
2
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Fourier series approximation of a constant wave

Figure 

Sinusoid Waveform 

With this signal, only a specific frequency of time-varying Coefficient is chosen (given that the Fourier Series equation includes a
sine wave, this is intuitive), and all others are filtered out, and this single time-varying coefficient will exactly match the desired
signal.

7.3.2

x(t) = cos(2πt)
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Fourier series approximation of a sinusoid wave

Figure 

Triangle Waveform 

This is a more complex form of signal approximation to the square wave. Because of the Symmetry Properties of the Fourier
Series, the triangle wave is a real and odd signal, as opposed to the real and even square wave signal. This means that

 ODD
 REAL

therefore,

 IMAGINARY

7.3.3

x(t) = {
t

1 − t

t ≤ 1/2

t > 1/2

f(t) = −f(−t)

f(t) = (t)f ∗

= −cn c−n

= −cn c∗
n
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Fourier series approximation of a triangle wave

Figure 

Sawtooth Waveform 

Because of the Symmetry Properties of the Fourier Series, the sawtooth wave can be defined as a real and odd signal, as opposed
to the real and even square wave signal. This has important implications for the Fourier Coefficients.

Fourier series approximation of a sawtooth wave

Figure 

DFT Signal Approximation 

7.3.4

x(t) = t/2

7.3.5
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Figure : Interact (when online) with a Mathematica CDF demonstrating the common Discrete Fourier Series. To download,
right-click and save as .cdf.

Conclusion 
To summarize, a great deal of variety exists among the common Fourier Transforms. A summary table is provided here with the
essential information.

Table : Common Discrete Fourier Transforms

Description Time Domain Signal for Frequency Domain Signal 

Constant Function 1

Unit Impulse

Complex Exponential

Sinusoid Waveform

Box Waveform 

Dsinc Waveform 

7.3.6

7.3.1

n ∈ Z[0,N − 1] k ∈ Z[0,N − 1]

δ(k)

δ(n)
1
N

ej2πmn/N δ((k − m ))N

cos(j2πmn/N) (δ((k − m ) + δ((k + m ))1
2 )N )N

(M < N/2) δ(n) + δ((n − m ) + δ((n + m )∑M
m=1 )N )N

sin((2M+1)kπ/N)

N sin(kπ/N)

(M < N/2)
sin((2M+1)nπ/N)

sin(nπ/N)
δ(k) + δ((k − m ) + δ((k + m )∑M

m=1 )N )N
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7.4: Properties of the DTFS

Introduction 

In this module we will discuss the basic properties of the Discrete-Time Fourier Series. We will begin by refreshing your memory
of our basic Fourier series equations:

Let  denote the transformation from  to the Fourier coefficients

 maps complex valued functions to sequences of complex numbers.

Linearity 

 is a linear transformation.

If  and . Then

and

Proof

Easy. Just linearity of integral.

Shifting 
Shifting in time equals a phase shift of Fourier coefficients.

 if , then

Proof

f [n] =∑
k=0

N−1

cke
j knω0

= f [n]ck
1

N
−−√
∑
n=0

N−1

e
−(j kn)2π

N

F(⋅) f [n]

F(f [n]) = , k ∈ Zck

F(⋅)

F(⋅)

Theorem 7.4.1

F(f [n]) = ck F(g[n]) = dk

F(αf [n]) = α , α ∈ Cck

F(f [n] +g[n]) = +ck dk

F(f [n] +g[n]) = (f [n] +g[n]) , k ∈ Z∑
n=0

N

e−(j kn)ω0

= f [n] + g[n] , k ∈ Z
1

N
∑
n=0

N

e−(j kn)ω0
1

N
∑
n=0

N

e−(j kn)ω0

= + , k ∈ Zck dk
= +ck dk (7.4.1)

Theorem 7.4.2

F (f [n− ]) =n0 e−(j k )ω0 n0 ck = | |ck ck ej∠( )ck

= | | = | |∣∣e
−(j k )ω0 n0 ck∣∣ ∣∣e

−(j k )ω0 n0 ∣∣ ck ck

∠ ( )= ∠ ( ) − ke−(j k)ω0n0 ck ω0n0
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Parseval's Relation 

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Parseval tells us that the Fourier series maps  to .

Figure 

For  to have "finite energy," what do the  do as ?

Answer

 for  to have finite energy.

If , is ?

Answer

Yes, because , which is summable.

Now, if , is ?

Answer

No, because , which is not summable.

The rate of decay of the Fourier series determines if  has finite energy.

F (f [n− ])n0 = f [n− ] , k ∈ Z
1

N
∑
n=0

N

n0 e−(j kn)ω0

= f [n− ] , k ∈ Z
1

N
∑

n=−n0

N−n0

n0 e−(j k(n− ))ω0 n0 e−(j k )ω0 n0

= f [ ] , k ∈ Z
1

N
∑

n=−n0

N−n0

n~ e−(j k )ω0 n~ e−(j k )ω0 n0

= , k ∈ Ze−(j k )ω0 n~ ck (7.4.2)

(|f [n]| = N∑
n=0

N

)2 ∑
k=0

N−1

(| |)ck
2

Note

[0,N ]L2 l2

7.4.1

Exercise 7.4.1

f [n] ck k → ∞

< ∞(| |)ck
2 f [n]

Exercise 7.4.2

∀k, |k| > 0 : ( = )ck
1
k

f ∈ [[0,N ]]L2

(| | =ck )2 1

k2

Exercise 7.4.3

∀k, |k| > 0 : ( = )ck
1
k√

f ∈ [[0,N ]]L2

(| | =ck )2 1
k

f [n]
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ParsevalsTheorem Demonstration 

Figure : Interact (when online) with a Mathematica CDF demonstrating Parsevals Theorem. To download, right-click and
save as .cdf.
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Symmetry Properties 

Proof

Proof

Proof

Rule : Even Signals7.4.1

f [n] = f [−n]

∥ ∥ = ∥ ∥ck c−k

=ck

=

=

=

=

[n] exp[−j kn]
1

N
∑

0

N

ω0

f [n] exp[−j kn] + f [n] exp[−j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

f [−n] exp[−j kn] + f [−n] exp[−j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

[n] [exp[j kn] +exp[−j kn]]
1

N
∑

0

N

ω0 ω0

[n]2 cos[ kn]
1

N
∑

0

N

ω0 (7.4.3)

Rule : Odd Signals7.4.2

f [n] = −f [−n]

=ck c∗
−k

=ck

=

=

=

=

f [n] exp[−j kn]
1

N
∑

0

N

ω0

f [n] exp[−j kn] + f [n] exp[−j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

f [n] exp[−j kn] − f [−n] exp[j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

− f [n] [exp[j kn] −exp[−j kn]]
1

N
∑

0

N

ω0 ω0

− f [n]2 j sin[ kn]
1

N
∑

0

N

ω0 (7.4.4)

Rule : Real Signals7.4.3

f [n] = [n]f ∗

=ck c∗
−k
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Differentiation in Fourier Domain 

Since

then

A differentiator attenuates the low frequencies in  and accentuates the high frequencies. It removes general trends and
accentuates areas of sharp variation.

A common way to mathematically measure the smoothness of a function  is to see how many derivatives are finite energy.

This is done by looking at the Fourier coefficients of the signal, specifically how fast they decay as . If  and 

 has the form , then  and has the form . So for the  derivative to have finite energy, we need

thus  decays faster than  which implies that

or

Thus the decay rate of the Fourier series dictates smoothness.

=ck

=

=

=

=

f [n] exp[−j kn]
1

N
∑

0

N

ω0

f [n] exp[−j kn] + f [n] exp[−j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

f [−n] exp[−j kn] + f [−n] exp[−j kn]
1

N
∑

0

N

2

ω0
1

N
∑
N

2

N

ω0

f [n] [exp[j kn] +exp[−j kn]]
1

N
∑

0

N

ω0 ω0

f [n]2 cos[ kn]
1

N
∑

0

N

ω0 (7.4.5)

(F(f [n]) = ) ⇒(F ( ) = jk )ck
df [n]

dn
ω0ck

f [n] =∑
i=0

N

cke
j knω0

f [n]
d

dn
=∑

k=0

N

ck
dej knω0

dn

= j k∑
k=0

N

ck ω0 ej knω0 (7.4.6)

f [n]

Note

f [n]

k → ∞ F(f [n]) = ck

| |ck
1
kl

F ( )=
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dnm (jk )ω0
mck

km

kl
mth

< ∞∑
k

( )
∣
∣
∣
km

kl
∣
∣
∣

2

km

kl
1
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Fourier Differentiation Demo 

Figure : Interact (when online) with a Mathematica CDF demonstrating Differentiation in a Fourier Domain. To download,
right-click and save as .cdf.

Integration in the Fourier Domain 
If

then

7.4.3

F(f [n]) = ck

F ( f [η]) =∑
η=0

n 1

j kω0
ck

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22882?pdf
https://cnx.org/resources/9fedfbdb11ff77dd9edf4f5f48dc6c292e5d787f/NumericalDiff_display.cdf


7.4.7 https://eng.libretexts.org/@go/page/22882

If , this expression doesn't make sense.

Integration accentuates low frequencies and attenuates high frequencies. Integrators bring out the general trends in signals and
suppress short term variation (which is noise in many cases). Integrators are much nicer than differentiators.

Fourier Integration Demo 

Figure : Interact (when online) with a Mathematica CDF demonstrating the effect of Integration in a Fourier Domain.To
download, right-click and save as .cdf.

Signal Multiplication 

Given a signal  with Fourier coefficients  and a signal  with Fourier coefficients , we can define a new signal, ,
where . We find that the Fourier Series representation of , , is such that . This is to say that
signal multiplication in the time domain is equivalent to discrete-time circular convolution (Section 4.3) in the frequency domain.
The proof of this is as follows

Note

≠ 0c0

7.4.4

f [n] ck g[n] dk y[n]

y[n] = f [n]g[n] y[n] ek =ek ∑N
l=0 cldk−l
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Conclusion 

Like other Fourier transforms, the DTFS has many useful properties, including linearity, equal energy in the time and frequency
domains, and analogs for shifting, differentation, and integration.

Table : Properties of the Discrete Fourier Transform
Property Signal DTFS

Linearity

Time Shifting

Time Modulation

Multiplication

Circular Convolution

This page titled 7.4: Properties of the DTFS is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..

ek = f [n]g[n]
1

N
∑
n=0

N

e−(j kn)ω0

= g[n]
1

N
∑
n=0

N

∑
l=0

N

cle
j lnω0 e−(j kn)ω0

= ( g[n] )∑
l=0

N

cl
1

N
∑
n=0

N

e−(j (k−l)n)ω0

=∑
l=0

N

cldk−l (7.4.7)

7.4.1

ax(n) + by(n) aX(k) + bY (k)

x(n−m) X(k)e−j2πmk/N

x(n)ej2πmn/N X(k−m)

x(n)y(n) X(k) ∗ Y (k)

x(n) ∗ y(n) X(k)Y (K)
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7.5: Discrete Time Circular Convolution and the DTFS

Introduction 

This module relates circular convolution of periodic signals in one domain to multiplication in the other domain.

You should be familiar with Discrete-Time Convolution (Section 4.3), which tells us that given two discrete-time signals , the
system's input, and , the system's response, we define the output of the system as

When we are given two DFTs (finite-length sequences usually of length ), we cannot just multiply them together as we do in the
above convolution formula, often referred to as linear convolution. Because the DFTs are periodic, they have nonzero values for 

 and thus the multiplication of these two DFTs will be nonzero for . We need to define a new type of convolution
operation that will result in our convolved signal being zero outside of the range . This idea led to the
development of circular convolution, also called cyclic or periodic convolution.

Signal Circular Convolution 

Given a signal  with Fourier coefficients  and a signal  with Fourier coefficients , we can define a new signal, ,
where . We find that the Fourier Series representation of , , is such that .  is the
circular convolution (Section 7.5) of two periodic signals and is equivalent to the convolution over one interval, i.e. 

.

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients.

This is proved as follows

x[n]

h[n]

y[n] = x[n] ∗ h[n]

= x[k]h[n−k]∑
k=−∞

∞

(7.5.1)

N

n ≥ N n ≥ N

n = 0, 1, … ,N −1

f [n] ck g[n] dk v[n]

v[n] = f [n] ⊛g[n] v[n] ak =ak ckdk f [n] ⊛g[n]

f [n] ⊛g[n] = f [η]g[n−η]∑
n=0

N

∑
η=0

N

Note

ak = v[n]
1

N
∑
n=0

N

e−(j kn)ω0

= f [η]g[n−η]
1

N 2
∑
n=0

N

∑
n=0

η

e−(j kn)ω0

= f [η]( g[n−η] )
1

N
∑
η=0

N 1

N
∑
n=0

N

e−(j kn)ω0

=( f [η]( g[ν] )) , ν = n−η
1

N
∑
η=0

N 1

N
∑
ν=−η

N−η

e−(j (ν+η))ω0

= f [η]( g[ν] )
1

N
∑
η=0

N 1

N
∑
ν=−η

N−η

e−(j kν)ω0 e−(j kη)ω0

= f [η]
1

N
∑
η=0

N

dke
−(j kη)ω0

= ( f [η] )dk
1

N
∑
η=0

N

e−(j kη)ω0

= ckdk (7.5.2)
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Circular Convolution Formula 

What happens when we multiply two DFT's together, where  is the DFT of ?

when 

Using the DFT synthesis formula for 

And then applying the analysis formula 

where we can reduce the second summation found in the above equation into 

 which equals circular convolution! When we
have  in the above, then we get:

The notation  represents cyclic convolution "mod N".

Alternative Convolution Formula

Alternative Circular Convolution Algorithm

Step 1: Calculate the DFT of  which yields  and calculate the DFT of  which yields .
Step 2: Pointwise multiply 
Step 3: Inverse DFT  which yields 

Seems like a roundabout way of doing things, but it turns out that there are extremely fast ways to calculate the DFT of a
sequence.

To circularly convolve 2 -point sequences: . For each  :  multiples,  additions.

 points implies  multiplications,  additions implies  complexity.

Steps for Circular Convolution 

We can picture periodic (Section 6.1) sequences as having discrete points on a circle as the domain

Figure 

Shifting by , , corresponds to rotating the cylinder  notches ACW (counter clockwise). For , we get a shift
equal to that in the following illustration:

Y [k] y[n]

Y [k] = F [k]H[k]

0 ≤ k ≤ N −1

y[n]

y[n] = F [k]H[k]
1

N
∑
k=0

N−1

ej kn
2π

N

F [k] = f [m]∑N−1
m=0 e(−j) kn2π

N

y[n] = f [m] H[k]
1

N
∑
k=0

N−1

∑
m=0

N−1

e(−j) kn2π

N ej kn2π

N

= f [m]( H[k] )∑
m=0

N−1
1

N
∑
k=0

N−1

ej k(n−m)
2π

N (7.5.3)

h [((n−m) ] = H[k] y[n] = f [m]h [((n−m) ])N
1
N
∑

N−1
k=0 ej k(n−m)

2π

N ∑
N−1
m=0 )N

0 ≤ n ≤ N −1

y[n] ≡ f [n] ⊛h[n]

Note

⊛

f [n] F [k] h[n] H[k]

Y [k] = F [k]H[k]

Y [k] y[n]

N y[n] = f [m]h [((n−m) ]∑N−1
m=0 )N n N N −1

N N 2 N(N −1) O( )N 2

7.5.1

m f(n+m) m m = −2
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Figure : for 

Figure 

To cyclic shift we follow these steps:

1) Write  on a cylinder, ACW

Figure : 

2) To cyclic shift by , spin cylinder m spots ACW

Figure : 

Notes on circular shifting

 Spinning  spots is the same as spinning all the way around, or not spinning at all.

 Shifting ACW mm is equivalent to shifting CW 

7.5.2 m = −2

7.5.3

f(n)

7.5.4 N = 8

m

f [n] → f [((n+m) ])N

7.5.5 m = −3

f [((n+N) ] = f [n])N N

f [((n+N) ] = f [((n−(N −m)) ])N )N N −m
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Figure 

 The above expression, simply writes the values of  clockwise.

(a) 

(b) 

Figure 

Convolve (n = 4)

(a)

(b)

Figure : Two discrete-time signals to be convolved.

7.5.6

f [((−n) ])N f [n]

f[n]

f [((−n) ])N

7.5.7

Example 7.5.1

7.5.8

h[((−(m()( ])N
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Figure 

Multiply  and sum to yield: 

Figure 

Multiply  and sum to yield: 

Figure 

Multiply  and sum to yield: 

Figure 

Multiply  and sum to yield: 

Exercise 

Take a look at a square pulse with a period of .

For this signal 

Take a look at a triangle pulse train with a period of .

This signal is created by circularly convolving the square pulse with itself. The Fourier coefficients for this signal are 

Find the Fourier coefficients of the signal that is created when the square pulse and the triangle pulse are convolved.

Answer

7.5.9

f [m] y[0] = 3

h[((1(−(m()( ])N

7.5.10

f [m] y[1] = 5

h[((2(−(m()( ])N

7.5.11

f [m] y[2] = 3

h[((3(−(m()( ])N

7.5.12

f [m] y[3] = 1

T

=ck

⎧

⎩
⎨
⎪

⎪

 if k = 01
N

 otherwise 1
2

sin( k)π

2

k
π

2

T

= =ak c2
k

1
4

sin2

( k)x

2

Exercise 7.5.1

=ak

⎧

⎩
⎨
⎪⎪

⎪⎪

 undefined 

1
8

[ k]sin3 π

2

[ k]π

2

3

k = 0

 otherwise 
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Circular Shifts and the DFT 

If  then  (i.e. circular shift in time domain = phase shift in DFT)

Proof

so phase shifting the DFT

Circular Convolution Demonstration 

Theorem : Circular Shifts and DFT7.5.1

f [n] F [k]⟷
DFT

f [((n−m) ] F [k])N ⟷
DFT

e
−(j km)2π

N

f [n] = F [k]
1

N
∑
k=0

N−1

ej kn
2π

N

f [n] = F [k]
1

N
∑
k=0

N−1

e
−(j kn)2π

N ej kn2π

N

= F [k]
1

N
∑
k=0

N−1

ej k(n−m)
2π

N

= f [((n−m) ])N (7.5.4)
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Figure : Interact (when online) with a Mathematica CDF demonstrating Circular Shifts.

Conclusion 

Circular convolution in the time domain is equivalent to multiplication of the Fourier coefficients in the frequency domain.

This page titled 7.5: Discrete Time Circular Convolution and the DTFS is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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8.1: Continuous Time Aperiodic Signals

Introduction 

This module describes the type of signals acted on by the Continuous Time Fourier Transform.

Relevant Spaces 
The Continuous-Time Fourier Transform maps infinite-length (a-periodic), continuous-time signals in  to infinite-length,
discrete-frequency signals in .

Figure 

Periodic and Aperiodic Signals 
When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic function can be
mathematically defined as:

where  represents the fundamental period of the signal, which is the smallest positive value of T for the signal to repeat.
Because of this, you may also see a signal referred to as a T-periodic signal. Any function that satisfies this equation is said to be
periodic with period T.

An aperiodic CT function  does not repeat for any ; i.e. there exists no  such that Equation  holds.

Suppose we have such an aperiodic function . We can construct a periodic extension of  called , where  is
repeated every  seconds. If we take the limit as , we obtain a precise model of an aperiodic signal for which all rules
that govern periodic signals can be applied, including Fourier Analysis (with an important modification). For more detail on this
distinction, see the module on the Continuous Time Fourier Transform.

Aperiodic Signal Demonstration 

L2

l2

8.1.1

f(t) = f(t+mT ) m ∈ Z (8.1.1)

T > 0

f(t) T ∈ R T 8.1.1

f(t) f(t) (t)fTo f(t)

T0 → ∞T0
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Figure : Interact (when online) with a Mathematica CDF demonstrating Periodic versus Aperiodic Signals.To
download, right-click and save as .cdf.

Conclusion 
Any aperiodic signal can be defined by an infinite sum of periodic functions, a useful definition that makes it possible to use
Fourier Analysis on it by assuming all frequencies are present in the signal.

This page titled 8.1: Continuous Time Aperiodic Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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8.2: Continuous Time Fourier Transform (CTFT)

Introduction 

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous
Time Fourier Transform (CTFT).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Section 14.5), calculating the
output of an LTI system  given  as an input amounts to simple multiplication, where  is the eigenvalue
corresponding to . As shown in the figure, a simple exponential input would yield the output

Using this and the fact that  is linear, calculating  for combinations of complex exponentials is also straightforward.

The action of  on an input such as those in the two equations above is easy to explain.  independently scales each exponential
component  by a different complex number . As such, if we can write a function  as a combination of complex
exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of
simpler functions by superposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier
Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because the CTFT deals with nonperiodic signals,
we must find a way to include all real frequencies in the general equations. For the CTFT we simply utilize integration over real
numbers rather than summation over integers in order to express the aperiodic signals.

Fourier Transform Synthesis 

Joseph Fourier demonstrated that an arbitrary  can be written as a linear combination of harmonic complex sinusoids

where  is the fundamental frequency. For almost all  of practical interest, there exists  to make Equation  true.
If  is finite energy ( ), then the equality in Equation  holds in the sense of energy convergence; if  is
continuous, then Equation  holds pointwise. Also, if  meets some mild conditions (the Dirichlet conditions), then Equation

 holds pointwise everywhere except at points of discontinuity.

The  - called the Fourier coefficients - tell us "how much" of the sinusoid  is in . The formula shows  as a sum of
complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system).
Mathematically, it tells us that the set of complex exponentials  form a basis for the space of T-periodic
continuous time functions.

Equations 

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the
superposition principle. Let  be a periodic signal having period . We want to consider what happens to this signal's spectrum
as the period goes to infinity. We denote the spectrum for any assumed value of the period by . We calculate the spectrum
according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on
Fourier Series.)

where  and where we have used a symmetric placement of the integration interval about the origin for subsequent
derivational convenience. We vary the frequency index n proportionally as we increase the period. Define

H est H(s) ∈ C

s

y(t) = H(s)est

H y(t)

+ → H ( ) + H ( )c1e
ts1 c2e

ts2 c1 s1 e ts1 c2 s2 e ts2

→ H ( )∑n cne
tsn ∑n cn sn e tsn

H H

e tsn H( ) ∈ Csn f(t)

s(t)

s(t) = ∑
n=−∞

∞

cne
j ntω0 (8.2.1)

=ω0
2π
T

s(t) cn 8.2.1

s(t) s(t) ∈ [0,T ]L2 8.2.1 s(t)

8.2.1 s(t)

8.2.1

cn ej ntω0 s(t) s(t)

{ , n ∈ Z}ej ntω0

(t)sT T

(T )cn

= s(t) exp(−j t)dtcn
1

T
∫

T

0
ω0

=ω0
2π
T

n
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making the corresponding Fourier Series

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

with

Continuous-Time Fourier Transform

Inverse CTFT

It is not uncommon to see the above formula written slightly different. One of the most common differences is the way that the
exponential is written. The above equations use the radial frequency variable  in the exponential, where , but it is
also common to include the more explicit expression, , in the exponential. Click here for an overview of the notation
used in Connexion's DSP modules.

We know from Euler's formula that .

CTFT Definition Demonstration 

(f) ≡ T = (f) exp(j t)dtST cn
1

T
∫

T

0

ST ω0

(t) = f(t) exp(j t)sT ∑
−∞

∞

ω0
1

T

(t) ≡ s(t) = S(f) exp(j t)dflim
T→∞

sT ∫
∞

−∞

ω0

S(f) = s(t) exp(−j t)dt∫
∞

−∞

ω0

F(Ω) = f(t) dt∫
∞

−∞

e−(jΩt) (8.2.2)

f(t) = F(Ω) dΩ
1

2π
∫

∞

−∞

ejΩt (8.2.3)

Note

Ω Ω = 2πf

j2πft

cos(ωt) +sin(ωt) = +
1−j

2
ejωt

1+j

2
e−jωt
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Figure : Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download,
right-click and save as .cdf.

Example Problems 

Find the Fourier Transform (CTFT) of the function

Answer

In order to calculate the Fourier transform, all we need to use is Equation , complex exponentials (Section 1.8), and
basic calculus.

8.2.1

Exercise 8.2.1

f(t) ={
 if t ≥ 0e−(αt)

0 otherwise 

8.2.2
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Find the inverse Fourier transform of the ideal lowpass filter defined by

Answer

Here we will use Equation  to find the inverse FT given that .

Fourier Transform Summary 

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex
exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the
sum of continuous time, discrete frequency complex exponentials.

The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.

In both of these equations  is the fundamental frequency.

This page titled 8.2: Continuous Time Fourier Transform (CTFT) is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

F(Ω)

F

= f(t) dt∫
∞

−∞
e−(jΩt)

= dt∫
∞

0

e−(at)e−(jΩt)

= dt∫
∞

0

e(−t)(a+jΩ)

= 0 −
−1

a+jΩ

(Ω) =
1

α+jΩ
(8.2.4)

Exercise 8.2.2

X(Ω) ={
1

0

 if |Ω| ≤ M

 otherwise 

8.2.3 t ≠ 0

x(t)

x(t)

= dΩ
1

2π
∫

M

−M

ej(Ω,t)

=
1

2π
ej(Ω,t)∣

∣
∣
Ω,Ω=ejw

= sin(Mt)
1

πt

= (sinc )
M

π

Mt

π
(8.2.5)
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8.3: Common Fourier Transforms

Common CTFT Properties 
Table 

Time Domain Signal Frequency Domain Signal Condition

sgn (

triag[n] is the triangle function for arbitrary real-valued .

8.3.1

u(t)e−(at) 1
a+jω

a > 0

u(−t)eat 1
a−jω

a > 0

e−(a|t|) 2a

+a2 ω2 a > 0

t u(t)e−(at) 1

(a+jω)2 a > 0

u(t)tne−(at) n!

(a+jω)n+1 a > 0

δ(t) 1

1 2πδ(ω)

ej tω0 2πδ(ω − )ω0

cos( t)ω0 π(δ(ω − ) + δ(ω + ))ω0 ω0
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t)
2
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cos( t)u(t)ω0 (δ(ω − ) + δ(ω + )) +π
2 ω0 ω0
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−ω2
0 ω2
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 otherwise 
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8.4: Properties of the CTFT

Introduction 

This module will look at some of the basic properties of the Continuous-Time Fourier Transform (CTFT) (Section 8.2).

We will be discussing these properties for aperiodic, continuous-time signals but understand that very similar properties hold
for discrete-time signals and periodic signals as well.

Discussion of Fourier Transform Properties 

Linearity 

The combined addition and scalar multiplication properties in the table above demonstrate the basic property of linearity. What you
should see is that if one takes the Fourier transform of a linear combination of signals then it will be the same as the linear
combination of the Fourier transforms of each of the individual signals. This is crucial when using a table (Section 8.3) of
transforms to find the transform of a more complicated signal.

We will begin with the following signal:

Now, after we take the Fourier transform, shown in the equation below, notice that the linear combination of the terms is
unaffected by the transform.

Symmetry 

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms. Basically what this
property says is that since a rectangular function in time is a sinc function in frequency, then a sinc function in time will be a
rectangular function in frequency. This is a direct result of the similarity between the forward CTFT and the inverse CTFT. The
only difference is the scaling by  and a frequency reversal.

Time Scaling 

This property deals with the effect on the frequency-domain representation of a signal if the time variable is altered. The most
important concept to understand for the time scaling property is that signals that are narrow in time will be broad in frequency and
vice versa. The simplest example of this is a delta function, a unit pulse with a very small duration, in time that becomes an
infinite-length constant function in frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-domain of a signal. You
should be able to easily notice that these equations show the relationship mentioned previously: if the time variable is increased
then the frequency range will be decreased.

Time Shifting 

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency content depends only
on the shape of a signal, which is unchanged in a time shift, then only the phase spectrum will be altered. This property is proven
below:

We will begin by letting . Now let us take the Fourier transform with the previous expression substituted in for
.

Note

Example 8.4.1

z(t) = a (t) +b (t)f1 f2

Z(ω) = a (ω) +b (ω)F1 F2

2π

Example 8.4.2

z(t) = f(t−τ)

z(t)
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Now let us make a simple change of variables, where . Through the calculations below, you can see that only the
variable in the exponential are altered thus only changing the phase in the frequency domain.

Convolution 

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in time becomes
multiplication in frequency. This property is also another excellent example of symmetry between time and frequency. It also
shows that there may be little to gain by changing to the frequency domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your memory, then look at
the continuous-time convolution (Section 3.3) module for a more in depth explanation and derivation.

Time Differentiation 

Since LTI (Section 2.1) systems can be represented in terms of differential equations, it is apparent with this property that
converting to the frequency domain may allow us to convert these complicated differential equations to simpler equations
involving multiplication and addition. This is often looked at in more detail during the study of the Laplace Transform (Section
11.1).

Parseval's Relation 

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 

Modulation (Frequency Shift) 

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a different frequency, allows us
to take advantage of different parts of the electromagnetic spectrum is what allows us to transmit television, radio and other
applications through the same space without significant interference.

The proof of the frequency shift property is very similar to that of the time shift; however, here we would use the inverse Fourier
transform in place of the Fourier transform. Since we went through the steps in the previous, time-shift proof, below we will just
show the initial and final step to this proof:

Now we would simply reduce this equation through another change of variables and simplify the terms. Then we will prove the
property expressed in the table above:

Z(ω) = f(t−τ) dt∫
∞

−∞

e−(iωt)

σ = t−τ

Z(ω) = f(σ) dτ∫
∞

−∞

e−(iω(σ+τ)t)

= f(σ) dσe−(iωτ) ∫
∞

−∞

e−(iωσ)

= F (ω)e−(iωτ) (8.4.1)

y(t) = ( (t), (t))f1 f2

= (τ) (t−τ)dτ∫
∞

−∞

f1 f2 (8.4.2)

(|f(t)| dt = (|F (ω)| df∫
∞

−∞

)2 ∫
∞

−∞

)2

8.4.1

z(t) = F (ω−ϕ) dω
1

2π
∫

∞

−∞

ejωt

z(t) = f(t)ejϕt
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Properties Demonstration 

An interactive example demonstration of the properties is included below:

Figure : Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

Summary Table of CTFT Properties 
Table : Table of Fourier Transform Properties

Operation Name Signal (  ) Transform (  )

Linearity

Scalar Multiplication

Symmetry

Time Scaling

Time Shift

Convolution in Time

Convolution in Frequency

Differentiation

Parseval's Theorem

8.4.2

8.4.1

f(t) F(ω)

a( ,t) + b( ,t)f1 f2 a( ,ω) + b( ,ω)F1 F2

αf(t) αF(ω)

F(t) 2πf(−ω)

f(αt) F ( )1
|α|

w
α

f(t− τ) F(ω)e−(jωτ )

( (t), (t))f1 f2 (t) (t)F1 F2

(t) (t)f1 f2 ( (t), (t))1
2π

F1 F2

f(t)dn

dtn
(jω F(ω))n

(|f(t)| dt∫ ∞
−∞ )2 (|F(ω)| df∫ ∞

−∞ )2
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Operation Name Signal (  ) Transform (  )

Modulation (Frequency Shift)

This page titled 8.4: Properties of the CTFT is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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8.5: Continuous Time Convolution and the CTFT

Introduction 

This module discusses convolution of continuous signals in the time and frequency domains.

Continuous Time Fourier Transform 
The CTFT transforms a infinite-length continuous signal in the time domain into an infinite-length continuous signal in the
frequency domain.

CTFT

Inverse CTFT

Convolution Integral 
The convolution integral expresses the output of an LTI system based on an input signal, , and the system's impulse response, 

. The convolution integral is expressed as

Convolution is such an important tool that it is represented by the symbol *, and can be written as

Convolution is commutative. For more information on the characteristics of the convolution integral, read about the Properties of
Convolution (Section 3.4).

Demonstration 

F (Ω) = f(t) dt∫
∞

−∞

e−(jΩt)

f(t) = F (Ω) dΩ
1

2π
∫

∞

−∞

ejΩt

x(t)

h(t)

y(t) = x(τ)h(t−τ)dτ∫
∞

−∞

y(t) = x(t) ∗ h(t)
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Figure : Interact (when online) with a Mathematica CDF demonstrating Use of the CTFT in signal denoising. To Download,
right-click and save target as .cdf.

Convolution Theorem 
Let  and  be two functions with convolution . Let  be the Fourier transform operator. Then

8.5.1

f g f ∗ g F

F (f ∗ g) = F (f) ⋅F (g)

F (f ⋅ g) = F (f) ∗F (g)
1

2π
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By applying the inverse Fourier transform , we can write:

Conclusion 
The Fourier transform of a convolution is the pointwise product of Fourier transforms. In other words, convolution in one domain
(e.g., time domain) corresponds to point-wise multiplication in the other domain (e.g., frequency domain).

This page titled 8.5: Continuous Time Convolution and the CTFT is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

F −1

f ∗ g = (F (f) ⋅F (g))F −1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22890?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/08%3A_Continuous_Time_Fourier_Transform_(CTFT)/8.05%3A_Continuous_Time_Convolution_and_the_CTFT
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


1

CHAPTER OVERVIEW

9: Discrete Time Fourier Transform (DTFT)
9.1: Discrete Time Aperiodic Signals
9.2: Discrete Time Fourier Transform (DTFT)
9.3: Common Discrete Time Fourier Transforms
9.4: Properties of the DTFT
9.5: Discrete Time Convolution and the DTFT

This page titled 9: Discrete Time Fourier Transform (DTFT) is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

https://libretexts.org/
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)/9.01%3A_Discrete_Time_Aperiodic_Signals
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)/9.02%3A_Discrete_Time_Fourier_Transform_(DTFT)
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)/9.03%3A_Common_Discrete_Time_Fourier_Transforms
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)/9.04%3A_Properties_of_the_DTFT
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)/9.05%3A_Discrete_Time_Convolution_and_the_DTFT
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/09%3A_Discrete_Time_Fourier_Transform_(DTFT)
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


9.1.1 https://eng.libretexts.org/@go/page/22893

9.1: Discrete Time Aperiodic Signals

Introduction 

This module describes the type of signals acted on by the Discrete Time Fourier Transform.

