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1.1: Systems of Equations, Geometry

Systems of Equations, Geometry

A. Relate the types of solution sets of a system of two (three) variables to the intersections of lines in a plane (the intersection
of planes in three space)

As you may remember, linear equations like  can be graphed as straight lines in the coordinate plane. We say that this
equation is in two variables, in this case  and . Suppose you have two such equations, each of which can be graphed as a straight
line, and consider the resulting graph of two lines. What would it mean if there exists a point of intersection between the two lines?
This point, which lies on both graphs, gives  and  values for which both equations are true. In other words, this point gives the
ordered pair ( ) that satisfy both equations. If the point  is a point of intersection, we say that  is a solution to the two
equations. In linear algebra, we often are concerned with finding the solution(s) to a system of equations, if such solutions exist.
First, we consider graphical representations of solutions and later we will consider the algebraic methods for finding solutions.

When looking for the intersection of two lines in a graph, several situations may arise. The following picture demonstrates the
possible situations when considering two equations (two lines in the graph) involving two variables.

Figure 

In the first diagram, there is a unique point of intersection, which means that there is only one (unique) solution to the two
equations. In the second, there are no points of intersection and no solution. When no solution exists, this means that the two lines
are parallel and they never intersect. The third situation which can occur, as demonstrated in diagram three, is that the two lines are
really the same line. For example,  and  are equations which when graphed yield the same line. In this case
there are infinitely many points which are solutions of these two equations, as every ordered pair which is on the graph of the line
satisfies both equations. When considering linear systems of equations, there are always three types of solutions possible; exactly
one (unique) solution, infinitely many solutions, or no solution.

Use a graph to find the solution to the following system of equations

Solution
Through graphing the above equations and identifying the point of intersection, we can find the solution(s). Remember that we
must have either one solution, infinitely many, or no solutions at all. The following graph shows the two equations, as well as
the intersection. Remember, the point of intersection represents the solution of the two equations, or the  which satisfy
both equations. In this case, there is one point of intersection at  which means we have one unique solution, 

.

 Outcomes

2x +3y = 6

x y

x y

x, y (x, y) (x, y)

1.1.1

x +y = 1 2x +2y = 2

 Example : A Graphical Solution1.1.1

x +y = 3

y −x = 5

(x, y)

(−1, 4)

x = −1, y = 4
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Figure 

In the above example, we investigated the intersection point of two equations in two variables,  and . Now we will consider the
graphical solutions of three equations in two variables.

Consider a system of three equations in two variables. Again, these equations can be graphed as straight lines in the plane, so that
the resulting graph contains three straight lines. Recall the three possible types of solutions; no solution, one solution, and infinitely
many solutions. There are now more complex ways of achieving these situations, due to the presence of the third line. For example,
you can imagine the case of three intersecting lines having no common point of intersection. Perhaps you can also imagine three
intersecting lines which do intersect at a single point. These two situations are illustrated below.

Figure 

Consider the first picture above. While all three lines intersect with one another, there is no common point of intersection where all
three lines meet at one point. Hence, there is no solution to the three equations. Remember, a solution is a point  which
satisfies all three equations. In the case of the second picture, the lines intersect at a common point. This means that there is one
solution to the three equations whose graphs are the given lines. You should take a moment now to draw the graph of a system
which results in three parallel lines. Next, try the graph of three identical lines. Which type of solution is represented in each of
these graphs?

We have now considered the graphical solutions of systems of two equations in two variables, as well as three equations in two
variables. However, there is no reason to limit our investigation to equations in two variables. We will now consider equations in
three variables.

You may recall that equations in three variables, such as , form a plane. Above, we were looking for
intersections of lines in order to identify any possible solutions. When graphically solving systems of equations in three variables,
we look for intersections of planes. These points of intersection give the  that satisfy all the equations in the system. What
types of solutions are possible when working with three variables? Consider the following picture involving two planes, which are
given by two equations in three variables.

1.1.2

x y

1.1.3

(x, y)

2x +4y −5z = 8

(x, y, z)
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Figure 

Notice how these two planes intersect in a line. This means that the points  on this line satisfy both equations in the system.
Since the line contains infinitely many points, this system has infinitely many solutions.

It could also happen that the two planes fail to intersect. However, is it possible to have two planes intersect at a single point? Take
a moment to attempt drawing this situation, and convince yourself that it is not possible! This means that when we have only two
equations in three variables, there is no way to have a unique solution! Hence, the types of solutions possible for two equations in
three variables are no solution or infinitely many solutions.

Now imagine adding a third plane. In other words, consider three equations in three variables. What types of solutions are now
possible? Consider the following diagram.

Figure 

In this diagram, there is no point which lies in all three planes. There is no intersection between all planes so there is no solution.
The picture illustrates the situation in which the line of intersection of the new plane with one of the original planes forms a line
parallel to the line of intersection of the first two planes. However, in three dimensions, it is possible for two lines to fail to intersect
even though they are not parallel. Such lines are called skew lines.

Recall that when working with two equations in three variables, it was not possible to have a unique solution. Is it possible when
considering three equations in three variables? In fact, it is possible, and we demonstrate this situation in the following picture.

1.1.4

(x, y, z)

1.1.5
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Figure 

In this case, the three planes have a single point of intersection. Can you think of other types of solutions possible? Another is that
the three planes could intersect in a line, resulting in infinitely many solutions, as in the following diagram.

Figure 

We have now seen how three equations in three variables can have no solution, a unique solution, or intersect in a line resulting in
infinitely many solutions. It is also possible that the three equations graph the same plane, which also leads to infinitely many
solutions.

You can see that when working with equations in three variables, there are many more ways to achieve the different types of
solutions than when working with two variables. It may prove enlightening to spend time imagining (and drawing) many possible
scenarios, and you should take some time to try a few.

You should also take some time to imagine (and draw) graphs of systems in more than three variables. Equations like 
 with more than three variables are often called hyper-planes. You may soon realize that it is tricky to draw

the graphs of hyper-planes! Through the tools of linear algebra, we can algebraically examine these types of systems which are
difficult to graph. In the following section, we will consider these algebraic tools.

Graphically, find the point  which lies on both lines,  and . That is, graph each line and see
where they intersect.

1.1.6

1.1.7

x +y −2z +4w = 8

 Exercise 1.1.1

( , )x1 y1 x +3y = 1 4x −y = 3
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Graphically, find the point of intersection of the two lines,  and . That is, graph each line and see where
they intersect

You have a system of  equations in two variables, . Explain the geometric significance of

a. No solution.
b. A unique solution.
c. An infinite number of solutions.

This page titled 1.1: Systems of Equations, Geometry is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

 Exercise 1.1.2

3x +y = 3 x +2y = 1

 Exercise 1.1.3

k k ≥ 2
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1.2: Systems of Equations, Algebraic Procedures

Algebraic Procedures

A. Use elementary operations to find the solution to a linear system of equations.
B. Find the row-echelon form and reduced row-echelon form of a matrix.
C. Determine whether a system of linear equations has no solution, a unique solution or an infinite number of solutions from

its .
D. Solve a system of equations using Gaussian Elimination and Gauss-Jordan Elimination.
E. Model a physical system with linear equations and then solve.

We have taken an in depth look at graphical representations of systems of equations, as well as how to find possible solutions
graphically. Our attention now turns to working with systems algebraically.

A system of linear equations is a list of equations,

where  and  are real numbers. The above is a system of  equations in the  variables, . Written more
simply in terms of summation notation, the above can be written in the form

The relative size of  and  is not important here. Notice that we have allowed  and  to be any real number. We can also call
these numbers scalars . We will use this term throughout the text, so keep in mind that the term scalar just means that we are
working with real numbers.

Now, suppose we have a system where  for all . In other words every equation equals . This is a special type of system.

A system of equations is called homogeneous if each equation in the system is equal to . A homogeneous system has the
form

where  are scalars and  are variables.

Recall from the previous section that our goal when working with systems of linear equations was to find the point of intersection
of the equations when graphed. In other words, we looked for the solutions to the system. We now wish to find these solutions
algebraically. We want to find values for  which solve all of the equations. If such a set of values exists, we call 

 the solution set.

 Outcomes

 Definition : System of Linear Equations1.2.1

+ +⋯ + =a11x1 a12x2 a1nxn b1

+ +⋯ + =a21x1 a22x2 a2nxn b2

⋮
+ +⋯ + =am1x1 am2x2 amnxn bm

aij bj m n , ⋯ ,x1 x2 xn

= ,  i = 1, 2, 3, ⋯ , m∑
j=1

n

aijxj bi

m n aij bj

= 0bi i 0

 Definition : Homogeneous System of Equations1.2.2

0

+ +⋯ + = 0a11x1 a12x2 a1nxn

+ +⋯ + = 0a21x1 a22x2 a2nxn

⋮
+ +⋯ + = 0am1x1 am2x2 amnxn

aij xi

, ⋯ ,x1 xn

( , ⋯ , )x1 xn
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Recall the above discussions about the types of solutions possible. We will see that systems of linear equations will have one
unique solution, infinitely many solutions, or no solution. Consider the following definition.

A system of linear equations is called consistent if there exists at least one solution. It is called inconsistent if there is no
solution.

If you think of each equation as a condition which must be satisfied by the variables, consistent would mean there is some choice of
variables which can satisfy all the conditions. Inconsistent would mean there is no choice of the variables which can satisfy all of
the conditions.

The following sections provide methods for determining if a system is consistent or inconsistent, and finding solutions if they exist.

Elementary Operations

We begin this section with an example. Recall from Example 1.1.1 that the solution to the given system was .

Algebraically verify that  is a solution to the following system of equations.

Solution
By graphing these two equations and identifying the point of intersection, we previously found that  is the
unique solution.

We can verify algebraically by substituting these values into the original equations, and ensuring that the equations hold. First,
we substitute the values into the first equation and check that it equals .

This equals  as needed, so we see that  is a solution to the first equation. Substituting the values into the second
equation yields

which is true. For  each equation is true and therefore, this is a solution to the system.

Now, the interesting question is this: If you were not given these numbers to verify, how could you algebraically determine the
solution? Linear algebra gives us the tools needed to answer this question. The following basic operations are important tools that
we will utilize.

Elementary operations are those operations consisting of the following.

1. Interchange the order in which the equations are listed.
2. Multiply any equation by a nonzero number.
3. Replace any equation with itself added to a multiple of another equation.

It is important to note that none of these operations will change the set of solutions of the system of equations. In fact, elementary
operations are the key tool we use in linear algebra to find solutions to systems of equations.

Consider the following example.

 Definition : Consistent and Inconsistent Systems1.2.3

(x, y) = (−1, 4)

 Example : Verifying an Ordered Pair is a Solution1.2.1

(x, y) = (−1, 4)

x +y = 3
y −x = 5

(x, y) = (−1, 4)

3

x +y = (−1) +(4) = 3

3 (−1, 4)

y −x = (4) −(−1) = 4 +1 = 5

(x, y) = (−1, 4)

 Definition : Elementary Operations1.2.4
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Show that the system

has the same solution as the system

Solution
Notice that the second system has been obtained by taking the second equation of the first system and adding -2 times the first
equation, as follows:

By simplifying, we obtain

which is the second equation in the second system. Now, from here we can solve for  and see that . Next, we substitute
this value into the first equation as follows

Hence  and so  is a solution to the second system. We want to check if  is also a solution to the first
system. We check this by substituting  into the system and ensuring the equations are true.

Hence,  is also a solution to the first system.

This example illustrates how an elementary operation applied to a system of two equations in two variables does not affect the
solution set. However, a linear system may involve many equations and many variables and there is no reason to limit our study to
small systems. For any size of system in any number of variables, the solution set is still the collection of solutions to the equations.
In every case, the above operations of Definition  do not change the set of solutions to the system of linear equations.

In the following theorem, we use the notation  to represent an equation, while  denotes a constant.

Suppose you have a system of two linear equations

Then the following systems have the same solution set as :

1. 

2. 

for any scalar , provided .

3. 

 Example : Effects of an Elementary Operation1.2.2

x +y = 7
2x −y = 8

x +y = 7
−3y = −6

2x −y +(−2)(x +y) = 8 +(−2)(7)

−3y = −6

y y = 2

x +y = x +2 = 7

x = 5 (x, y) = (5, 2) (5, 2)
(x, y) = (5, 2)

x +y = (5) +(2) = 7

2x −y = 2 (5) −(2) = 8

(5, 2)

1.2.4

Ei bi

 Theorem : Elementary Operations and Solutions1.2.1

=E1 b1

=E2 b2
(1.2.1)

(1.2.1)

=E2 b2

=E1 b1
(1.2.2)

=E1 b1

k = kE2 b2
(1.2.3)

k k ≠ 0

=E1 b1

+k = +kE2 E1 b2 b1
(1.2.4)
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for any scalar  (including ).

Before we proceed with the proof of Theorem , let us consider this theorem in context of Example . Then,

Recall the elementary operations that we used to modify the system in the solution to the example. First, we added  times
the first equation to the second equation. In terms of Theorem , this action is given by

or

This gave us the second system in Example , given by

From this point, we were able to find the solution to the system. Theorem  tells us that the solution we found is in fact a
solution to the original system.

We will now prove Theorem .

Proof
1. The proof that the systems  and  have the same solution set is as follows. Suppose that  is a

solution to . We want to show that this is a solution to the system in  above. This is clear,
because the system in  is the original system, but listed in a different order. Changing the order does not effect
the solution set, so  is a solution to .

2. Next we want to prove that the systems  and  have the same solution set. That is  has
the same solution set as the system  provided . Let  be a solution of 

. We want to show that it is a solution to . Notice that the only difference
between these two systems is that the second involves multiplying the equation,  by the scalar . Recall that
when you multiply both sides of an equation by the same number, the sides are still equal to each other. Hence if 

 is a solution to , then it will also be a solution to . Hence,  is also a
solution to . 
Similarly, let  be a solution of . Then we can multiply the equation  by the
scalar , which is possible only because we have required that . Just as above, this action preserves equality and
we obtain the equation . Hence  is also a solution to 

3. Finally, we will prove that the systems  and  have the same solution set. We will show that any solution of
 is also a solution of . Then, we will show that any solution of  is also a solution of 
. Let  be a solution to . Then in particular it solves . Hence,

it solves the first equation in . Similarly, it also solves . By our proof of , it also solves 
. Notice that if we add  and , this is equal to . Therefore, if  solves 

 it must also solve . 
Now suppose  solves the system . Then in particular it is a solution of 

. Again by our proof of , it is also a solution to . Now if we subtract these equal quantities
from both sides of  we obtain , which shows that the solution also satisfies 

Stated simply, the above theorem shows that the elementary operations do not change the solution set of a system of equations.

We will now look at an example of a system of three equations and three variables. Similarly to the previous examples, the goal is
to find values for  such that each of the given equations are satisfied when these values are substituted in.

k k = 0

1.2.1 1.2.2

= x +y,E1

= 2x −y,E2

= 7b1

= 8b2

(−2)
1.2.1

+(−2) = +(−2)E2 E1 b2 b1

2x −y +(−2) (x +y) = 8 +(−2) 7

1.2.2

=E1 b1

+(−2) = +(−2)E2 E1 b2 b1

1.2.1

1.2.1

(1.2.1) (1.2.2) ( , ⋯ , )x1 xn

= , =E1 b1 E2 b2 (1.2.2)
(1.2.2)

( , ⋯ , )x1 xn (1.2.2)
(1.2.1) (1.2.3) = , =E1 b1 E2 b2

= , k = kE1 b1 E2 b2 k ≠ 0 ( , ⋯ , )x1 xn

= , = ,E1 b1 E2 b2 = , k = kE1 b1 E2 b2

=E2 b2 k

( , ⋯ , )x1 xn =E2 b2 k = kE2 b2 ( , ⋯ , )x1 xn

(1.2.3)
( , ⋯ , )x1 xn = , k = kE1 b1 E2 b2 k = kE2 b2

1/k k ≠ 0
=E2 b2 ( , ⋯ , )x1 xn = , = .E1 b1 E2 b2

(1.2.1) (1.2.4)
= , =E1 b1 E2 b2 (1.2.4) (1.2.4)
= , =E1 b1 E2 b2 ( , ⋯ , )x1 xn = , =E1 b1 E2 b2 =E1 b1

(1.2.4) =E2 b2 (1.2.3)
k = kE1 b1 E2 kE1 +kb2 b1 ( , ⋯ , )x1 xn

= , =E1 b1 E2 b2 +k = +kE2 E1 b2 b1

( , ⋯ , )x1 xn = , +k = +kE1 b1 E2 E1 b2 b1

=E1 b1 (1.2.3) k = kE1 b1

+k = +kE2 E1 b2 b1 =E2 b2

= , = .E1 b1 E2 b2

x, y, z
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Find the solutions to the system,

Solution
We can relate this system to Theorem  above. In this case, we have

Theorem  claims that if we do elementary operations on this system, we will not change the solution set. Therefore, we
can solve this system using the elementary operations given in Definition . First, replace the second equation by 
times the first equation added to the second. This yields the system

Now, replace the third equation with  times the second added to the third. This yields the system

At this point, we can easily find the solution. Simply take  and substitute this back into the previous equation to solve for 
, and similarly to solve for .

The second equation is now

You can see from this equation that . Therefore, we can substitute this value into the first equation as follows:

By simplifying this equation, we find that . Hence, the solution to this system is . This process is
called back substitution.

Alternatively, in  you could have continued as follows. Add  times the third equation to the second and then add 
 times the second to the first. This yields

Now add  times the second to the first. This yields

 Example : Solving a System of Equations with Elementary Operations1.2.3

x +3y +6z = 25
2x +7y +14z = 58

2y +5z = 19
(1.2.5)

1.2.1

= x +3y +6z,E1

= 2x +7y +14z,E2

= 2y +5z,E3

= 25b1

= 58b2

= 19b3

1.2.1
1.2.4 (−2)

x +3y +6z = 25
y +2z = 8

2y +5z = 19
(1.2.6)

(−2)

x +3y +6z = 25
y +2z = 8

z = 3
(1.2.7)

z = 3
y x

x +3y +6 (3) = x +3y +18 = 25
y +2 (3) = y +6 = 8

z = 3

y +6 = 8

y = 2

x +3 (2) +18 = 25

x = 1 (x, y, z) = (1, 2, 3)

(1.2.7) (−2)
(−6)

x +3y = 7
y = 2
z = 3

(−3)

x = 1
y = 2
z = 3
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a system which has the same solution set as the original system. This avoided back substitution and led to the same solution
set. It is your decision which you prefer to use, as both methods lead to the correct solution, .

This page titled 1.2: Systems of Equations, Algebraic Procedures is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

(x, y, z) = (1, 2, 3)
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1.3: Gaussian Elimination
The work we did in the previous section will always find the solution to the system. In this section, we will explore a less
cumbersome way to find the solutions. First, we will represent a linear system with an augmented matrix. A matrix is simply a
rectangular array of numbers. The size or dimension of a matrix is defined as  where  is the number of rows and  is the
number of columns. In order to construct an augmented matrix from a linear system, we create a coefficient matrix from the
coefficients of the variables in the system, as well as a constant matrix from the constants. The coefficients from one equation of
the system create one row of the augmented matrix.

For example, consider the linear system in Example 1.2.3

This system can be written as an augmented matrix, as follows

Notice that it has exactly the same information as the original system. Here it is understood that the first column contains the

coefficients from  in each equation, in order,  Similarly, we create a column from the coefficients on  in each equation, 

 and a column from the coefficients on  in each equation,  For a system of more than three variables, we would

continue in this way constructing a column for each variable. Similarly, for a system of less than three variables, we simply
construct a column for each variable.

Finally, we construct a column from the constants of the equations, 

The rows of the augmented matrix correspond to the equations in the system. For example, the top row in the augmented matrix, 
 corresponds to the equation

Consider the following definition.

For a linear system of the form

where the  are variables and the  and  are constants, the augmented matrix of this system is given by

m ×n m n

x +3y +6z = 25
2x +7y +14z = 58

2y +5z = 19

⎡

⎣

⎢⎢

1
2
0

3
7
2

6
14

5

25
58
19

⎤

⎦

⎥⎥

x .
⎡

⎣
⎢

1
2
0

⎤

⎦
⎥ y

⎡

⎣
⎢

3
7
2

⎤

⎦
⎥ z .

⎡

⎣
⎢

6
14

5

⎤

⎦
⎥

.
⎡

⎣
⎢

25
58
19

⎤

⎦
⎥

[ ]1 3 6 | 25

x +3y +6z = 25.

 Definition : Augmented Matrix of a Linear System1.3.1

+⋯ + =a11x1 a1nxn b1

⋮
+⋯ + =am1x1 amnxn bm

xi aij bi

⎡

⎣

⎢⎢⎢

a11

⋮
am1

⋯

⋯

a1n

⋮
amn

b1

⋮
bm

⎤

⎦

⎥⎥⎥
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Now, consider elementary operations in the context of the augmented matrix. The elementary operations in Definition 1.2.4 can be
used on the rows just as we used them on equations previously. Changes to a system of equations in as a result of an elementary
operation are equivalent to changes in the augmented matrix resulting from the corresponding row operation. Note that Theorem
1.2.1 implies that any elementary row operations used on an augmented matrix will not change the solution to the corresponding
system of equations. We now formally define elementary row operations. These are the key tool we will use to find solutions to
systems of equations.

The elementary row operations (also known as row operations) consist of the following

1. Switch two rows.
2. Multiply a row by a nonzero number.
3. Replace a row by any multiple of another row added to it.

Recall how we solved Example 1.2.3. We can do the exact same steps as above, except now in the context of an augmented matrix
and using row operations. The augmented matrix of this system is

Thus the first step in solving the system given by (1.2.5) would be to take  times the first row of the augmented matrix and
add it to the second row,

Note how this corresponds to (1.2.6). Next take  times the second row and add to the third,

This augmented matrix corresponds to the system

which is the same as (1.2.7). By back substitution you obtain the solution  and 

Through a systematic procedure of row operations, we can simplify an augmented matrix and carry it to row-echelon form or
reduced row-echelon form, which we define next. These forms are used to find the solutions of the system of equations
corresponding to the augmented matrix.

In the following definitions, the term leading entry refers to the first nonzero entry of a row when scanning the row from left to
right.

An augmented matrix is in row-echelon form if

1. All nonzero rows are above any rows of zeros.
2. Each leading entry of a row is in a column to the right of the leading entries of any row above it.
3. Each leading entry of a row is equal to .

 Definition : Elementary Row Operations1.3.2

⎡

⎣
⎢⎢

1
2
0

3
7
2

6
14

5

25
58
19

⎤

⎦
⎥⎥

(−2)

⎡

⎣

⎢⎢

1
0
0

3
1
2

6
2
5

25
8

19

⎤

⎦

⎥⎥

(−2)

⎡

⎣
⎢⎢

1
0
0

3
1
0

6
2
1

25
8
3

⎤

⎦
⎥⎥

x +3y +6z = 25
y +2z = 8

z = 3

x = 1, y = 2, z = 3.

 Definition : Row-Echelon Form1.3.3

1
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We also consider another reduced form of the augmented matrix which has one further condition.

An augmented matrix is in reduced row-echelon form if

1. All nonzero rows are above any rows of zeros.
2. Each leading entry of a row is in a column to the right of the leading entries of any rows above it.
3. Each leading entry of a row is equal to .
4. All entries in a column above and below a leading entry are zero.

Notice that the first three conditions on a reduced row-echelon form matrix are the same as those for row-echelon form.

Hence, every reduced row-echelon form matrix is also in row-echelon form. The converse is not necessarily true; we cannot
assume that every matrix in row-echelon form is also in reduced row-echelon form. However, it often happens that the row-echelon
form is sufficient to provide information about the solution of a system.

The following examples describe matrices in these various forms. As an exercise, take the time to carefully verify that they are in
the specified form.

The following augmented matrices are not in row-echelon form (and therefore also not in reduced row-echelon form).

The following augmented matrices are in row-echelon form, but not in reduced row-echelon form.

Notice that we could apply further row operations to these matrices to carry them to reduced row-echelon form. Take the time to try
that on your own. Consider the following matrices, which are in reduced row-echelon form.

The following augmented matrices are in reduced row-echelon form.

One way in which the row-echelon form of a matrix is useful is in identifying the pivot positions and pivot columns of the matrix.

 Definition : Reduced Row-Echelon Form1.3.4

1

 Example : Not in Row-Echelon Form1.3.1

, ,

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

0
1
0
0
0

0
2
1
0
0

0
3
0
0
0

0
3
2
1
0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢

1
2
4

2
4
0

3
−6

7

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢⎢

0
1
7
0

2
5
5
0

3
0
0
1

3
2
1
0

⎤

⎦

⎥⎥⎥⎥

 Example : Matrices in Row-Echelon Form1.3.2

, ,

⎡

⎣

⎢⎢⎢⎢

1
0
0
0

0
0
0
0

6
1
0
0

5
2
0
0

8
7
1
0

2
3
1
0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

1
0
0
0
0

3
1
0
0
0

5
0
1
0
0

4
7
0
1
0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1
0
0
0

0
1
0
0

6
4
1
0

0
0
0
0

⎤

⎦

⎥⎥⎥⎥

 Example : Matrices in Reduced Row-Echelon Form1.3.3

, ,

⎡

⎣

⎢⎢⎢⎢

1
0
0
0

0
0
0
0

0
1
0
0

5
2
0
0

0
0
1
0

0
0
1
0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢

1
0
0

0
1
0

0
0
1

4
3
2

⎤

⎦

⎥⎥
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A pivot position in a matrix is the location of a leading entry in the row-echelon form of a matrix.

A pivot column is a column that contains a pivot position.

For example consider the following.

Let

Where are the pivot positions and pivot columns of the augmented matrix ?

Solution
The row-echelon form of this matrix is

This is all we need in this example, but note that this matrix is not in reduced row-echelon form.

In order to identify the pivot positions in the original matrix, we look for the leading entries in the row-echelon form of the
matrix. Here, the entry in the first row and first column, as well as the entry in the second row and second column are the
leading entries. Hence, these locations are the pivot positions. We identify the pivot positions in the original matrix, as in the
following:

Thus the pivot columns in the matrix are the first two columns.

The following is an algorithm for carrying a matrix to row-echelon form and reduced row-echelon form. You may wish to use this
algorithm to carry the above matrix to row-echelon form or reduced row-echelon form yourself for practice.

This algorithm provides a method for using row operations to take a matrix to its reduced row-echelon form. We begin with the
matrix in its original form.

1. Starting from the left, find the first nonzero column. This is the first pivot column, and the position at the top of this column
is the first pivot position. Switch rows if necessary to place a nonzero number in the first pivot position.

2. Use row operations to make the entries below the first pivot position (in the first pivot column) equal to zero.
3. Ignoring the row containing the first pivot position, repeat steps 1 and 2 with the remaining rows. Repeat the process until

there are no more rows to modify.
4. Divide each nonzero row by the value of the leading entry, so that the leading entry becomes . The matrix will then be in

row-echelon form.

The following step will carry the matrix from row-echelon form to reduced row-echelon form.

 Definition : Pivot Position and Pivot Column1.3.5

 Example : Pivot Position1.3.4

A =
⎡

⎣
⎢⎢

1
3
4

2
2
4

3
1
4

4
6

10

⎤

⎦
⎥⎥

A

⎡

⎣

⎢⎢

1

0

0

2

1

0

3

2

0

4
3
2

0

⎤

⎦

⎥⎥

⎡

⎣

⎢
⎢

1

3

4

2

2

4

3

1

4

4

6

10

⎤

⎦

⎥
⎥

 Algorithm : Reduced Row-Echelon Form Algorithm1.3.1

1
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5. Moving from right to left, use row operations to create zeros in the entries of the pivot columns which are above the pivot
positions. The result will be a matrix in reduced row-echelon form.

Most often we will apply this algorithm to an augmented matrix in order to find the solution to a system of linear equations.
However, we can use this algorithm to compute the reduced row-echelon form of any matrix which could be useful in other
applications.

Consider the following example of Algorithm .

Let

Find the row-echelon form of . Then complete the process until  is in reduced row-echelon form.

Solution
In working through this example, we will use the steps outlined in Algorithm .

1. The first pivot column is the first column of the matrix, as this is the first nonzero column from the left. Hence the first
pivot position is the one in the first row and first column. Switch the first two rows to obtain a nonzero entry in the first
pivot position, outlined in a box below.

2. Step two involves creating zeros in the entries below the first pivot position. The first entry of the second row is already a
zero. All we need to do is subtract  times the first row from the third row. The resulting matrix is

3. Now ignore the top row. Apply steps  and  to the smaller matrix

In this matrix, the first column is a pivot column, and  is in the first pivot position. Therefore, we need to create a zero
below it. To do this, add  times the first row (of this matrix) to the second. The resulting matrix is

Our original matrix now looks like

We can see that there are no more rows to modify.
4. Now, we need to create leading s in each row. The first row already has a leading  so no work is needed here. Divide the

second row by  to create a leading . The resulting matrix is

1.3.1

 Example : Finding Row-Echelon Form and Reduced Row-Echelon Form of a Matrix1.3.5

A =
⎡

⎣
⎢

0
1
5

−5
4

10

−4
3
7

⎤

⎦
⎥

A A

1.3.1

⎡

⎣
⎢

1

0
5

4

−5
10

3

−4
7

⎤

⎦
⎥

5

⎡

⎣
⎢

1
0
0

4
−5
10

3
−4

8

⎤

⎦
⎥

1 2

[ ]
−5
10

−4
8

−5
2

[ ]
−5

0
−4

0

⎡

⎣
⎢

1
0
0

4
−5

0

3
−4

0

⎤

⎦
⎥

1 1
−5 1
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This matrix is now in row-echelon form.
5. Now create zeros in the entries above pivot positions in each column, in order to carry this matrix all the way to reduced

row-echelon form. Notice that there is no pivot position in the third column so we do not need to create any zeros in this
column! The column in which we need to create zeros is the second. To do so, subtract  times the second row from the
first row. The resulting matrix is

This matrix is now in reduced row-echelon form.

The above algorithm gives you a simple way to obtain the row-echelon form and reduced row-echelon form of a matrix. The main
idea is to do row operations in such a way as to end up with a matrix in row-echelon form or reduced row-echelon form. This
process is important because the resulting matrix will allow you to describe the solutions to the corresponding linear system of
equations in a meaningful way.

In the next example, we look at how to solve a system of equations using the corresponding augmented matrix.

Give the complete solution to the following system of equations

Solution
The augmented matrix for this system is

In order to find the solution to this system, we wish to carry the augmented matrix to reduced row-echelon form. We will do so
using Algorithm . Notice that the first column is nonzero, so this is our first pivot column. The first entry in the first row, 

, is the first leading entry and it is in the first pivot position. We will use row operations to create zeros in the entries below
the . First, replace the second row with  times the first row plus  times the second row. This yields

Now, replace the third row with  times the first row plus to  times the third row. This yields

Now the entries in the first column below the pivot position are zeros. We now look for the second pivot column, which in this
case is column three. Here, the  in the second row and third column is in the pivot position. We need to do just one row

⎡

⎣
⎢

1

0

0

4

1

0

3
4
5

0

⎤

⎦
⎥

4

⎡

⎣

⎢⎢

1

0

0

0

1

0

− 1
5
4
5

0

⎤

⎦

⎥⎥

 Example : Finding the Solution to a System1.3.6

2x +4y −3z = −1
5x +10y −7z = −2

3x +6y +5z = 9

⎡

⎣
⎢⎢

2
5
3

4
10

6

−3
−7

5

−1
−2

9

⎤

⎦
⎥⎥

1.3.1
2

2 −5 2

⎡

⎣
⎢⎢

2
0
3

4
0
6

−3
1
5

−1
1
9

⎤

⎦
⎥⎥

−3 2

⎡

⎣

⎢⎢

2
0
0

4
0
0

−3
1
1

−1
1

21

⎤

⎦

⎥⎥

1
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operation to create a zero below the .

Taking  times the second row and adding it to the third row yields

We could proceed with the algorithm to carry this matrix to row-echelon form or reduced row-echelon form. However,
remember that we are looking for the solutions to the system of equations. Take another look at the third row of the matrix.
Notice that it corresponds to the equation

There is no solution to this equation because for all , the left side will equal  and  This shows there is no
solution to the given system of equations. In other words, this system is inconsistent.

The following is another example of how to find the solution to a system of equations by carrying the corresponding augmented
matrix to reduced row-echelon form.

Give the complete solution to the system of equations

Solution
The augmented matrix of this system is

In order to find the solution to this system, we will carry the augmented matrix to reduced row-echelon form, using Algorithm 
. The first column is the first pivot column. We want to use row operations to create zeros beneath the first entry in this

column, which is in the first pivot position. Replace the third row with  times the first row added to  times the third row. This
gives

Now, we have created zeros beneath the  in the first column, so we move on to the second pivot column (which is the second
column) and repeat the procedure. Take  times the second row and add to the third row.

The entry below the pivot position in the second column is now a zero. Notice that we have no more pivot columns because we
have only two leading entries.

At this stage, we also want the leading entries to be equal to one. To do so, divide the first row by .

1

−1

⎡

⎣
⎢⎢

2
0
0

4
0
0

−3
1
0

−1
1

20

⎤

⎦
⎥⎥

0x +0y +0z = 20

x, y, z 0 0 ≠ 20.

 Example : An Infinite Set of Solutions1.3.7

3x −y −5z = 9
y −10z = 0

−2x +y = −6

(1.3.1)

⎡

⎣
⎢⎢

3
0

−2

−1
1
1

−5
−10

0

9
0

−6

⎤

⎦
⎥⎥

1.3.1
2 3

⎡

⎣
⎢⎢

3
0
0

−1
1
1

−5
−10
−10

9
0
0

⎤

⎦
⎥⎥

3
−1

⎡

⎣

⎢⎢

3
0
0

−1
1
0

−5
−10

0

9
0
0

⎤

⎦

⎥⎥

3
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This matrix is now in row-echelon form.

Let’s continue with row operations until the matrix is in reduced row-echelon form. This involves creating zeros above the
pivot positions in each pivot column. This requires only one step, which is to add  times the second row to the first row.

This is in reduced row-echelon form, which you should verify using Definition . The equations corresponding to this
reduced row-echelon form are

or

Observe that  is not restrained by any equation. In fact,  can equal any number. For example, we can let , where we can
choose  to be any number. In this context  is called a parameter . Therefore, the solution set of this system is

where  is arbitrary. The system has an infinite set of solutions which are given by these equations. For any value of  we
select,  and  will be given by the above equations. For example, if we choose  then the corresponding solution
would be

In Example  the solution involved one parameter. It may happen that the solution to a system involves more than one
parameter, as shown in the following example.

Find the solution to the system

Solution
The augmented matrix is

⎡

⎣

⎢⎢

1

0
0

− 1
3

1
0

− 5
3

−10
0

3

0
0

⎤

⎦

⎥⎥

1
3

⎡

⎣
⎢⎢

1
0
0

0
1
0

−5
−10

0

3
0
0

⎤

⎦
⎥⎥

1.3.4

x −5z = 3
y −10z = 0

x = 3 +5z

y = 10z

z z z = t

t t

x = 3 +5t

y = 10t

z = t

t t

x, y, z t = 4

x = 3 +5(4) = 23

y = 10(4) = 40
z = 4

1.3.7

 Example : A Two Parameter Set of Solutions1.3.8

x +2y −z +w = 3
x +y −z +w = 1

x +3y −z +w = 5

⎡

⎣

⎢⎢

1
1
1

2
1
3

−1
−1
−1

1
1
1

3
1
5

⎤

⎦

⎥⎥

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14498?pdf


1.3.9 https://math.libretexts.org/@go/page/14498

We wish to carry this matrix to row-echelon form. Here, we will outline the row operations used. However, make sure that you
understand the steps in terms of Algorithm .

Take  times the first row and add to the second. Then take  times the first row and add to the third. This yields

Now add the second row to the third row and divide the second row by .

This matrix is in row-echelon form and we can see that  and  correspond to pivot columns, while  and  do not. Therefore,
we will assign parameters to the variables  and . Assign the parameter  to  and the parameter  to  Then the first row
yields the equation , while the second row yields the equation . Since , the first equation
becomes  showing that the solution is given by

It is customary to write this solution in the form

This example shows a system of equations with an infinite solution set which depends on two parameters. It can be less confusing
in the case of an infinite solution set to first place the augmented matrix in reduced row-echelon form rather than just row-echelon
form before seeking to write down the description of the solution.

In the above steps, this means we don’t stop with the row-echelon form in equation . Instead we first place it in reduced
row-echelon form as follows.

Then the solution is  from the second row and  from the first. Thus letting  and  the solution is
given by .

You can see here that there are two paths to the correct answer, which both yield the same answer. Hence, either approach may be
used. The process which we first used in the above solution is called Gaussian Elimination This process involves carrying the
matrix to row-echelon form, converting back to equations, and using back substitution to find the solution. When you do row
operations until you obtain reduced row-echelon form, the process is called Gauss-Jordan Elimination.

We have now found solutions for systems of equations with no solution and infinitely many solutions, with one parameter as well
as two parameters. Recall the three types of solution sets which we discussed in the previous section; no solution, one solution, and
infinitely many solutions. Each of these types of solutions could be identified from the graph of the system. It turns out that we can
also identify the type of solution from the reduced row-echelon form of the augmented matrix.

No Solution: In the case where the system of equations has no solution, the row-echelon form of the augmented matrix will
have a row of the form

1.3.1

−1 −1

⎡

⎣
⎢⎢

1
0
0

2
−1

1

−1
0
0

1
0
0

3
−2

2

⎤

⎦
⎥⎥

−1

⎡

⎣

⎢⎢

1
0
0

2
1
0

−1
0
0

1
0
0

3
2
0

⎤

⎦

⎥⎥ (1.3.2)

x y z w

z w s z t w.
x +2y −s + t = 3 y = 2 y = 2

x +4 −s + t = 3

x = −1 +s − t

y = 2
z = s

w = t

=

⎡

⎣

⎢⎢⎢

x

y

z

w

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1 +s − t

2
s

t

⎤

⎦

⎥⎥⎥
(1.3.3)

(1.3.2)

⎡

⎣

⎢⎢

1
0
0

0
1
0

−1
0
0

1
0
0

−1
2
0

⎤

⎦

⎥⎥

y = 2 x = −1 +z −w z = s w = t,
(1.3.3)
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This row indicates that the system is inconsistent and has no solution.
One Solution: In the case where the system of equations has one solution, every column of the coefficient matrix is a pivot
column. The following is an example of an augmented matrix in reduced row-echelon form for a system of equations with one
solution.

Infinitely Many Solutions: In the case where the system of equations has infinitely many solutions, the solution contains
parameters. There will be columns of the coefficient matrix which are not pivot columns. The following are examples of
augmented matrices in reduced row-echelon form for systems of equations with infinitely many solutions.

or

This page titled 1.3: Gaussian Elimination is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

[ ]0 0 0 | 1

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
0
1

5
0
2

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
2
0

5
−3

0

⎤

⎦
⎥⎥

[ ]
1
0

0
1

0
0

5
−3
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1.4: Uniqueness of the Reduced Row-Echelon Form
As we have seen in earlier sections, we know that every matrix can be brought into reduced row-echelon form by a sequence of
elementary row operations. Here we will prove that the resulting matrix is unique; in other words, the resulting matrix in reduced
row-echelon does not depend upon the particular sequence of elementary row operations or the order in which they were
performed.

Let  be the augmented matrix of a homogeneous system of linear equations in the variables  which is also in
reduced row-echelon form. The matrix  divides the set of variables in two different types. We say that  is a basic variable
whenever  has a leading  in column number , in other words, when column  is a pivot column. Otherwise we say that  is a
free variable.

Recall Example 1.3.8.

Find the basic and free variables in the system

Solution
Recall from the solution of Example 1.3.8 that the row-echelon form of the augmented matrix of this system is given by

You can see that columns  and  are pivot columns. These columns correspond to variables  and , making these the basic
variables. Columns  and  are not pivot columns, which means that  and  are free variables.

We can write the solution to this system as

Here the free variables are written as parameters, and the basic variables are given by linear functions of these parameters.

In general, all solutions can be written in terms of the free variables. In such a description, the free variables can take any values
(they become parameters), while the basic variables become simple linear functions of these parameters. Indeed, a basic variable 
is a linear function of only those free variables  with . This leads to the following observation.

If  is a basic variable of a homogeneous system of linear equations, then any solution of the system with  for all those
free variables  with  must also have .

Using this proposition, we prove a lemma which will be used in the proof of the main result of this section below.

A , , ⋯ ,x1 x2 xn

A xi

A 1 i i xi

 Example : Basic and Free Variables1.4.1

x +2y −z +w = 3

x +y −z +w = 1

x +3y −z +w = 5

⎡

⎣
⎢⎢

1

0

0

2

1

0

−1

0

0

1

0

0

3

2

0

⎤

⎦
⎥⎥

1 2 x y

3 4 z w

x = −1 +s − t

y = 2

z = s

w = t

xi

xj j > i

 Proposition : Basic and Free Variables1.4.1

xi = 0xj

xj j > i = 0xi
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Let  and  be two distinct augmented matrices for two homogeneous systems of  equations in  variables, such that  and
 are each in reduced row-echelon. Then, the two systems do not have exactly the same solutions.

Proof

With respect to the linear systems associated with the matrices  and , there are two cases to consider:

Case : the two systems have the same basic variables
Case : the two systems do not have the same basic variables

In case , the two matrices will have exactly the same pivot positions. However, since  and  are not identical, there is
some row of  which is different from the corresponding row of  and yet the rows each have a pivot in the same column
position. Let  be the index of this column position. Since the matrices are in reduced row-echelon form, the two rows must
differ at some entry in a column . Let these entries be  in  and  in , where . Since  is in reduced row-
echelon form, if  were a basic variable for its linear system, we would have . Similarly, if  were a basic variable
for the linear system of the matrix , we would have . Since  and  are unequal, they cannot both be equal to , and
hence  cannot be a basic variable for both linear systems. However, since the systems have the same basic variables, 
must then be a free variable for each system. We now look at the solutions of the systems in which  is set equal to  and
all other free variables are set equal to . For this choice of parameters, the solution of the system for matrix  has 

, while the solution of the system for matrix  has , so that the two systems have different solutions.

In case , there is a variable  which is a basic variable for one matrix, let’s say , and a free variable for the other matrix 
. The system for matrix  has a solution in which  and  for all other free variables . However, by

Proposition this cannot be a solution of the system for the matrix . This completes the proof of case .

Now, we say that the matrix  is equivalent to the matrix  provided that  can be obtained from  by performing a sequence of
elementary row operations beginning with . The importance of this concept lies in the following result.

The two linear systems of equations corresponding to two equivalent augmented matrices have exactly the same solutions.

Proof

The proof of this theorem is left as an exercise.

Now, we can use Lemma  and Theorem  to prove the main result of this section.

Every matrix  is equivalent to a unique matrix in reduced row-echelon form.

Proof

Let  be an  matrix and let  and  be matrices in reduced row-echelon form, each equivalent to . It suffices to
show that .

Let  be the matrix  augmented with a new rightmost column consisting entirely of zeros. Similarly, augment matrices 
 and  each with a rightmost column of zeros to obtain  and . Note that  and  are matrices in reduced row-

echelon form which are obtained from  by respectively applying the same sequence of elementary row operations which
were used to obtain  and  from .

Now, , , and  can all be considered as augmented matrices of homogeneous linear systems in the variables 
. Because  and  are each equivalent to , Theorem  ensures that all three homogeneous linear

systems have exactly the same solutions. By Lemma  we conclude that . By construction, we must also
have .

 Lemma : Solutions and the Reduced Row-Echelon Form of a Matrix1.4.1

A B m n A

B

A B

1

2

1 A B

A B

i

j > i a A b B a ≠ b A

xj a = 0 xj

B b = 0 a b 0

xj xj

xj 1

0 A

= −axj B = −bxj

2 xi A

B B = 1xi = 0xj xj

1.4.1 A 2

B A B A

A

 Theorem : Equivalent Matrices1.4.1

1.4.1 1.4.1

 Theorem : Uniqueness of the Reduced Row-Echelon Form1.4.2

A

A m ×n B C A

B = C

A+ A

B C B+ C + B+ C +

A+

B C A

A+ B+ C +

, , ⋯ ,x1 x2 xn B+ C + A+ 1.4.1

1.4.1 =B+ C +

B = C
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According to this theorem we can say that each matrix  has a unique reduced row-echelon form.

This page titled 1.4: Uniqueness of the Reduced Row-Echelon Form is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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1.5: Rank and Homogeneous Systems

Rank and Homogeneous Systems

There is a special type of system which requires additional study. This type of system is called a homogeneous system of equations,
which we defined above in Definition 1.2.3. Our focus in this section is to consider what types of solutions are possible for a
homogeneous system of equations.

Consider the following definition.

Consider the homogeneous system of equations given by

Then,  is always a solution to this system. We call this the trivial solution .

If the system has a solution in which not all of the  are equal to zero, then we call this solution nontrivial . The trivial
solution does not tell us much about the system, as it says that ! Therefore, when working with homogeneous systems of
equations, we want to know when the system has a nontrivial solution.

Suppose we have a homogeneous system of  equations, using  variables, and suppose that . In other words, there are
more variables than equations. Then, it turns out that this system always has a nontrivial solution. Not only will the system have a
nontrivial solution, but it also will have infinitely many solutions. It is also possible, but not required, to have a nontrivial solution
if  and .

Consider the following example.

Find the nontrivial solutions to the following homogeneous system of equations

Solution
Notice that this system has  equations and  variables, so . Therefore by our previous discussion, we expect
this system to have infinitely many solutions.

The process we use to find the solutions for a homogeneous system of equations is the same process we used in the previous
section. First, we construct the augmented matrix, given by

Then, we carry this matrix to its reduced row-echelon form, given below.

The corresponding system of equations is

+ +⋯ + = 0a11x1 a12x2 a1nxn

+ +⋯ + = 0a21x1 a22x2 a2nxn

⋮
+ +⋯ + = 0am1x1 am2x2 amnxn

= 0, = 0, ⋯ , = 0x1 x2 xn

, ⋯ ,x1 xn

0 = 0

m n n > m

n = m n < m

 Example : Solutions to a Homogeneous System of Equations1.5.1

2x +y −z = 0
x +2y −2z = 0

m = 2 n = 3 n > m

[ ]
2
1

1
2

−1
−2

0
0

[ ]
1
0

0
1

0
−1

0
0

x = 0
y −z = 0
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Since  is not restrained by any equation, we know that this variable will become our parameter. Let  where  is any
number. Therefore, our solution has the form

Hence this system has infinitely many solutions, with one parameter .

Suppose we were to write the solution to the previous example in another form. Specifically,

can be written as

Notice that we have constructed a column from the constants in the solution (all equal to ), as well as a column corresponding to
the coefficients on  in each equation. While we will discuss this form of solution more in further chapters, for now consider the

column of coefficients of the parameter . In this case, this is the column .

There is a special name for this column, which is basic solution. The basic solutions of a system are columns constructed from the
coefficients on parameters in the solution. We often denote basic solutions by  etc., depending on how many solutions

occur. Therefore, Example  has the basic solution .

We explore this further in the following example.

Consider the following homogeneous system of equations.

Find the basic solutions to this system.

Solution
The augmented matrix of this system and the resulting reduced row-echelon form are

When written in equations, this system is given by

Notice that only  corresponds to a pivot column. In this case, we will have two parameters, one for  and one for . Let 
and  for any numbers  and . Then, our solution becomes

z z = t t

x = 0
y = z = t

z = t

t

x = 0
y = 0 + t

z = 0 + t

= + t
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

0
t

t
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

,X1 X2

1.5.1 =X1

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

 Example : Basic Solutions of a Homogeneous System1.5.2

x +4y +3z = 0
3x +12y +9z = 0

[ ] → ⋯ → [ ]
1
3

4
12

3
9

0
0

1
0

4
0

3
0

0
0

x +4y +3z = 0

x y z y = s

z = t s t
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which can be written as

You can see here that we have two columns of coefficients corresponding to parameters, specifically one for  and one for .
Therefore, this system has two basic solutions! These are

We now present a new definition.

Let  be column matrices. Then  is said to be a linear combination of the columns  if there exist
scalars,  such that

A remarkable result of this section is that a linear combination of the basic solutions is again a solution to the system. Even more
remarkable is that every solution can be written as a linear combination of these solutions. Therefore, if we take a linear
combination of the two solutions to Example , this would also be a solution. For example, we could take the following linear
combination

You should take a moment to verify that

is in fact a solution to the system in Example .

Another way in which we can find out more information about the solutions of a homogeneous system is to consider the rank of
the associated coefficient matrix. We now define what is meant by the rank of a matrix.

Let  be a matrix and consider any row-echelon form of . Then, the number  of leading entries of  does not depend on the
row-echelon form you choose, and is called the rank of . We denote it by Rank( ).

Similarly, we could count the number of pivot positions (or pivot columns) to determine the rank of .

Consider the matrix

x = −4s −3t

y = s

z = t

= +s + t
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

⎡

⎣
⎢

−4
1
0

⎤

⎦
⎥

⎡

⎣
⎢

−3
0
1

⎤

⎦
⎥

s t

= , =X1

⎡

⎣
⎢

−4
1
0

⎤

⎦
⎥ X2

⎡

⎣
⎢

−3
0
1

⎤

⎦
⎥

 Definition : Linear Combination1.5.2

, ⋯ , , VX1 Xn V , ⋯ ,X1 Xn

, ⋯ ,a1 an

V = +⋯ +a1X1 anXn

1.5.2

3 +2 =
⎡

⎣
⎢

−4
1
0

⎤

⎦
⎥

⎡

⎣
⎢

−3
0
1

⎤

⎦
⎥

⎡

⎣
⎢

−18
3
2

⎤

⎦
⎥

=
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

−18
3
2

⎤

⎦
⎥

1.5.2

 Definition : Rank of a Matrix1.5.3

A A r A

A A

A

 Example : Finding the Rank of a Matrix1.5.3
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What is its rank?

Solution
First, we need to find the reduced row-echelon form of . Through the usual algorithm, we find that this is

Here we have two leading entries, or two pivot positions, shown above in boxes.The rank of  is 

Notice that we would have achieved the same answer if we had found the row-echelon form of  instead of the reduced row-
echelon form.

Suppose we have a homogeneous system of  equations in  variables, and suppose that . From our above discussion, we
know that this system will have infinitely many solutions. If we consider the rank of the coefficient matrix of this system, we can
find out even more about the solution. Note that we are looking at just the coefficient matrix, not the entire augmented matrix.

Let  be the  coefficient matrix corresponding to a homogeneous system of equations, and suppose  has rank . Then,
the solution to the corresponding system has  parameters.

Consider our above Example  in the context of this theorem. The system in this example has  equations in 
variables. First, because , we know that the system has a nontrivial solution, and therefore infinitely many solutions. This
tells us that the solution will contain at least one parameter. The rank of the coefficient matrix can tell us even more about the
solution! The rank of the coefficient matrix of the system is , as it has one leading entry in row-echelon form. Theorem  tells
us that the solution will have  parameters. You can check that this is true in the solution to Example .

Notice that if  or , it is possible to have either a unique solution (which will be the trivial solution) or infinitely many
solutions.

We are not limited to homogeneous systems of equations here. The rank of a matrix can be used to learn about the solutions of any
system of linear equations. In the previous section, we discussed that a system of equations can have no solution, a unique solution,
or infinitely many solutions. Suppose the system is consistent, whether it is homogeneous or not. The following theorem tells us
how we can use the rank to learn about the type of solution we have.

Let  be the  augmented matrix corresponding to a consistent system of equations in  variables, and suppose 
has rank . Then

1. the system has a unique solution if 
2. the system has infinitely many solutions if 

We will not present a formal proof of this, but consider the following discussions.

1. No Solution The above theorem assumes that the system is consistent, that is, that it has a solution. It turns out that it is
possible for the augmented matrix of a system with no solution to have any rank  as long as . Therefore, we must
know that the system is consistent in order to use this theorem!

2. Unique Solution Suppose . Then, there is a pivot position in every column of the coefficient matrix of . Hence,
there is a unique solution.

⎡

⎣
⎢

1
1
2

2
5
4

3
9
6

⎤

⎦
⎥

A

⎡

⎣
⎢⎢

1

0
0

0

1
0

−1

2
0

⎤

⎦
⎥⎥

A r = 2.

A

m n n > m

 Theorem : Rank and Solutions to a Homogeneous System1.5.1

A m ×n A r

n −r

1.5.2 m = 2 n = 3
n > m

1 1.5.1
n −r = 3 −1 = 2 1.5.2

n = m n < m

 Theorem : Rank and Solutions to a Consistent System of Equations1.5.2

A m ×(n +1) n A

r

r = n

r < n

r r > 1

r = n A
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3. Infinitely Many Solutions Suppose . Then there are infinitely many solutions. There are less pivot positions (and
hence less leading entries) than columns, meaning that not every column is a pivot column. The columns which are 
pivot columns correspond to parameters. In fact, in this case we have  parameters.

This page titled 1.5: Rank and Homogeneous Systems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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1.6: Balancing Chemical Reactions
The tools of linear algebra can also be used in the subject area of Chemistry, specifically for balancing chemical reactions.

Consider the chemical reaction

Here the elements involved are tin ( ), oxygen ( ), and hydrogen ( ). A chemical reaction occurs and the result is a
combination of tin ( ) and water ( ). When considering chemical reactions, we want to investigate how much of each
element we began with and how much of each element is involved in the result.

An important theory we will use here is the mass balance theory. It tells us that we cannot create or delete elements within a
chemical reaction. For example, in the above expression, we must have the same number of oxygen, tin, and hydrogen on both
sides of the reaction. Notice that this is not currently the case. For example, there are two oxygen atoms on the left and only one on
the right. In order to fix this, we want to find numbers  such that

where both sides of the reaction have the same number of atoms of the various elements.

This is a familiar problem. We can solve it by setting up a system of equations in the variables . Thus you need

We can rewrite these equations as

The augmented matrix for this system of equations is given by

The reduced row-echelon form of this matrix is

The solution is given by

which we can write as

Sn + → Sn + OO2 H2 H2

Sn O H

Sn OH2

x, y, z, w

xSn +y → zSn +w OO2 H2 H2

x, y, z, w

Sn :

O :

H :

x = z

2x = w

2y = 2w

Sn :

O :

H :

x −z = 0

2x −w = 0

2y −2w = 0

⎡

⎣
⎢⎢

1

2

0

0

0

2

−1

0

0

0

−1

−2

0

0

0

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

0

0

1

−
1

2

−1

− 1
2

0

0

0

⎤

⎦

⎥⎥⎥

x − w = 01

2

y −w = 0

z − w = 01
2

x = t1

2

y = t

z = t1

2

w = t
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For example, let  and this would yield  and  We can put these values back into the expression for the
reaction which yields

Observe that each side of the expression contains the same number of atoms of each element. This means that it preserves the total
number of atoms, as required, and so the chemical reaction is balanced.

Consider another example.

Potassium is denoted by  oxygen by  phosphorus by  and hydrogen by . Consider the reaction given by

Balance this chemical reaction.

Solution
We will use the same procedure as above to solve this problem. We need to find values for  such that

preserves the total number of atoms of each element.

Finding these values can be done by finding the solution to the following system of equations.

The augmented matrix for this system is

and the reduced row-echelon form is

The solution is given by

which can be written as

w = 2 x = 1, y = 2, z = 1.

Sn +2 → Sn +2 OO2 H2 H2

 Example : Balancing a Chemical Reaction1.6.1

K, O, P H

KOH + P → P + OH3 O4 K3 O4 H2

x, y, z, w

xKOH +y P → z P +w OH3 O4 K3 O4 H2

K :

O :

H :

P :

x = 3z

x +4y = 4z +w

x +3y = 2w

y = z

⎡

⎣

⎢⎢⎢⎢

1

1

1

0

0

4

3

1

−3

−4

0

−1

0

−1

−2

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

−1

−
1

3

− 1
3

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥⎥

x −w = 0

y − w = 0
1

3

z − w = 01
3
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Choose a value for , say . Then  and this yields  It follows that the balanced reaction is given by

Note that this results in the same number of atoms on both sides.

Of course these numbers you are finding would typically be the number of moles of the molecules on each side. Thus three moles
of  added to one mole of  yields one mole of  and three moles of .

This page titled 1.6: Balancing Chemical Reactions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

x = t

y = t1
3

z = t1

3

w = t

t 3 w = 3 x = 3, y = 1, z = 1.

3KOH +1 P → 1 P +3 OH3 O4 K3 O4 H2

KOH PH3 O4 PK3 O4 OH2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14501?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/01%3A_Systems_of_Equations/1.06%3A_Balancing_Chemical_Reactions
https://creativecommons.org/licenses/by/4.0
https://math.byu.edu/?mtt_page=kenneth-kuttler
https://lyryx.com/
https://lyryx.com/first-course-linear-algebra


1.7.1 https://math.libretexts.org/@go/page/19312

1.7: Dimensionless Variables
This section shows how solving systems of equations can be used to determine appropriate dimensionless variables. It is only an
introduction to this topic and considers a specific example of a simple airplane wing shown below. We assume for simplicity that it
is a flat plane at an angle to the wind which is blowing against it with speed  as shown.

Figure 

The angle  is called the angle of incidence,  is the span of the wing and  is called the chord. Denote by  the lift. Then this
should depend on various quantities like  and so forth. Here is a table which indicates various quantities on which it is
reasonable to expect  to depend.

Table 
Variable Symbol Units

chord

span

angle incidence

speed of wind

speed of sound

density of air

viscosity

lift

Here  denotes meters,  refers to seconds and  refers to kilograms. All of these are likely familiar except for , which we
will discuss in further detail now.

Viscosity is a measure of how much internal friction is experienced when the fluid moves. It is roughly a measure of how “sticky"
the fluid is. Consider a piece of area parallel to the direction of motion of the fluid. To say that the viscosity is large is to say that
the tangential force applied to this area must be large in order to achieve a given change in speed of the fluid in a direction normal
to the tangential force. Thus

Hence

Thus the units on  are

as claimed above.

Returning to our original discussion, you may think that we would want

V

1.7.1

θ B A l

θ, V , B, A

l

1.7.1

A m

B m

θ k sem0 g0 c0

V msec−1

V0 msec−1

ρ kgm−3

μ kgsec−1m−1

l kgse mc−2

m sec kg μ

μ (area) (velocity gradient) =  tangential force

(units on μ) ( ) = kg mm2 m

sec m
sec−2

μ

kg sec−1 m−1

l = f (A, B, θ, V , , ρ, μ)V0
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This is very cumbersome because it depends on seven variables. Also, it is likely that without much care, a change in the units such
as going from meters to feet would result in an incorrect value for . The way to get around this problem is to look for  as a
function of dimensionless variables multiplied by something which has units of force. It is helpful because first of all, you will
likely have fewer independent variables and secondly, you could expect the formula to hold independent of the way of specifying
length, mass and so forth. One looks for

where the units on  are

which are the units of force. Each of these  is of the form

and each  is independent of the dimensions. That is, this expression must not depend on meters, kilograms, seconds, etc. Thus,
placing in the units for each of these quantities, one needs

Notice that there are no units on  because it is just the radian measure of an angle. Hence its dimensions consist of length divided
by length, thus it is dimensionless. Then this leads to the following equations for the 

The augmented matrix for this system is

The reduced row-echelon form is given by

and so the solutions are of the form

Thus, in terms of vectors, the solution is

Thus the free variables are  By assigning values to these, we can obtain dimensionless variables by placing the
values obtained for the  in the formula . For example, let  and all the rest of the free variables are 0. This yields

l l

l = f ( , ⋯ , ) ρ ABg1 gk V 2

ρ ABV 2

=
kg

m3
( )

m

sec

2
m2 kg ×m

sec2

gi

Ax1 Bx2 θx3 V x4 V x5
0 ρx6 μx7 (1.7.1)

gi

( ) ( ) = kmx1 mx2 mx4 sec−x4 mx5 sec−x5 (kg )m−3 x6 (kg )sec−1 m−1 x7
m0 g0 sec0

θ

.xi

m :

sec :  

kg :

+ + + −3 − = 0x1 x2 x4 x5 x6 x7

− − − = 0x4 x5 x7

+ = 0x6 x7

⎡

⎣

⎢⎢

1

0

0

1

0

0

0

0

0

1

1

0

1

1

0

−3

0

1

−1

1

1

0

0

0

⎤

⎦

⎥⎥

⎡

⎣
⎢⎢

1

0

0

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

0

0

0

⎤

⎦
⎥⎥

x1

x3

x4

x6

= − −x2 x7

= x3

= − −x5 x7

= −x7

=

⎡

⎣

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢

x1

x2

x3

x4

x5

x6

x7

⎤

⎦

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢

− −x2 x7

x2

x3

− −x5 x7

x5

−x7

x7

⎤

⎦

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥

, , , .x2 x3 x5 x7

xi (1.7.1) = 1x2
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The dimensionless variable is then . This is the ratio between the span and the chord. It is called the aspect ratio, denoted as 
. Next let  and all others equal zero. This gives for a dimensionless quantity the angle . Next let  and all others

equal zero. This gives

Then the dimensionless variable is  However, it is written as . This is called the Mach number . Finally, let 
 and all the other free variables equal 0. Then

then the dimensionless variable which results from this is  It is customary to write it as . This one
is called the Reynold’s number. It is the one which involves viscosity. Thus we would look for

This is quite interesting because it is easy to vary  by simply adjusting the velocity or  but it is hard to vary things like  or .
Note that all the quantities are easy to adjust. Now this could be used, along with wind tunnel experiments to get a formula for the
lift which would be reasonable. You could also consider more variables and more complicated situations in the same way.

This page titled 1.7: Dimensionless Variables is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= −1, = 1, = 0, = 0, = 0, = 0, = 0x1 x2 x3 x4 x5 x6 x7

A−1B1

AR = 1x3 θ = 1x5

= 0, = 0, = 0, = −1, = 1, = 0, = 0x1 x2 x3 x4 x5 x6 x7

.V −1V 1
0 V /V0 M

= 1x7

= −1, = 0, = 0, = −1, = 0, = −1, = 1x1 x2 x3 x4 x5 x6 x7

μ.A−1V −1ρ−1 Re = (AV ρ) /μ

l = f (Re, AR, θ,M) kg ×m/ sec2

Re A μ ρ
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1.8: An Application to Resistor Networks
The tools of linear algebra can be used to study the application of resistor networks. An example of an electrical circuit is below.

Figure 

The jagged lines ( ) denote resistors and the numbers next to them give their resistance in ohms, written as . The voltage
source ( ) causes the current to flow in the direction from the shorter of the two lines toward the longer (as indicated by the
arrow). The current for a circuit is labeled .

In the above figure, the current  has been labeled with an arrow in the counter clockwise direction. This is an entirely arbitrary
decision and we could have chosen to label the current in the clockwise direction. With our choice of direction here, we define a
positive current to flow in the counter clockwise direction and a negative current to flow in the clockwise direction.

The goal of this section is to use the values of resistors and voltage sources in a circuit to determine the current. An essential
theorem for this application is Kirchhoff’s law.

The sum of the resistance ( ) times the amps ( ) in the counter clockwise direction around a loop equals the sum of the
voltage sources ( ) in the same direction around the loop.

Kirchhoff’s law allows us to set up a system of linear equations and solve for any unknown variables. When setting up this system,
it is important to trace the circuit in the counter clockwise direction. If a resistor or voltage source is crossed against this direction,
the related term must be given a negative sign.

We will explore this in the next example where we determine the value of the current in the initial diagram.

Applying Kirchhoff’s Law to the diagram below, determine the value for .

1.8.1

Ω

Ik

I1

 Theorem : Kirchhoff’s Law1.8.1

R I

V

 Example : Solving for Current1.8.1

I1
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Figure 

Solution
Begin in the bottom left corner, and trace the circuit in the counter clockwise direction. At the first resistor, multiplying
resistance and current gives . Continuing in this way through all three resistors gives . This must equal the
voltage source in the same direction. Notice that the direction of the voltage source matches the counter clockwise direction
specified, so the voltage is positive.

Therefore the equation and solution are given by

Since the answer is positive, this confirms that the current flows counter clockwise.

Applying Kirchhoff’s Law to the diagram below, determine the value for .

Figure 

Solution

1.8.2

2I1 2 +4 +2I1 I1 I1

2 +4 +2I1 I1 I1

8I1

I1

= 18

= 18

= A
9

4

 Example  Solving for Current1.8.2

I1

1.8.3
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Begin in the top left corner this time, and trace the circuit in the counter clockwise direction. At the first resistor, multiplying
resistance and current gives . Continuing in this way through the four resistors gives . This must
equal the voltage source in the same direction. Notice that the direction of the voltage source is opposite to the counter
clockwise direction, so the voltage is negative.

Therefore the equation and solution are given by

Since the answer is negative, this tells us that the current flows clockwise.

A more complicated example follows. Two of the circuits below may be familiar; they were examined in the examples above.
However as they are now part of a larger system of circuits, the answers will differ.

The diagram below consists of four circuits. The current ( ) in the four circuits is denoted by . Using Kirchhoff’s
Law, write an equation for each circuit and solve for each current.

Solution
The circuits are given in the following diagram.

Figure 

Starting with the top left circuit, multiply the resistance by the amps and sum the resulting products. Specifically, consider the
resistor labeled  that is part of the circuits of  and . Notice that current  runs through this in a positive (counter
clockwise) direction, and  runs through in the opposite (negative) direction. The product of resistance and amps is then 

. Continue in this way for each resistor, and set the sum of the products equal to the voltage source to
write the equation:

4I1 4 +6 +1 +3I1 I1 I1 I1

4 +6 +1 +3I1 I1 I1 I1

14I1

I1

= −27

= −27

= − A
27

14

 Example : Unknown Currents1.8.3

Ik , , ,I1 I2 I3 I4

1.8.4

2Ω I1 I2 I2

I1

2( − ) = 2 −2I2 I1 I2 I1
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The above process is used on each of the other three circuits, and the resulting equations are:

Upper right circuit:

Lower right circuit:

Lower left circuit:

Notice that the voltage for the upper right and lower left circuits are negative due to the clockwise direction they indicate.

The resulting system of four equations in four unknowns is

Simplifying and rearranging with variables in order, we have:

The augmented matrix is

The solution to this matrix is

This tells us that currents  and  travel clockwise while  travels counter clockwise.

This page titled 1.8: An Application to Resistor Networks is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

2 −2 +4 −4 +2 = 18I2 I1 I2 I3 I2

4 −4 +6 −6 + +3 = −27I3 I2 I3 I4 I3 I3

3 +2 +6 −6 + − = 0I4 I4 I4 I3 I4 I1

5 + − +2 −2 = −23I1 I1 I4 I1 I2

2 −2 +4 −4 +2I2 I1 I2 I3 I2

4 −4 +6 −6 + +I3 I2 I3 I4 I3 I3

2 +3 +6 −6 + −I4 I4 I4 I3 I4 I1

5 + − +2 −2I1 I1 I4 I1 I2

= 18

= −27

= 0

= −23

−2 +8 −4I1 I2 I3

−4 +14 −6I2 I3 I4

− −6 +12I1 I3 I4

8 −2 −I1 I2 I4

= 18

= −27

= 0

= −23

⎡

⎣

⎢⎢⎢⎢

−2

0

−1

8

8

−4

0

−2

−4

14

−6

0

0

−6

12

−1

18

−27

0

−23

⎤

⎦

⎥⎥⎥⎥

I1

I2

I3

I4

= −3A

= A
1

4

= − A
5

2

= − A
3

2

, ,I1 I3 I4 I2
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1.9: Exercises

Exercises

Graphically, find the point  which lies on both lines,  and  That is, graph each line and see
where they intersect.

Answer

, Solution is: .

Graphically, find the point of intersection of the two lines  and  That is, graph each line and see where
they intersect.

Answer

, Solution is: 

Do the three lines, , , and  have a common point of intersection? If so, find the point and if
not, tell why they don’t have such a common point of intersection.

Answer

, Solution is: 

Do the three planes, , , and  have a common point of intersection? If so,
find one and if not, tell why there is no such point.

Answer

No solution exists. You can see this by writing the augmented matrix and doing row operations. , row

echelon form: . Thus one of the equation says  in an equivalent system of equations.

Four times the weight of Gaston is  pounds more than the weight of Ichabod. Four times the weight of Ichabod is 
pounds less than seventeen times the weight of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 

 pounds. Brunhilde would balance all three of the others. Find the weights of the four people.

 Exercise 1.9.1

( , )x1 y1 x +3y = 1 4x −y = 3.

x +3y = 1

4x −y = 3
[x = , y = ]10

13

1

13

 Exercise 1.9.2

3x +y = 3 x +2y = 1.

3x +y = 3

x +2y = 1
[x = 1, y = 0]

 Exercise 1.9.3

x +2y = 1 2x −y = 1 4x +3y = 3

x +2y = 1

2x −y = 1

4x +3y = 3

[x = , y = ]3
5

1
5

 Exercise 1.9.4

x +y −3z = 2 2x +y +z = 1 3x +2y −2z = 0

⎡

⎣
⎢

1

2

3

1

1

2

−3

1

−2

2

1

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

0

1

0

4

−7

0

0

0

1

⎤

⎦
⎥ 0 = 1

 Exercise 1.9.5

150 660

290
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Answer

, Solution is: 

Consider the following augmented matrix in which  denotes an arbitrary number and  denotes a nonzero number. Determine
whether the given augmented matrix is consistent. If consistent, is the solution unique?

Answer

The solution exists but is not unique.

Consider the following augmented matrix in which  denotes an arbitrary number and  denotes a nonzero number. Determine
whether the given augmented matrix is consistent. If consistent, is the solution unique?

Answer

A solution exists and is unique.

Consider the following augmented matrix in which  denotes an arbitrary number and  denotes a nonzero number. Determine
whether the given augmented matrix is consistent. If consistent, is the solution unique?

Consider the following augmented matrix in which  denotes an arbitrary number and  denotes a nonzero number. Determine
whether the given augmented matrix is consistent. If consistent, is the solution unique?

4g −I = 150

4I −17g = −660

4g +s = 290

g +I +s −b = 0

{g = 60, I = 90, b = 200, s = 50}

 Exercise 1.9.6

∗ ■

⎡

⎣

⎢⎢⎢⎢

■

0

0

0

∗

■

0

0

∗

∗

■

0

∗

∗

∗

0

∗

0

∗

■

∗

∗

∗

∗

⎤

⎦

⎥⎥⎥⎥

 Exercise 1.9.7

∗ ■

⎡

⎣
⎢⎢

■

0

0

∗

■

0

∗

∗

■

∗

∗

∗

⎤

⎦
⎥⎥

 Exercise 1.9.8

∗ ■

⎡

⎣

⎢⎢⎢⎢

■

0

0

0

∗

■

0

0

∗

0

0

0

∗

∗

■

0

∗

0

∗

■

∗

∗

∗

∗

⎤

⎦

⎥⎥⎥⎥

 Exercise 1.9.9

∗ ■

⎡

⎣

⎢⎢⎢⎢

■

0

0

0

∗

■

0

0

∗

∗

0

0

∗

∗

0

0

∗

0

■

∗

∗

∗

0

■

⎤

⎦

⎥⎥⎥⎥
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Answer

There might be a solution. If so, there are infinitely many.

Suppose a system of equations has fewer equations than variables. Will such a system necessarily be consistent? If so, explain
why and if not, give an example which is not consistent.

Answer

No. Consider  and 

If a system of equations has more equations than variables, can it have a solution? If so, give an example and if not, tell why
not.

Answer

These can have a solution. For example,  even has an infinite set of solutions.

Find  such that

is the augmented matrix of an inconsistent system.

Answer

Find  such that

is the augmented matrix of a consistent system.

Answer

Any  will work.

Find  such that

is the augmented matrix of a consistent system.

Answer

 Exercise 1.9.10

x +y +z = 2 x +y +z = 1.

 Exercise 1.9.11

x +y = 1, 2x +2y = 2, 3x +3y = 3

 Exercise 1.9.12

h

[ ]
2

3

h

6

4

7

h = 4

 Exercise 1.9.13

h

[ ]
1

2

h

4

3

6

h

 Exercise 1.9.14

h

[ ]
1

3

1

h

4

12
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Any  will work.

Choose  and  such that the augmented matrix shown has each of the following:

a. one solution
b. no solution
c. infinitely many solutions

Answer

If  there will be a unique solution for any . If  and  there are no solutions. If  and  then
there are infinitely many solutions.

Choose  and  such that the augmented matrix shown has each of the following:

a. one solution
b. no solution
c. infinitely many solutions

Answer

If  then there is exactly one solution. If  and  then there are no solutions. If  and  then there
are infinitely many solutions.

Determine if the system is consistent. If so, is the solution unique?

Answer

There is no solution. The system is inconsistent. You can see this from the augmented matrix. ,

reduced row-echelon form: 

h

 Exercise 1.9.15

h k

[ ]
1

2

h

4

2

k

h ≠ 2 k h = 2 k ≠ 4, h = 2 k = 4,

 Exercise 1.9.16

h k

[ ]
1

2

2

h

2

k

h ≠ 4, h = 4 k ≠ 4, h = 4 k = 4,

 Exercise 1.9.17

x +2y +z −w = 2

x −y +z +w = 1

2x +y −z = 1

4x +2y +z = 5

⎡

⎣

⎢
⎢⎢

1

1

2

4

2

−1

1

2

1

1

−1

1

−1

1

0

0

2

1

1

5

⎤

⎦

⎥
⎥⎥

.

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

1

3

− 2
3

0

0

0

0

0

1

⎤

⎦

⎥⎥⎥⎥⎥
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Determine if the system is consistent. If so, is the solution unique?

Answer

Solution is: 

Determine which matrices are in reduced row-echelon form.

a. 

b. 

c. 

Answer
a. This one is not.
b. This one is.
c. This one is.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

 Exercise 1.9.18

x +2y +z −w = 2

x −y +z +w = 0

2x +y −z = 1

4x +2y +z = 3

[w = y −1, x = − y, z = ]3
2

2
3

1
2

1
3

 Exercise 1.9.19

[ ]
1

0

2

1

0

7

⎡

⎣
⎢

1

0

0

0

0

0

0

1

0

0

2

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

1

0

0

0

1

0

0

2

0

0

0

1

5

4

3

⎤

⎦
⎥

 Exercise 1.9.20

⎡

⎣
⎢

2

1

1

−1

0

−1

3

2

1

−1

1

−2

⎤

⎦
⎥

 Exercise 1.9.21

⎡

⎣
⎢

0

1

1

0

1

1

−1

1

0

−1

0

−1

⎤

⎦
⎥

 Exercise 1.9.22

⎡

⎣
⎢

3

1

1

−6

−2

−2

−7

−2

−3

−8

−2

−4

⎤

⎦
⎥
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Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Row reduce the following matrix to obtain the row-echelon form. Then continue to obtain the reduced row-echelon form.

Find the solution of the system whose augmented matrix is

Find the solution of the system whose augmented matrix is

Answer

The reduced row-echelon form is  Therefore, the solution is of the form 

 where .

 Exercise 1.9.23

⎡

⎣
⎢

2

1

1

4

2

2

5

3

2

15

9

6

⎤

⎦
⎥

 Exercise 1.9.24

⎡

⎣
⎢

4

1

1

−1

0

−1

7

3

−2

10

3

1

⎤

⎦
⎥

 Exercise 1.9.25

⎡

⎣
⎢

3

1

1

5

2

1

−4

−1

−2

2

1

0

⎤

⎦
⎥

 Exercise 1.9.26

⎡

⎣
⎢

−2

1

1

3

−2

−3

−8

5

7

7

−5

−8

⎤

⎦
⎥

 Exercise 1.9.27

⎡

⎣
⎢⎢

1

1

1

2

3

0

0

4

2

2

2

1

⎤

⎦
⎥⎥

 Exercise 1.9.28

⎡

⎣
⎢⎢

1

2

3

2

0

2

0

1

1

2

1

3

⎤

⎦
⎥⎥

.

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

1
2

− 1
4

0

1
2

3
4

0

⎤

⎦

⎥⎥⎥

z = t, y = + t ( ) , x = − t3
4

1
4

1
2

1
2

t ∈ R
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Find the solution of the system whose augmented matrix is

Answer

The reduced row-echelon form is  and so the solution is 

Find the solution of the system whose augmented matrix is

Answer

The reduced row-echelon form is  and so 

.

Find the solution of the system whose augmented matrix is

Answer

The reduced row-echelon form is . Therefore, let  Then the other variables

are given by 

Find the solution to the system of equations,   and 

Answer

 Exercise 1.9.29

[ ]
1

1

1

0

0

4

1

2

[ ]
1

0

0

1

4

−4

2

−1
z = t, y = 4t, x = 2 −4t.

 Exercise 1.9.30

⎡

⎣

⎢⎢⎢⎢

1

0

1

1

0

1

2

0

2

0

0

1

1

1

0

0

1

2

1

2

2

1

3

2

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

9

−4

−7

6

3

0

−1

1

⎤

⎦

⎥⎥⎥⎥

= t, = 1 −6t, = −1 +7t, = 4t, = 3 −9tx5 x4 x3 x2 x1

 Exercise 1.9.31

⎡

⎣

⎢⎢⎢⎢

1

0

0

1

0

1

2

−1

2

0

0

2

1

1

0

2

1

2

1

2

2

1

3

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

1

0

0

0

0

1

0

0

2

0

0

0

0

0

1

0

− 1
2

1
2
3

2

0

5

2
3

2

− 1
2

0

⎤

⎦

⎥⎥⎥⎥⎥⎥
= t, = s.x5 x3

= − − t, = − t , , = + t −2s.x4
1

2

3

2
x2

3

2

1

2
x1

5

2

1

2

 Exercise 1.9.32

7x +14y +15z = 22, 2x +4y +3z = 5, 3x +6y +10z = 13.
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Solution is: 

Find the solution to the system of equations,   and 

Answer

Solution is: 

Find the solution to the system of equations,   and 

Answer

Solution is: 

Find the solution to the system of equations,   and 

Answer

Solution is: 

Find the solution to the system of equations,  and 

Answer

Solution is: 

Find the solution to the system of equations,  and 

Answer

Solution is: 

Find the solution to the system of equations,   and 

Answer

Solution is: 

Find the solution to the system of equations, , , and .

Answer

[x = 1 −2t, z = 1, y = t]

 Exercise 1.9.33

3x −y +4z = 6, y +8z = 0, −2x +y = −4.

[x = 2 −4t, y = −8t, z = t]

 Exercise 1.9.34

9x −2y +4z = −17, 13x −3y +6z = −25, −2x −z = 3.

[x = −1, y = 2, z = −1]

 Exercise 1.9.35

65x +84y +16z = 546, 81x +105y +20z = 682,

84x +110y +21z = 713.

[x = 2, y = 4, z = 5]

 Exercise 1.9.36

8x +2y +3z = −3, 8x +3y +3z = −1, 4x +y +3z = −9.

[x = 1, y = 2, z = −5]

 Exercise 1.9.37

−8x +2y +5z = 18, −8x +3y +5z = 13, −4x +y +5z = 19.

[x = −1, y = −5, z = 4]

 Exercise 1.9.38

3x −y −2z = 3, y −4z = 0, −2x +y = −2.

[x = 2t +1, y = 4t, z = t]

 Exercise 1.9.39

−9x +15y = 66, −11x +18y = 79 −x +y = 4 z = 3
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Solution is: 

Find the solution to the system of equations,    

Answer

Solution is: 

Suppose a system of equations has fewer equations than variables and you have found a solution to this system of equations. Is
it possible that your solution is the only one? Explain.

Answer

No. Consider  and 

Suppose a system of linear equations has a  augmented matrix and the last column is a pivot column. Could the system of
linear equations be consistent? Explain.

Answer

No. This would lead to 

Suppose the coefficient matrix of a system of  equations with  variables has the property that every column is a pivot
column. Does it follow that the system of equations must have a solution? If so, must the solution be unique? Explain.

Answer

Yes. It has a unique solution.

Suppose there is a unique solution to a system of linear equations. What must be true of the pivot columns in the augmented
matrix?

Answer

The last column must not be a pivot column. The remaining columns must each be pivot columns.

The steady state temperature, , of a plate solves Laplace’s equation,  One way to approximate the solution is to
divide the plate into a square mesh and require the temperature at each node to equal the average of the temperature at the four
adjacent nodes. In the following picture, the numbers represent the observed temperature at the indicated nodes. Find the
temperature at the interior nodes, indicated by  and . One of the equations is .

[x = 1, y = 5, z = 3]

 Exercise 1.9.40

−19x +8y = −108, −71x +30y = −404, −2x +y = −12, 4x +z = 14.

[x = 4, y = −4, z = −2]

 Exercise 1.9.41

x +y +z = 2 x +y +z = 1.

 Exercise 1.9.42

2 ×4

0 = 1.

 Exercise 1.9.43

n n

 Exercise 1.9.44

 Exercise 1.9.45

u Δu = 0.

x, y, z, w z = 0.05in (10 +0 +w +x)1
4
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Figure 

Answer

You need , Solution is: 

Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

1.9.1

(20 +30 +w +x) −y = 01
4

(y +30 +0 +z) −w = 01
4

(20 +y +z +10) −x = 01
4

(x +w +0 +10) −z = 01
4

[w = 15, x = 15, y = 20, z = 10] .

 Exercise 1.9.46

⎡

⎣
⎢

4

1

1

−16

−4

−4

−1

0

−1

−5

−1

−2

⎤

⎦
⎥

 Exercise 1.9.47

⎡

⎣
⎢

3

1

1

6

2

2

5

2

1

12

5

2

⎤

⎦
⎥

 Exercise 1.9.48

⎡

⎣

⎢
⎢⎢

0

1

1

−1

0

4

4

−4

−1

1

0

0

0

0

1

−1

3

−8

2

−2

⎤

⎦

⎥
⎥⎥

 Exercise 1.9.49

⎡

⎣
⎢

4

1

1

−4

−1

−1

3

1

0

−9

−2

−3

⎤

⎦
⎥
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Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

Find the rank of the following matrix.

 Exercise 1.9.50

⎡

⎣

⎢
⎢⎢

2

1

1

1

0

0

0

0

1

1

0

0

0

0

1

1

1

0

7

7

⎤

⎦

⎥
⎥⎥

 Exercise 1.9.51

⎡

⎣

⎢⎢⎢

4

1

1

3

15

4

3

9

29

8

5

15

⎤

⎦

⎥⎥⎥

 Exercise 1.9.52

⎡

⎣

⎢⎢⎢

0

1

1

−1

0

2

2

−2

−1

3

2

−2

0

−2

−1

1

1

−18

−11

11

⎤

⎦

⎥⎥⎥

 Exercise 1.9.53

⎡

⎣

⎢⎢
⎢

1

1

1

0

−2

−2

−2

0

0

0

0

0

3

4

3

0

11

15

11

0

⎤

⎦

⎥⎥
⎥

 Exercise 1.9.54

⎡

⎣

⎢
⎢⎢

−2

1

1

−3

−3

1

0

0

−2

1

1

−3

⎤

⎦

⎥
⎥⎥

 Exercise 1.9.55

⎡

⎣

⎢
⎢⎢

4

1

1

3

4

1

1

3

20

5

5

15

−1

0

−1

−3

17

5

2

6

⎤

⎦

⎥
⎥⎥
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Find the rank of the following matrix.

Suppose  is an  matrix. Explain why the rank of  is always no larger than 

Answer

It is because you cannot have more than  nonzero rows in the reduced row-echelon form. Recall that the number
of pivot columns is the same as the number of nonzero rows from the description of this reduced row-echelon form.

State whether each of the following sets of data are possible for the matrix equation . If possible, describe the solution
set. That is, tell whether there exists a unique solution, no solution or infinitely many solutions. Here,  denotes the
augmented matrix.

a.  is a  matrix,  and 
b.  is a  matrix,  and 
c.  is a  matrix,  and 
d.  is a  matrix,  and 
e.  is a  matrix,  and .

Answer
a. This says  is in the span of four of the columns. Thus the columns are not independent. Infinite solution set.
b. This surely can’t happen. If you add in another column, the rank does not get smaller.
c. This says  is in the span of the columns and the columns must be independent. You can’t have the rank equal 4 if you

only have two columns.
d. This says  is not in the span of the columns. In this case, there is no solution to the system of equations represented by

the augmented matrix.
e. In this case, there is a unique solution since the columns of  are independent.

Consider the system  and  Both equations equal zero and so 
 which is equivalent to  Does it follow that  and  can equal anything? Notice that

when ,  and  are plugged in to the equations, the equations do not equal . Why?

Answer

These are not legitimate row operations. They do not preserve the solution set of the system.

Balance the following chemical reactions.

a. 
b. 

 Exercise 1.9.56

⎡

⎣

⎢
⎢⎢

−1

1

1

−2

3

−3

−3

6

4

−4

−4

8

−3

2

1

−2

8

−5

−2

4

⎤

⎦

⎥
⎥⎥

 Exercise 1.9.57

A m ×n A min(m, n) .

min(m, n)

 Exercise 1.9.58

AX = B

[A|B]

A 5 ×6 rank (A) = 4 rank [A|B] = 4.

A 3 ×4 rank (A) = 3 rank [A|B] = 2.

A 4 ×2 rank (A) = 4 rank [A|B] = 4.

A 5 ×5 rank (A) = 4 rank [A|B] = 5.

A 4 ×2 rank (A) = 2 rank [A|B] = 2

B

B

B

A

 Exercise 1.9.59

−5x +2y −z = 0 −5x −2y −z = 0.

−5x +2y −z = −5x −2y −z y = 0. x z

x = 1 z = −4, y = 0 0

 Exercise 1.9.60

KN + C → C +HNO3 H2 O3 K2 O3 O3

AgI +N S → A S +NaIa2 g2
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c. 
d. 

In the section on dimensionless variables it was observed that  has the units of force. Describe a systematic way to
obtain such combinations of the variables which will yield something which has the units of force.

Consider the following diagram of four circuits.

Figure 

The current in amps in the four circuits is denoted by  and it is understood that the motion is in the counter
clockwise direction. If  ends up being negative, then it just means the current flows in the clockwise direction.

In the above diagram, the top left circuit should give the equation

For the circuit on the lower left, you should have

Write equations for each of the other two circuits and then give a solution to the resulting system of equations.

Answer

The other two equations are

Then the system is

The solution is:

B + O → Ba +Na3N2 H2 (OH)2 H3

CaC +N P → C +NaCll2 a3 O4 a3(P )O4 2

 Exercise 1.9.61

ρ ABV 2

 Exercise 1.9.62

1.9.2

, , ,I1 I2 I3 I4

Ik

2 −2 +5 −5 +3 = 5I2 I1 I2 I3 I2

4 + − +2 −2 = −10I1 I1 I4 I1 I2

6 −6 + + +5 −5I3 I4 I3 I3 I3 I2

2 +3 +6 −6 + −I4 I4 I4 I3 I4 I1

= −20

= 0

2 −2 +5 −5 +3 = 5I2 I1 I2 I3 I2

4 + − +2 −2 = −10I1 I1 I4 I1 I2

6 −6 + + +5 −5 = −20I3 I4 I3 I3 I3 I2

2 +3 +6 −6 + − = 0I4 I4 I4 I3 I4 I1
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Consider the following diagram of three circuits.

Figure 

The current in amps in the four circuits is denoted by  and it is understood that the motion is in the counter clockwise
direction. If  ends up being negative, then it just means the current flows in the clockwise direction.

Find .

Answer

You have

Simplifying this yields

The solution is given by

I1

I2

I3

I4

= −
750

373

= −
1421

1119

= −
3061

1119

= −
1718

1119

 Exercise 1.9.63

1.9.3

, ,I1 I2 I3

Ik

, ,I1 I2 I3

2 +5 +3 −5I1 I1 I1 I2

− +3 +7 +5 −5I2 I3 I2 I2 I2 I1

2 +4 +4 + −I3 I3 I3 I3 I2

= 10

= −12

= 0

10 −5I1 I2

−5 +16 −I1 I2 I3

− +11I2 I3

= 10

= −12

= 0

= , = − , = −I1
218

295
I2

154

295
I3

14

295
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2.1: Matrix Arithmetic

A. Perform the matrix operations of matrix addition, scalar multiplication, transposition and matrix multiplication. Identify
when these operations are not defined. Represent these operations in terms of the entries of a matrix.

B. Prove algebraic properties for matrix addition, scalar multiplication, transposition, and matrix multiplication. Apply these
properties to manipulate an algebraic expression involving matrices.

C. Compute the inverse of a matrix using row operations, and prove identities involving matrix inverses.
D. Solve a linear system using matrix algebra.
E. Use multiplication by an elementary matrix to apply row operations.
F. Write a matrix as a product of elementary matrices.

You have now solved systems of equations by writing them in terms of an augmented matrix and then doing row operations on this
augmented matrix. It turns out that matrices are important not only for systems of equations but also in many applications.

Recall that a matrix is a rectangular array of numbers. Several of them are referred to as matrices. For example, here is a matrix.

Recall that the size or dimension of a matrix is defined as  where  is the number of rows and  is the number of columns.
The above matrix is a  matrix because there are three rows and four columns. You can remember the columns are like
columns in a Greek temple. They stand upright while the rows lay flat like rows made by a tractor in a plowed field.

When specifying the size of a matrix, you always list the number of rows before the number of columns.You might remember that
you always list the rows before the columns by using the phrase Rowman Catholic.

Consider the following definition.

A matrix  which has size  is called a square matrix . In other words,  is a square matrix if it has the same number of
rows and columns.

There is some notation specific to matrices which we now introduce. We denote the columns of a matrix  by  as follows

Therefore,  is the  column of , when counted from left to right.

The individual elements of the matrix are called entries or components of . Elements of the matrix are identified according to
their position. The -entry of a matrix is the entry in the  row and  column. For example, in the matrix  above,  is
in position  (and is called the -entry) because it is in the second row and the third column.

In order to remember which matrix we are speaking of, we will denote the entry in the  row and the  column of matrix  by 
. Then, we can write  in terms of its entries, as . Using this notation on the matrix in , 

 etc.

There are various operations which are done on matrices of appropriate sizes. Matrices can be added to and subtracted from other
matrices, multiplied by a scalar, and multiplied by other matrices. We will never divide a matrix by another matrix, but we will see
later how matrix inverses play a similar role.

In doing arithmetic with matrices, we often define the action by what happens in terms of the entries (or components) of the
matrices. Before looking at these operations in depth, consider a few general definitions.

 Outcomes

⎡

⎣
⎢

1

5

6

2

2

−9

3

8

1

4

7

2

⎤

⎦
⎥ (2.1.1)

m×n m n

3 ×4

A n×n A

A Aj

A = [ ]A1 A2 ⋯ An

Aj jth A

A

(i, j) ith jth (2.1.1) 8

(2, 3) (2, 3)

ith jth A

aij A A = [ ]aij (2.1.1)

= 8, = −9, = 2,a23 a32 a12
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The  zero matrix is the  matrix having every entry equal to zero. It is denoted by 

One possible zero matrix is shown in the following example.

The  zero matrix is .

Note there is a  zero matrix, a  zero matrix, etc. In fact there is a zero matrix for every size!

Let  and  be two  matrices. Then  means that for  and ,  for all  and 
.

In other words, two matrices are equal exactly when they are the same size and the corresponding entries are identical. Thus

because they are different sizes. Also,

because, although they are the same size, their corresponding entries are not identical.

In the following section, we explore addition of matrices.

Addition of Matrices

When adding matrices, all matrices in the sum need have the same size. For example,

and

cannot be added, as one has size  while the other has size .

However, the addition

is possible.

The formal definition is as follows.

Let  and  be two  matrices. Then  where  is the  matrix  defined by

This definition tells us that when adding matrices, we simply add corresponding entries of the matrices. This is demonstrated in the
next example.

m × n m×n 0.

 Example : The Zero Matrix2.1.1

2 ×3 0 = [ ]
0

0

0

0

0

0

2 ×3 3 ×4

A B m×n A = B A = [ ]aij B = [ ]bij =aij bij 1 ≤ i ≤ m

1 ≤ j≤ n

≠ [ ]
⎡

⎣
⎢

0

0

0

0

0

0

⎤

⎦
⎥

0

0

0

0

[ ] ≠ [ ]
0

3

1

2

1

2

0

3

⎡

⎣
⎢

1

3

5

2

4

2

⎤

⎦
⎥

[ ]
−1

2

4

8

8

5

3 ×2 2 ×3

+
⎡

⎣
⎢

4

5

11

6

0

−2

3

4

3

⎤

⎦
⎥

⎡

⎣
⎢

0

4

1

5

−4

2

0

14

6

⎤

⎦
⎥

A = [ ]aij B = [ ]bij m×n A+B = C C m×n C = [ ]cij

= +cij aij bij
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Add the following matrices, if possible.

Solution
Notice that both  and  are of size . Since  and  are of the same size, the addition is possible. Using Definition 

, the addition is done as follows.

Addition of matrices obeys very much the same properties as normal addition with numbers. Note that when we write for example 
 then we assume that both matrices are of equal size so that the operation is indeed possible.

Let  and  be matrices. Then, the following properties hold.

Commutative Law of Addition

Associative Law of Addition

Existence of an Additive Identity

Existence of an Additive Inverse

Proof

Consider the Commutative Law of Addition given in . Let  and  be matrices such that  and 
 We want to show that . To do so, we will use the definition of matrix addition given in Definition 

. Now,

Therefore,  because the  entries are the same for all  and . Note that the conclusion follows from the
commutative law of addition of numbers, which says that if  and  are two numbers, then . The proof of the
other results are similar, and are left as an exercise.

We call the zero matrix in  the additive identity. Similarly, we call the matrix  in  the additive inverse.  is
defined to equal  In other words, every entry of  is multiplied by .

In the next section we will study scalar multiplication in more depth to understand what is meant by 

Scalar Multiplication of Matrices

Recall that we use the word scalar when referring to numbers. Therefore, scalar multiplication of a matrix is the multiplication of a
matrix by a number. To illustrate this concept, consider the following example in which a matrix is multiplied by the scalar .

A = [ ] ,B = [ ]
1

1

2

0

3

4

5

−6

2

2

3

1

A B 2 ×3 A B

2.1.4

A+B = [ ]+[ ] = [ ] = [ ]
1

1

2

0

3

4

5

−6

2

2

3

1

1 +5

1 +−6

2 +2

0 +2

3 +3

4 +1

6

−5

4

2

6

5

A+B

 Proposition : Properties of Matrix Addition2.1.1

A,B C

A+B = B+A (2.1.2)

(A+B) +C = A+(B+C) (2.1.3)

There exists a zero matrix 0 such that

A+0 = A
(2.1.4)

There exists a matrix −A such that

A+(−A) = 0
(2.1.5)

(2.1.2) A,B,C, D A+B = C

B+A = D. D = C

2.1.4

= + = + =cij aij bij bij aij dij

C = D ijth i j

a b a+b = b+a

(2.1.4) −A (2.1.5) −A

(−1)A = [− ].aij A −1

(−1)A.

3
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The new matrix is obtained by multiplying every entry of the original matrix by the given scalar.

The formal definition of scalar multiplication is as follows.

If  and  is a scalar, then 

Consider the following example.

Find the result of multiplying the following matrix  by .

Solution
By Definition , we multiply each element of  by . Therefore,

Similarly to addition of matrices, there are several properties of scalar multiplication which hold.

Let  be matrices, and  be scalars. Then, the following properties hold.

Distributive Law over Matrix Addition

Distributive Law over Scalar Addition

Associative Law for Scalar Multiplication

Rule for Multiplication by 

Proof

The proof of this proposition is similar to the proof of Proposition  and is left an exercise to the reader.