Relevant Spaces 
The Discrete Time Fourier Transform maps arbitrary discrete time signals in  to finite-length, discrete-frequency signals in 

.

Figure : Mapping  in the time domain to  in the frequency domain.

Periodic and Aperiodic Signals 
When a function repeats itself exactly after some given period, or cycle, we say it's periodic. A periodic function can be
mathematically defined as:

where  represents the fundamental period of the signal, which is the smallest positive value of N for the signal to repeat.
Because of this, you may also see a signal referred to as an N-periodic signal. Any function that satisfies this equation is said to be
periodic with period N. Periodic signals in discrete time repeats themselves in each cycle. However, only integers are allowed as
time variable in discrete time. We denote signals in such case as ,  Here's an example of a discrete-
time periodic signal with period N:

discrete-time periodic signal

Figure : Notice the function is the same after a time shift of N

We can think of periodic functions (with period ) two different ways:

(Z)l2

([0, 2π))L2

9.1.1 (Z)l2 ([0, 2π))L2

f [n] = f [n +mN ] m ∈ Z (9.1.1)

N > 0

f [n] n =. . . , −2, −1, 0, 1, 2, . . .

9.1.2

N
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1. as functions on all of 

Figure : discrete time periodic function over all of  where 

2. or, we can cut out all of the redundancy, and think of them as functions on an interval  (or, more generally, . If
we know the signal is N-periodic then all the information of the signal is captured by the above interval.

Figure : Remove the redundancy of the period function so that  is undefined outside .

An aperiodic DT function, however,  does not repeat for any ; i.e. there exists no  such that Equation  holds.
This broader class of signals can only be acted upon by the DTFT.

Suppose we have such an aperiodic function . We can construct a periodic extension of  called , where  is
repeated every  seconds. If we take the limit as , we obtain a precise model of an aperiodic signal for which all rules
that govern periodic signals can be applied, including Fourier Analysis (with an important modification). For more detail on this
distinction, see the module on the Discete Time Fourier Transform.

Aperiodic Signal Demonstration 

R

9.1.3 R f[ ] = f[ + N ]n0 n0

[0, N ] [a, a +N ]

9.1.4 f[n] [0, N ]

f [n] N ∈ R N 9.1.1

f [n] f [n] [n]fNo f [n]

N0 → ∞N0
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Figure : Click on the above thumbnail image (when online) to download an interactive Mathematica Player testing Periodic
versus Aperiodic Signals. To download, right-click and save as .cdf.

Conclusion 

A discrete periodic signal is completely defined by its values in one period, such as the interval [0,N]. Any aperiodic signal can be
defined as an infinite sum of periodic functions, a useful definition that makes it possible to use Fourier Analysis on it by assuming
all frequencies are present in the signal.

This page titled 9.1: Discrete Time Aperiodic Signals is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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9.2: Discrete Time Fourier Transform (DTFT)

Introduction 

In this module, we will derive an expansion for arbitrary discrete-time functions, and in doing so, derive the Discrete Time
Fourier Transform (DTFT).

Since complex exponentials (Section 1.8) are eigenfunctions of linear time-invariant (LTI) systems (Section 14.5), calculating the
output of an LTI system  given  as an input amounts to simple multiplication, where , and where  is the
eigenvalue corresponding to . As shown in the figure, a simple exponential input would yield the output

Figure : Simple LTI system.

Using this and the fact that  is linear, calculating  for combinations of complex exponentials is also straightforward.

The action of  on an input such as those in the two equations above is easy to explain.  independently scales each exponential
component  by a different complex number . As such, if we can write a function  as a combination of complex
exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of
simpler functions by superposition of a number of complex exponentials. Below we will present the Discrete-Time Fourier
Transform (DTFT). Because the DTFT deals with nonperiodic signals, we must find a way to include all real frequencies in the
general equations. For the DTFT we simply utilize summation over all real numbers rather than summation over integers in order
to express the aperiodic signals.

DTFT synthesis 
It can be demonstrated that an arbitrary Discrete Time-periodic function  can be written as a linear combination of harmonic
complex sinusoids

where  is the fundamental frequency. For almost all  of practical interest, there exists  to make Equation  true.
If  is finite energy (  ), then the equality in Equation  holds in the sense of energy convergence; with
discrete-time signals, there are no concerns for divergence as there are with continuous-time signals.

The  - called the Fourier coefficients - tell us "how much" of the sinusoid  is in . The formula shows  as a sum of
complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system).
Mathematically, it tells us that the set of complex exponentials  form a basis for the space of N-periodic discrete
time functions.

Equations 

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the
superposition principle. Let  be a periodic signal having period . We want to consider what happens to this signal's spectrum
as the period goes to infinity. We denote the spectrum for any assumed value of the period by . We calculate the spectrum
according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on
Fourier Series.)

H ejωn =ω0
2πk
N

H[k] ∈ C

k

y[n] = H[k]ejωn

9.2.1

H y[n]

+ → H [ ] + H [ ]c1e
j nω1 c2e

j nω2 c1 k1 ej nω1 c2 k2 ej nω1

→ H [ ]∑l cle
j nωl ∑l cl kl e

j nωl

H H

ej nωl H [ ] ∈ Ckl y[n]

f [n]

f [n] =∑
k=0

N−1

cke
j knω0 (9.2.1)

=ω0
2π
N

f [n] cn 9.2.1

f [n] f [n] ∈ [0,N ]L2 9.2.1

cn ej knω0 f [n] f [n]

{ , k ∈ Z}ej knω0

(t)sT T

(T )cn
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where  and where we have used a symmetric placement of the integration interval about the origin for subsequent
derivational convenience. We vary the frequency index  proportionally as we increase the period. Define

making the corresponding Fourier Series

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

with

Discrete-Time Fourier Transform

Inverse DTFT

It is not uncommon to see the above formula written slightly different. One of the most common differences is the way that the
exponential is written. The above equations use the radial frequency variable  in the exponential, where , but it is
also common to include the more explicit expression, , in the exponential. Sometimes DTFT notation is expressed as 

, to make it clear that it is not a CTFT (which is denoted as . Click here for an overview of the notation used in
Connexion's DSP modules.

DTFT Definition demonstration 

= s(t) exp(−j t)dtcn
1

T
∫

T

0

ω0

=ω0
2π
T

n

(f) ≡ T = (f) exp(j t)dtST cn
1

T
∫

T

0

ST ω0

(t) = f(t) exp(j t)sT ∑
−∞

∞

ω0
1

T

(t) ≡ s(t) = S(f) exp(j t)dflim
T→∞

sT ∫
∞

−∞

ω0

S(f) = s(t) exp(−j t)dt∫
∞

−∞
ω0

F (ω) = f [n]∑
n=−∞

∞

e−(jωn)

f [n] = F (ω) dω
1

2π
∫

π

−π

ejωn

Warning

ω ω = 2πf

j2πft

F ( )ejω F (Ω)
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Figure : Click on the above thumbnail image (when online) to download an interactive Mathematica Player demonstrating
Discrete Time Fourier Transform. To Download, right-click and save target as .cdf.

DTFT Summary 

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex
exponentials as a basis. The discrete time Fourier transform synthesis formula expresses a discrete time, aperiodic function as the
infinite sum of continuous frequency complex exponentials.

The discrete time Fourier transform analysis formula takes the same discrete time domain signal and represents the signal in the
continuous frequency domain.

This page titled 9.2: Discrete Time Fourier Transform (DTFT) is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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F (ω) = f [n]∑
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9.3: Common Discrete Time Fourier Transforms

Common DTFTs 
Table 

Time Domain Frequency Domain Notes

integer 

integer 

real number 

if 

real number 

real number , 

real numbers ,  

integer 

real numbers ,  

differentiator filter

Hilbert Transform

Notes

rect( ) is the rectangle function for arbitrary real-valued .

tri( ) is the triangle function for arbitrary real-valued .

This page titled 9.3: Common Discrete Time Fourier Transforms is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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m=−∞ e−jwMm 1
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e−jan 2πδ(w + a) a
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W ⋅ (W n)sinc2 tri( )w

2πW
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W ⋅ sinc[W (n + a)] rect( ) ⋅w

2πW
ejaw W a 0 < W ≤ 1
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9.4: Properties of the DTFT

Introduction

This module will look at some of the basic properties of the Discrete-Time Fourier Transform (DTFT) (Section 9.2).

We will be discussing these properties for aperiodic, discrete-time signals but understand that very similar properties hold for
continuous-time signals and periodic signals as well.

Discussion of Fourier Transform Properties 

Linearity 

The combined addition and scalar multiplication properties in the table above demonstrate the basic property of linearity. What you
should see is that if one takes the Fourier transform of a linear combination of signals then it will be the same as the linear
combination of the Fourier transforms of each of the individual signals. This is crucial when using a table of transforms (Section
8.3) to find the transform of a more complicated signal.

We will begin with the following signal:

Now, after we take the Fourier transform, shown in the equation below, notice that the linear combination of the terms is
unaffected by the transform.

Symmetry 

Symmetry is a property that can make life quite easy when solving problems involving Fourier transforms. Basically what this
property says is that since a rectangular function in time is a sinc function in frequency, then a sinc function in time will be a
rectangular function in frequency. This is a direct result of the similarity between the forward DTFT and the inverse DTFT. The
only difference is the scaling by  and a frequency reversal.

Time Scaling 

This property deals with the effect on the frequency-domain representation of a signal if the time variable is altered. The most
important concept to understand for the time scaling property is that signals that are narrow in time will be broad in frequency and
vice versa. The simplest example of this is a delta function, a unit pulse with a very small duration, in time that becomes an
infinite-length constant function in frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-domain of a signal. You
should be able to easily notice that these equations show the relationship mentioned previously: if the time variable is increased
then the frequency range will be decreased.

Time Shifting 

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency content depends only
on the shape of a signal, which is unchanged in a time shift, then only the phase spectrum will be altered. This property is proven
below:

We will begin by letting . Now let us take the Fourier transform with the previous expression substituted in for
.

Note

Example 9.4.1

z[n] = a [n] +b [n]f1 f2

Z(ω) = a (ω) +b (ω)F1 F2

2π

Example 9.4.2

z[n] = f [n−η]

z[n]
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Now let us make a simple change of variables, where . Through the calculations below, you can see that only the
variable in the exponential are altered thus only changing the phase in the frequency domain.

Convolution 

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in time becomes
multiplication in frequency. This property is also another excellent example of symmetry between time and frequency. It also
shows that there may be little to gain by changing to the frequency domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your memory, then look at
the discrete-time convolution (Section 4.3) module for a more in depth explanation and derivation.

Time Differentiation 

Since LTI (Section 2.1) systems can be represented in terms of differential equations, it is apparent with this property that
converting to the frequency domain may allow us to convert these complicated differential equations to simpler equations
involving multiplication and addition. This is often looked at in more detail during the study of the Z Transform (Section 11.1).

Parseval's Relation 

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Figure 

Modulation (Frequency Shift) 

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a different frequency, allows us
to take advantage of different parts of the electromagnetic spectrum is what allows us to transmit television, radio and other
applications through the same space without significant interference.

The proof of the frequency shift property is very similar to that of the time shift (Section 9.4); however, here we would use the
inverse Fourier transform in place of the Fourier transform. Since we went through the steps in the previous, time-shift proof,
below we will just show the initial and final step to this proof:

Now we would simply reduce this equation through another change of variables and simplify the terms. Then we will prove the
property expressed in the table above:

Z(ω) = f [n−η] dn∫
∞

−∞

e−(jωn)

σ = n−η

Z(ω) = f [σ] dη∫
∞

−∞

e−(jω(σ+η)n)

= f [σ] dσe−(jωη) ∫
∞

−∞

e−(jωσ)

= F (ω)e−(jωη) (9.4.1)

y[n] = ( [n], [n])f1 f2

= [η] [n−η]∑
η=−∞

∞

f1 f2 (9.4.2)

(|f [n]| = (|F (ω)| dω∑
n=−∞

∞

)2 ∫
π

−π

)2

9.4.1

z(t) = F (ω−ϕ) dω
1

2π
∫

∞

−∞

ejωt

z(t) = f(t)ejϕt
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Properties Demonstration 

An interactive example demonstration of the properties is included below:

Figure : Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

Summary Table of DTFT Properties 
Table : Discrete-time Fourier transform properties and relations.

Sequence Domain Frequency Domain

Linearity

Conjugate Symmetry  real

Even Symmetry

Odd Symmetry

Time Delay

Multiplication by n

Sum

Value at Origin

9.4.2

9.4.1

(n) + (n)a1s1 a2s2 ( )+ ( )a1S1 ej2πf a2S2 ej2πf

s(n) S( ) = Sej2πf ( )e−(j2πf) ∗

s(n) = s(−n) S( ) = S( )ej2πf e−(j2πf)

s(n) = −s(−n) S( ) = −S( )ej2πf e−(j2πf)

s(n− )n0 S( )e−(j2πf )n0 ej2πf

ns(n) 1
−(2jπ)

dS( )ej2πf

df

s(n)∑∞
n=−∞ S( )ej2π0

s(0) S( )df∫
1

2

− 1
2

ej2πf
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Sequence Domain Frequency Domain

Parseval's Theorem

Complex Modulation

Amplitude Modulation

This page titled 9.4: Properties of the DTFT is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..

(|s(n)|∑∞
n=−∞ )2 df∫

1

2

− 1
2

( S( ) )∣∣ ej2πf ∣∣
2

s(n)ej2π nf0 S( )ej2π(f− )f0

s(n)cos(2π n)f0
S( )+S( )ej2π(f− )f0 ej2π(f+ )f0

2

s(n)sin(2π n)f0
S( )−S( )ej2π(f− )f0 ej2π(f+ )f0
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9.5: Discrete Time Convolution and the DTFT

Introduction 

This module discusses convolution of discrete signals in the time and frequency domains.

The Discrete-Time Convolution 

Discrete Time Fourier Transform 

The DTFT transforms an infinite-length discrete signal in the time domain into an finite-length (or -periodic) continuous signal
in the frequency domain.

DTFT

Inverse DTFT

Demonstration 

2π

X(ω) = x(n)∑
n=−∞

∞

e−(jωn)

x(n) = X(ω) dω
1

2π
∫

2π

0

ejωn
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Discrete Convolution. To Download, right-click
and save as .cdf.

Convolution Sum 

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an LTI system based on
an arbitrary discrete-time input signal and the system's impulse response. The convolution sum is expressed as

As with continuous-time, convolution is represented by the symbol , and can be written as

Convolution is commutative. For more information on the characteristics of convolution, read about the Properties of Convolution
(Section 3.4).

Convolution Theorem 

Let  and  be two functions with convolution . Let  be the Fourier transform operator. Then

By applying the inverse Fourier transform , we can write:

Conclusion 
The Fourier transform of a convolution is the pointwise product of Fourier transforms. In other words, convolution in one domain
(e.g., time domain) corresponds to point-wise multiplication in the other domain (e.g., frequency domain).

This page titled 9.5: Discrete Time Convolution and the DTFT is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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y[n] = x[k]h[n−k]∑
k=−∞

∞

∗

y[n] = x[n] ∗ h[n]

f g f ∗ g F

F (f ∗ g) = F (f) ⋅F (g)

F (f ⋅ g) = F (f) ∗F (g)

F −1

f ∗ g = (F (f) ⋅F (g))F −1
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10.1: Signal Sampling

Introduction 

Digital computers can process discrete time signals using extremely flexible and powerful algorithms. However, most signals of
interest are continuous time signals, which is how data almost always appears in nature. This module introduces the concepts
behind converting continuous time signals into discrete time signals through a process called sampling.

Sampling 
Sampling a continuous time signal produces a discrete time signal by selecting the values of the continuous time signal at evenly
spaced points in time. Thus, sampling a continuous time signal  with sampling period  gives the discrete time signal  defined
by . The sampling angular frequency is then given by .

It should be intuitively clear that multiple continuous time signals sampled at the same rate can produce the same discrete time
signal since uncountably many continuous time functions could be constructed that connect the points on the graph of any discrete
time function. Thus, sampling at a given rate does not result in an injective relationship. Hence, sampling is, in general, not
invertible.

For instance, consider the signals ,  defined by

and their sampled versions ,  with sampling period 

Notice that since

it follows that

Hence,  and  provide an example of distinct functions with the same sampled versions at a specific sampling rate.

It is also useful to consider the relationship between the frequency domain representations of the continuous time function and its
sampled versions. Consider a signal  sampled with sampling period  to produce the discrete time signal . The
spectrum  for  of  is given by

Using the continuous time Fourier transform,  can be represented as

Thus, the unit sampling period version of , which is  can be represented as

x Ts xs
(n) = x(n )xs Ts = 2π/ωs Ts

Example 10.1.1

x y

x(t) =
sin(t)

t

y(t) =
sin(5t)

t

xS ys = π/2Ts

(n) =xs
sin(nπ/2)

nπ/2

(n) = .ys
sin(n5π/2)

nπ/2

sin(n5π/2) = sin(n2π+nπ/2) = sin(nπ/2)

(n) = = (n).ys
sin(nπ/2)

nπ/2
xs

x y

x Ts (n) = x(n )xs Ts
(ω)Xs ω ∈ [−π, π) xs

(ω) = x (n ) .Xs ∑
n=−∞

∞

Ts e−jωn

x(t )Ts

x (t ) = X( ) d .Ts
1

2πTs
∫

∞

−∞

ω1

Ts
ej tω1 ω1

x(t )Ts x(n )Ts
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This is algebraically equivalent to the representation

which reduces by periodicity of complex exponentials to

Hence, it follows that

Noting that the above expression contains a Fourier series and inverse Fourier series pair, it follows that

Hence, the spectrum of the sampled signal is, intuitively, the scaled sum of an infinite number of shifted and time scaled copies of
original signal spectrum. Aliasing, which will be discussed in depth in later modules, occurs when these shifted spectrum copies
overlap and sum together. Note that when the original signal  is bandlimited to  no overlap occurs, so each period
of the sampled signal spectrum has the same form as the original signal spectrum. This suggest that if we sample a bandlimited
signal at a sufficiently high sampling rate, we can recover it from its samples as will be further described in the modules on the
Nyquist-Shannon sampling theorem and on perfect reconstruction.

Sampling Summary 
Sampling a continuous time signal produces a discrete time signal by selecting the values of the continuous time signal at equally
spaced points in time. However, we have shown that this relationship is not injective as multiple continuous time signals can be
sampled at the same rate to produce the same discrete time signal. This is related to a phenomenon called aliasing which will be
discussed in later modules. Consequently, the sampling process is not, in general, invertible. Nevertheless, as will be shown in the
module concerning reconstruction, the continuous time signal can be recovered from its sampled version if some additional
assumptions hold.

This page titled 10.1: Signal Sampling is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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10.2: Sampling Theorem

Introduction 

With the introduction of the concept of signal sampling, which produces a discrete time signal by selecting the values of the
continuous time signal at evenly spaced points in time, it is now possible to discuss one of the most important results in signal
processing, the Nyquist-Shannon sampling theorem. Often simply called the sampling theorem, this theorem concerns signals,
known as bandlimited signals, with spectra that are zero for all frequencies with absolute value greater than or equal to a certain
level. The theorem implies that there is a sufficiently high sampling rate at which a bandlimited signal can be recovered exactly
from its samples, which is an important step in the processing of continuous time signals using the tools of discrete time signal
processing.

Nyquist-Shannon Sampling Theorem 

Statement of the Sampling Theorem 

The Nyquist-Shannon sampling theorem concerns signals with continuous time Fourier transforms that are only nonzero on the
interval  for some constant . Such a function is said to be bandlimited to . Essentially, the sampling theorem has
already been implicitly introduced in the previous module concerning sampling. Given a continuous time signals  with continuous
time Fourier transform , recall that the spectrum  of sampled signal  with sampling period  is given by

It had previously been noted that if  is bandlimited to , the period of  centered about the origin has the same
form as  scaled in frequency since no aliasing occurs. This is illustrated in Figure . Hence, if any two 
bandlimited continuous time signals sampled to the same signal, they would have the same continuous time Fourier transform and
thus be identical. Thus, for each discrete time signal there is a unique  bandlimited continuous time signal that
samples to the discrete time signal with sampling period . Therefore, this  bandlimited signal can be found from
the samples by inverting this bijection.

This is the essence of the sampling theorem. More formally, the sampling theorem states the following. If a signal  is bandlimited
to , it is completely determined by its samples with sampling rate . That is to say,  can be reconstructed exactly
from its samples  with sampling rate . The angular frequency  is often called the angular Nyquist rate. Equivalently,
this can be stated in terms of the sampling period . If a signal  is bandlimited to , it is completely determined
by its samples with sampling period . That is to say,  can be reconstructed exactly from its samples  with sampling
period .

(−B,B) B (−B,B)

x

X Xs xs Ts
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1

Ts
∑
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∞
ω−2πk

Ts
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Figure : The spectrum of a bandlimited signals is shown as well as the spectra of its samples at rates above and below the
Nyquist frequency. As is shown, no aliasing occurs above the Nyquist frequency, and the period of the samples spectrum centered
about the origin has the same form as the spectrum of the original signal scaled in frequency. Below the Nyquist frequency, aliasing
can occur and causes the spectrum to take a different than the original spectrum.

Proof of the Sampling Theorem 

The above discussion has already shown the sampling theorem in an informal and intuitive way that could easily be refined into a
formal proof. However, the original proof of the sampling theorem, which will be given here, provides the interesting observation
that the samples of a signal with period  provide Fourier series coefficients for the original signal spectrum on .

Let  be a  bandlimited signal and  be its samples with sampling period . We can represent  in terms of its
spectrum  using the inverse continuous time Fourier transform and the fact that  is bandlimited. The result is

This representation of  may then be sampled with sampling period  to produce

Noticing that this indicates that  is the th continuous time Fourier series coefficient for  on the interval 
, it is shown that the samples determine the original spectrum  and, by extension, the original signal itself.

Perfect Reconstruction 

Another way to show the sampling theorem is to derive the reconstruction formula that gives the original signal  from its
samples  with sampling period , provided  is bandlimited to . This is done in the module on perfect
reconstruction. However, the result, known as the Whittaker-Shannon reconstruction formula, will be stated here. If the requisite
conditions hold, then the perfect reconstruction is given by

where the sinc function is defined as

From this, it is clear that the set

10.2.1
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forms an orthogonal basis for the set of  bandlimited signals, where the coefficients of a  signal in
this basis are its samples with sampling period .

Practical Implications 

Discrete Time Processing of Continuous Time Signals 

The Nyquist-Shannon Sampling Theorem and the Whittaker-Shannon Reconstruction formula enable discrete time processing of
continuous time signals. Because any linear time invariant filter performs a multiplication in the frequency domain, the result of
applying a linear time invariant filter to a bandlimited signal is an output signal with the same bandlimit. Since sampling a
bandlimited continuous time signal above the Nyquist rate produces a discrete time signal with a spectrum of the same form as the
original spectrum, a discrete time filter could modify the samples spectrum and perfectly reconstruct the output to produce the same
result as a continuous time filter. This allows the use of digital computing power and flexibility to be leveraged in continuous time
signal processing as well. This is more thoroughly described in the final module of this chapter.

Psychoacoustics 

The properties of human physiology and psychology often inform design choices in technologies meant for interaction with people.
For instance, digital devices dealing with sound use sampling rates related to the frequency range of human vocalizations and the
frequency range of human auditory sensitivity. Because most of the sounds in human speech concentrate most of their signal
energy between 5 Hz and 4 kHz, most telephone systems discard frequencies above 4 kHz and sample at a rate of 8 kHz.
Discarding the frequencies greater than or equal to 4 kHz through use of an anti-aliasing filter is important to avoid aliasing, which
would negatively impact the quality of the output sound as is described in a later module. Similarly, human hearing is sensitive to
frequencies between 20 Hz and 20 kHz. Therefore, sampling rates for general audio waveforms placed on CDs were chosen to be
greater than 40 kHz, and all frequency content greater than or equal to some level is discarded. The particular value that was
chosen, 44.1 kHz, was selected for other reasons, but the sampling theorem and the range of human hearing provided a lower
bound for the range of choices.

Sampling Theorem Summary 
The Nyquist-Shannon Sampling Theorem states that a signal bandlimited to  can be reconstructed exactly from its
samples with sampling period . The Whittaker-Shannon interpolation formula, which will be further described in the section on
perfect reconstruction, provides the reconstruction of the unique  bandlimited continuous time signal that samples
to a given discrete time signal with sampling period . This enables discrete time processing of continuous time signals, which has
many powerful applications.

This page titled 10.2: Sampling Theorem is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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10.3: Signal Reconstruction

Introduction 

The sampling process produces a discrete time signal from a continuous time signal by examining the value of the continuous time
signal at equally spaced points in time. Reconstruction, also known as interpolation, attempts to perform an opposite process that
produces a continuous time signal coinciding with the points of the discrete time signal. Because the sampling process for general
sets of signals is not invertible, there are numerous possible reconstructions from a given discrete time signal, each of which would
sample to that signal at the appropriate sampling rate. This module will introduce some of these reconstruction schemes.

Reconstruction 

Reconstruction Process 

The process of reconstruction, also commonly known as interpolation, produces a continuous time signal that would sample to a
given discrete time signal at a specific sampling rate. Reconstruction can be mathematically understood by first generating a
continuous time impulse train

from the sampled signal  with sampling period  and then applying a lowpass filter  that satisfies certain conditions to
produce an output signal . If  has impulse response , then the result of the reconstruction process, illustrated in Figure ,
is given by the following computation, the final equation of which is used to perform reconstruction in practice.

Figure : Block diagram of reconstruction process for a given lowpass filter .

Reconstruction Filters 

In order to guarantee that the reconstructed signal  samples to the discrete time signal  from which it was reconstructed using
the sampling period , the lowpass filter  must satisfy certain conditions. These can be expressed well in the time domain in
terms of a condition on the impulse response  of the lowpass filter . The sufficient condition to be a reconstruction filters that we
will require is that, for all ,

This means that gg sampled at a rate  produces a discrete time unit impulse signal. Therefore, it follows that sampling  with
sampling period  results in
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which is the desired result for reconstruction filters.

Cardinal Basis Splines 

Since there are many continuous time signals that sample to a given discrete time signal, additional constraints are required in order
to identify a particular one of these. For instance, we might require our reconstruction to yield a spline of a certain degree, which is
a signal described in piecewise parts by polynomials not exceeding that degree. Additionally, we might want to guarantee that the
function and a certain number of its derivatives are continuous.

This may be accomplished by restricting the result to the span of sets of certain splines, called basis splines or B-splines.
Specifically, if a th degree spline with continuous derivatives up to at least order  is required, then the desired function for a
given  belongs to the span of  where

for  and

Figure : The basis splines  are shown in the above plots. Note that, except for the order 0 and order 1 functions, these
functions do not satisfy the conditions to be reconstruction filters. Also notice that as the order increases, the functions approach the
Gaussian function, which is exactly .

However, the basis splines  do not satisfy the conditions to be a reconstruction filter for  as is shown in Figure .
Still, the  are useful in defining the cardinal basis splines, which do satisfy the conditions to be reconstruction filters. If we let 
be the samples of  on the integers, it turns out that  has an inverse  with respect to the operation of convolution for each .
This is to say that . The cardinal basis spline of order nn for reconstruction with sampling period  is defined as

In order to confirm that this satisfies the condition to be a reconstruction filter, note that
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Thus,  is a valid reconstruction filter. Since  is an th degree spline with continuous derivatives up to order , the result of
the reconstruction will be a th degree spline with continuous derivatives up to order .

Figure : The above plots show cardinal basis spline functions , , , and . Note that the functions satisfy the
conditions to be reconstruction filters. Also, notice that as the order increases, the cardinal basis splines approximate the sinc
function, which is exactly . Additionally, these filters are acausal.

The lowpass filter with impulse response equal to the cardinal basis spline  of order 0 is one of the simplest examples of a
reconstruction filter. It simply extends the value of the discrete time signal for half the sampling period to each side of every
sample, producing a piecewise constant reconstruction. Thus, the result is discontinuous for all nonconstant discrete time signals.

Likewise, the lowpass filter with impulse response equal to the cardinal basis spline  of order 1 is another of the simplest
examples of a reconstruction filter. It simply joins the adjacent samples with a straight line, producing a piecewise linear
reconstruction. In this way, the reconstruction is continuous for all possible discrete time signals. However, unless the samples are
collinear, the result has discontinuous first derivatives.

In general, similar statements can be made for lowpass filters with impulse responses equal to cardinal basis splines of any order.
Using the th order cardinal basis spline , the result is a piecewise degree nn polynomial. Furthermore, it has continuous
derivatives up to at least order . However, unless all samples are points on a polynomial of degree at most , the derivative of
order nn will be discontinuous.

Reconstructions of the discrete time signal given in Figure  using several of these filters are shown in Figure . As the
order of the cardinal basis spline increases, notice that the reconstruction approaches that of the infinite order cardinal spline ,
the sinc function. As will be shown in the subsequent section on perfect reconstruction, the filters with impulse response equal to
the sinc function play an especially important role in signal processing.
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Figure : The above plot shows an example discrete time function. This discrete time function will be reconstructed using
sampling period  using several cardinal basis splines in Figure .

Figure : The above plots show interpolations of the discrete time signal given in Figure  using lowpass filters with
impulse responses given by the cardinal basis splines shown in Figure . Notice that the interpolations become increasingly
smooth and approach the sinc interpolation as the order increases.

Reconstruction Summary 
Reconstruction of a continuous time signal from a discrete time signal can be accomplished through several schemes. However, it
is important to note that reconstruction is not the inverse of sampling and only produces one possible continuous time signal that
samples to a given discrete time signal. As is covered in the subsequent module, perfect reconstruction of a bandlimited continuous
time signal from its sampled version is possible using the Whittaker-Shannon reconstruction formula, which makes use of the ideal
lowpass filter and its sinc function impulse response, if the sampling rate is sufficiently high.

This page titled 10.3: Signal Reconstruction is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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10.4: Perfect Reconstruction

Introduction 

If certain additional assumptions about the original signal and sampling rate hold, then the original signal can be recovered exactly
from its samples using a particularly important type of filter. More specifically, it will be shown that if a bandlimited signal is
sampled at a rate greater than twice its bandlimit, the Whittaker-Shannon reconstruction formula perfectly reconstructs the original
signal. This formula makes use of the ideal lowpass filter, which is related to the sinc function. This is extremely useful, as sampled
versions of continuous time signals can be filtered using discrete time signal processing, often in a computer. The results may then
be reconstructed to produce the same continuous time output as some desired continuous time system.

Perfect Reconstruction 
In order to understand the conditions for perfect reconstruction and the filter it employs, consider the following. As a beginning, a
sufficient condition under which perfect reconstruction is possible will be discussed. Subsequently, the filter and process used for
perfect reconstruction will be detailed.

Recall that the sampled version  of a continuous time signal  with sampling period  has a spectrum given by

As before, note that if  is bandlimited to , meaning that  is only nonzero on , then each period of 
 has the same form as . Thus, we can identify the original spectrum  from the spectrum of the samples  and, by

extension, the original signal  from its samples  at rate  if  is bandlimited to .

If a signal  is bandlimited to , then it is also bandlimited to  provided that . Thus, if we ensure
that  is sampled to  with sufficiently high sampling angular frequency  and have a way of identifying the
unique  bandlimited signal corresponding to a discrete time signal at sampling period , then  can be used to
reconstruct  exactly. The frequency  is known as the angular Nyquist rate. Therefore, the condition that the sampling rate 

 be greater than the Nyquist rate is a sufficient condition for perfect reconstruction to be possible.

The correct filter must also be known in order to perform perfect reconstruction. The ideal lowpass filter defined by 
, which is shown in Figure , removes all signal content not in the frequency range

. Therefore, application of this filter to the impulse train  results in an output bandlimited
to .

We now only need to confirm that the impulse response  of the filter  satisfies our sufficient condition to be a reconstruction
filter. The inverse Fourier transform of  is

which is shown in Figure . Hence,

Therefore, the ideal lowpass filter  is a valid reconstruction filter. Since it is a valid reconstruction filter and always produces an
output that is bandlimited to , this filter always produces the unique  bandlimited signal that samples
to a given discrete time sequence at sampling period  when the impulse train  is input.

Therefore, we can always reconstruct any  bandlimited signal from its samples at sampling period  by the
formula
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This perfect reconstruction formula is known as the Whittaker-Shannon interpolation formula and is sometimes also called the
cardinal series. In fact, the sinc function is the infinite order cardinal basis spline . Consequently, the set 

 forms a basis for the vector space of  bandlimited signals where the signal samples
provide the corresponding coefficients. It is a simple exercise to show that this basis is, in fact, an orthogonal basis.

Figure : The above plots show the ideal lowpass filter and its inverse Fourier transform, the sinc function.

Figure : The plots show an example discrete time signal and its Whittaker-Shannon sinc reconstruction.

Perfect Reconstruction Summary 

This module has shown that bandlimited continuous time signals can be reconstructed exactly from their samples provided that the
sampling rate exceeds the Nyquist rate, which is twice the bandlimit. The Whittaker-Shannon reconstruction formula computes this
perfect reconstruction using an ideal lowpass filter, with the resulting signal being a sum of shifted sinc functions that are scaled by
the sample values. Sampling below the Nyquist rate can lead to aliasing which makes the original signal irrecoverable as is
described in the subsequent module. The ability to perfectly reconstruct bandlimited signals has important practical implications for
the processing of continuous time signals using the tools of discrete time signal processing.

This page titled 10.4: Perfect Reconstruction is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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10.5: Aliasing Phenomena

Introduction 

Through discussion of the Nyquist-Shannon sampling theorem and Whittaker-Shannon reconstruction formula, it has already been
shown that a  continuous time signal can be reconstructed from its samples at rate  via the sinc interpolation
filter if . Now, this module will investigate a problematic phenomenon, called aliasing, that can occur if this sufficient
condition for perfect reconstruction does not hold. When aliasing occurs the spectrum of the samples has different form than the
original signal spectrum, so the samples cannot be used to reconstruct the original signal through Whittaker-Shannon interpolation.