This page titled 2.1: Matrix Arithmetic is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

3 =
⎡

⎣
⎢

1

5

6

2

2

−9

3

8

1

4

7

2

⎤

⎦
⎥

⎡

⎣
⎢

3

15

18

6

6

−27

9

24

3

12

21

6

⎤

⎦
⎥

 Definition : Scalar Multiplication of Matrices2.1.5

A = [ ]aij k kA = [k ] .aij

 Example : Effect of Multiplication by a Scalar2.1.3

A 7

A = [ ]
2

1

0

−4

2.1.5 A 7

7A = 7 [ ] = [ ] = [ ]
2

1

0

−4

7(2)

7(1)

7(0)

7(−4)

14

7

0

−28

 Proposition : Properties of Scalar Multiplication2.1.2

A,B k, p

k (A+B) = kA+kB

(k+p)A = kA+pA

k (pA) = (kp)A

1

1A = A

2.1.1
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2.2: Multiplication of Matrices
The next important matrix operation we will explore is multiplication of matrices. The operation of matrix multiplication is one of
the most important and useful of the matrix operations. Throughout this section, we will also demonstrate how matrix
multiplication relates to linear systems of equations.

First, we provide a formal definition of row and column vectors.

Matrices of size  or  are called vectors. If  is such a matrix, then we write  to denote the entry of  in the 
row of a column matrix, or the  column of a row matrix.

The  matrix

is called a column vector. The  matrix

is called a row vector.

We may simply use the term vector throughout this text to refer to either a column or row vector. If we do so, the context will make
it clear which we are referring to.

In this chapter, we will again use the notion of linear combination of vectors as in Definition 9.2.2. In this context, a linear
combination is a sum consisting of vectors multiplied by scalars. For example,

is a linear combination of three vectors.

It turns out that we can express any system of linear equations as a linear combination of vectors. In fact, the vectors that we will
use are just the columns of the corresponding augmented matrix!

Suppose we have a system of equations given by

We can express this system in vector form which is as follows:

Notice that each vector used here is one column from the corresponding augmented matrix. There is one vector for each variable in
the system, along with the constant vector.

The first important form of matrix multiplication is multiplying a matrix by a vector. Consider the product given by

 Definition : Row and Column Vectors2.2.1

n ×1 1 ×n X xi X ith

ith

n ×1

X =
⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥

1 ×n

X = [ ]x1 ⋯ xn

[ ] = 7 [ ]+8 [ ]+9 [ ]
50

122
1
4

2
5

3
6

 Definition : The Vector Form of a System of Linear Equations2.2.2

+⋯ + =a11x1 a1nxn b1

⋮
+⋯ + =am1x1 amnxn bm

+ +⋯ + =x1

⎡

⎣

⎢⎢⎢
⎢

a11

a21

⋮
am1

⎤

⎦

⎥⎥⎥
⎥

x2

⎡

⎣

⎢⎢⎢
⎢

a12

a22

⋮
am2

⎤

⎦

⎥⎥⎥
⎥

xn

⎡

⎣

⎢⎢⎢
⎢

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢
⎢

b1

b2

⋮
bm

⎤

⎦

⎥⎥⎥
⎥
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We will soon see that this equals

In general terms,

Thus you take  times the first column, add to  times the second column, and finally  times the third column. The above sum
is a linear combination of the columns of the matrix. When you multiply a matrix on the left by a vector on the right, the numbers
making up the vector are just the scalars to be used in the linear combination of the columns as illustrated above.

Here is the formal definition of how to multiply an  matrix by an  column vector.

Let  be an  matrix and let  be an  matrix given by

Then the product  is the  column vector which equals the following linear combination of the columns of :

If we write the columns of  in terms of their entries, they are of the form

Then, we can write the product  as

Note that multiplication of an  matrix and an  vector produces an  vector.

Here is an example.

[ ]
1
4

2
5

3
6

⎡

⎣
⎢

7
8
9

⎤

⎦
⎥

7 [ ]+8 [ ]+9 [ ] = [ ]
1
4

2
5

3
6

50
122

[ ]
a11

a21

a12

a22

a13

a23

⎡

⎣
⎢

x1

x2

x3

⎤

⎦
⎥ =   [ ]+ [ ]+ [ ]x1

a11

a21
x2

a12

a22
x3

a13

a23

= [ ]
+ +a11x1 a12x2 a13x3

+ +a21x1 a22x2 a23x3

x1 x2 x3

m ×n n ×1

 Definition : Multiplication of Vector by Matrix2.2.3

A = [ ]aij m ×n X n ×1

A = [ ⋯ ] , X =A1 An

⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥

AX m ×1 A

+ +⋯ + =x1A1 x2A2 xnAn ∑
j=1

n

xjAj

A

=Aj

⎡

⎣

⎢⎢⎢⎢⎢

a1j

a2j

⋮
amj

⎤

⎦

⎥⎥⎥⎥⎥

AX

AX = + +⋯ +x1

⎡

⎣

⎢⎢⎢⎢

a11

a21

⋮
am1

⎤

⎦

⎥⎥⎥⎥
x2

⎡

⎣

⎢⎢⎢⎢

a12

a22

⋮
am2

⎤

⎦

⎥⎥⎥⎥
xn

⎡

⎣

⎢⎢⎢⎢

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥⎥⎥

m ×n n ×1 m ×1
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Compute the product  for

Solution
We will use Definition  to compute the product. Therefore, we compute the product  as follows.

Using the above operation, we can also write a system of linear equations in matrix form. In this form, we express the system as a
matrix multiplied by a vector. Consider the following definition.

Suppose we have a system of equations given by

Then we can express this system in matrix form as follows.

The expression  is also known as the Matrix Form of the corresponding system of linear equations. The matrix  is
simply the coefficient matrix of the system, the vector  is the column vector constructed from the variables of the system, and
finally the vector  is the column vector constructed from the constants of the system. It is important to note that any system of
linear equations can be written in this form.

Notice that if we write a homogeneous system of equations in matrix form, it would have the form , for the zero vector .

You can see from this definition that a vector

 Example : A Vector Multiplied by a Matrix2.2.1

AX

A = , X =
⎡

⎣
⎢

1
0
2

2
2
1

1
1
4

3
−2

1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

1
2
0
1

⎤

⎦

⎥
⎥⎥

2.2.3 AX

1 +2 +0 +1
⎡

⎣
⎢

1
0
2

⎤

⎦
⎥

⎡

⎣
⎢

2
2
1

⎤

⎦
⎥

⎡

⎣
⎢

1
1
4

⎤

⎦
⎥

⎡

⎣
⎢

3
−2

1

⎤

⎦
⎥

= + + +
⎡

⎣
⎢

1
0
2

⎤

⎦
⎥

⎡

⎣
⎢

4
4
2

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

⎡

⎣
⎢

3
−2

1

⎤

⎦
⎥

=
⎡

⎣
⎢

8
2
5

⎤

⎦
⎥

 Definition : The Matrix Form of a System of Linear Equations2.2.4

+⋯ + =a11x1 a1nxn b1

+⋯ + =a21x1 a2nxn b2

⋮
+⋯ + =am1x1 amnxn bm

=

⎡

⎣

⎢⎢⎢⎢⎢

a11

a21

⋮
am1

a12

a22

⋮
am2

⋯
⋯

⋱
⋯

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢
⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥
⎥⎥

⎡

⎣

⎢⎢
⎢⎢

b1

b2

⋮
bm

⎤

⎦

⎥⎥
⎥⎥

AX = B A

X

B

AX = 0 0
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will satisfy the equation  only when the entries  of the vector  are solutions to the original system.

Now that we have examined how to multiply a matrix by a vector, we wish to consider the case where we multiply two matrices of
more general sizes, although these sizes still need to be appropriate as we will see. For example, in Example , we multiplied a 

 matrix by a  vector. We want to investigate how to multiply other sizes of matrices.

We have not yet given any conditions on when matrix multiplication is possible! For matrices  and , in order to form the
product , the number of columns of  must equal the number of rows of  Consider a product  where  has size 
and  has size . Then, the product in terms of size of matrices is given by

Note the two outside numbers give the size of the product. One of the most important rules regarding matrix multiplication is the
following. If the two middle numbers don’t match, you can’t multiply the matrices!

When the number of columns of  equals the number of rows of  the two matrices are said to be conformable and the product 
 is obtained as follows.

Let  be an  matrix and let  be an  matrix of the form

where  are the  columns of . Then the  matrix  is defined as follows:

where  is an  matrix or column vector which gives the  column of .

Consider the following example.

Find  if possible.

Solution
The first thing you need to verify when calculating a product is whether the multiplication is possible. The first matrix has size 

 and the second matrix has size . The inside numbers are equal, so  and  are conformable matrices. According to
the above discussion  will be a  matrix. Definition  gives us a way to calculate each column of , as follows.

You know how to multiply a matrix times a vector, using Definition  for each of the three columns. Thus

X =

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

AX = B , , ⋯ ,x1 x2 xn X

2.2.1
3 ×4 4 ×1

A B

AB A B. AB A m ×n

B n ×p

(m × ) = m ×p×pn) (n̂

these must match!

A B

AB

 Definition : Multiplication of Two Matrices2.2.5

A m ×n B n ×p

B = [ ⋯ ]B1 Bp

, . . . ,B1 Bp n ×1 B m ×p AB

AB = A [ ⋯ ] = [(AB ⋯ (AB ]B1 Bp )1 )p

(AB)k m ×1 kth AB

 Example : Multiplying Two Matrices2.2.2

AB

A = [ ] , B =
1
0

2
2

1
1

⎡

⎣
⎢

1
0

−2

2
3
1

0
1
1

⎤

⎦
⎥

2 ×3 3 ×3 A B

AB 2 ×3 2.2.5 AB

, ,

⎡

⎣

⎢⎢⎢⎢⎢⎢
[ ]

1
0

2
2

1
1

⎡

⎣
⎢

1
0

−2

⎤

⎦
⎥

  First column

[ ]
1
0

2
2

1
1

⎡

⎣
⎢

2
3
1

⎤

⎦
⎥

  Second column

[ ]
1
0

2
2

1
1

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

  Third column
⎤

⎦

⎥⎥⎥⎥⎥⎥

2.2.3
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Since vectors are simply  or  matrices, we can also multiply a vector by another vector.

Multiply if possible 

Solution
In this case we are multiplying a matrix of size  by a matrix of size  The inside numbers match so the product is
defined. Note that the product will be a matrix of size . Using Definition , we can compute this product as follows 

You can use Definition  to verify that this product is

Find  if possible.

Solution
First check if it is possible. This product is of the form  The inside numbers do not match and so you can’t do
this multiplication.

In this case, we say that the multiplication is not defined. Notice that these are the same matrices which we used in Example .
In this example, we tried to calculate  instead of . This demonstrates another property of matrix multiplication. While the
product  maybe be defined, we cannot assume that the product  will be possible. Therefore, it is important to always check
that the product is defined before carrying out any calculations.

Earlier, we defined the zero matrix  to be the matrix (of appropriate size) containing zeros in all entries. Consider the following
example for multiplication by the zero matrix.

[ ] =  [ ]
1
0

2
2

1
1

⎡

⎣
⎢

1
0

−2

2
3
1

0
1
1

⎤

⎦
⎥

−1
−2

9
7

3
3

n ×1 1 ×m

 Example : Vector Times Vector Multiplication2.2.3

[ ] .
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 1 2 1 0

3 ×1 1 ×4.
3 ×4 2.2.5

[ ] = , , ,
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 1 2 1 0

⎡

⎣

⎢
⎢⎢⎢⎢⎢

[ ]
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 1

  First column

[ ]
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 2

  Second column

[ ]
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 1

  Third column

[ ]
⎡

⎣
⎢

1
2
1

⎤

⎦
⎥ 0

  Fourth column
⎤

⎦

⎥
⎥⎥⎥⎥⎥

2.2.3

⎡

⎣
⎢

1
2
1

2
4
2

1
2
1

0
0
0

⎤

⎦
⎥

 Example : A Multiplication Which is Not Defined2.2.4

BA

B = , A = [ ]
⎡

⎣
⎢

1
0

−2

2
3
1

0
1
1

⎤

⎦
⎥

1
0

2
2

1
1

(3 ×3) (2 ×3) .

2.2.2
BA AB

AB BA

0
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Compute the product  for the matrix

and the  zero matrix given by

Solution
In this product, we compute

Hence, .

Notice that we could also multiply  by the  zero vector given by . The result would be the  zero vector. Therefore,

it is always the case that , for an appropriately sized zero matrix or vector.

This page titled 2.2: Multiplication of Matrices is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Example : Multiplication by the Zero Matrix2.2.5

A0

A = [ ]
1
3

2
4

2 ×2

0 = [ ]
0
0

0
0

[ ][ ] = [ ]
1
3

2
4

0
0

0
0

0
0

0
0

A0 = 0

A 2 ×1 [ ]
0
0

2 ×1

A0 = 0
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2.3: The ijth Entry of a Product
In previous sections, we used the entries of a matrix to describe the action of matrix addition and scalar multiplication. We can also
study matrix multiplication using the entries of matrices.

What is the  entry of  It is the entry in the  row and the  column of the product .

Now if  is  and  is , then we know that the product  has the form

The  column of  is of the form

which is an  column vector. It is calculated by

Therefore, the  entry is the entry in row  of this vector. This is computed by

The following is the formal definition for the  entry of a product of matrices.

Let  be an  matrix and let  be an  matrix. Then  is an  matrix and the -entry of 
 is defined as

Another way to write this is

In other words, to find the -entry of the product , or , you multiply the  row of  on the left by the  column
of . To express  in terms of its entries, we write .

Consider the following example.

ijth AB? ith jth AB

A m×n B n×p AB

⎡

⎣

⎢⎢⎢⎢⎢

a11

a21

⋮
am1

a12

a22

⋮
am2

⋯
⋯

⋱
⋯

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

b11

b21

⋮
bn1

b12

b22

⋮
bn2

⋯

⋯

⋯

b1j

b2j

⋮
bnj

⋯

⋯

⋯

b1p

b2p

⋮
bnp

⎤

⎦

⎥⎥⎥⎥⎥

jth AB

⎡

⎣

⎢⎢⎢⎢⎢

a11

a21

⋮
am1

a12

a22

⋮
am2

⋯
⋯

⋱
⋯

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

b1j

b2j

⋮
bnj

⎤

⎦

⎥⎥⎥⎥⎥

m×1

+ +⋯+b1j

⎡

⎣

⎢
⎢⎢⎢

a11

a21

⋮
am1

⎤

⎦

⎥
⎥⎥⎥

b2j

⎡

⎣

⎢
⎢⎢⎢

a12

a22

⋮
am2

⎤

⎦

⎥
⎥⎥⎥

bnj

⎡

⎣

⎢
⎢⎢⎢

a1n

a2n

⋮
amn

⎤

⎦

⎥
⎥⎥⎥

ijth i

+ +⋯+ =ai1b1j ai2b2j ainbnj ∑
k=1

n

aikbkj

ijth

 Definition : The  Entry of a Product2.3.1 ijth

A = [ ]aij m×n B = [ ]bij n×p AB m×p (i, j)
AB

(AB =)ij ∑
k=1

n

aikbkj

(AB = [ ] = + +⋯+)ij ai1 ai2 ⋯ ain

⎡

⎣

⎢⎢⎢⎢⎢

b1j

b2j

⋮
bnj

⎤

⎦

⎥⎥⎥⎥⎥
ai1b1j ai2b2j ainbnj

(i, j) AB (AB)ij ith A, jth

B AB AB = [(AB ])ij
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Compute  if possible. If it is, find the -entry of  using Definition .

Solution
First check if the product is possible. It is of the form  and since the inside numbers match, it is possible to do
the multiplication. The result should be a  matrix. We can first compute :

where the commas separate the columns in the resulting product. Thus the above product equals

which is a  matrix as desired. Thus, the -entry equals 42.

Now using Definition , we can find that the -entry equals

Consulting our result for  above, this is correct!

You may wish to use this method to verify that the rest of the entries in  are correct.

Here is another example.

Determine if the product  is defined. If it is, find the -entry of the product.

Solution
This product is of the form . The middle numbers match so the matrices are conformable and it is possible to
compute the product.

We want to find the -entry of , that is, the entry in the second row and first column of the product. We will use
Definition , which states

In this case, ,  and . Hence the -entry is found by computing

 Example : The Entries of a Product2.3.1

AB (3, 2) AB 2.3.1

A = ,B = [ ]
⎡

⎣
⎢
1
3
2

2
1
6

⎤

⎦
⎥

2
7

3
6

1
2

(3×2) (2×3)
3×3 AB

[ ] , [ ] , [ ]
⎡

⎣
⎢
⎡

⎣
⎢
1
3
2

2
1
6

⎤

⎦
⎥

2
7

⎡

⎣
⎢
1
3
2

2
1
6

⎤

⎦
⎥

3
6

⎡

⎣
⎢
1
3
2

2
1
6

⎤

⎦
⎥

1
2

⎤

⎦
⎥

⎡

⎣
⎢
16
13
46

15
15
42

5
5

14

⎤

⎦
⎥

3×3 (3, 2)

2.3.1 (3, 2)

∑
k=1

2

a3kbk2 = +a31b12 a32b22

= 2×3+6×6 = 42

AB

AB

 Example : Finding the Entries of a Product2.3.2

AB (2, 1)

A = ,B =
⎡

⎣
⎢

2
7
0

3
6
0

1
2
0

⎤

⎦
⎥

⎡

⎣
⎢

1
3
2

2
1
6

⎤

⎦
⎥

(3×3) (3×2)

(2, 1) AB

2.3.1

(AB =)ij ∑
k=1

n

aikbkj

n = 3 i = 2 j = 1 (2, 1)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14507?pdf


2.3.3 https://math.libretexts.org/@go/page/14507

Substituting in the appropriate values, this product becomes

Hence, .

You should take a moment to find a few other entries of . You can multiply the matrices to check that your answers are
correct. The product  is given by

This page titled 2.3: The ijth Entry of a Product is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

(AB = = [ ])21 ∑
k=1

3

a2kbk1 a21 a22 a23

⎡

⎣
⎢

b11

b21

b31

⎤

⎦
⎥

[ ] = [ ] = 1×7+3×6+2×2 = 29a21 a22 a23

⎡

⎣
⎢

b11

b21

b31

⎤

⎦
⎥ 7 6 2

⎡

⎣
⎢

1
3
2

⎤

⎦
⎥

(AB = 29)21

AB

AB

AB =
⎡

⎣
⎢
13
29
0

13
32
0

⎤

⎦
⎥
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2.4: Properties of Matrix Multiplication
As pointed out above, it is sometimes possible to multiply matrices in one order but not in the other order. However, even if both 

 and  are defined, they may not be equal.

Compare the products  and , for matrices 

Solution
First, notice that  and  are both of size . Therefore, both products  and  are defined. The first product,  is

The second product,  is

Therefore, .

This example illustrates that you cannot assume  even when multiplication is defined in both orders. If for some
matrices  and  it is true that , then we say that  and  commute. This is one important property of matrix
multiplication.

The following are other important properties of matrix multiplication. Notice that these properties hold only when the size of
matrices are such that the products are defined.

The following hold for matrices  and  and for scalars  and ,

Proof

First we will prove . We will use Definition 2.3.1 and prove this statement using the  entries of a matrix.
Therefore,

Thus  as claimed.

The proof of Equation  follows the same pattern and is left as an exercise.

AB BA

 Example : Matrix Multiplication is Not Commutative2.4.1

AB BA A = [ ] , B = [ ]
1

3

2

4

0

1

1

0

A B 2 ×2 AB BA AB

AB = [ ][ ] = [ ]
1

3

2

4

0

1

1

0

2

4

1

3

BA

[ ][ ] = [ ]
0

1

1

0

1

3

2

4

3

1

4

2

AB ≠ BA

AB = BA

A B AB = BA A B

 Proposition : Properties of Matrix Multiplication2.4.1

A, B, C r s

A (rB +sC)

(B +C) A

A (BC)

= r (AB) +s (AC)

= BA +CA

= (AB) C

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.1) ijth

(A (rB +sC)) ij =∑
k

aik (rB +sC)kj

= (r +s )∑
k

aik bkj ckj

= r +s∑
k

aikbkj ∑
k

aikckj

= r +s(AB)ij (AC)ij

= (r (AB) +s (AC)) ij

A (rB +sC) = r(AB) +s(AC)

(2.4.2)
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Statement Equation  is the associative law of multiplication. Using Definition 2.3.1,

This proves .

This page titled 2.4: Properties of Matrix Multiplication is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

(2.4.3)

(A (BC))ij =∑
k

aik(BC)kj

=∑
k

aik∑
l

bklclj

= = .∑
l

(AB)ilclj ((AB) C)ij

(2.4.3)
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2.5: The Transpose
Another important operation on matrices is that of taking the transpose. For a matrix , we denote the transpose of  by .
Before formally defining the transpose, we explore this operation on the following matrix.

What happened? The first column became the first row and the second column became the second row. Thus the  matrix
became a  matrix. The number  was in the first row and the second column and it ended up in the second row and first
column.

The definition of the transpose is as follows.

Let  be an  matrix. Then , the transpose of , denotes the  matrix given by

The -entry of  becomes the -entry of .

Consider the following example.

Calculate  for the following matrix

Solution
By Definition , we know that for , . In other words, we switch the row and column location of each
entry. The -entry becomes the -entry.

Thus,

Notice that  is a  matrix, while  is a  matrix.

The transpose of a matrix has the following important properties.

Let  be an  matrix,  an  matrix, and  and  scalars. Then

1. 

2. 

3. 

Proof

A A AT

=   [ ]
⎡

⎣
⎢

1

3

2

4

1

6

⎤

⎦
⎥

T

1

4

3

1

2

6

3 ×2

2 ×3 4

 Definition : The Transpose of a Matrix2.5.1

A m ×n AT A n ×m

= = [ ]AT [ ]aij
T aji

(i, j) A (j, i) AT

 Example : The Transpose of a Matrix2.5.1

AT

A = [ ]
1

3

2

5

−6

4

2.5.1 A = [ ]aij = [ ]AT aji

(1, 2) (2, 1)

=AT
⎡

⎣
⎢

1

2

−6

3

5

4

⎤

⎦
⎥

A 2 ×3 AT 3 ×2

 Lemma : Properties of the Transpose of a Matrix2.5.1

A m ×n B n ×p r s

= A( )AT T

=(AB)T BT AT

= r +s(rA +sB)
T

AT BT
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First we prove 2. From Definition ,

The proof of Formula 3 is left as an exercise.

The transpose of a matrix is related to other important topics. Consider the following definition.

An  matrix  is said to be symmetric if  It is said to be skew symmetric if 

We will explore these definitions in the following examples.

Let

Use Definition  to show that  is symmetric.

Solution
By Definition , we need to show that . Now, using Definition ,

Hence, , so  is symmetric.

Let

Show that  is skew symmetric.

Solution
By Definition ,

You can see that each entry of  is equal to  times the same entry of . Hence,  and so by Definition , 
is skew symmetric.

2.5.1

(AB)
T

= = [(AB ] = =[(AB ])ij
T

)ji ∑
k

ajkbki ∑
k

bkiajk

= = =∑
k

[ ]bik
T

[ ]akj
T

[ ]bij
T

[ ]aij
T

BT AT

 Definition : Symmetric and Skew Symmetric Matrices2.5.2

n ×n A A = .AT A = − .AT

 Example : Symmetric Matrices2.5.2

A =
⎡

⎣
⎢

2

1

3

1

5

−3

3

−3

7

⎤

⎦
⎥

2.5.2 A

2.5.2 A = AT 2.5.1

=AT
⎡

⎣
⎢

2

1

3

1

5

−3

3

−3

7

⎤

⎦
⎥

A = AT A

 Example : A Skew Symmetric Matrix2.5.3

A =
⎡

⎣
⎢

0

−1

−3

1

0

−2

3

2

0

⎤

⎦
⎥

A

2.5.2

=AT
⎡

⎣
⎢

0

1

3

−1

0

2

−3

−2

0

⎤

⎦
⎥

AT −1 A = −AAT 2.5.2 A
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2.6: The Identity and Inverses
There is a special matrix, denoted , which is called to as the identity matrix. The identity matrix is always a square matrix, and it
has the property that there are ones down the main diagonal and zeroes elsewhere. Here are some identity matrices of various sizes.

The first is the  identity matrix, the second is the  identity matrix, and so on. By extension, you can likely see what the 
 identity matrix would be. When it is necessary to distinguish which size of identity matrix is being discussed, we will use

the notation  for the  identity matrix.

The identity matrix is so important that there is a special symbol to denote the  entry of the identity matrix. This symbol is
given by  where  is the Kronecker symbol defined by

 is called the identity matrix because it is a multiplicative identity in the following sense.

Suppose  is an  matrix and  is the  identity matrix. Then  If  is the  identity matrix, it also
follows that 

Proof

The -entry of  is given by:

and so  The other case is left as an exercise for you.

We now define the matrix operation which in some ways plays the role of division.

A square  matrix  is said to have an inverse  if and only if

In this case, the matrix  is called invertible.

Such a matrix  will have the same size as the matrix . It is very important to observe that the inverse of a matrix, if it exists,
is unique. Another way to think of this is that if it acts like the inverse, then it  the inverse.

Suppose  is an  matrix such that an inverse  exists. Then there is only one such inverse matrix. That is, given any
matrix  such that , .

Proof

In this proof, it is assumed that  is the  identity matrix. Let  be  matrices such that  exists and 
. We want to show that . Now using properties we have seen, we get:

I

[1] , [ ] , ,
1

0

0

1

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎤

⎦

⎥⎥⎥

1 ×1 2 ×2

n ×n

In n ×n

ijth

=Iij δij δij

={δij

1 if i = j

0 if i ≠ j

In

 Lemma : Multiplication by the Identity Matrix2.6.1

A m ×n In n ×n A = A.In Im m ×m

A = A.Im

(i, j) AIn

=∑
k

aikδkj aij

A = A.In

 Definition : The Inverse of a Matrix2.6.1

n ×n A A−1

A = A =A−1 A−1 In

A

A−1 A

is

 Theorem : Uniqueness of Inverse2.6.1

A n × n A−1

B AB = BA = I B = A−1

I n ×n A, B n ×n A−1

AB = BA = I = BA−1

= I = (AB) = ( A)B = IB = BA−1 A−1 A−1 A−1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/19844?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/02%3A_Matrices/2.06%3A__The_Identity_and_Inverses


2.6.2 https://math.libretexts.org/@go/page/19844

Hence,  which tells us that the inverse is unique.

The next example demonstrates how to check the inverse of a matrix.

Let  Show  is the inverse of 

Solution
To check this, multiply

and

showing that this matrix is indeed the inverse of 

Unlike ordinary multiplication of numbers, it can happen that  but  may fail to have an inverse. This is illustrated in the
following example.

Let  Show that  does not have an inverse.

Solution
One might think  would have an inverse because it does not equal zero. However, note that

If  existed, we would have the following

This says that

which is impossible! Therefore,  does not have an inverse.

= BA−1

 Example : Verifying the Inverse of a Matrix2.6.1

A = [ ] .
1

1

1

2
[ ]

2

−1

−1

1
A.

[ ][ ] =  [ ] = I
1

1

1

2

2

−1

−1

1

1

0

0

1

[ ][ ] =  [ ] = I
2

−1

−1

1

1

1

1

2

1

0

0

1

A.

A ≠ 0 A

 Example : A Nonzero Matrix With No Inverse2.6.2

A = [ ] .
1

1

1

1
A

A

[ ][ ] = [ ]
1

1

1

1

−1

1

0

0

A−1

[ ]
0

0
= ([ ])A−1 0

0

= (A[ ])A−1 −1

1

= ( A)[ ]A−1 −1

1

= I [ ]
−1

1

= [ ]
−1

1

[ ] = [ ]
0

0

−1

1

A
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In the next section, we will explore how to find the inverse of a matrix, if it exists.
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2.7: Finding the Inverse of a Matrix
In Example 2.6.1, we were given  and asked to verify that this matrix was in fact the inverse of . In this section, we explore
how to find .

Let

as in Example 2.6.1. In order to find , we need to find a matrix  such that

We can multiply these two matrices, and see that in order for this equation to be true, we must find the solution to the systems of
equations,

and

Writing the augmented matrix for these two systems gives

for the first system and

for the second.

Let’s solve the first system. Take  times the first row and add to the second to get

Now take  times the second row and add to the first to get

Writing in terms of variables, this says  and 

Now solve the second system,  to find  and  You will find that  and .

If we take the values found for  and  and put them into our inverse matrix, we see that the inverse is

After taking the time to solve the second system, you may have noticed that exactly the same row operations were used to solve
both systems. In each case, the end result was something of the form  where  is the identity and  gave a column of the
inverse. In the above,

A−1 A

A−1

A = [ ]
1

1

1

2

A−1 [ ]
x

y

z

w

[ ][ ]= [ ]
1

1

1

2

x

y

z

w

1

0

0

1

x+y = 1

x+2y = 0

z+w = 0

z+2w = 1

[ ]
1

1

1

2

1

0

[ ]
1

1

1

2

0

1
(2.7.1)

−1

[ ]
1

0

1

1

1

−1

−1

[ ]
1

0

0

1

2

−1

x = 2 y =−1.

(2.7.1) z w. z =−1 w = 1

x, y, z, w

= [ ]= [ ]A−1 x

y

z

w

2

−1

−1

1

[I|X] I X
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the first column of the inverse was obtained by solving the first system and then the second column

To simplify this procedure, we could have solved both systems at once! To do so, we could have written

and row reduced until we obtained

and read off the inverse as the  matrix on the right side.

This exploration motivates the following important algorithm.

Suppose  is an  matrix. To find  if it exists, form the augmented  matrix

If possible do row operations until you obtain an  matrix of the form

When this has been done,  In this case, we say that  is invertible. If it is impossible to row reduce to a matrix of
the form  then  has no inverse.

This algorithm shows how to find the inverse if it exists. It will also tell you if  does not have an inverse.

Consider the following example.

Let . Find  if it exists.

Solution
Set up the augmented matrix

Now we row reduce, with the goal of obtaining the  identity matrix on the left hand side. First, take  times the first
row and add to the second followed by  times the first row added to the third row. This yields

[ ]
x

y

[ ]
z

w

[ ]
1

1

1

2

1

0

0

1

[ ]
1

0

0

1

2

−1

−1

1

2×2

 Algorithm : Matrix Inverse Algorithm2.7.1

A n×n A−1 n×2n

[A|I]

n×2n

[I|B]

B = .A−1 A

[I|B] , A

A

 Example : Finding the Inverse2.7.1

A =
⎡

⎣
⎢
1

1

3

2

0

1

2

2

−1

⎤

⎦
⎥ A−1

[A|I] =

⎡

⎣

⎢⎢

1

1

3

2

0

1

2

2

−1

1

0

0

0

1

0

0

0

1

⎤

⎦

⎥⎥

3×3 −1

−3

 
⎡

⎣
⎢⎢

1

0

0

2

−2

−5

2

0

−7

1

−1

−3

0

1

0

0

0

1

⎤

⎦
⎥⎥
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Then take 5 times the second row and add to -2 times the third row.

Next take the third row and add to  times the first row. This yields

Now take  times the second row and add to the first row.

Finally divide the first row by -7, the second row by -10 and the third row by 14 which yields

Notice that the left hand side of this matrix is now the  identity matrix . Therefore, the inverse is the  matrix on
the right hand side, given by

It may happen that through this algorithm, you discover that the left hand side cannot be row reduced to the identity matrix.
Consider the following example of this situation.

Let . Find  if it exists.

Solution
Write the augmented matrix 

and proceed to do row operations attempting to obtain  Take  times the first row and add to the second. Then take 
 times the first row and add to the third row.

⎡

⎣
⎢⎢

1

0

0

2

−10

0

2

0

14

1

−5

1

0

5

5

0

0

−2

⎤

⎦
⎥⎥

−7

⎡

⎣
⎢⎢

−7

0

0

−14

−10

0

0

0

14

−6

−5

1

5

5

5

−2

0

−2

⎤

⎦
⎥⎥

− 7
5

⎡

⎣

⎢⎢

−7

0

0

0

−10

0

0

0

14

1

−5

1

−2

5

5

−2

0

−2

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

0

0

1

−  1
7

  1
2

  1
14

  2
7

−  1
2

  5
14

  2
7

0

−  1
7

⎤

⎦

⎥⎥⎥

3×3 I3 3×3

⎡

⎣

⎢⎢

−  1
7

  1
2

  1
14

  2
7

−  1
2

  5
14

  2
7

0

−  1
7

⎤

⎦

⎥⎥

 Example : A Matrix Which Has No Inverse2.7.2

A =
⎡

⎣
⎢

1

1

2

2

0

2

2

2

4

⎤

⎦
⎥ A−1

[A|I]

⎡

⎣
⎢⎢

1

1

2

2

0

2

2

2

4

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥⎥

[I| ] .A−1 −1

−2

⎡

⎣

⎢⎢

1

0

0

2

−2

−2

2

0

0

1

−1

−2

0

1

0

0

0

1

⎤

⎦

⎥⎥
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Next add  times the second row to the third row.

At this point, you can see there will be no way to obtain  on the left side of this augmented matrix. Hence, there is no way to
complete this algorithm, and therefore the inverse of  does not exist. In this case, we say that  is not invertible.

If the algorithm provides an inverse for the original matrix, it is always possible to check your answer. To do so, use the method
demonstrated in Example 2.6.1. Check that the products  and  both equal the identity matrix. Through this method,
you can always be sure that you have calculated  properly!

One way in which the inverse of a matrix is useful is to find the solution of a system of linear equations. Recall from Definition
2.2.4 that we can write a system of equations in matrix form, which is of the form . Suppose you find the inverse of the
matrix . Then you could multiply both sides of this equation on the left by  and simplify to obtain

Therefore we can find , the solution to the system, by computing . Note that once you have found , you can
easily get the solution for different right hand sides (different ). It is always just .

We will explore this method of finding the solution to a system in the following example.

Consider the following system of equations. Use the inverse of a suitable matrix to give the solutions to this system.

Solution
First, we can write the system of equations in matrix form

The inverse of the matrix

is

Verifying this inverse is left as an exercise.

From here, the solution to the given system  is found by

−1

⎡

⎣
⎢⎢

1

0

0

2

−2

0

2

0

0

1

−1

−1

0

1

−1

0

0

1

⎤

⎦
⎥⎥

I

A A

AA−1 AA−1

A−1

AX = B

A−1 A−1

( )AX = BA−1 A−1

( A)X = BA−1 A−1

IX = BA−1

X = BA−1

X X = BA−1 A−1

B BA−1

 Example : Using the Inverse to Solve a System of Equations2.7.3

x+z = 1

x−y +z = 3

x+y −z = 2

AX = = = B
⎡

⎣
⎢
1

1

1

0

−1

1

1

1

−1

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢
1

3

2

⎤

⎦
⎥ (2.7.2)

A =
⎡

⎣
⎢
1

1

1

0

−1

1

1

1

−1

⎤

⎦
⎥

=A−1

⎡

⎣

⎢⎢

0

1

1

  1
2

−1

−  1
2

  1
2

0

−  1
2

⎤

⎦

⎥⎥

(2.7.2)
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What if the right side, , of  had been  In other words, what would be the solution to

By the above discussion, the solution is given by

This illustrates that for a system  where  exists, it is easy to find the solution when the vector  is changed.

We conclude this section with some important properties of the inverse.

Let , and  for  be  matrices.

1. If  is an invertible matrix, then 
2. If  and  are invertible matrices, then  is invertible and 
3. If  are invertible, then the product  is invertible, and 

Consider the following theorem.

Let  be an  matrix and  the usual identity matrix.

1.  is invertible and 
2. If  is invertible then so is , and 
3. If  is invertible then so is , and 
4. If  is invertible and  is a nonzero real number, then  is invertible and 

This page titled 2.7: Finding the Inverse of a Matrix is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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⎡

⎣
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0

1
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  1
2

−1

−  1
2

  1
2

0

−  1
2

⎤

⎦

⎥⎥
⎡

⎣
⎢

1

3

2

⎤

⎦
⎥

⎡

⎣

⎢⎢

  5
2

−2

−  3
2

⎤

⎦

⎥⎥

B (2.7.2) ?
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⎣
⎢

0

1
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⎤
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⎥

= ?
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⎢

1

1

1

0

−1

1
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−1
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⎡

⎣
⎢
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⎢
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3
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⎦
⎥

= B = =
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥ A−1

⎡

⎣

⎢⎢

0

1

1

  1
2
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−  1
2

  1
2

0

−  1
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⎥⎥
⎡

⎣
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1

3

⎤

⎦
⎥

⎡

⎣
⎢

2

−1

−2

⎤

⎦
⎥

AX = B A−1 B

 Theorem : Inverses of Transposes and Products2.7.1

A,B Ai i = 1, . . . , k n×n

A ( = (AT )−1 A−1)T

A B AB (AB =)−1 B−1A−1

, , . . . ,A1 A2 Ak ⋯A1A2 Ak

( ⋯ = ⋯A1A2 Ak)
−1 A−1

k
A−1

k−1
A−1

2 A−1
1

 Theorem : Properties of the Inverse2.7.2

A n×n I

I = II−1

A A−1 ( = AA−1)−1

A Ak ( = (Ak)−1 A−1)k

A p pA (pA =)−1 1
p

A−1
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2.8: Elementary Matrices
We now turn our attention to a special type of matrix called an elementary matrix. An elementary matrix is always a square
matrix. Recall the row operations given in Definition 1.3.2. Any elementary matrix, which we often denote by , is obtained from
applying one row operation to the identity matrix of the same size.

For example, the matrix

is the elementary matrix obtained from switching the two rows. The matrix

is the elementary matrix obtained from multiplying the second row of the  identity matrix by . The matrix

is the elementary matrix obtained from adding  times the first row to the third row.

You may construct an elementary matrix from any row operation, but remember that you can only apply one operation.

Consider the following definition.

Let  be an  matrix. Then  is an elementary matrix if it is the result of applying one row operation to the 
identity matrix .

Those which involve switching rows of the identity matrix are called permutation matrices.

Therefore,  constructed above by switching the two rows of  is called a permutation matrix.

Elementary matrices can be used in place of row operations and therefore are very useful. It turns out that multiplying (on the left
hand side) by an elementary matrix  will have the same effect as doing the row operation used to obtain .

The following theorem is an important result which we will use throughout this text.

To perform any of the three row operations on a matrix  it suffices to take the product , where  is the elementary matrix
obtained by using the desired row operation on the identity matrix.

Therefore, instead of performing row operations on a matrix , we can row reduce through matrix multiplication with the
appropriate elementary matrix. We will examine this theorem in detail for each of the three row operations given in Definition
1.3.2.

First, consider the following lemma.

Let  denote the elementary matrix which involves switching the  and the  rows. Then  is a permutation matrix and

where  is obtained from  by switching the  and the  rows.

E

E = [ ]
0

1

1

0

E =
⎡

⎣
⎢

1

0

0

0

3

0

0

0

1

⎤

⎦
⎥

3 ×3 3

E = [ ]
1

−3

0

1

−3

 Definition : Elementary Matrices and Row Operations2.8.1

E n×n E n×n

In

E I2

E E

 Theorem : Multiplication by an Elementary Matrix and Row Operations2.8.1

A EA E

A

 Lemma : Action of Permutation Matrix2.8.1

P ij ith jth P ij

A = BP ij

B A ith jth
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We will explore this idea more in the following example.

Let

Find  where .

Solution
You can see that the matrix  is obtained by switching the first and second rows of the  identity matrix .

Using our usual procedure, compute the product . The result is given by

Notice that  is the matrix obtained by switching rows  and  of . Therefore by multiplying  by , the row operation
which was applied to  to obtain  is applied to  to obtain .

Theorem  applies to all three row operations, and we now look at the row operation of multiplying a row by a scalar. Consider
the following lemma.

Let  denote the elementary matrix corresponding to the row operation in which the  row is multiplied by the nonzero
scalar,  Then

where  is obtained from  by multiplying the  row of  by .

We will explore this lemma further in the following example.

Let

Find the matrix  where 

Solution
You can see that  is obtained by multiplying the second row of the identity matrix by .

Using our usual procedure for multiplication of matrices, we can compute the product . The resulting matrix is given
by

 Example : Switching Rows with an Elementary Matrix2.8.1

= ,A =P 12
⎡

⎣
⎢

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢
a

g

e

b

d

f

⎤

⎦
⎥

B B = AP 12

P 12 3 ×3 I

A = BP 12

B =
⎡

⎣
⎢

g

a

e

d

b

f

⎤

⎦
⎥

B 1 2 A A P 12

I P 12 A B

2.8.1

 Lemma : Multiplication by a Scalar and Elementary Matrices2.8.2

E (k, i) ith

k.

E (k, i)A = B

B A ith A k

 Example : Multiplication of a Row by 5 Using Elementary Matrix2.8.2

E (5, 2) = ,A =
⎡

⎣
⎢

1

0

0

0

5

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

a

c

e

b

d

f

⎤

⎦
⎥

B B = E (5, 2)A

E (5, 2) 5

E (5, 2)A
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Notice that  is obtained by multiplying the second row of  by the scalar .

There is one last row operation to consider. The following lemma discusses the final operation of adding a multiple of a row to
another row.

Let  denote the elementary matrix obtained from  by adding  times the  row to the . Then

where  is obtained from  by adding  times the  row to the  row of 

Consider the following example.

Let

Find  where .

Solution
You can see that the matrix  was obtained by adding  times the first row of  to the third row of .

Using our usual procedure, we can compute the product . The resulting matrix  is given by

You can see that  is the matrix obtained by adding  times the first row of  to the third row.

Suppose we have applied a row operation to a matrix . Consider the row operation required to return  to its original form, to
undo the row operation. It turns out that this action is how we find the inverse of an elementary matrix .

Consider the following theorem.

Every elementary matrix is invertible and its inverse is also an elementary matrix.

In fact, the inverse of an elementary matrix is constructed by doing the reverse row operation on .  will be obtained by
performing the row operation which would carry  back to .

If  is obtained by switching rows  and , then  is also obtained by switching rows  and .
If  is obtained by multiplying row  by the scalar , then  is obtained by multiplying row  by the scalar .
If  is obtained by adding  times row  to row , then  is obtained by subtracting  times row  from row .

Consider the following example.

B =
⎡

⎣
⎢

a

5c

e

b

5d

f

⎤

⎦
⎥

B A 5

 Lemma : Adding Multiples of Rows and Elementary Matrices2.8.3

E (k× i+j) I k ith jth

E (k× i+j)A = B

B A k ith jth A.

 Example : Adding Two Times the First Row to the Last2.8.3

E (2 ×1 +3) = ,A =
⎡

⎣
⎢

1

0

2

0

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

a

c

e

b

d

f

⎤

⎦
⎥

B B = E (2 ×1 +3)A

E (2 ×1 +3) 2 I I

E (2 ×1 +3)A B

B =
⎡

⎣
⎢

a

c

2a+e

b

d

2b+f

⎤

⎦
⎥

B 2 A

A A

E

 Theorem : Elementary Matrices and Inverses2.8.2

I E−1

E I

E i j E−1 i j

E i k E−1 i 1
k

E k i j E−1 k i j

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/19846?pdf


2.8.4 https://math.libretexts.org/@go/page/19846

Let

Find .

Solution
Consider the elementary matrix  given by

Here,  is obtained from the  identity matrix by multiplying the second row by . In order to carry  back to the identity,
we need to multiply the second row of  by . Hence,

 is given by

We can verify that . Take the product , given by

This equals  so we know that we have compute  properly.

Suppose an  matrix  is row reduced to its reduced row-echelon form. By tracking each row operation completed, this row
reduction can be completed through multiplication by elementary matrices.

Consider the following definition.

Let  be an  matrix and let  be the reduced row-echelon form of . Then we can write  where  is the
product of all elementary matrices representing the row operations done to  to obtain .

Consider the following example.

Let . Find , the reduced row-echelon form of  and write it in the form .

Solution
To find , row reduce . For each step, we will record the appropriate elementary matrix. First, switch rows  and .

 Example : Inverse of an Elementary Matrix2.8.4

E = [ ]
1

0

0

2

E−1

E

E = [ ]
1

0

0

2

E 2 ×2 2 E

E 1
2

E−1

= [ ]E−1
1

0

0
1
2

E = IE−1 EE−1

E = [ ][ ] = [ ]E−1 1

0

0

2

1

0

0
1
2

1

0

0

1

I E−1

m×n A

 Definition : The Form 2.8.2 B = UA

A m×n B A B = UA U

A B

 Example : The Form 2.8.5 B = UA

A =
⎡

⎣
⎢

0

1

2

1

0

0

⎤

⎦
⎥ B A B = UA

B A 1 2

→
⎡

⎣
⎢

0

1

2

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

2

0

1

0

⎤

⎦
⎥
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The resulting matrix is equivalent to finding the product of  and .

Next, add  times row  to row .

This is equivalent to multiplying by the matrix . Notice that the resulting matrix is , the

required reduced row-echelon form of .

We can then write

It remains to find the matrix .

We can verify that  holds for this matrix :

While the process used in the above example is reliable and simple when only a few row operations are used, it becomes
cumbersome in a case where many row operations are needed to carry  to . The following theorem provides an alternate way to
find the matrix .

Let  be an  matrix and let  be its reduced row-echelon form. Then  where  is an invertible  matrix
found by forming the matrix  and row reducing to .

Let’s revisit the above example using the process outlined in Theorem .

=P 12
⎡

⎣
⎢

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥ A

(−2) 1 3

→
⎡

⎣
⎢

1

0

2

0

1

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

0

1

0

⎤

⎦
⎥

E(−2 ×1 +3) =
⎡

⎣
⎢

1

0

−2

0

1

0

0

0

1

⎤

⎦
⎥ B

A

B = E(−2 ×1 +2)( A)P 12

= (E(−2 ×1 +2) )AP 12

= UA

U

U = E(−2 ×1 +2)P 12

=
⎡

⎣
⎢

1

0

−2

0

1

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥

=
⎡

⎣
⎢

0

1

0

1

0

−2

0

0

1

⎤

⎦
⎥

B = UA U

UA =
⎡

⎣
⎢

0

1

0

1

0

−2

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

0

1

2

1

0

0

⎤

⎦
⎥

=
⎡

⎣
⎢

1

0

0

0

1

0

⎤

⎦
⎥

= B

A B

U

 Theorem : Finding the Matrix 2.8.3 U

A m×n B B = UA U m×m

[A| ]Im [B|U]

2.8.3

 Example : The Form , Revisited2.8.6 B = UA

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/19846?pdf


2.8.6 https://math.libretexts.org/@go/page/19846

Let . Using the process outlined in Theorem , find  such that .

Solution
First, set up the matrix .

Now, row reduce this matrix until the left side equals the reduced row-echelon form of .

The left side of this matrix is , and the right side is . Comparing this to the matrix  found above in Example , you
can see that the same matrix is obtained regardless of which process is used.

Recall from Algorithm 2.7.1 that an  matrix  is invertible if and only if  can be carried to the  identity matrix using
the usual row operations. This leads to an important consequence related to the above discussion.

Suppose  is an  invertible matrix. Then, set up the matrix  as done above, and row reduce until it is of the form 
. In this case,  because  is invertible.

Now suppose that  where each  is an elementary matrix representing a row operation used to carry  to .
Then,

Remember that if  is an elementary matrix, so too is . It follows that

and  can be written as a product of elementary matrices.

Let  be an  matrix. Then  is invertible if and only if it can be written as a product of elementary matrices.

Consider the following example.

A =
⎡

⎣
⎢

0

1

2

1

0

0

⎤

⎦
⎥ 2.8.3 U B = UA

[A| ]Im

⎡

⎣
⎢⎢

0

1

2

1

0

0

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥⎥

A

⎡

⎣
⎢⎢

0

1

2

1

0

0

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥⎥ →

⎡

⎣
⎢⎢

1

0

2

0

1

0

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥⎥

→
⎡

⎣
⎢⎢

1

0

0

0

1

0

0

1

0

1

0

−2

0

0

1

⎤

⎦
⎥⎥

B U U 2.8.5

n×n A A n×n

A n×n [A| ]In
[B|U] B = In A

B

In

U−1

= UA

= UA

= A

U = ⋯E1E2 Ek Ei A I

= = ⋯ −1U−1 ( ⋯ )E1E2 Ek
−1 E−1

k
E−1

2 E1

Ei E−1
i

A = U−1

= ⋯ −1E−1
k E−1

2 E1

A

 Theorem : Product of Elementary Matrices2.8.4

A n×n A

 Example : Product of Elementary Matrices2.8.7
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Let . Write  as a product of elementary matrices.

Solution
We will use the process outlined in Theorem  to write  as a product of elementary matrices. We will set up the matrix 

 and row reduce, recording each row operation as an elementary matrix.

First:

represented by the elementary matrix .

Secondly:

represented by the elementary matrix .

Finally:

represented by the elementary matrix .

Notice that the reduced row-echelon form of  is . Hence  where  is the product of the above elementary matrices.
It follows that . Since we want to write  as a product of elementary matrices, we wish to express  as a product
of elementary matrices.

This gives  written as a product of elementary matrices. By Theorem  it follows that  is invertible.

This page titled 2.8: Elementary Matrices is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

A =
⎡

⎣
⎢

0

1

0

1

1

−2

0

0

1

⎤

⎦
⎥ A

2.8.3 A

[A|I]

→

⎡

⎣
⎢⎢

0

1

0

1

1

−2

0

0

1

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

1

1

−2

0

0

1

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥⎥

=E1

⎡

⎣
⎢

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥

→
⎡

⎣
⎢⎢

1

0

0

1

1

−2

0

0

1

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

−2

0

0

1

−1

1

0

1

0

0

0

0

1

⎤

⎦
⎥⎥

=E2

⎡

⎣
⎢

1

0

0

−1

1

0

0

0

1

⎤

⎦
⎥

→
⎡

⎣
⎢⎢

1

0

0

0

1

−2

0

0

1

−1

1

0

1

0

0

0

0

1

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

0

0

1

−1

1

2

1

0

0

0

0

1

⎤

⎦
⎥⎥

=E3

⎡

⎣
⎢

1

0

0

0

1

2

0

0

1

⎤

⎦
⎥

A I I = UA U

A = U−1 A U−1

U−1 = ( )E3E2E1
−1

= E−1
1 E−1

2 E−1
3

=
⎡

⎣
⎢

0

1

0

1

0

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

1

1

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

0

1

−2

0

0

1

⎤

⎦
⎥

= A

A 2.8.4 A
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2.9: More on Matrix Inverses
In this section, we will prove three theorems which will clarify the concept of matrix inverses. In order to do this, first recall some
important properties of elementary matrices.

Recall that an elementary matrix is a square matrix obtained by performing an elementary operation on an identity matrix. Each
elementary matrix is invertible, and its inverse is also an elementary matrix. If  is an  elementary matrix and  is an 

 matrix, then the product  is the result of applying to  the same elementary row operation that was applied to the 
 identity matrix in order to obtain .

Let  be the reduced row-echelon form of an  matrix .  is obtained by iteratively applying a sequence of elementary row
operations to . Denote by  the elementary matrices associated with the elementary row operations which were
applied, in order, to the matrix  to obtain the resulting . We then have that . Let 
denote the product matrix  so that we can write  where  is an invertible matrix whose inverse is the product

.

Now, we will consider some preliminary lemmas.

Suppose that  and  are matrices such that the product  is an identity matrix. Then the reduced row-echelon form of 
does not have a row of zeros.

Proof

Let  be the reduced row-echelon form of . Then  for some invertible square matrix  as described above. By
hypothesis  where  is an identity matrix, so we have a chain of equalities

If  would have a row of zeros, then so would the product . But since the identity matrix  does not have a row
of zeros, neither can  have one.

We now consider a second important lemma.

Suppose that  and  are matrices such that the product  is an identity matrix. Then  has at least as many columns as it
has rows.

Proof

Let  be the reduced row-echelon form of . By Lemma , we know that  does not have a row of zeros, and
therefore each row of  has a leading . Since each column of  contains at most one of these leading s,  must have at
least as many columns as it has rows.

An important theorem follows from this lemma.

Only square matrices can be invertible.

Proof

Suppose that  and  are matrices such that both products  and  are identity matrices. We will show that  and 
must be square matrices of the same size. Let the matrix  have  rows and  columns, so that  is an  matrix.
Since the product  exists,  must have  rows, and since the product  exists,  must have  columns so that  is
an  matrix. To finish the proof, we need only verify that .

E m ×m A

m ×n EA A

m ×m E

R m ×n A R

A , , ⋯ ,E1 E2 Ek

A R R = ( ⋯ ( ( A))) = ⋯ AEk E2 E1 Ek E2E1 E

⋯Ek E2E1 R = EA E

( ( ⋯ (E1)−1 E2)−1 Ek)−1

 Lemma : Invertible Matrix and Zeros2.9.1

A B AB A

R A R = EA E

AB = I I

R(B ) = (EA)(B ) = E(AB) = EI = E = IE
−1

E
−1

E
−1

E
−1

E
−1

R R(B )E
−1

I

R

 Lemma : Size of Invertible Matrix2.9.2

A B AB A

R A 2.9.1 R

R 1 R 1 R

 Theorem : Invertible Matrices are Square2.9.1

A B AB BA A B

A m n A m ×n

AB B n BA B m B

n ×m m = n

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/19847?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/02%3A_Matrices/2.09%3A_More_on_Matrix_Inverses


2.9.2 https://math.libretexts.org/@go/page/19847

We first apply Lemma  with  and , to obtain the inequality . We then apply Lemma  again (switching
the order of the matrices), to obtain the inequality . It follows that , as we wanted.

Of course, not all square matrices are invertible. In particular, zero matrices are not invertible, along with many other square
matrices.

The following proposition will be useful in proving the next theorem.

If  is the reduced row-echelon form of a square matrix, then either  has a row of zeros or  is an identity matrix.

The proof of this proposition is left as an exercise to the reader. We now consider the second important theorem of this section.

Suppose  and  are square matrices such that  where  is an identity matrix. Then it follows that . Further,
both  and  are invertible and  and .

Proof

Let  be the reduced row-echelon form of a square matrix . Then,  where  is an invertible matrix. Since 
, Lemma  gives us that  does not have a row of zeros. By noting that  is a square matrix and applying

Proposition , we see that . Hence, .

Using both that  and , we can finish the proof with a chain of equalities as given by

It follows from the definition of the inverse of a matrix that  and .

This theorem is very useful, since with it we need only test one of the products  or  in order to check that  is the inverse of
. The hypothesis that  and  are square matrices is very important, and without this the theorem does not hold.

We will now consider an example.

Let

Show that  but .

Solution
Consider the product  given by

Therefore, , where  is the  identity matrix. However, the product  is

2.9.2 A B m ≤ n 2.9.2

n ≤ m m = n

 Proposition : Reduced Row-Echelon Form of a Square Matrix2.9.1

R R R

 Theorem : Unique Inverse of a Matrix2.9.2

A B AB = I I BA = I

A B B = A
−1

A = B
−1

R A R = EA E

AB = I 2.9.1 R R

2.9.1 R = I EA = I

EA = I AB = I

BA = IBIA = (EA)B( E)AE
−1

= E(AB) (EA)E
−1

= EI IE
−1

= E = IE
−1

B = A
−1

A = B
−1

AB BA B

A A B

 Example : Non Square Matrices2.9.1

A = ,
⎡

⎣
⎢

1

0

0

0

1

0

⎤

⎦
⎥

A = IA
T

A ≠ 0A
T

AA
T

[ ] = [ ]
1

0

0

1

0

0

⎡

⎣
⎢

1

0

0

0

1

0

⎤

⎦
⎥

1

0

0

1
(2.9.1)

A =A
T

I2 I2 2 ×2 AA
T
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Hence  is not the  identity matrix. This shows that for Theorem , it is essential that both matrices be square and
of the same size.

Is it possible to have matrices  and  such that , while ? This question is left to the reader to answer, and you
should take a moment to consider the answer.

We conclude this section with an important theorem.

For any matrix  the following conditions are equivalent:

 is invertible
The reduced row-echelon form of  is an identity matrix

Proof

In order to prove this, we show that for any given matrix , each condition implies the other. We first show that if  is
invertible, then its reduced row-echelon form is an identity matrix, then we show that if the reduced row-echelon form of 
is an identity matrix, then  is invertible.

If  is invertible, there is some matrix  such that . By Lemma , we get that the of  does not have a row of
zeros. Then by Theorem , it follows that  and the reduced row-echelon form of  are square matrices. Finally, by
Proposition , this reduced row-echelon form of  must be an identity matrix. This proves the first implication.

Now suppose the reduced row-echelon form of  is an identity matrix . Then  for some product  of elementary
matrices. By Theorem , we can conclude that  is invertible.

Theorem  corresponds to Algorithm 2.7.1, which claims that  is found by row reducing the augmented matrix  to the
form . This will be a matrix product  where  is a product of elementary matrices. By the rules of matrix
multiplication, we have that .

It follows that the reduced row-echelon form of  is , where  gives the reduced row-echelon form of . By
Theorem , if , then  is not invertible, and if ,  is invertible. If , then by Theorem , 

. This proves that Algorithm 2.7.1 does in fact find .

This page titled 2.9: More on Matrix Inverses is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

[ ] =
⎡

⎣
⎢

1

0

0

0

1

0

⎤

⎦
⎥

1

0

0

1

0

0

⎡

⎣
⎢

1

0

0

0

1

0

0

0

0

⎤

⎦
⎥ (2.9.2)

AA
T 3 ×3 2.9.2

A B AB = I BA = 0

 Theorem : The reduced row-echelon form of an Invertible Matrix2.9.3

A

A

A

A A

A

A

A B AB = I 2.9.1 A

2.9.1 A A

2.9.1 A

A I I = EA E

2.9.2 A

2.9.3 A
−1 [A|I]

[I| ]A
−1

E [A|I] E

E [A|I] = [EA|EI] = [EA|E]

[A|I] [EA|E] EA A

2.9.3 EA ≠ I A EA = I A EA = I 2.9.2

E = A
−1

A
−1
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2.10: LU Factorization
An  factorization of a matrix involves writing the given matrix as the product of a lower triangular matrix  which has the main
diagonal consisting entirely of ones, and an upper triangular matrix  in the indicated order. This is the version discussed here but
it is sometimes the case that the  has numbers other than 1 down the main diagonal. It is still a useful concept. The  goes with
“lower” and the  with “upper”.

It turns out many matrices can be written in this way and when this is possible, people get excited about slick ways of solving the
system of equations, . It is for this reason that you want to study the  factorization. It allows you to work only with
triangular matrices. It turns out that it takes about half as many operations to obtain an  factorization as it does to find the row
reduced echelon form.

First it should be noted not all matrices have an  factorization and so we will emphasize the techniques for achieving it rather
than formal proofs.

Can you write  in the form  as just described?

Solution
To do so you would need

Therefore,  and  Also, from the bottom rows,  which can’t happen and have  Therefore, you can’t
write this matrix in the form  It has no  factorization. This is what we mean above by saying the method lacks generality.

Nevertheless the method is often extremely useful, and we will describe below one the many methods used to produce an 
factorization when possible.

Finding An  Factorization By Inspection

Which matrices have an  factorization? It turns out it is those whose row-echelon form can be achieved without switching rows.
In other words matrices which only involve using row operations of type 2 or 3 to obtain the row-echelon form.

Find an  factorization of 

Solution
One way to find the  factorization is to simply look for it directly. You need

Then multiplying these you get

LU L

U

L L

U

AX = B LU

LU

LU

 Example : A Matrix with NO  factorization2.10.1 LU

[ ]
0
1

1
0

LU

[ ][ ] =  [ ] = [ ] .
1
x

0
1

a

0
b

c

a

xa

b

xb+c

0
1

1
0

b = 1 a = 0. xa = 1 a = 0.
LU

LU

LU

LU

 Example : An  factorization2.10.2 LU

LU A = .
⎡

⎣
⎢

1
1
2

2
3
3

0
2
4

2
1
0

⎤

⎦
⎥

LU

= .
⎡

⎣
⎢

1
1
2

2
3
3

0
2
4

2
1
0

⎤

⎦
⎥

⎡

⎣
⎢

1
x

y

0
1
z

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

a

0
0

d

b

0

h

e

c

j

i

f

⎤

⎦
⎥

 
⎡

⎣
⎢

a

xa

ya

d

xd+b

yd+zb

h

xh+e

yh+ze+c

j

xj+ i

yj+ iz+f

⎤

⎦
⎥
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and so you can now tell what the various quantities equal. From the first column, you need  Now go to the
second column. You need  so  so  From the third column, 
Now from the fourth column,  Therefore, an  factorization is

You can check whether you got it right by simply multiplying these two.

 Factorization, Multiplier Method

Remember that for a matrix  to be written in the form , you must be able to reduce it to its row-echelon form without
interchanging rows. The following method gives a process for calculating the  factorization of such a matrix .

Find an  factorization for

Solution
Write the matrix as the following product.

In the matrix on the right, begin with the left row and zero out the entries below the top using the row operation which involves
adding a multiple of a row to another row. You do this and also update the matrix on the left so that the product will be
unchanged. Here is the first step. Take  times the top row and add to the second. Then take  times the top row and add to
the second in the matrix on the left.

The next step is to take  times the top row and add to the bottom in the matrix on the right. To ensure that the product is
unchanged, you place a  in the bottom left in the matrix on the left. Thus the next step yields

Next take  times the middle row on right and add to bottom row. Updating the matrix on the left in a similar manner to what
was done earlier,

At this point, stop. You are done.

The method just described is called the multiplier method.

a = 1, x = 1, y = 2.
d = 2, xd+b = 3 b = 1, yd+zb = 3 z = −1. h = 0, e = 2, c = 6.

j= 2, i = −1, f = −5. LU

.
⎡

⎣
⎢

1
1
2

0
1

−1

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

2
1
0

0
2
6

2
−1
−5

⎤

⎦
⎥

LU

A A = LU

LU A

 Example :  factorization2.10.3 LU

LU

⎡

⎣
⎢

1
2

−2

2
3
3

3
1

−2

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
2

−2

2
3
3

3
1

−2

⎤

⎦
⎥

−2 2

⎡

⎣
⎢

1
2
0

0
1
0

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0

−2

2
−1

3

3
−5
−2

⎤

⎦
⎥

2

⎡

⎣
⎢

1
2

−2

0
1
0

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

2
−1

7

3
−5

4

⎤

⎦
⎥

7

⎡

⎣
⎢

1
2

−2

0
1

−7

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

2
−1

0

3
−5

−31

⎤

⎦
⎥
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Solving Systems using  Factorization

One reason people care about the  factorization is it allows the quick solution of systems of equations. Here is an example.

Suppose you want to find the solutions to

Solution
Of course one way is to write the augmented matrix and grind away. However, this involves more row operations than the
computation of the  factorization and it turns out that the  factorization can give the solution quickly. Here is how. The
following is an  factorization for the matrix.

Let  and consider  where in this case, . Thus

which yields very quickly that 

Now you can find  by solving . Thus in this case,

which yields

Justification for the Multiplier Method

Why does the multiplier method work for finding the  factorization? Suppose  is a matrix which has the property that the row-
echelon form for  may be achieved without switching rows. Thus every row which is replaced using this row operation in
obtaining the row-echelon form may be modified by using a row which is above it.

Let  be a lower (upper) triangular matrix  which has ones down the main diagonal. Then  also is a lower (upper)
triangular matrix which has ones down the main diagonal. In the case that  is of the form

LU

LU

 Example :  factorization to Solve Equations2.10.4 LU

= .
⎡

⎣
⎢

1
4
1

2
3
2

3
1
3

2
1
0

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

LU LU

LU

  =   .
⎡

⎣
⎢

1
4
1

2
3
2

3
1
3

2
1
0

⎤

⎦
⎥

⎡

⎣
⎢

1
4
1

0
1
0

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

2
−5

0

3
−11

0

2
−7
−2

⎤

⎦
⎥

UX = Y LY = B B = [1, 2, 3]T

  =
⎡

⎣
⎢

1
4
1

0
1
0

0
0
1

⎤

⎦
⎥
⎡

⎣
⎢

y1

y2

y3

⎤

⎦
⎥

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

Y =  .
⎡

⎣
⎢

1
−2

2

⎤

⎦
⎥

X UX = Y

=
⎡

⎣
⎢

1
0
0

2
−5

0

3
−11

0

2
−7
−2

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

x

y

z

w

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1
−2

2

⎤

⎦
⎥

X = , t ∈ R.

⎡

⎣

⎢
⎢⎢
⎢

− + t3
5

7
5

− t9
5

11
5

t

−1

⎤

⎦

⎥
⎥⎥
⎥

LU A

A

 Lemma : Multiplier Method and Triangular Matrices2.10.1

L m×m L−1

L
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where all entries are zero except for the left column and main diagonal, it is also the case that  is obtained from  by
simply multiplying each entry below the main diagonal in  with . The same is true if the single nonzero column is in
another position.

Proof

Consider the usual setup for finding the inverse  Then each row operation done to  to reduce to row reduced
echelon form results in changing only the entries in  below the main diagonal. In the special case of  given in  or
the single nonzero column is in another position, multiplication by  as described in the lemma clearly results in .

For a simple illustration of the last claim,

Now let  be an  matrix, say

and assume  can be row reduced to an upper triangular form using only row operation 3. Thus, in particular, . Multiply on
the left by 

This is the product of elementary matrices which make modifications in the first column only. It is equivalent to taking 
times the first row and adding to the second. Then taking  times the first row and adding to the third and so forth. The
quotients in the first column of the above matrix are the multipliers. Thus the result is of the form

By assumption,  and so it is possible to use this entry to zero out all the entries below it in the matrix on the right by

multiplication by a matrix of the form  where  is an  matrix of the form

L =

⎡

⎣

⎢⎢⎢⎢⎢

1
a1

⋮
an

1

⋱
1

⎤

⎦

⎥⎥⎥⎥⎥
(2.10.1)

L−1 L

L −1

[ ] .L I L

I L (2.10.1)
−1 L−1

→
⎡

⎣
⎢

1
0
0

0
1
a

0
0
1

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

1
0
0

0
1

−a

0
0
1

⎤

⎦
⎥

A m×n

A =

⎡

⎣

⎢⎢
⎢⎢

a11

a21

⋮
am1

a12

a22

⋮
am2

⋯
⋯

⋯

a1n

a2n

⋮
amn

⎤

⎦

⎥⎥
⎥⎥

A ≠ 0a11

=E1

⎡

⎣

⎢⎢⎢⎢⎢⎢

1
− a21

a11

⋮
− am1

a11

0
1

⋮
0

⋯
⋯

⋱
⋯

0
0

⋮
1

⎤

⎦

⎥⎥⎥⎥⎥⎥

− /a21 a11

− /a31 a11

A =E1

⎡

⎣

⎢⎢⎢⎢⎢

a11

0

⋮
0

a12

a′
22

⋮
a′
m2

⋯

⋯

⋯

a′
1n

a′
2n

⋮
a′
mn

⎤

⎦

⎥⎥⎥⎥⎥

≠ 0a′
22

= [ ]E2
1
0

0

E
E [m−1] ×[m−1]
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Again, the entries in the first column below the 1 are the multipliers. Continuing this way, zeroing out the entries below the
diagonal entries, finally leads to

where  is upper triangular. Each  has all ones down the main diagonal and is lower triangular. Now multiply both sides by the
inverses of the  in the reverse order  This yields

By Lemma , this implies that the product of those  is a lower triangular matrix having all ones down the main diagonal.

The above discussion and lemma gives the justification for the multiplier method. The expressions

denoted respectively by  to save notation which were obtained in building  are the multipliers. Then according to
the lemma, to find  you simply write

Similar considerations apply to the other  Thus  is a product of the form

each factor having at most one nonzero column, the position of which moves from left to right in scanning the above product of
matrices from left to right. It follows from what we know about the effect of multiplying on the left by an elementary matrix that
the above product is of the form

In words, beginning at the left column and moving toward the right, you simply insert, into the corresponding position in the
identity matrix,  times the multiplier which was used to zero out an entry in that position below the main diagonal in  while
retaining the main diagonal which consists entirely of ones. This is 

This page titled 2.10: LU Factorization is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

E =

⎡

⎣

⎢
⎢⎢⎢
⎢⎢
⎢

1

−
a′

32

a′
22

⋮

−
a′
m2

a′
22

0

1

⋮

0

⋯

⋯

⋱

⋯

0

0

⋮

1

⎤

⎦

⎥
⎥⎥⎥
⎥⎥
⎥

⋯ A = UEm−1En−2 E1

U Ej

Ej .

A = ⋯ UE−1
1 E−1

2 E−1
m−1

2.10.1 E−1
j

, , ⋯ ,
−a21

a11

−a31

a11

−am1

a11

, ⋯ ,M21 Mm1 E1

E−1
1

⎡

⎣

⎢⎢⎢⎢⎢

1
−M21

⋮
−Mm1

0
1

⋮
0

⋯
⋯

⋱
⋯

0
0

⋮
1

⎤

⎦

⎥⎥⎥⎥⎥

.E−1
j L

⋯

⎡

⎣

⎢⎢⎢⎢⎢

1
−M21

⋮
−Mm1

0
1

⋮
0

⋯
⋯

⋱
⋯

0
0

⋮
1

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

1
0

⋮
0

0
1

0
⋯

⋯
⋯

⋱
−Mm[m−1]

0
0

⋮
1

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

1
−M21

⋮

−M[m−1]1

−Mm1

0
1

−M32

⋮

−Mm2

⋯
⋯

⋱

⋯

⋯

0
0

⋮

1

−Mm[m−1]

0
0

⋮

0

1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

−1 A,
L.
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2.E: Exercises

For the following pairs of matrices, determine if the sum  is defined. If so, find the sum.

a. 

b. 

c. 

For each matrix , find the matrix  such that .

a. 

b. 

c. 

In the context of Proposition 2.1.1, describe  and 

Answer

To get  just replace every entry of  with its additive inverse. The 0 matrix is the one which has all zeros in it.

2.1.2: Scalar Multiplication of Matrices

For each matrix , find the product  and .

a. 

b. 

c. 

Using only the properties given in Proposition 2.1.1 and Proposition 2.1.2, show  is unique.

Answer

Suppose  also works. Then

 Exercise 2.E. 1

A+B

A= [ ] ,B= [ ]
1

0

0

1

0

1

1

0

A= [ ] ,B= [ ]
2

1

1

1

2

0

−1

0

0

1

3

4

A= ,B= [ ]
⎡

⎣
⎢

1

−2

4

0

3

2

⎤

⎦
⎥

2

0

7

3

−1

4

 Exercise 2.E. 2

A −A A+(−A) = 0

A= [ ]
1

2

2

1

A= [ ]
−2

0

3

2

A=
⎡

⎣
⎢
0

1

4

1

−1

2

2

3

0

⎤

⎦
⎥

 Exercise 2.E. 3

−A 0.

−A, A

 Exercise 2.E. 4

A (−2)A, 0A, 3A

A= [ ]
1

2

2

1

A= [ ]
−2

0

3

2

A=
⎡

⎣
⎢
0

1

4

1

−1

2

2

3

0

⎤

⎦
⎥

 Exercise 2.E. 5

−A

B

−A=−A+(A+B) = (−A+A)+B= 0+B=B
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Using only the properties given in Proposition 2.1.1 and Proposition 2.1.2, show  is unique.

Answer

Suppose  also works. Then 

Using only the properties given in Proposition 2.1.1 and Proposition 2.1.2 show  Here the  on the left is the scalar 
and the  on the right is the zero matrix of appropriate size.

Answer

 Now add  to both sides. Then .

Using only the properties given in Proposition 2.1.1 and Proposition 2.1.2, as well as previous problems show 

Answer

 Therefore, from the uniqueness of the additive inverse proved in the above
Problem , it follows that .

2.2

Consider the matrices .

Find the following if possible. If it is not possible explain why.

a. 
b. 
c. 
d. 
e. 
f. 

Answer

a. 

b. 

c. Not possible

d. 

e. Not possible
f. Not possible

 Exercise 2.E. 6

0

0′ = +0 = 0.0′ 0′

 Exercise 2.E. 7

0A= 0. 0 0

0

0A= (0+0)A= 0A+0A. −(0A) 0 = 0A

 Exercise 2.E. 8

(−1)A=−A.

A+(−1)A= (1+(−1))A= 0A= 0.

2.E. 7 −A= (−1)A

 Exercise 2.E. 9

A= [ ] ,B= [ ] ,C = [ ] ,
1

2

2

1

3

7

3

−3

−1

2

2

1

1

3

2

1

D= [ ] ,E = [ ]
−1

2

2

−3

2

3

−3A

3B−A

AC

CB

AE

EA

[ ]
−3

−6

−6

−3

−9

−21

[ ]
8

−11

−5

5

3

−4

[ ]
−3

6

3

−1

4

7
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Consider the matrices 

Find the following if possible. If it is not possible explain why.

a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 

Answer

a. 

b. Not possible.

c. 

d. Not possible.

e. 

f. Not possible.
g. Not possible.

h. 

Let ,  and  Find the following if possible.

a. 
b. 
c. 
d. 
e. 
f. 

Answer

a. 

 Exercise 2.E. 10

A= ,B= [ ] ,C = [ ] ,
⎡

⎣
⎢
1

3

1

2

2

−1

⎤

⎦
⎥

2

−3

−5

2

2

1

1

5

2

0

D= [ ] ,E = [ ]
−1

4

1

−3

1

3

−3A

3B−A

AC

CA

AE

EA

BE

DE

⎡

⎣
⎢

−3

−9

−3

−6

−6

3

⎤

⎦
⎥

⎡

⎣
⎢

11

13

−4

2

6

2

⎤

⎦
⎥

⎡

⎣
⎢

7

9

−2

⎤

⎦
⎥

[ ]
2

−5

 Exercise 2.E. 11

A=
⎡

⎣
⎢

1

−2

1

1

−1

2

⎤

⎦
⎥ B= [ ] ,

1

2

−1

1

−2

−2
C = .

⎡

⎣
⎢

1

−1

−3

1

2

−1

−3

0

0

⎤

⎦
⎥

AB

BA

AC

CA

CB

BC

⎡

⎣
⎢

3

−4

5

0

1

1

−4

6

−6

⎤

⎦
⎥
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b. 

c. Not possible

d. 

e. 

Let . Find all  matrices,  such that 

Answer

Solution is:  so the matrices are of the form 

Let  and  Find  and  if possible.

Answer

Let  Is it possible to choose  such that  If so, what should  equal?

Answer

Thus you must have , Solution is: 

Let  Is it possible to choose  such that  If so, what should  equal?

Answer

[ ]
1

−2

−2

−3

⎡

⎣
⎢

−4

−5

−1

−6

−3

−2

⎤

⎦
⎥

[ ]
8

7

1

6

−3

−6

 Exercise 2.E. 12

A= [ ]
−1

3

−1

3
2×2 B AB= 0.

[ ][ ]
−1

3

−1

3

x

z

y

w
= [ ]

−x−z

3x+3z

−w−y

3w+3y

= [ ]
0

0

0

0

w =−y, x =−z [ ] .
x

−x

y

−y

 Exercise 2.E. 13

X = [ ]−1 −1 1 Y = [ ] .0 1 2 YXT XY T

Y = ,X = 1XT
⎡

⎣
⎢

0

0

0

−1

−1

1

−2

−2

2

⎤

⎦
⎥ Y T

 Exercise 2.E. 14

A= [ ] ,B= [ ] .
1

3

2

4

1

3

2

k
k AB=BA? k

[ ][ ]
1

3

2

4

1

3

2

k

[ ][ ]
1

3

2

k

1

3

2

4

= [ ]
7

15

2k+2

4k+6

= [ ]
7

3k+3

10

4k+6

3k+3 = 15

2k+2 = 10
[k= 4]

 Exercise 2.E. 15

A= [ ] ,B= [ ] .
1

3

2

4

1

1

2

k
k AB=BA? k
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However,  and so there is no possible choice of  which will make these matrices commute.

Find  matrices, ,  and  such that  but 

Answer

Let .

Give an example of matrices (of any size),  such that ,  and yet 

Find  matrices  and  such that  and  but .

Answer

Let .

Give an example of matrices (of any size),  such that  and  but 

Find  matrices  and  such that  and  with .

Answer

Let .

[ ][ ]
1

3

2

4

1

1

2

k

[ ][ ]
1

1

2

k

1

3

2

4

= [ ]
3

7

2k+2

4k+6

= [ ]
7

3k+1

10

4k+2

7 ≠ 3 k

 Exercise 2.E. 16

2×2 A B, C A≠ 0,C ≠B, AC =AB.

A= [ ] , B= [ ] , C = [ ]
1

−1

−1

1

1

1

1

1

2

2

2

2

[ ][ ]
1

−1

−1

1

1

1

1

1

[ ][ ]
1

−1

−1

1

2

2

2

2

= [ ]
0

0

0

0

= [ ]
0

0

0

0

 Exercise 2.E. 17

A,B,C B≠C A≠ 0, AB=AC.

 Exercise 2.E. 18

2×2 A B A≠ 0 B≠ 0 AB= 0

A= [ ] , B= [ ]
1

−1

−1

1

1

1

1

1

[ ][ ]= [ ]
1

−1

−1

1

1

1

1

1

0

0

0

0

 Exercise 2.E. 19

A,B A≠ 0 B≠ 0 AB= 0.

 Exercise 2.E. 20

2×2 A B A≠ 0 B≠ 0 AB≠BA

A= [ ] , B= [ ]
0

1

1

0

1

3

2

4

[ ][ ]
0

1

1

0

1

3

2

4

[ ][ ]
1

3

2

4

0

1

1

0

= [ ]
3

1

4

2

= [ ]
2

4

1

3
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Write the system

in the form  where  is an appropriate matrix.

Answer

Write the system

in the form  where  is an appropriate matrix.

Answer

Write the system

in the form  where  is an appropriate matrix.

 Exercise 2.E. 21

− +2x1 x2 x3

2 +x3 x1

3x3

3 +3 +x4 x2 x1

A

⎡

⎣

⎢⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥⎥
⎥

A

A=

⎡

⎣

⎢⎢
⎢

1

1

0

1

−1

0

0

3

2

2

3

0

0

0

0

3

⎤

⎦

⎥⎥
⎥

 Exercise 2.E. 22

+3 +2x1 x2 x3

2 +x3 x1

6x3

+3 +x4 x2 x1

A

⎡

⎣

⎢⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥⎥
⎥

A

A=

⎡

⎣

⎢⎢
⎢

1

1

0

1

3

0

0

3

2

2

6

0

0

0

0

1

⎤

⎦

⎥⎥
⎥

 Exercise 2.E. 23

+ +x1 x2 x3

2 + +x3 x1 x2

−x3 x1

3 +x4 x1

A

⎡

⎣

⎢⎢⎢

x1

x2

x3

x4

⎤

⎦

⎥⎥⎥
A
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Answer

A matrix  is called idempotent if  Let

and show that  is idempotent.

2.3

For each pair of matrices, find the -entry and -entry of the product .

1. 

2. 

2.4

Suppose  and  are square matrices of the same size. Which of the following are necessarily true?

a. 
b. 
c. 
d. 
e. 
f. 
g. 

Answer
a. Not necessarily true.
b. Not necessarily true.
c. Not necessarily true.
d. Necessarily true.
e. Necessarily true.
f. Not necessarily true.
g. Not necessarily true.

A=

⎡

⎣

⎢⎢⎢

1

1

−1

1

1

1

0

0

1

2

1

0

0

0

0

3

⎤

⎦

⎥⎥⎥

 Exercise 2.E. 24

A =A.A2

A=
⎡

⎣
⎢

2

1

−1

0

1

0

2

2

−1

⎤

⎦
⎥

A

 Exercise 2.E. 25

(1, 2) (2, 3) AB

A= ,B=
⎡

⎣
⎢
1

3

2

2

4

5

−1

0

1

⎤

⎦
⎥

⎡

⎣
⎢

4

7

−1

6

2

0

−2

1

0

⎤

⎦
⎥

A= ,B=
⎡

⎣
⎢
1

0

1

3

2

0

1

4

5

⎤

⎦
⎥

⎡

⎣
⎢

2

−4

0

3

16

2

0

1

2

⎤

⎦
⎥

 Exercise 2.E. 26

A B

= −2AB+(A−B) 2 A2 B2

=(AB)2 A2B2

= +2AB+(A+B)
2

A2 B2

= +AB+BA+(A+B) 2 A2 B2

=A (AB)BA2B2

= +3 B+3A +(A+B) 3 A3 A2 B2 B3

(A+B) (A−B) = −A2 B2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14505?pdf


2.E.8 https://math.libretexts.org/@go/page/14505

2.5

Consider the matrices 

Find the following if possible. If it is not possible explain why.

a. 
b. 
c. 
d. 
e. 
f. 
g. 

Answer

a. 

b. 

c. 

d. 

e. 

f. 

g. Not possible.

Let  be an  matrix. Show  equals the sum of a symmetric and a skew symmetric matrix.

Hint

Show that  is symmetric and then consider using this as one of the matrices.

Show that the main diagonal of every skew symmetric matrix consists of only zeros. Recall that the main diagonal consists of
every entry of the matrix which is of the form .

Answer

If  is symmetric then  It follows that  and so each .

 Exercise 2.E. 27

A= ,B= [ ] ,C = [ ] ,
⎡

⎣
⎢

1

3

1

2

2

−1

⎤

⎦
⎥

2

−3

−5

2

2

1

1

5

2

0

D= [ ] ,E = [ ]
−1

4

1

−3

1

3

−3AT

3B−AT

BET

EET

BBT

CAT

BEDT

[ ]
−3

−6

−9

−6

−3

3

[ ]
5

−11

−18

4

5

4
[ ]−7 1 5

[ ]
1

3

3

9

⎡

⎣
⎢

13

−16

1

−16

29

−8

1

−8

5

⎤

⎦
⎥

[ ]
5

5

7

15

−1

5

 Exercise 2.E. 28

A n×n A

( +A)1
2
AT

 Exercise 2.E. 29

aii

A A=− .AT =−aii aii = 0aii
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Prove 3 from Lemma 2.5.1. That is, show that for an  matrix , an  matrix , and scalars , the following
holds:

2.6

Prove that  where  is an  matrix.

Answer

Suppose  and  is an invertible  matrix. Does it follow that  Explain why or why not.

Answer

Yes . Multiply  on the left by .

Suppose  and  is a non invertible  matrix. Does it follow that ? Explain why or why not.

Give an example of a matrix  such that  and yet  and 

Answer

2.7

Let

Find  if possible. If  does not exist, explain why.

Answer

 Exercise 2.E. 30

m×n A m×n B r, s

= r +s(rA+sB)
T

AT BT

 Exercise 2.E. 31

A=AIm A m×n

≡ =( A)Im ij ∑j δikAkj Aij

 Exercise 2.E. 32

AB=AC A n×n B=C?

B=C AB=AC A−1

 Exercise 2.E. 33

AB=AC A n×n B=C

 Exercise 2.E. 34

A = IA2 A≠ I A≠−I.

A=
⎡

⎣
⎢

1

0

0

0

−1

0

0

0

1

⎤

⎦
⎥

 Exercise 2.E. 35

A= [ ]
2

−1

1

3

A−1 A−1

= [ ][ ]
2

−1

1

3

−1 3
7

1
7

− 1
7

2
7
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Let

Find  if possible. If  does not exist, explain why.

Answer

Add exercises text here.Let

Find  if possible. If  does not exist, explain why.

Answer

Let

Find  if possible. If  does not exist, explain why.

Answer

 does not exist. The of this matrix is 

Let  be a  invertible matrix, with  Find a formula for  in terms of .

Answer

Let

 Exercise 2.E. 36

A= [ ]
0

5

1

3

A−1 A−1

= [ ][ ]
0

5

1

3

−1
− 3

5

1

1
5

0

 Exercise 2.E. 37

A= [ ]
2

3

1

0

A−1 A−1

= [ ][ ]
2

3

1

0

−1 0

1

1
3

− 2
3

 Exercise 2.E. 38

A= [ ]
2

4

1

2

A−1 A−1

[ ]
2

4

1

2

−1

[ ]
1

0

1
2

0

 Exercise 2.E. 39

A 2×2 A= [ ] .
a

c

b

d
A−1 a, b, c, d

= [ ][ ]
a

c

b

d

−1 d

ad−bc

− c

ad−bc

− b

ad−bc
a

ad−bc

 Exercise 2.E. 40
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Find  if possible. If  does not exist, explain why.

Answer

Let

Find  if possible. If  does not exist, explain why.

Answer

Let

Find  if possible. If  does not exist, explain why.

Answer

The reduced row-echelon form is . There is no inverse.

Let

Find  if possible. If  does not exist, explain why.

Answer

A=
⎡

⎣
⎢

1

2

1

2

1

0

3

4

2

⎤

⎦
⎥

A−1 A−1

=
⎡

⎣
⎢

1

2

1

2

1

0

3

4

2

⎤

⎦
⎥

−1

⎡

⎣
⎢

−2

0

1

4

1

−2

−5

−2

3

⎤

⎦
⎥

 Exercise 2.E. 41

A=
⎡

⎣
⎢

1

2

1

0

3

0

3

4

2

⎤

⎦
⎥

A−1 A−1

=
⎡

⎣
⎢

1

2

1

0

3

0

3

4

2

⎤

⎦
⎥

−1
⎡

⎣
⎢

−2

0

1

0
1
3

0

3

− 2
3

−1

⎤

⎦
⎥

 Exercise 2.E. 42

A=
⎡

⎣
⎢
1

2

4

2

1

5

3

4

10

⎤

⎦
⎥

A−1 A−1

⎡

⎣

⎢⎢

1

0

0

0

1

0

5
3

2
3

0

⎤

⎦

⎥⎥

 Exercise 2.E. 43

A=

⎡

⎣

⎢⎢
⎢

1

1

2

1

2

1

1

2

0

2

−3

1

2

0

2

2

⎤

⎦

⎥⎥
⎥

A−1 A−1
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Using the inverse of the matrix, find the solution to the systems:

a. 

b. 

Now give the solution in terms of  and  to

Using the inverse of the matrix, find the solution to the systems:

a. 

b. 

Now give the solution in terms of  and  to the following:

Answer

a. 

b. 

c. 

Show that if  is an  invertible matrix and  is a  matrix such that  for  an  matrix, then 
.

=

⎡

⎣

⎢⎢⎢

1

1

2

1

2

1

1

2

0

2

−3

1

2

0

2

2

⎤

⎦

⎥⎥⎥

−1 ⎡

⎣

⎢⎢⎢⎢⎢

−1

3

−1

−2

1
2

1
2

0

− 3
4

1
2

− 1
2

0
1
4

1
2

− 5
2

1
9
4

⎤

⎦

⎥⎥⎥⎥⎥

 Exercise 2.E. 44

[ ][ ]= [ ]
2

1

4

1

x

y

1

2

[ ][ ]= [ ]
2

1

4

1

x

y

2

0

a b

[ ][ ]= [ ]
2

1

4

1

x

y

a

b

 Exercise 2.E. 45

=
⎡

⎣
⎢
1

2

1

0

3

0

3

4

2

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢
1

0

1

⎤

⎦
⎥

=
⎡

⎣
⎢
1

2

1

0

3

0

3

4

2

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

3

−1

−2

⎤

⎦
⎥

a, b, c

=
⎡

⎣
⎢
1

2

1

0

3

0

3

4

2

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢
a

b

c

⎤

⎦
⎥

=
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1

− 2
3

0

⎤

⎦
⎥

=
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

−12

1

5

⎤

⎦
⎥

=
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

3c−2a

b− c1
3

2
3

a−c

⎤

⎦
⎥

 Exercise 2.E. 46

A n×n X n×1 AX =B B n×1

X = BA−1
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Answer

Multiply both sides of  on the left by .

Prove that if  exists and  then .

Answer

Multiply on both sides on the left by  Thus

Show that if  exists for an  matrix, then it is unique. That is, if  and  then 

Answer

Show that if  is an invertible  matrix, then so is  and 

Answer

You need to show that  acts like the inverse of  because from uniqueness in the above problem, this will imply it
is the inverse. From properties of the transpose,

Hence  and this last matrix exists.

Show  by verifying that

and

Hint: Use Problem .

Answer

 

Show that  by verifying that

AX =B A−1

 Exercise 2.E. 47

A−1 AX = 0 X = 0

.A−1

0 = 0 = (AX) = ( A)X = IX =XA−1 A−1 A−1

 Exercise : Inverse Product2.E. 48

A−1 n×n BA= I AB= I, B= .A−1

= I = (AB) = ( A)B= IB=B.A−1 A−1 A−1 A−1

 Exercise 2.E. 49

A n×n AT = .( )AT −1
( )A−1 T

( )A−1 T
AT

AT ( )A−1 T

( )A−1 T
AT

= = = I( A)A−1 T
I T

= = = I(A )A−1 T
I T

=( )A−1 T
( )AT −1

 Exercise 2.E. 50

=(AB)−1 B−1A−1

AB ( )= IB−1A−1

(AB) = IB−1A−1

2.E. 48

(AB) =A (B ) =A = IB−1A−1 B−1 A−1 A−1 (AB) = ( A)B= IB= B= IB−1A−1 B−1 A−1 B−1 B−1

 Exercise 2.E. 51

=(ABC)
−1

C−1B−1A−1

(ABC)( )= IC−1B−1A−1
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and

Hint: Use Problem .

Answer

The proof of this exercise follows from the previous one.

If  is invertible, show  Hint: Use Problem .

Answer

 

If  is invertible, show  Hint: Use Problem .

Answer

 and so by uniqueness, .

2.8

Let . Suppose a row operation is applied to  and the result is . Find the elementary matrix  that

represents this row operation.

Let . Suppose a row operation is applied to  and the result is . Find the elementary matrix  that

represents this row operation.

Let . Suppose a row operation is applied to  and the result is . Find the elementary matrix 

that represents this row operation.

Let . Suppose a row operation is applied to  and the result is .

a. Find the elementary matrix  such that .
b. Find the inverse of , , such that .

( ) (ABC) = IC−1B−1A−1

2.E. 48

 Exercise 2.E. 52

A = .( )A2 −1
( )A−1 2

2.E. 48

=AA =AI =A = IA2( )A−1 2
A−1A−1 A−1 A−1 = AA= IA= A= I( )A−1 2

A2 A−1A−1 A−1 A−1

 Exercise 2.E. 53

A =A.( )A−1 −1
2.E. 48

A=A = IA−1 A−1 =A( )A−1 −1

 Exercise 2.E. 54

A= [ ]
2

1

3

2
A B= [ ]

1

2

2

3
E

 Exercise 2.E. 55

A= [ ]
4

2

0

1
A B= [ ]

8

2

0

1
E

 Exercise 2.E. 56

A= [ ]
1

0

−3

5
A B= [ ]

1

2

−3

−1
E

 Exercise 2.E. 57

A=
⎡

⎣
⎢

1

0

2

2

5

−1

1

1

4

⎤

⎦
⎥ A B=

⎡

⎣
⎢

1

2

0

2

−1

5

1

4

1

⎤

⎦
⎥

E EA=B

E E−1 B=AE−1
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Let . Suppose a row operation is applied to  and the result is .

a. Find the elementary matrix  such that .
b. Find the inverse of , , such that .

Let . Suppose a row operation is applied to  and the result is .

a. Find the elementary matrix  such that .
b. Find the inverse of , , such that .

Let . Suppose a row operation is applied to  and the result is .

a. Find the elementary matrix  such that .
b. Find the inverse of , , such that .

2.10

Find an  factorization of 

Answer

Find an  factorization of 

Answer

 Exercise 2.E. 58

A=
⎡

⎣
⎢
1

0

2

2

5

−1

1

1

4

⎤

⎦
⎥ A B=

⎡

⎣
⎢
1

0

2

2

10

−1

1

2

4

⎤

⎦
⎥

E EA=B

E E−1 B=AE−1

 Exercise 2.E. 59

A=
⎡

⎣
⎢

1

0

2

2

5

−1

1

1

4

⎤

⎦
⎥ A B=

⎡

⎣
⎢

1

0

1

2

5

− 1
2

1

1

2

⎤

⎦
⎥

E EA=B

E E−1 B=AE−1

 Exercise 2.E. 60

A=
⎡

⎣
⎢

1

0

2

2

5

−1

1

1

4

⎤

⎦
⎥ A B=

⎡

⎣
⎢

1

2

2

2

4

−1

1

5

4

⎤

⎦
⎥

E EA=B

E E−1 B=AE−1

 Exercise 2.E. 61

LU .
⎡

⎣
⎢
1

2

1

2

1

2

0

3

3

⎤

⎦
⎥

=
⎡

⎣
⎢
1

2

1

2

1

2

0

3

3

⎤

⎦
⎥

⎡

⎣
⎢
1

2

1

0

1

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢
1

0

0

2

−3

0

0

3

3

⎤

⎦
⎥

 Exercise 2.E. 62

LU .
⎡

⎣
⎢

1

1

5

2

3

0

3

2

1

2

1

3

⎤

⎦
⎥

=
⎡

⎣
⎢

1

1

5

2

3

0

3

2

1

2

1

3

⎤

⎦
⎥

⎡

⎣
⎢

1

1

5

0

1

−10

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

2

1

0

3

−1

−24

2

−1

−17

⎤

⎦
⎥
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Find an  factorization of the matrix 

Answer

Find an  factorization of the matrix 

Answer

Find an  factorization of the matrix 

Answer

Find an  factorization of the matrix 

Answer

Find an  factorization of the matrix 

 Exercise 2.E. 63

LU .
⎡

⎣
⎢

1

−2

3

−2

5

−6

−5

11

−15

0

3

1

⎤

⎦
⎥

=
⎡

⎣
⎢

1

−2

3

−2

5

−6

−5

11

−15

0

3

1

⎤

⎦
⎥

⎡

⎣
⎢

1

−2

3

0

1

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢
1

0

0

−2

1

0

−5

1

0

0

3

1

⎤

⎦
⎥

 Exercise 2.E. 64

LU .
⎡

⎣
⎢

1

−1

2

−1

2

−3

−3

4

−7

−1

3

−3

⎤

⎦
⎥

=
⎡

⎣
⎢

1

−1

2

−1

2

−3

−3

4

−7

−1

3

−3

⎤

⎦
⎥

⎡

⎣
⎢

1

−1

2

0

1

−1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

−1

1

0

−3

1

0

−1

2

1

⎤

⎦
⎥

 Exercise 2.E. 65

LU    .
⎡

⎣
⎢

1

−3

1

−3

10

−6

−4

10

2

−3

10

−5

⎤

⎦
⎥

=
⎡

⎣
⎢

1

−3

1

−3

10

−6

−4

10

2

−3

10

−5

⎤

⎦
⎥

⎡

⎣
⎢

1

−3

1

0

1

−3

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

−3

1

0

−4

−2

0

−3

1

1

⎤

⎦
⎥

 Exercise 2.E. 66

LU .
⎡

⎣
⎢

1

3

2

3

10

5

1

8

−3

−1

−1

−3

⎤

⎦
⎥

=
⎡

⎣
⎢

1

3

2

3

10

5

1

8

−3

−1

−1

−3

⎤

⎦
⎥

⎡

⎣
⎢

1

3

2

0

1

−1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

3

1

0

1

5

0

−1

2

1

⎤

⎦
⎥

 Exercise 2.E. 67

LU .

⎡

⎣

⎢⎢⎢

3

9

−6

3

−2

−8

2

2

1

6

2

−7

⎤

⎦

⎥⎥⎥
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Answer

Find an  factorization of the matrix 

Find an  factorization of the matrix 

Answer

Find the  factorization of the coefficient matrix using Dolittle’s method and use it to solve the system of equations.