Aliasing 
Aliasing occurs when each period of the spectrum of the samples does not have the same form as the spectrum of the original
signal. Given a continuous time signals  with continuous time Fourier transform , recall that the spectrum  of sampled signal 

 with sampling period  is given by

As has already been mentioned several times, if  is bandlimited to  then each period of  has the same form as 

. However, if  is not bandlimited to , then the  can overlap and sum together. This is illustrated in

Figure  in which sampling above the Nyquist frequency produces a samples spectrum of the same shape as the original
signal, but sampling below the Nyquist frequency produces a samples spectrum with very different shape. Whittaker-Shannon
interpolation of each of these sequences produces different results. The low frequencies not affected by the overlap are the same,
but there is noise content in the higher frequencies caused by aliasing. Higher frequency energy masquerades as low energy
content, a highly undesirable effect.

Figure : The spectrum of a bandlimited signals is shown as well as the spectra of its samples at rates above and below the
Nyquist frequency. As is shown, no aliasing occurs above the Nyquist frequency, and the period of the samples spectrum centered
about the origin has the same form as the spectrum of the original signal scaled in frequency. Below the Nyquist frequency, aliasing
can occur and causes the spectrum to take a different than the original spectrum.

Unlike when sampling above the Nyquist frequency, sampling below the Nyquist frequency does not yield an injective (one-to-one)
function from the  bandlimited continuous time signals to the discrete time signals. Any signal  with spectrum  which
overlaps and sums to  samples to . It should be intuitively clear that there are very many  bandlimited signals that
sample to a given discrete time signal below the Nyquist frequency, as is demonstrated in Figure . It is quite easy to construct
uncountably infinite families of such signals.
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Aliasing obtains it name from the fact that multiple, in fact infinitely many,  bandlimited signals sample to the same
discrete sequence if . Thus, information about the original signal is lost in this noninvertible process, and these different
signals effectively assume the same identity, an “alias”. Hence, under these conditions the Whittaker-Shannon interpolation
formula will not produce a perfect reconstruction of the original signal but will instead give the unique  bandlimited
signal that samples to the discrete sequence.

Figure : The spectrum of a discrete time signal , taken from Figure , is shown along with the spectra of three 
 signals that sample to it at rate . From the sampled signal alone, it is impossible to tell which, if any, of these

was sampled at rate  to produce . In fact, there are infinitely many  bandlimited signals that sample to  at a
sampling rate below the Nyquist rate.

Aliasing Demonstration 
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Figure : Interact (when online) with a Mathematica CDF demonstrating sampling and aliasing for a sinusoid. To Download,
right-click and save target as .cdf.

Aliasing Summary 

Aliasing, essentially the signal processing version of identity theft, occurs when each period of the spectrum of the samples does
not have the same form as the spectrum of the original signal. As has been shown, there can be infinitely many 
bandlimited signals that sample to a given discrete time signal  at a rate  below the Nyquist frequency.
However, there is a unique  bandlimited signal that samples to , which is given by the Whittaker-Shannon interpolation
of , at rate  as no aliasing occurs above the Nyquist frequency. Unfortunately, sufficiently high sampling rates cannot
always be produced. Aliasing is detrimental to many signal processing applications, so in order to process continuous time signals
using discrete time tools, it is often necessary to find ways to avoid it other than increasing the sampling rate. Thus, anti-aliasing
filters, are of practical importance.
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10.6: Anti-Aliasing Filters

Introduction 

It has been shown that a  bandlimited signal can be perfectly reconstructed from its samples at a rate .
However, it is not always practically possible to produce sufficiently high sampling rates or to ensure that the input is bandlimited
in real situations. Aliasing, which manifests itself as a difference in shape between the periods of the samples signal spectrum and
the original spectrum, would occur without any further measures to correct this. Thus, it often becomes necessary to filter out
signal energy at frequencies above  in order to avoid the detrimental effects of aliasing. This is the role of the anti-aliasing
filter, a lowpass filter applied before sampling to ensure that the signal is  bandlimited or at least nearly so.

Anti-Aliasing Filters 
Aliasing can occur when a signal with energy at frequencies other that  is sampled at rate . Thus, when sampling
below the Nyquist frequency, it is desirable to remove as much signal energy outside the frequency range  as possible
while keeping as much signal energy in the frequency range  as possible. This suggests that the ideal lowpass filter with
cutoff frequency  would be the optimal anti-aliasing filter to apply before sampling. While this is true, the ideal lowpass filter
can only be approximated in real situations.

In order to demonstrate the importance of anti-aliasing filters, consider the calculation of the error energy between the original
signal and its Whittaker-Shannon reconstruction from its samples taken with and without the use of an anti-aliasing filter. Let  be
the original signal and  be the anti-alias filtered signal where  is the ideal lowpass filter with cutoff frequency . It is
easy to show that the reconstructed spectrum using no anti-aliasing filter is given by

Thus, the reconstruction error spectrum for this case is

Similarly, the reconstructed spectrum using the ideal lowpass anti-aliasing filter is given by

Thus, the reconstruction error spectrum for this case is

Hence, by Parseval's theorem, it follows that . Also note that the spectrum of  is identical to that of the
original signal  at frequencies . This is graphically shown in Figure .
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Figure : The figure above illustrates the use of an anti-aliasing filter to improve the process of sampling and reconstruction
when using a sampling frequency below the Nyquist frequency. Notice that when using an ideal lowpass anti-aliasing filter, the
reconstructed signal spectrum has the same shape as the original signal spectrum for all frequencies below half the sampling rate.
This results in a lower error energy when using the anti-aliasing filter, as can be seen by comparing the error spectra shown.

Anti-Aliasing Filters Summary 
As can be seen, anti-aliasing filters ensure that the signal is  bandlimited, or at least nearly so. The optimal anti-
aliasing filter would be the ideal lowpass filter with cutoff frequency at , which would ensure that the original signal spectrum
and the reconstructed signal spectrum are equal on the interval . However, the ideal lowpass filter is not possible to
implement in practice, and approximations must be accepted instead. Anti-aliasing filters are an important component of systems
that implement discrete time processing of continuous time signals, as will be shown in the subsequent module.
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10.7: Discrete Time Processing of Continuous Time Signals

Introduction 

Digital computers can process discrete time signals using extremely flexible and powerful algorithms. However, most signals of
interest are continuous time signals, which is how data almost always appears in nature. Now that the theory supporting methods
for generating a discrete time signal from a continuous time signal through sampling and then perfectly reconstructing the original
signal from its samples without error has been discussed, it will be shown how this can be applied to implement continuous time,
linear time invariant systems using discrete time, linear time invariant systems. This is of key importance to many modern
technologies as it allows the power of digital computing to be leveraged for processing of analog signals.

Discrete Time Processing of Continuous Time Signals 

Process Structure 

With the aim of processing continuous time signals using a discrete time system, we will now examine one of the most common
structures of digital signal processing technologies. As an overview of the approach taken, the original continuous time signal  is
sampled to a discrete time signal  in such a way that the periods of the samples spectrum  is as close as possible in shape to
the spectrum of . Then a discrete time, linear time invariant filter  is applied, which modifies the shape of the samples
spectrum  but cannot increase the bandlimit of , to produce another signal . This is reconstructed with a suitable
reconstruction filter to produce a continuous time output signal , thus effectively implementing some continuous time system .
This process is illustrated in Figure , and the spectra are shown for a specific case in Figure .

Figure : A block diagram for processing of continuous time signals using discrete time systems is shown.

Further discussion about each of these steps is necessary, and we will begin by discussing the analog to digital converter, often
denoted by ADC or A/D. It is clear that in order to process a continuous time signal using discrete time techniques, we must sample
the signal as an initial step. This is essentially the purpose of the ADC, although there are practical issues that which will be
discussed later. An ADC takes a continuous time analog signal as input and produces a discrete time digital signal as output, with
the ideal infinite precision case corresponding to sampling. As stated by the Nyquist-Shannon Sampling theorem, in order to retain
all information about the original signal, we usually wish sample above the Nyquist frequency  where the original signal
is bandlimited to . When it is not possible to guarantee this condition, an anti-aliasing filter should be used.

The discrete time filter is where the intentional modifications to the signal information occur. This is commonly done in digital
computer software after the signal has been sampled by a hardware ADC and before it is used by a hardware DAC to construct the
output. This allows the above setup to be quite flexible in the filter that it implements. If sampling above the Nyquist frequency the.
Any modifications that the discrete filter makes to this shape can be passed on to a continuous time signal assuming perfect
reconstruction. Consequently, the process described will implement a continuous time, linear time invariant filter. This will be
explained in more mathematical detail in the subsequent section. As usual, there are, of course, practical limitations that will be
discussed later.

Finally, we will discuss the digital to analog converter, often denoted by DAC or D/A. Since continuous time filters have
continuous time inputs and continuous time outputs, we must construct a continuous time signal from our filtered discrete time
signal. Assuming that we have sampled a bandlimited at a sufficiently high rate, in the ideal case this would be done using perfect
reconstruction through the Whittaker-Shannon interpolation formula. However, there are, once again, practical issues that prevent
this from happening that will be discussed later.
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Figure : Spectra are shown in black for each step in implementing a continuous time filter using a discrete time filter for a
specific signal. The filter frequency responses are shown in blue, and both are meant to have maximum value 1 in spite of the
vertical scale that is meant only for the signal spectra. Ideal ADCs and DACs are assumed.

Discrete Time Filter 

With some initial discussion of the process illustrated in Figure  complete, the relationship between the continuous time,
linear time invariant filter  and the discrete time, linear time invariant filter  can be explored. We will assume the use of ideal,
infinite precision ADCs and DACs that perform sampling and perfect reconstruction, respectively, using a sampling rate 

 where the input signal  is bandlimited to . Note that these arguments fail if this condition is not met
and aliasing occurs. In that case, pre-application of an anti-aliasing filter is necessary for these arguments to hold.

Recall that we have already calculated the spectrum  of the samples  given an input  with spectrum  as

Likewise, the spectrum  of the samples  given an output  with spectrum  is

From the knowledge that , it follows that

Because  is bandlimited to , we may conclude that

More simply stated,  is  periodic and  for .

Given a specific continuous time, linear time invariant filter , the above equation solves the system design problem provided we
know how to implement . The filter  must be chosen such that it has a frequency response where each period has the same
shape as the frequency response of  on . This is illustrated in the frequency responses shown in Figure .

We might also want to consider the system analysis problem in which a specific discrete time, linear time invariant filter  is
given, and we wish to describe the filter . There are many such filters, but we can describe their frequency responses on 

 using the above equation. Isolating one period of  yields the conclusion that  for 
. Because  was assumed to be bandlimited to , the value of the frequency response elsewhere

is irrelevant.

Practical Considerations 

As mentioned before, there are several practical considerations that need to be addressed at each stage of the process shown in
Figure . Some of these will be briefly addressed here, and a more complete model of how discrete time processing of
continuous time signals appears in Figure .
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Figure : A more complete model of how discrete time processing of continuous time signals is implemented in practice.
Notice the addition of anti-aliasing and anti-imaging filters to promote input and output bandlimitedness. The ADC is shown to
perform sampling with quantization. The digital filter is further specified to be causal. The DAC is shown to perform imperfect
reconstruction, a zero order hold in this case.

Anti-Aliasing Filter 

In reality, we cannot typically guarantee that the input signal will have a specific bandlimit, and sufficiently high sampling rates
cannot necessarily be produced. Since it is imperative that the higher frequency components not be allowed to masquerade as lower
frequency components through aliasing, anti-aliasing filters with cutoff frequency less than or equal to  must be used before
the signal is fed into the ADC. The block diagram in Figure  reflects this addition.

As described in the previous section, an ideal lowpass filter removing all energy at frequencies above  would be optimal. Of
course, this is not achievable, so approximations of the ideal lowpass filter with low gain above  must be accepted. This
means that some aliasing is inevitable, but it can be reduced to a mostly insignificant level.

Signal Quantization 

In our preceding discussion of discrete time processing of continuous time signals, we had assumed an ideal case in which the ADC
performs sampling exactly. However, while an ADC does convert a continuous time signal to a discrete time signal, it also must
convert analog values to digital values for use in a digital logic device, a phenomenon called quantization. The ADC subsystem of
the block diagram in Figure  reflects this addition.

The data obtained by the ADC must be stored in finitely many bits inside a digital logic device. Thus, there are only finitely many
values that a digital sample can take, specifically  where  is the number of bits, while there are uncountably many values an
analog sample can take. Hence something must be lost in the quantization process. The result is that quantization limits both the
range and precision of the output of the ADC. Both are finite, and improving one at constant number of bits requires sacrificing
quality in the other.

Filter Implementability 

In real world circumstances, if the input signal is a function of time, the future values of the signal cannot be used to calculate the
output. Thus, the digital filter  and the overall system  must be causal. The filter annotation in Figure  reflects this
addition. If the desired system is not causal but has impulse response equal to zero before some time , a delay can be introduced
to make it causal. However, if this delay is excessive or the impulse response has infinite length, a windowing scheme becomes
necessary in order to practically solve the problem. Multiplying by a window to decrease the length of the impulse response can
reduce the necessary delay and decrease computational requirements.

Take, for instance the case of the ideal lowpass filter. It is acausal and infinite in length in both directions. Thus, we must satisfy
ourselves with an approximation. One might suggest that these approximations could be achieved by truncating the sinc impulse
response of the lowpass filter at one of its zeros, effectively windowing it with a rectangular pulse. However, doing so would
produce poor results in the frequency domain as the resulting convolution would significantly spread the signal energy. Other
windowing functions, of which there are many, spread the signal less in the frequency domain and are thus much more useful for
producing these approximations.

Anti-Imaging Filter 

In our preceding discussion of discrete time processing of continuous time signals, we had assumed an ideal case in which the DAC
performs perfect reconstruction. However, when considering practical matters, it is important to remember that the sinc function,
which is used for Whittaker-Shannon interpolation, is infinite in length and acausal. Hence, it would be impossible for an DAC to
implement perfect reconstruction.
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Instead, the DAC implements a causal zero order hold or other simple reconstruction scheme with respect to the sampling rate 
used by the ADC. However, doing so will result in a function that is not bandlimited to . Therefore, an additional
lowpass filter, called an anti-imaging filter, must be applied to the output. The process illustrated in Figure  reflects these
additions. The anti-imaging filter attempts to bandlimit the signal to , so an ideal lowpass filter would be optimal.
However, as has already been stated, this is not possible. Therefore, approximations of the ideal lowpass filter with low gain above 

 must be accepted. The anti-imaging filter typically has the same characteristics as the anti-aliasing filter.

Discrete Time Processing of Continuous Time Signals Summary 

As has been show, the sampling and reconstruction can be used to implement continuous time systems using discrete time systems,
which is very powerful due to the versatility, flexibility, and speed of digital computers. However, there are a large number of
practical considerations that must be taken into account when attempting to accomplish this, including quantization noise and anti-
aliasing in the analog to digital converter, filter implementability in the discrete time filter, and reconstruction windowing and
associated issues in the digital to analog converter. Many modern technologies address these issues and make use of this process.

This page titled 10.7: Discrete Time Processing of Continuous Time Signals is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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11.1: Laplace Transform

Introduction 

The Laplace transform is a generalization of the Continuous-Time Fourier Transform (Section 8.2). It is used because the CTFT
does not converge/exist for many important signals, and yet it does for the Laplace-transform (e.g., signals with infinite  norm). It
is also used because it is notationaly cleaner than the CTFT. However, instead of using complex exponentials (Section 7.2) of the
form , with purely imaginary parameters, the Laplace transform uses the more general, , where  is complex, to
analyze signals in terms of exponentially weighted sinusoids.

The Laplace Transform 

Bilateral Laplace Transform Pair 

Although Laplace transforms are rarely solved in practice using integration (tables (Section 11.2) and computers (e.g. Matlab) are
much more common), we will provide the bilateral Laplace transform pair here for purposes of discussion and derivation. These
define the forward and inverse Laplace transformations. Notice the similarities between the forward and inverse transforms. This
will give rise to many of the same symmetries found in Fourier analysis (Section 5.1).

Laplace Transform

Inverse Laplace Transform

We have defined the bilateral Laplace transform. There is also a unilateral Laplace transform ,

which is useful for solving the difference equations with nonzero initial conditions. This is similar to the unilateral Z
Transform in Discrete time.

Relation between Laplace and CTFT 

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Continuous-Time Fourier Transform

Laplace Transform

We can see many similarities; first, that :

for all .

l2

ejωt est s = σ+jω
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∞
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The CTFT is a complex-valued function of a real-valued variable  (and  periodic). The Z-transform is a complex-valued
function of a complex valued variable z.

Plots

Figure 

Visualizing the Laplace Transform 

With the Fourier transform, we had a complex-valued function of a purely imaginary variable, . This was something we
could envision with two 2-dimensional plots (real and imaginary parts or magnitude and phase). However, with Laplace, we have a
complex-valued function of a complex variable. In order to examine the magnitude and phase or real and imaginary parts of this
function, we must examine 3-dimensional surface plots of each component.

Real and imaginary sample plots

(a) The Real part of 

(b) The Imaginary part of 

Figure : Real and imaginary parts of  are now each 3-dimensional surfaces.

Note

ω 2π

11.1.1

F (jω)

H(s)

H(s)

11.1.2 H(s)
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Magnitude and phase sample plots

(a) The Magnitude of 

(b) The Phase of 

Figure : Magnitude and phase of  are also each 3-dimensional surfaces. This representation
is more common than real and imaginary parts.

While these are legitimate ways of looking at a signal in the Laplace domain, it is quite difficult to draw and/or analyze. For this
reason, a simpler method has been developed. Although it will not be discussed in detail here, the method of Poles and Zeros is
much easier to understand and is the way both the Laplace transform and its discrete-time counterpart the Z-transform are
represented graphically.

Using a Computer to find the Laplace Transform 

Using a computer to find Laplace transforms is relatively painless. Matlab has two functions, laplace  and ilaplace , that
are both part of the symbolic toolbox, and will find the Laplace and inverse Laplace transforms respectively. This method is
generally preferred for more complicated functions. Simpler and more contrived functions are usually found easily enough by using
tables.

Laplace Transform Definition Demonstration 

H(s)

H(s)

11.1.3 H(s)
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Laplace Transform. To Download, right-click
and save target as .cdf.

Interactive Demonstrations 

11.1.4
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Khan Lecture on
Laplace

Figure : See the attached video on the basics of the Unilateral Laplace Transform from Khan
Academy

Conclusion 
The laplace transform proves a useful, more general form of the Continuous Time Fourier Transform. It applies equally well to
describing systems as well as signals using the eigenfunction method, and to describing a larger class of signals better described
using the pole-zero method.

This page titled 11.1: Laplace Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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11.2: Common Laplace Transforms
Table 

Signal Laplace Transform Region of Convergence

All 

All 

All 

This page titled 11.2: Common Laplace Transforms is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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11.3: Properties of the Laplace Transform
Table : Table of Laplace Transform Properties.

Property Signal Laplace Transform Region of Convergence

Linearity At least 

Time Shifting

Frequency Shifting (modulation) Shifted  (  must be in
the region of convergence)

Time Scaling Scaled  (  must be in
the region of convergence)

Conjugation

Convolution At least 

Time Differentiation At least 

Frequency Differentiation

Integration in Time At least 

This page titled 11.3: Properties of the Laplace Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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11.4: Inverse Laplace Transform

Introduction 

When using the Laplace-transform (Section 11.1)

it is often useful to be able to find  given . There are at least 4 different methods to do this:

1. Inspection
2. Partial-Fraction Expansion
3. Power Series Expansion
4. Contour Integration

Inspection Method 
This "method" is to basically become familiar with the Laplace-transform pair tables (Section 11.2) and then "reverse engineer".

When given

with an ROC (Section 12.6) of

we could determine "by inspection" that

Partial-Fraction Expansion Method 

When dealing with linear time-invariant systems the z-transform is often of the form

This can also expressed as

where  represents the nonzero zeros of  and  represents the nonzero poles.

If  then  can be represented as

This form allows for easy inversions of each term of the sum using the inspection method and the transform table. If the numerator
is a polynomial, however, then it becomes necessary to use partial-fraction expansion to put  in the above form. If 
then  can be expressed as
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Find the inverse z-transform of

where the ROC is . In this case , so we have to use long division to get

Next factor the denominator.

Now do partial-fraction expansion.

Now each term can be inverted using the inspection method and the Laplace-transform table. Thus, since the ROC is ,

Demonstration of Partial Fraction Expansion 

Figure : Interactive experiment illustrating how the Partial Fraction Expansion method is used to solve a variety of
numerator and denominator problems. (To view and interact with the simulation, download the free Mathematica player at
www.wolfram.com/products/player/download.cgi)

Khan Lecture on Partial Fraction
Expansion

Figure : video from Khan Academy

Power Series Expansion Method 
When the z-transform is defined as a power series in the form

then each term of the sequence  can be determined by looking at the coefficients of the respective power of .

Now look at the Laplace-transform of a finite-length sequence.

H(s) = +∑
r=0

M−N

Brs
−r

∑N−1
k=0 b′

k
s−k

∑N

l=0 aks
−k

Example 11.4.2
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In this case, since there were no poles, we multiplied the factors of . Now, by inspection, it is clear that

One of the advantages of the power series expansion method is that many functions encountered in engineering problems have their
power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc, can be easily inverted.

Suppose

Noting that

Then

Therefore

Contour Integration Method 
Without going in to much detail

where  is a counter-clockwise contour in the ROC of  encircling the origin of the s-plane. To further expand on this method
of finding the inverse requires the knowledge of complex variable theory and thus will not be addressed in this module.

Demonstration of Contour Integration 

Figure : Interactive experiment illustrating how the contour integral is applied on a simple example. For a more in-depth
discussion of this method, some background in complex analysis is required. (To view and interact with the simulation, download
the free Mathematica player at www.wolfram.com/products/player/download.cgi)

Conclusion 
The Inverse Laplace-transform is very useful to know for the purposes of designing a filter, and there are many ways in which to
calculate it, drawing from many disparate areas of mathematics. All nevertheless assist the user in reaching the desired time-
domain signal that can then be synthesized in hardware(or software) for implementation in a real-world filter.
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2
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2
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1

2
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∞ −1t+1
α
t
s

−t

t

H(s) = {  if t ≥ 1
−1t+1αt

t

0 if t ≤ 0

h(t) = H(s) ds
1

2πi
∮
r

s
t−1

r H(s)

11.4.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22910?pdf


11.4.4 https://eng.libretexts.org/@go/page/22910

This page titled 11.4: Inverse Laplace Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk
et al..

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22910?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/11%3A_Laplace_Transform_and_Continuous_Time_System_Design/11.04%3A_Inverse_Laplace_Transform
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


11.5.1 https://eng.libretexts.org/@go/page/22911

11.5: Poles and Zeros in the S-Plane

Introduction to Poles and Zeros of the Laplace-Transform 

It is quite difficult to qualitatively analyze the Laplace transform (Section 11.1) and Z-transform, since mappings of their
magnitude and phase or real part and imaginary part result in multiple mappings of 2-dimensional surfaces in 3-dimensional space.
For this reason, it is very common to examine a plot of a transfer function's poles and zeros to try to gain a qualitative idea of what
a system does.

Once the Laplace-transform of a system has been determined, one can use the information contained in function's polynomials to
graphically represent the function and easily observe many defining characteristics. The Laplace-transform will have the below
structure, based on Rational Functions (Section 12.7):

The two polynomials,  and , allow us to find the poles and zeros of the Laplace-Transform.

1. The value(s) for ss where .
2. The complex frequencies that make the overall gain of the filter transfer function zero.

1. The value(s) for  where .
2. The complex frequencies that make the overall gain of the filter transfer function infinite.

Below is a simple transfer function with the poles and zeros shown below it.

The zeros are: 

The poles are: 

The S-Plane 

Once the poles and zeros have been found for a given Laplace Transform, they can be plotted onto the S-Plane. The S-plane is a
complex plane with an imaginary and real axis referring to the complex-valued variable . The position on the complex plane is
given by  and the angle from the positive, real axis around the plane is denoted by . When mapping poles and zeros onto the
plane, poles are denoted by an "x" and zeros by an "o". The below figure shows the S-Plane, and examples of plotting zeros and
poles onto the plane can be found in the following section.

S-Plane

Figure 

H(s) =
P (s)

Q(s)

P (s) Q(s)

Definition: zeros

P (s) = 0

Definition: poles

s Q(s) = 0

Example 11.5.1

H(s) =
s +1

(s − ) (s + )1
2

3
4

{−1}

{ , − }1
2

3
4

z

rejθ θ
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Examples of Pole/Zero Plots 

This section lists several examples of finding the poles and zeros of a transfer function and then plotting them onto the S-Plane.

The zeros are: 

The poles are: 

Pole/Zero Plot

Figure : Using the zeros and poles found from the transfer function, the one zero is mapped to zero and the two poles are
placed at  and 

The zeros are: 

The poles are: 

Pole/Zero Plot

Figure : Using the zeros and poles found from the transfer function, the zeros are mapped to , and the poles are
placed at , , and 

An easy mistake to make with regards to poles and zeros is to think that a function like  is the same as . In
theory they are equivalent, as the pole and zero at  cancel each other out in what is known as pole-zero cancellation.
However, think about what may happen if this were a transfer function of a system that was created with physical circuits. In
this case, it is very unlikely that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount of volatility is created in
that area, since there is a change from infinity at the pole to zero at the zero in a very small range of signals. This is generally a
very bad way to try to eliminate a pole. A much better way is to use control theory to move the pole to a better place.

Example : Simple Pole/Zero Plot11.5.2
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2
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2
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4

11.5.2
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2

− 3
4

Example : Complex Pole/Zero Plot11.5.3
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2

1
2
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2
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2

1
2

1
2

1
2

11.5.3 ±(j)
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2

1
2
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2

1
2

Example : Pole-Zero Cancellation11.5.4
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It is possible to have more than one pole or zero at any given point. For instance, the discrete-time transfer function 
 will have two zeros at the origin and the continuous-time function  will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create pole/zero plots. Below is a
short program that plots the poles and zeros from the above example onto the Z-Plane.

 

 % Set up vector for zeros 

 z = [j ; -j]; 

 

 % Set up vector for poles 

 p = [-1 ; .5+.5j ; .5-.5j]; 

 

 figure(1); 

 zplane(z,p); 

 title('Pole/Zero Plot for Complex Pole/Zero Plot Example'); 

 

      

Interactive Demonstration of Poles and Zeros 

Note: Repeated Poles and Zeros

H(z) = z2 H(s) = 1

s25
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Figure : Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To Download, right-click and save
target as .cdf.

Applications for pole-zero plots 

Stability and Control theory 

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us. Basically what we can gather
from this is that the magnitude of the transfer function will be larger when it is closer to the poles and smaller when it is closer to
the zeros. This provides us with a qualitative understanding of what the system does at various frequencies and is crucial to the
discussion of stability (Section 3.6).

Pole/Zero Plots and the Region of Convergence 

The region of convergence (ROC) for  in the complex Z-plane can be determined from the pole/zero plot. Although several
regions of convergence may be possible, where each one corresponds to a different impulse response, there are some choices that
are more practical. A ROC can be chosen to make the transfer function causal and/or stable depending on the pole/zero plot.

11.5.4

X(z)
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Filter Properties from ROC

If the ROC extends outward from the outermost pole, then the system is causal.
If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example  discussed earlier.
The shaded region indicates the ROC chosen for the filter. From this figure, we can see that the filter will be both causal and stable
since the above listed conditions are both met.

Region of Convergence for the Pole/Zero Plot

Figure : The shaded area represents the chosen ROC for the transfer function.

Frequency Response and Pole/Zero Plots 

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily design a filter. Based
on the location of the poles and zeros, the magnitude response of the filter can be quickly understood. Also, by starting with the
pole/zero plot, one can design a filter and obtain its transfer function very easily.

Conclusion 

Pole-Zero Plots are clearly quite useful in the study of the Laplace and Z transform, affording us a method of visualizing the at
times confusing mathematical functions.

This page titled 11.5: Poles and Zeros in the S-Plane is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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11.6: Region of Convergence for the Laplace Transform
With the Laplace transform (Section 11.1), the s-plane represents a set of signals (complex exponentials (Section 1.8)). For any
given LTI (Section 2.1) system, some of these signals may cause the output of the system to converge, while others cause the
output to diverge ("blow up"). The set of signals that cause the system's output to converge lie in the region of convergence
(ROC). This module will discuss how to find this region of convergence for any continuous-time, LTI system.

Recall the definition of the Laplace transform,

Laplace Transform

If we consider a causal (Section 1.1), complex exponential, , we get the equation,

Evaluating this, we get

Notice that this equation will tend to infinity when  tends to infinity. To understand when this happens, we take
one more step by using  to realize this equation as

Recognizing that  is sinusoidal, it becomes apparent that  is going to determine whether this blows up or not. What
we find is that if  is positive, the exponential will be to a negative power, which will cause it to go to zero as tt tends to
infinity. On the other hand, if σ+aσ a is negative or zero, the exponential will not be to a negative power, which will prevent it from
tending to zero and the system will not converge. What all of this tells us is that for a causal signal, we have convergence when

Condition for Convergence

Although we will not go through the process again for anticausal signals, we could. In doing so, we would find that the necessary
condition for convergence is when

Necessary Condition for Anti-Causal Convergence

Graphical Understanding of ROC 
Perhaps the best way to look at the region of convergence is to view it in the s-plane. What we observe is that for a single pole, the
region of convergence lies to the right of it for causal signals and to the left for anti-causal signals.
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−∞
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( −1)
−1
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e−(jωt)e−((σ+a)t)

e−(jωt) e−(σ(a)t)

σ+a

Re(s) > −a

Re(s) < −a

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22912?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/11%3A_Laplace_Transform_and_Continuous_Time_System_Design/11.06%3A_Region_of_Convergence_for_the_Laplace_Transform


11.6.2 https://eng.libretexts.org/@go/page/22912

(a) The Region of Convergence for a causal signal.

b) The Region of Convergence for an anti-causal signal.
Figure 

Once we have recognized this, the natural question becomes: What do we do when we have multiple poles? The simple answer is
that we take the intersection of all of the regions of convergence of the respective poles.

Find  and state the region of convergence for 

Breaking this up into its two terms, we get transfer functions and respective regions of convergence of

. If , we can represent this graphically. Otherwise, there will be no region of convergence.

Figure : The Region of Convergence of  if .

This page titled 11.6: Region of Convergence for the Laplace Transform is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..

11.6.1

Example 11.6.1

H(s) h(t) = u(t) + u(−t)e−(at) e−(bt)

(s) = , Re(s) > −aH1
1

s+a

(s) = , Re(s) < −bH2
−1
s+b

−b > Re(s) > −a a > b

11.6.2 h(t) a > b

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22912?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/11%3A_Laplace_Transform_and_Continuous_Time_System_Design/11.06%3A_Region_of_Convergence_for_the_Laplace_Transform
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


11.7.1 https://eng.libretexts.org/@go/page/23170

11.7: Rational Functions and the Laplace Transform

Introduction 

When dealing with operations on polynomials, the term rational function is a simple way to describe a particular relationship
between two polynomials.

For any two polynomials, A and B, their quotient is called a rational function.

Below is a simple example of a basic rational function, . Note that the numerator and denominator can be polynomials of
any order, but the rational function is undefined when the denominator equals zero.

Properties of Rational Functions 
In order to see what makes rational functions special, let us look at some of their basic properties and characteristics. If you are
familiar with rational functions and basic algebraic properties, skip to the next section to see how rational functions are useful when
dealing with the Laplace transform.

Roots 

To understand many of the following characteristics of a rational function, one must begin by finding the roots of the rational
function. In order to do this, let us factor both of the polynomials so that the roots can be easily determined. Like all polynomials,
the roots will provide us with information on many key properties. The function below shows the results of factoring the above
rational function, Equation .

Thus, the roots of the rational function are as follows:

Roots of the numerator are: 

Roots of the denominator are: 

In order to understand rational functions, it is essential to know and understand the roots that make up the rational function.

Discontinuities 

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that will cause the
denominator of our fraction to be zero. When this happens, the rational function becomes undefined, i.e. we have a discontinuity in
the function. Because we have already solved for our roots, it is very easy to see when this occurs. When the variable in the
denominator equals any of the roots of the denominator, the function becomes undefined.

Continuing to look at our rational function above, Equation , we can see that the function will have discontinuities at the
following points: 

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the function is undefined.
These discontinuities often appear as vertical asymptotes on the graph to represent the values where the function is undefined.

Definition: Rational Function

Example 11.7.1

f(x)

f(x) =
−4x2

2 +x −3x2
(11.7.1)

11.7.1

f(x) =
(x +2)(x −2)

(2x +3)(x −1)

{−2, 2}

{−3, 1}

Note

Example 11.7.2

11.7.1

x = {−3, 1}
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Domain 

Using the roots that we found above, the domain of the rational function can be easily defined.

The group, or set, of values that are defined by a given function.

Using the rational function above, Equation , the domain can be defined as any real number  where  does not equal 1
or negative 3. Written out mathematically, we get the following:

Intercepts 

The x-intercept is defined as the point(s) where , i.e. the output of the rational functions, equals zero. Because we have
already found the roots of the equation this process is very simple. From algebra, we know that the output will be zero whenever
the numerator of the rational function is equal to zero. Therefore, the function will have an x-intercept wherever  equals one of the
roots of the numerator.

The y-intercept occurs whenever  equals zero. This can be found by setting all the values of  equal to zero and solving the
rational function.

Rational Functions and the Laplace Transform 
Rational functions often result when the Laplace transform is used to compute transfer functions for LTI systems. When using the
Laplace transform to solve linear constant coefficient ordinary differential equations, partial fraction expansions of rational
functions prove particularly useful. The roots of the polynomials in the numerator and denominator of the transfer function play an
important role in describing system behavior. The roots of the polynomial in the numerator produce zeros of the transfer function
where the system produces no output for an input of that complex frequency. The roots of the polynomial in the denominator
produce poles of the transfer function where the system has natural frequencies of oscillation.

Summary 
Once we have used our knowledge of rational functions to find its roots, we can manipulate a Laplace transform in a number of
useful ways. We can apply this knowledge by representing an LTI system graphically through a pole-zero plot for analysis or
design.

This page titled 11.7: Rational Functions and the Laplace Transform is shared under a CC BY license and was authored, remixed, and/or curated
by Richard Baraniuk et al..
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11.8: Differential Equations

Differential Equations 

It is often useful to describe systems using equations involving the rate of change in some quantity through differential equations.
Recall that one important subclass of differential equations, linear constant coefficient ordinary differential equations, takes the
form

where  is a differential operator of the form

The differential equation in Equation  would describe some system modeled by  with an input forcing function  that
produces an output solution signal . However, the unilateral Laplace transform permits a solution for initial value problems to
be found in what is usually a much simpler method. Specifically, it greatly simplifies the procedure for nonhomogeneous
differential equations.

General Formulas for the Differential Equation 
As stated briefly in the definition above, a differential equation is a very useful tool in describing and calculating the change in an
output of a system described by the formula for a given input. The key property of the differential equation is its ability to help
easily find the transform, , of a system. In the following two subsections, we will look at the general form of the differential
equation and the general conversion to a Laplace-transform directly from the differential equation.

Conversion to Laplace-Transform 

We can easily generalize the transfer function, , for any differential equation. Below are the steps taken to convert any
differential equation into its transfer function, i.e. Laplace-transform. The first step involves taking the Fourier Transform of all the
terms in [link]. Then we use the linearity property to pull the transform inside the summation and the time-shifting property of the
Laplace-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following equation: 

.

Conversion to Frequency Response 

Once the Laplace-transform has been calculated from the differential equation, we can go one step further to define the frequency
response of the system, or filter, that is being represented by the differential equation.

Remember that the reason we are dealing with these formulas is to be able to aid us in filter design. A LCCDE is one of the
easiest ways to represent FIR filters. By being able to find the frequency response, we will be able to look at the basic
properties of any filter represented by a simple LCCDE.

Below is the general formula for the frequency response of a Laplace-transform. The conversion is simply a matter of taking the
Laplace-transform formula, , and replacing every instance of  with .

Ay(t) = x(t) (11.8.1)

A

A = + +… + +an
dn

dtn
an−1

dn−1

dtn−1
a1

d

dt
a0 (11.8.2)
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Once you understand the derivation of this formula, look at the module concerning Filter Design from the Laplace-Transform
(Section 12.9) for a look into how all of these ideas of the Laplace-transform (Section 11.1), Differential Equation, and Pole/Zero
Plots (Section 12.5) play a role in filter design.

Solving a LCCDE 
In order for a linear constant-coefficient difference equation to be useful in analyzing a LTI system, we must be able to find the
systems output based upon a known input, , and a set of initial conditions. Two common methods exist for solving a LCCDE:
the direct method and the indirect method, the latter being based on the Laplace-transform. Below we will briefly discuss the
formulas for solving a LCCDE using each of these methods.

Direct Method 

The final solution to the output based on the direct method is the sum of two parts, expressed in the following equation:

The first part, , is referred to as the homogeneous solution and the second part, , is referred to as particular solution.
The following method is very similar to that used to solve many differential equations, so if you have taken a differential calculus
course or used differential equations before then this should seem very familiar.

Homogeneous Solution

We begin by assuming that the input is zero, . Now we simply need to solve the homogeneous differential equation:

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We will use lambda, , to
represent our exponential terms. We now have to solve the following equation:

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial in parenthesis, which
is referred to as the characteristic polynomial. The roots of this polynomial will be the key to solving the homogeneous equation.
If there are all distinct roots, then the general solution to the equation will be as follows:

However, if the characteristic equation contains multiple roots then the above general solution will be slightly different. Below we
have the modified version for an equation where  has  multiple roots:

Particular Solution

The particular solution, , will be any solution that will solve the general differential equation:

In order to solve, our guess for the solution to  will take on the form of the input, . After guessing at a solution to the
above equation involving the particular solution, one only needs to plug the solution into the differential equation and solve it out.

H(w) = H(s)|s,s=ejw

=
∑M

k=0 bke
−(jwk)

∑N
k=0 ake

−(jwk)
(11.8.4)
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Indirect Method 

The indirect method utilizes the relationship between the differential equation and the Laplace-transform, discussed earlier, to find
a solution. The basic idea is to convert the differential equation into a Laplace-transform, as described above, to get the resulting
output, . Then by inverse transforming this and using partial-fraction expansion, we can arrive at the solution.

This can be interatively extended to an arbitrary order derivative as in Equation .

Now, the Laplace transform of each side of the differential equation can be taken

which by linearity results in

and by differentiation properties in

Rearranging terms to isolate the Laplace transform of the output,

Thus, it is found that

In order to find the output, it only remains to find the Laplace transform  of the input, substitute the initial conditions, and
compute the inverse Laplace transform of the result. Partial fraction expansions are often required for this last step. This may sound
daunting while looking at Equation , but it is often easy in practice, especially for low order differential equations. Equation 

 can also be used to determine the transfer function and frequency response.

As an example, consider the differential equation

with the initial conditions  and . Using the method described above, the Laplace transform of the solution  is
given by

Performing a partial-fraction decomposition, this also equals

Computing the inverse Laplace transform,

Y (s)

L{ y(t)} = sY (s) −y(0)
d

dt

11.8.5
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One can check that this satisfies that this satisfies both the differential equation and the initial conditions.

Summary 
One of the most important concepts of DSP is to be able to properly represent the input/output relationship to a given LTI system.
A linear constant-coefficient difference equation (LCCDE) serves as a way to express just this relationship in a discrete-time
system. Writing the sequence of inputs and outputs, which represent the characteristics of the LTI system, as a difference equation
helps in understanding and manipulating a system.

This page titled 11.8: Differential Equations is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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11.9: Continuous Time Filter Design

11.9.1 Introduction

Analog (Continuous-Time) filters are useful for a wide variety of applications, and are especially useful in that they are very simple
to build using standard, passive R,L,C components. Having a grounding in basic filter design theory can assist one in solving a
wide variety of signal processing problems.

11.9.2 Estimating Frequency Response from Z-Plane 
One of the motivating factors for analyzing the pole/zero plots is due to their relationship to the frequency response of the system.
Based on the position of the poles and zeros, one can quickly determine the frequency response. This is a result of the
correspondence between the frequency response and the transfer function evaluated on the unit circle in the pole/zero plots. The
frequency response, or DTFT, of the system is defined as:

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator by  we arrive at the
following equations:

From Equation  we have the frequency response in a form that can be used to interpret physical characteristics about the
filter's frequency response. The numerator and denominator contain a product of terms of the form , where  is either a
zero, denoted by  or a pole, denoted by . Vectors are commonly used to represent the term and its parts on the complex plane.
The pole or zero, , is a vector from the origin to its location anywhere on the complex plane and  is a vector from the origin to
its location on the unit circle. The vector connecting these two points, , connects the pole or zero location to a place on the
unit circle dependent on the value of . From this, we can begin to understand how the magnitude of the frequency response is a
ratio of the distances to the poles and zero present in the z-plane as  goes from zero to pi. These characteristics allow us to
interpret  as follows:

In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency response of the system. As 
 goes from  to , the following two properties, taken from the above equations, specify how one should draw .

While moving around the unit circle...

1. If close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency response is zero at that point.
2. If close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response goes to infinity at that

point.

11.9.3 Drawing Frequency Response from Pole/Zero Plot 
Let us now look at several examples of determining the magnitude of the frequency response from the pole/zero plot of a z-
transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer back to the Pole/Zero Plots (Section 12.5)
module.
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In this first example we will take a look at the very simple z-transform shown below:

For this example, some of the vectors represented by , for random values of , are explicitly drawn onto the complex
plane shown in the figure below. These vectors show how the amplitude of the frequency response changes as ww goes from
00 to 2π2, and also show the physical meaning of the terms in Equation  above. One can see that when , the vector
is the longest and thus the frequency response will have its largest amplitude here. As  approaches , the length of the vectors
decrease as does the amplitude of . Since there are no poles in the transform, there is only this one vector term rather
than a ratio as seen in Equation .

Figure : (a) Pole/Zero Plot represents the pole/zero plot with a few representative vectors graphed. (b) Frequency
Response:  figure shows the frequency response with a peak at +2 and graphed between plus and minus .

For this example, a more complex transfer function is analyzed in order to represent the system's frequency response.

Below we can see the two figures described by the above equations. The Figure  represents the basic pole/zero plot
of the z-transform, . Figure  shows the magnitude of the frequency response. From the formulas and statements
in the previous section, we can see that when  the frequency will peak since it is at this value of  that the pole is closest
to the unit circle. The ratio from Equation  helps us see the mathematics behind this conclusion and the relationship
between the distances from the unit circle and the poles and zeros. As  moves from  to , we see how the zero begins to
mask the effects of the pole and thus force the frequency response closer to .

Figure : The (a) Pole/Zero Plot figure represents the pole/zero plot while the Frequency Response ( ) shows the
frequency response with a peak at +2 and graphed between plus and minus .

11.9.4 Types of Filters 

11.9.4.1 Butterworth Filters 

The Butterworth filter is the simplest filter. It can be constructed out of passive R, L, C circuits. The magnitude of the transfer
function for this filter is

Magnitude of Butterworth Filter Transfer Function
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where  is the order of the filter and  is the cutoff frequency. The cutoff frequency is the frequency where the magnitude
experiences a 3 dB dropoff (where ).

Figure : Three different orders of lowpass Butterworth analog filters: . As  increases, the filter more closely
approximates an ideal brickwall lowpass response.

The important aspects of Figure  are that it does not ripple in the passband or stopband as other filters tend to, and that the
larger nn, the sharper the cutoff (the smaller the transition band).

Butterworth filters give transfer functions  and ) that are rational functions. They also have only poles, resulting in a
transfer function of the form

and a pole-zero plot of

Figure : Poles of a 10th-order ( ) lowpass Butterworth filter.

Note that the poles lie along a circle in the s-plane.

11.9.4.2 Chebyshev Filters 

The Butterworth filter does not give a sufficiently good approximation across the complete passband in many cases. The Taylor's
series approximation is often not suited to the way specifications are given for filters. An alternate error measure is the maximum
of the absolute value of the difference between the actual filter response and the ideal. This is considered over the total passband.
This is the Chebyshev error measure and was defined and applied to the FIR filter design problem. For the IIR filter, the Chebyshev
error is minimized over the passband and a Taylor's series approximation at  is used to determine the stopband performance.
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This mixture of methods in the IIR case is called the Chebyshev filter, and simple design formulas result, just as for the
Butterworth filter.

The design of Chebyshev filters is particularly interesting, because the results of a very elegant theory insure that constructing a
frequency-response function with the proper form of equal ripple in the error will result in a minimum Chebyshev error without
explicitly minimizing anything. This allows a straightforward set of design formulas to be derived which can be viewed as a
generalization of the Butterworth formulas.

The form for the magnitude squared of the frequency-response function for the Chebyshev filter is

where  is an Nth-order Chebyshev polynomial and  is a parameter that controls the ripple size. This polynomial in  has
very special characteristics that result in the optimality of the response function (Equation ).

Figure : Fifth Order Chebyshev Filter Frequency Response

11.9.4.3 Bessel filters 

Insert bessel filter information

11.9.4.4 Elliptic Filters 

There is yet another method that has been developed that uses a Chebyshev error criterion in both the passband and the stopband.
This is the fourth possible combination of Chebyshev and Taylor's series approximations in the passband and stopband. The
resulting filter is called an elliptic-function filter, because elliptic functions are normally used to calculate the pole and zero
locations. It is also sometimes called a Cauer filter or a rational Chebyshev filter, and it has equal ripple approximation error in
both pass and stopbands.

The error criteria of the elliptic-function filter are particularly well suited to the way specifications for filters are often given. For
that reason, use of the elliptic-function filter design usually gives the lowest order filter of the four classical filter design methods
for a given set of specifications. Unfortunately, the design of this filter is the most complicated of the four. However, because of the
efficiency of this class of filters, it is worthwhile gaining some understanding of the mathematics behind the design procedure.

This section sketches an outline of the theory of elliptic- function filter design. The details and properties of the elliptic functions
themselves should simply be accepted, and attention put on understanding the overall picture. A more complete development is
available in.

Because both the passband and stopband approximations are over the entire bands, a transition band between the two must be
defined. Using a normalized passband edge, the bands are defined by

This is illustrated in Figure .
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Figure : Third Order Analog Elliptic Function Lowpass Filter showing the Ripples and Band Edges

The characteristics of the elliptic function filter are best described in terms of the four parameters that specify the frequency
response:

1. The maximum variation or ripple in the passband ,
2. The width of the transition band ,
3. The maximum response or ripple in the stopband , and
4. The order of the filter .

The result of the design is that for any three of the parameters given, the fourth is minimum. This is a very flexible and powerful
description of a filter frequency response.

The form of the frequency-response function is a generalization of that for the Chebyshev filter

where

with  being the prototype analog filter transfer function similar to that for the Chebyshev filter.  is a rational function that
approximates zero in the passband and infinity in the stopband. The definition of this function is a generalization of the definition
of the Chebyshev polynomial.

11.9.5 Filter Design Demonstration 

11.9.6 Conclusion 
As can be seen, there is a large amount of information available in filter design, more than an introductory module can cover. Even
for designing Discrete-time IIR filters, it is important to remember that there is a far larger body of literature for design methods for
the analog signal processing world than there is for the digital. Therefore, it is often easier and more practical to implement an IIR
filter using standard analog methods, and then discretize it using methods such as the Bilateral Transform.

This page titled 11.9: Continuous Time Filter Design is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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12.1: Z-Transform

Introduction 

The Z transform is a generalization of the Discrete-Time Fourier Transform (Section 9.2). It is used because the DTFT does not
converge/exist for many important signals, and yet does for the z-transform. It is also used because it is notationally cleaner than
the DTFT. In contrast to the DTFT, instead of using complex exponentials (Section 7.2) of the form (e^{j \omega n}\), with purely
imaginary parameters, the Z transform uses the more general, , where  is complex. The Z-transform thus allows one to bring in
the power of complex variable theory into Digital Signal Processing.

The Z-Transform 

Bilateral Z-transform Pair 

Although Z transforms are rarely solved in practice using integration (tables and computers (e.g. Matlab) are much more common),
we will provide the bilateral Z transform pair here for purposes of discussion and derivation. These define the forward and
inverse Z transformations. Notice the similarities between the forward and inverse transforms. This will give rise to many of the
same symmetries found in Fourier analysis (Section 5.1).

Z Transform

Inverse Z Transform

We have defined the bilateral z-transform. There is also a unilateral z-transform ,

which is useful for solving the difference equations with nonzero initial conditions. This is similar to the unilateral Laplace
Transform in continuous time.

Relation between Z-transform and DTFT 

Taking a look at the equations describing the Z-Transform and the Discrete-Time Fourier Transform:

Discrete-Time Fourier Transform

Z-Transform

We can see many similarities; first, that:

for all 

zn z

X(z) = x[n]∑
n=−∞

∞

z−n

x[n] = X(z) dz
1

2πj
∮

r

zn−1

Note

X(z) = x[n]∑
n=0

∞

z−n

X ( ) = x(n)ejω ∑
n=−∞

∞

e−(jωn)

X(z) = x[n]∑
n=−∞

∞

z−n

X ( ) = X(z)ejω

z = ejω
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Visualizing the Z-transform 

With the DTFT, we have a complex-valued function of a real-valued variable  (and  periodic). The Z-transform is a complex-
valued function of a complex valued variable z.

Plots

Figure 

With the Fourier transform, we had a complex-valued function of a purely imaginary variable, . This was something we
could envision with two 2-dimensional plots (real and imaginary parts or magnitude and phase). However, with Z, we have a
complex-valued function of a complex variable. In order to examine the magnitude and phase or real and imaginary parts of this
function, we must examine 3-dimensional surface plots of each component.

Consider the z-transform given by , as illustrated below.

Figure 

The corresponding DTFT has magnitude and phase given below.

While these are legitimate ways of looking at a signal in the Z domain, it is quite difficult to draw and/or analyze. For this
reason, a simpler method has been developed. Although it will not be discussed in detail here, the method of Poles and Zeros is
much easier to understand and is the way both the Z transform and its continuous-time counterpart the Laplace-transform are
represented graphically.

ω 2π

12.1.1

F (jω)

H(z) = z

12.1.2

Note

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22914?pdf
https://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4:6cc2a6b9-87af-4f20-9948-f6520e372eda


12.1.3 https://eng.libretexts.org/@go/page/22914

(a)

(b)

Figure : Magnitude and Phase of .

What could the system H be doing? It is a perfect all-pass, linear-phase system. But what does this mean?

Suppose . Then

Thus,  is the -transform of a system that simply delays the input by .  is the -transform of a unit-delay.

Now consider 

Figure 

What if ? Then  does not converge! Therefore, whenever we compute a -tranform, we must also specify the
set of 's for which the -transform exists. This is called the region of convergence (ROC).

12.1.3 H(z)

h[n] = δ [n − ]n0

H(z) = h[n]∑
n=−∞

∞

z−n

= δ [n − ]∑
n=−∞

∞

n0 z−n

= z−n0

H(z) = z−n0 z n0 H(z) z

x[n] = u[n]αn

12.1.4

X(z) = x[n] =∑
n=−∞

∞

z−n ∑
n=0

∞

αnz−n

=∑
n=0

∞

( )
α

z

n

= ( if  < 1) ( Geometric series )
1

1 − α
z

∣
∣
α

z
∣
∣

=
z

z −α
(12.1.1)

| | ≥ 1α
z

∑∞
n=0 ( )α
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n
z

z z
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Matlab has two functions,

ztrans

and

iztrans

that are both part of the symbolic toolbox, and will find the Z and inverse Z transforms respectively. This method is generally
preferred for more complicated functions. Simpler and more contrived functions are usually found easily enough by using
tables.

Application to Discrete Time Filters 
The -transform might seem slightly ugly. We have to worry about the region of convergence, and stability issues, and so forth.
However, in the end it is worthwhile because it proves extremely useful in analyzing digital filters with feedback. For example,
consider the system illustrated below

Plots

Figure 

We can analyze this system via the equations

and

More generally,

and

or equivalently,

What does the -transform of this relationship look like?

Note: Using a computer to find the Z-transform

z

12.1.5

v[n] = x[n] + x[n −1] + x[n −2]b0 b1 b2

y[n] = v[n] + y[n −1] + y[n −2]a1 a2

v[n] = x[n −k]∑
k=0

N

bk

y[n] = y[n −k] +v[n]∑
k=1

M

ak

x[n −k] = y[n] − y[n −k].∑
k=0

N

bk ∑
k=1

M

ak

z

Z y[n −k] = Z x[n −k]∑
k=0

M

ak ∑
k=0

M

bk
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Note that

Thus the relationship reduces to

Hence, given a system the one above, we can easily determine the system's transfer function, and end up with a ratio of two
polynomials in \(z\): a rational function. Similarly, given a rational function, it is easy to realize this function in a simple hardware
architecture.

Interactive Z-Transform Demonstration 

Z{y[n −k]} = Z{x[n −k]}∑
k=0

M

ak ∑
k=0

M

bk

Z{y[n −k]} = y[n −k]∑
n=−∞

∞

z−n

= y[m]∑
m=−∞

∞

z−mz−k

= Y (z)z−k

Y (z)∑
k=0

M

ak z−k

Y (z)∑
k=0

M

akz−k

Y (z)

X(z)

= X(z)∑
k=0

N

bk z−k

= X(z)∑
k=0

N

bkz−k

=
∑N

k=0 bkz−k

∑M
k=0 akz−k
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Z Transform. To Download, right-click and save
target as .cdf.

Conclusion 

The z-transform proves a useful, more general form of the Discrete Time Fourier Transform. It applies equally well to describing
systems as well as signals using the eigenfunction method, and proves extremely useful in digital filter design.

This page titled 12.1: Z-Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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12.2: Common Z-Transforms
Table : Common Continuous Time Fourier Series

Signal Z-transform Region of Convergence

all 

all 

all 

This page titled 12.2: Common Z-Transforms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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12.3: Properties of the Z-Transform

Introduction 

This module will look at some of the basic properties of the Z-Transform (Section 9.2) (DTFT).

We will be discussing these properties for aperiodic, discrete-time signals but understand that very similar properties hold for
continuous-time signals and periodic signals as well.

Discussion of Z-Transform Properties 

Linearity 

The combined addition and scalar multiplication properties in the table above demonstrate the basic property of linearity. What you
should see is that if one takes the Z-transform of a linear combination of signals then it will be the same as the linear combination
of the Z-transforms of each of the individual signals. This is crucial when using a table (Section 8.3) of transforms to find the
transform of a more complicated signal.

We will begin with the following signal:

Now, after we take the Fourier transform, shown in the equation below, notice that the linear combination of the terms is
unaffected by the transform.

Symmetry 

Symmetry is a property that can make life quite easy when solving problems involving Z-transforms. Basically what this property
says is that since a rectangular function in time is a sinc function in frequency, then a sinc function in time will be a rectangular
function in frequency. This is a direct result of the symmetry between the forward Z and the inverse Z transform. The only
difference is the scaling by  and a frequency reversal.

Time Scaling 

This property deals with the effect on the frequency-domain representation of a signal if the time variable is altered. The most
important concept to understand for the time scaling property is that signals that are narrow in time will be broad in frequency and
vice versa. The simplest example of this is a delta function, a unit pulse with a very small duration, in time that becomes an
infinite-length constant function in frequency.

The table above shows this idea for the general transformation from the time-domain to the frequency-domain of a signal. You
should be able to easily notice that these equations show the relationship mentioned previously: if the time variable is increased
then the frequency range will be decreased.

Time Shifting 

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the frequency content depends only
on the shape of a signal, which is unchanged in a time shift, then only the phase spectrum will be altered. This property is proven
below:

We will begin by letting . Now let's take the z-transform with the previous expression substituted in for .

Note

Example 12.3.1

x[n] = a [n] +b [n]f1 f2

X(z) = a (z) +b (z)F1 F2

2π

Example 12.3.2

x[n] = f [n−η] x[n]
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Now let's make a simple change of variables, where . Through the calculations below, you can see that only the
variable in the exponential are altered thus only changing the phase in the frequency domain.

Convolution 

Convolution is one of the big reasons for converting signals to the frequency domain, since convolution in time becomes
multiplication in frequency. This property is also another excellent example of symmetry between time and frequency. It also
shows that there may be little to gain by changing to the frequency domain when multiplication in time is involved.

We will introduce the convolution integral here, but if you have not seen this before or need to refresh your memory, then look at
the discrete-time convolution (Section 4.3) module for a more in depth explanation and derivation.

Time Differentiation 

Since discrete LTI (Section 2.1) systems can be represented in terms of difference equations, it is apparent with this property that
converting to the frequency domain may allow us to convert these complicated difference equations to simpler equations involving
multiplication and addition.

Parseval's Relation 

Parseval's relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Modulation (Frequency Shift) 

Modulation is absolutely imperative to communications applications. Being able to shift a signal to a different frequency, allows us
to take advantage of different parts of the electromagnetic spectrum is what allows us to transmit television, radio and other
applications through the same space without significant interference.

The proof of the frequency shift property is very similar to that of the time shift; however, here we would use the inverse Fourier
transform in place of the Fourier transform. Since we went through the steps in the previous, time-shift proof, below we will just
show the initial and final step to this proof:

Now we would simply reduce this equation through another change of variables and simplify the terms. Then we will prove the
property expressed in the table above:

Properties Demonstration 

An interactive example demonstration of the properties is included below:

X(z) = f [n−η]∑
n=−∞

∞

z−n

σ = n−η

X(z) = f [σ]∑
n=−∞

∞

z−(σ+η)

= f [σ]z−η ∑
σ=−∞

∞

z−σ

= F (z)z−η

y[n] = ( [n], [n])f1 f2

= [η] [n−η]∑
η=−∞

∞

f1 f2 (12.3.1)

x[n]x ∗ [n] = F (z)F ∗ (z)dz∑
n=−∞

∞

∫
π

−π

z(t) = F (ω−ϕ) dω
1

2π
∫

∞

−∞

ejωt

z(t) = f(t)ejϕt
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Figure : Interactive Signal Processing Laboratory Virtual Instrument created using NI's Labview.

Summary Table 
Table : Properties of the Z-Transform

Property Signal Z-Transform Region of Convergence

Linearity At least 

Time shifing

Time scaling

Z-domain scaling

Conjugation

Convolution At least 

Differentiation in z-Domain  = all 

Parseval's Theorem

This page titled 12.3: Properties of the Z-Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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12.4: Inverse Z-Transform

Introduction 

When using the z-transform

it is often useful to be able to find  given . There are at least 4 different methods to do this:

1. Inspection
2. Partial-Fraction Expansion
3. Power Series Expansion
4. Contour Integration

Inspection Method 
This "method" is to basically become familiar with the z-transform pair tables and then "reverse engineer".

When given

with an ROC (Section 12.6) of

we could determine "by inspection" that

Partial-Fraction Expansion Method 

When dealing with linear time-invariant systems the z-transform is often of the form

This can also expressed as

where  represents the nonzero zeros of  and  represents the nonzero poles.

If  then  can be represented as

This form allows for easy inversions of each term of the sum using the inspection method and the transform table. If the numerator
is a polynomial, however, then it becomes necessary to use partial-fraction expansion to put  in the above form. If 
then  can be expressed as

X(z) = x[n]∑
n=−∞

∞

z−n

x[n] X(z)

Example 12.4.1

X(z) =
z

z−α

|z| > α

x[n] = u[n]αn

X(z) =
B(z)

A(z)

=
∑M

k=0 bkz
−k

∑N
k=0 akz

−k
(12.4.1)

X(z) =
a0

b0

1 −∏M
k=1 ckz

−1

1 −∏N

k=1 dkz−1

ck X(z) dk

M < N X(z)

X(z) =∑
k=1

N Ak

1 −dkz−1

X(z) M ≥ N

X(z)
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Find the inverse z-transform of

where the ROC is . In this case , so we have to use long division to get

Next factor the denominator.

Now do partial-fraction expansion.

Now each term can be inverted using the inspection method and the z-transform table. Thus, since the ROC is ,

Demonstration of Partial Fraction Expansion 

Figure : Interactive experiment illustrating how the Partial Fraction Expansion method is used to solve a variety of
numerator and denominator problems. (To view and interact with the simulation, download the free Mathematica player at
www.wolfram.com/products/player/download.cgi)

X(z) = +∑
r=0

M−N

Brz
−r

∑N−1
k=0 b′

k
z−k
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k=0 akz
−k

Example 12.4.2
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Khan Lecture on Partial Fraction
Expansion

Figure : video from Khan Academy

Power Series Expansion Method 
When the z-transform is defined as a power series in the form

then each term of the sequence  can be determined by looking at the coefficients of the respective power of .

Now look at the z-transform of a finite-length sequence.

In this case, since there were no poles, we multiplied the factors of . Now, by inspection, it is clear that

One of the advantages of the power series expansion method is that many functions encountered in engineering problems have their
power series' tabulated. Thus functions such as log, sin, exponent, sinh, etc, can be easily inverted.

12.4.2

X(z) = x[n]∑
n=−∞

∞

z−n

x[n] z−n

Example 12.4.3

X(z) = (1 +2 )(1 − ) (1 + )z2 z−1 1

2
z−1 z−1

= + z+ +−z2 5

2

1

2
z−1

X(z)

x[n] = δ[n+2] + δ[n+1] + δ[n] +−δ[n−1]
5

2

1

2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22917?pdf
https://cnx.org/contents/d2CEAGW5@15.4:Yhq9gzNH@7/Inverse-Z-Transform#http://www.khanacademy.org/
https://cnx.org/contents/d2CEAGW5@15.4:Yhq9gzNH@7/Inverse-Z-Transform#http://www.khanacademy.org/


12.4.4 https://eng.libretexts.org/@go/page/22917

Suppose

Noting that

Then

Therefore

Contour Integration Method 
Without going in to much detail

where  is a counter-clockwise contour in the ROC of  encircling the origin of the z-plane. To further expand on this method
of finding the inverse requires the knowledge of complex variable theory and thus will not be addressed in this module.

Demonstration of Contour Integration 

Figure : Interactive experiment illustrating how the contour integral is applied on a simple example. For a more in-depth
discussion of this method, some background in complex analysis is required. (To view and interact with the simulation, download
the free Mathematica player at www.wolfram.com/products/player/download.cgi)

Conclusion 
The Inverse Z-transform is very useful to know for the purposes of designing a filter, and there are many ways in which to calculate
it, drawing from many disparate areas of mathematics. All nevertheless assist the user in reaching the desired time-domain signal
that can then be synthesized in hardware(or software) for implementation in a real-world filter.

This page titled 12.4: Inverse Z-Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

Example 12.4.4
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12.5: Poles and Zeros in the Z-Plane

Introduction to Poles and Zeros of the Z-Transform 

It is quite difficult to qualitatively analyze the Laplace transform (Section 11.1) and Z-transform, since mappings of their
magnitude and phase or real part and imaginary part result in multiple mappings of 2-dimensional surfaces in 3-dimensional space.
For this reason, it is very common to examine a plot of a transfer function's poles and zeros to try to gain a qualitative idea of what
a system does.

Once the Z-transform of a system has been determined, one can use the information contained in function's polynomials to
graphically represent the function and easily observe many defining characteristics. The Z-transform will have the below structure,
based on Rational Functions (Section 12.7):

The two polynomials,  and , allow us to find the poles and zeros of the Z-Transform.

1. The value(s) for  where .
2. The complex frequencies that make the overall gain of the filter transfer function zero.

1. The value(s) for  where .
2. The complex frequencies that make the overall gain of the filter transfer function infinite.

Below is a simple transfer function with the poles and zeros shown below it.

The zeros are: 

The poles are: 

The Z-Plane 
Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane. The Z-plane is a complex
plane with an imaginary and real axis referring to the complex-valued variable . The position on the complex plane is given by 

 and the angle from the positive, real axis around the plane is denoted by . When mapping poles and zeros onto the plane,
poles are denoted by an "x" and zeros by an "o". The below figure shows the Z-Plane, and examples of plotting zeros and poles
onto the plane can be found in the following section.

Z-Plane

Figure 

X(z) =
P (z)

Q(z)

P (z) Q(z)

Definition: zeros

z P (z) = 0

Definition: poles

z Q(z) = 0

Example 12.5.1

H(z) =
z +1

(z − ) (z + )1
2

3
4

−1

{ , − }1
2

3
4

z

rejθ θ
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Examples of Pole/Zero Plots 

This section lists several examples of finding the poles and zeros of a transfer function and then plotting them onto the Z-Plane.

The zeros are: 

The poles are: 

Pole/Zero Plot

Figure : Using the zeros and poles found from the transfer function, the one zero is mapped to zero and the two poles are
placed at  and 

The zeros are: 

The poles are: 

Pole/Zero Plot

Figure : Using the zeros and poles found from the transfer function, the zeros are mapped to , and the poles are
placed at ,  and 

An easy mistake to make with regards to poles and zeros is to think that a function like  is the same as . In
theory they are equivalent, as the pole and zero at  cancel each other out in what is known as pole-zero cancellation.
However, think about what may happen if this were a transfer function of a system that was created with physical circuits. In
this case, it is very unlikely that the pole and zero would remain in exactly the same place. A minor temperature change, for
instance, could cause one of them to move just slightly. If this were to occur a tremendous amount of volatility is created in
that area, since there is a change from infinity at the pole to zero at the zero in a very small range of signals. This is generally a
very bad way to try to eliminate a pole. A much better way is to use control theory to move the pole to a better place.

Example : Simple Pole/Zero Plot12.5.2

H(z) =
z

(z − ) (z + )1
2

3
4

{0}

{ , − }1
2

3
4

12.5.2
1
2

− 3
4

Example : Complex Pole/Zero Plot12.5.3

H(z) =
(z −j)(z +j)

(z −( − j)) (z − + j)1
2

1
2

1
2

1
2

{j, −j}

{−1, + j, − j}1
2

1
2

1
2

1
2

12.5.3 ±(j)

−1 + j1
2

1
2

− j1
2

1
2

Example : Pole-Zero Cancellation12.5.4

(s+3)(s−1)

s−1
s +3

s = 1
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It is possible to have more than one pole or zero at any given point. For instance, the discrete-time transfer function 
 will have two zeros at the origin and the continuous-time function  will have 25 poles at the origin.

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create pole/zero plots. Below is a
short program that plots the poles and zeros from the above example onto the Z-Plane.

 

 % Set up vector for zeros 

 z = [j ; -j]; 

 

 % Set up vector for poles 

 p = [-1 ; .5+.5j ; .5-.5j]; 

 

 figure(1); 

 zplane(z,p); 

 title('Pole/Zero Plot for Complex Pole/Zero Plot Example'); 

 

      

Interactive Demonstration of Poles and Zeros 

Note: Repeated Poles and Zeros

H(z) = z2 H(s) = 1

s25
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Figure : Interact (when online) with a Mathematica CDF demonstrating Pole/Zero Plots. To Download, right-click and save
target as .cdf.

Applications for pole-zero plots 

Stability and Control theory 

Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us. Basically what we can gather
from this is that the magnitude of the transfer function will be larger when it is closer to the poles and smaller when it is closer to
the zeros. This provides us with a qualitative understanding of what the system does at various frequencies and is crucial to the
discussion of stability (Section 3.6).

Pole/Zero Plots and the Region of Convergence 

The region of convergence (ROC) for  in the complex Z-plane can be determined from the pole/zero plot. Although several
regions of convergence may be possible, where each one corresponds to a different impulse response, there are some choices that
are more practical. A ROC can be chosen to make the transfer function causal and/or stable depending on the pole/zero plot.

12.5.4

X(z)
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Filter Properties from ROC

If the ROC extends outward from the outermost pole, then the system is causal.
If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example ) discussed earlier.
The shaded region indicates the ROC chosen for the filter. From this figure, we can see that the filter will be both causal and stable
since the above listed conditions are both met.

Region of Convergence for the Pole/Zero Plot

Figure : The shaded area represents the chosen ROC for the transfer function.