Answer

An  factorization of the coefficient matrix is

First solve

which gives   Then solve

which says that  and 

=

⎡

⎣

⎢⎢
⎢

3

9

−6

3

−2

−8

2

2

1

6

2

−7

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

−2

1

0

1

1

−2

0

0

1

−2

0

0

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

3

0

0

0

−2

−2

0

0

1

3

1

0

⎤

⎦

⎥⎥
⎥

 Exercise 2.E. 68

LU .

⎡

⎣

⎢
⎢⎢

−3

9

3

12

−1

9

19

40

3

−12

−16

−26

⎤

⎦

⎥
⎥⎥

 Exercise 2.E. 69

LU .

⎡

⎣

⎢⎢
⎢

−1

1

3

4

−3

3

9

12

−1

0

0

16

⎤

⎦

⎥⎥
⎥

=

⎡

⎣

⎢⎢⎢

−1

1

3

4

−3

3

9

12

−1

0

0

16

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

−1

−3

−4

0

1

0

0

0

0

1

−4

0

0

0

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1

0

0

0

−3

0

0

0

−1

−1

−3

0

⎤

⎦

⎥⎥⎥

 Exercise 2.E. 70

LU

x+2y = 5

2x+3y = 6

LU

[ ]= [ ][ ]
1

2

2

3

1

2

0

1

1

0

2

−1

[ ][ ]= [ ]
1

2

0

1

u

v

5

6

[ ]=
u

v
[ ] .

5

−4

[ ][ ]= [ ]
1

0

2

−1

x

y

5

−4

y = 4 x =−3.
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Find the  factorization of the coefficient matrix using Dolittle’s method and use it to solve the system of equations.

Answer

An  factorization of the coefficient matrix is

First solve

which yields . Next solve

This yields 

Find the  factorization of the coefficient matrix using Dolittle’s method and use it to solve the system of equations.

Find the  factorization of the coefficient matrix using Dolittle’s method and use it to solve the system of equations.

Answer

An  factorization of the coefficient matrix is

First solve

 Exercise 2.E. 71

LU

x+2y+z= 1

y+3z= 2

2x+3y = 6

LU

=
⎡

⎣
⎢

1

0

2

2

1

3

1

3

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

2

0

1

−1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

2

1

0

1

3

1

⎤

⎦
⎥

=
⎡

⎣
⎢
1

0

2

0

1

−1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢
u

v

w

⎤

⎦
⎥

⎡

⎣
⎢
1

2

6

⎤

⎦
⎥

u = 1, v= 2,w = 6

=
⎡

⎣
⎢
1

0

0

2

1

0

1

3

1

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢
1

2

6

⎤

⎦
⎥

z= 6, y =−16, x = 27.

 Exercise 2.E. 72

LU

x+2y+3z= 5

2x+3y+z= 6

x−y+z= 2

 Exercise 2.E. 73

LU

x+2y+3z= 5

2x+3y+z= 6

3x+5y+4z= 11

LU

=
⎡

⎣
⎢
1

2

3

2

3

5

3

1

4

⎤

⎦
⎥

⎡

⎣
⎢
1

2

3

0

1

1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢
1

0

0

2

−1

0

3

−5

0

⎤

⎦
⎥

=
⎡

⎣
⎢

1

2

3

0

1

1

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

u

v

w

⎤

⎦
⎥

⎡

⎣
⎢

5

6

11

⎤

⎦
⎥
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Solution is:   Next solve

Solution is: .

Is there only one  factorization for a given matrix? Hint: Consider the equation

Look for all possible  factorizations.

Answer

Sometimes there is more than one  factorization as is the case in this example. The given equation clearly gives an 
factorization. However, it appears that the following equation gives another  factorization.

This page titled 2.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

=
⎡

⎣
⎢
u

v

w

⎤

⎦
⎥ .

⎡

⎣
⎢

5

−4

0

⎤

⎦
⎥

=
⎡

⎣
⎢

1

0

0

2

−1

0

3

−5

0

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

5

−4

0

⎤

⎦
⎥

= , t ∈ R

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

7t−3

4−5t

t

⎤

⎦
⎥

 Exercise 2.E. 74

LU

[ ]= [ ][ ] .
0

0

1

1

1

1

0

1

0

0

1

0

LU

LU LU

LU

[ ]= [ ][ ]
0

0

1

1

1

0

0

1

0

0

1

1
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3.1: Basic Techniques

Cofactors and 2 x 2 Determinants

A. Evaluate the determinant of a square matrix using either Laplace Expansion or row operations.
B. Demonstrate the effects that row operations have on determinants.
C. Verify the following:

a. The determinant of a product of matrices is the product of the determinants.
b. The determinant of a matrix is equal to the determinant of its transpose.

Let  be an  matrix. That is, let  be a square matrix. The determinant of , denoted by  is a very important
number which we will explore throughout this section.

If  is a 2  matrix, the determinant is given by the following formula.

Let  Then

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

The following is an example of finding the determinant of a  matrix.

Find  for the matrix 

Solution
From Definition ,

The  determinant can be used to find the determinant of larger matrices. We will now explore how to find the determinant of a
 matrix, using several tools including the  determinant.

We begin with the following definition.

Let  be a  matrix. The  minor of , denoted as  is the determinant of the  matrix which results
from deleting the  row and the  column of .

In general, if  is an  matrix, then the  minor of  is the determinant of the  matrix which results
from deleting the  row and the  column of .

Hence, there is a minor associated with each entry of . Consider the following example which demonstrates this definition.

 Outcomes

A n×n A A det (A)

A ×2

 Definition : Determinant of a Two By Two Matrix3.1.1

A = [ ] .
a

c

b

d

det (A) = ad−cb

det[ ] = = ad−bc
a

c

b

d

∣
∣
∣
a

c

b

d

∣
∣
∣

2 ×2

 Example : A Two by Two Determinant3.1.1

det (A) A = [ ] .
2

−1
4
6

3.1.1

det (A) = (2) (6) −(−1) (4) = 12 +4 = 16

2 ×2
3 ×3 2 ×2

 Definition : The  Minor of a Matrix3.1.2 ijth

A 3 ×3 ijth A minor ,(A)ij 2 ×2
ith jth A

A n×n ijth A n−1 ×n−1
ith jth A

A
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Let

Find  and .

Solution
First we will find . By Definition , this is the determinant of the  matrix which results when you delete
the first row and the second column. This minor is given by

Using Definition , we see that

Therefore .

Similarly,  is the determinant of the  matrix which results when you delete the second row and the third
column. This minor is therefore

Finding the other minors of  is left as an exercise.

The  minor of a matrix  is used in another important definition, given next.

Suppose  is an  matrix. The  cofactor, denoted by  is defined to be

It is also convenient to refer to the cofactor of an entry of a matrix as follows. If  is the  entry of the matrix, then its cofactor
is just 

Consider the matrix

Find  and .

Solution
We will use Definition  to compute these cofactors.

 Example : Finding Minors of a Matrix3.1.2

A =
⎡

⎣
⎢

1
4
3

2
3
2

3
2
1

⎤

⎦
⎥

minor(A)12 minor(A)23

minor(A)12 3.1.2 2 ×2

minor = det[ ](A)12
4
3

2
1

3.1.1

det[ ] = (4) (1) −(3) (2) = 4 −6 = −2
4
3

2
1

minor = −2(A)12

minor(A)23 2 ×2

minor = det[ ] = −4(A)23
1
3

2
2

A

ijth A

 Definition : The  Cofactor of a Matrix3.1.3 ijth

A n×n ijth cof(A)ij

cof = minor(A)ij (−1)i+j (A)ij

aij ijth

cof .(A)ij

 Example : Finding Cofactors of a Matrix3.1.3

A =
⎡

⎣
⎢

1
4
3

2
3
2

3
2
1

⎤

⎦
⎥

cof(A)12 cof(A)23

3.1.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14510?pdf


3.1.3 https://math.libretexts.org/@go/page/14510

First, we will compute . Therefore, we need to find . This is the determinant of the  matrix which
results when you delete the first row and the second column. Thus  is given by

Then,

Hence, .

Similarly, we can find . First, find , which is the determinant of the  matrix which results when you
delete the second row and the third column. This minor is therefore

Hence,

You may wish to find the remaining cofactors for the above matrix. Remember that there is a cofactor for every entry in the matrix.

We have now established the tools we need to find the determinant of a  matrix.

Let  be a  matrix. Then,  is calculated by picking a row (or column) and taking the product of each entry in that
row (column) with its cofactor and adding these products together.

This process when applied to the  row (column) is known as expanding along the  row (column) as is given by

When calculating the determinant, you can choose to expand any row or any column. Regardless of your choice, you will always
get the same number which is the determinant of the matrix  This method of evaluating a determinant by expanding along a row
or a column is called Laplace Expansion or Cofactor Expansion.

Consider the following example.

Let

Find  using the method of Laplace Expansion.

Solution
First, we will calculate  by expanding along the first column. Using Definition , we take the  in the first column
and multiply it by its cofactor,

Similarly, we take the  in the first column and multiply it by its cofactor, as well as with the  in the first column. Finally, we
add these numbers together, as given in the following equation.

cof(A)12 minor(A)12 2 ×2
minor(A)12

det[ ] = −2
4
3

2
1

cof = minor = (−2) = 2(A)12 (−1)1+2 (A)12 (−1)1+2

cof = 2(A)12

cof(A)23 minor(A)23 2 ×2

det[ ] = −4
1
3

2
2

cof = minor = (−4) = 4(A)23 (−1)2+3 (A)23 (−1)2+3

3 ×3

 Definition : The Determinant of a Three By Three Matrix3.1.4

A 3 ×3 det (A)

ith i
th

det (A) = cof(A + cof(A + cof(Aai1 )i1 ai2 )i2 ai3 )i3

A.

 Example : Finding the Determinant of a Three by Three Matrix3.1.4

A =
⎡

⎣
⎢

1
4
3

2
3
2

3
2
1

⎤

⎦
⎥

det (A)

det (A) 3.1.4 1

1 = (1)(1)(−1) = −1(−1)1+1 ∣
∣
∣
3
2

2
1

∣
∣
∣

4 3
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Calculating each of these, we obtain

Hence, .

As mentioned in Definition , we can choose to expand along any row or column. Let’s try now by expanding along the
second row. Here, we take the  in the second row and multiply it to its cofactor, then add this to the  in the second row
multiplied by its cofactor, and the  in the second row multiplied by its cofactor. The calculation is as follows.

Calculating each of these products, we obtain

You can see that for both methods, we obtained .

As mentioned above, we will always come up with the same value for  regardless of the row or column we choose to
expand along. You should try to compute the above determinant by expanding along other rows and columns. This is a good way to
check your work, because you should come up with the same number each time!

We present this idea formally in the following theorem.

Expanding the  matrix along any row or column always gives the same answer, which is the determinant.

We have now looked at the determinant of  and  matrices. It turns out that the method used to calculate the determinant
of a  matrix can be used to calculate the determinant of any sized matrix. Notice that Definition , Definition  and
Definition  can all be applied to a matrix of any size.

For example, the  minor of a  matrix is the determinant of the  matrix you obtain when you delete the  row and
the  column. Just as with the  determinant, we can compute the determinant of a  matrix by Laplace Expansion, along
any row or column

Consider the following example.

Find  where

Solution
As in the case of a  matrix, you can expand this along any row or column. Lets pick the third column. Then, using
Laplace Expansion,

det (A) = 1 +4 +3(−1)1+1 ∣
∣
∣
3
2

2
1

∣
∣
∣

  
cof(A)11

(−1)2+1 ∣
∣
∣
2
2

3
1

∣
∣
∣

  
cof(A)21

(−1)3+1 ∣
∣
∣
2
3

3
2

∣
∣
∣

  
cof(A)31

det (A) = 1 (1) (−1) +4 (−1) (−4) +3 (1) (−5) = −1 +16 +−15 = 0

det (A) = 0

3.1.4
4 3

2

det (A) = 4 +3 +2(−1)2+1 ∣
∣
∣
2
2

3
1

∣
∣
∣

  
cof(A)21

(−1)2+2 ∣
∣
∣
1
3

3
1

∣
∣
∣

  
cof(A)22

(−1)2+3 ∣
∣
∣
1
3

2
2

∣
∣
∣

  
cof(A)23

det (A) = 4 (−1) (−2) +3 (1) (−8) +2 (−1) (−4) = 0

det (A) = 0

det (A)

 Theorem : The Determinant is Well Defined3.1.1

n×n

2 ×2 3 ×3
3 ×3 3.1.2 3.1.3

3.1.4

ijth 4 ×4 3 ×3 ith

jth 3 ×3 4 ×4

 Example : Determinant of a Four by Four Matrix3.1.5

det (A)

A =

⎡

⎣

⎢
⎢⎢

1
5
1
3

2
4
3
4

3
2
4
3

4
3
5
2

⎤

⎦

⎥
⎥⎥

3 ×3
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Now, you can calculate each  determinant using Laplace Expansion, as we did above. You should complete these as an
exercise and verify that .

The following provides a formal definition for the determinant of an  matrix. You may wish to take a moment and consider
the above definitions for  and  determinants in context of this definition.

Let  be an  matrix where  and suppose the determinant of an  has been defined. Then

The first formula consists of expanding the determinant along the  row and the second expands the determinant along the 
column.

In the following sections, we will explore some important properties and characteristics of the determinant.

The Determinant of a Triangular Matrix
There is a certain type of matrix for which finding the determinant is a very simple procedure. Consider the following definition.

A matrix  is upper triangular if  whenever . Thus the entries of such a matrix below the main diagonal equal ,
as shown. Here,  refers to any nonzero number.

A lower triangular matrix is defined similarly as a matrix for which all entries above the main diagonal are equal to zero.

The following theorem provides a useful way to calculate the determinant of a triangular matrix.

Let  be an upper or lower triangular matrix. Then  is obtained by taking the product of the entries on the main
diagonal.

The verification of this Theorem can be done by computing the determinant using Laplace Expansion along the first row or
column.

Consider the following example.

det (A) = 3 +2 +(−1)1+3
∣

∣

∣
∣

5
1
3

4
3
4

3
5
2

∣

∣

∣
∣ (−1)2+3

∣

∣

∣
∣

1
1
3

2
3
4

4
5
2

∣

∣

∣
∣

4 +3(−1)3+3
∣

∣

∣
∣

1
5
3

2
4
4

4
3
2

∣

∣

∣
∣ (−1)4+3

∣

∣

∣
∣

1
5
1

2
4
3

4
3
5

∣

∣

∣
∣

3 ×3
det (A) = −12

n×n

2 ×2 3 ×3

 Definition : The Determinant of an  Matrix3.1.5 n × n

A n×n n ≥ 2 (n−1) ×(n−1)

det (A) = cof = cof∑
j=1

n

aij (A)ij ∑
i=1

n

aij (A)ij

ith jth

 Definition : Triangular Matrices3.1.6

A = 0aij i > j 0
∗

⎡

⎣

⎢⎢⎢⎢⎢⎢

∗

0

⋮
0

∗

∗

⋮
⋯

⋯

⋯

⋱
0

∗

⋮

∗
∗

⎤

⎦

⎥⎥⎥⎥⎥⎥

 Theorem : Determinant of a Triangular Matrix3.1.2

A det (A)
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Let

Find 

Solution
From Theorem , it suffices to take the product of the elements on the main diagonal. Thus 

Without using Theorem , you could use Laplace Expansion. We will expand along the first column. This gives

and the only nonzero term in the expansion is

Now find the determinant of this  matrix, by expanding along the first column to obtain

Next use Definition  to find the determinant of this  matrix, which is just . Putting all
these steps together, we have

which is just the product of the entries down the main diagonal of the original matrix!

You can see that while both methods result in the same answer, Theorem  provides a much quicker method.

In the next section, we explore some important properties of determinants.

This page titled 3.1: Basic Techniques is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Example : Determinant of a Triangular Matrix3.1.6

A =

⎡

⎣

⎢
⎢⎢

1
0
0
0

2
2
0
0

3
6
3
0

77
7

33.7
−1

⎤

⎦

⎥
⎥⎥

det (A) .

3.1.2
det (A) = 1 ×2 ×3 ×(−1) = −6.

3.1.2

det (A) =1 +0 +
∣

∣

∣
∣

2
0
0

6
3
0

7
33.7

−1

∣

∣

∣
∣ (−1)2+1

∣

∣

∣
∣

2
0
0

3
3
0

77
33.7

−1

∣

∣

∣
∣

0 +0(−1)3+1
∣

∣

∣
∣

2
2
0

3
6
0

77
7

−1

∣

∣

∣
∣ (−1)4+1

∣

∣

∣
∣

2
2
0

3
6
3

77
7

33.7

∣

∣

∣
∣

1
∣

∣

∣
∣

2
0
0

6
3
0

7
33.7

−1

∣

∣

∣
∣

3 ×3

det (A) = 1 ×(2 × +0 +0 )
∣
∣
∣
3
0

33.7
−1

∣
∣
∣ (−1)2+1 ∣

∣
∣
6
0

7
−1

∣
∣
∣ (−1)3+1 ∣

∣
∣
6
3

7
33.7

∣
∣
∣

= 1 ×2 ×
∣
∣
∣
3
0

33.7
−1

∣
∣
∣

3.1.1 2 ×2 3 ×−1 −0 ×33.7 = −3

det (A) = 1 ×2 ×3 ×(−1) = −6

3.1.2
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3.2: Properties of Determinants

Properties of Determinants I: Examples

There are many important properties of determinants. Since many of these properties involve the row operations discussed in
Chapter 1, we recall that definition now.

The row operations consist of the following

1. Switch two rows.
2. Multiply a row by a nonzero number.
3. Replace a row by a multiple of another row added to itself.

We will now consider the effect of row operations on the determinant of a matrix. In future sections, we will see that using the
following properties can greatly assist in finding determinants. This section will use the theorems as motivation to provide various
examples of the usefulness of the properties.

The first theorem explains the affect on the determinant of a matrix when two rows are switched.

Let  be an  matrix and let  be a matrix which results from switching two rows of  Then 

When we switch two rows of a matrix, the determinant is multiplied by . Consider the following example.

Let  and let . Knowing that , find .

Solution
By Definition 3.1.1, . Notice that the rows of  are the rows of  but switched. By Theorem 

 since two rows of  have been switched, . You can verify this using Definition
3.1.1.

The next theorem demonstrates the effect on the determinant of a matrix when we multiply a row by a scalar.

Let  be an  matrix and let  be a matrix which results from multiplying some row of  by a scalar . Then 
.

Notice that this theorem is true when we multiply one row of the matrix by . If we were to multiply two rows of  by  to obtain 
, we would have . Suppose we were to multiply all  rows of  by  to obtain the matrix , so that 

. Then, . This gives the next theorem.

Let  and  be  matrices and  a scalar, such that . Then .

Consider the following example.

 Definition : Row Operations3.2.1

 Theorem : Switching Rows3.2.1

A n ×n B A. det (B) = −det (A) .

−1

 Example : Switching Two Rows3.2.1

A = [ ]
1

3

2

4
B = [ ]

3

1

4

2
det (A) = −2 det (B)

det (A) = 1 ×4 −3 ×2 = −2 B A

3.2.1 A det (B) = −det (A) = −(−2) = 2

 Theorem : Multiplying a Row by a Scalar3.2.2

A n ×n B A k

det (B) = k det (A)

k A k

B det (B) = det (A)k2 n A k B

B = kA det (B) = det (A)kn

 Theorem : Scalar Multiplication3.2.3

A B n ×n k B = kA det(B) = det(A)kn
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Let  Knowing that , find .

Solution
By Definition 3.1.1,  We can also compute  using Definition 3.1.1, and we see that .

Now, let’s compute  using Theorem  and see if we obtain the same answer. Notice that the first row of  is 
times the first row of , while the second row of  is equal to the second row of . By Theorem , 

You can see that this matches our answer above.

Finally, consider the next theorem for the last row operation, that of adding a multiple of a row to another row.

Let  be an  matrix and let  be a matrix which results from adding a multiple of a row to another row. Then 
.

Therefore, when we add a multiple of a row to another row, the determinant of the matrix is unchanged. Note that if a matrix 
contains a row which is a multiple of another row,  will equal . To see this, suppose the first row of  is equal to  times
the second row. By Theorem , we can add the first row to the second row, and the determinant will be unchanged. However,
this row operation will result in a row of zeros. Using Laplace Expansion along the row of zeros, we find that the determinant is .

Consider the following example.

Let  and let  Find .

Solution
By Definition 3.1.1, . Notice that the second row of  is two times the first row of  added to the second row.
By Theorem , . As usual, you can verify this answer using Definition 3.1.1.

Let . Show that .

Solution
Using Definition 3.1.1, the determinant is given by

However notice that the second row is equal to  times the first row. Then by the discussion above following Theorem 
the determinant will equal .

Until now, our focus has primarily been on row operations. However, we can carry out the same operations with columns, rather
than rows. The three operations outlined in Definition  can be done with columns instead of rows. In this case, in Theorems 

 Example : Multiplying a Row by 53.2.2

A = [ ] ,  B = [ ] .
1

3

2

4

5

3

10

4
det (A) = −2 det (B)

det (A) = −2. det (B) det (B) = −10

det (B) 3.2.2 B 5

A B A 3.2.2

det (B) = 5 ×det (A) = 5 ×−2 = −10.

 Theorem : Adding a Multiple of a Row to Another Row3.2.4

A n ×n B

det (A) = det (B)

A

det (A) 0 A −1

3.2.4

0

 Example : Adding a Row to Another Row3.2.3

A = [ ]
1

3

2

4
B = [ ] .

1

5

2

8
det (B)

det (A) = −2 B A

3.2.1 det (B) = det (A) = −2

 Example : Multiple of a Row3.2.4

A = [ ]
1

2

2

4
det (A) = 0

det (A) = 1 ×4 −2 ×2 = 0

2 3.2.4

0

3.2.1
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, , and  you can replace the word, "row" with the word "column".

There are several other major properties of determinants which do not involve row (or column) operations. The first is the
determinant of a product of matrices.

Let  and  be two  matrices. Then

In order to find the determinant of a product of matrices, we can simply take the product of the determinants.

Consider the following example.

Compare  and  for

Solution
First compute , which is given by

and so by Definition 3.1.1

Now

and

Computing  we have . This is the same answer as above and you can see that 
.

Consider the next important property.

Let  be a matrix where  is the transpose of . Then,

This theorem is illustrated in the following example.

3.2.1 3.2.2 3.2.4

 Theorem : Determinant of a Product3.2.5

A B n ×n

det (AB) = det (A) det (B)

 Example : The Determinant of a Product3.2.5

det (AB) det (A) det (B)

A = [ ] , B = [ ]
1

−3

2

2

3

4

2

1

AB

AB = [ ][ ] = [ ]
1

−3

2

2

3

4

2

1

11

−1

4

−4

det (AB) = det[ ] = −40
11

−1

4

−4

det (A) = det[ ] = 8
1

−3

2

2

det (B) = det[ ] = −5
3

4

2

1

det (A) ×det (B) 8 ×−5 = −40

det (A) det (B) = 8 ×(−5) = −40 = det (AB)

 Theorem : Determinant of the Transpose3.2.6

A AT A

det( ) = det (A)AT
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Let

Find .

Solution
First, note that

Using Definition 3.1.1, we can compute  and . It follows that  and 
. Hence, .

The following provides an essential property of the determinant, as well as a useful way to determine if a matrix is invertible.

Let  be an  matrix. Then  is invertible if and only if . If this is true, it follows that

Consider the following example.

Let . For each matrix, determine if it is invertible. If so, find the determinant of the inverse.

Solution
Consider the matrix  first. Using Definition 3.1.1 we can find the determinant as follows:

By Theorem   is not invertible.

Now consider the matrix . Again by Definition 3.1.1 we have

By Theorem   is invertible and the determinant of the inverse is given by

 Example : Determinant of the Transpose3.2.6

A = [ ]
2

4

5

3

det( )AT

= [ ]AT 2

5

4

3

det (A) det( )AT det (A) = 2 ×3 −4 ×5 = −14

det( ) = 2 ×3 −5 ×4 = −14AT det (A) = det( )AT

 Theorem : Determinant of the Inverse3.2.7

A n ×n A det(A) ≠ 0

det( ) =A−1 1

det(A)

 Example : Determinant of an Invertible Matrix3.2.7

A = [ ] , B = [ ]
3

2

6

4

2

5

3

1

A

det (A) = 3 ×4 −2 ×6 = 12 −12 = 0

3.2.7 A

B

det (B) = 2 ×1 −5 ×3 = 2 −15 = −13

3.2.7 B

det( )A−1 =
1

det(A)

=
1

−13

= −
1

13
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Properties of Determinants II: Some Important Proofs
This section includes some important proofs on determinants and cofactors.

First we recall the definition of a determinant. If  is an  matrix, then  is defined by computing the expansion
along the first row:

If  then .

The following example is straightforward and strongly recommended as a means for getting used to definitions.

(1) Let  be the elementary matrix obtained by interchanging th and th rows of . Then .

(2) Let  be the elementary matrix obtained by multiplying the th row of  by . Then .

(3) Let  be the elementary matrix obtained by multiplying th row of  by  and adding it to its th row. Then 
.

(4) If  and  are such that  is defined and the th row of  consists of zeros, then the th row of  consists of zeros.

(5) If  is an elementary matrix, then .

Many of the proofs in section use the Principle of Mathematical Induction. This concept is discussed in Appendix A.2 and is
reviewed here for convenience. First we check that the assertion is true for  (the case  is either completely trivial or
meaningless).

Next, we assume that the assertion is true for  (where ) and prove it for . Once this is accomplished, by the Principle
of Mathematical Induction we can conclude that the statement is true for all  matrices for every .

If  is an  matrix and , then the matrix obtained by removing st column and th row from  is an 
matrix (we shall denote this matrix by  below). Since these matrices are used in computation of cofactors , for 

, the inductive assumption applies to these matrices.

Consider the following lemma.

If  is an  matrix such that one of its rows consists of zeros, then .

Proof

We will prove this lemma using Mathematical Induction.

If  this is easy (check!).

Let  be such that every matrix of size  with a row consisting of zeros has determinant equal to zero.
Let  be such that the th row of  consists of zeros. Then we have  for .

Fix  such that . Then matrix  used in computation of  has a row consisting of zeros,
and by our inductive assumption .

On the other hand, if  then . Therefore  for all  and by  we have

as each of the summands is equal to 0.

A = [ ]aij n ×n det A

det A = cof(A .∑
i=1

n

a1,i )1,i (3.2.1)

n = 1 det A = a1,1

 Example :3.2.8

Eij i j I det = −1Eij

Eik i I k det = kEik

Eijk i I k j

det = 1Eijk

C B CB i C i CB

E det E = det ET

n = 2 n = 1

n −1 n ≥ 3 n

n ×n n ≥ 2

A n ×n 1 ≤ j ≤ n 1 j A n −1 ×n −1

A(j) cof(A)1,i

1 ≤ i ≠ n

 Lemma :3.2.1

A n ×n det A = 0

n = 2

n ≥ 3 n −1 ×n −1

i i A = 0aij 1 ≤ j ≤ n

j ∈ {1, 2, … , n} j ≠ i A(j) cof(A)1,j

cof(A = 0)1,j

j = i = 0a1,j cof(A = 0a1,j )1,j j (3.2.1)

det A = cof(A = 0∑
j=1

n

a1,j )1,j
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Assume ,  and  are  matrices that for some  satisfy the following.

1. th rows of all three matrices are identical, for .
2. Each entry in the th row of  is the sum of the corresponding entries in th rows of  and .

Then .

Proof

This is not difficult to check for  (do check it!).

Now assume that the statement of Lemma is true for  matrices and fix  and  as in the statement. The
assumptions state that we have  for  and for  and  for all .
Therefore , and  has the property that its th row is the sum of th rows of  and  for 

 while the other rows of all three matrices are identical. Therefore by our inductive assumption we have 
 for .

By  we have (using all equalities established above)

This proves that the assertion is true for all  and completes the proof.

Let  and  be  matrices.

1. If  is obtained by interchanging th and th rows of  (with ), then .
2. If  is obtained by multiplying th row of  by  then .
3. If two rows of  are identical then .
4. If  is obtained by multiplying th row of  by  and adding it to th row of  ( ) then .

Proof

We prove all statements by induction. The case  is easily checked directly (and it is strongly suggested that you do
check it).

We assume  and (1)–(4) are true for all matrices of size .

(1) We prove the case when , i.e., we are interchanging two consecutive rows.

Let . Then  is obtained from  by interchanging two of its rows (draw a picture) and by our
assumption

Now consider . We have that  and also that . Since , we have

and therefore  and . Putting this together with  into 
 we see that if in the formula for  we change the sign of each of the summands we obtain the formula for 

.

 Lemma :3.2.2

A B C n ×n 1 ≤ i ≤ n

j j ≠ i

j A j B C

det A = det B +det C

n = 2

n −1 ×n −1 A, B C

= =al,j bl,j cl,j j ≠ i 1 ≤ l ≤ n = +al,i bl,i cl,i 1 ≤ l ≤ n

A(i) = B(i) = C(i) A(j) i i B(j) C(j)

j ≠ i

cof(A = cof(B +cof(C)1j )1j )1j j ≠ i

(3.2.1)

det A = cof(A∑
l=1

n

a1,l )1,l

= (cof(B +cof(C ) +( + )cof(A∑
l≠i

a1,l )1,l )1,l b1,i c1,i )1,i

= det B +det C

n

 Theorem :3.2.8

A B n ×n

A i j B i ≠ j det A = −det B

A i B k det A = k det B

A det A = 0

A i B k j B i ≠ j det A = det B

n = 2

n ≥ 3 n −1 ×n −1

j = i +1

l ∈ {1, … , n} ∖ {i, j} A(l) B(l)

cof(A = −cof(B .)1,l )1,l (3.2.2)

cof(Aa1,i )1,l =a1,i b1,j A(i) = B(j) j = i +1

(−1 = (−1 = −(−1)1+j )1+i+1 )1+i

cof(A = − cof(Ba1i )1i b1j )1j cof(A = − cof(Ba1j )1j b1i )1i (3.2.2)

(3.2.1) det A

det B

det A = cof(A = − = det B.∑
l=1

n

a1l )1l ∑
l=1

n

b1lB1l
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We have therefore proved the case of (1) when . In order to prove the general case, one needs the following fact.
If , then in order to interchange th and th row one can proceed by interchanging two adjacent rows 
times: First swap th and st, then st and nd, and so on. After one interchanges st and th row, we have 
th row in position of th and th row in position of st for . Then proceed backwards swapping adjacent

rows until everything is in place.

Since  is an odd number  and we have that .

(2) This is like (1)… but much easier. Assume that (2) is true for all  matrices. We have that  for 
. In particular , and for  matrix  is obtained from  by multiplying one of its rows by .

Therefore  for , and for all  we have . By , we have 
.

(3) This is a consequence of (1). If two rows of  are identical, then  is equal to the matrix obtained by interchanging
those two rows and therefore by (1) . This implies .

(4) Assume (4) is true for all  matrices and fix  and  such that  is obtained by multiplying th row of 
by  and adding it to th row of  ( ) then . If  then  and there is nothing to prove, so we
may assume .

Let  be the matrix obtained by replacing the th row of  by the th row of  multiplied by . By Lemma , we have
that

and we ‘only’ need to show that . But th and th rows of  are proportional. If  is obtained by multiplying the
th row of  by  then by (2) we have  (recall that !). But th and th rows of  are identical,

hence by (3) we have  and therefore .

Let  and  be two  matrices. Then

Proof

If  is an elementary matrix of either type, then multiplying by  on the left has the same effect as performing the
corresponding elementary row operation. Therefore the equality  in this case follows by Example 

 and Theorem .

If  is the reduced row-echelon form of  then we can write  for some elementary matrices 
.

Now we consider two cases.

Assume first that . Then  and . By applying the above equality 
times, and then  times, we have that

Now assume . Since it is in reduced row-echelon form, its last row consists of zeros and by (4) of Example  the
last row of  consists of zeros. By Lemma  we have  and therefore

and also

j = i +1

i < j i j 2(j− i) +1

i i +1 i +1 i +2 j−1 j

i j l l −1 i +1 ≤ l ≤ j

2(j− i) +1 (−1 = −1)2(j−i)+1 det A = −det B

n −1 ×n −1 = kaji bji

1 ≤ j ≤ n = ka1i b1i l ≠ i A(l) B(l) k

cof(A = kcof(B)1l )1l l ≠ i l cof(A = k cof(Ba1l )1l b1l )1l (3.2.1)

det A = k det B

A A

det A = −det A det A = 0

n −1 ×n −1 A B A i B

k j B i ≠ j det A = det B k = 0 A = B

k ≠ 0

C j B i B k 3.2.2

det A = det B +det C

det C = 0 i j C D

j C 1
k

det C = det D1
k

k ≠ 0 i j D

det D = 0 det C = 0

 Theorem :3.2.9

A B n ×n

det (AB) = det (A) det (B)

A A

det(AB) = det A det B

3.2.8 3.2.8

C A A = ⋅ ⋅ ⋯ ⋅ ⋅ CE1 E2 Em

, … ,E1 Em

C = I A = ⋅ ⋅ ⋯ ⋅E1 E2 Em AB = ⋅ ⋅ ⋯ ⋅ BE1 E2 Em m

m −1

det AB = det det ⋅ det ⋅ det BE1 E2 Em

= det( ⋅ ⋅ ⋯ ⋅ ) det BE1 E2 Em

= det A det B.

C ≠ I 3.2.8

CB 3.2.1 det C = det(CB) = 0

det A = det( ⋅ ⋅ ) ⋅ det(C) = det( ⋅ ⋅ ) ⋅ 0 = 0E1 E2 Em E1 E2 Em

det AB = det( ⋅ ⋅ ) ⋅ det(CB) = det( ⋅ ⋅ ⋯ ⋅ )0 = 0E1 E2 Em E1 E2 Em
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hence .

The same ‘machine’ used in the previous proof will be used again.

Let  be a matrix where  is the transpose of . Then,

Proof

Note first that the conclusion is true if  is elementary by (5) of Example .

Let  be the reduced row-echelon form of . Then we can write . Then 
. By Theorem  we have

By (5) of Example  we have that  for all . Also,  is either 0 or 1 (depending on whether 
 or not) and in either case . Therefore .

The above discussions allow us to now prove Theorem 3.1.1. It is restated below.

Expanding an  matrix along any row or column always gives the same result, which is the determinant.

Proof

We first show that the determinant can be computed along any row. The case  does not apply and thus let .

Let be an  matrix and fix . We need to prove that

Let us prove the case when .

Let  be the matrix obtained from  by interchanging its st and nd rows. Then by Theorem  we have

Now we have

Since  is obtained by interchanging the st and nd rows of  we have that  for all  and one can see that 
.

Further,

hence , and therefore  as desired.

The case when  is very similar; we still have  but checking that 
 is slightly more involved.

Now the cofactor expansion along column  of  is equal to the cofactor expansion along row  of , which is by the
above result just proved equal to the cofactor expansion along row 1 of , which is equal to the cofactor expansion along
column  of . Thus the cofactor cofactor along any column yields the same result.

det AB = 0 = det A det B

 Theorem :3.2.10

A AT A

det( ) = det (A)AT

A 3.2.8

C A A = ⋅ ⋅ ⋯ ⋅ CE1 E2 Em

= ⋅ ⋅ ⋯ ⋅ ⋅AT C T ET
m ET

2 E1 3.2.9

det( ) = det( ) ⋅ det( ) ⋅ ⋯ ⋅ det( ) ⋅ det( ).AT C T ET
m ET

2 E1

3.2.8 det = detEj ET
j j det C

C = I det C = det C T det A = det AT

 Theorem :3.2.11

n ×n

n = 1 n ≥ 2

A n ×n j > 1

det A = cof(A .∑
i=1

n

aj,i )j,i

j = 2

B A 1 2 3.2.8

det A = −det B.

det B = cof(B .∑
i=1

n

b1,i )1,i

B 1 2 A =b1,i a2,i i

minor(B = minor(A)1,i )2,i

cof(B = (−1 minor = −(−1 minor(A = −cof(A)1,i )1+i B1,i )2+i )2,i )2,i

det B = − cof(A∑n
i=1 a2,i )2,i det A = −det B = cof(A∑n

i=1 a2,i )2,i

j > 2 minor(B = minor(A)1,i )j,i

det B = − cof(A∑n
i=1 aj,i )j,i

j A j AT

AT

1 A
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Finally, since  by Theorem , we conclude that the cofactor expansion along row  of  is equal to
the cofactor expansion along row  of , which is equal to the cofactor expansion along column  of . Thus the proof is
complete.

This page titled 3.2: Properties of Determinants is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

det A = det AT 3.2.10 1 A

1 AT 1 A
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3.3: Finding Determinants using Row Operations
Theorems 3.2.1, 3.2.2 and 3.2.4 illustrate how row operations affect the determinant of a matrix. In this section, we look at two
examples where row operations are used to find the determinant of a large matrix. Recall that when working with large matrices,
Laplace Expansion is effective but timely, as there are many steps involved. This section provides useful tools for an alternative
method. By first applying row operations, we can obtain a simpler matrix to which we apply Laplace Expansion.

While working through questions such as these, it is useful to record your row operations as you go along. Keep this in mind as you
read through the next example.

Find the determinant of the matrix

Solution
We will use the properties of determinants outlined above to find . First, add  times the first row to the second row.
Then add  times the first row to the third row, and  times the first row to the fourth row. This yields the matrix

Notice that the only row operation we have done so far is adding a multiple of a row to another row. Therefore, by Theorem
3.2.4, 

At this stage, you could use Laplace Expansion to find . However, we will continue with row operations to find an
even simpler matrix to work with.

Add  times the third row to the second row. By Theorem 3.2.4 this does not change the value of the determinant. Then,
multiply the fourth row by . This results in the matrix

Here, , which means that 

Since , we now have that . Again, you could use Laplace Expansion here to find 
. However, we will continue with row operations.

Now replace the add  times the third row to the fourth row. This does not change the value of the determinant by Theorem
3.2.4. Finally switch the third and second rows. This causes the determinant to be multiplied by  Thus 

 where

Hence, 

 Example : Finding a Determinant3.3.1

A=

⎡

⎣

⎢
⎢⎢

1

5

4

2

2

1

5

2

3

2

4

−4

4

3

3

5

⎤

⎦

⎥
⎥⎥

det (A) −5

−4 −2

B=

⎡

⎣

⎢⎢
⎢

1

0

0

0

2

−9

−3

−2

3

−13

−8

−10

4

−17

−13

−3

⎤

⎦

⎥⎥
⎥

det (B) = det (A) .

det (B)

−3

−3

C =

⎡

⎣

⎢
⎢⎢

1

0

0

0

2

0

−3

6

3

11

−8

30

4

22

−13

9

⎤

⎦

⎥
⎥⎥

det (C) = −3 det (B) det (B) = (− )det (C)1
3

det (A) = det (B) det (A) = (− )det (C)1
3

det (C)

2

−1.

det (C) = −det (D)

D=

⎡

⎣

⎢⎢⎢

1

0

0

0

2

−3

0

0

3

−8

11

14

4

−13

22

−17

⎤

⎦

⎥⎥⎥

det (A) = (− )det (C) = ( )det (D)1
3

1
3
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You could do more row operations or you could note that this can be easily expanded along the first column. Then, expand the
resulting  matrix also along the first column. This results in

and so 

You can see that by using row operations, we can simplify a matrix to the point where Laplace Expansion involves only a few
steps. In Example , we also could have continued until the matrix was in upper triangular form, and taken the product of the
entries on the main diagonal. Whenever computing the determinant, it is useful to consider all the possible methods and tools.

Consider the next example.

Find the determinant of the matrix

Solution
Once again, we will simplify the matrix through row operations. Add  times the first row to the second row. Next add 
times the first row to the third and finally take  times the first row and add to the fourth row. This yields

By Theorem 3.2.4, .

Remember you can work with the columns also. Take  times the fourth column and add to the second column. This yields

By Theorem 3.2.4 .

Now take  times the third row and add to the top row. This gives.

which by Theorem 3.2.4 has the same determinant as .

Now, we can find  by expanding along the first column as follows. You can see that there will be only one non zero
term.

3 ×3

det (D) = 1 (−3) = 1485
∣

∣
∣
11

14

22

−17

∣

∣
∣

det (A) = ( ) (1485) = 495.1
3

3.3.1

 Example : Find the Determinant3.3.2

A=

⎡

⎣

⎢
⎢⎢

1

1

2

3

2

−3

1

−4

3

2

2

1

2

1

5

2

⎤

⎦

⎥
⎥⎥

−1 −2

−3

B=

⎡

⎣

⎢⎢⎢

1

0

0

0

2

−5

−3

−10

3

−1

−4

−8

2

−1

1

−4

⎤

⎦

⎥⎥⎥

det (A) = det (B)

−5

C =

⎡

⎣

⎢⎢⎢

1

0

0

0

−8

0

−8

10

3

−1

−4

−8

2

−1

1

−4

⎤

⎦

⎥⎥⎥

det (A) = det (C)

−1

D=

⎡

⎣

⎢⎢⎢

1

0

0

0

0

0

−8

10

7

−1

−4

−8

1

−1

1

−4

⎤

⎦

⎥⎥⎥

A

det (D)

det (D) = 1 det +0 +0 +0
⎡

⎣
⎢

0

−8

10

−1

−4

−8

−1

1

−4

⎤

⎦
⎥
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Expanding again along the first column, we have

Now since , it follows that .

Remember that you can verify these answers by using Laplace Expansion on . Similarly, if you first compute the determinant
using Laplace Expansion, you can use the row operation method to verify.

This page titled 3.3: Finding Determinants using Row Operations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

det (D) = 1(0 +8 det[ ]+10 det[ ]) = −82
−1

−8

−1

−4

−1

−4

−1

1

det (A) = det (D) det (A) = −82

A
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3.4: Applications of the Determinant

A. Use determinants to determine whether a matrix has an inverse, and evaluate the inverse using cofactors.
B. Apply Cramer’s Rule to solve a  or a  linear system.
C. Given data points, find an appropriate interpolating polynomial and use it to estimate points.

A Formula for the Inverse
The determinant of a matrix also provides a way to find the inverse of a matrix. Recall the definition of the inverse of a matrix in
Definition 2.6.1. We say that , an  matrix, is the inverse of , also , if  and .

We now define a new matrix called the cofactor matrix of . The cofactor matrix of  is the matrix whose  entry is the 
cofactor of . The formal definition is as follows.

Let  be an  matrix. Then the cofactor matrix of , denoted , is defined by 

where  is the  cofactor of .

Note that  denotes the  entry of the cofactor matrix.

We will use the cofactor matrix to create a formula for the inverse of . First, we define the adjugate of  to be the transpose of
the cofactor matrix. We can also call this matrix the classical adjoint of , and we denote it by .

In the specific case where  is a  matrix given by

then  is given by

In general,  can always be found by taking the transpose of the cofactor matrix of . The following theorem provides a
formula for  using the determinant and adjugate of .

Let  be an  matrix. Then

Moreover  is invertible if and only if . In this case we have:

Notice that the first formula holds for any  matrix , and in the case  is invertible we actually have a formula for .

Consider the following example.

Find the inverse of the matrix

 Outcomes

2 ×2 3 ×3

A−1 n×n A n×n A = IA−1 A = IA−1

A A ijth ijth

A

 Definition : The Cofactor Matrix3.4.1

A = [ ]aij n×n A cof (A) cof (A) = [cof ](A)ij
cof(A)ij ijth A

cof(A)ij ijth

A A

A adj(A)

A 2 ×2

A = [ ]
a

c

b

d

adj(A)

adj(A) = [ ]
d

−c

−b

a

adj(A) A

A−1 A

 Theorem : The Inverse and the Determinant3.4.1

A n×n

A adj(A) = adj(A)A = det (A)I

A det (A) ≠ 0

= adj(A)A−1 1
det (A)

n×n A A A−1

 Example : Find Inverse Using the Determinant3.4.1
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using the formula in Theorem .

Solution
According to Theorem ,

First we will find the determinant of this matrix. Using Theorems 3.2.1, 3.2.2, and 3.2.4, we can first simplify the matrix
through row operations. First, add  times the first row to the second row. Then add  times the first row to the third row to
obtain

By Theorem 3.2.4, . By Theorem 3.1.2, . Hence, .

Now, we need to find . To do so, first we will find the cofactor matrix of . This is given by

Here, the  entry is the  cofactor of the original matrix  which you can verify. Therefore, from Theorem , the
inverse of  is given by

Remember that we can always verify our answer for . Compute the product  and  and make sure each product
is equal to .

Compute  as follows

You can verify that  and hence our answer is correct.

We will look at another example of how to use this formula to find .

Find the inverse of the matrix

using the formula given in Theorem .

A =
⎡

⎣
⎢

1
3
1

2
0
2

3
1
1

⎤

⎦
⎥

3.4.1

3.4.1

= adj(A)A−1 1
det (A)

−3 −1

B =
⎡

⎣
⎢

1
0
0

2
−6

0

3
−8
−2

⎤

⎦
⎥

det (A) = det (B) det (B) = 1 ×−6 ×−2 = 12 det (A) = 12

adj(A) A

cof (A) =
⎡

⎣
⎢

−2
4
2

−2
−2

8

6
0

−6

⎤

⎦
⎥

ijth ijth A 3.4.1
A

= =A−1 1
12

⎡

⎣
⎢

−2
4
2

−2
−2

8

6
0

−6

⎤

⎦
⎥

T ⎡

⎣

⎢
⎢

− 1
6

− 1
6
1
2

1
3

− 1
6

0

1
6
2
3

− 1
2

⎤

⎦

⎥
⎥

A−1 AA−1 AA−1

I

AA−1

A = = = IA−1
⎡

⎣

⎢⎢

− 1
6

− 1
6
1
2

1
3

− 1
6

0

1
6
2
3

− 1
2

⎤

⎦

⎥⎥
⎡

⎣
⎢

1
3
1

2
0
2

3
1
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

A = IA−1

A−1

 Example : Find the Inverse From a Formula3.4.2

A =
⎡

⎣

⎢⎢

1
2

− 1
6

− 5
6

0
1
3
2
3

1
2

− 1
2

− 1
2

⎤

⎦

⎥⎥

3.4.1
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Solution
First we need to find . This step is left as an exercise and you should verify that  The inverse is therefore
equal to

We continue to calculate as follows. Here we show the  determinants needed to find the cofactors.

Expanding all the  determinants, this yields

Again, you can always check your work by multiplying  and  and ensuring these products equal .

This tells us that our calculation for  is correct. It is left to the reader to verify that .

The verification step is very important, as it is a simple way to check your work! If you multiply  and  and these
products are not both equal to , be sure to go back and double check each step. One common error is to forget to take the
transpose of the cofactor matrix, so be sure to complete this step.

We will now prove Theorem .

Proof

(of Theorem ) Recall that the -entry of  is equal to . Thus the -entry of  is :

By the cofactor expansion theorem, we see that this expression for  is equal to the determinant of the matrix obtained
from  by replacing its th row by  — i.e., its th row.