Frequency Response and Pole/Zero Plots 

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily design a filter. Based
on the location of the poles and zeros, the magnitude response of the filter can be quickly understood. Also, by starting with the
pole/zero plot, one can design a filter and obtain its transfer function very easily.

This page titled 12.5: Poles and Zeros in the Z-Plane is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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4
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12.6: Region of Convergence for the Z-Transform

Introduction 

With the z-transform, the s-plane represents a set of signals (complex exponentials (Section 1.8)). For any given LTI (Section 2.1)
system, some of these signals may cause the output of the system to converge, while others cause the output to diverge ("blow up").
The set of signals that cause the system's output to converge lie in the region of convergence (ROC). This module will discuss
how to find this region of convergence for any discrete-time, LTI system.

The Region of Convergence 
The region of convergence, known as the ROC, is important to understand because it defines the region where the z-transform
exists. The z-transform of a sequence is defined as

The ROC for a given , is defined as the range of  for which the z-transform converges. Since the z-transform is a power
series, it converges when  is absolutely summable. Stated differently,

must be satisfied for convergence.

Properties of the Region of Convergencec 

The Region of Convergence has a number of properties that are dependent on the characteristics of the signal, .

The ROC cannot contain any poles. By definition a pole is a where  is infinite. Since  must be finite for all  for
convergence, there cannot be a pole in the ROC.
If  is a finite-duration sequence, then the ROC is the entire z-plane, except possibly  or . A finite-
duration sequence is a sequence that is nonzero in a finite interval . As long as each value of  is finite then
the sequence will be absolutely summable. When  there will be a  term and thus the ROC will not include .
When  then the sum will be infinite and thus the ROC will not include . On the other hand, when  then
the ROC will include , and when  the ROC will include . With these constraints, the only signal, then,
whose ROC is the entire z-plane is .

Figure : An example of a finite duration sequence.

The next properties apply to infinite duration sequences. As noted above, the z-transform converges when . So we can
write

We can then split the infinite sum into positive-time and negative-time portions. So

where

X(z) = x[n]∑
n=−∞

∞

z
−n

x[n] z

x[n]z−n

x[n] < ∞∑
n=−∞

∞

∣∣ z
−n ∣∣

x[n]

X(z) X(z) z

x[n] z = 0 |z| = ∞

≤ n ≤n1 n2 x[n]

> 0n2 z−1 z = 0

< 0n1 |z| = ∞ ≤ 0n2

z = 0 ≥ 0n1 |z| = ∞

x[n] = cδ[n]
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|X(z)| < ∞
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∣

∣
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and

In order for  to be finite,  must be bounded. Let us then set

for

and

for

From this some further properties can be derived:

If  is a right-sided sequence, then the ROC extends outward from the outermost pole in . A right-sided
sequence is a sequence where  for . Looking at the positive-time portion from the above derivation, it
follows that

Thus in order for this sum to converge, , and therefore the ROC of a right-sided sequence is of the form .

Figure : A right-sided sequence.

Figure : The ROC of a right-sided sequence.

If  is a left-sided sequence, then the ROC extends inward from the innermost pole in . A left-sided sequence is
a sequence where  for . Looking at the negative-time portion from the above derivation, it follows that

Thus in order for this sum to converge, , and therefore the ROC of a left-sided sequence is of the form .
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Figure : A left-sided sequence.

Figure : The ROC of a left-sided sequence.
If  is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the interior and exterior by a
pole. A two-sided sequence is an sequence with infinite duration in the positive and negative directions. From the derivation of
the above two properties, it follows that if  converges, then both the positive-time and negative-time portions
converge and thus  converges as well. Therefore the ROC of a two-sided sequence is of the form .

Figure : A two-sided sequence.

Figure : The ROC of a two-sided sequence.

Examples 

Let's take

The z-transform of  is  with an ROC at .

Figure : The ROC of 

The z-transform of  is  with an ROC at .

12.6.4

12.6.5

x[n]

− < |z| <r2 r2

X(z) − < |z| <r2 r2

12.6.6

12.6.7

Example 12.6.1
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Figure : The ROC of 

Due to linearity,

By observation it is clear that there are two zeros, at  and , and two poles, at , and . Following the obove properties, the
ROC is .

Figure : The ROC of 

Now take

The z-transform and ROC of  was shown in the example above. The z-transorm of  is 

with an ROC at .

Figure : The ROC of 

Once again, by linearity,

12.6.9 u[n]( )−1

4

n

[z]X1 = +
z

z − 1
2

z

z + 1
4

=
2z (z − )1

8

(z − ) (z + )1
2

1
4

(12.6.1)
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By observation it is again clear that there are two zeros, at  and , and two poles, at , and . in ths case though, the ROC
is .

Figure : The ROC of .

Graphical Understanding of ROC 
Using the demonstration, learn about the region of convergence for the Laplace Transform.

Conclusion 
Clearly, in order to craft a system that is actually useful by virtue of being causal and BIBO stable, we must ensure that it is within
the Region of Convergence, which can be ascertained by looking at the pole zero plot. The Region of Convergence is the area in
the pole/zero plot of the transfer function in which the function exists. For purposes of useful filter design, we prefer to work with
rational functions, which can be described by two polynomials, one each for determining the poles and the zeros, respectively.

This page titled 12.6: Region of Convergence for the Z-Transform is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..
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12.7: Rational Functions and the Z-Transform

Introduction 

When dealing with operations on polynomials, the term rational function is a simple way to describe a particular relationship
between two polynomials.

For any two polynomials, A and B, their quotient is called a rational function.

Below is a simple example of a basic rational function, . Note that the numerator and denominator can be polynomials of
any order, but the rational function is undefined when the denominator equals zero.

If you have begun to study the Z-transform, you should have noticed by now they are all rational functions. Below we will look at
some of the properties of rational functions and how they can be used to reveal important characteristics about a z-transform, and
thus a signal or LTI system.

Properties of Rational Functions 
In order to see what makes rational functions special, let us look at some of their basic properties and characteristics. If you are
familiar with rational functions and basic algebraic properties, skip to the next subsection to see how rational functions are useful
when dealing with the z-transform.

Roots 

To understand many of the following characteristics of a rational function, one must begin by finding the roots of the rational
function. In order to do this, let us factor both of the polynomials so that the roots can be easily determined. Like all polynomials,
the roots will provide us with information on many key properties. The function below shows the results of factoring the above
rational function, Equation .

Thus, the roots of the rational function are as follows:

Roots of the numerator are: 

Roots of the denominator are: 

In order to understand rational functions, it is essential to know and understand the roots that make up the rational function.

Discontinuities 

Because we are dealing with division of two polynomials, we must be aware of the values of the variable that will cause the
denominator of our fraction to be zero. When this happens, the rational function becomes undefined, i.e. we have a discontinuity in
the function. Because we have already solved for our roots, it is very easy to see when this occurs. When the variable in the
denominator equals any of the roots of the denominator, the function becomes undefined.

Definition: Rational Function

Example 12.7.1

f(x)

f(x) =
−4x2

2 +x −3x2
(12.7.1)

12.7.1

f(x) =
(x +2)(x −2)

(2x +3)(x −1)
(12.7.2)

{−2, 2}

{−3, 1}

Note
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Continuing to look at our rational function above, Equation , we can see that the function will have discontinuities at the
following points: 

In respect to the Cartesian plane, we say that the discontinuities are the values along the x-axis where the function is undefined.
These discontinuities often appear as vertical asymptotes on the graph to represent the values where the function is undefined.

Domain 

Using the roots that we found above, the domain of the rational function can be easily defined.

The group, or set, of values that are defined by a given function.

Using the rational function above, Equation , the domain can be defined as any real number  where  does not equal 1
or negative 3. Written out mathematical, we get the following:

Intercepts 

The x-intercept is defined as the point(s) where , i.e. the output of the rational functions, equals zero. Because we have
already found the roots of the equation this process is very simple. From algebra, we know that the output will be zero whenever
the numerator of the rational function is equal to zero. Therefore, the function will have an x-intercept wherever  equals one of the
roots of the numerator.

The y-intercept occurs whenever  equals zero. This can be found by setting all the values of  equal to zero and solving the
rational function.

Rational Functions and the Z-Transform 

As we have stated above, all z-transforms can be written as rational functions, which have become the most common way of
representing the z-transform. Because of this, we can use the properties above, especially those of the roots, in order to reveal
certain characteristics about the signal or LTI system described by the z-transform.

Below is the general form of the z-transform written as a rational function:

If you have already looked at the module about Understanding Pole/Zero Plots and the Z-transform (Section 12.5), you should see
how the roots of the rational function play an important role in understanding the z-transform. The equation above, Equation 

, can be expressed in factored form just as was done for the simple rational function above, see Equation . Thus, we
can easily find the roots of the numerator and denominator of the z-transform. The following two relationships become apparent:

Relationship of Roots to Poles and Zeros

The roots of the numerator in the rational function will be the zeros of the z-transform
The roots of the denominator in the rational function will be the poles of the z-transform

Conclusion 

Once we have used our knowledge of rational functions to find its roots, we can manipulate a z-transform in a number of useful
ways. We can apply this knowledge to representing an LTI system graphically through a Pole/Zero Plot (Section 12.5), or to
analyze and design a digital filter through Filter Design from the Z-Transform (Section 12.9).

Example 12.7.2

12.7.1

x = {−3, 1}

Definition: Domain

Example 12.7.3

12.7.1 x x

{x ∈ R ∣ (x ≠ −3) and (x ≠ 1)} (12.7.3)

f(x)

x

x x

X(z) =
+ +⋯ +b0 b1z−1 bM z−M

+ +⋯ +a0 a1z−1 aN z−N
(12.7.4)
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12.8: Difference Equations

Introduction 

One of the most important concepts of DSP is to be able to properly represent the input/output relationship to a given LTI system.
A linear constant-coefficient difference equation (LCCDE) serves as a way to express just this relationship in a discrete-time
system. Writing the sequence of inputs and outputs, which represent the characteristics of the LTI system, as a difference equation
help in understanding and manipulating a system.

An equation that shows the relationship between consecutive values of a sequence and the differences among them. They are
often rearranged as a recursive formula so that a systems output can be computed from the input signal and past outputs.

General Formulas for the Difference Equation 

As stated briefly in the definition above, a difference equation is a very useful tool in describing and calculating the output of the
system described by the formula for a given sample . The key property of the difference equation is its ability to help easily find
the transform, , of a system. In the following two subsections, we will look at the general form of the difference equation and
the general conversion to a z-transform directly from the difference equation.

Difference Equation 

The general form of a linear, constant-coefficient difference equation (LCCDE), is shown below:

We can also write the general form to easily express a recursive output, which looks like this:

From this equation, note that  represents the outputs and  represents the inputs. The value of  represents the
order of the difference equation and corresponds to the memory of the system being represented. Because this equation relies on
past values of the output, in order to compute a numerical solution, certain past outputs, referred to as the initial conditions, must
be known.

Conversion to Z-Transform 

Using the above formula, Equation , we can easily generalize the transfer function, , for any difference equation.
Below are the steps taken to convert any difference equation into its transfer function, i.e. z-transform. The first step involves
taking the Fourier Transform of all the terms in Equation . Then we use the linearity property to pull the transform inside the
summation and the time-shifting property of the z-transform to change the time-shifting terms to exponentials. Once this is done,
we arrive at the following equation: .

Definition: Difference Equation

Example 12.8.1

y[n] +7y[n −1] +2y[n −2] = x[n] −4x[n −1]
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bk (12.8.1)

y[n] = − y[n −k] + x[n −k]∑
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Conversion to Frequency Response 

Once the z-transform has been calculated from the difference equation, we can go one step further to define the frequency response
of the system, or filter, that is being represented by the difference equation.

Remember that the reason we are dealing with these formulas is to be able to aid us in filter design. A LCCDE is one of the
easiest ways to represent FIR filters. By being able to find the frequency response, we will be able to look at the basic
properties of any filter represented by a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter of taking the z-
transform formula, , and replacing every instance of  with .

Once you understand the derivation of this formula, look at the module concerning Filter Design from the Z-Transform (Section
12.9) for a look into how all of these ideas of the Z-transform, Difference Equation, and Pole/Zero Plots (Section 12.5) play a role
in filter design.

Example 

Below is a basic example showing the opposite of the steps above: given a transfer function one can easily calculate the
systems difference equation.

Given this transfer function of a time-domain filter, we want to find the difference equation. To begin with, expand both
polynomials and divide them by the highest order .

From this transfer function, the coefficients of the two polynomials will be our  and  values found in the general difference
equation formula, Equation . Using these coefficients and the above form of the transfer function, we can easily write the
difference equation:

In our final step, we can rewrite the difference equation in its more common form showing the recursive nature of the system.

Solving a LCCDE 

In order for a linear constant-coefficient difference equation to be useful in analyzing a LTI system, we must be able to find the
systems output based upon a known input, , and a set of initial conditions. Two common methods exist for solving a LCCDE:

Note

H(z) z ejw

H(w) = H(z)|z,z=ejw

=
∑M

k=0 bke−(jwk)

∑N
k=0 ake−(jwk)

(12.8.4)
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the direct method and the indirect method, the later being based on the z-transform. Below we will briefly discuss the formulas
for solving a LCCDE using each of these methods.

Direct Method 

The final solution to the output based on the direct method is the sum of two parts, expressed in the following equation:

The first part, , is referred to as the homogeneous solution and the second part, , is referred to as particular solution.
The following method is very similar to that used to solve many differential equations, so if you have taken a differential calculus
course or used differential equations before then this should seem very familiar.

Homogeneous Solution

We begin by assuming that the input is zero, . Now we simply need to solve the homogeneous difference equation:

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We will use lambda, , to
represent our exponential terms. We now have to solve the following equation:

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial in parenthesis, which
is referred to as the characteristic polynomial. The roots of this polynomial will be the key to solving the homogeneous equation.
If there are all distinct roots, then the general solution to the equation will be as follows:

However, if the characteristic equation contains multiple roots then the above general solution will be slightly different. Below we
have the modified version for an equation where  has  multiple roots:

Particular Solution

The particular solution, , will be any solution that will solve the general difference equation:

In order to solve, our guess for the solution to  will take on the form of the input, . After guessing at a solution to the
above equation involving the particular solution, one only needs to plug the solution into the difference equation and solve it out.

Indirect Method 

The indirect method utilizes the relationship between the difference equation and z-transform, discussed earlier, to find a solution.
The basic idea is to convert the difference equation into a z-transform, as described above, to get the resulting output, . Then
by inverse transforming this and using partial-fraction expansion, we can arrive at the solution.

This can be interatively extended to an arbitrary order derivative as in Equation .

Now, the Laplace transform of each side of the differential equation can be taken
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which by linearity results in

and by differentiation properties in

Rearranging terms to isolate the Laplace transform of the output,

Thus, it is found that

In order to find the output, it only remains to find the Laplace transform  of the input, substitute the initial conditions, and
compute the inverse Z-transform of the result. Partial fraction expansions are often required for this last step. This may sound
daunting while looking at Equation , but it is often easy in practice, especially for low order difference equations. Equation 

 can also be used to determine the transfer function and frequency response.

As an example, consider the difference equation

with the initial conditions  and  Using the method described above, the Z transform of the solution  is given
by

Performing a partial fraction decomposition, this also equals

Computing the inverse Laplace transform,

One can check that this satisfies that this satisfies both the differential equation and the initial conditions.

This page titled 12.8: Difference Equations is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
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12.9: Discrete Time Filter Design

Estimating Frequency Response from Z-Plane 

One of the primary motivating factors for utilizing the z-transform and analyzing the pole/zero plots is due to their relationship to
the frequency response of a discrete-time system. Based on the position of the poles and zeros, one can quickly determine the
frequency response. This is a result of the correspondence between the frequency response and the transfer function evaluated on
the unit circle in the pole/zero plots. The frequency response, or DTFT, of the system is defined as:

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator by  we arrive at the
following equations:

From Equation  we have the frequency response in a form that can be used to interpret physical characteristics about the
filter's frequency response. The numerator and denominator contain a product of terms of the form , where  is either a
zero, denoted by  or a pole, denoted by . Vectors are commonly used to represent the term and its parts on the complex plane.
The pole or zero, , is a vector from the origin to its location anywhere on the complex plane and  is a vector from the origin to
its location on the unit circle. The vector connecting these two points, , connects the pole or zero location to a place on the
unit circle dependent on the value of . From this, we can begin to understand how the magnitude of the frequency response is a
ratio of the distances to the poles and zero present in the z-plane as ww goes from zero to pi. These characteristics allow us to
interpret  as follows:

Drawing Frequency Response from Pole/Zero Plot 
Let us now look at several examples of determining the magnitude of the frequency response from the pole/zero plot of a z-
transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer back to the Pole/Zero Plots (Section 12.5)
module.

In this first example we will take a look at the very simple z-transform shown below:

For this example, some of the vectors represented by , for random values of , are explicitly drawn onto the complex
plane shown in Figure  below. These vectors show how the amplitude of the frequency response changes as  goes from

 to , and also show the physical meaning of the terms in Equation  above. One can see that when , the vector is
the longest and thus the frequency response will have its largest amplitude here. As ww approaches , the length of the vectors
decrease as does the amplitude of . Since there are no poles in the transform, there is only this one vector term rather
than a ratio as seen in Equation .
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∑
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(a) Pole/Zero Plot

(b) Frequency Response: 

Figure : The first figure represents the pole/zero plot with a few representative vectors graphed while the second shows
the frequency response with a peak at  and graphed between plus and minus .

For this example, a more complex transfer function is analyzed in order to represent the system's frequency response.

Below we can see the two figures described by the above equations. The Figure  represents the basic pole/zero plot
of the z-transform, . Figure  shows the magnitude of the frequency response. From the formulas and statements
in the previous section, we can see that when  the frequency will peak since it is at this value of ww that the pole is
closest to the unit circle. The ratio from Equation  helps us see the mathematics behind this conclusion and the
relationship between the distances from the unit circle and the poles and zeros. As  moves from  to , we see how the zero
begins to mask the effects of the pole and thus force the frequency response closer to .
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(a) Pole/Zero Plot

(b) Frequency Response: 

Figure : The first figure represents the pole/zero plot while the second shows the frequency response with a peak at 
and graphed between plus and minus .

Interactive Filter Design Illustration 
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Figure : Digital filter design LabVIEW virtual instrument by NI from http://cnx.org/content/m13115/latest/.

Conclusion 
In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency response of the system. As
ww goes from  to , the following two properties, taken from the above equations, specify how one should draw .

While moving around the unit circle...

1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency response is zero at that point.
2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response goes to infinity at that

point.

This page titled 12.9: Discrete Time Filter Design is shared under a CC BY license and was authored, remixed, and/or curated by Richard
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13.1: DFT- Fast Fourier Transform
We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform (DFT) computes the
spectrum at  equally spaced frequencies from a length-  sequence. An issue that never arises in analog "computation," like that
performed by a circuit, is how much work it takes to perform the signal processing operation such as filtering. In computation, this
consideration translates to the number of basic computational steps required to perform the needed processing. The number of
steps, known as the complexity, becomes equivalent to how long the computation takes (how long must we wait for an answer).
Complexity is not so much tied to specific computers or programming languages but to how many steps are required on any
computer. Thus, a procedure's stated complexity says that the time taken will be proportional to some function of the amount of
data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we chose, we must multiply each signal
value by a complex number and add together the results. For a real-valued signal, each real-times-complex multiplication requires
two real multiplications, meaning we have  multiplications to perform. To add the results together, we must keep the real and
imaginary parts separate. Adding  numbers requires  additions. Consequently, each frequency requires 

 basic computational steps. As we have  frequencies, the total number of computations is 
.

In complexity calculations, we only worry about what happens as the data lengths increase, and take the dominant term—here the 
 term—as reflecting how much work is involved in making the computation. As multiplicative constants don't matter since we

are making a "proportional to" evaluation, we find the DFT is an  computational procedure. This notation is read "order -
squared". Thus, if we double the length of the data, we would expect that the computation time to approximately quadruple.

In making the complexity evaluation for the DFT, we assumed the data to be real. Three questions emerge. First of all, the
spectra of such signals have conjugate symmetry, meaning that negative frequency components  in
the DFT) can be computed from the corresponding positive frequency components. Does this symmetry change the DFT's
complexity?

Secondly, suppose the data are complex-valued; what is the DFT's complexity now?

Finally, a less important but interesting question is suppose we want  frequency values instead of ; now what is the
complexity?

Answer

When the signal is real-valued, we may only need half the spectral values, but the complexity remains unchanged. If the
data are complex-valued, which demands retaining all frequency values, the complexity is again the same. When only 
frequencies are needed, the complexity is .

This page titled 13.1: DFT- Fast Fourier Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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13.2: The Fast Fourier Transform (FFT)

Introduction 

The Fast Fourier Transform (FFT) is an efficient O(NlogN) algorithm for calculating DFTs The FFT exploits symmetries in the  matrix to take a
"divide and conquer" approach. We will first discuss deriving the actual FFT algorithm, some of its implications for the DFT, and a speed
comparison to drive home the importance of this powerful algorithm.

Deriving the FFT 

To derive the FFT, we assume that the signal's duration is a power of two: . Consider what happens to the even-numbered and odd-numbered
elements of the sequence in the DFT calculation.

Each term in square brackets has the form of a  -length DFT. The first one is a DFT of the even-numbered elements, and the second of the odd-

numbered elements. The first DFT is combined with the second multiplied by the complex exponential . The half-length transforms are each
evaluated at frequency indices . Normally, the number of frequency indices in a DFT calculation range between zero and the
transform length minus one. The computational advantage of the FFT comes from recognizing the periodic nature of the discrete Fourier
transform. The FFT simply reuses the computations made in the half-length transforms and combines them through additions and the multiplication

by , which is not periodic over , to rewrite the length-N DFT. Figure  illustrates this decomposition. As it stands, we now compute

two length-  transforms (complexity ), multiply one of them by the complex exponential (complexity ), and add the results

(complexity ). At this point, the total complexity is still dominated by the half-length DFT calculations, but the proportionality coefficient has
been reduced.

Now for the fun. Because , each of the half-length transforms can be reduced to two quarter-length transforms, each of these to two eighth-
length ones, etc. This decomposition continues until we are left with length-2 transforms. This transform is quite simple, involving only additions.
Thus, the first stage of the FFT has  length-2 transforms (see the bottom part of Figure ). Pairs of these transforms are combined by adding
one to the other multiplied by a complex exponential. Each pair requires 4 additions and 4 multiplications, giving a total number of computations
equaling . This number of computations does not change from stage to stage. Because the number of stages, the number of times the length
can be divided by two, equals , the complexity of the FFT is .
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Length-8 DFT decomposition

(a)

(b)

Figure : The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed inputs marks the first phase of developing
the FFT algorithm. When these half-length transforms are successively decomposed, we are left with the diagram shown in the bottom panel that
depicts the length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the details of a length-8 DFT. As shown on Figure , we first
decompose the DFT into two length-4 DFTs, with the outputs added and subtracted together in pairs. Considering Figure  as the frequency
index goes from 0 through 7, we recycle values from the length-4 DFTs into the final calculation because of the periodicity of the DFT output.
Examining how pairs of outputs are collected together, we create the basic computational element known as a butterfly (Figure ).

Butterfly

Figure : The basic computational element of the fast Fourier transform is the butterfly. It takes two complex numbers, represented by a and b,
and forms the quantities shown. Each butterfly requires one complex multiplication and two complex additions.

By considering together the computations involving common output frequencies from the two half-length DFTs, we see that the two complex
multiplies are related to each other, and we can reduce our computational work even further. By further decomposing the length-4 DFTs into two
length-2 DFTs and combining their outputs, we arrive at the diagram summarizing the length-8 fast Fourier transform (Figure ). Although
most of the complex multiplies are quite simple (multiplying by  means negating real and imaginary parts), let's count those for purposes of
evaluating the complexity as full complex multiplies. We have  complex multiplies and  additions for each stage and 
stages, making the number of basic computations  as predicted.

Note that the ordering of the input sequence in the two parts of Figure  aren't quite the same. Why not? How is the ordering determined?

Answer

The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has. The ordering is determined by the
algorithm.

FFT and the DFT 

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform (DFT) computes the spectrum at  equally
spaced frequencies from a length-  sequence. An issue that never arises in analog "computation," like that performed by a circuit, is how much
work it takes to perform the signal processing operation such as filtering. In computation, this consideration translates to the number of basic
computational steps required to perform the needed processing. The number of steps, known as the complexity, becomes equivalent to how long the
computation takes (how long must we wait for an answer). Complexity is not so much tied to specific computers or programming languages but to

13.2.1

13.2.1

13.2.1

13.2.2

13.2.2

13.2.1

e−(jπ)

= 4N

2
2N = 16 N = 3log2

N3N
2

log2

Exercise 13.2.1

13.2.1

N

N

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22922?pdf
https://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4:9e412bbf-98a4-4ccc-a5ef-d90d529cd15d#eqn1


13.2.3 https://eng.libretexts.org/@go/page/22922

how many steps are required on any computer. Thus, a procedure's stated complexity says that the time taken will be proportional to some function
of the amount of data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we chose, we must multiply each signal value by a
complex number and add together the results. For a real-valued signal, each real-times-complex multiplication requires two real multiplications,
meaning we have  multiplications to perform. To add the results together, we must keep the real and imaginary parts separate. Adding 
numbers requires  additions. Consequently, each frequency requires  basic computational steps. As we have 
frequencies, the total number of computations is .

In complexity calculations, we only worry about what happens as the data lengths increase, and take the dominant term—here the  term—as
reflecting how much work is involved in making the computation. As multiplicative constants don't matter since we are making a "proportional to"
evaluation, we find the DFT is an  computational procedure. This notation is read "order -squared". Thus, if we double the length of the
data, we would expect that the computation time to approximately quadruple.

In making the complexity evaluation for the DFT, we assumed the data to be real. Three questions emerge. First of all, the spectra of such
signals have conjugate symmetry, meaning that negative frequency components (  in the DFT) can be computed from
the corresponding positive frequency components. Does this symmetry change the DFT's complexity?

Secondly, suppose the data are complex-valued; what is the DFT's complexity now?

Finally, a less important but interesting question is suppose we want  frequency values instead of ; now what is the complexity?

Answer

When the signal is real-valued, we may only need half the spectral values, but the complexity remains unchanged. If the data are complex-
valued, which demands retaining all frequency values, the complexity is again the same. When only  frequencies are needed, the
complexity is .

Speed Comparison 
How much better is  than ?

Figure : This figure shows how much slower the computation time of an  process grows.

Say you have a 1 MFLOP machine (a million "floating point" operations per second). Let  =1 million= .

An  algorithm takes  Flors →  seconds ≃ 11.5 days.

An  algorithm takes  Flors → 6 seconds.

N = 1 million is not unreasonable.

3 megapixel digital camera spits out  numbers for each picture. So for two  point sequences  and . If computing 
directly:  operations.

taking FFTs -- 

multiplying FFTs -- 

inverse FFTs -- .

the total complexity is .
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Conclusion 

Other "fast" algorithms have been discovered, most of which make use of how many common factors the transform length N has. In number theory,
the number of prime factors a given integer has measures how composite it is. The numbers 16 and 81 are highly composite (equaling  and 
respectively), the number 18 is less so (  ), and 17 not at all (it's prime). In over thirty years of Fourier transform algorithm development, the
original Cooley-Tukey algorithm is far and away the most frequently used. It is so computationally efficient that power-of-two transform lengths are
frequently used regardless of what the actual length of the data. It is even well established that the FFT, alongside the digital computer, were almost
completely responsible for the "explosion" of DSP in the 60's.

This page titled 13.2: The Fast Fourier Transform (FFT) is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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13.3: Deriving the Fast Fourier Transform
To derive the FFT, we assume that the signal's duration is a power of two: . Consider what happens to the even-numbered and odd-numbered
elements of the sequence in the DFT calculation.

Each term in square brackets has the form of a  -length DFT. The first one is a DFT of the even-numbered elements, and the second of the odd-

numbered elements. The first DFT is combined with the second multiplied by the complex exponential . The half-length transforms are each
evaluated at frequency indices . Normally, the number of frequency indices in a DFT calculation range between zero and the
transform length minus one. The computational advantage of the FFT comes from recognizing the periodic nature of the discrete Fourier transform.

The FFT simply reuses the computations made in the half-length transforms and combines them through additions and the multiplication by ,
which is not periodic over , to rewrite the length-N DFT. Figure  illustrates this decomposition. As it stands, we now compute two length- 

 transforms (complexity ), multiply one of them by the complex exponential (complexity ), and add the results (complexity 
). At this point, the total complexity is still dominated by the half-length DFT calculations, but the proportionality coefficient has been

reduced.

Now for the fun. Because , each of the half-length transforms can be reduced to two quarter-length transforms, each of these to two eighth-
length ones, etc. This decomposition continues until we are left with length-2 transforms. This transform is quite simple, involving only additions.
Thus, the first stage of the FFT has  length-2 transforms (see the bottom part of Figure ). Pairs of these transforms are combined by adding
one to the other multiplied by a complex exponential. Each pair requires 4 additions and 4 multiplications, giving a total number of computations
equaling . This number of computations does not change from stage to stage. Because the number of stages, the number of times the length
can be divided by two, equals , the complexity of the FFT is .

Length-8 DFT decomposition

(a)

(b)

Figure : The initial decomposition of a length-8 DFT into the terms using even- and odd-indexed inputs marks the first phase of developing
the FFT algorithm. When these half-length transforms are successively decomposed, we are left with the diagram shown in the bottom panel that
depicts the length-8 FFT computation.

Doing an example will make computational savings more obvious. Let's look at the details of a length-8 DFT. As shown on Figure , we first
decompose the DFT into two length-4 DFTs, with the outputs added and subtracted together in pairs. Considering Figure  as the frequency
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index goes from 0 through 7, we recycle values from the length-4 DFTs into the final calculation because of the periodicity of the DFT output.
Examining how pairs of outputs are collected together, we create the basic computational element known as a butterfly (Figure ).

Butterfly

Figure : The basic computational element of the fast Fourier transform is the butterfly. It takes two complex numbers, represented by a and b,
and forms the quantities shown. Each butterfly requires one complex multiplication and two complex additions.

By considering together the computations involving common output frequencies from the two half-length DFTs, we see that the two complex
multiplies are related to each other, and we can reduce our computational work even further. By further decomposing the length-4 DFTs into two
length-2 DFTs and combining their outputs, we arrive at the diagram summarizing the length-8 fast Fourier transform (Figure ). Although
most of the complex multiplies are quite simple (multiplying by  means negating real and imaginary parts), let's count those for purposes of
evaluating the complexity as full complex multiplies. We have  complex multiplies and  additions for each stage and 
stages, making the number of basic computations  as predicted.

Note that the ordering of the input sequence in the two parts of Figure  aren't quite the same. Why not? How is the ordering determined?

Answer

The upper panel has not used the FFT algorithm to compute the length-4 DFTs while the lower one has. The ordering is determined by the
algorithm.

Other "fast" algorithms were discovered, all of which make use of how many common factors the transform length N has. In number theory, the
number of prime factors a given integer has measures how composite it is. The numbers  and  are highly composite (equaling  and 
respectively), the number  is less so (  ), and  not at all (it's prime). In over thirty years of Fourier transform algorithm development, the
original Cooley-Tukey algorithm is far and away the most frequently used. It is so computationally efficient that power-of-two transform lengths are
frequently used regardless of what the actual length of the data.

This page titled 13.3: Deriving the Fast Fourier Transform is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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13.4: Matched Filter Detector

Introduction 

A great many applications in signal processing, image processing, and beyond involve determining the presence and location of a
target signal within some other signal. A radar system, for example, searches for copies of a transmitted radar pulse in order to
determine the presence of and distance to reflective objects such as buildings or aircraft. A communication system searches for
copies of waveforms representing digital 0s and 1s in order to receive a message.

Two key mathematical tools that contribute to these applications are inner products and the Cauchy-Schwarz inequality. As is

shown in the module on the Cauchy-Schwarz inequality, the expression  attains its upper bound, which is 1, when 

 for some scalar  in a real or complex field. The lower bound, which is 0, is attained when  and  are orthogonal. In
informal intuition, this means that the expression is maximized when the vectors  and  have the same shape or pattern and
minimized when  and  are very different. A pair of vectors with similar but unequal shapes or patterns will produce relatively
large value of the expression less than 1, and a pair of vectors with very different but not orthogonal shapes or patterns will produce
relatively small values of the expression greater than 0. Thus, the above expression carries with it a notion of the degree to which
two signals are “alike”, the magnitude of the normalized correlation between the signals in the case of the standard inner products.

This concept can be extremely useful. For instance consider a situation in which we wish to determine which signal, if any, from a
set  of signals most resembles a particular signal . In order to accomplish this, we might evaluate the above expression for every
signal , choosing the one that results in maxima provided that those maxima are above some threshold of “likeness”. This is
the idea behind the matched filter detector, which compares a set of signals against a target signal using the above expression in
order to determine which is most like the target signal.

Matched Filter Detector Theory 

Signal Comparison 

The simplest variant of the matched filter detector scheme would be to find the member signal in a set  of signals that most
closely matches a target signal . Thus, for every  we wish to evaluate

in order to compare every member of  to the target signal . Since the member of  which most closely matches the target signal
 is desired, ultimately we wish to evaluate

Note that the target signal does not technically need to be normalized to produce a maximum, but gives the desirable property that 
 is bounded to .

The element  that produces the maximum value of  is not necessarily unique, so there may be more than one
matching signal in . Additionally, the signal  producing the maximum value of  may not produce a very large
value of  and thus not be very much like the target signal . Hence, another matched filter scheme might identify the
argument producing the maximum but only above a certain threshold, returning no matching signals in  if the maximum is below
the threshold. There also may be a signal  that produces a large value of  and thus has a high degree of “likeness” to 

 but does not produce the maximum value of . Thus, yet another matched filter scheme might identify all signals in 
producing local maxima that are above a certain threshold.

For example, consider the target signal given in Figure  and the set of two signals given in Figure . By inspection,
it is clear that the signal  is most like the target signal . However, to make that conclusion mathematically, we use the
matched filter detector with the  inner product. If we were to actually make the necessary computations, we would first
normalize each signal and then compute the necessary inner products in order to compare the signals in  with the target
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signal . We would notice that the absolute value of the inner product for  with  when normalized is greater than the
absolute value of the inner product of  with  when normalized, mathematically stated as

Template Signal

Figure : We wish to find a match for this target signal in the set of signals below.

Candidate Signals

(a)

(b)

Figure : We wish to find a match for the above target signal in this set of signals.

Pattern Detection 

A somewhat more involved matched filter detector scheme would involve attempting to match a target time limited signal  to
a set of of time shifted and windowed versions of a single signal  indexed by . The windowing funtion is
given by  where  is the interval to which  is time limited. This scheme could be used to find
portions of  that have the same shape as . If the absolute value of the inner product of the normalized versions of  and  is
large, which is the absolute value of the normalized correlation for standard inner products, then  has a high degree of “likeness”
to  on the interval to which  is time limited but left shifted by . Of course, if  is not time limited, it means that the entire signal
has a high degree of “likeness” to  left shifted by .

Thus, in order to determine the most likely locations of a signal with the same shape as the target signal  in a signal  we wish to
compute

to provide the desired shift. Assuming the inner product space examined is  (  (similar results hold for , , and 
), this produces

Since  and  are time limited to the same interval

Making the substitution ,

Noting that this expression contains a convolution operation
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where  is the conjugate of the time reversed version of  defined by .

In the special case in which the target signal  is not time limited,  has unit value on the entire real line. Thus, the norm can be
evaluated as . Therefore, the function reduces to  where .

The function  is known as the normalized cross-correlation of  and .

Hence, this matched filter scheme can be implemented as a convolution. Therefore, it may be expedient to implement it in the
frequency domain. Similar results hold for the , , and  spaces. It is especially useful to implement the 

 cases in the frequency domain as the power of the Fast Fourier Transform algorithm can be leveraged to quickly
perform the computations in a computer program. In the  and  cases, care must be taken to zero pad the
signal if wrap-around effects are not desired. Similar results also hold for spaces on higher dimensional intervals with the same
inner products.

Of course, there is not necessarily exactly one instance of a target signal in a given signal. There could be one instance, more than
one instance, or no instance of a target signal. Therefore, it is often more practical to identify all shifts corresponding to local
maxima that are above a certain threshold.

The signal in Figure  contains an instance of the template signal seen in Figure  beginning at time  as
shown by the plot in Figure . Therefore,

Pattern Signal

Figure : This function shows that pattern we are looking for in the signal below, which occurs at time .
Longer Signal

Figure : This signal contains an instance of the above signal starting at time .
Absolute Value of Output

Figure : This signal shows a sketch of the absolute value of the matched filter output for the interval shown. Note that
this was just an "eyeball approximation" sketch. Observe the pronounced peak at time .

Practical Applications 

Image Detection 

Matched Filtering is used in image processing to detect a template image within a reference image. This has real-word applications
in verifying fingerprints for security or in verifying someone's photo. As a simple example, we can turn to the ever-popular
"Where's Waldo?" books (known as Wally in the UK!), where the reader is tasked with finding the specific face of Waldo/Wally in
a confusing background rife with look-alikes! If we are given the template head and a reference image, we can run a two

=tm argmaxt∈R
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∣
∣
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∣
∣

h g h(t) = g(−t)¯ ¯¯̄¯̄¯̄¯̄¯̄

f w

∥w g∥ = ∥ g∥ = ∥g∥ = ∥h∥St St =tm argmaxt∈R
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∥f∥∥h∥
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dimensional convolution of the template image across the reference image to obtain a three dimensional convolution map, Figure 
, where the height of the convolution map is determined by the degree of correlation, higher being more correlated.

Finding our target then becomes a matter of determining the spot where the local surface area is highest. The process is
demonstrated in Figure . In the field of image processing, this matched filter-based process is known as template
matching.

(a)

(b)

Figure : Example of "Where's Waldo?" picture. Our Matched Filter Detector can be implemented to find a possible match for
Waldo.

then we could easily develop a program to find the closest resemblance to the image of Waldo's head in the larger picture. We
would simply implement our same match filter algorithm: take the inner products at each shift and see how large our resulting
answers are. This idea was implemented on this same picture for a Signals and Systems Project at Rice University (click the link to
learn more).

What are the advantages of the matched filter algorithm to image detection? What are the drawbacks of this method?

Answer

This algorithm is very simple and thus easy to code. However, it is susceptible to certain types of noise - for example, it
would be difficult to find Waldo if his face was rotated, flipped, larger or smaller than expected, or distorted in some other
way.

13.4.6(a)

13.4.6(b)

13.4.6

Exercise : Pros and Cons13.4.1
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Communications Systems 

Matched filter detectors are also commonly used in Communications Systems. In fact, they are the optimal detectors in Gaussian
noise. Signals in the real-world are often distorted by the environment around them, so there is a constant struggle to develop ways
to be able to receive a distorted signal and then be able to filter it in some way to determine what the original signal was. Matched
filters provide one way to compare a received signal with two possible original ("template") signals and determine which one is the
closest match to the received signal.

For example, below we have a simplified example of Frequency Shift Keying (FSK) where we having the following coding for '1'
and '0':

Figure : Frequency Shift Keying for '1' and '0'.

Based on the above coding, we can create digital signals based on 0's and 1's by putting together the above two "codes" in an
infinite number of ways. For this example we will transmit a basic 3-bit number, 101, which is displayed in Figure :

Figure : The bit stream "101" coded with the above FSK.

Now, the signal picture above represents our original signal that will be transmitted over some communication system, which will
inevitably pass through the "communications channel," the part of the system that will distort and alter our signal. As long as the
noise is not too great, our matched filter should keep us from having to worry about these changes to our transmitted signal. Once
this signal has been received, we will pass the noisy signal through a simple system, similar to the simplified version shown in
Figure :

Figure : Block diagram of matched filter detector.

Figure  basically shows that our noisy signal will be passed in (we will assume that it passes in one "bit" at a time) and this
signal will be split and passed to two different matched filter detectors. Each one will compare the noisy, received signal to one of
the two codes we defined for '1' and '0.' Then this value will be passed on and whichever value is higher (i.e. whichever FSK code
signal the noisy signal most resembles) will be the value that the receiver takes. For example, the first bit that will be sent through
will be a '1' so the upper level of the block diagram will have a higher value, thus denoting that a '1' was sent by the signal, even
though the signal may appear very noisy and distorted.

The interactive example below supposes that our transmitter sends 1000 bits, plotting how many of those bits are received and
interpreted correctly as either 1s and 0s, and also keeps a tally of how many are accidentally misinterpreted. You can play around
with the distance between the energy of the "1" and the "0" (discriminability), the degree of noise present in the channel, and the
location of the criterion (threshold) to get a feel for the basics of signal detection theory.

Let's use a matched filter to find the "0" bits in a simple signal.

Let's use the signal  from Example  to represent the bits.  represents 0, while  represents 1.

 for 

 for 

13.4.7

13.4.8

13.4.8

13.4.9

13.4.9

13.4.9

Example 13.4.3

(t)s1 13.4.1 (t)s1 − (t)s1

0 ⇒ (b = 1) ⇒ ( (t) = s(t))s1 0 ≤ t ≤ T

1 ⇒ (b = −1) ⇒ ( (t) = −s(t))s2 0 ≤ t ≤ T
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Figure 

The matched filter output clearly shows the location of the "0" bits.

Radar 

One of the first, and more intriguing forms of communication that used the matched filter concept was radar. A known
electromagnetic signal is sent out by a transmitter at a target and reflected off of the target back to the sender with a time delay
proportional to the distance between target and sender. This scaled, time-shifted signal is then convolved with the original template
signal, and the time at which the output of this convolution is highest is noted.

This technology proved vital in the 1940s for the powers that possessed it. A short set of videos below shows the basics of how the
technology works, its applications, and its impact in World War 2.

= s(t− iT )Xt ∑
i=−P

P

bi

13.4.10

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22924?pdf


13.4.7 https://eng.libretexts.org/@go/page/22924

History of Radar

Figure 

See the video in Figure  for an analysis of the same basic principle being applied to adaptive cruise control systems for the
modern car.

13.4.11

13.4.12
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Figure : Video on radar-based adaptive cruise control from The Science Channel.

Matched Filter Demonstration 

13.4.12
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Matched Filter. To Download, right-click and
save target as .cdf.

Matched Filter Summary 
As can be seen, the matched filter detector is an important signal processing application, rich both in theoretical concepts and in
practical applications. The matched filter supports a wide array of uses related to pattern recognition, including image detection,
frequency shift keying demodulation, and radar signal interpretation. Despite this diversity of purpose, all matched filter
applications operate in essentially the same way. Every member of some set of signals is compared to a target signal by evaluating
the absolute value of the inner product of the the two signals after normalization. However, the signal sets and result interpretations
are application specific.

This page titled 13.4: Matched Filter Detector is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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14.1: Basic Linear Algebra
This brief tutorial on some key terms in linear algebra is not meant to replace or be very helpful to those of you trying to gain a
deep insight into linear algebra. Rather, this brief introduction to some of the terms and ideas of linear algebra is meant to provide a
little background to those trying to get a better understanding or learn about eigenvectors and eigenfunctions, which play a big role
in deriving a few important ideas on Signals and Systems. The goal of these concepts will be to provide a background for signal
decomposition and to lead up to the derivation of the Fourier Series.

Linear Independence 
A set of vectors  in  are linearly independent if none of them can be written as a linear combination of
the others.

For a given set of vectors, , they are linearly independent if

only when 

We are given the following two vectors:

These are not linearly independent as proven by the following statement, which, by inspection, can be seen to not adhere to
the definition of linear independence stated above.

Another approach to reveal a vectors independence is by graphing the vectors. Looking at these two vectors geometrically (as
in Figure ), one can again prove that these vectors are not linearly independent.

Figure : Graphical representation of two vectors that are not linearly independent.

We are given the following two vectors:

These are linearly independent since

only if . Based on the definition, this proof shows that these vectors are indeed linearly independent. Again, we
could also graph these two vectors (see Figure ) to check for linear independence.

{ , , … , }x1 x2 xk ∈xi C
n

Definition: Linearly Independent

{ , , … , }x1 x2 xn

+ +⋯ + = 0c1x1 c2x2 cnxn

= = ⋯ = = 0c1 c2 cn

Example 14.1.1

=( )x1
3
2

=( )x2
−6
−4
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Figure : Graphical representation of two vectors that are linearly independent.

Are  linearly independent?

Answer

By playing around with the vectors and doing a little trial and error, we will discover the following relationship:

Thus we have found a linear combination of these three vectors that equals zero without setting the coefficients equal to
zero. Therefore, these vectors are not linearly independent!

As we have seen in the two above examples, often times the independence of vectors can be easily seen through a graph. However
this may not be as easy when we are given three or more vectors. Can you easily tell whether or not these vectors are independent
from Figure . Probably not, which is why the method used in the above solution becomes important.

Figure : Plot of the three vectors. Can be shown that a linear combination exists among the three, and therefore they are not
linear independent.

A set of  vectors in  cannot be linearly independent if .

Span 

The span of a set of vectors  is the set of vectors that can be written as a linear combination of 

Given the vector

the span of  is a line.

14.1.2

Exercise 14.1.1
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Note

m C
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Given the vectors

the span of these vectors is .

Basis 

A basis for  is a set of vectors that: (1) spans  and (2) is linearly independent.

Clearly, any set of  linearly independent vectors is a basis for .

We are given the following vector

where the  is always in the th place and the remaining values are zero. Then the basis for  is

 is called the standard basis.

 is a basis for .

Figure : Plot of basis for 

If  is a basis for , then we can express any  as a linear combination of the 's:

Example 14.1.4
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2
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2

Definition: Basis
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=ei

⎛

⎝

⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜

0

⋮
0
1
0

⋮
0

⎞

⎠

⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟

1 i C
n

{ , i = [1, 2, … , n]}ei

Note

{ , i = [1, 2, … , n]}ei

Example 14.1.6

=( )h1
1
1

=( )h2
1

−1

{ , }h1 h2 C
2

14.1.4 C
2

{ , … , }b1 b2 C
n

x ∈ C
n bi

x = + +⋯ + , ∈ Cα1b1 α2b2 αnbn αi

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22928?pdf


14.1.4 https://eng.libretexts.org/@go/page/22928

Given the following vector,

writing  in terms of  gives us

Try and write  in terms of  (defined in the previous example).

Answer

In the two basis examples above,  is the same vector in both cases, but we can express it in many different ways (we give only
two out of many, many possibilities). You can take this even further by extending this idea of a basis to function spaces.

As mentioned in the introduction, these concepts of linear algebra will help prepare you to understand the Fourier Series,
which tells us that we can express periodic functions, , in terms of their basis functions, .

Example 14.1.7

x =( )
1
2

x { , }e1 e2

x = +2e1 e2

Exercise 14.1.2
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Khan Lecture on Basis of a
Subspace

Figure : video from Khan Academy, Basis of a Subspace - 20 min.

This page titled 14.1: Basic Linear Algebra is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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14.2: Eigenvectors and Eigenvalues
In this section, our linear systems will be n×n matrices of complex numbers. For a little background into some of the concepts that
this module is based on, refer to the basics of linear algebra (Section 14.1).

Eigenvectors and Eigenvalues 
Let  be an  matrix, where  is a linear operator on vectors in .

where  and  are  vectors (Figure ).

Figure : Illustration of linear system and vectors.

An eigenvector of  is a vector  such that

where  is called the corresponding eigenvalue.  only changes the length of , not its direction.

Graphical Model 

Through Figure  and Figure , let us look at the difference between Equation  and Equation .

Figure : Represents Equation , .

If  is an eigenvector of , then only its length changes. See Figure  and notice how our vector's length is simply scaled by
our variable, , called the eigenvalue:

Figure : Represents Equation , .

When dealing with a matrix , eigenvectors are the simplest possible vectors to operate on.

Examples 

From inspection and understanding of eigenvectors, find the two eigenvectors,  and , of

A n ×n A C
n

Ax = b (14.2.1)

x b n ×1 14.2.1

14.2.1

Definition: Eigenvector

A v ∈ C
n

Av = λv (14.2.2)

λ A v

14.2.2 14.2.3 14.2.1 14.2.2

14.2.2 14.2.1 Ax = b

v A 14.2.3
λ

14.2.3 14.2.2 Av = λv

Note

A

Exercise 14.2.1

v1 v2
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3
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0
−1
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Also, what are the corresponding eigenvalues,  and ? Do not worry if you are having problems seeing these values from
the information given so far, we will look at more rigorous ways to find these values soon.

Answer

The eigenvectors you found should be:

And the corresponding eigenvalues are

Show that these two vectors,

are eigenvectors of , where . Also, find the corresponding eigenvalues.

Answer

In order to prove that these two vectors are eigenvectors, we will show that these statements meet the requirements stated in
the definition.

These results show us that  only scales the two vectors (i.e. changes their length) and thus it proves that Equation 
holds true for the following two eigenvalues that you were asked to find:

If you need more convincing, then one could also easily graph the vectors and their corresponding product with  to see
that the results are merely scaled versions of our original vectors,  and .

λ1 λ2
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Exercise 14.2.2
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Khan Lecture on
Eigenvectors

Figure : video from Khan Academy - Introduction to Eigenvectors and Eigenvalues - 7:43 min.

Calculating Eigenvalues and Eigenvectors 
In the above examples, we relied on your understanding of the definition and on some basic observations to find and prove the
values of the eigenvectors and eigenvalues. However, as you can probably tell, finding these values will not always be that easy.
Below, we walk through a rigorous and mathematical approach at calculating the eigenvalues and eigenvectors of a matrix.

Finding Eigenvalues 

Find  such that , where  is the "zero vector." We will start with Equation , and then work our way down until
we find a way to explicitly calculate .

In the previous step, we used the fact that

where  is the identity matrix.

So,  is just a new matrix.

14.2.4

λ ∈ C v ≠ 0 0 14.2.2
λ

Av = λv

Av −λv = 0
(A −λI)v = 0

λv = λIv

I

I =

⎛

⎝

⎜⎜⎜⎜⎜

1
0

0
0

0
1

0
…

…
…

⋱
…

0
0

⋮
1

⎞

⎠

⎟⎟⎟⎟⎟

A −λI
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Given the following matrix, , then we can find our new matrix, .

If  for some , then  is not invertible. This means:

This determinant (shown directly above) turns out to be a polynomial expression (of order ). Look at the examples below to see
what this means.

Starting with matrix  (shown below), we will find the polynomial expression, where our eigenvalues will be the dependent
variable.

Starting with matrix  (shown below), we will find the polynomial expression, where our eigenvalues will be the dependent
variable.

If you have not already noticed it, calculating the eigenvalues is equivalent to calculating the roots of

Therefore, by simply using calculus to solve for the roots of our polynomial we can easily find the eigenvalues of our matrix.

Finding Eigenvectors 

Given an eigenvalue, , the associated eigenvectors are given by

Example 14.2.1

A A −λI
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set of  equations with  unknowns. Simply solve the  equations to find the eigenvectors.

Khan Lecture on Deriving Eigenvectors and
Eigenvalues

Figure : video from Khan Academy - Example Deriving Eigenvectors and Eigenvalues - 5:39 min.

Main Point 
Say the eigenvectors of , , span , meaning  are linearly independent (Section 14.1) and we
can write any  as

where . All that we are doing is rewriting  in terms of eigenvectors of . Then,

Therefore we can write,

and this leads us to the following depicted system:

Figure : Depiction of system where we break our vector, , into a sum of its eigenvectors.

where in Figure  we have,

n n n

14.2.5

A { , , … , }v1 v2 vn C
n { , , … , }v1 v2 vn

x ∈ C
n

x = + +⋯ +α1v1 α2v2 αnvn (14.2.3)

{ , , … , } ∈ Cα1 α2 αn x A

Ax = A ( + +⋯ + )α1v1 α2v2 αnvn

Ax = A + A +⋯ + Aα1 v1 α2 v2 αn vn

Ax = + +⋯ + = bα1λ1v1 α2λ2v2 αnλnvn

x =∑
i

αivi

14.2.6 x
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By breaking up a vector, , into a combination of eigenvectors, the calculation of  is broken into "easy to swallow" pieces.

Practice Problem 

For the following matrix,  and vector, , solve for their product. Try solving it using two different methods: directly and
using eigenvectors.

Answer

Direct Method (use basic matrix multiplication)

Eigenvectors (use the eigenvectors and eigenvalues we found earlier for this same matrix)

As shown in Equation , we want to represent  as a sum of its scaled eigenvectors. For this case, we have:

Therefore, we have

Notice that this method using eigenvectors required no matrix multiplication. This may have seemed more complicated
here, but just imagine  being really big, or even just a few dimensions larger!

Main Point:

x Ax

Exercise 14.2.3

A x

A =( )
3

−1
−1
3

x =( )
5
3

Ax =( )( ) =( )
3
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3

5
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4
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1
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=( )v2
1
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= 2λ1

= 4λ2
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x = 4 +v1 v2
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1
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1
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Ax = A (4 + ) = (4 + )v1 v2 λi v1 v2

Ax = 4 ×2( )+4( ) =( )
1
1

1
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12
4
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14.3: Matrix Diagonalization
From our understanding of eigenvalues and eigenvectors (Section 14.2) we have discovered several things about our operator
matrix, . We know that if the eigenvectors of  span  and we know how to express any vector  in terms of ,
then we have the operator  all figured out. If we have  acting on , then this is equal to  acting on the combinations of
eigenvectors. Which we know proves to be fairly easy!

We are still left with two questions that need to be addressed:

1. When do the eigenvectors  of  span  (assuming  are linearly independent)?
2. How do we express a given vector  in terms of ?

Answer to Question #1

When do the eigenvectors  of  span ?

If  has  distinct eigenvalues

where  and  are integers, then  has  linearly independent eigenvectors  which then span .

The proof of this statement is not very hard, but is not really interesting enough to include here. If you wish to research this
idea further, read Strang, G., "Linear Algebra and its Application" for the proof.

Furthermore,  distinct eigenvalues means

has  distinct roots.

Answer to Question #2 

How do we express a given vector  in terms of ?

We want to find  such that

In order to find this set of variables, we will begin by collecting the vectors  as columns in a  matrix .

Now Equation  becomes

or

A A C
n

x { , , … , }v1 v2 vn

A A x A

{ , , … , }v1 v2 vn A C
n { , , … , }v1 v2 vn

x { , , … , }v1 v2 vn

Question #1

{ , , … , }v1 v2 vn A C
n

A n

≠ , i ≠ jλi λj

i j A n { , , … , }v1 v2 vn C
n

Aside

n

det(A −λI) = + +… + λ + = 0cnλn cn−1λn−1 c1 c0

n

Question #2

x { , , … , }v1 v2 vn

{ , , … , } ∈ Cα1 α2 αn

x = + +… +α1v1 α2v2 αnvn (14.3.1)
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which gives us an easy form to solve for our variables in question, :

Note that  is invertible since it has  linearly independent columns.

Aside 

Let us recall our knowledge of functions and their basis and examine the role of .

where  is just  expressed in a different basis:

 transforms  from the standard basis to the basis 

Matrix Diagonalization and Output 
We can also use the vectors  to represent the output, , of a system:

where  is the matrix with the eigenvalues down the diagonal:

Finally, we can cancel out the  and are left with a final equation for :

Interpretation 

For our interpretation, recall our key formulas:
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We can interpret operating on  with  as:

where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform  using , which yields 
2. Multiplication by 
3. Inverse transform using , which gives us 

This is the paradigm we will use for LTI systems!

Figure : Simple illustration of LTI system!

This page titled 14.3: Matrix Diagonalization is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et
al..
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14.4: Eigen-Stuff in a Nutshell

A Matrix and its Eigenvector 

The reason we are stressing eigenvectors (Section 14.2) and their importance is because the action of a matrix on one of its
eigenvectors  is

1. extremely easy (and fast) to calculate

just multiply  by .

2. easy to interpret:  just scales , keeping its direction constant and only altering the vector's length.

If only every vector were an eigenvector of ....

Using Eigenvectors' Span 

Of course, not every vector can be ... BUT ... For certain matrices (including ones with distinct eigenvalues, 's), their eigenvectors
span , meaning that for any , we can find  such that:

Given Equation , we can rewrite . This equation is modeled in our LTI system pictured below:

Figure : LTI System.

The LTI system above represents our Equation . Below is an illustration of the steps taken to go from  to .

where the three steps (arrows) in the above illustration represent the following three operations:

1. Transform  using  - yields 
2. Action of  in new basis - a multiplication by 
3. Translate back to old basis - inverse transform using a multiplication by , which gives us 

This page titled 14.4: Eigen-Stuff in a Nutshell is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk
et al..

A

v

Av = λv (14.4.1)

v λ

A v

A

λ

C
n

x ∈ C
n { , , } ∈ Cα1 α2 αn

x = + +… +α1v1 α2v2 αnvn (14.4.2)

14.4.2 Ax = b

14.4.1

x =∑
i

αivi

b =∑
i

αiλivi

14.4.1 x b

x → (α = x) → (Λ x) → (V Λ x = b)V
−1

V
−1

V
−1

x V
−1

α

A Λ

V b

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22931?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/14%3A_Appendix_A-_Linear_Algebra_Overview/14.04%3A_Eigen-Stuff_in_a_Nutshell
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/14%3A_Appendix_A-_Linear_Algebra_Overview/14.04%3A_Eigen-Stuff_in_a_Nutshell
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


14.5.1 https://eng.libretexts.org/@go/page/22932

14.5: Eigenfunctions of LTI Systems

Introduction 

Hopefully you are familiar with the notion of the eigenvectors of a "matrix system," if not they do a quick review of eigen-stuff
(Section 14.4). We can develop the same ideas for LTI systems acting on signals. A linear time invariant (LTI) system  operating
on a continuous input  to produce continuous time output 

Figure : .  and  are continuous time (CT) signals and  is an LTI operator.

is mathematically analogous to an  matrix  operating on a vector  to produce another vector  (see
Matrices and LTI Systems for an overview).

Figure :  where  and  are in  and  is an  matrix.

Just as an eigenvector (Section 14.2) of  is a  such that , ,

Figure :  where  is an eigenvector of .

we can define an eigenfunction (or eigensignal) of an LTI system  to be a signal  such that

Figure :  where  is an eigenfunction of .

Eigenfunctions are the simplest possible signals for  to operate on: to calculate the output, we simply multiply the input by a
complex number .

Eigenfunctions of any LTI System 

The class of LTI systems has a set of eigenfunctions in common: the complex exponentials (Section 1.8) ,  are
eigenfunctions for all LTI systems.

Figure :  where  is an LTI system.

While  are always eigenfunctions of an LTI system, they are not necessarily the only eigenfunctions.

H

f(t) y(t)

H[f(t)] = y(t)

14.5.1 H[f(t)] = y(t) f t H

N ×N A x ∈ C
N

b ∈ C
N

Ax = b

14.5.2 Ax = b x b C
n

A N ×N

A v ∈ C
N

Av = λv λ ∈ C

14.5.3 Av = λv v ∈ C
N

A

H f(t)

H[f(t)] = λf(t), λ ∈ C

14.5.4 H[f(t)] = λf(t), λ ∈ C f H

H

λ

est s ∈ C

H [ ] =est λse
st (14.5.1)

14.5.5 H [ ] =est λse
st H

Note

{ , s ∈ C}est

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22932?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/14%3A_Appendix_A-_Linear_Algebra_Overview/14.05%3A_Eigenfunctions_of_LTI_Systems


14.5.2 https://eng.libretexts.org/@go/page/22932

We can prove Equation  by expressing the output as a convolution (Section 3.3) of the input  and the impulse response
(Section 1.6)  of :

Since the expression on the right hand side does not depend on , it is a constant, . Therefore

The eigenvalue  is a complex number that depends on the exponent  and, of course, the system . To make these dependencies
explicit, we will use the notation .

Figure :  is the eigenfunction and  are the eigenvalues.

Since the action of an LTI operator on its eigenfunctions  is easy to calculate and interpret, it is convenient to represent an
arbitrary signal  as a linear combination of complex exponentials. The Fourier series gives us this representation for periodic
continuous time signals, while the (slightly more complicated) Fourier transform lets us expand arbitrary continuous time signals.

This page titled 14.5: Eigenfunctions of LTI Systems is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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15.1: Fields and Complex Numbers

Fields 

In order to propely discuss the concept of vector spaces in linear algebra, it is necessary to develop the notion of a set of “scalars”
by which we allow a vector to be multiplied. A framework within which our concept of real numbers would fit is desireable. Thus,
we would like a set with two associative, commutative operations (like standard addition and multiplication) and a notion of their
inverse operations (like subtraction and division). The mathematical algebraic construct that addresses this idea is the field. A field
( ) is a set  together with two binary operations  and  such that the following properties are satisfied.

1. Closure of S under : For every , , .
2. Associativity of S under : For every , .
3. Existence of  identity element: There is a  such that for every , .
4. Existence of  inverse elements: For every  there is a  such that .
5. Commutativity of S under : For every , .
6. Closure of S under : For every , .
7. Associativity of S under : For every , .
8. Existence of  identity element: There is a  such that for every , .
9. Existence of  inverse elements: For every  with  there is a  such that .

10. Commutativity of S under : For every , .
11. Distributivity of  over : For every , .

While this definition is quite general, the two fields used most often in signal processing, at least within the scope of this course,
are the real numbers and the complex numbers, each with their typical addition and multiplication operations.

The Complex Field 
The reader is undoubtedly already sufficiently familiar with the real numbers with the typical addition and multiplication
operations. However, the field of complex numbers with the typical addition and multiplication operations may be unfamiliar to
some. For that reason and its importance to signal processing, it merits a brief explanation here.

Definitions 

The notion of the square root of  originated with the quadratic formula: the solution of certain quadratic equations
mathematically exists only if the so-called imaginary quantity  could be defined. Euler first used  for the imaginary unit but
that notation did not take hold until roughly Ampère's time. Ampère used the symbol  to denote current (intensité de current). It
wasn't until the twentieth century that the importance of complex numbers to circuit theory became evident. By then, using  for
current was entrenched and electrical engineers now choose  for writing complex numbers.

An imaginary number has the form . A complex number, , consists of the ordered pair ,  is the real
component and  is the imaginary component (the  is suppressed because the imaginary component of the pair is always in the
second position). The imaginary number  equals . Note that  and  are real-valued numbers.

Figure  shows that we can locate a complex number in what we call the complex plane. Here, , the real part, is the -
coordinate and , the imaginary part, is the -coordinate.

S, +, ∗ S + ∗

+ x y ∈ S x +y ∈ S

+ x, y, z ∈ S (x +y) +z = x +(y +z)
+ ∈ Se+ x ∈ S +x = x + = xe+ e+

+ x ∈ S y ∈ S x +y = y +x = e+

+ x, y ∈ S x +y = y +x

∗ x, y ∈ S x ∗ y ∈ S

∗ x, y, z ∈ S (x ∗ y) ∗ z = x ∗ (y ∗ z)
∗ ∈ Se∗ x ∈ S +x = x + = xe∗ e∗

∗ x ∈ S x ≠ e+ y ∈ S x ∗ y = y ∗ x = e∗

∗ x, y ∈ S x ∗ y = y ∗ x

∗ + x, y, z ∈ S x ∗ (y +z) = xy +xz

−1
−1
−−−

√ i

i

i

j

jb = −b2
− −−

√ z (a, b) a

b j

jb (0, b) a b

15.1.1 a x

b y
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The Complex Plane

Figure : A complex number is an ordered pair  that can be regarded as coordinates in the plane. Complex numbers can
also be expressed in polar coordinates as .

From analytic geometry, we know that locations in the plane can be expressed as the sum of vectors, with the vectors
corresponding to the  and  directions. Consequently, a complex number  can be expressed as the (vector) sum 
where  indicates the -coordinate. This representation is known as the Cartesian form of . An imaginary number can't be
numerically added to a real number; rather, this notation for a complex number represents vector addition, but it provides a
convenient notation when we perform arithmetic manipulations.

The real part of the complex number , written as , equals . We consider the real part as a function that works by
selecting that component of a complex number not multiplied by . The imaginary part of \(z\), , equals : that part of a
complex number that is multiplied by . Again, both the real and imaginary parts of a complex number are real-valued.

The complex conjugate of , written as , has the same real part as  but an imaginary part of the opposite sign.

Using Cartesian notation, the following properties easily follow.

If we add two complex numbers, the real part of the result equals the sum of the real parts and the imaginary part equals the
sum of the imaginary parts. This property follows from the laws of vector addition.

In this way, the real and imaginary parts remain separate.
The product of  and a real number is an imaginary number: . The product of  and an imaginary number is a real number: 

 because . Consequently, multiplying a complex number by  rotates the number's position by  degrees.

Use the definition of addition to show that the real and imaginary parts can be expressed as a sum/difference of a complex
number and its conjugate.  and 

Answer

. Similarly, 

Complex numbers can also be expressed in an alternate form, polar form, which we will find quite useful. Polar form arises arises
from the geometric interpretation of complex numbers. The Cartesian form of a complex number can be re-written as

By forming a right triangle having sides  and , we see that the real and imaginary parts correspond to the cosine and sine of the
triangle's base angle. We thus obtain the polar form for complex numbers.

15.1.1 (a, b)
r∠θ

x y z z = a +jb

j y z

z = a +jb Re(z) a

j Im(z) b

j

z z∗ z

z

z∗
= Re(z) +j Im(z)

= Re(z) −j Im(z) (15.1.1)

+j + +j = + +j( + )a1 b1 a2 b2 a1 a2 b1 b2

j ja j

j(jb) = −b = −1j2 j 90

Exercise 15.1.1

Re(z) =
z+z∗

2
Im(z) =

z−z∗

2j

z + = a +jb +a −jb = 2a = 2 Re(z)z̄ z − = a +jb −(a −jb) = 2jb = 2(j, Im(z))z̄

a +jb = ( +j )+a2 b2− −−−−−
√ a

+a2 b2
− −−−−−

√

b

+a2 b2
− −−−−−

√

a b
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The quantity  is known as the magnitude of the complex number , and is frequently written as . The quantity  is the complex
number's angle. In using the arc-tangent formula to find the angle, we must take into account the quadrant in which the complex
number lies.

Convert  to polar form.

Answer

To convert  to polar form, we first locate the number in the complex plane in the fourth quadrant. The distance from

the origin to the complex number is the magnitude , which equals . The angle equals 

or  radians (  degrees). The final answer is  degrees.

Euler's Formula 

Surprisingly, the polar form of a complex number  can be expressed mathematically as

To show this result, we use Euler's relations that express exponentials with imaginary arguments in terms of trigonometric
functions.

The first of these is easily derived from the Taylor's series for the exponential.

Substituting  for , we find that

because , , and . Grouping separately the real-valued terms and the imaginary-valued ones,

The real-valued terms correspond to the Taylor's series for , the imaginary ones to , and Euler's first relation results.
The remaining relations are easily derived from the first. We see that multiplying the exponential in Equation  by a real
constant corresponds to setting the radius of the complex number by the constant.

Calculating with Complex Numbers 

Adding and subtracting complex numbers expressed in Cartesian form is quite easy: You add (subtract) the real parts and imaginary
parts separately.

z = a +jb = r∠θ

r = |z| = +a2 b2
− −−−−−

√

a = r cos(θ)

b = r sin(θ)

θ = arctan( )b
a

r z |z| θ

Exercise 15.1.2

3 −2j

3 −2j

r =13
−−

√ +(−232 )2
− −−−−−−−−

√ −arctan( )2
3

−0.588 −33.7 ∠(−33.7)13
−−

√

z

z = rjθ

= cos(θ) +jsin(θ)ejθ (15.1.2)

cos(θ) =
+ejθ e−(jθ)

2
(15.1.3)

sin(θ) =
−ejθ e−(jθ)

2j

= 1 + + + +…ex x

1!

x2

2!

x3

3!

jθ x

= 1 +j − −j +…ejθ θ

1!

θ2

2!

θ3

3!

= −1j2 = −jj3 = 1j4

= 1 − +⋯ +j( − +…)ejθ θ2

2!