If  then this matrix is  itself and therefore . If on the other hand , then this matrix has its th row
equal to its th row, and therefore  in his case. Thus we obtain:

Similarly we can verify that:

det (A) det (A) = .1
6

= adj(A) = 6 adj(A)A−1 1
(1/6)

2 ×2

= 6A−1

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

∣

∣
∣
∣

1
3
2
3

− 1
2

− 1
2

∣

∣
∣
∣

−
∣

∣
∣
∣

0
2
3

1
2

− 1
2

∣

∣
∣
∣

∣

∣
∣
∣

0
1
3

1
2

− 1
2

∣

∣
∣
∣

−
∣

∣
∣
∣
− 1

6

− 5
6

− 1
2

− 1
2

∣

∣
∣
∣

∣

∣
∣
∣

1
2

− 5
6

1
2

− 1
2

∣

∣
∣
∣

−
∣

∣
∣
∣

1
2

− 1
6

1
2

− 1
2

∣

∣
∣
∣

∣

∣
∣
∣
− 1

6

− 5
6

1
3
2
3

∣

∣
∣
∣

−
∣

∣
∣
∣

1
2

− 5
6

0
2
3

∣

∣
∣
∣

∣

∣
∣
∣

1
2

− 1
6

0
1
3

∣

∣
∣
∣

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

T

2 ×2

= 6 =A−1
⎡

⎣

⎢⎢

1
6
1
3

− 1
6

1
3
1
6
1
6

1
6

− 1
3
1
6

⎤

⎦

⎥⎥

T

⎡

⎣
⎢

1
2
1

2
1

−2

−1
1
1

⎤

⎦
⎥

AA−1 AA−1 I

A = =A−1
⎡

⎣
⎢

1
2
1

2
1

−2

−1
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢

1
2

− 1
6

− 5
6

0
1
3
2
3

1
2

− 1
2

− 1
2

⎤

⎦

⎥⎥
⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

A−1 A = IA−1

AA−1 AA−1

I

3.4.1

 Theorem : The Inverse and the Determinant3.4.1

3.4.1 (i, j) adj(A) cof(A)ji (i, j) B = A ⋅ adj(A)

= adj(A = cof(ABij ∑
k=1

n

aik )kj ∑
k=1

n

aik )jk

Bij

A j , , …ai1 ai2 ain i

i = j A = detABii i ≠ j i

j = 0Bij

A adj(A) = det (A)I

adj(A)A = det (A)I
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And this proves the first part of the theorem.

Further if  is invertible, then by Theorem 3.2.5 we have:

and thus . Equivalently, if , then  is not invertible.

Finally if , then the above formula shows that  is invertible and that:

This completes the proof.

This method for finding the inverse of  is useful in many contexts. In particular, it is useful with complicated matrices where the
entries are functions, rather than numbers.

Consider the following example.

Suppose

Show that  exists and then find it.

Solution

First note  so  exists.

The cofactor matrix is

and so the inverse is

Cramer’s Rule
Another context in which the formula given in Theorem  is important is Cramer’s Rule. Recall that we can represent a
system of linear equations in the form , where the solutions to this system are given by . Cramer’s Rule gives a formula
for the solutions  in the special case that  is a square invertible matrix. Note this rule does not apply if you have a system of
equations in which there is a different number of equations than variables (in other words, when  is not square), or when  is not
invertible.

Suppose we have a system of equations given by , and we want to find solutions  which satisfy this system. Then recall
that if  exists,

A

1 = det (I) = det(A ) = det (A) det( )A−1 A−1

det (A) ≠ 0 det (A) = 0 A

det (A) ≠ 0 A

= adj(A)A−1 1
det (A)

A

 Example : Inverse for Non-Constant Matrix3.4.3

A (t) =
⎡

⎣
⎢

et

0
0

0
cos t

−sin t

0
sin t
cos t

⎤

⎦
⎥

A(t)−1

det (A (t)) = ( t+ t) = ≠ 0et cos2 sin2 et A(t)−1

C (t) =
⎡

⎣
⎢

1
0
0

0
cos tet

− sin tet

0
sin tet

cos tet

⎤

⎦
⎥

=
1
et

⎡

⎣
⎢

1
0
0

0
cos tet

− sin tet

0
sin tet

cos tet

⎤

⎦
⎥

T

⎡

⎣
⎢

e−t

0
0

0
cos t
sin t

0
−sin t
cos t

⎤

⎦
⎥

3.4.1
AX = B X

X A

A A

AX = B X

A−1
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Hence, the solutions  to the system are given by . Since we assume that  exists, we can use the formula for 
given above. Substituting this formula into the equation for , we have

Let  be the  entry of  and  be the  entry of . Then this equation becomes

where  is the  entry of .

By the formula for the expansion of a determinant along a column,

where here the  column of  is replaced with the column vector . The determinant of this modified matrix is taken
and divided by . This formula is known as Cramer’s rule.

We formally define this method now.

Suppose  is an  invertible matrix and we wish to solve the system  for  Then Cramer’s
rule says

where  is the matrix obtained by replacing the  column of  with the column matrix

We illustrate this procedure in the following example.

Find  if

Solution
We will use method outlined in Procedure  to find the values for  which give the solution to this system. Let

AX

(AX)A−1

( A)XA−1

IX

X

= B

= BA−1

= BA−1

= BA−1

= BA−1

X X = BA−1 A−1 A−1

X

X = B = adj(A)BA−1 1
det (A)

xi ith X bj jth B

= = adjxi ∑
j=1

n

[ ]aij
−1bj ∑

j=1

n 1
det (A)

(A)ijbj

adj(A)ij ijth adj(A)

= detxi
1

det (A)

⎡

⎣

⎢⎢

∗

⋮
∗

⋯

⋯

b1

⋮
bn

⋯

⋯

∗

⋮
∗

⎤

⎦

⎥⎥

ith A [ ⋯ ⋅, ]b1 bn
T

det (A)

 Procedure : Using Cramer’s Rule3.4.1

A n×n AX = B X = .[ , ⋯ , ]x1 xn
T

=xi
det ( )Ai

det (A)

Ai ith A

B =
⎡

⎣

⎢⎢

b1

⋮
bn

⎤

⎦

⎥⎥

 Example : Using Cramer's Rule3.4.4

x, y, z

=
⎡

⎣
⎢

1
3
2

2
2

−3

1
1
2

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

3.4.1 x, y, z
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In order to find , we calculate

where  is the matrix obtained from replacing the first column of  with .

Hence,  is given by

Therefore,

Similarly, to find  we construct  by replacing the second column of  with . Hence,  is given by

Therefore,

Similarly,  is constructed by replacing the third column of  with . Then,  is given by

Therefore,  is calculated as follows.

Cramer’s Rule gives you another tool to consider when solving a system of linear equations.

B =
⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

x

x =
det ( )A1

det (A)

A1 A B

A1

=A1

⎡

⎣
⎢

1
2
3

2
2

−3

1
1
2

⎤

⎦
⎥

x = = =
det ( )A1

det (A)

∣

∣

∣
∣

1
2
3

2
2

−3

1
1
2

∣

∣

∣
∣

∣

∣

∣
∣

1
3
2

2
2

−3

1
1
2

∣

∣

∣
∣

1
2

y A2 A B A2

=A2

⎡

⎣
⎢

1
3
2

1
2
3

1
1
2

⎤

⎦
⎥

y = = = −
det ( )A2

det (A)

∣

∣

∣
∣

1
3
2

1
2
3

1
1
2

∣

∣

∣
∣

∣

∣

∣
∣

1
3
2

2
2

−3

1
1
2

∣

∣

∣
∣

1
7

A3 A B A3

=A3

⎡

⎣
⎢

1
3
2

2
2

−3

1
2
3

⎤

⎦
⎥

z

z = = =
det ( )A3

det (A)

∣

∣

∣
∣

1
3
2

2
2

−3

1
2
3

∣

∣

∣
∣

∣

∣

∣
∣

1
3
2

2
2

−3

1
1
2

∣

∣

∣
∣

11
14
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We can also use Cramer’s Rule for systems of non linear equations. Consider the following system where the matrix  has
functions rather than numbers for entries.

Using Cramer’s Rule

Solve for  if

Solution
We are asked to find the value of  in the solution. We will solve using Cramer’s rule. Thus

Polynomial Interpolation
In studying a set of data that relates variables  and , it may be the case that we can use a polynomial to “fit” to the data. If such a
polynomial can be established, it can be used to estimate values of  and  which have not been provided.

Consider the following example.

Given data points , find an interpolating polynomial  of degree at most  and then estimate the value
corresponding to .

Solution
We want to find a polynomial given by

such that  and . To find this polynomial, substitute the known values in for  and solve for ,
and .

Writing the augmented matrix, we have

After row operations, the resulting matrix is

A

 Example : Use Cramer's Rule for Non-Constant Matrix3.4.5

z

=
⎡

⎣
⎢

1
0
0

0
cos tet

− sin tet

0
sin tet

cos tet

⎤

⎦
⎥
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
t

0.05int2

⎤

⎦
⎥

z

z = .05in = t ((cos t) t+sin t)

∣

∣

∣
∣

1
0
0

0
cos tet

− sin tet

1
t

t2

∣

∣

∣
∣

∣

∣

∣
∣

1
0
0

0
cos tet

− sin tet

0
sin tet

cos tet

∣

∣

∣
∣

e−t

x y

x y

 Example : Polynomial Interpolation3.4.6

(1, 4), (2, 9), (3, 12) p(x) 2
x = 1

2

p(x) = + +r0 r1x1 r2x2
2

p(1) = 4, p(2) = 9 p(3) = 12 x ,r0 r1

r2

p(1)
p(2)
p(3)

= + + = 4r0 r1 r2

= +2 +4 = 9r0 r1 r2

= +3 +9 = 12r0 r1 r2

⎡

⎣
⎢⎢

1
1
1

1
2
3

1
4
9

4
9

12

⎤

⎦
⎥⎥
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Therefore the solution to the system is  and the required interpolating polynomial is

To estimate the value for , we calculate :

This procedure can be used for any number of data points, and any degree of polynomial. The steps are outlined below.

Suppose that values of  and corresponding values of  are given, such that the actual relationship between  and  is
unknown. Then, values of  can be estimated using an interpolating polynomial . If given  and the
corresponding , the procedure to find  is as follows:

1. The desired polynomial  is given by

2.  for all  so that

3. Set up the augmented matrix of this system of equations

4. Solving this system will result in a unique solution . Use these values to construct , and estimate the
value of  for any .

This procedure motivates the following theorem.

Given  data points  with the  distinct, there is a unique polynomial 
 such that  for . The resulting polynomial  is called

the interpolating polynomial for the data points.

We conclude this section with another example.

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
0
1

−3
8

−1

⎤

⎦
⎥⎥

= −3, = 8, = −1r0 r1 r2

p(x) = −3 +8x−x2

x = 1
2 p( )1

2

p( )
1
2

= −3 +8( ) −(
1
2

1
2

)2

= −3 +4 −
1
4

=
3
4

 Procedure : Finding an Interpolation Polynomial3.4.2

x y x y

y p(x) , . . . ,x1 xn
, . . . ,y1 yn p(x)

p(x)

p(x) = + x+ +. . . +r0 r1 r2x
2 rn−1x

n−1

p( ) =xi yi i = 1, 2, . . . ,n

+ + +. . . + =r0 r1x1 r2x
2
1 rn−1x

n−1
1 y1

+ + +. . . + =r0 r1x2 r2x
2
2 rn−1x

n−1
2 y2

⋮

+ + +. . . + =r0 r1xn r2x
2
n rn−1x

n−1
n yn

⎡

⎣

⎢⎢⎢⎢⎢⎢

1

1

⋮

1

x1

x2

⋮

xn

x2
1

x2
2

⋮

x2
n

⋯

⋯

⋯

xn−1
1

xn−1
2

⋮

xn−1
n

y1

y2

⋮

yn

⎤

⎦

⎥⎥⎥⎥⎥⎥

, , ⋯ ,r0 r1 rn−1 p(x)
p(a) x = a

 Theorem : Polynomial Interpolation3.4.2

n ( , ), ( , ), ⋯ , ( , )x1 y1 x2 y2 xn yn xi
p(x) = + x+ +⋯ +r0 r1 r2x

2 rn−1x
n−1 p( ) =xi yi i = 1, 2, ⋯ ,n p(x)
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Consider the data points . Find an interpolating polynomial  of degree at most three, and
estimate the value of .

Solution
The desired polynomial  is given by:

Using the given points, the system of equations is

The augmented matrix is given by:

The resulting matrix is

Therefore,  and . To estimate the value of , we compute 
.

This page titled 3.4: Applications of the Determinant is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

 Example : Polynomial Interpolation3.4.7

(0, 1), (1, 2), (3, 22), (5, 66) p(x)
p(2)

p(x)

p(x) = + x+ +r0 r1 r2x
2 r3x

3

p(0)
p(1)
p(3)
p(5)

= = 1r0

= + + + = 2r0 r1 r2 r3

= +3 +9 +27 = 22r0 r1 r2 r3

= +5 +25 +125 = 66r0 r1 r2 r3

⎡

⎣

⎢⎢⎢⎢

1
1
1
1

0
1
3
5

0
1
9

25

0
1

27
125

1
2

22
66

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
−2

3
0

⎤

⎦

⎥⎥⎥⎥

= 1, = −2, = 3, = 0r0 r1 r2 r3 p(x) = 1 −2x+3x2 p(2)
p(2) = 1 −2(2) +3( ) = 1 −4 +12 = 922
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3.E: Exercises

Find the determinants of the following matrices.

a. 

b. 

c. 

Let . Find the following.

a. 
b. 
c. 
d. 
e. 
f. 

Find the determinants of the following matrices.

a. 

b. 

c. 

Answer
a. The answer is .
b. The answer is .
c. The answer is .

Find the following determinant by expanding along the first row and second column.

 Exercise 3.E. 1

[ ]
1

0

3

2

[ ]
0

0

3

2

[ ]
4

6

3

2

 Exercise 3.E. 2

A =
⎡

⎣
⎢

1

0

−2

2

1

5

4

3

1

⎤

⎦
⎥

minor(A)11

minor(A)21

minor(A)32

cof(A)11

cof(A)21

cof(A)32

 Exercise 3.E. 3

⎡

⎣
⎢

1

3

0

2

2

9

3

2

8

⎤

⎦
⎥

⎡

⎣
⎢

4

1

3

3

7

−9

2

8

3

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

1

1

4

1

2

3

1

2

3

2

5

1

2

3

0

2

⎤

⎦

⎥
⎥⎥

31
375
−2

 Exercise 3.E. 4

∣

∣

∣
∣

1

2

2

2

1

1

1

3

1

∣

∣

∣
∣
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Answer

Find the following determinant by expanding along the first column and third row.

Answer

Find the following determinant by expanding along the second row and first column.

Answer

Compute the determinant by cofactor expansion. Pick the easiest row or column to use.

Answer

Find the determinant of the following matrices.

= 6

∣

∣

∣
∣

1

2

2

2

1

1

1

3

1

∣

∣

∣
∣

 Exercise 3.E. 5

∣

∣

∣
∣

1

1

2

2

0

1

1

1

1

∣

∣

∣
∣

= 2

∣

∣

∣
∣

1

1

2

2

0

1

1

1

1

∣

∣

∣
∣

 Exercise 3.E. 6

∣

∣

∣
∣

1

2

2

2

1

1

1

3

1

∣

∣

∣
∣

= 6

∣

∣

∣
∣

1

2

2

2

1

1

1

3

1

∣

∣

∣
∣

 Exercise 3.E. 7

∣

∣

∣
∣
∣
∣

1

2

0

2

0

1

0

1

0

1

0

3

1

0

2

1

∣

∣

∣
∣
∣
∣

= −4

∣

∣

∣
∣
∣
∣

1

2

0

2

0

1

0

1

0

1

0

3

1

0

2

1

∣

∣

∣
∣
∣
∣

 Exercise 3.E. 8
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a. 

b. 

c. 

An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of
the determinant.

Answer

It does not change the determinant. This was just taking the transpose.

An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of
the determinant.

Answer

In this case two rows were switched and so the resulting determinant is  times the first

An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of
the determinant.

Answer

The determinant is unchanged. It was just the first row added to the second.

An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of
the determinant.

Answer

The second row was multiplied by  so the determinant of the result is  times the original determinant.

A = [ ]
1

0

−34

2

A =
⎡

⎣
⎢

4

0

0

3

−2

0

14

0

5

⎤

⎦
⎥

A =

⎡

⎣

⎢
⎢⎢

2

0

0

0

3

4

0

0

15

1

−3

0

0

7

5

1

⎤

⎦

⎥
⎥⎥

 Exercise 3.E. 9

[ ] → ⋯ → [ ]
a

c

b

d

a

b

c

d

 Exercise 3.E. 10

[ ] → ⋯ → [ ]
a

c

b

d

c

a

d

b

−1

 Exercise 3.E. 11

[ ] → ⋯ → [ ]
a

c

b

d

a

a+c

b

b+d

 Exercise 3.E. 12

[ ] → ⋯ → [ ]
a

c

b

d

a

2c

b

2d

2 2
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An operation is done to get from the first matrix to the second. Identify what was done and tell how it will affect the value of
the determinant.

Answer

In this case the two columns were switched so the determinant of the second is  times the determinant of the first.

Let  be an  matrix and suppose there are  rows (columns) such that all rows (columns) are linear combinations of
these  rows (columns). Show .

Answer

If the determinant is nonzero, then it will remain nonzero with row operations applied to the matrix. However, by
assumption, you can obtain a row of zeros by doing row operations. Thus the determinant must have been zero after all.

Show  for an  matrix  and scalar .

Answer

. The matrix which has a down the main diagonal has determinant
equal to .

Construct  matrices  and  to show that the .

Answer

Is it true that ? If this is so, explain why. If it is not so, give a counter example.

Answer

This is not true at all. Consider .

 Exercise 3.E. 13

[ ] → ⋯ → [ ]
a

c

b

d

b

d

a

c

−1

 Exercise 3.E. 14

A r×r r−1
r−1 det(A) = 0

 Exercise 3.E. 15

det(aA) = det(A)an n×n A a

det(aA) = det(aIA) = det(aI) det(A) = det(A)an

an

 Exercise 3.E. 16

2 ×2 A B detAdetB = det(AB)

det([ ][ ]) = −8
1

3

2

4

−1

−5

2

6

det[ ]det[ ] = −2 ×4 = −8
1

3

2

4

−1

−5

2

6

 Exercise 3.E. 17

det(A+B) = det(A) +det(B)

A = [ ] , B = [ ]
1

0

0

1

−1

0

0

−1
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An  matrix is called nilpotent if for some positive integer,  it follows . If  is a nilpotent matrix and  is the
smallest possible integer such that , what are the possible values of ?

Answer

It must be  because .

A matrix is said to be orthogonal if . Thus the inverse of an orthogonal matrix is just its transpose. What are the
possible values of  if  is an orthogonal matrix?

Answer

You would need  and so , or .

Let  and  be two  matrices.  (  is similar to ) means there exists an invertible matrix  such that 
. Show that if , then .

Answer

.

Tell whether each statement is true or false. If true, provide a proof. If false, provide a counter example.

a. If A is a  matrix with a zero determinant, then one column must be a multiple of some other column.
b. If any two columns of a square matrix are equal, then the determinant of the matrix equals zero.
c. For two  matrices  and , .
d. For an  matrix , 
e. If  exists then .
f. If  is obtained by multiplying a single row of  by  then .
g. For  an  matrix, .
h. If  is a real  matrix, then .
i. If  for some positive integer , then .
j. If  for some , then .

Answer

a. False. Consider 

b. True.
c. False.
d. False.
e. True.
f. False.
g. True.
h. True.
i. True.
j. True.

 Exercise 3.E. 18

n×n k = 0Ak A k

= 0Ak det(A)

0 0 = det(0) = det( ) = (det(A)Ak )k

 Exercise 3.E. 19

A = IAT

det(A) A

det(A ) = det(A) det( ) = det(A = 1AT AT )2 det(A) = 1 −1

 Exercise 3.E. 20

A B n×n A ∼ B A B P

A = BPP −1 A ∼ B det(A) = det(B)

det(A) = det( BS) = det( ) det(B) det(S) = det(B) det( S) = det(B)S−1 S−1 S−1

 Exercise 3.E. 21

3 ×3

n×n A B det(A+B) = det(A) +det(B)
n×n A det(3A) = 3 det(A)

A−1 det( ) = det(AA−1 )−1

B A 4 det(B) = 4 det(A)
A n×n det(−A) = (−1 det(A))n

A n×n det( A) ≥ 0AT

= 0Ak k det(A) = 0
AX = 0 X ≠ 0 det(A) = 0

⎡

⎣
⎢

1

−1

0

1

5

3

2

4

3

⎤

⎦
⎥
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Find the determinant using row operations to first simplify.

Answer

Find the determinant using row operations to first simplify.

Answer

Find the determinant using row operations to first simplify.

Answer

One can row reduce this using only row operation 3 to

and therefore, the determinant is .

 Exercise 3.E. 22

∣

∣

∣
∣

1

2

−4

2

3

1

1

2

2

∣

∣

∣
∣

= −6

∣

∣

∣
∣

1

2

−4

2

3

1

1

2

2

∣

∣

∣
∣

 Exercise 3.E. 23

∣

∣

∣
∣

2

2

1

1

4

4

3

2

−5

∣

∣

∣
∣

= −32

∣

∣

∣
∣

2

2

1

1

4

4

3

2

−5

∣

∣

∣
∣

 Exercise 3.E. 24

∣

∣

∣
∣
∣
∣

1

3

−1

2

2

1

0

3

1

−2

3

2

2

3

1

−2

∣

∣

∣
∣
∣
∣

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

2

−5

0

0

1

−5

2

0

2

−3
9
5

− 63
10

⎤

⎦

⎥⎥⎥⎥⎥

−63

= 63

∣

∣

∣
∣
∣
∣

1

3

−1

2

2

1

0

3

1

−2

3

2

2

3

1

−2

∣

∣

∣
∣
∣
∣
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Find the determinant using row operations to first simplify.

Answer

One can row reduce this using only row operation 3 to

Thus the determinant is given by

Let

Determine whether the matrix  has an inverse by finding whether the determinant is non zero. If the determinant is nonzero,
find the inverse using the formula for the inverse which involves the cofactor matrix.

Answer

 and so it has an inverse. This inverse is

 Exercise 3.E. 25

∣

∣

∣
∣
∣
∣

1

3

−1

2

4

2

0

1

1

−2

3

2

2

3

3

−2

∣

∣

∣
∣
∣
∣

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

4

−10

0

0

1

−5

2

0

2

−3
19
5

− 211
20

⎤

⎦

⎥⎥⎥⎥⎥

= 211

∣

∣

∣
∣
∣
∣

1

3

−1

2

4

2

0

1

1

−2

3

2

2

3

3

−2

∣

∣

∣
∣
∣
∣

 Exercise 3.E. 26

A =
⎡

⎣
⎢

1

0

3

2

2

1

3

1

0

⎤

⎦
⎥

A

det = −13
⎡

⎣
⎢

1

0

3

2

2

1

3

1

0

⎤

⎦
⎥

1

−13

⎡

⎣

⎢⎢⎢
⎢⎢
⎢⎢⎢

∣

∣
∣
2

1

1

0

∣

∣
∣

−
∣

∣
∣
2

1

3

0

∣

∣
∣

∣

∣
∣
2

2

3

1

∣

∣
∣

−
∣

∣
∣
0

3

1

0

∣

∣
∣

∣

∣
∣
1

3

3

0

∣

∣
∣

−
∣

∣
∣
1

0

3

1

∣

∣
∣

∣

∣
∣
0

3

2

1

∣

∣
∣

−
∣

∣
∣
1

3

2

1

∣

∣
∣

∣

∣
∣
1

0

2

2

∣

∣
∣

⎤

⎦

⎥⎥⎥
⎥⎥
⎥⎥⎥

T

=
1

−13

⎡

⎣
⎢

−1

3

−4

3

−9

−1

−6

5

2

⎤

⎦
⎥

T

=

⎡

⎣

⎢⎢⎢

1
13

− 3
13

6
13

− 3
13

9
13

− 5
13

4
13
1

13

− 2
13

⎤

⎦

⎥⎥⎥

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/30085?pdf


3.E.8 https://math.libretexts.org/@go/page/30085

Let

Determine whether the matrix  has an inverse by finding whether the determinant is non zero. If the determinant is nonzero,
find the inverse using the formula for the inverse.

Answer

 so it has an inverse. This inverse is 

Let

Determine whether the matrix  has an inverse by finding whether the determinant is non zero. If the determinant is nonzero,
find the inverse using the formula for the inverse.

Answer

so it has an inverse which is

Let

Determine whether the matrix  has an inverse by finding whether the determinant is non zero. If the determinant is nonzero,
find the inverse using the formula for the inverse.

Let

 Exercise 3.E. 27

A =
⎡

⎣
⎢

1

0

3

2

2

1

0

1

1

⎤

⎦
⎥

A

det = 7
⎡

⎣
⎢

1

0

3

2

2

1

0

1

1

⎤

⎦
⎥ =1

7

⎡

⎣
⎢

1

−2

2

3

1

−1

−6

5

2

⎤

⎦
⎥

T ⎡

⎣

⎢⎢⎢

1
7
3
7

− 6
7

− 2
7

1
7
5
7

2
7

− 1
7

2
7

⎤

⎦

⎥⎥⎥

 Exercise 3.E. 28

A =
⎡

⎣
⎢

1

2

0

3

4

1

3

1

1

⎤

⎦
⎥

A

det = 3
⎡

⎣
⎢

1

2

0

3

4

1

3

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢

1

− 2
3

2
3

0
1
3

− 1
3

−3
5
3

− 2
3

⎤

⎦

⎥⎥

 Exercise 3.E. 29

A =
⎡

⎣
⎢

1

0

2

2

2

6

3

1

7

⎤

⎦
⎥

A

 Exercise 3.E. 30

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/30085?pdf


3.E.9 https://math.libretexts.org/@go/page/30085

Determine whether the matrix  has an inverse by finding whether the determinant is non zero. If the determinant is nonzero,
find the inverse using the formula for the inverse.

Answer

and so it has an inverse. The inverse turns out to equal

For the following matrices, determine if they are invertible. If so, use the formula for the inverse in terms of the cofactor matrix
to find each inverse. If the inverse does not exist, explain why.

a. 

b. 

c. 

Answer

a. 

b. 

c. 

Consider the matrix

Does there exist a value of  for which this matrix fails to have an inverse? Explain.

Answer

A =
⎡

⎣
⎢

1

1

3

0

0

1

3

1

0

⎤

⎦
⎥

A

det = 2
⎡

⎣
⎢

1

1

3

0

0

1

3

1

0

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

− 1
2

3
2
1
2

3
2

− 9
2

− 1
2

0

1

0

⎤

⎦

⎥⎥⎥

 Exercise 3.E. 31

[ ]
1

1

1

2

⎡

⎣
⎢

1

0

4

2

2

1

3

1

1

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

2

3

1

1

0

2

⎤

⎦
⎥

= 1
∣

∣
∣
1

1

1

2

∣

∣
∣

= −15

∣

∣

∣
∣

1

0

4

2

2

1

3

1

1

∣

∣

∣
∣

= 0

∣

∣

∣
∣

1

2

0

2

3

1

1

0

2

∣

∣

∣
∣

 Exercise 3.E. 32

A =
⎡

⎣
⎢

1

0

0

0

cos t

sin t

0

−sin t

cos t

⎤

⎦
⎥

t
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No. It has a nonzero determinant for all 

Consider the matrix

Does there exist a value of  for which this matrix fails to have an inverse? Explain.

Answer

and so it has no inverse when 

Consider the matrix

Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Answer

and so this matrix fails to have a nonzero determinant at any value of .

Consider the matrix

Does there exist a value of t for which this matrix fails to have an inverse? Explain.

Answer

and so this matrix is always invertible.

t

 Exercise 3.E. 33

A =
⎡

⎣
⎢

1

0

t

t

1

0

t2

2t

2

⎤

⎦
⎥

t

det = +2
⎡

⎣
⎢

1

0

t

t

1

0

t2

2t

2

⎤

⎦
⎥ t3

t = − 2
–

√3

 Exercise 3.E. 34

A =
⎡

⎣
⎢
et

et

et

cosh t

sinh t

cosh t

sinh t

cosh t

sinh t

⎤

⎦
⎥

det = 0
⎡

⎣
⎢

et

et

et

cosh t

sinh t

cosh t

sinh t

cosh t

sinh t

⎤

⎦
⎥

t

 Exercise 3.E. 35

A =
⎡

⎣
⎢

et

et

et

cos te−t

− cos t− sin te−t e−t

2 sin te−t

sin te−t

− sin t+ cos te−t e−t

−2 cos te−t

⎤

⎦
⎥

det = 5 ≠ 0
⎡

⎣
⎢

et

et

et

cos te−t

− cos t− sin te−t e−t

2 sin te−t

sin te−t

− sin t+ cos te−t e−t

−2 cos te−t

⎤

⎦
⎥ e−t
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Show that if  for  an  matrix, it follows that if , then .

Answer

If , then  exists and so you could multiply on both sides on the left by  and obtain that .

Suppose  are  matrices and that . Show that then . Hint: First explain why ,  are
both nonzero. Then  and then show . From this use what is given to conclude 

. Then use Exercise .

Answer

You have . Hence both  and  have inverses. Letting  be given,

and so it follows from the above problem that . Since  is arbitrary, it follows that .

Use the formula for the inverse in terms of the cofactor matrix to find the inverse of the matrix

Answer

Hence the inverse is

Find the inverse, if it exists, of the matrix

Answer

 Exercise 3.E. 36

det(A) ≠ 0 A n×n AX = 0 X = 0

det(A) ≠ 0 A−1 A−1 X = 0

 Exercise 3.E. 37

A,B n×n AB = I BA = I det(A) det(B)
(AB)A = A BA(BA−I) = 0

A(BA−I) = 0 3.E. 36

1 = det(A) det(B) A B X

A(BA−I)X = (AB)AX−AX = AX−AX = 0

(BA−I)X = 0 X BA = I

 Exercise 3.E. 38

A =
⎡

⎣
⎢

et

0

0

0

cos tet

cos t− sin tet et

0

sin tet

cos t+ sin tet et

⎤

⎦
⎥

det = .
⎡

⎣
⎢
et

0

0

0

cos tet

cos t− sin tet et

0

sin tet

cos t+ sin tet et

⎤

⎦
⎥ e3t

e−3t
⎡

⎣
⎢

e2t

0

0

0

cos t+ sin te2t e2t

− sin te2t

0

−( cos t− sin)te2t e2t

cos(t)e2t

⎤

⎦
⎥

T

=
⎡

⎣
⎢

e−t

0

0

0

(cos t+sin t)e−t

− (cos t−sin t)e−t

0

−(sin t)e−t

(cos t)e−t

⎤

⎦
⎥

 Exercise 3.E. 39

A =
⎡

⎣
⎢

et

et

et

cos t

−sin t

−cos t

sin t

cos t

−sin t

⎤

⎦
⎥
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Suppose  is an upper triangular matrix. Show that  exists if and only if all elements of the main diagonal are non zero. Is
it true that  will also be upper triangular? Explain. Could the same be concluded for lower triangular matrices?

Answer

The given condition is what it takes for the determinant to be non zero. Recall that the determinant of an upper triangular
matrix is just the product of the entries on the main diagonal

If  and  are each  matrices and  is invertible, show why each of  and  are invertible.

Answer

This follows because  and if this product is nonzero, then each determinant in the
product is nonzero and so each of these matrices is invertible.

Decide if this statement is true or false: Cramer’s rule is useful for finding solutions to systems of linear equations in which
there is an infinite set of solutions.

Answer

False.

Use Cramer’s rule to find the solution to

Answer

Solution is: 

Use Cramer’s rule to find the solution to

Answer

⎡

⎣
⎢

et

et

et

cos t

−sin t

−cos t

sin t

cos t

−sin t

⎤

⎦
⎥

−1

=

⎡

⎣

⎢⎢⎢

1
2
e−t

cos t+ sin t1
2

1
2

sin t− cos t1
2

1
2

0

−sin t

cos t

1
2
e−t

sin t− cos t1
2

1
2

− cos t− sin t1
2

1
2

⎤

⎦

⎥⎥⎥

 Exercise 3.E. 40

A A−1

A−1

 Exercise 3.E. 41

A, B, C n×n ABC A, B, C

det(ABC) = det(A) det(B) det(C)

 Exercise 3.E. 42

 Exercise 3.E. 43

x+2y

2x−y

= 1

= 2

[x = 1, y = 0]

 Exercise 3.E. 44

x+2y+z = 1

2x−y−z = 2

x+z = 1
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Solution is: . For example,

This page titled 3.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

[x = 1, y = 0, z = 0]

y = = 0

∣

∣

∣
∣

1

2

1

1

2

1

1

−1

1

∣

∣

∣
∣

∣

∣

∣
∣

1

2

1

2

−1

0

1

−1

1

∣

∣

∣
∣
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4.1: Vectors in Rⁿ

A. Find the position vector of a point in .

The notation  refers to the collection of ordered lists of  real numbers, that is

In this chapter, we take a closer look at vectors in . First, we will consider what  looks like in more detail. Recall that the
point given by  is called the origin.

Now, consider the case of  for  Then from the definition we can identify  with points in  as follows:

Hence,  is defined as the set of all real numbers and geometrically, we can describe this as all the points on a line.

Now suppose . Then, from the definition,

Consider the familiar coordinate plane, with an  axis and a  axis. Any point within this coordinate plane is identified by where it
is located along the  axis, and also where it is located along the  axis. Consider as an example the following diagram.

Figure 

Hence, every element in  is identified by two components,  and , in the usual manner. The coordinates  (or , )
uniquely determine a point in the plan. Note that while the definition uses  and  to label the coordinates and you may be used
to  and , these notations are equivalent.

Now suppose . You may have previously encountered the -dimensional coordinate system, given by

Points in  will be determined by three coordinates, often written  which correspond to the , , and  axes. We can think
as above that the first two coordinates determine a point in a plane. The third component determines the height above or below the
plane, depending on whether this number is positive or negative, and all together this determines a point in space. You see that the
ordered triples correspond to points in space just as the ordered pairs correspond to points in a plane and single real numbers
correspond to points on a line.

 Outcomes

R
n

R
n n

= {( ⋯ ) : ∈ R for j= 1, ⋯ ,n}R
n x1 xn xj

R
n

R
n

0 = (0, ⋯ , 0)

R
n n = 1. R R

1

R = = {( ) : ∈ R}R
1 x1 x1

R

n = 2

= {( , ) : ∈ R for j= 1, 2}R
2 x1 x2 xj

x y

x y

4.1.1

R
2 x y x, y x1 x2

x1 x2

x y

n = 3 3

= {( , , ) : ∈ R for j= 1, 2, 3}R
3 x1 x2 x3 xj

R
3 (x, y, z) x y z
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The idea behind the more general  is that we can extend these ideas beyond  This discussion regarding points in  leads
into a study of vectors in . While we consider  for all , we will largely focus on  in this section.

Consider the following definition.

Let  be the coordinates of a point in  Then the vector  with its tail at  and its tip at  is
called the position vector of the point . We write

For this reason we may write both  and .

This definition is illustrated in the following picture for the special case of .

Figure 

Thus every point  in  determines its position vector . Conversely, every such position vector  which has its tail at  and
point at  determines the point  of .

Now suppose we are given two points,  whose coordinates are  and  respectively. We can also
determine the position vector from  to  (also called the vector from  to ) defined as follows.

Now, imagine taking a vector in  and moving it around, always keeping it pointing in the same direction as shown in the
following picture.

R
n n = 3. R

n

R
n

R
n n n = 2, 3

 Definition  THe Position Vector4.1.1

P = ( , ⋯ , )p1 pn .R
n 0P

−→
0 = (0, ⋯ , 0) P

P

=0P
−→ ⎡

⎣

⎢⎢

p1

⋮
pn

⎤

⎦

⎥⎥

P = ( , ⋯ , ) ∈p1 pn R
n = ∈0P

−→
[ ⋯ ]p1 pn

T
R
n

R
3

4.1.2

P R
n 0P

−→
0P
−→

0
P P R

n

P ,Q ( , ⋯ , )p1 pn ( , ⋯ , )q1 qn
P Q P Q

= = −PQ
−→− ⎡

⎣

⎢⎢

−q1 p1

⋮
−qn pn

⎤

⎦

⎥⎥ 0Q
−→

0P
−→

R
n
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Figure 

After moving it around, it is regarded as the same vector. Each vector,  and  has the same length (or magnitude) and
direction. Therefore, they are equal.

Consider now the general definition for a vector in .

Let  Then,

is called a vector. Vectors have both size (magnitude) and direction. The numbers  are called the components of .

Using this notation, we may use  to denote the position vector of point . Notice that in this context, . These notations
may be used interchangeably.

You can think of the components of a vector as directions for obtaining the vector. Consider . Draw a vector with its tail at
the point  and its tip at the point . This vector it is obtained by starting at , moving parallel to the  axis to 

 and then from here, moving parallel to the  axis to  and finally parallel to the  axis to  Observe that the
same vector would result if you began at the point , moved parallel to the  axis to  then parallel to the  axis
to  and finally parallel to the  axis to . Here, the vector would have its tail sitting at the
point determined by  and its point at  It is the same vector because it will point in the
same direction and have the same length. It is like you took an actual arrow, and moved it from one location to another keeping it
pointing the same direction.

We conclude this section with a brief discussion regarding notation. In previous sections, we have written vectors as columns, or 
 matrices. For convenience in this chapter we may write vectors as the transpose of row vectors, or  matrices. These are

of course equivalent and we may move between both notations. Therefore, recognize that

Notice that two vectors  and  are equal if and only if all corresponding components are equal.
Precisely,

Thus  and  but  because, even though the same numbers are
involved, the order of the numbers is different.

For the specific case of , there are three special vectors which we often use. They are given by

4.1.3

0P
−→

AB
−→−

R
n

 Definition  Vectors in 4.1.2 R
n

= {( , ⋯ , ) : ∈ R for j= 1, ⋯ ,n} .R
n x1 xn xj

=x⃗ 
⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥

xj x⃗ 

p ⃗  P =p ⃗  0P
−→

n = 3
(0, 0, 0) (a, b, c) (0, 0, 0) x

(a, 0, 0) y (a, b, 0) z (a, b, c) .
(d, e, f) x (d+a, e, f) , y

(d+a, e+b, f) , z (d+a, e+b, f +c)
A = (d, e, f) B = (d+a, e+b, f +c) .

n×1 1 ×n

[ ] =
2
3

[ ]2 3 T

=u⃗  [ ⋯ ]u1 un
T =v ⃗  [ ⋯ ]v1 vn

T

= if and only ifu⃗  v ⃗ 
= for all j= 1, ⋯ ,nuj vj

∈[ ]1 2 4 T
R

3 ∈[ ]2 1 4 T
R

3 ≠[ ]1 2 4 T [ ]2 1 4 T

R
3
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We can write any vector  as a linear combination of these vectors, written as . This
notation will be used throughout this chapter.

This page titled 4.1: Vectors in Rⁿ is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

=i ⃗  [ ]1 0 0 T

=j ⃗  [ ]0 1 0 T

=k⃗  [ ]0 0 1 T

=u⃗  [ ]u1 u2 u3
T = + +u⃗  u1i ⃗  u2j ⃗  u3k⃗
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4.2: Vector Algebra

A. Understand vector addition and scalar multiplication, algebraically.
B. Introduce the notion of linear combination of vectors.

Addition and scalar multiplication are two important algebraic operations done with vectors. Notice that these operations apply to
vectors in , for any value of . We will explore these operations in more detail in the following sections.

Addition of Vectors in 
Addition of vectors in  is defined as follows.

If  then  and is defined by

To add vectors, we simply add corresponding components. Therefore, in order to add vectors, they must be the same size.

Addition of vectors satisfies some important properties which are outlined in the following theorem.

The following properties hold for vectors .

The Commutative Law of Addition

The Associative Law of Addition

The Existence of an Additive Identity

The Existence of an Additive Inverse

The additive identity shown in Equation  is also called the zero vector, the  vector in which all components are equal
to . Further,  is simply the vector with all components having same value as those of  but opposite sign; this is just .
This will be made more explicit in the next section when we explore scalar multiplication of vectors. Note that subtraction is
defined as .

 Outcomes

R
n

n

R
n

R
n

 Definition : Addition of Vectors in 4.2.1 R
n

= , = ∈u⃗ 
⎡

⎣

⎢⎢

u1

⋮
un

⎤

⎦

⎥⎥ v ⃗ 
⎡

⎣

⎢⎢

v1

⋮
vn

⎤

⎦

⎥⎥ R
n + ∈u⃗  v ⃗  R

n

+u⃗  v ⃗  = +
⎡

⎣

⎢⎢

u1

⋮
un

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

v1

⋮
vn

⎤

⎦

⎥⎥

=
⎡

⎣

⎢⎢

+u1 v1

⋮
+un vn

⎤

⎦

⎥⎥

 Theorem : Properties of Vector Addition4.2.1

, , ∈u⃗  v ⃗  w⃗  R
n

+ = +u⃗  v ⃗  v ⃗  u⃗ 

( + ) + = +( + )u⃗  v ⃗  w⃗  u⃗  v ⃗  w⃗ 

+ =u⃗  0⃗  u⃗  (4.2.1)

+(− ) =u⃗  u⃗  0⃗ 

(4.2.1) n ×1
0 −u⃗  u⃗  (−1)u⃗ 

− = +(− )u⃗  v ⃗  u⃗  v ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14518?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R/4.02%3A_Vector_Algebra


4.2.2 https://math.libretexts.org/@go/page/14518

Scalar Multiplication of Vectors in 
Scalar multiplication of vectors in  is defined as follows.

If  and  is a scalar, then  is defined by

Just as with addition, scalar multiplication of vectors satisfies several important properties. These are outlined in the following
theorem.

The following properties hold for vectors  and  scalars.

The Distributive Law over Vector Addition

The Distributive Law over Scalar Addition

The Associative Law for Scalar Multiplication

Rule for Multiplication by 

Proof

We will show the proof of:

Note that:

We now present a useful notion you may have seen earlier combining vector addition and scalar multiplication

A vector  is said to be a linear combination of the vectors  if there exist scalars,  such that

For example,

R
n

R
n

 Definition : Scalar Multiplication of Vectors in 4.2.2 R
n

∈u⃗  R
n k ∈ R k ∈u⃗  R

n

k = k =u⃗ 
⎡

⎣

⎢⎢

u1

⋮
un

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

ku1

⋮
kun

⎤

⎦

⎥⎥

 Theorem : Properties of Scalar Multiplication4.2.2

, ∈u⃗  v ⃗  R
n k, p

k ( + ) = k +ku⃗  v ⃗  u⃗  v ⃗ 

(k +p) = k +pu⃗  u⃗  u⃗ 

k (p ) = (kp)u⃗  u⃗ 

1

1 =u⃗  u⃗ 

k ( + ) = k +ku⃗  v ⃗  u⃗  v ⃗ 

k ( + )u⃗  v ⃗  = k [ + ⋯ + ]u1 v1 un vn
T

= [k ( + ) ⋯ k ( + )]u1 v1 un vn
T

= [k +k ⋯ k +k ]u1 v1 un vn
T

= +[k ⋯ k ]u1 un
T [k ⋯ k ]v1 vn

T

= k +ku⃗  v ⃗ 

 Definition : Linear Combination4.2.3

v ⃗  , ⋯ ,u⃗ 1 u⃗ n , ⋯ ,a1 an

= +⋯ +v ⃗  a1u⃗ 1 anu⃗ n
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Thus we can say that

is a linear combination of the vectors
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⎡
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4.3: Geometric Meaning of Vector Addition

A. Understand vector addition, geometrically.

Recall that an element of  is an ordered list of numbers. For the specific case of  this can be used to determine a point in
two or three dimensional space. This point is specified relative to some coordinate axes.

Consider the case . Recall that taking a vector and moving it around without changing its length or direction does not change
the vector. This is important in the geometric representation of vector addition.

Suppose we have two vectors,  and  in . Each of these can be drawn geometrically by placing the tail of each vector at  and
its point at  and  respectively. Suppose we slide the vector  so that its tail sits at the point of . We know
that this does not change the vector . Now, draw a new vector from the tail of  to the point of . This vector is .

The geometric significance of vector addition in  for any  is given in the following definition.

Let  and  be two vectors. Slide  so that the tail of  is on the point of . Then draw the arrow which goes from the tail of 
to the point of . This arrow represents the vector .

Figure 

This definition is illustrated in the following picture in which  is shown for the special case .

Figure 

 Learning Objectives

R
n

n = 2, 3

n = 3

u⃗  v ⃗  R
3 0

( , , )u1 u2 u3 ( , , )v1 v2 v3 v ⃗  u⃗ 

v ⃗  u⃗  v ⃗  +u⃗  v ⃗ 

R
n

n

 Definition : Geometry of Vector Addition4.3.1

u⃗  v ⃗  v ⃗  v ⃗  u⃗  u⃗ 

v ⃗  +u⃗  v ⃗ 

4.3.1
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Notice the parallelogram created by  and  in the above diagram. Then  is the directed diagonal of the parallelogram
determined by the two vectors  and .

When you have a vector , its additive inverse  will be the vector which has the same magnitude as  but the opposite direction.

When one writes  the meaning is  as with real numbers. The following example illustrates these definitions and
conventions.

Consider the following picture of vectors  and .

Figure 

Sketch a picture of 

Solution
We will first sketch  Begin by drawing  and then at the point of , place the tail of  as shown. Then  is the
vector which results from drawing a vector from the tail of  to the tip of .

Figure 

Next consider  This means  From the above geometric description of vector addition,  is the vector which
has the same length but which points in the opposite direction to . Here is a picture.

Figure 

u⃗  v ⃗  +u⃗  v ⃗ 

u⃗  v ⃗ 

v ⃗  −v ⃗  v ⃗ 

−u⃗  v,
→

+(− )u⃗  v ⃗ 

 Example : Graphing Vector Addition4.3.1

u⃗  v ⃗ 

4.3.3

+ , − .u⃗  v ⃗  u⃗  v ⃗ 

+ .u⃗  v ⃗  u⃗  u⃗  v ⃗  +u⃗  v ⃗ 

u⃗  v ⃗ 

4.3.4

− .u⃗  v ⃗  +(− ) .u⃗  v ⃗  −v ⃗ 

v ⃗ 

4.3.5
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4.4: Length of a Vector

Find the length of a vector and the distance between two points in .
Find the corresponding unit vector to a vector in .

In this section, we explore what is meant by the length of a vector in . We develop this concept by first looking at the distance
between two points in .

First, we will consider the concept of distance for , that is, for points in . Here, the distance between two points  and  is
given by the absolute value of their difference. We denote the distance between  and  by  which is defined as

Consider now the case for , demonstrated by the following picture.

Figure 

There are two points  and  in the plane. The distance between these points is shown in the picture as a
solid line. Notice that this line is the hypotenuse of a right triangle which is half of the rectangle shown in dotted lines. We want to
find the length of this hypotenuse which will give the distance between the two points. Note the lengths of the sides of this triangle
are  and , the absolute value of the difference in these values. Therefore, the Pythagorean Theorem implies the
length of the hypotenuse (and thus the distance between  and ) equals

Now suppose  and let  and  be two points in  Consider the following picture in which
the solid line joins the two points and a dotted line joins the points  and 

Figure 

Here, we need to use Pythagorean Theorem twice in order to find the length of the solid line. First, by the Pythagorean Theorem,
the length of the dotted line joining  and  equals

 Learning Objectives

R
n

R
n

R
n

R
n

R R
1 P Q

P Q d(P ,Q)

d(P ,Q) = (P −Q)2
− −−−−−−−

√ (4.4.1)

n = 2

4.4.1

P = ( , )p1 p2 Q = ( , )q1 q2

| − |p1 q1 | − |p2 q2

P Q

=( + )| − |p1 q1
2 | − |p2 q2

2 1/2
( + )( − )p1 q1

2 ( − )p2 q2
2 1/2

(4.4.2)

n = 3 P = ( , , )p1 p2 p3 Q = ( , , )q1 q2 q3 .R
3

( , , )q1 q2 q3 ( , , ) .p1 p2 q3

4.4.2

( , , )q1 q2 q3 ( , , )p1 p2 q3

( + )( − )p1 q1
2 ( − )p2 q2

2 1/2
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while the length of the line joining  to  is just  Therefore, by the Pythagorean Theorem again, the
length of the line joining the points  and  equals

This discussion motivates the following definition for the distance between points in .

Let  and  be two points in . Then the distance between these points is defined as

This is called the distance formula. We may also write  as the distance between  and .

From the above discussion, you can see that Definition  holds for the special cases , as in Equations , 
, . In the following example, we use Definition  to find the distance between two points in .

Find the distance between the points  and  in , where  and  are given by

and

Solution
We will use the formula given in Definition  to find the distance between  and . Use the distance formula and write

Therefore, 

There are certain properties of the distance between points which are important in our study. These are outlined in the following
theorem.