θ

1!

θ3

3!

cos(θ) sin(θ)
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https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22935?pdf


15.1.4 https://eng.libretexts.org/@go/page/22935

To multiply two complex numbers in Cartesian form is not quite as easy, but follows directly from following the usual rules of
arithmetic.

Note that we are, in a sense, multiplying two vectors to obtain another vector. Complex arithmetic provides a unique way of
defining vector multiplication.

What is the product of a complex number and its conjugate?

Answer

. Thus .

Division requires mathematical manipulation. We convert the division problem into a multiplication problem by multiplying both
the numerator and denominator by the conjugate of the denominator.

Because the final result is so complicated, it's best to remember how to perform division—multiplying numerator and denominator
by the complex conjugate of the denominator—than trying to remember the final result.

The properties of the exponential make calculating the product and ratio of two complex numbers much simpler when the numbers
are expressed in polar form.

To multiply, the radius equals the product of the radii and the angle the sum of the angles. To divide, the radius equals the ratio of
the radii and the angle the difference of the angles. When the original complex numbers are in Cartesian form, it's usually worth
translating into polar form, then performing the multiplication or division (especially in the case of the latter). Addition and
subtraction of polar forms amounts to converting to Cartesian form, performing the arithmetic operation, and converting back to
polar form.

This page titled 15.1: Fields and Complex Numbers is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

± = ( ± ) +j( ± )z1 z2 a1 a2 b1 b2

z1z2 = ( +j ) ( +j )a1 b1 a2 b2

= − +j( + )a1a2 b1b2 a1b2 a2b1 (15.1.4)

Exercise 15.1.3

z = (a +jb)(a −jb) = +z̄ a2 b2 z = = (|z|z̄ r2 )2

z1

z2
=

+ja1 b1

+ja2 b2

=
+ja1 b1

+ja2 b2

−ja2 b2

−ja2 b2

=
( +j ) ( −j )a1 b1 a2 b2

+a2
2 b2

2

=
+ +j( − )a1a2 b1b2 a2b1 a1b2

+a2
2 b2

2

(15.1.5)

z1z2 = r1ejθ1 r2ejθ2

= r1r2ej( + )θ1 θ2 (15.1.6)

= =
z1

z2

r1ejθ2

r2ejθ2

r1

r2
ej( − )θ1 θ2
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15.2: Vector Spaces

Introduction 

A vector space  is a collection of "vectors" such that (1) if  for all scalars  (where , ,
or some other field) and (2) if , , then 

To define an vector space, we need

A set of things called "vectors" ( )
A set of things called "scalars" that form a field ( )
A vector addition operation ()
A scalar multiplication operation ( )

The operations need to have all the properties of given below. Closure is usually the most important to show.

Vector Spaces 
If the scalars  are real,  is called a real vector space.

If the scalars  are complex,  is called a complex vector space.

If the "vectors" in  are functions of a continuous variable, we sometimes call  a linear function space

Properties 

We define a set  to be a vector space if

1.  for each  and  in 
2.  for each , , and  in 
3. There is a unique "zero vector" such that  for each  in  (0 is the field additive identity)
4. For each  in  there is a unique vector  such that 
5.  (1 is the field multiplicative identity)
6.  for each  in  and  and  in 
7.  for each  and  in  and  in 
8.  for each  in  and  and  in 

Examples 
 = real vector space
 = complex vector space

 is a vector space
 is a vector space

 = finite energy signals is a vector space
 = finite energy functions on interval 

, ,  are vector spaces
The collection of functions piecewise constant between the integers is a vector space

Figure 

Definition: Vector Space

S ∈ S ⇒ α ∈ Sf1 f1 α alpha ∈ R α ∈ C

∈ Sf1 ∈ Sf2 ( + ) ∈ Sf1 f2

X

A

∗

α S

α S

S S

V

x+y = y+x x y V

x+(y+z) = (x+y) +z x y z V

x+0 = x x V

x V −x x+−x = 0
1x = x

( )x = ( x)c1c2 c1 c2 x V c1 c2 C

c(x+y) = cx+cy x y V c C

( + )x = x+ xc1 c2 c1 c2 x V c1 c2 C

R
n

C
n

(R) = {f(t), f(t)| |f(t)| ∣ dt < ∞}L1 ∫ ∞
−∞

(R) = {f(t), f(t) ∣ f(t) is bounded }L∞

(R) = {f(t), f(t)| (|f(t)| dt < ∞}L2 ∫ ∞
−∞

)2

([0,T ])L2 [0,T ]
(Z)ℓ1 (Z)ℓ2 (Z)ℓ∞
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 is not a vector space. , but , 

 is not a vector space. , , but , 

Vector spaces can be collections of functions, collections of sequences, as well as collections of traditional vectors (i.e. finite
lists of numbers)

This page titled 15.2: Vector Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

={( ) ,( ) ∣ ( > 0) ∧ ( > 0)}R
2
+

x0

x1

x0

x1
x0 x1 ( ) ∈

1

1
R

2
+ α( ) ∉

1

1
R

2
+ α < 0

D = {z ∈ C, |z| ≤ 1} ( = 1) ∈ Dz1 ( = j) ∈ Dz2 ( + ) ∉ Dz1 z2 | + | = > 1z1 z2 2
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15.3: Norms

Introduction 

This module will explain norms, a mathematical concept that provides a notion of the size of a vector. Specifically, the general
definition of a norm will be discussed and discrete time signal norms will be presented.

Norms 
The norm of a vector is a real number that represents the "size" of the vector.

In , we can define a norm to be a vectors geometric length.

Figure 

, norm 

Mathematically, a norm  is just a function (taking a vector and returning a real number) that satisfies three rules.

To be a norm,  must satisfy:

1. the norm of every vector is positive , 
2. scaling a vector scales the norm by the same amount  for all vectors  and scalars 
3. Triangle Property:  for all vectors , . "The "size" of the sum of two vectors is less than or equal to the

sum of their sizes"

A vector space (Section 15.2) with a well defined norm is called a normed vector space or normed linear space.

Examples 

 (or ), , ,  with this norm is called .

Figure : Collection of all  with 

 (or ), with norm ,  is called  (the usual "Euclidean"norm).

Example 15.3.1

R
2

15.3.1

x = ( ,x0 x1)T ∥x∥ = +x2
0 x2

1

− −−−−−
√

∥ ⋅ ∥

∥ ⋅ ∥

∥x∥ > 0 x ∈ S

∥αx∥ = |α|∥x∥ x α

∥x+y∥ ≤ ∥x∥ +∥y∥ x y

Example 15.3.2

R
n

C
n

x =

⎛

⎝

⎜
⎜⎜

x0

x1

…

xn−1

⎞

⎠

⎟
⎟⎟

∥x = | |∥1 ∑n−1
i=0 xi R

n ([0,n−1])ℓ1

15.3.2 x ∈ R
2 ∥x = 1∥1

Example 15.3.3

R
n

C
n ∥x =∥2 ( )∑n−1

i=0 (| |)xi
2

1

2
R
n ([0,n−1])ℓ2
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Figure : Collection of all  with 

 (or ), with norm  is called 

Figure :  with 

Spaces of Sequences and Functions 

We can define similar norms for spaces of sequences and functions.

Discrete time signals = sequences of numbers

For continuous time functions:

This page titled 15.3: Norms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

15.3.3 x ∈ R
2 ∥x = 1∥2

Example 15.3.4

R
n

C
n ∥x = {i, | |}∥∞ maxi xi ([0,n−1])ℓ∞

15.3.4 x ∈ R
2 ∥x = 1∥∞

x[n] = {… , , , , , , …}x−2 x−1 x0 x1 x2

∥x(n) = |x[i]|, x[n] ∈ (Z) ⇒ (∥x < ∞)∥1 ∑∞
i=−∞ ℓ1 ∥1

∥x(n) = , x[n] ∈ (Z) ⇒ (∥x < ∞)∥2 ( (|x[i]| )∑∞
i=−∞ )2

1

2 ℓ2 ∥2
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1
p ℓp ∥p

∥x(n) = |x[i]|, x[n] ∈ (Z) ⇒ (∥x < ∞)∥∞ supi ℓ∞ ∥∞

∥f(t) = , f(t) ∈ (R) ⇒ (∥f(t) < ∞)∥p ( (|f(t)| dt)∫ ∞
−∞

)p
1
p Lp ∥p

∥f(t) = , f(t) ∈ ([0,T ]) ⇒ (∥f(t) < ∞)∥p ( (|f(t)| dt)∫ T
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15.4: Inner Products

Definition: Inner Product 

You may have run across inner products, also called dot products, on  before in some of your math or science courses. If not,
we define the inner product as follows, given we have some  and .

The standard inner product is defined mathematically as:

Inner Product in 2-D 

If we have  and , then we can write the inner product as

where  is the angle between  and .

Figure : General plot of vectors and angle referred to in above equations.

Geometrically, the inner product tells us about the strength of  in the direction of .

For example, if , then

Figure : Plot of two vectors from above example.

The following characteristics are revealed by the inner product:

 measures the length of the projection of  onto .
 is maximum (for given , ) when  and  are in the same direction ( ).
 is zero when , i.e.  and  are orthogonal.

Inner Product Rules 

In general, an inner product on a complex vector space is just a function (taking two vectors and returning a complex number) that
satisfies certain rules:

Conjugate Symmetry:

R
n

x ∈ R
n

y ∈ R
n

Definition: Standard Inner Product

⟨x, y⟩ = xy
T

= ( )y0 y1 … yn−1

⎛

⎝

⎜
⎜⎜⎜

x0

x1

⋮
xn−1

⎞

⎠

⎟
⎟⎟⎟

=∑
i=0

n−1

xiyi

x ∈ R
2

y ∈ R
2

⟨x, y⟩ = ∥x∥∥y∥ cos(θ)

θ x y

15.4.1

x y

Example 15.4.1

∥x∥ = 1

< x, y >= ∥y∥ cos(θ)

15.4.2

⟨x, y⟩ y x

⟨x, y⟩ ∥x∥ ∥y∥ x y (θ = 0) ⇒ (cos(θ) = 1)
⟨x, y⟩ (cos(θ) = 0) ⇒ (θ = )90∘

x y

⟨x, y⟩ = ⟨x, y⟩
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄
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Scaling:

Additivity:

"Positivity":

We say that  and  are orthogonal if:

This page titled 15.4: Inner Products is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

⟨αx, y⟩ = α⟨(x, y)⟩

⟨x +y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

⟨x, x⟩ > 0, x ≠ 0

Definition: Orthogonal

x y

⟨x, y⟩ = 0
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15.5: Hilbert Spaces

Hilbert Spaces 

A vector space  with a valid inner product (Section 15.4) defined on it is called an inner product space, which is also a normed
linear space. A Hilbert space is an inner product space that is complete with respect to the norm defined using the inner product.
Hilbert spaces are named after David Hilbert, who developed this idea through his studies of integral equations. We define our
valid norm using the inner product as:

Hilbert spaces are useful in studying and generalizing the concepts of Fourier expansion, Fourier transforms, and are very
important to the study of quantum mechanics. Hilbert spaces are studied under the functional analysis branch of mathematics.

Examples of Hilbert Spaces 

Below we will list a few examples of Hilbert spaces. You can verify that these are valid inner products at home.

For ,

Space of finite energy complex functions: 

Space of square-summable sequences: 

This page titled 15.5: Hilbert Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

S

∥x∥ = ⟨x, x⟩
− −−−−

√

C
n

⟨x, y⟩ = x = ( … ) =yT y0
¯ ¯¯̄¯ y1

¯ ¯¯̄¯ yn−1
¯ ¯¯̄ ¯̄ ¯̄¯

⎛

⎝

⎜⎜⎜⎜

x0

x1

⋮
xn−1

⎞

⎠

⎟⎟⎟⎟
∑
i=0

n−1

xiyi
¯ ¯¯̄

(R)L2

⟨f , g⟩ = f(t) dt∫
∞

−∞
g(t)
¯ ¯¯̄¯̄¯̄

(Z)ℓ2

⟨x, y⟩ = x[i]∑
i=−∞

∞

y[i]¯ ¯¯̄¯̄¯

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22939?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/15%3A_Appendix_B-_Hilbert_Spaces_Overview/15.05%3A_Hilbert_Spaces
https://cnx.org/contents/77608400-65b9-4f03-8a5f-536c611866bb@15.4:f4728b9e-841e-45df-ba40-32342c4d2800
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/15%3A_Appendix_B-_Hilbert_Spaces_Overview/15.05%3A_Hilbert_Spaces
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


15.6.1 https://eng.libretexts.org/@go/page/22940

15.6: Cauchy-Schwarz Inequality

Introduction 

Any treatment of linear algebra as relates to signal processing would not be complete without a discussion of the Cauchy-Schwarz
inequality, a relation that enables a wide array of signal processing applications related to pattern matching through a method called
the matched filter. Recall that in standard Euclidean space, the angle  between two vectors  is given by

Since , it follows that

Furthermore, equality holds if and only if , implying that

if and only if  for some real . This relation can be extended to all inner product spaces over a real or complex field and is
known as the Cauchy-Schwarz inequality, which is of great importance to the study of signals.

The Cauchy-Schwarz Inequality 

Statement of the Cauchy-Schwarz Inequality 

The general statement of the Cauchy-Schwarz inequality mirrors the intuition for standard Euclidean space. Let  be an inner
product space over the field of complex numbers  with inner product . For every pair of vectors  the inequality

holds. Furthermore, the equality

holds if and only if  for some . That is, equality holds if and only if  and  are linearly dependent.

Proof of the Cauchy-Schwarz Inequality 

Let  be a vector space over the real or complex field , and let  be given. In order to prove the Cauchy-Schwarz
inequality, it will first be proven that  if  for some . It will then be shown that 

 if  for all .

Consider the case in which  for some . From the properties of inner products, it is clear that

Hence, it follows that

Similarly, it is clear that

Thus, it is proven that  if  for some .

Next, consider the case in which  for all , which implies that  so . Thus, it follows by the properties of
inner products that, for all , . This can be expanded using the properties of inner products to the

θ x, y

cos(θ) = .
⟨x, y⟩

∥x∥∥y∥

cos(θ) ≤ 1

|⟨x, y⟩ ≤ ⟨x, x⟩⟨y, y⟩.|2

cos(θ) = 0

|⟨x, y⟩ = ⟨x, x⟩⟨y, y⟩|2

y = ax a

V

C ⟨⋅, ⋅⟩ x, y ∈ V

|⟨x, y⟩ ≤ ⟨x, x⟩⟨y, y⟩|2

|⟨x, y⟩ = ⟨x, x⟩⟨y, y⟩|2

y = ax a ∈ C x y

V F x, y ∈ V

|⟨x, y⟩ = ⟨x, x⟩⟨y, y⟩|2 y = ax a ∈ F

|⟨x, y⟩ < ⟨x, x⟩⟨y, y⟩|2 y ≠ ax a ∈ F

y = ax a ∈ F

.
|⟨x, y⟩|2 = |⟨x, ax⟩|2

= | ⟨x, x⟩ā |2 (15.6.1)

.
|⟨x, y⟩|2 = | |⟨x, x⟩ā|2 |2

= |a ⟨x, x|2 ⟩2 (15.6.2)

⟨x, x⟩⟨y, y⟩ = ⟨x, x⟩⟨ax, ax⟩

= ⟨x, x⟩a ⟨x, x⟩ā

= |a ⟨x, x|2 ⟩2 (15.6.3)

|⟨x, y⟩ = ⟨x, x⟩⟨y, y⟩|2 x = ay a ∈ F

y ≠ ax a ∈ F y ≠ 0 ⟨y, y⟩ ≠ 0
a ∈ F ⟨x−ay, x−ay⟩ > 0
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expression

Choosing ,

Hence, it follows that . Consequently, . Thus, it can be concluded that 

 if  for all .

Therefore, the inequality

holds for all , and equality

holds if and only if  for some .

Additional Mathematical Implications 

Consider the maximization of  where the norm  is induced by the inner product. By the Cauchy-Schwarz

inequality, we know that  and that  if and only if  for some . Hence, 

 attains a maximum where  for some . Thus, collecting the scalar variables,  attains a

maximum where . This result will be particularly useful in developing the matched filter detector techniques.

Matched Filter Detector 

Background Concepts 

A great many applications in signal processing, image processing, and beyond involve determining the presence and location of a
target signal within some other signal. A radar system, for example, searches for copies of a transmitted radar pulse in order to
determine the presence of and distance to reflective objects such as building or aircraft. A communication system searches for
copies of waveforms representing digital 0s and 1s in order to receive a message.

As has already been shown, the expression  attains its upper bound, which is 1, when  for some scalar  in a

real or complex field. The lower bound, which is 0, is attained when  and  are orthogonal. In informal intuition, this means that
the expression is maximized when the vectors  and  have the same shape or pattern and minimized when  and  are very
different. A pair of vectors with similar but unequal shapes or patterns will produce relatively large value of the expression less
than 1, and a pair of vectors with very different but not orthogonal shapes or patterns will produce relatively small values of the
expression greater than 0. Thus, the above expression carries with it a notion of the degree to which two signals are “alike”, the
magnitude of the normalized correlation between the signals in the case of the standard inner products.

This concept can be extremely useful. For instance consider a situation in which we wish to determine which signal, if any, from a
set  of signals most resembles a particular signal . In order to accomplish this, we might evaluate the above expression for every
signal , choosing the one that results in maxima provided that those maxima are above some threshold of “likeness”. This is
the idea behind the matched filter detector, which compares a set of signals against a target signal using the above expression in
order to determine which among them are most like the target signal. For a detailed treatment of the applications of the matched
filter detector see the liked module.

⟨x−ay, x−ay⟩ = ⟨x, x−ay⟩−a⟨y, x−ay⟩

= ⟨x, x⟩− ⟨x, y⟩−a⟨y, x⟩+|a ⟨y, y⟩ā |2 (15.6.4)

a =
⟨x,y⟩

⟨y,y⟩

⟨x−ay, x−ay⟩ = ⟨x, x⟩− ⟨x, y⟩− ⟨y, x⟩+ ⟨y, y⟩
⟨y, x⟩

⟨y, y⟩

⟨x, y⟩

⟨y, y⟩

⟨x, y⟩⟨y, x⟩

⟨y, y⟩2

= ⟨x, x⟩−
⟨x, y⟩⟨y, x⟩

⟨y, y⟩
(15.6.5)

⟨x, x⟩− > 0
⟨x,y⟩⟨y,x⟩

⟨y,y⟩
⟨x, x⟩⟨y, y⟩− ⟨x, y⟩ ⟩ > 0⟨x, y¯ ¯¯̄¯̄¯̄¯̄

|⟨x, y⟩ < ⟨x, x⟩⟨y, y⟩|2 y ≠ ax a ∈ F

|⟨x, y⟩ ≤ ⟨x, x⟩⟨y, y⟩|2

x, y ∈ V

|⟨x, y⟩ = ⟨x, x⟩⟨y, y⟩|2

y = ax a ∈ F

⟨ , ⟩∣
∣

x

∥x||

y

∥y∥
∣
∣ ∥ ⋅ ∥ = ⟨⋅, ⋅⟩

≤ 1⟨ , ⟩∣
∣

x

||x||

y

∥y∥
∣
∣
2

= 1⟨ , ⟩∣
∣

x

||x||

y

∥y∥
∣
∣
2

= a
y

∥y∥
x

∥x∥
a ∈ C

⟨ , ⟩∣
∣

x

∥x||

y

∥y∥
∣
∣ = a

y

∥y∥
x

∥x∥
a ∈ C ⟨ , ⟩∣

∣
x

∥x||

y

∥y∥
∣
∣

y = ax

⟨ , ⟩∣
∣

x

∥x∥

y

∥y∥
∣
∣ y = ax a

x y

x y x y

X y

x ∈ X

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22940?pdf
http://cnx.org/content/m34670/latest/


15.6.3 https://eng.libretexts.org/@go/page/22940

Signal Comparison 

The simplest variant of the matched filter detector scheme would be to find the member signal in a set  of signals that most
closely matches a target signal . Thus, for every  we wish to evaluate

in order to compare every member of  to the target signal . Since the member of  which most closely matches the target signal
 is desired, ultimately we wish to evaluate

Note that the target signal does not technically need to be normalized to produce a maximum, but gives the desirable property that 
 is bounded to .

The element  that produces the maximum value of  is not necessarily unique, so there may be more than one
matching signal in . Additionally, the signal  producing the maximum value of  may not produce a very large
value of  and thus not be very much like the target signal . Hence, another matched filter scheme might identify the
argument producing the maximum but only above a certain threshold, returning no matching signals in  if the maximum is below
the threshold. There also may be a signal  that produces a large value of  and thus has a high degree of “likeness” to
yy but does not produce the maximum value of . Thus, yet another matched filter scheme might identify all signals in 
producing local maxima that are above a certain threshold.

For example, consider the target signal given in Figure  and the set of two signals given in Figure . By inspection,
it is clear that the signal  is most like the target signal . However, to make that conclusion mathematically, we use the
matched filter detector with the  inner product. If we were to actually make the necessary computations, we would first
normalize each signal and then compute the necessary inner products in order to compare the signals in  with the target
signal . We would notice that the absolute value of the inner product for  with  when normalized is greater than the
absolute value of the inner product of  with  when normalized, mathematically stated as

Template Signal

Figure : We wish to find a match for this target signal in the set of signals below.

Candidate Signals

Figure : We wish to find a match for the above target signal in this set of signals.

Pattern Detection 

A somewhat more involved matched filter detector scheme would involve attempting to match a target time limited signal  to
a set of of time shifted and windowed versions of a single signal  indexed by . The windowing function is

X

y x ∈ X

m(x, y) = ⟨ , ⟩
∣

∣
∣

x

∥x∥

y

∥y∥

∣

∣
∣

X y X

y

= ⟨ , ⟩ .xm argmaxx∈X

∣

∣
∣

x

∥x∥

y

∥y∥

∣

∣
∣

m(x, y) [0, 1]

∈ Xxm m(x, y)
X ∈ Xxm m(x, y)

m(x, y) y

X

x ∈ X m(x, y)
m(x, y) X

Example 15.6.1

15.6.1 15.6.2
g2 f

L2

X

f g2 f

g1 f

= ⟨ , ⟩g2 argmaxx∈{ , }g1 g2

∣

∣
∣

x

∥x||

f

∥f∥

∣

∣
∣

15.6.1

15.6.2

y = f

X = {w g ∣ t ∈ R}St R
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given by  where  is the interval to which  is time limited. This scheme could be used to find
portions of  that have the same shape as . If the absolute value of the inner product of the normalized versions of  and  is
large, which is the absolute value of the normalized correlation for standard inner products, then gg has a high degree of “likeness”
to  on the interval to which  is time limited but left shifted by . Of course, if  is not time limited, it means that the entire signal
has a high degree of “likeness” to  left shifted by .

Thus, in order to determine the most likely locations of a signal with the same shape as the target signal  in a signal  we wish to
compute

to provide the desired shift. Assuming the inner product space examined is (  (similar results hold for ), , and 
), this produces

Since  and  are time limited to the same interval

Making the substitution ,

Noting that this expression contains a convolution operation

where  is the conjugate of the time reversed version of  defined by .

In the special case in which the target signal  is not time limited,  has unit value on the entire real line. Thus, the norm can be

evaluated as . Therefore, the function reduces to  where .

The function  is known as the normalized cross-correlation of  and .

Hence, this matched filter scheme can be implemented as a convolution. Therefore, it may be expedient to implement it in the
frequency domain. Similar results hold for the , , and  spaces. It is especially useful to implement the 

 cases in the frequency domain as the power of the Fast Fourier Transform algorithm can be leveraged to quickly
perform the computations in a computer program. In the  and  cases, care must be taken to zero pad the
signal if wrap-around effects are not desired. Similar results also hold for spaces on higher dimensional intervals with the same
inner products.

Of course, there is not necessarily exactly one instance of a target signal in a given signal. There could be one instance, more than
one instance, or no instance of a target signal. Therefore, it is often more practical to identify all shifts corresponding to local
maxima that are above a certain threshold.

The signal in Figure  contains an instance of the template signal seen in Figure  beginning at time  as
shown by the plot in Figure . Therefore,

w(t) = u(t− ) −u(t− )t1 t2 [ , ]t1 t2 f

g f f w gSt

f f t f

f t

f g

= ⟨ , ⟩tm argmaxt∈R
∣

∣
∣

f

∥f∥

w gSt

∥w g∥St

∣

∣
∣

L2 R (R[a, b)L2 (Z)l2
(Z[a, b))l2

= ∣ f(τ)w(τ) dτtm argmaxt∈R
1

∥f∥ ∥w g∥St

∫
∞

−∞
g(τ − t)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

f w

= f(τ) dτtm argmaxt∈R
∣

∣
∣

1

∥f∥ ∥w g∥St

∫
t2

t1

g(τ − t)¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯ ∣

∣
∣

h(t) = g(−t)
¯ ¯¯̄¯̄¯̄¯̄¯̄

= f(τ)h(t−τ)dτtm argmaxt∈R
∣

∣
∣

1

∥f∥ ∥w g∥St

∫
t2

t1

∣

∣
∣

= .tm argmaxt∈R
∣

∣
∣

(f ∗ h)(t)

∥f∥ ∥w g∥St

∣

∣
∣

h g h(t) = g(−t)
¯ ¯¯̄¯̄¯̄¯̄¯̄

f w

∥w g∥ = ∥ g∥ = ∥g∥ = ∥h∥St St =tm argmaxt∈R
( h)(t)f ∗

∥f∥∥h∥
h(t) = g(−t)

¯ ¯¯̄¯̄¯̄¯̄¯̄

f  ☆ g = ( h)(t)f
∗

∥f∥∥h∥
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Pattern Signal

Figure : This function shows tha pattern we are looking for in the signal below, which occurs at time .
Longer Signal

Figure : This signal contains an instance of the above signal starting at time .
Absolute Value of Output

Figure : This signal shows a sketch of the absolute value of the matched filter output for the interval shown. Note that
this was just an "eyeball approximation" sketch. Observe the pronounced peak at time .

Cauchy-Schwarz Inequality Video Lecture 
Proof of the Cauchy-Schwarz

Inequality

Figure : Video lecture on the proof of the Cauchy-Schwarz inequality from Khan Academy.
Only part of the theorem is proven.

Cauchy-Schwarz Inequality Summary 

As can be seen, the Cauchy-Schwarz inequality is a property of inner product spaces over real or complex fields that is of particular
importance to the study of signals. Specifically, the implication that the absolute value of an inner product is maximized over
normal vectors when the two arguments are linearly dependent is key to the justification of the matched filter detector. Thus, it

15.6.3 t = s1

15.6.4 t = s1

15.6.5
t = s1

15.6.6
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enables the use of matched filters for such pattern matching applications as image detection, communications demodulation, and
radar signal analysis.

This page titled 15.6: Cauchy-Schwarz Inequality is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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15.7: Common Hilbert Spaces

Common Hilbert Spaces 

Below we will look at the four most common Hilbert spaces (Section 15.4) that you will have to deal with when discussing and
manipulating signals and systems.

 (real scalars) and  (complex scalars), also called 

 is a list of numbers (finite sequence). The inner product (Section 15.4) for our two spaces are as follows:

Standard inner product :

Standard inner product :

Model for: Discrete time signals on the interval  or periodic (with period ) discrete time signals.

Figure 

 is a finite energy function on 

Inner Product

Model for: continuous time signals on the interval  or periodic (with period ) continuous time signals

 is an infinite sequence of numbers that's square-summable

Inner product

Model for: discrete time, non-periodic signals

 is a finite energy function on all of .

R
n

C
n ([0,n−1])ℓ2

x =

⎛

⎝

⎜⎜⎜

x0

x1

…

xn−1

⎞

⎠

⎟⎟⎟

R
n

⟨x, y⟩ = xy
T

=∑
i=0

n−1

xiyi (15.7.1)

C
n

⟨x, y⟩ = xy
T¯ ¯¯̄¯̄

=∑
i=0

n−1

xi ȳ i (15.7.2)

[0,n−1] n

⎛

⎝

⎜⎜⎜

x0

x1

…

xn−1

⎞

⎠

⎟⎟⎟

15.7.1

f ∈ ([a, b])L2 [a, b]

⟨f , g⟩ = f(t) dt∫
b

a

g(t)
¯ ¯¯̄¯̄¯̄

[a, b] T = b−a

x ∈ (Z)ℓ2

⟨x, y⟩ = x[i]∑
i=−∞

∞

y[i]¯ ¯¯̄¯̄¯

f ∈ (R)L2
R
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Inner product

Model for: continuous time, non-periodic signals

Associated Fourier Analysis 
Each of these 4 Hilbert spaces has a type of Fourier analysis associated with it.

 → Fourier series
 → Discrete Fourier Transform

 → Fourier Transform
 → Discrete Time Fourier Transform

But all 4 of these are based on the same principles (Hilbert space).

Not all normed spaces are Hilbert spaces

For example: , . Try as you might, you can't find an inner product that induces this norm, i.e. a  such
that

In fact, of all the  spaces,  is the only one that is a Hilbert space.

Figure 

Hilbert spaces are by far the nicest. If you use or study orthonormal basis expansion (Section 15.9) then you will start to see why
this is true.

This page titled 15.7: Common Hilbert Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk
et al..

⟨f , g⟩ = f(t) dt∫
∞

−∞
g(t)¯ ¯¯̄¯̄¯̄

([a, b])L2

([0,n−1])ℓ2

(R)L2

(Z)ℓ2

Important Note

(R)L1 ∥f = ∫ |f(t)|dt∥1 ⟨⋅, ⋅⟩

⟨f , f⟩ =(∫ (|f(t)| dt))2
2

= (∥f )∥1
2 (15.7.3)

(R)Lp (R)L2

15.7.2
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15.8: Types of Bases

Normalized Basis 

A basis  where each  has unit norm

The concept of basis applies to all vector spaces (Section 15.2). The concept of normalized basis applies only to normed
spaces (Section 15.3).

You can always normalize a basis: just multiply each basis vector by a constant, such as 

We are given the following basis:

Normalized with  norm:

Normalized with  norm:

Orthogonal Basis 

Orthogonal Basis
a basis {bi}b i in which the elements are mutually orthogonal

∀i,i≠j:(⟨bi,bj⟩=0)i i j b i b j 0

A basis  in which the elements are mutually orthogonal

The concept of orthogonal basis applies only to Hilbert Spaces (Section 15.4).

Definition: Normalized Basis

{ }bi bi

∥ ∥ = 1, i ∈ Zbi

Note

1
∥ ∥bi

Example 15.8.1

{ , } ={( ) ,( )}b0 b1
1

1

1

−1

ℓ2

= ( )b
~

0
1
2√

1

1

= ( )b
~

1
1

2√

1

−1

ℓ1

= ( )b
~

0
1
2

1

1

= ( )b
~

1
1
2

1

−1

Definition: Orthogonal Basis

{ }bi

⟨ , ⟩ = 0, i ≠ jbi bj

Note
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Standard basis for , also referred to as :

Now we have the following basis and relationship:

Orthonormal Basis 
Pulling the previous two sections (definitions) together, we arrive at the most important and useful basis type:

A basis that is both normalized and orthogonal

We can shorten these two statements into one:

where

Where  is referred to as the Kronecker delta function (Section 1.6) and is also often written as .

Example 15.8.2

R
2 ([0, 1])ℓ2

=( )b0
1

0

=( )b1
0

1

⟨ , ⟩ = [i] [i] = 1 ×0 +0 ×1 = 0b0 b1 ∑
i=0

1

b0 b1

Example 15.8.3

{( ) ,( )} = { , }
1

1

1

−1
h0 h1

⟨ , ⟩ = 1 ×1 +1 ×−1 = 0h0 h1

Definition: Orthonormal Basis

∥ ∥ = 1, i ∈ Zbi

⟨ , ⟩ , i ≠ jbi bj

Notation:

⟨ , ⟩ =bi bj δij

={δij

1 if i = j

0 if i ≠ j

δij δ[i −j]

Orthonormal Basis Example #1

{ , } ={( ) ,( )}b0 b2
1

0

0

1

Orthonormal Basis Example #2

{ , } ={( ) ,( )}b0 b2
1

1

1

−1
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Beauty of Orthonormal Bases 

Orthonormal bases are very easy to deal with! If  is an orthonormal basis, we can write for any 

It is easy to find the :

where in the above equation we can use our knowledge of the delta function to reduce this equation:

Therefore, we can conclude the following important equation for :

The 's are easy to compute (no interaction between the 's)

Given the following basis:

represent 

We are given the basis

on  where .

Where we can calculate the above inner product in  as

Orthonormal Basis Example #3

{ , } ={ ( ) , ( )}b0 b2
1

2
–√

1

1

1

2
–√

1

−1

{ }bi x

x =∑
i

αibi

αi

⟨x, ⟩bi = ⟨ , ⟩∑
k

αkbk bi

= ⟨( , )⟩∑
k

αk bk bi (15.8.1)

⟨ , ⟩ = ={bk bi δik

1 if i = k

0 if i ≠ k

⟨x, ⟩ =bi αi

x

x = ⟨(x, )⟩∑
i

bi bi

αi bi

Example 15.8.4

{ , } ={ ( ) , ( )}b0 b1
1

2
–√

1

1

1

2
–√

1

−1

x =( )
3

2

Example : Slightly Modified Fourier Series15.8.5

{ }
1

T
−−

√
ej ntω0

∣

∣
∣
∞

n=−∞

([0, T ])L2 T = 2π
ω0

f(t) = ⟨(f , )⟩∑
n=−∞

∞

ej ntω0 ej ntω0
1

T
−−

√

L2

⟨f , ⟩ = f(t) dt = f(t) dtej ntω0
1

T
−−√
∫

T

0
ej ntω0
¯ ¯¯̄¯̄¯̄¯̄¯ 1

T
−−√
∫

T

0
e−(j nt)ω0
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Orthonormal Basis Expansions in a Hilbert Space 

Let  be an orthonormal basis for a Hilbert space . Then, for any  we can write

where .

"Analysis": decomposing  in term of the 

"Synthesis": building  up out of a weighted combination of the 

This page titled 15.8: Types of Bases is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

{ }bi H x ∈ H

x =∑
i

αibi

= ⟨x, ⟩αi bi

x bi

= ⟨x, ⟩αi bi

x bi

x =∑
i

αibi
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15.9: Orthonormal Basis Expansions

Main Idea 

When working with signals many times it is helpful to break up a signal into smaller, more manageable parts. Hopefully by now
you have been exposed to the concept of eigenvectors (Section 14.2) and there use in decomposing a signal into one of its possible
basis. By doing this we are able to simplify our calculations of signals and systems through eigenfunctions of LTI systems (Section
14.5).

Now we would like to look at an alternative way to represent signals, through the use of orthonormal basis. We can think of
orthonormal basis as a set of building blocks we use to construct functions. We will build up the signal/vector as a weighted sum of
basis elements.

The complex sinusoids  for all  form an orthonormal basis for .

In our Fourier series equation, , the  are just another representation of .

For signals/vectors in a Hilbert Space, the expansion coefficients are easy to find.

Alternate Representation 
Recall our definition of a basis: A set of vectors  in a vector space  is a basis if

1. The  are linearly independent.
2. The  span . That is, we can find , where  (scalars) such that

where  is a vector in ,  is a scalar in , and  is a vector in .

Condition 2 in the above definition says we can decompose any vector in terms of the . Condition 1 ensures that the
decomposition is unique (think about this at home).

The  provide an alternate representation of .

Let us look at simple example in , where we have the following vector:

Standard Basis: 

Alternate Basis: 

In general, given a basis  and a vector , how do we find the  and  such that

Example 15.9.1

1
T√

ej ntω0 −∞ < n < ∞ ([0, T ])L2

f(t) =∑∞
n=−∞ cnej ntω0 { }cn f(t)

Note

{ }bi S

bi

bi S { }αi ∈ Cαi

x = , x ∈ S∑
i

αibi

x S α C b S

{ }bi

Note

{ }αi x

Example 15.9.2

R
2

x =( )
1
2

{ , } = {(1, 0 , (0, 1 }e0 e1 )T )T

x = +2e0 e1

{ , } = {(1, 1 , (1, −1 }h0 h1 )T )T

x = +
3
2

h0
−1
2

h1

{ , }b0 b1 x ∈ R
2 α0 α1

x = +α0b0 α1b1 (15.9.1)
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Finding the Coefficients 

Now let us address the question posed above about finding 's in general for . We start by rewriting Equation  so that we
can stack our 's as columns in a  matrix.

Here is a simple example, which shows a little more detail about the above equations.

Simplifying our Equation 

To make notation simpler, we define the following two items from the above equations:

Basis Matrix:

Coefficient Vector:

This gives us the following, concise equation:

which is equivalent to .

Given a standard basis, , then we have the following basis matrix:

To get the s, we solve for the coefficient vector in Equation 

Where  is the inverse matrix of .

αi R
2 15.9.1

bi 2 ×2

(x) = ( ) + ( )α0 b0 α1 b1 (15.9.2)

(x) = ( )

⎛

⎝

⎜⎜⎜

⋮
b0

⋮

⋮
b1

⋮

⎞

⎠

⎟⎟⎟
a0

a1
(15.9.3)

Example 15.9.3

( )
x[0]
x[1]

= ( )+ ( )α0
[0]b0

[1]b0
α1

[0]b1

[1]b1

=( )
[0] + [0]α0b0 α1b1

[1] + [1]α0b0 α1b1
(15.9.4)

( ) =( )( )
x[0]
x[1]

[0]b0

[1]b0

[0]b1

[1]b1

α0

α1

B =

⎛

⎝

⎜⎜⎜

⋮
b0

⋮

⋮
b1

⋮

⎞

⎠

⎟⎟⎟

α =( )
α0

α1

x = Bα (15.9.5)

x =∑1
i=0 αibi

Example 15.9.4

{( ) ,( )}
1
0

0
1

B =( )
0
1

1
0

αi 15.9.5

α = xB−1 (15.9.6)

B−1 B
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Examples 

Let us look at the standard basis first and try to calculate  from it.

Where  is the identity matrix. In order to solve for  let us find the inverse of  first (which is obviously very trivial in this
case):

Therefore we get,

Let us look at a ever-so-slightly more complicated basis of  Then our basis matrix and inverse

basis matrix becomes:

and for this example it is given that

Now we solve for 

and we get

Now we are given the following basis matrix and :

For this problem, make a sketch of the bases and then represent  in terms of  and .

Answer

In order to represent  in terms of  and  we will follow the same steps we used in the above example.

Example 15.9.5

α

B =( ) = I
1
0

0
1

I α B

=( )B−1 1
0

0
1

α = x = xB−1

Example 15.9.6

{( ) ,( )} = { , }
1
1

1
−1

h0 h1

B

B−1

=( )
1
1

1
−1

=( )
1
2
1
2

1
2

−1
2

x =( )
3
2

α

α = x =( )( ) =( )B−1
1
2
1
2

1
2

−1
2

3
2

2.5
0.5

x = 2.5 +0.5h0 h1

Exercise 15.9.1

x

{ , } ={( ) ,( )}b0 b1
1
2

3
0

x =( )
3
2

x b0 b1

x b0 b1
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And now we can write  in terms of  and .

And we can easily substitute in our known values of  and  to verify our results.

A change of basis simply looks at  from a "different perspective."  transforms  from the standard basis to our new
basis, . Notice that this is a totally mechanical procedure.

Extending the Dimension and Space 
We can also extend all these ideas past just  and look at them in  and . This procedure extends naturally to higher (> 2)
dimensions. Given a basis  for , we want to find  such that

Again, we will set up a basis matrix

where the columns equal the basis vectors and it will always be an  matrix (although the above matrix does not appear to be
square since we left terms in vector notation). We can then proceed to rewrite Equation 

and

This page titled 15.9: Orthonormal Basis Expansions is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

B =( )
1
3

2
0

=( )B−1
0
1
3

1
2

−1
6

α = x =( )B−1
1
2
3

x b0 b1

x = +b0
2
3

b1

b0 b1

Note

x B−1
x

{ , }b0 b1

R
2

R
n

C
n

{ , , … , }b0 b1 bn−1 R
n { , , … , }α0 α1 αn−1

x = + +… +α0b0 α1b1 αn−1bn−1 (15.9.7)

B = ( )b0 b1 b2 … bn−1

n ×n

15.9.5

x = ( ) = Bαb0 b1 … bn−1

⎛

⎝

⎜⎜

α0

⋮
αn−1

⎞

⎠

⎟⎟

α = xB−1
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15.10: Function Space
We can also find basis vectors (Section 15.9) for vector spaces (Section 15.2) other than .

Let  be the vector space of -th order polynomials on (-1, 1) with real coefficients (verify  is a v.s. at home).

. Let , , .

 span , i.e. you can write any  as

for some .

 is 3 dimensional.

Alternate basis

write  in terms of this new basis , , .

so

then we get

 is a basis for , , .

We calculate the expansion coefficients with

"change of basis" formula:

There are an infinite number of elements in the basis set, that means  is infinite dimensional (scary!).

Infinite-dimensional spaces are hard to visualize. We can get a handle on the intuition by recognizing they share many of the
same mathematical properties with finite dimensional spaces. Many concepts apply to both (like "basis expansion"). Some

R
n

Pn n P2

Example 15.10.1

= { all quadratic polynomials }P2 (t) = 1b0 (t) = tb1 (t) =b2 t2

{ (t), (t), (t)}b0 b1 b2 P2 f(t) ∈ P2

f(t) = (t) + (t) + (t)α0b0 α1b1 α2b2

∈ Rαi

Note

P2

f(t) = −3t−4t2

{ (t), (t), (t)} ={1, t, (3 −1)}b0 b1 b2
1

2
t2

f(t) (t) = (t)d0 b0 (t) = (t)d1 b1 (t) = (t) − (t)d2
3
2
b2

1
2
b0

f(t) = −3t−4 = 4 (t) −3 (t) + (t)t2 b0 b1 b2

f(t) = (t) + (t) + (t) = (t) + (t) + ( (t) − (t))β0d0 β1d1 β2d2 β0b0 β1b1 β2
3
2
b2

1
2
b0

f(t) = (t) + (t) + (t)β0b0 β1b1
3
2
β2b2

− = 4β0
1
2

= −3β1

= 13
2
β2

f(t) = 4.5 (t) −3 (t) + (t)d0 d1
2

3
d2

Example 15.10.2

ej ntω0 ∣∣
∞

n=−∞
([0,T ])L2 T = 2π

ω0
f(t) =∑n Cne

j ntω0

= (f(t) )dtCn

1

T
∫

T

0

e−(j nt)ω0

Note

([0,T ])L2
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don't (change of basis isn't a nice matrix formula).

This page titled 15.10: Function Space is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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15.11: Haar Wavelet Basis

Introduction 

Fourier series is a useful orthonormal representation (Section 15.9) on  especially for inputs into LTI systems. However,
it is ill suited for some applications, i.e. image processing (recall Gibb's phenomena (Section 6.7)).

Wavelets, discovered in the last 15 years, are another kind of basis for  and have many nice properties.

Basis Comparisons 

Fourier series -  give frequency information. Basis functions last the entire interval.

Figure : Fourier basis functions

Wavelets - basis functions give frequency info but are local in time.

Figure : Wavelet basis functions

In Fourier basis, the basis functions are harmonic multiples of 

Figure : 

In Haar wavelet basis, the basis functions are scaled and translated versions of a "mother wavelet" .

([0,T ])L2

([0,T ])L2

cn

15.11.1

15.11.2

ej tω0

15.11.3  basis  = { }1

T√
ej ntω0

ψ(t)
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Figure 

Basis functions  are indexed by a scale j and a shift k.

Let ,  Then .

Figure 

Figure 

Let .

15.11.4

{ (t)}ψj,k

ϕ(t) = 1 0 ≤ t < T {ϕ(t), ψ ( t−k) ,ϕ(t), ψ ( t−k) ∣ j∈ Z and (k = 0, 1, 2, … , −1)}2
j

2 2j 2
j

2 2j 2j

15.11.5

ψ(t) = {
1 if 0 ≤ t < T

2

−1 if 0 ≤ < TT

2

15.11.6

(t) = ψ ( t−k)ψj,k 2
j

2 2j
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Figure 

Larger  → "skinnier" basis function, ,  shifts at each scale: 

Check: each  has unit energy

Figure 

Any two basis functions are orthogonal.

(a) Same scale

(b) Different Scale

Figure : Integral of product = 0
Also,  span .

15.11.7

j j= {0, 1, 2, …} 2j k = 0, 1, … , −12j

(t)ψj,k

15.11.8

(∫ (t)dt = 1) ⇒ ( = 1)ψ2
j,k ∥ (t)∥ψj,k 2

15.11.9

{ ,ϕ}ψj,k ([0,T ])L2
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Haar Wavelet Transform 

Using what we know about Hilbert spaces (Section 15.4): For any , we can write

Synthesis

Analysis

the  are real

The Haar transform is super useful especially in image compression

Haar Wavelet Demonstration 

f(t) ∈ ([0,T ])L2

f(t) = (t) + ϕ(t)∑
j

∑
k

wj,kψj,k c0

= f(t) (t)dtwj,k ∫
T

0
ψj,k

= f(t)ϕ(t)dtc0 ∫
T

0

Note

wj,k
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Figure : Interact (when online) with a Mathematica CDF demonstrating the Haar Wavelet as an Orthonormal Basis.

This page titled 15.11: Haar Wavelet Basis is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..
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15.12: Orthonormal Bases in Real and Complex Spaces

Notation 

Transpose operator  flips the matrix across it's diagonal.

Column  of  is row  of 

Recall, inner product

on .

Hermitian transpose , transpose and conjugate

on .

Now, let  be an orthonormal basis for 

Basis matrix:

Now,

AT

A =( )
a1,1

a2,1

a1,2

a2,2

=( )AT
a1,1

a1,2

a2,1

a2,2

i A i AT
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⎛

⎝
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⎜⎜⎜

x0

x1

⋮
xn−1

⎞

⎠

⎟
⎟⎟⎟

y =

⎛

⎝

⎜⎜⎜⎜

y0

y1

⋮
yn−1

⎞

⎠

⎟⎟⎟⎟

y = ( ) = = ⟨y, x⟩x
T x0 x1 … xn−1

⎛

⎝

⎜⎜
⎜⎜

y0

y1

⋮
yn−1

⎞

⎠

⎟⎟
⎟⎟

∑
i

xiyi

R
n

AH

=AH AT¯ ¯¯̄¯̄¯

⟨y, x⟩ = y =x
H ∑i xiȳi

C
n

{ , , … , }b0 b1 bn−1 C
n

i = {0, 1, … , n −1} ⟨ , ⟩ = 1bi bi

(i ≠ j, ⟨ , ⟩ = = 0)bi bi bH
j bi
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⎛

⎝

⎜⎜⎜

⋮
b0

⋮
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For orthonormal basis with basis matrix 

(  in )  is easy to calculate while  is hard to calculate.

So, to find  such that

Calculate

Using an orthonormal basis we rid ourselves of the inverse operation.

This page titled 15.12: Orthonormal Bases in Real and Complex Spaces is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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= in BT B−1
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n
R

n BH B−1

{ , , … , }α0 α1 αn−1

x =∑
i

αibi
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15.13: Plancharel and Parseval's Theorems

Parseval's Theorem 

Continuous Time Fourier Series preserves signal energy

i.e.:

Prove: Plancherel theorem 

Periodic Signals Power 

Figure 

Apply Parseval's Theorem:

 

|f(t) dt = T  with unnormalized basis ∫
T

0
|2 ∑

n=−∞

∞

| |Cn
2

ej nt
2π

T

|f(t) dt =  with unnormalized basis ∫
T

0
|2 ∑

n=−∞

∞

| |Cn
2 ej nt2π

T

T
−−√

=∥f∥2
2  

[0,T )energyL2

∥ ∥C ′
n

2
2  

(Z)energyl2

 Given f(t)

g(t)

⟶
 CTFS 

cn

⟶
 CTFS 

dn

 Then  f(t) (t)dt = T  with unnormalized basis ∫
T

0
g∗ ∑

n=−∞

∞

cnd∗
n ej nt2π

T

f(t) (t)dt =  with normalized basis ∫
T

0
g∗ ∑

n=−∞

∞

c′
n( )d′

n
∗ ej nt2π

T

T
−−

√

⟨f , g = ⟨c, d⟩ (0,T ]L2
⟩ (Z)l2

 Energy  = ∥f = |f(t) dt = ∞∥2 ∫
∞

−∞
|2

 Power  = lim
T→∞

 Energy in [0,T )

T

= lim
T→∞

T ∑n | |cn
2

T

= ( unnormalized FS)∑
n∈Z

| |cn
2

Example : Fourier Series of Square Pulse III - Compute the Energy15.13.1

15.13.1

f(t) = =∑
n=−∞

∞

cne
j nt

2π

T →
FS

cn
1

2

sin nπ2

nπ2

 energy in time domain: ∥f = |f(t) dt =∥2
2 ∫

T

0
|2

T

2

T∑
n

| |cn
2
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Plancharel Theorem 

The inner product of two vectors/signals is the same as the  inner product of their expansion coefficients.

Let  be an orthonormal basis for a Hilbert Space . , 

then

Applying the Fourier Series, we can go from  to  and  to 

inner product in time-domain = inner product of Fourier coefficients.

Proof:

by using inner product rules (Section 15.4)

 when  and  when 

If Hilbert space H has a ONB, then inner products are equivalent to inner products in .

All H with ONB are somehow equivalent to .

= T

4 ∑n ( )
sin n

π

2

n
π

2

2

= T

4
4
π2 ∑n

(sin n)π

2

2

n2

= +T

π2

⎡

⎣

⎢⎢⎢
⎢

π2

4 odd∑n
1
n2

  
π2

4

⎤

⎦

⎥⎥⎥
⎥

= □
T
2

Theorem : Plancharel Theorem15.13.1

ℓ2

{ }bi H x ∈ H y ∈ H

x =∑i αibi

y =∑i βibi

⟨x, y =⟩H ∑
i

αiβi
¯ ¯¯̄¯

Example 15.13.2

f(t) { }cn g(t) { }dn

f(t) dt =∫
T

0
g(t)¯ ¯¯̄¯̄¯̄ ∑

n=−∞

∞

cndn
¯ ¯¯̄¯

x =∑i αibi

y =∑j βjbj

⟨x, y = ⟨ , ⟩ = ⟨( , )⟩ = ⟨( , )⟩=⟩H ∑
i

αibi ∑
j

βjbj ∑
i

αi bi ∑
j

βjbj ∑
i

αi∑
j

β̄j bi bj ∑
i

αiβ̄ i

Note

⟨ , ⟩= 0bi bj i ≠ j ⟨ , ⟩= 1bi bj i = j
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Square-summable sequences are important

Plancharels Theorem Demonstration 
PlancharelsTheoremDemo

Figure : Interact (when online) with a Mathematica CDF demonstrating Plancharels Theorem visually. To Download, right-
click and save target as .cdf.

Parseval's Theorem: a different approach 

Energy of a signal = sum of squares of its expansion coefficients

Let ,  ONB

Then

Proof:

Directly from Plancharel

Point of Interest

15.13.2

Theorem : Parseval's Theorem15.13.2

x ∈ H { }bi

x =∑
i

αibi

=(∥x )∥H
2 ∑

i

(| |)αi
2
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Fourier Series 

This page titled 15.13: Plancharel and Parseval's Theorems is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

= ⟨x, x = =(∥x )∥H
2 ⟩H ∑

i

αiαi
¯ ¯¯̄¯ ∑

i

(| |)αi
2

Example 15.13.3

1
T√
ej ntw0

f(t) = 1
T√
∑n cn

1
T√
ej ntw0
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15.14: Approximation and Projections in Hilbert Space

Introduction 

Given a line 'l' and a point 'p' in the plane, what's the closest point 'm' to 'p' on 'l'?

Figure : Figure of point 'p' and line 'l' mentioned above.

Same problem: Let  and  be vectors in . Say . For what value of  is  minimized? (what point in span{v}
best approximates ?)

Figure 

The condition is that  and  are orthogonal.

Calculating α 
How to calculate ?

We know that ( ) is perpendicular to every vector in span{v}, so

because , so

Closest vector in span{v} = , where  is the projection of  onto .

We can do the same thing in higher dimensions.

Let  be a subspace of a Hilbert space (Section 15.4) . Let  be given. Find the  that best approximates .
i.e.,  is minimized.

Answer
1. Find an orthonormal basis  for 
2. Project  onto  using

then  is the closest point in  to x and 

, , . So,

15.14.1

x v R
2 ∥v∥ = 1 α ∥x −αv∥2

x

15.14.2

x − vα̂ αv

â

x − vα̂

⟨x − v, βv⟩ = 0, ∀(β)α̂

⟨(x, v)⟩− ⟨(v, v)⟩ = 0β̄ α̂β̄

⟨v, v⟩ = 1

(⟨(x, v)⟩− = 0) ⇒ ( = ⟨x, v⟩)α̂ α̂

⟨(x, v)⟩v ⟨(x, v)⟩v x v

Exercise 15.14.1

V ⊂ H H x ∈ H y ∈ V x

∥x −y∥

{ , … , }b1 bk V

x V

y = ⟨(x, )⟩∑
i=1

k

bi bi

y V (x −y) ⊥ V (⟨x −y, v⟩ = 0, ∀(v) ∈ V

Example 15.14.1

x ∈ R
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V = {space of periodic signals with frequency no greater than }. Given periodic f(t), what is the signal in V that best
approximates f?

1.  is an ONB for V

2.  is the closest signal in V to f(t) ⇒ reconstruct f(t) using only 7 terms of its Fourier
series.

Let V = {functions piecewise constant between the integers}

1. ONB for V.

where  is an ONB.

Best piecewise constant approximation?

This demonstration explores approximation using a Fourier basis and a Haar Wavelet basis. See here for instructions on how to
use the demo.

This page titled 15.14: Approximation and Projections in Hilbert Space is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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bi bi
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Example 15.14.2

3w0
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T√

ej ktw0

g(t) = ⟨(f(t), )⟩1
T
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k=−3 ej ktw0 ej ktw0

Example 15.14.3

= {bi

1 if i −1 ≤ t < i

0 otherwise 

{ }bi

g(t) = ⟨(f , )⟩∑∞
i=−∞ bi bi

⟨f , ⟩ = f(t) (t)dt = f(t)dtbi ∫ ∞
−∞ bi ∫ i
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16.1: Introduction to Metric Spaces

Introduction 

In may courses, concepts such as continuity and convergence are invoked without much discussion of their formal definitions,
instead relying on the reader's intuitive understanding of these matters. However, for purposes of proofs, including some in the
main body of material for this course, a greater rigor is required. This module will discuss metric spaces, a mathematical construct
that provide a framework for the study continuity, convergence, and other related ideas in their most concrete but still formal
senses. This is accomplished by formalizing a notion of the distance between two elements in a set. The intent in this and
subsequent modules in this chapter is not to give a complete overview of the basic topics of analysis but to give a short introduction
to those most important to discussion of signal processing in this course.

Metric Spaces 

A Notion of Distance 

In many situations in signal processing it is often useful to have a concept of distance between the points in a set. This notion is
mathematically formalized through the idea of a metric space. A metric space  is a set  together with a function 

 that assigns distances between pairs of elements in  while satisfying three conditions. First, for every 
 with  if and only if . Second, for every  symmetrically. Third,

for every , which is known as the triangle inequality.

There are, of course, several different possible choices of definitions for distances in a given set. Our typical intuitive
understanding of distance in  fits within this framework as the standard Euclidean metric

as does the taxicab or Manhatten metric

that sums individual components of vectors, representing, for example, distances traveled walking around city blocks. Another
simple yet more exotic example is provided by the discrete metric on any set defined by

in which all pairs of distinct points are equidistant from each other but every point is distance zero from itself. One can check that
these satisfy the conditions for metric spaces.

Relationship with Norms 

It is not surprising that norms, which provide a notion of size, and metrics, which provide a notion of distance, would have a close
relationship. Intuitively, one way of defining the distance between two points in a metric space could be the size of their difference.
In other words given a vector space  over the field  with norm , we might ask if the function

for every  satisfies the conditions for  to be a metric space.

Let  be a vector space over the field  with norm , and let . Recall that since  is a norm,  if
and only if  and  for all  and . Hence  for all  and  if and only
if . Since  and  it follows that  for all . Finally, 

 by the properties of norms, so  for all . Thus,  does indeed
satisfy the conditions to be a metric space and is discussed as the metric space induced by the norm .

Metric Spaces Summary 
Metric spaces provide a notion of distance and a framework with which to formally study mathematical concepts such as continuity
and convergence, and other related ideas. Many metrics can be chosen for a given set, and our most common notions of distance

(M , d) M

d : M ×M → R M

x, y ∈ M , d(x, y) ≥ 0 d(x, y) = 0 x = y x, y ∈ M , d(x, y) = d(y, x)
x, y, z ∈ M , d(x, y) +d(x, z) ≥ d(y, z)

R
n

d(x, y) = ∥x−y∥2

d(x, y) = ∥x−y∥1

d(x, y) = {
0

1

x = y

x ≠ y

V F ∥ ⋅ ∥

d(x, y) = ∥x−y∥

x, y ∈ V (V , d)

V F ∥ ⋅ ∥ d(x, y) = ∥x−y∥ ∥ ⋅ ∥ ||x|| = 0
x = 0 ||ax|| = |a|||x|| a ∈ F x ∈ V ||x−y|| ≥ 0 x, y ∈ V ∥x−y∥ = 0

x = y y−x = −(x−y) ∥ −(x−y)∥ = ∥x−y∥ ||x−y|| = ||y−x∣ x, y ∈ V

∥x∥ +∥y∥ ≥ ∥x+y∥ ∥x−y∥ +∥x−z∥ ≥ ∥y−z∥ x, y, z ∈ V (V , d)
∥ ⋅ ∥
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satisfy the conditions to be a metric. Any norm on a vector space induces a metric on that vector space and it is in these types of
metric spaces that we are often most interested for study of signals and systems.

This page titled 16.1: Introduction to Metric Spaces is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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16.2: Convergence of Sequences

Sequences 

A sequence is a function  defined on the positive integers ' '. We often denote a sequence by 

A real number sequence:

A vector sequence:

A function sequence:

A function can be thought of as an infinite dimensional vector where for each value of ' ' we have one dimension

Convergence of Real Sequences 

A sequnce  converges to a limit  if for every  there is an integer  such that

We usually denote a limit by writing

or

The above definition means that no matter how small we make , except for a finite number of 's, all points of the sequence are
within distance  of .

We are given the following convergent sequence:

Definition: Sequence

gn n { }|gn
∞
n=1

Example 16.2.1

=gn

1

n

Example 16.2.2

=( )gn

sin( )nπ

2

cos( )nπ

2

Example 16.2.3

(t) = {gn

1

0

 if 0 ≤ t < 1
n

 otherwise 

Note

t

Definition: Limit

{ }|gn
∞
n=1 g ∈ R ε > 0 N

| −g| < ε, i ≥ Ngi

= glimiti→∞ gi

→ ggi

ε gi

ε g

Example 16.2.4

=gn

1

n
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Intuitively we can assume the following limit:

Let us prove this rigorously. Say that we are given a real number . Let us choose , where  denotes the
smallest integer larger than . Then for  we have

Thus,

Now let us look at the following non-convergent sequence

This sequence oscillates between 1 and -1, so it will therefore never converge.

This page titled 16.2: Convergence of Sequences is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..

= 0limitn→∞ gn

ε > 0 N = ⌈ ⌉1
ε

[x]

x n ≥ N

| −0| = ≤ < εgn

1

n

1

N

= 0limitn→∞ gn

Example 16.2.5

= {gn

1 if n =  even 

−1 if n =  odd 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22943?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/16%3A_Appendix_C-_Analysis_Topics_Overview/16.02%3A_Convergence_of_Sequences
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


16.3.1 https://eng.libretexts.org/@go/page/22944

16.3: Convergence of Sequences of Vectors

Convergence of Vectors 

We now discuss pointwise and norm convergence of vectors. Other types of convergence also exist, and one in particular, uniform
convergence (Section 16.4), can also be studied. For this discussion , we will assume that the vectors belong to a normed vector
space (Section 15.3).

Pointwise Convergence 

A sequence (Section 16.2)  converges pointwise to the limit  if each element of  converges to the corresponding
element in . Below are few examples to try and help illustrate this idea.

First we find the following limits for our two 's:

Therefore we have the following,

pointwise, where .

As done above, we first want to examine the limit

where . Thus  pointwise where  for all .

Norm Convergence 

The sequence (Section 16.2)  converges to  in norm if . Here  is the norm 
's. Intuitively this means the distance between vectors  and  decreases

to .

Let 
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Thus . Therefore  in norm.

Let  for all .

Thus  Therefore,  in norm.

Pointwise vs. Norm Convergence 

For , pointwise and norm convergence are equivalent.

Proof: Pointwise ⇒ Norm

Assuming the above, then

Thus,

Proof: Norm ⇒ Pointwise
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for all . Therefore,

In infinite dimensional spaces the above theorem is no longer true. We prove this with counter examples shown below.

Counter Examples 

We are given the following function:

Then . This means that,

where for all  .

Now,

Since the function norms blow up, they cannot converge to any function with finite norm.

We are given the following function:

Then,

where  for all . Therefore,

However, at ,  oscillates between -1 and 1, and so it does not converge. Thus,  does not converge pointwise.

This page titled 16.3: Convergence of Sequences of Vectors is shared under a CC BY license and was authored, remixed, and/or curated by
Richard Baraniuk et al..

2 = 0limitn→∞

i

→ g  pointwise gn

Note

Example : Pointwise  Norm16.3.5 ⇏

(t) ={gn
n if 0 < t < 1

n

0 otherwise 

(t) = 0limitn→∞ gn

(t) → g(t)gn

t g(t) = 0

(∥ ∥)gn
2 = dt∫

∞

−∞
(| (t)|)gn

2

= dt∫

1
n

0
n2

= n → ∞

Example : Norm  Pointwise16.3.6 ⇏

(t) ={gn
1 if 0 < t <  if n is even 1

n

0 otherwise 

(t) ={gn
−1 if 0 < t <  if n is odd 1

n

0 otherwise 

∥ −g∥ = 1dt = → 0gn ∫

1
n

0

1

n

g(t) = 0 t

→ g in normgn

t = 0 (t)gn (t)gn

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://eng.libretexts.org/@go/page/22944?pdf
https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/16%3A_Appendix_C-_Analysis_Topics_Overview/16.03%3A_Convergence_of_Sequences_of_Vectors
https://creativecommons.org/licenses/by/
https://richb.rice.edu/


16.4.1 https://eng.libretexts.org/@go/page/22945

16.4: Uniform Convergence of Function Sequences

Uniform Convergence of Function Sequences 

For this discussion, we will only consider functions with  where

The sequence (Section 16.2)  converges uniformly to function  if for every  there is an integer  such that 
 implies

for all .

Obviously every uniformly convergent sequence is pointwise (Section 16.3) convergent. The difference between pointwise and
uniform convergence is this: If  converges pointwise to , then for every  and for every  there is an integer 
depending on  and  such that Equation  holds if . If  converges uniformly to , it is possible for each  to
find one integer  that will do for all .

Let  be given. Then choose . Obviously,

for all . Thus,  converges uniformly to .

Obviously for any  we cannot find a single function  for which Equation  holds with  for all . Thus 
 is not uniformly convergent. However we do have:

Uniform convergence always implies pointwise convergence, but pointwise convergence does not guarantee uniform
convergence.
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17.1: Viewing Embedded LabVIEW Content in Connexions

Introduction 

In order to view LabVIEW content embedded in Connexions modules, you must install and enable the LabVIEW 8.0 and 8.5 Local
VI Execution Browser Plug-in for Windows. Step-by-step installation instructions are given below. Once installation is complete,
the placeholder box at the bottom of this module should display a demo LabVIEW virtual instrument (VI).

Installing the LabVIEW Run-time Engine on Microsoft Windows 
1. Download and install the LabVIEW 8.0 Runtime Engine found at: zone.ni.com/devzone/cda/tut/p/id/4346.
2. Download and install the LabVIEW 8.5 Runtime Engine found at: zone.ni.com/devzone/cda/tut/p/id/6633.
3. Download the LVBrowserPlugin.ini  file from http://zone.ni.com/devzone/cda/tut/p/id/8288, and place it in the 

My Documents\LabVIEW Data  folder. (You may have to create this folder if it doesn't already exist.)
4. Restart your computer to complete the installation.
5. The placeholder box at the bottom of this module should now display a demo LabVIEW virtual instrument (VI).

Example Virtual Instrument 

Figure : Digital filter design LabVIEW virtual instrument from http://cnx.org/content/m13115/latest/.

This page titled 17.1: Viewing Embedded LabVIEW Content in Connexions is shared under a CC BY license and was authored, remixed, and/or
curated by Richard Baraniuk et al..
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17.2: Getting Started with Mathematica

What is Mathematica? 

Mathematica is a computational software program used in technical fields. It is developed by Wolfram Research. Mathematica
makes it easy to visualize data and create GUIs in only a few lines of code.

How can I run, create, and find Mathematica files? 
Run

The free CDF Player is available for running non-commercial Mathematica programs. The option exists of downloading source
files and running on your computer, but the CDF-player comes with a plug-in for viewing dynamic content online on your web
browser!

Create

Mathematica 8 is available for purchase from Wolfram. Many universities (including Rice) and companies already have a
Mathematica license. Wolfram has a free, save-disabled 15-day trial version of Mathematica.

Find

Wolfram has thousands of Mathematica programs (including source code) available at the Wolfram Demonstrations Project.
Anyone can create and submit a Demonstration. Also, many other websites (including Connexions) have a lot of Mathematica
content.

What do I need to run interactive content? 
Mathematica 8 is supported on Linux, Microsoft Windows, Mac OS X, and Solaris. Mathematica's free CDF-player is available for
Windows and Mac OS X, and is in development for Linux; the CDF-Player plugin is available for IE, Firefox, Chrome, Safari, and
Opera.

How can I upload a Mathematica file to a Connexions module? 

Go to the Files tab at the top of the module and upload your .cdf file, along with an (optional) screenshot of the file in use. In order
to generate a clean bracket-less screenshot, you should do the following:

Open your .cdf in Mathematica and left click on the bracket surrounding the manipulate command.
Click on Cell->Convert To->Bitmap.
Then click on File->Save Selection As, and save the image file in your desired image format.

Embed the files into the module in any way you like. Some tags you may find helpful include image, figure, download, and link (if
linking to an .cdf file on another website). The best method is to create an interactive figure, and include a fallback png image of
the cdf file should the CDF image not render properly. See the interactive demo/image below.

Convolution Demo

<figure > 

<media  alt="timeshiftDemo"> 

<image mime-type="image/png" src="Convolutiondisplay-4.cdf" thumbnail="Convolution4.0D

<object width="500" height="500" src="Convolutiondisplay-4.cdf" mime-type="application

<image mime-type="application/postscript" for="pdf" src="Convolution4.0Display.png" wi

</media>

<caption>Interact (when online) with a Mathematica CDF demonstrating Convolution. To D

</figure> 
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Figure : Interact (when online) with a Mathematica CDF demonstrating Convolution. To Download, right-click and save
target as .cdf.

Alternatively, this is how it looks when you use a thumbnail link to a live online demo.
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Convolution Demo

Figure : Click on the above thumbnail image (when online) to view an interactive Mathematica Player demonstrating
Convolution.

How can I learn Mathematica? 
Open Mathematica and go to the Getting Started section of the "Welcome to Mathematica" screen, or check out Help:
Documentation Center.

The Mathematica Learning Center has lots of screencasts, how-tos, and tutorials.

When troubleshooting, the error messages are often unhelpful, so it's best to evaluate often so the problem can be easily located.
Search engines like Google are useful when you're looking for an explanation of specific error messages.

This page titled 17.2: Getting Started with Mathematica is shared under a CC BY license and was authored, remixed, and/or curated by Richard
Baraniuk et al..
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