Let  and  be points in , and let the distance between them, , be given as in Definition . Then, the following
properties hold.

, and equals 0 exactly when 

There are many applications of the concept of distance. For instance, given two points, we can ask what collection of points are all
the same distance between the given points. This is explored in the following example.

( , , )p1 p2 q3 ( , , )p1 p2 p3 | − | .p3 q3

P = ( , , )p1 p2 p3 Q = ( , , )q1 q2 q3

( + )( )( + )( − )p1 q1
2 ( − )p2 q2

2 1/2 2

( − )p3 q3
2

1/2

= ( + + )( − )p1 q1
2 ( − )p2 q2

2 ( − )p3 q3
2

1/2
(4.4.3)

R
n

 Definition : Distance Between Points4.4.1

P = ( , ⋯ , )p1 pn Q = ( , ⋯ , )q1 qn R
n

 distance between P  and Q  = d(P ,Q) =( )∑
k=1

n

| − |pk qk
2

1/2

|P −Q| P Q

4.4.1 n = 1, 2, 3 (4.4.1)

(4.4.2) (4.4.3) 4.4.1 R
4

 Example : Distance Between Points4.4.1

P Q R
4

P Q

P = (1, 2, −4, 6)

Q = (2, 3, −1, 0)

4.4.1 P Q

d(P ,Q) = = 47( + + + )(1 −2)2 (2 −3)2 (−4 −(−1)) 2 (6 −0)2
1

2

d(P ,Q) = .47−−√

 Theorem : Properties of Distance4.4.1

P Q R
n d(P ,Q) 4.4.1

d(P ,Q) = d(Q,P )
d(P ,Q) ≥ 0 P = Q.
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Describe the points in  which are at the same distance between  and 

Solution
Let  be such a point. Therefore,  is the same distance from  and  Then byDefinition ,

Squaring both sides we obtain

and so

Simplifying, this becomes

which can be written as

Therefore, the points  which are the same distance from each of the given points form a plane whose equation
is given by .

We can now use our understanding of the distance between two points to define what is meant by the length of a vector. Consider
the following definition.

Let  be a vector in . Then, the length of , written  is given by

This definition corresponds to Definition , if you consider the vector  to have its tail at the point  and its tip at
the point . Then the length of  is equal to the distance between  and , . In general, 

.

ConsiderExample . ByDefinition , we could also find the distance between  and  as the length of the vector

connecting them. Hence, if we were to draw a vector  with its tail at  and its point at , this vector would have length equal
to .

We conclude this section with a new definition for the special case of vectors of length .

Let  be a vector in . Then, we call  a unit vector if it has length 1, that is if

Let  be a vector in . Then, the vector  which has the same direction as  but length equal to  is the corresponding unit vector
of . This vector is given by

 Example : The Plane Between Two Points4.4.2

R
3 (1, 2, 3) (0, 1, 2) .

P = ( , , )p1 p2 p3 P (1, 2, 3) (0, 1, 2) . 4.4.1

=+ +( −1)p1
2 ( −2)p2

2 ( −3)p3
2

− −−−−−−−−−−−−−−−−−−−−−−−−
√ + +( −0)p1

2 ( −1)p2
2 ( −2)p3

2
− −−−−−−−−−−−−−−−−−−−−−−−−

√

+ + = + +( −1)p1
2 ( −2)p2

2 ( −3)p3
2

p2
1 ( −1)p2

2 ( −2)p3
2

  −2 +14 + −4 + −6 = + −2 +5 + −4p2
1 p1 p2

2 p2 p2
3 p3 p2

1 p2
2 p2 p2

3 p3

−2 +14 −4 −6 = −2 +5 −4p1 p2 p3 p2 p3

2 +2 +2 = −9p1 p2 p3 (4.4.4)

P = ( , , )p1 p2 p3

(4.4.4)

 Definition : Length of a Vector4.4.2

=u⃗  [ ⋯ ]u1 un
T

R
n

u⃗  ∥ ∥u⃗ 

∥ ∥ =u⃗  +⋯ +u2
1 u2

n

− −−−−−−−−−−
√

4.4.1 u⃗  0 = (0, ⋯ , 0)
U = ( , ⋯ , )u1 un u⃗  0 U d(0,U)

d(P ,Q) = || ||PQ
→

4.4.1 4.4.2 P Q

PQ
−→−

P Q

47
−−√

1

 Definition : Unit Vector4.4.3

u⃗  R
n u⃗ 

∥ ∥ = 1u⃗ 

v ⃗  R
n

u⃗  v ⃗  1
v ⃗ 
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We often use the term normalize to refer to this process. When we normalize a vector, we find the corresponding unit vector of
length . Consider the following example.

Let  be given by

Find the unit vector  which has the same direction as .

Solution
We will use Definition  to solve this. Therefore, we need to find the length of  which, by Definition  is given by

Using the corresponding values we find that

In order to find , we divide  by . The result is

You can verify using the Definition  that .

This page titled 4.4: Length of a Vector is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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 Example : Finding a Unit Vector4.4.3

v ⃗ 

=v ⃗  [ ]1 −3 4 T

u⃗  v ⃗ 
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4.5: Geometric Meaning of Scalar Multiplication

A. Understand scalar multiplication, geometrically.

Recall that the point  determines a vector  from  to . The length of , denoted , is equal to 

by Definition 4.4.1.

Now suppose we have a vector  and we multiply  by a scalar . By Definition 4.2.2, 
. Then, by using Definition 4.4.1, the length of this vector is given by

Thus the following holds.

In other words, multiplication by a scalar magnifies or shrinks the length of the vector by a factor of . If , the length of
the resulting vector will be magnified. If , the length of the resulting vector will shrink. Remember that by the definition of
the absolute value, .

What about the direction? Draw a picture of  and  where  is negative. Notice that this causes the resulting vector to point in
the opposite direction while if  it preserves the direction the vector points. Therefore the direction can either reverse, if 

, or remain preserved, if .

Consider the following example.

Consider the vectors  and  drawn below.

Figure 

Draw , , and .

Solution
In order to find , we preserve the length of  and simply reverse the direction. For , we double the length of , while
preserving the direction. Finally  is found by taking half the length of  and reversing the direction. These vectors are
shown in the following diagram.

 Outcomes
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2

− −−−−−−−−−−−−−−−−−−−−−
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|k| |k| > 1
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k > 0
k < 0 k > 0

 Example : Graphing Scalar Multiplication4.5.1
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4.5.1

−u⃗  2v ⃗  − 1
2

v ⃗ 
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− 1
2
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Figure 

Now that we have studied both vector addition and scalar multiplication, we can combine the two actions. Recall Definition 9.2.2
of linear combinations of column matrices. We can apply this definition to vectors in . A linear combination of vectors in  is
a sum of vectors multiplied by scalars.

In the following example, we examine the geometric meaning of this concept.

Consider the following picture of the vectors  and 

Figure 

Sketch a picture of 

Solution
The two vectors are shown below.

Figure 

4.5.2

R
n

R
n

 Example : Graphing a Linear Combination of Vectors4.5.2

u⃗  v ⃗ 

4.5.3

+2 , − .u⃗  v ⃗  u⃗  1
2

v ⃗ 

4.5.4
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4.6: Parametric Lines

A. Find the vector and parametric equations of a line.

We can use the concept of vectors and points to find equations for arbitrary lines in , although in this section the focus will be on
lines in .

To begin, consider the case  so we have . There is only one line here which is the familiar number line, that is 
itself. Therefore it is not necessary to explore the case of  further.

Now consider the case where , in other words . Let  and  be two different points in  which are contained in a line 
. Let  and  be the position vectors for the points  and  respectively. Suppose that  is an arbitrary point on . Consider

the following diagram.

Figure 

Our goal is to be able to define  in terms of  and . Consider the vector  which has its tail at  and point at .
If we add  to the position vector  for , the sum would be a vector with its point at . In other words,

Now suppose we were to add  to  where  is some scalar. You can see that by doing so, we could find a vector with its
point at . In other words, we can find  such that

This equation determines the line  in . In fact, it determines a line  in . Consider the following definition.

Suppose a line  in  contains the two different points  and . Let  and  be the position vectors of these two points,
respectively. Then,  is the collection of points  which have the position vector  given by

where .

Let . Then  is the direction vector for  and the vector equation for  is given by
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p ⃗  p0

→
P0 P

−p ⃗  p0
→

p0
→

P0 P

= +( − )p ⃗  p0
→

p ⃗  p0
→

t( − )p ⃗  p0
→

p ⃗  t

Q t

= + t( − )q ⃗  p0
→

p ⃗  p0
→

L R
2 L R

n

 Definition : Vector Equation of a Line4.6.1

L R
n P P0 p ⃗  p0

→

L Q q ⃗ 

= + t( − )q ⃗  p0
→

p ⃗  p0
→

t ∈ R

= −d ⃗  p ⃗  p0
→

d ⃗  L L

= + t , t ∈ Rp ⃗  p0
→

d ⃗ 
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Note that this definition agrees with the usual notion of a line in two dimensions and so this is consistent with earlier concepts.
Consider now points in . If a point  is given by ,  by , then we can write

where . This is the vector equation of  written in component form .

The following theorem claims that such an equation is in fact a line.

Let  with . Then , is a line.

Proof

Let . Define  and let . Since , it follows that  Then 

. It follows that  is a line containing the two different points  and  whose

position vectors are given by  and  respectively.

We can use the above discussion to find the equation of a line when given two distinct points. Consider the following example.

Find a vector equation for the line through the points  and 

Solution
We will use the definition of a line given above in Definition  to write this line in the form

Let . Then, we can find  and  by taking the position vectors of points  and  respectively. Then,

can be written as

Here, the direction vector  is obtained by  as indicated above in Definition .

Notice that in the above example we said that we found “a” vector equation for the line, not “the” equation. The reason for this
terminology is that there are infinitely many different vector equations for the same line. To see this, replace  with another
parameter, say  Then you obtain a different vector equation for the same line because the same set of points is obtained.

R
3 P ∈ R

3 P = (x, y, z) ∈P0 R
3 = ( , , )P0 x0 y0 z0

= + t
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢
x0

y0

z0

⎤

⎦
⎥

⎡

⎣
⎢
a

b

c

⎤

⎦
⎥

=d ⃗ 
⎡

⎣
⎢
a

b

c

⎤

⎦
⎥ L

 Proposition : Algebraic Description of a Straight Line4.6.1

, ∈a⃗  b ⃗ 
R
n ≠b ⃗  0⃗  = + t , t ∈ Rx⃗  a⃗  b ⃗ 

, ∈x1
→

x2
→

R
n =x1

→
a⃗  − =x2

→
x1
→

b ⃗  ≠b ⃗  0⃗  ≠ .x2
→

x1
→

+ t = + t( − )a⃗  b ⃗  x1
→

x2
→

x1
→

= + tx⃗  a⃗  b ⃗  X1 X2

x⃗ 1 x⃗ 2

 Example : A Line From Two Points4.6.1

= (1, 2, 0)P0 P = (2, −4, 6) .

4.6.1

= + t( − )q ⃗  p0
→

p ⃗  p0
→

= Bq ⃗ 
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥ p ⃗  p0

→
P P0

= + t( − )q ⃗  p0
→

p ⃗  p0
→

B = B+ t B, t ∈ R

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

⎤

⎦
⎥

⎡

⎣
⎢

1

−6

6

⎤

⎦
⎥

B
⎡

⎣
⎢

1

−6

6

⎤

⎦
⎥ − = B− Bp ⃗  p0

→ ⎡

⎣
⎢

2

−4

6

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

⎤

⎦
⎥ 4.6.1

t

3s.
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In Example , the vector given by  is the direction vector defined in Definition . If we know the direction vector

of a line, as well as a point on the line, we can find the vector equation.

Consider the following example.

Find a vector equation for the line which contains the point  and has direction vector 

Solution

We will use Definition  to write this line in the form . We are given the direction vector . In order

to find , we can use the position vector of the point . This is given by  Letting , the equation for the

line is given by

We sometimes elect to write a line such as the one given in  in the form

This set of equations give the same information as , and is called the parametric equation of the line.

Consider the following definition.

Let  be a line in  which has direction vector  and goes through the point . Then, letting  be

a parameter, we can write  as

This is called a parametric equation of the line .

You can verify that the form discussed following Example  in equation  is of the form given in Definition .

There is one other form for a line which is useful, which is the symmetric form. Consider the line given by . You can solve
for the parameter  to write

4.6.1 B
⎡

⎣
⎢

1

−6

6

⎤

⎦
⎥ 4.6.1

 Example : A Line From a Point and a Direction Vector4.6.2

= (1, 2, 0)P0 = Bd ⃗ 
⎡

⎣
⎢

1

2

1

⎤

⎦
⎥

4.6.1 = + t , t ∈ Rp ⃗  p0
→

d ⃗  d ⃗ 

p0
→

P0 B.
⎡

⎣
⎢

1

2

0

⎤

⎦
⎥ = Bp ⃗ 

⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

B = B+ t B, t ∈ R

⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

⎤

⎦
⎥

⎡

⎣
⎢

1

2

1

⎤

⎦
⎥ (4.6.1)

(4.6.1)

x = 1 + t

y = 2 +2t

z = t

⎫

⎭
⎬
⎪

⎪
where t ∈ R (4.6.2)

(4.6.1)

 Definition : Parametric Equation of a Line4.6.2

L R
3 = Bd ⃗ 

⎡

⎣
⎢
a

b

c

⎤

⎦
⎥ = ( , , )P0 x0 y0 z0 t

L

x = + tax0

y = + tby0

z = + tcz0

⎫

⎭
⎬
⎪

⎪
where t ∈ R

L

4.6.2 (4.6.2) 4.6.2

(4.6.2)

t

t = x−1

t =
y−2

2

t = z
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Therefore,

This is the symmetric form of the line.

In the following example, we look at how to take the equation of a line from symmetric form to parametric form.

Suppose the symmetric form of a line is

Write the line in parametric form as well as vector form.

Solution
We want to write this line in the form given by Definition . This is of the form

Let  and , as given in the symmetric form of the line. Then solving for  yields

This is the parametric equation for this line.

Now, we want to write this line in the form given by Definition . This is the form

where . This equation becomes

This page titled 4.6: Parametric Lines is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

x−1 = = z
y−2

2

 Example : Change Symmetric Form to Parametric Form4.6.3

= = z+3
x−2

3

y−1

2

4.6.2

x = + tax0

y = + tby0

z = + tcz0

⎫

⎭
⎬
⎪

⎪
where t ∈ R

t = , t =x−2
3

y−1

2
t = z+3 x, y, z,

x = 2 +3t

y = 1 +2t

z = −3 + t

⎫

⎭
⎬
⎪

⎪
with t ∈ R

4.6.1

= + tp ⃗  p0
→

d ⃗ 

t ∈ R

B = B+ t B, t ∈ R

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

2

1

−3

⎤

⎦
⎥

⎡

⎣
⎢

3

2

1

⎤

⎦
⎥
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4.7: The Dot Product

A. Compute the dot product of vectors, and use this to compute vector projections.

The Dot Product
There are two ways of multiplying vectors which are of great importance in applications. The first of these is called the dot
product. When we take the dot product of vectors, the result is a scalar. For this reason, the dot product is also called the scalar
product and sometimes the inner product. The definition is as follows.

Let  be two vectors in . Then we define the dot product  as

The dot product  is sometimes denoted as  where a comma replaces . It can also be written as . If we write the
vectors as column or row matrices, it is equal to the matrix product .

Consider the following example.

Find  for

Solution
By Definition , we must compute

This is given by

With this definition, there are several important properties satisfied by the dot product.

Let  and  denote scalars and  denote vectors. Then the dot product  satisfies the following properties.

 Outcomes

 Definition : Dot Product4.7.1

,u⃗  v ⃗  R
n ∙u⃗  v ⃗ 

∙ =u⃗  v ⃗  ∑
k=1

n

ukvk

∙u⃗  v ⃗  ( , )u⃗  v ⃗  ∙ ⟨ , ⟩u⃗  v ⃗ 

v ⃗ w⃗ T

 Example : Compute a Dot Product4.7.1

∙u⃗  v ⃗ 

= , =u⃗ 

⎡

⎣

⎢⎢
⎢

1

2

0

−1

⎤

⎦

⎥⎥
⎥

v ⃗ 

⎡

⎣

⎢⎢
⎢

0

1

2

3

⎤

⎦

⎥⎥
⎥

4.7.1

∙ =u⃗  v ⃗  ∑
k=1

4

ukvk

∙u⃗  v ⃗  = (1)(0) +(2)(1) +(0)(2) +(−1)(3)

= 0 +2 +0 +−3
= −1

 Proposition : Properties of the Dot Product4.7.1

k p , ,u⃗  v ⃗  w⃗  ∙u⃗  v ⃗ 

∙ = ∙u⃗  v ⃗  v ⃗  u⃗ 

∙ ≥ 0 and equals zero if and only if  =u⃗  u⃗  u⃗  0⃗ 

(k +p ) ∙ = k ( ∙ ) +p ( ∙ )u⃗  v ⃗  w⃗  u⃗  w⃗  v ⃗  w⃗ 
∙ (k +p ) = k ( ∙ ) +p ( ∙ )u⃗  v ⃗  w⃗  u⃗  v ⃗  u⃗  w⃗ 
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Proof

The proof is left as an exercise.

This proposition tells us that we can also use the dot product to find the length of a vector.

Find the length of

That is, find 

Solution

By Proposition , . Therefore, . First, compute .

This is given by

Then,

You may wish to compare this to our previous definition of length, given in Definition 4.4.2.

The Cauchy Schwarz inequality is a fundamental inequality satisfied by the dot product. It is given in the following theorem.

The dot product satisfies the inequality

Furthermore equality is obtained if and only if one of  or  is a scalar multiple of the other.

Proof

First note that if  both sides of  equal zero and so the inequality holds in this case. Therefore, it will be
assumed in what follows that .

Define a function of  by

Then by Proposition ,  for all . Also from Proposition 

∥ = ∙u⃗ ∥2 u⃗  u⃗ 

 Example : Length of a Vector4.7.2

=u⃗ 

⎡

⎣

⎢⎢⎢

2

1

4

2

⎤

⎦

⎥⎥⎥

∥ ∥.u⃗ 

4.7.1 ∥ = ∙u⃗ ∥2 u⃗  u⃗  ∥ ∥ =u⃗  ∙u⃗  u⃗ − −−−√ ∙u⃗  u⃗ 

∙u⃗  u⃗  = (2)(2) +(1)(1) +(4)(4) +(2)(2)

= 4 +1 +16 +4
= 25

∥ ∥u⃗  = ∙u⃗  u⃗ 
− −−−

√

= 25−−√
= 5

 Theorem : Cauchy Schwarz Inequality4.7.1

| ∙ | ≤ ∥ ∥∥ ∥u⃗  v ⃗  u⃗  v ⃗  (4.7.1)

u⃗  v ⃗ 

=v ⃗  0⃗  (4.7.1)

≠v ⃗  0⃗ 

t ∈ R

f (t) = ( + t ) ∙ ( + t )u⃗  v ⃗  u⃗  v ⃗ 

4.7.1 f (t) ≥ 0 t ∈ R 4.7.1
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Now this means the graph of  is a parabola which opens up and either its vertex touches the  axis or else the
entire graph is above the  axis. In the first case, there exists some  where  and this requires  so one
vector is a multiple of the other. Then clearly equality holds in . In the case where  is not a multiple of , it follows 

 for all  which says  has no real zeros and so from the quadratic formula,

which is equivalent to .

Notice that this proof was based only on the properties of the dot product listed in Proposition . This means that whenever an
operation satisfies these properties, the Cauchy Schwarz inequality holds. There are many other instances of these properties
besides vectors in .

The Cauchy Schwarz inequality provides another proof of the triangle inequality for distances in .

For 

and equality holds if and only if one of the vectors is a non-negative scalar multiple of the other.

Also

Proof

By properties of the dot product and the Cauchy Schwarz inequality,

Hence,

Taking square roots of both sides you obtain .

It remains to consider when equality occurs. Suppose . Then,  and the claim about when equality occurs is
verified. The same argument holds if . Therefore, it can be assumed both vectors are nonzero. To get equality in 

 above, Theorem  implies one of the vectors must be a multiple of the other. Say . If  then equality
cannot occur in  because in this case

Therefore, 

To get the other form of the triangle inequality write

so

f (t) = ∙ ( + t ) + t ∙ ( + t )u⃗  u⃗  v ⃗  v ⃗  u⃗  v ⃗ 

= ∙ + t ( ∙ ) + t ∙ + ∙u⃗  u⃗  u⃗  v ⃗  v ⃗  u⃗  t2v ⃗  v ⃗ 

= ∥ +2t ( ∙ ) +∥u⃗ ∥2 u⃗  v ⃗  v ⃗ ∥2t2

y = f (t) t

t t f (t) = 0 + t =u⃗  v ⃗  0⃗ 

(4.7.1) v ⃗  u⃗ 

f (t) > 0 t f (t)

−4∥ ∥ < 0(2 ( ∙ ))u⃗  v ⃗  2
u⃗ ∥2 v ⃗ ∥2

| ∙ | < ∥ ∥∥ ∥u⃗  v ⃗  u⃗  v ⃗ 

4.7.1

R
n

R
n

 Theorem : Triangle Inequality4.7.2

, ∈u⃗  v ⃗  R
n

∥ + ∥ ≤ ∥ ∥ +∥ ∥u⃗  v ⃗  u⃗  v ⃗  (4.7.2)

∥∥ ∥ −∥ ∥∥ ≤ ∥ − ∥u⃗  v ⃗  u⃗  v ⃗  (4.7.3)

∥ +u⃗  v ⃗ ∥2 = ( + ) ∙ ( + )u⃗  v ⃗  u⃗  v ⃗ 

= ( ∙ ) +( ∙ ) +( ∙ ) +( ∙ )u⃗  u⃗  u⃗  v ⃗  v ⃗  u⃗  v ⃗  v ⃗ 

= ∥ +2 ( ∙ ) +∥u⃗ ∥2 u⃗  v ⃗  v ⃗ ∥2

≤ ∥ +2 | ∙ | +∥u⃗ ∥2 u⃗  v ⃗  v ⃗ ∥2

≤ ∥ +2∥ ∥∥ ∥ +∥ =u⃗ ∥2 u⃗  v ⃗  v ⃗ ∥2 (∥ ∥ +∥ ∥)u⃗  v ⃗  2

∥ + ≤u⃗  v ⃗ ∥2 (∥ ∥ +∥ ∥)u⃗  v ⃗  2

(4.7.2)

=u⃗  0⃗  = 0u⃗  v ⃗ 

=v ⃗  0⃗ 

(4.7.2) 4.7.1 = kv ⃗  u⃗  k < 0
(4.7.2)

∙ = k∥ < 0 < |k| ∥ = | ∙ |u⃗  v ⃗  u⃗ ∥2 u⃗ ∥2 u⃗  v ⃗ 

k ≥ 0.

= − +u⃗  u⃗  v ⃗  v ⃗ 
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Therefore,

Similarly,

It follows from  and  that  holds. This is because  equals the left side of either  or 
 and either way, .

The Geometric Significance of the Dot Product

Given two vectors,  and , the included angle is the angle between these two vectors which is given by  such that .
The dot product can be used to determine the included angle between two vectors. Consider the following picture where  gives the
included angle.

Figure 

Let  and  be two vectors in , and let  be the included angle. Then the following equation holds.

In words, the dot product of two vectors equals the product of the magnitude (or length) of the two vectors multiplied by the cosine
of the included angle. Note this gives a geometric description of the dot product which does not depend explicitly on the
coordinates of the vectors.

Consider the following example.

Find the angle between the vectors given by

Solution
By Proposition ,

∥ ∥u⃗  = ∥ − + ∥u⃗  v ⃗  v ⃗ 

≤ ∥ − ∥ +∥ ∥u⃗  v ⃗  v ⃗ 

∥ ∥ −∥ ∥ ≤ ∥ − ∥u⃗  v ⃗  u⃗  v ⃗  (4.7.4)

∥ ∥ −∥ ∥ ≤ ∥ − ∥ = ∥ − ∥v ⃗  u⃗  v ⃗  u⃗  u⃗  v ⃗  (4.7.5)

(4.7.4) (4.7.5) (4.7.3) |∥ ∥ −∥ ∥|u⃗  v ⃗  (4.7.4)
(4.7.5) |∥ ∥ −∥ ∥| ≤ ∥ − ∥u⃗  v ⃗  u⃗  v ⃗ 

u⃗  v ⃗  θ 0 ≤ θ ≤ π

θ

4.7.1

 Proposition : The Dot Product and the Included Angle4.7.2

u⃗  v ⃗  R
n θ

∙ = ∥ ∥∥ ∥ cosθu⃗  v ⃗  u⃗  v ⃗ 

 Example : Find the Angle Between Two Vectors4.7.3

= , =u⃗ 
⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

3

4

1

⎤

⎦
⎥

4.7.2

∙ = ∥ ∥∥ ∥ cosθu⃗  v ⃗  u⃗  v ⃗ 
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Hence,

First, we can compute . By Definition , this equals

Then,

Therefore, the cosine of the included angle equals

With the cosine known, the angle can be determined by computing the inverse cosine of that angle, giving approximately 
 radians.

Another application of the geometric description of the dot product is in finding the angle between two lines. Typically one would
assume that the lines intersect. In some situations, however, it may make sense to ask this question when the lines do not intersect,
such as the angle between two object trajectories. In any case we understand it to mean the smallest angle between (any of) their
direction vectors. The only subtlety here is that if  is a direction vector for a line, then so is any multiple , and thus we will find
complementary angles among all angles between direction vectors for two lines, and we simply take the smaller of the two.

Find the angle between the two lines

and

Solution
You can verify that these lines do not intersect, but as discussed above this does not matter and we simply find the smallest
angle between any directions vectors for these lines.

To do so we first find the angle between the direction vectors given above:

In order to find the angle, we solve the following equation for 

to obtain  and since we choose included angles between  and  we obtain .

cosθ =
∙u⃗  v ⃗ 

∥ ∥∥ ∥u⃗  v ⃗ 

∙u⃗  v ⃗  4.7.1

∙ = (2)(3) +(1)(4) +(−1)(1) = 9u⃗  v ⃗ 

∥ ∥ = =u⃗  (2)(2) +(1)(1) +(1)(1)
− −−−−−−−−−−−−−−−−−

√ 6–√

∥ ∥ = =v ⃗  (3)(3) +(4)(4) +(1)(1)
− −−−−−−−−−−−−−−−−−

√ 26
−−√

cosθ = = 0.7205766...
9

26−−√ 6–√

θ = 0.76616

u⃗  ku⃗ 

 Example : Find the Angle Between Two Lines4.7.4

: = + tL1

⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1

2

0

⎤

⎦
⎥

⎡

⎣
⎢

−1

1

2

⎤

⎦
⎥

: = +sL2

⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0

4

−3

⎤

⎦
⎥

⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥

= , =u⃗ 
⎡

⎣
⎢

−1

1

2

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥

θ

∙ = ∥ ∥∥ ∥ cosθu⃗  v ⃗  u⃗  v ⃗ 

cosθ = − 1
2 0 π θ = 2π

3
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Now the angles between any two direction vectors for these lines will either be  or its complement . We
choose the smaller angle, and therefore conclude that the angle between the two lines is .

We can also use Proposition  to compute the dot product of two vectors.

Let  be vectors with  and . Suppose the angle between  and  is . Find .

Solution
From the geometric description of the dot product in Proposition 

Two nonzero vectors are said to be perpendicular, sometimes also called orthogonal, if the included angle is  radians (

Consider the following proposition.

Let  and  be nonzero vectors in . Then,  and  are said to be perpendicular exactly when

Proof

This follows directly from Proposition . First if the dot product of two nonzero vectors is equal to , this tells us that 
 (this is where we need nonzero vectors). Thus  and the vectors are perpendicular.

If on the other hand  is perpendicular to , then the included angle is  radians. Hence  and .

Consider the following example.

Determine whether the two vectors,

are perpendicular.

Solution
In order to determine if these two vectors are perpendicular, we compute the dot product. This is given by

Therefore, by Proposition  these two vectors are perpendicular.

Projections

In some applications, we wish to write a vector as a sum of two related vectors. Through the concept of projections, we can find
these two vectors. First, we explore an important theorem. The result of this theorem will provide our definition of a vector
projection.

2π
3 ϕ = π− =2π

3
π

3
π

3

4.7.2

 Example : Using Geometric Description to Find a Dot Product4.7.5

,u⃗  v ⃗  ∥ ∥ = 3u⃗  ∥ ∥ = 4v ⃗  u⃗  v ⃗  π/3 ∙u⃗  v ⃗ 

4.7.2

∙ = (3)(4) cos(π/3) = 3 ×4 ×1/2 = 6u⃗  v ⃗ 

π/2 ).90∘

 Proposition : Perpendicular Vectors4.7.3

u⃗  v ⃗  R
n u⃗  v ⃗ 

∙ = 0u⃗  v ⃗ 

4.7.2 0
cosθ = 0 θ = π/2

v ⃗  u⃗  π/2 cosθ = 0 ∙ = 0u⃗  v ⃗ 

 Example : Determine if Two Vectors are Perpendicular4.7.6

= , =u⃗ 
⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

∙ = (2)(1) +(1)(3) +(−1)(5) = 0u⃗  v ⃗ 

4.7.3

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21265?pdf


4.7.7 https://math.libretexts.org/@go/page/21265

Let  and  be nonzero vectors. Then there exist unique vectors  and  such that

where  is a scalar multiple of , and  is perpendicular to .

Proof

Suppose  holds and . Taking the dot product of both sides of  with  and using  this
yields

which requires  Thus there can be no more than one vector . It follows  must equal  This
verifies there can be no more than one choice for both  and  and proves their uniqueness.

Now let

and let

Then  where . It only remains to verify  But

The vector  in Theorem  is called the projection of  onto  and is denoted by

We now make a formal definition of the vector projection.

Let  and  be vectors. Then, the projection of  onto  is given by

Consider the following example of a projection.

Find  if

 Theorem : Vector Projections4.7.3

v ⃗  u⃗  v ⃗ || v ⃗ ⊥

= +v ⃗  v ⃗ || v ⃗ ⊥ (4.7.6)

v ⃗ || u⃗  v ⃗ ⊥ u⃗ 

(4.7.6) = kv ⃗ || u⃗  (4.7.6) u⃗  ∙ = 0,v ⃗ ⊥ u⃗ 

∙v ⃗  u⃗  = ( + ) ∙v ⃗ || v ⃗ ⊥ u⃗ 

= k ∙ + ∙u⃗  u⃗  v ⃗ ⊥ u⃗ 

= k∥u⃗ ∥2

k = ∙ /∥ .v ⃗  u⃗  u⃗ ∥2 v ⃗ || v ⃗ ⊥ − .v ⃗  v ⃗ ||
v ⃗ || v ⃗ ⊥

=v ⃗ ||
∙v ⃗  u⃗ 

∥u⃗ ∥2
u⃗ 

= − = −v ⃗ ⊥ v ⃗  v ⃗ || v ⃗ 
∙v ⃗  u⃗ 

∥u⃗ ∥2
u⃗ 

= kv ⃗ || u⃗  k = ∙v ⃗  u ⃗ 

∥u ⃗ ∥2
∙ = 0.v ⃗ ⊥ u⃗ 

∙v ⃗ ⊥ u⃗  = ∙ − ∙v ⃗  u⃗ 
∙v ⃗  u⃗ 

∥u⃗ ∥2
u⃗  u⃗ 

= ∙ − ∙v ⃗  u⃗  v ⃗  u⃗ 

= 0

v ⃗ || 4.7.3 v ⃗  u⃗ 

= ( )v ⃗ || proju ⃗  v ⃗ 

 Definition : Vector Projection4.7.2

u⃗  v ⃗  v ⃗  u⃗ 

( ) =( ) =proju ⃗  v ⃗ 
∙v ⃗  u⃗ 

∙u⃗  u⃗ 
u⃗ 

∙v ⃗  u⃗ 

∥u⃗ ∥2
u⃗ 

 Example : Find the Projection of One Vector Onto Another4.7.7

( )proju ⃗  v ⃗ 

= , =u⃗ 
⎡

⎣
⎢

2

3

−4

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

1

−2

1

⎤

⎦
⎥
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Solution
We can use the formula provided in Definition  to find . First, compute . This is given by

Similarly,  is given by

Therefore, the projection is equal to

We will conclude this section with an important application of projections. Suppose a line  and a point  are given such that  is
not contained in . Through the use of projections, we can determine the shortest distance from  to .

Let  be a point in , and let  be the line which goes through point  with direction vector 

. Find the shortest distance from  to the line , and find the point  on  that is closest to .

Solution

In order to determine the shortest distance from  to , we will first find the vector  and then find the projection of this

vector onto . The vector  is given by

Then, if  is the point on  closest to , it follows that

4.7.2 ( )proju ⃗  v ⃗  ∙v ⃗  u⃗ 

∙
⎡

⎣
⎢

1

−2

1

⎤

⎦
⎥

⎡

⎣
⎢

2

3

−4

⎤

⎦
⎥ = (2)(1) +(3)(−2) +(−4)(1)

= 2 −6 −4
= −8

∙u⃗  u⃗ 

∙
⎡

⎣
⎢

2

3

−4

⎤

⎦
⎥

⎡

⎣
⎢

2

3

−4

⎤

⎦
⎥ = (2)(2) +(3)(3) +(−4)(−4)

= 4 +9 +16

= 29

( )proju ⃗  v ⃗  = −
8

29

⎡

⎣
⎢

2

3

−4

⎤

⎦
⎥

=

⎡

⎣

⎢⎢

− 16
29

− 24
29
32
29

⎤

⎦

⎥⎥

L P P

L P L

 Example : Shortest Distance from a Point to a Line4.7.8

P = (1, 3, 5) R
3 L = (0, 4, −2)P0

=d ⃗ 
⎡

⎣
⎢

2

1

2

⎤

⎦
⎥ P L Q L P

P L PP0

−→−

L PP0

−→−

− =
⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

⎡

⎣
⎢

0

4

−2

⎤

⎦
⎥

⎡

⎣
⎢

1

−1

7

⎤

⎦
⎥

Q L P
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Now, the distance from  to  is given by

The point  is found by adding the vector  to the position vector  for  as follows

Therefore, .

This page titled 4.7: The Dot Product is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

QP0

− →−
= proj

d ⃗  PP0

−→−

=
⎛

⎝

∙PP0

−→−
d ⃗ 

∥d ⃗ ∥2

⎞

⎠
d ⃗ 

=
15

9

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥

=
5

3

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥

P L

∥ ∥ = ∥ − ∥ =QP
−→−

PP0

−→−
QP0

− →−
26−−√

Q QP0

− →−
0P0

−→−
P0

+
⎡

⎣
⎢

0

4

−2

⎤

⎦
⎥

5

3

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢

10
3

17
3
4
3

⎤

⎦

⎥
⎥

Q = ( , , )10
3

17
3

4
3
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4.8: Planes in Rⁿ

A. Find the vector and scalar equations of a plane.

Much like the above discussion with lines, vectors can be used to determine planes in . Given a vector  in  and a point , it
is possible to find a unique plane which contains  and is perpendicular to the given vector.

Let  be a nonzero vector in . Then  is called a normal vector to a plane if and only if

for every vector  in the plane.

In other words, we say that  is orthogonal (perpendicular) to every vector in the plane.

Consider now a plane with normal vector given by , and containing a point . Notice that this plane is unique. If  is an

arbitrary point on this plane, then by definition the normal vector is orthogonal to the vector between  and . Letting  and 

 be the position vectors of points  and  respectively, it follows that

or

The first of these equations gives the vector equation of the plane.

Let  be the normal vector for a plane which contains a point . If  is an arbitrary point on this plane, then the vector
equation of the plane is given by

Notice that this equation can be used to determine if a point  is contained in a certain plane.

Let  be the normal vector for a plane which contains the point . Determine if the point  is

contained in this plane.

Solution
By Definition ,  is a point in the plane if it satisfies the equation

Given the above , , and , this equation becomes

 Outcomes

R
n n⃗  R

n P0

P0

 Definition : Normal Vector4.8.1

n⃗  R
n n⃗ 

∙ = 0n⃗  v ⃗ 

v ⃗ 

n⃗ 

n⃗  P0 P

P0 P 0P
−→

0P0

−→−
P P0

∙ ( − ) = 0n⃗  0P
−→

0P0

−→−

∙ = 0n⃗  PP0

−→−

 Definition : Vector Equation of a Plane4.8.2

n⃗  P0 P

∙ ( − ) = 0n⃗  0P
−→

0P0

−→−

P

 Example : A Point in a Plane4.8.1

=n⃗ 
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥ = (2, 1, 4)P0 P = (5, 4, 1)

4.8.2 P

∙ ( − ) = 0n⃗  0P
−→

0P0

−→−

n⃗  P0 P
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Therefore  is contained in the plane.

Suppose ,  and .

Then

We can also write this equation as

Notice that since  is given,  is a known scalar, which we can call . This equation becomes

Let  be the normal vector for a plane which contains the point .Then if  is an arbitrary

point on the plane, the scalar equation of the plane is given by

where  and .

Consider the following equation.

Find an equation of the plane containing  and orthogonal to .

Solution
The above vector  is the normal vector for this plane. Using Definition , we can determine the vector equation for this
plane.

∙ −
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥

⎛

⎝
⎜
⎡

⎣
⎢

5

4

1

⎤

⎦
⎥

⎡

⎣
⎢

2

1

4

⎤

⎦
⎥
⎞

⎠
⎟ = ∙

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥

⎛

⎝
⎜
⎡

⎣
⎢

3

3

−3

⎤

⎦
⎥
⎞

⎠
⎟

= 3 +6 −9 = 0

P = (5, 4, 1)

=n⃗ 
⎡

⎣
⎢

a

b

c

⎤

⎦
⎥ P = (x, y, z) = ( , , )P0 x0 y0 z0

∙ ( − )n⃗  0P
−→

0P0

−→−

∙ −
⎡

⎣
⎢

a

b

c

⎤

⎦
⎥

⎛

⎝
⎜
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

x0

y0

z0

⎤

⎦
⎥
⎞

⎠
⎟

∙
⎡

⎣
⎢
a

b

c

⎤

⎦
⎥

⎡

⎣
⎢

x−x0

y−y0

z−z0

⎤

⎦
⎥

a(x− ) +b(y− ) +c(z− )x0 y0 z0

= 0

= 0

= 0

= 0

ax+by+cz = a +b +cx0 y0 z0

P0 a +b +cx0 y0 z0 d

ax+by+cz = d

 Definition : Scalar Equation of a Plane4.8.3

=n⃗ 
⎡

⎣
⎢
a

b

c

⎤

⎦
⎥ = ( , , )P0 x0 y0 z0 P = (x, y, z)

ax+by+cz = d

a, b, c, d ∈ R d = a +b +cx0 y0 z0

 Example : Finding the Equation of a Plane4.8.2

= (3, −2, 5)P0 =n⃗ 
⎡

⎣
⎢

−2

4

1

⎤

⎦
⎥

n⃗  4.8.2
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Using Definition , we can determine the scalar equation of the plane.

Hence, the vector equation of the plane is

and the scalar equation is

Suppose a point  is not contained in a given plane. We are then interested in the shortest distance from that point  to the given
plane. Consider the following example.

Find the shortest distance from the point  to the plane given by 
, and find the point  on the plane that is closest to .

Solution
Pick an arbitrary point  on the plane. Then, it follows that

and  is the shortest distance from  to the plane. Further, the vector  gives the necessary point .

From the above scalar equation, we have that . Now, choose  so that . Then, 

.

Next, compute .

∙ ( − )n⃗  0P
−→

0P0

−→−

∙ −
⎡

⎣
⎢

−2

4

1

⎤

⎦
⎥

⎛

⎝
⎜
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

3

−2

5

⎤

⎦
⎥
⎞

⎠
⎟

∙
⎡

⎣
⎢

−2

4

1

⎤

⎦
⎥

⎡

⎣
⎢

x−3

y+2

z−5

⎤

⎦
⎥

= 0

= 0

= 0

4.8.3

−2x+4y+1z = −2(3) +4(−2) +1(5) = −9

∙ = 0
⎡

⎣
⎢

−2

4

1

⎤

⎦
⎥

⎡

⎣
⎢

x−3

y+2

z−5

⎤

⎦
⎥

−2x+4y+1z = −9

P P

 Example : Shortest Distance From a Point to a Plane4.8.3

P = (3, 2, 3)
2x+y+2z = 2 Q P

P0

= proQP
−→−

jn⃗  PP0

−→−

∥ ∥QP
−→−

P = −0Q
−→

0P
−→

QP
−→−

Q

=n⃗ 
⎡

⎣
⎢

2

1

2

⎤

⎦
⎥ = (1, 0, 0)P0 ∙ = 2 = dn⃗  0P

−→

= − =PP0

−→− ⎡

⎣
⎢

3

2

3

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

2

2

3

⎤

⎦
⎥

= proQP
−→−

jn⃗  PP0

−→−
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Then,  so the shortest distance from  to the plane is .

Next, to find the point  on the plane which is closest to  we have

Therefore, .

This page titled 4.8: Planes in Rⁿ is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

QP
−→−

= projn⃗  PP0

−→−

=
⎛

⎝

∙PP0

−→−
n⃗ 

∥n⃗ ∥2

⎞

⎠
n⃗ 

=
12

9

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥

=
4

3

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥

∥ ∥ = 4QP
−→−

P 4

Q P

0Q
−→

= −0P
−→

QP
−→−

= −
⎡

⎣
⎢

3

2

3

⎤

⎦
⎥

4

3

⎡

⎣
⎢

2

1

2

⎤

⎦
⎥

=
1

3

⎡

⎣
⎢

1

2

1

⎤

⎦
⎥

Q = ( , , )1
3

2
3

1
3
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4.9: The Cross Product

A. Compute the cross product and box product of vectors in .

Recall that the dot product is one of two important products for vectors. The second type of product for vectors is called the cross
product. It is important to note that the cross product is only defined in  First we discuss the geometric meaning and then a
description in terms of coordinates is given, both of which are important. The geometric description is essential in order to
understand the applications to physics and geometry while the coordinate description is necessary to compute the cross product.

Consider the following definition.

Three vectors,  form a right hand system if when you extend the fingers of your right hand along the direction of vector 
 and close them in the direction of , the thumb points roughly in the direction of .

For an example of a right handed system of vectors, see the following picture.

Figure 

In this picture the vector  points upwards from the plane determined by the other two vectors. Point the fingers of your right hand
along , and close them in the direction of . Notice that if you extend the thumb on your right hand, it points in the direction of .

You should consider how a right hand system would differ from a left hand system. Try using your left hand and you will see that
the vector  would need to point in the opposite direction.

Notice that the special vectors,  will always form a right handed system. If you extend the fingers of your right hand along 
and close them in the direction , the thumb points in the direction of .

 Outcomes

R
3

.R
3

 Definition : Right Hand System of Vectors4.9.1

, ,u⃗  v ⃗  w⃗ 

u⃗  v ⃗  w⃗ 

4.9.1

w⃗ 

u⃗  v ⃗  w⃗ 

w⃗ 

, ,i ⃗  j ⃗  k⃗  i ⃗ 

j ⃗  k⃗ 
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Figure 

The following is the geometric description of the cross product. Recall that the dot product of two vectors results in a scalar. In
contrast, the cross product results in a vector, as the product gives a direction as well as magnitude.

Let  and  be two vectors in  Then the cross product, written , is defined by the following two rules.

1. Its length is

where  is the included angle between  and .
2. It is perpendicular to both  and , that is

and

form a right hand system.

The cross product of the special vectors  is as follows.

With this information, the following gives the coordinate description of the cross product.

Recall that the vector  can be written in terms of  as .

Let  and  be two vectors. Then

Writing  in the usual way, it is given by

4.9.2

 Definition : Geometric Definition of Cross Product4.9.2

u⃗  v ⃗  .R
3 ×u⃗  v ⃗ 

∥ × ∥ = ∥ ∥∥ ∥ sinθ,u⃗  v ⃗  u⃗  v ⃗ 

θ u⃗  v ⃗ 

u⃗  v ⃗ 

( × ) ⋅ = 0,u⃗  v ⃗  u⃗  (4.9.1)

( × ) ⋅ = 0,u⃗  v ⃗  v ⃗ 

, , ×u⃗  v ⃗  u⃗  v ⃗ 

, ,i ⃗  j ⃗  k⃗ 

× =i ⃗  j ⃗  k⃗ 

× =k⃗  i ⃗  j ⃗ 

× =j ⃗  k⃗  i ⃗ 

× = −j ⃗  i ⃗  k⃗ 

× = −i ⃗  k⃗  j ⃗ 

× = −k⃗  j ⃗  i ⃗ 

=u⃗  [ ]u1 u2 u3
T , ,i ⃗  j ⃗  k⃗  = + +u⃗  u1i ⃗  u2j ⃗  u3k⃗ 

 Theorem : Coordinate Description of Cross Product4.9.1

= + +u⃗  u1i ⃗  u2j ⃗  u3k⃗  = + +v ⃗  v1i ⃗  v2j ⃗  v3k⃗ 

× = ( − ) −( − ) +( − )u⃗  v ⃗  u2v3 u3v2 i ⃗  u1v3 u3v1 j ⃗  u1v2 u2v1 k⃗  (4.9.2)

×u⃗  v ⃗ 
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We now prove this proposition.

Proof

From the above table and the properties of the cross product listed,

There is another version of  which may be easier to remember. We can express the cross product as the determinant of a
matrix, as follows.

Expanding the determinant along the top row yields

\

Expanding these determinants leads to

which is the same as .

The cross product satisfies the following properties.

Let  be vectors in , and  a scalar. Then, the following properties of the cross product hold.

1. 
2. 
3. 
4. 

Proof

Formula  follows immediately from the definition. The vectors  and  have the same magnitude, 
and an application of the right hand rule shows they have opposite direction.

Formula  is proven as follows. If  is a non-negative scalar, the direction of  is the same as the direction of 
 and . The magnitude is  times the magnitude of  which is the same as the magnitude of 

 and  Using this yields equality in . In the case where  everything works the same way except
the vectors are all pointing in the opposite direction and you must multiply by  when comparing their magnitudes.

× =u⃗  v ⃗ 
⎡

⎣
⎢

−u2v3 u3v2

−( − )u1v3 u3v1

−u1v2 u2v1

⎤

⎦
⎥

×u⃗  v ⃗  = ( + + )×( + + )u1i ⃗  u2j ⃗  u3k⃗
  v1i ⃗  v2j ⃗  v3k⃗

 

= × + × + × + × ++ × + ×u1v2i ⃗  j ⃗  u1v3i ⃗  k⃗  u2v1j ⃗  i ⃗  u2v3j ⃗  k⃗  u3v1k⃗
  i ⃗  u3v2k⃗

  j ⃗ 

= − − + + −u1v2k⃗
  u1v3j

⃗  u2v1k⃗
  u2v3i

⃗  u3v1j
⃗  u3v2i

⃗ 

= ( − ) +( − ) +( − )u2v3 u3v2 i ⃗  u3v1 u1v3 j ⃗  u1v2 u2v1 k⃗ 

(4.9.3)

(4.9.2)

× =u⃗  v ⃗ 

∣

∣

∣
∣
∣

i ⃗ 

u1

v1

j ⃗ 

u2

v2

k⃗ 

u3

v3

∣

∣

∣
∣
∣

(4.9.4)

+ +i ⃗ (−1)1+1 ∣

∣
∣
u2

v2

u3

v3

∣

∣
∣ j ⃗ (−1)2+1 ∣

∣
∣
u1

v1

u3

v3

∣

∣
∣ k⃗ (−1)3+1 ∣

∣
∣
u1

v1

u2

v2

∣

∣
∣

= − +i ⃗ 
∣

∣
∣
u2

v2

u3

v3

∣

∣
∣ j ⃗ ∣

∣
∣
u1

v1

u3

v3

∣

∣
∣ k⃗ ∣

∣
∣
u1

v1

u2

v2

∣

∣
∣

( − ) −( − ) +( − )u2v3 u3v2 i ⃗  u1v3 u3v1 j ⃗  u1v2 u2v1 k⃗ 

(4.9.3)

 Proposition : Properties of the Cross Product4.9.1

, ,u⃗  v ⃗  w⃗  R
3 k

× = −( × ) , and × =u⃗  v ⃗  v ⃗  u⃗  u⃗  u⃗  0⃗ 

(k ) × = k ( × ) = ×(k )u⃗  v ⃗  u⃗  v ⃗  u⃗  v ⃗ 
×( + ) = × + ×u⃗  v ⃗  w⃗  u⃗  v ⃗  u⃗  w⃗ 

( + ) × = × + ×v ⃗  w⃗  u⃗  v ⃗  u⃗  w⃗  u⃗ 

1. ×u⃗  v ⃗  ×v ⃗  u⃗  | | | | sinθ,u⃗  v ⃗ 

2. k (k ) ×u⃗  v ⃗ 

× , k ( × )u⃗  v ⃗  u⃗  v ⃗  ×(k )u⃗  v ⃗  k ×u⃗  v ⃗ 

k ( × )u⃗  v ⃗  ×(k ) .u⃗  v ⃗  2 k < 0,
|k|
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The distributive laws,  and , are much harder to establish. For now, it suffices to notice that if we know that  is true, 
follows. Thus, assuming , and using ,

We will now look at an example of how to compute a cross product.

Find  for the following vectors

Solution

Note that we can write  in terms of the special vectors  as

We will use the equation given by  to compute the cross product.

We can write this result in the usual way, as

An important geometrical application of the cross product is as follows. The size of the cross product, , is the area of the
parallelogram determined by  and , as shown in the following picture.

Figure 

We examine this concept in the following example.

3. 4. 3. 4.
3. 1.

( + ) ×v ⃗  w⃗  u⃗  = − ×( + )u⃗  v ⃗  w⃗ 

= −( × + × )u⃗  v ⃗  u⃗  w⃗ 

= × + ×v ⃗  u⃗  w⃗  u⃗ 

 Example : Find a Cross Product4.9.1

×u⃗  v ⃗ 

= , =u⃗ 
⎡

⎣
⎢

1

−1

2

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

3

−2

1

⎤

⎦
⎥

,u⃗  v ⃗  , ,i ⃗  j ⃗  k⃗ 

= − +2u⃗  i ⃗  j ⃗  k⃗ 

= 3 −2 +v ⃗  i ⃗  j ⃗  k⃗ 

(4.9.4)

× = = − + = 3 +5 +u⃗  v ⃗ 

∣

∣

∣
∣
∣

i ⃗ 

1

3

j ⃗ 

−1

−2

k⃗ 

2

1

∣

∣

∣
∣
∣

∣

∣
∣
−1

−2

2

1

∣

∣
∣ i ⃗ 

∣

∣
∣
1

3

2

1

∣

∣
∣ j ⃗  ∣

∣
∣
1

3

−1

−2

∣

∣
∣ k⃗  i ⃗  j ⃗  k⃗ 

× =u⃗  v ⃗ 
⎡

⎣
⎢

3

5

1

⎤

⎦
⎥

∥ × ∥u⃗  v ⃗ 

u⃗  v ⃗ 

4.9.3
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Find the area of the parallelogram determined by the vectors  and  given by

Solution
Notice that these vectors are the same as the ones given in Example . Recall from the geometric description of the cross
product, that the area of the parallelogram is simply the magnitude of . From Example , . We
can also write this as

Thus the area of the parallelogram is

We can also use this concept to find the area of a triangle. Consider the following example.

Find the area of the triangle determined by the points 

Solution
This triangle is obtained by connecting the three points with lines. Picking  as a starting point, there are two
displacement vectors,  and . Notice that if we add either of these vectors to the position vector
of the starting point, the result is the position vectors of the other two points. Now, the area of the triangle is half the area of the
parallelogram determined by  and  The required cross product is given by

Taking the size of this vector gives the area of the parallelogram, given by

Hence the area of the triangle is 

In general, if you have three points in , the area of the triangle is given by

Recall that  is the vector running from point  to point .

 Example : Area of a Parallelogram4.9.2

u⃗  v ⃗ 

= , =u⃗ 
⎡

⎣
⎢

1

−1

2

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

3

−2

1

⎤

⎦
⎥

4.9.1

×u⃗  v ⃗  4.9.1 × = 3 +5 +u⃗  v ⃗  i ⃗  j ⃗  k⃗ 

× =u⃗  v ⃗ 
⎡

⎣
⎢

3

5

1

⎤

⎦
⎥

∥ × ∥ = = =u⃗  v ⃗  (3)(3) +(5)(5) +(1)(1)
− −−−−−−−−−−−−−−−−−

√ 9 +25 +1− −−−−−−−√ 35
−−

√

 Example : Area of Triangle4.9.3

(1, 2, 3) , (0, 2, 5) , (5, 1, 2)

(1, 2, 3)

[ ]−1 0 2 T [ ]4 −1 −1 T

[ ]−1 0 2 T .[ ]4 −1 −1 T

× = [ ]
⎡

⎣
⎢

−1

0

2

⎤

⎦
⎥

⎡

⎣
⎢

4

−1

−1

⎤

⎦
⎥ 2 7 1

= =(2)(2) +(7)(7) +(1)(1)
− −−−−−−−−−−−−−−−−−

√ 4 +49 +1− −−−−−−−√ 54−−√

= .1
2 54−−√ 3

2 6–√

,P ,Q,RR
3

∥ × ∥
1

2
PQ
→

PR
→

PQ
→

P Q
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Figure 

In the next section, we explore another application of the cross product.

The Box Product
Recall that we can use the cross product to find the the area of a parallelogram. It follows that we can use the cross product together
with the dot product to find the volume of a parallelepiped. We begin with a definition.

A parallelepiped determined by the three vectors, , and  consists of

That is, if you pick three numbers,  and  each in  and form  then the collection of all such points makes
up the parallelepiped determined by these three vectors.

The following is an example of a parallelepiped.

Figure 

Notice that the base of the parallelepiped is the parallelogram determined by the vectors  and . Therefore, its area is equal to 
. The height of the parallelepiped is  where  is the angle shown in the picture between  and . The

volume of this parallelepiped is the area of the base times the height which is just

This expression is known as the box product and is sometimes written as  You should consider what happens if you
interchange the  with the  or the  with the . You can see geometrically from drawing pictures that this merely introduces a
minus sign. In any case the box product of three vectors always equals either the volume of the parallelepiped determined by the
three vectors or else  times this volume.

Let  be three vectors in  that define a parallelepiped. Then the volume of the parallelepiped is the absolute value of
the box product, given by

4.9.4

 Definition : Parallelepiped4.9.3

,u⃗  v ⃗  w⃗ 

{r +s + t : r, s, t ∈ [0, 1]}u⃗  v ⃗  w⃗ 

r, s, t [0, 1] r +s + tu⃗  v ⃗  w⃗ 

4.9.5

u⃗  v ⃗ 

∥ × ∥u⃗  v ⃗  ∥ ∥ cosθw⃗  θ w⃗  ×u⃗  v ⃗ 

∥ × ∥∥ ∥ cosθ = ( × ) ⋅u⃗  v ⃗  w⃗  u⃗  v ⃗  w⃗ 

[ , , ] .u⃗  v ⃗  w⃗ 

v ⃗  w⃗  u⃗  w⃗ 

−1

 Proposition : The Box Product4.9.2

, ,u⃗  v ⃗  w⃗  R
n

|( × ) ⋅ |u⃗  v ⃗  w⃗ 
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Consider an example of this concept.

Find the volume of the parallelepiped determined by the vectors

Solution
According to the above discussion, pick any two of these vectors, take the cross product and then take the dot product of this
with the third of these vectors. The result will be either the desired volume or  times the desired volume. Therefore by
taking the absolute value of the result, we obtain the volume.

We will take the cross product of  and . This is given by

Now take the dot product of this vector with  which yields

This shows the volume of this parallelepiped is 14 cubic units.

There is a fundamental observation which comes directly from the geometric definitions of the cross product and the dot product.

Let , and  be vectors. Then 

Proof

This follows from observing that either  and  both give the volume of the parallelepiped or they
both give  times the volume.

Recall that we can express the cross product as the determinant of a particular matrix. It turns out that the same can be done for the
box product. Suppose you have three vectors,  and  Then the box product 

 is given by the following.

 Example : Volume of a Parallelepiped4.9.4

= , = , =u⃗ 
⎡

⎣
⎢

1

2

−5

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

1

3

−6

⎤

⎦
⎥ w⃗ 

⎡

⎣
⎢

3

2

3

⎤

⎦
⎥

−1

u⃗  v ⃗ 

× = ×u⃗  v ⃗ 
⎡

⎣
⎢

1

2

−5

⎤

⎦
⎥

⎡

⎣
⎢

1

3

−6

⎤

⎦
⎥

= = 3 + + =

∣

∣

∣
∣
∣

i ⃗ 

1

1

j ⃗ 

2

3

k⃗ 

−5

−6

∣

∣

∣
∣
∣

i ⃗  j ⃗  k⃗ 
⎡

⎣
⎢

3

1

1

⎤

⎦
⎥

w⃗ 

( × ) ⋅u⃗  v ⃗  w⃗  = ⋅
⎡

⎣
⎢

3

1

1

⎤

⎦
⎥

⎡

⎣
⎢

3

2

3

⎤

⎦
⎥

= (3 + + ) ⋅(3 +2 +3 )i ⃗  j ⃗  k⃗  i ⃗  j ⃗  k⃗ 

= 9 +2 +3
= 14

 Proposition : Order of the Product4.9.3

,u⃗  v ⃗  w⃗  ( × ) ⋅ = ⋅ ( × ) .u⃗  v ⃗  w⃗  u⃗  v ⃗  w⃗ 

( × ) ⋅u⃗  v ⃗  w⃗  ⋅ ( × )u⃗  v ⃗  w⃗ 

−1

= , = ,u⃗  [ ]a b c
T
v ⃗  [ ]d e f

T = .w⃗  [ ]g h i
T

⋅ ( × )u⃗  v ⃗  w⃗ 
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To take the box product, you can simply take the determinant of the matrix which results by letting the rows be the components of
the given vectors in the order in which they occur in the box product.

This follows directly from the definition of the cross product given above and the way we expand determinants. Thus the volume of
a parallelepiped determined by the vectors  is just the absolute value of the above determinant.

This page titled 4.9: The Cross Product is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

⋅ ( × )u⃗  v ⃗  w⃗  = ⋅
⎡

⎣
⎢

a

b

c

⎤

⎦
⎥

∣

∣

∣
∣
∣

i ⃗ 

d

g

j ⃗ 

e

h

k⃗ 

f

i

∣

∣

∣
∣
∣

= a −b +c
∣

∣
∣
e

h

f

i

∣

∣
∣

∣

∣
∣
d

g

f

i

∣

∣
∣

∣

∣
∣
d

g

e

h

∣

∣
∣

= det
⎡

⎣
⎢

a

d

g

b

e

h

c

f

i

⎤

⎦
⎥

, ,u⃗  v ⃗  w⃗ 
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4.10: Spanning, Linear Independence and Basis in Rⁿ

A. Determine the span of a set of vectors, and determine if a vector is contained in a specified span.
B. Determine if a set of vectors is linearly independent.
C. Understand the concepts of subspace, basis, and dimension.
D. Find the row space, column space, and null space of a matrix.

By generating all linear combinations of a set of vectors one can obtain various subsets of  which we call subspaces. For
example what set of vectors in  generate the -plane? What is the smallest such set of vectors can you find? The tools of
spanning, linear independence and basis are exactly what is needed to answer these and similar questions and are the focus of this
section. The following definition is essential.

Let  and  be sets of vectors in . If all vectors in  are also in , we say that  is a subset of , denoted

Spanning Set of Vectors
We begin this section with a definition.

The collection of all linear combinations of a set of vectors  in  is known as the span of these vectors and is
written as .

Consider the following example.

Describe the span of the vectors  and .

Solution

You can see that any linear combination of the vectors  and  yields a vector of the form  in the -plane.

Moreover every vector in the -plane is in fact such a linear combination of the vectors  and . That’s because

Thus  is precisely the -plane.

You can convince yourself that no single vector can span the -plane. In fact, take a moment to consider what is meant by the
span of a single vector.

However you can make the set larger if you wish. For example consider the larger set of vectors  where 
. Since the first two vectors already span the entire -plane, the span is once again precisely the -plane and

nothing has been gained. Of course if you add a new vector such as  then it does span a different space. What is
the span of  in this case?

The distinction between the sets  and  will be made using the concept of linear independence.

 Outcomes

R
n

R
3 XY

 Definition : Subset4.10.1

U W R
n U W U W

U ⊆ W

 Definition : Span of a Set of Vectors4.10.2

{ , ⋯ , }u⃗ 1 u⃗ k R
n

span{ , ⋯ , }u⃗ 1 u⃗ k

 Example : Span of Vectors4.10.1

=u⃗  [ ]1 1 0
T

= ∈v ⃗  [ ]3 2 0
T

R
3

u⃗  v ⃗  [ ]x y 0
T XY

XY u⃗  v ⃗ 

= (−2x+3y) +(x−y)
⎡

⎣
⎢
x

y

0

⎤

⎦
⎥

⎡

⎣
⎢

1

1

0

⎤

⎦
⎥

⎡

⎣
⎢

3

2

0

⎤

⎦
⎥

span{ , }u⃗  v ⃗  XY

XY

{ , , }u⃗  v ⃗  w⃗ 

=w⃗  [ ]4 5 0
T XY XY

=w⃗  [ ]0 0 1
T

, ,u⃗  v ⃗  w⃗ 

{ , }u⃗  v ⃗  { , , }u⃗  v ⃗  w⃗ 
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Consider the vectors , and  discussed above. In the next example, we will show how to formally demonstrate that  is in the
span of  and .

Let  and . Show that  is in .

Solution
For a vector to be in , it must be a linear combination of these vectors. If , we must be able to find
scalars  such that

We proceed as follows.

This is equivalent to the following system of equations

We solving this system the usual way, constructing the augmented matrix and row reducing to find the reduced row-echelon
form.

The solution is . This means that

Therefore we can say that  is in .

Linearly Independent Set of Vectors

We now turn our attention to the following question: what linear combinations of a given set of vectors  in  yields
the zero vector? Clearly , but is it possible to have  without all coefficients being zero?

You can create examples where this easily happens. For example if , then , no matter the
vectors . 0But sometimes it can be more subtle.

Consider the vectors

in .

Then verify that

You can see that the linear combination does yield the zero vector but has some non-zero coefficients. Thus we define a set of
vectors to be linearly dependent if this happens.

,u⃗  v ⃗  w⃗  w⃗ 

u⃗  v ⃗ 

 Example : Vector in a Span4.10.2

=u⃗  [ ]1 1 0
T = ∈v ⃗  [ ]3 2 0

T
R

3 =w⃗  [ ]4 5 0
T span{ , }u⃗  v ⃗ 

span{ , }u⃗  v ⃗  ∈ span{ , }w⃗  u⃗  v ⃗ 

a, b

= a +bw⃗  u⃗  v ⃗ 

= a +b
⎡

⎣
⎢

4

5

0

⎤

⎦
⎥

⎡

⎣
⎢

1

1

0

⎤

⎦
⎥

⎡

⎣
⎢

3

2

0

⎤

⎦
⎥

a+3b

a+2b

= 4

= 5

[ ]→ ⋯ → [ ]
1

1

3

2

4

5

1

0

0

1

7

−1

a = 7, b = −1

= 7 −w⃗  u⃗  v ⃗ 

w⃗  span{ , }u⃗  v ⃗ 

{ , ⋯ , }u⃗ 1 u⃗ k R
n

0 +0 +⋯ +0 =u⃗ 1 u⃗ 2 u⃗ k 0⃗  =∑k
i=1 aiu⃗ i 0⃗ 

=u⃗ 1 u⃗ 2 1 − +0 +⋯ +0 =u⃗ 1 u⃗ 2 u⃗ 3 u⃗ k 0⃗ 

{ , ⋯ , }u⃗ 3 u⃗ k

 Example : Linearly Dependent Set of Vectors4.10.3

= , = , = ,  and  =u⃗ 1 [ ]0 1 −2
T u⃗ 2 [ ]1 1 0

T u⃗ 3 [ ]−2 3 2
T u⃗ 4 [ ]1 −2 0

T

R
3

1 +0 +− −2 =u⃗ 1 u⃗ 2 u⃗ 3 u⃗ 4 0⃗ 
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A set of non-zero vectors  in  is said to be linearly dependent if a linear combination of these vectors without
all coefficients being zero does yield the zero vector.

Note that if  and some coefficient is non-zero, say , then

and thus  is in the span of the other vectors. And the converse clearly works as well, so we get that a set of vectors is linearly
dependent precisely when one of its vector is in the span of the other vectors of that set.

In particular, you can show that the vector  in the above example is in the span of the vectors .

If a set of vectors is NOT linearly dependent, then it must be that any linear combination of these vectors which yields the zero
vector must use all zero coefficients. This is a very important notion, and we give it its own name of linear independence.

A set of non-zero vectors  in  is said to be linearly independent if whenever

it follows that each .

Note also that we require all vectors to be non-zero to form a linearly independent set.

To view this in a more familiar setting, form the  matrix  having these vectors as columns. Then all we are saying is that the
set  is linearly independent precisely when  has only the trivial solution.

Here is an example.

Consider the vectors , , and  in . Verify whether the set  is
linearly independent.

Solution

So suppose that we have a linear combinations . Then you can see that this can only happen with 
.

As mentioned above, you can equivalently form the  matrix , and show that  has only the

trivial solution.

Thus this means the set  is linearly independent.

In terms of spanning, a set of vectors is linearly independent if it does not contain unnecessary vectors, that is not vector is in the
span of the others.

Thus we put all this together in the following important theorem.

 Definition : Linearly Dependent Set of Vectors4.10.3

{ , ⋯ , }u⃗ 1 u⃗ k R
n

=∑k
i=1 aiu⃗ i 0⃗  ≠ 0a1

=u⃗ 1
−1

a1
∑
i=2

k

aiu⃗ i

u⃗ 1

u⃗ 1 { , , }u⃗ 2 u⃗ 3 u⃗ 4

 Definition : Linearly Independent Set of Vectors4.10.4

{ , ⋯ , }u⃗ 1 u⃗ k R
n

=∑
i=1

k

aiu⃗ i 0⃗ 

= 0ai

n×k A

{ , ⋯ , }u⃗ 1 u⃗ k AX = 0

 Example : Linearly Independent Vectors4.10.4

=u⃗  [ ]1 1 0
T

=v ⃗  [ ]1 0 1
T

=w⃗  [ ]0 1 1
T

R
3 { , , }u⃗  v ⃗  w⃗ 

a +b +c =u⃗  v ⃗  w⃗  0⃗ 

a = b = c = 0

3 ×3 A =
⎡

⎣
⎢

1

1

0

1

0

1

0

1

1

⎤

⎦
⎥ AX = 0

{ , , }u⃗  v ⃗  w⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21268?pdf


4.10.4 https://math.libretexts.org/@go/page/21268

Let  be a collection of vectors in . Then the following are equivalent:

1. It is linearly independent, that is whenever

it follows that each coefficient .
2. No vector is in the span of the others.
3. The system of linear equations  has only the trivial solution, where  is the  matrix having these vectors as

columns.

The last sentence of this theorem is useful as it allows us to use the reduced row-echelon form of a matrix to determine if a set of
vectors is linearly independent. Let the vectors be columns of a matrix . Find the reduced row-echelon form of . If each column
has a leading one, then it follows that the vectors are linearly independent.

Sometimes we refer to the condition regarding sums as follows: The set of vectors,  is linearly independent if and only
if there is no nontrivial linear combination which equals the zero vector. A nontrivial linear combination is one in which not all the
scalars equal zero. Similarly, a trivial linear combination is one in which all scalars equal zero.

Here is a detailed example in .

Determine whether the set of vectors given by

is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination of the others.

Solution
In this case the matrix of the corresponding homogeneous system of linear equations is

The reduced row-echelon form is

and so every column is a pivot column and the corresponding system  only has the trivial solution. Therefore, these
vectors are linearly independent and there is no way to obtain one of the vectors as a linear combination of the others.

Consider another example.

 Theorem : Linear Independence as a Linear Combination4.10.1

{ , ⋯ , }u⃗ 1 u⃗ k R
n

=∑
i=1

k

aiu⃗ i 0⃗ 

= 0ai

AX = 0 A n×k

A A

{ , ⋯ , }u⃗ 1 u⃗ k

R
4

 Example : Linear Independence4.10.5

, , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

2

3

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

1

0

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

1

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

3

2

2

0

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢

1

2

3

0

2

1

0

1

0

1

1

2

3

2

2

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

AX = 0
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Determine whether the set of vectors given by

is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination of the others.

Solution
Form the  matrix  having these vectors as columns:

Then by Theorem , the given set of vectors is linearly independent exactly if the system  has only the trivial
solution.

The augmented matrix for this system and corresponding reduced row-echelon form are given by

Not all the columns of the coefficient matrix are pivot columns and so the vectors are not linearly independent. In this case, we
say the vectors are linearly dependent.

It follows that there are infinitely many solutions to , one of which is

Therefore we can write

This can be rearranged as follows

This gives the last vector as a linear combination of the first three vectors.

Notice that we could rearrange this equation to write any of the four vectors as a linear combination of the other three.

 Example : Linear Independence4.10.6

, , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

2

3

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

2

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

1

2

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

3

2

2

−1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

4 ×4 A

A =

⎡

⎣

⎢⎢
⎢

1

2

3

0

2

1

0

1

0

1

1

2

3

2

2

−1

⎤

⎦

⎥⎥
⎥

4.10.1 AX = 0

→ ⋯ →

⎡

⎣

⎢⎢⎢⎢

1

2

3

0

2

1

0

1

0

1

1

2

3

2

2

−1

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

1

1

−1

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

AX = 0

⎡

⎣

⎢⎢⎢

1

1

−1

−1

⎤

⎦

⎥⎥⎥

1 +1 −1 −1 =

⎡

⎣

⎢
⎢⎢

1

2

3

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

2

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

1

2

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

3

2

2

−1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

0

0

0

⎤

⎦

⎥
⎥⎥

1 +1 −1 =

⎡

⎣

⎢⎢⎢

1

2

3

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

1

0

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

1

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

3

2

2

−1

⎤

⎦

⎥⎥⎥
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When given a linearly independent set of vectors, we can determine if related sets are linearly independent.

Let  be an independent set of . Is  linearly independent?

Solution

Suppose  for some . Then

Since  is independent,

This system of three equations in three variables has the unique solution . Therefore, 
is independent.

The following corollary follows from the fact that if the augmented matrix of a homogeneous system of linear equations has more
columns than rows, the system has infinitely many solutions.

Let  be a set of vectors in . If , then the set is linearly dependent (i.e. NOT linearly independent).

Proof

Form the  matrix  having the vectors  as its columns and suppose . Then  has rank 
, so the system  has a nontrivial solution and thus not linearly independent by Theorem .

Consider the vectors

Are these vectors linearly independent?

Solution

This set contains three vectors in . By Corollary  these vectors are linearly dependent. In fact, we can write

showing that this set is linearly dependent.

The third vector in the previous example is in the span of the first two vectors. We could find a way to write this vector as a linear
combination of the other two vectors. It turns out that the linear combination which we found is the only one, provided that the set
is linearly independent.

 Example : Related Sets of Vectors4.10.7

{ , , }u⃗  v ⃗  w⃗  R
n { + , 2 + , −5 }u⃗  v ⃗  u⃗  w⃗  v ⃗  w⃗ 

a( + ) +b(2 + ) +c( −5 ) =u⃗  v ⃗  u⃗  w⃗  v ⃗  w⃗  0⃗ 
n a, b, c ∈ R

(a+2b) +(a+c) +(b−5c) = .u⃗  v ⃗  w⃗  0⃗ 
n

{ , , }u⃗  v ⃗  w⃗ 

a+2b

a+c

b−5c

= 0

= 0

= 0

a = b = c = 0 { + , 2 + , −5 }u⃗  v ⃗  u⃗  w⃗  v ⃗  w⃗ 

 Corollary : Linear Dependence in 4.10.1 R
′′

{ , ⋯ , }u⃗ 1 u⃗ k R
n k > n

n×k A { , ⋯ , }u⃗ 1 u⃗ k k > n A

r ≤ n < k AX = 0 4.10.1

 Example : Linear Dependence4.10.8

{[ ] , [ ] , [ ]}
1

4

2

3

3

2

R
2 4.10.1

(−1)[ ]+(2)[ ] = [ ]
1

4

2

3

3

2
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Let  be an independent set. Then any vector  can be written uniquely as a linear combination of vectors
of .

Proof

To prove this theorem, we will show that two linear combinations of vectors in  that equal  must be the same. Let 
. Suppose that there is a vector  such that

Then .

Since  is independent, the only linear combination that vanishes is the trivial one, so  for all , .

Therefore,  for all , , and the representation is unique.Let  be an independent set. Then any
vector  can be written uniquely as a linear combination of vectors of .

Suppose that  and  are nonzero vectors in , and that  is independent. Consider the set . When can we know
that this set is independent? It turns out that this follows exactly when .

Suppose that  and  are nonzero vectors in , and that  is independent. Prove that  is independent if and
only if .

Solution

If , then there exist  so that . This implies that , so  is a
nontrivial linear combination of  that vanishes, and thus  is dependent.

Now suppose that , and suppose that there exist  such that . If , then 
, and , a contradiction. Therefore, , implying that . Since  is

independent, , and thus , i.e., the only linear combination of  and  that vanishes is the trivial
one.

Therefore,  is independent.

Consider the following useful theorem.

Let  be an invertible  matrix. Then the columns of  are independent and span . Similarly, the rows of  are
independent and span the set of all  vectors.

This theorem also allows us to determine if a matrix is invertible. If an  matrix  has columns which are independent, or
span , then it follows that  is invertible. If it has rows that are independent, or span the set of all  vectors, then  is
invertible.

A Short Application to Chemistry

The following section applies the concepts of spanning and linear independence to the subject of chemistry.

When working with chemical reactions, there are sometimes a large number of reactions and some are in a sense redundant.
Suppose you have the following chemical reactions.

 Theorem : Unique Linear Combination4.10.2

U ⊆ R
n ∈ span(U)x⃗ 

U

U x⃗ 

U = { , , … , }u⃗ 1 u⃗ 2 u⃗ k ∈ span(U)x⃗ 

x⃗ 

x⃗ 
= + +⋯ + ,  for some  , , … , ∈ R,  ands1u⃗ 1 s2u⃗ 2 sku⃗ k s1 s2 sk

= + +⋯ + ,  for some  , , … , ∈ R.t1u⃗ 1 t2u⃗ 2 tku⃗ k t1 t2 tk

= − = ( − ) +( − ) +⋯ +( − )0⃗ 
n x⃗  x⃗  s1 t1 u⃗ 1 s2 t2 u⃗ 2 sk tk u⃗ k

U − = 0si ti i 1 ≤ i ≤ k

=si ti i 1 ≤ i ≤ k U ⊆ R
n

∈ span(U)x⃗  U

,u⃗  v ⃗  w⃗  R
3 { , }v ⃗  w⃗  { , , }u⃗  v ⃗  w⃗ 

∉ span{ , }u⃗  v ⃗  w⃗ 

 Example 4.10.9

,u⃗  v ⃗  w⃗  R
3 { , }v ⃗  w⃗  { , , }u⃗  v ⃗  w⃗ 

∉ span{ , }u⃗  v ⃗  w⃗ 

∈ span{ , }u⃗  v ⃗  w⃗  a, b ∈ R = a +bu⃗  v ⃗  w⃗  −a −b =u⃗  v ⃗  w⃗  0⃗ 
3 −a −bu⃗  v ⃗  w⃗ 

{ , , }u⃗  v ⃗  w⃗  { , , }u⃗  v ⃗  w⃗ 

∉ span{ , }u⃗  v ⃗  w⃗  a, b, c ∈ R a +b +c =u⃗  v ⃗  w⃗  0⃗ 
3 a ≠ 0

= − −u⃗  b
a v ⃗  c

a w⃗  ∈ span{ , }u⃗  v ⃗  w⃗  a = 0 b +c =v ⃗  w⃗  0⃗ 
3 { , }v ⃗  w⃗ 

b = c = 0 a = b = c = 0 ,u⃗  v ⃗  w⃗ 

{ , , }u⃗  v ⃗  w⃗ 

 Theorem : Invertible Matrices4.10.3

A n×n A R
n A

1 ×n

n×n A

R
n A 1 ×n A
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There are four chemical reactions here but they are not independent reactions. There is some redundancy. What are the independent
reactions? Is there a way to consider a shorter list of reactions? To analyze this situation, we can write the reactions in a matrix as
follows

Each row contains the coefficients of the respective elements in each reaction. For example, the top row of numbers comes from 
 which represents the first of the chemical reactions.

We can write these coefficients in the following matrix

Rather than listing all of the reactions as above, it would be more efficient to only list those which are independent by throwing out
that which is redundant. We can use the concepts of the previous section to accomplish this.

First, take the reduced row-echelon form of the above matrix.

The top three rows represent “independent" reactions which come from the original four reactions. One can obtain each of the
original four rows of the matrix given above by taking a suitable linear combination of rows of this reduced row-echelon matrix.

With the redundant reaction removed, we can consider the simplified reactions as the following equations

In terms of the original notation, these are the reactions

These three reactions provide an equivalent system to the original four equations. The idea is that, in terms of what happens
chemically, you obtain the same information with the shorter list of reactions. Such a simplification is especially useful when
dealing with very large lists of reactions which may result from experimental evidence.

Subspaces and Basis

The goal of this section is to develop an understanding of a subspace of . Before a precise definition is considered, we first
examine the subspace test given below.

CO+ → C1
2
O2 O2

+ → OH2
1
2
O2 H2

C + → CO+2 OH4
3
2
O2 H2

C +2 → C +2 OH4 O2 O2 H2

⎡

⎣

⎢⎢
⎢⎢⎢⎢

CO

1

0

−1

0

O2

1/2

1/2

3/2

2

CO2

−1

0

0

−1

H2

0

1

0

0

OH2

0

−1

−2

−2

CH4

0

0

1

1

⎤

⎦

⎥⎥
⎥⎥⎥⎥

CO+ −C = 01
2
O2 O2

⎡

⎣

⎢⎢⎢⎢

1

0

−1

0

1/2

1/2

3/2

2

−1

0

0

−1

0

1

0

0

0

−1

−2

−2

0

0

1

1

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

3

2

4

0

−1

−2

−2

0

−1

0

−1

0

⎤

⎦

⎥
⎥⎥

CO+3 −1 O−1C = 0H2 H2 H4

+2 −2 O = 0O2 H2 H2

C +4 −2 O−1C = 0O2 H2 H2 H4

CO+3 → O+CH2 H2 H4

+2 → 2 OO2 H2 H2

C +4 → 2 O+CO2 H2 H2 H4

R
n
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A subset  of  is a subspace of  if

1. the zero vector of , , is in ;
2.  is closed under addition, i.e., for all , ;
3.  is closed under scalar multiplication, i.e., for all  and , .

This test allows us to determine if a given set is a subspace of . Notice that the subset  is a subspace of  (called the

zero subspace ), as is  itself. A subspace which is not the zero subspace of  is referred to as a proper subspace.

A subspace is simply a set of vectors with the property that linear combinations of these vectors remain in the set. Geometrically in 
, it turns out that a subspace can be represented by either the origin as a single point, lines and planes which contain the origin,

or the entire space .

Consider the following example of a line in .

In , the line  through the origin that is parallel to the vector  has (vector) equation ,

so

Then  is a subspace of .

Solution

Using the subspace test given above we can verify that  is a subspace of .

First:  since .
Suppose . Then by definition,  and , for some . Thus

Since , ; i.e.,  is closed under addition.
Suppose  and  (  is a scalar). Then , for some , so

Since , ; i.e.,  is closed under scalar multiplication.

Since  satisfies all conditions of the subspace test, it follows that  is a subspace.

Note that there is nothing special about the vector  used in this example; the same proof works for any nonzero vector , so
any line through the origin is a subspace of .

We are now prepared to examine the precise definition of a subspace as follows.

Let  be a nonempty collection of vectors in  Then  is called a subspace if whenever  and  are scalars and  and  are
vectors in  the linear combination  is also in .

More generally this means that a subspace contains the span of any finite collection vectors in that subspace. It turns out that in ,
a subspace is exactly the span of finitely many of its vectors.

 Theorem : Subspace Test4.10.4

V R
n

R
n

R
n 0⃗ 

n V

V , ∈ Vu⃗  w⃗  + ∈ Vu⃗  w⃗ 

V ∈ Vu⃗  k ∈ R k ∈ Vu⃗ 

R
n V ={ }0⃗  R

n

R
n

R
n

R
3

R
3

R
3

 Example : Subspace of 4.10.10 R
3

R
3 L =d ⃗ 

⎡

⎣
⎢

−5

1

−4

⎤

⎦
⎥ = t , t ∈ R

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

−5

1

−4

⎤

⎦
⎥

L ={t  | t ∈ R} .d ⃗ 

L R
3

L R
3

∈ L0⃗ 
3 0 =d ⃗  0⃗ 

3

, ∈ Lu⃗  v ⃗  = su⃗  d ⃗  = tv ⃗  d ⃗  s, t ∈ R

+ = s + t = (s+ t) .u⃗  v ⃗  d ⃗  d ⃗  d ⃗ 

s+ t ∈ R + ∈ Lu⃗  v ⃗  L

∈ Lu⃗  k ∈ R k = tu⃗  d ⃗  t ∈ R

k = k(t ) = (kt) .u⃗  d ⃗  d ⃗ 

kt ∈ R k ∈ Lu⃗  L

L L

d ⃗  ∈d ⃗ 
R

3

R
3

 Definition : Subspace4.10.5

V .R
n V a b u⃗  v ⃗ 

V , a +bu⃗  v ⃗  V

R
n
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Let  be a nonempty collection of vectors in  Then  is a subspace of  if and only if there exist vectors  in
 such that

Furthermore, let  be another subspace of  and suppose . Then it follows that  is a subset of .

Note that since  is arbitrary, the statement that  means that any other subspace of  that contains these vectors will
also contain .

Proof

We first show that if  is a subspace, then it can be written as . Pick a vector  in . If 
 then you have found your list of vectors and are done. If  then there exists  a vector of 

 which is not in  Consider  If , we are done. Otherwise, pick  not in 
 Continue this way. Note that since  is a subspace, these spans are each contained in . The process must

stop with  for some  by Corollary , and thus .

Now suppose , we must show this is a subspace. So let  and  be two vectors
in , and let  and  be two scalars. Then

which is one of the vectors in  and is therefore contained in . This shows that  has
the properties of a subspace.

To prove that , we prove that if , then .

Suppose . Then  for some , . Since  contain each  and  is a
vector space, it follows that .

Since the vectors  we constructed in the proof above are not in the span of the previous vectors (by definition), they must be
linearly independent and thus we obtain the following corollary.

If  is a subspace of  then there exist linearly independent vectors  in  such that .

In summary, subspaces of  consist of spans of finite, linearly independent collections of vectors of . Such a collection of
vectors is called a basis.

Let  be a subspace of . Then  is a basis for  if the following two conditions hold.

1. 
2.  is linearly independent

Note the plural of basis is bases.

The following is a simple but very useful example of a basis, called the standard basis.

Let  be the vector in  which has a  in the  entry and zeros elsewhere, that is the  column of the identity matrix. Then
the collection  is a basis for  and is called the standard basis of .

 Theorem : Subspaces are Spans4.10.5

V .R
n V R

n { , ⋯ , }u⃗ 1 u⃗ k
V

V = span{ , ⋯ , }u⃗ 1 u⃗ k

W R
n { , ⋯ , } ∈ Wu⃗ 1 u⃗ k V W

W V ⊆ W R
n

V

V V = span{ , ⋯ , }u⃗ 1 u⃗ k u⃗ 1 V

V = span{ } ,u⃗ 1 V ≠ span{ } ,u⃗ 1 u⃗ 2
V span{ } .u⃗ 1 span{ , } .u⃗ 1 u⃗ 2 V = span{ , }u⃗ 1 u⃗ 2 u⃗ 3
span{ , } .u⃗ 1 u⃗ 2 V V

u⃗ k k ≤ n 4.10.1 V = span{ , ⋯ , }u⃗ 1 u⃗ k

V = span{ , ⋯ , }u⃗ 1 u⃗ k ∑k
i=1 ciu⃗ i ∑k

i=1 diu⃗ i
V a b

a +b = (a +b )∑
i=1

k

ciu⃗ i ∑
i=1

k

diu⃗ i ∑
i=1

k

ci di u⃗ i

span{ , ⋯ , }u⃗ 1 u⃗ k V span{ , ⋯ , }u⃗ 1 u⃗ k

V ⊆ W ∈ Vu⃗ i ∈ Wu⃗ i

∈ Vu⃗  = + +⋯ +u⃗  a1u⃗ 1 a2u⃗ 2 aku⃗ k ∈ Rai 1 ≤ i ≤ k W u⃗ i W

+ +⋯ + ∈ Wa1u⃗ 1 a2u⃗ 2 aku⃗ k

u⃗ i

 Corollary : Subspaces are Spans of Independent Vectors4.10.2

V ,R
n { , ⋯ , }u⃗ 1 u⃗ k V V = span{ , ⋯ , }u⃗ 1 u⃗ k

R
n

R
n

 Definition : Basis of a Subspace4.10.6

V R
n { , ⋯ , }u⃗ 1 u⃗ k V

span{ , ⋯ , } = Vu⃗ 1 u⃗ k
{ , ⋯ , }u⃗ 1 u⃗ k

 Definition : Standard Basis of 4.10.7 R
n

e ⃗ i R
n 1 ith ith

{ , , ⋯ , }e ⃗ 1 e ⃗ 2 e ⃗ n R
n

R
n
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The main theorem about bases is not only they exist, but that they must be of the same size. To show this, we will need the the
following fundamental result, called the Exchange Theorem.

Suppose  is a linearly independent set of vectors in , and each  is contained in  Then 
 

In words, spanning sets have at least as many vectors as linearly independent sets.

Proof

Since each  is in , there exist scalars  such that

Suppose for a contradiction that . Then the matrix  has fewer rows,  than columns, . Then the system 
 has a non trivial solution , that is there is a  such that . In other words,

Therefore,

which contradicts the assumption that  is linearly independent, because not all the  are zero. Thus this
contradiction indicates that .

We are now ready to show that any two bases are of the same size.

Let  be a subspace of  with two bases  and . Suppose  contains  vectors and  contains  vectors. Then 

Proof

This follows right away from Theorem 9.4.4. Indeed observe that  is a spanning set for  while 
 is linearly independent, so  Similarly  is a spanning set for  while 
 is linearly independent, so .

The following definition can now be stated.

Let  be a subspace of . Then the dimension of , written  is defined to be the number of vectors in a basis.

The next result follows.

The dimension of  is 

Proof

 Theorem : Exchange Theorem4.10.6

{ , ⋯ , }u⃗ 1 u⃗ r R
n u⃗ k span{ , ⋯ , }v ⃗ 1 v ⃗ s

s ≥ r.

u⃗ j span{ , ⋯ , }v ⃗ 1 v ⃗ s aij

=u⃗ j ∑
i=1

s

aijv ⃗ i

s < r A = [ ]aij s r

AX = 0 d ⃗  ≠d ⃗  0⃗  A =d ⃗  0⃗ 

= 0, i = 1, 2, ⋯ , s∑
j=1

r

aijdj

∑
j=1

r

dju⃗ j =∑
j=1

r

dj∑
i=1

s

aijv ⃗ i

= ( ) = 0 = 0∑
i=1

s

∑
j=1

r

aijdj v ⃗ i ∑
i=1

s

v ⃗ i

{ , ⋯ , }u⃗ 1 u⃗ r dj
s ≥ r

 Theorem : Bases of  are of the Same Size4.10.7 R
n

V R
n B1 B2 B1 s B2 r s = r.

= { , ⋯ , }B1 u⃗ 1 u⃗ s V

= { , ⋯ , }B2 v ⃗ 1 v ⃗ r s ≥ r. = { , ⋯ , }B2 v ⃗ 1 v ⃗ r V

= { , ⋯ , }B1 u⃗ 1 u⃗ s r ≥ s

 Definition : Dimension of a Subspace4.10.8

V R
n V dim(V )

 Corollary : Dimension of 4.10.3 R
n

R
n n.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21268?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/09%3A_Vector_Spaces/9.04%3A_Subspaces_and_Basis#Theorem_.5C(.5CPageIndex.7B1.7D.5C):%20_Exchange_Theorem


4.10.12 https://math.libretexts.org/@go/page/21268

You only need to exhibit a basis for  which has  vectors. Such a basis is the standard basis .

Consider the following example.

Let

Show that  is a subspace of , find a basis of , and find .

Solution
The condition  is equivalent to the condition , so we may write

This shows that  is a subspace of , since  where

Furthermore,

is linearly independent, as can be seen by taking the reduced row-echelon form of the matrix whose columns are  and .

Since every column of the reduced row-echelon form matrix has a leading one, the columns are linearly independent.

Therefore  is linearly independent and spans , so is a basis of . Hence  has dimension three.

We continue by stating further properties of a set of vectors in .

The following properties hold in :

Suppose  is linearly independent. Then  is a basis for .
Suppose  spans  Then 
If  spans  then  is linearly independent.

R
n n { , ⋯ , }e ⃗ 1 e ⃗ n

 Example : Basis of Subspace4.10.11

V = ∈   :  a−b = d−c .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

a

b

c

d

⎤

⎦

⎥⎥⎥
R

4

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

V R
4 V dim(V )

a−b = d−c a = b−c+d

V =   :  b, c, d ∈ R = b +c +d   :  b, c, d ∈ R

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

b−c+d

b

c

d

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

1

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1

0

1

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

V R
4 V = span{ , , }u⃗ 1 u⃗ 2 u⃗ 3

= , = , =u⃗ 1

⎡

⎣

⎢⎢
⎢

1

1

0

0

⎤

⎦

⎥⎥
⎥

u⃗ 2

⎡

⎣

⎢⎢
⎢

−1

0

1

0

⎤

⎦

⎥⎥
⎥

u⃗ 3

⎡

⎣

⎢⎢
⎢

1

0

0

1

⎤

⎦

⎥⎥
⎥

, ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

1

0

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

0

1

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

0

1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

,u⃗ 1 u⃗ 2 u⃗ 3

→

⎡

⎣

⎢⎢
⎢

1

1

0

0

−1

0

1

0

1

0

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

0

0

0

1

0

0

0

0

1

0

⎤

⎦

⎥⎥
⎥

{ , , }u⃗ 1 u⃗ 2 u⃗ 3 V V V

R
n

 Corollary : Linearly Independent and Spanning Sets in 4.10.4 R
n

R
n

{ , ⋯ , }u⃗ 1 u⃗ n { , ⋯ , }u⃗ 1 u⃗ n R
n

{ , ⋯ , }u⃗ 1 u⃗ m .R
n m ≥ n.

{ , ⋯ , }u⃗ 1 u⃗ n ,R
n { , ⋯ , }u⃗ 1 u⃗ n
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Proof

Assume first that  is linearly independent, and we need to show that this set spans . To do so, let  be a
vector of , and we need to write  as a linear combination of ’s. Consider the matrix  having the vectors  as
columns:

By linear independence of the ’s, the reduced row-echelon form of  is the identity matrix. Therefore the system 
has a (unique) solution, so  is a linear combination of the ’s.

To establish the second claim, suppose that  Then letting  be the pivot columns of the matrix

it follows  and these  pivot columns would be a basis for  having fewer than  vectors, contrary to
Corollary .

Finally consider the third claim. If  is not linearly independent, then replace this list with 
where these are the pivot columns of the matrix

Then  spans  and is linearly independent, so it is a basis having less than  vectors again contrary to
Corollary .

The next theorem follows from the above claim.

Let  be a subspace of . Then there exists a basis of  with .

Consider Corollary  together with Theorem . Let . Suppose there exists an independent set of vectors in 
. If this set contains  vectors, then it is a basis for . If it contains less than  vectors, then vectors can be added to the set to

create a basis of . Similarly, any spanning set of  which contains more than  vectors can have vectors removed to create a basis
of .

We illustrate this concept in the next example.

Consider the set  given by

Then  is a subspace of  and .

Then

is an independent subset of . Therefore  can be extended to a basis of .

Solution

{ , ⋯ , }u⃗ 1 u⃗ n R
n v ⃗ 

R
n v ⃗  u⃗ i A u⃗ i

A = [ ]u⃗ 1 ⋯ u⃗ n

u⃗ i A A =x⃗  v ⃗ 

v ⃗  u⃗ i

m < n. , ⋯ ,u⃗ i1 u⃗ ik

[ ]u⃗ 1 ⋯ u⃗ m

k ≤ m < n k R
n n

4.10.3

{ , ⋯ , }u⃗ 1 u⃗ n { , ⋯ , }u⃗ i1 u⃗ ik

[ ]u⃗ 1 ⋯ u⃗ n

{ , ⋯ , }u⃗ i1 u⃗ ik R
n n

4.10.3

 Theorem : Existence of Basis4.10.8

V R
n V dim(V ) ≤ n

4.10.4 4.10.8 dim(V ) = r

V r V r

V V r

V

 Example : Extending an Independent Set4.10.12

U

U = ∈    a−b = d−c

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

a

b

c

d

⎤

⎦

⎥⎥
⎥

R
4

∣

∣

∣
∣
∣
∣

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

U R
4 dim(U) = 3

S = , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

1

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

3

3

2

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

U S U
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To extend  to a basis of , find a vector in  that is not in .

Therefore,  can be extended to the following basis of :

Next we consider the case of removing vectors from a spanning set to result in a basis.

Let  be a subspace. Also suppose that . Then there exists a subset of  which is a
basis for .

Proof

Let  denote the set of positive integers such that for  there exists a subset of  consisting of exactly 
vectors which is a spanning set for . Thus . Pick the smallest positive integer in . Call it . Then there exists 

 such that  If

and not all of the  then you could pick , divide by it and solve for  in terms of the others,

Then you could delete  from the list and have the same span. Any linear combination involving  would equal one in
which  is replaced with the above sum, showing that it could have been obtained as a linear combination of  for .
Thus  contrary to the choice of . Hence each  and so  is a basis for  consisting of vectors
of .

The following example illustrates how to carry out this shrinking process which will obtain a subset of a span of vectors which is
linearly independent.

Let  be the subspace

S U U span(S)

⎡

⎣

⎢⎢
⎢

1

1

1

1

2

3

3

2

?

?

?

?

⎤

⎦

⎥⎥
⎥

→

⎡

⎣

⎢⎢⎢

1

1

1

1

2

3

3

2

1

0

−1

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

⎤

⎦

⎥⎥⎥

S U

, , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

1

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

2

3

3

2

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

−1

0

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Theorem : Finding a Basis from a Span4.10.9

W W = span { , ⋯ , }w⃗ 1 w⃗ m { , ⋯ , }w⃗ 1 w⃗ m
W

S k ∈ S, { , ⋯ , }w⃗ 1 w⃗ m k

W m ∈ S S k

{ , ⋯ , } ⊆ { , ⋯ , }u⃗ 1 u⃗ k w⃗ 1 w⃗ m span{ , ⋯ , } = W .u⃗ 1 u⃗ k

=∑
i=1

k

ciw⃗ i 0⃗ 

= 0,ci ≠ 0cj u⃗ j

= (− )w⃗ j ∑
i≠j

ci

cj
w⃗ i

w⃗ j w⃗ j
w⃗ j w⃗ i i ≠ j

k−1 ∈ S k = 0ci { , ⋯ , }u⃗ 1 u⃗ k W

{ , ⋯ , }w⃗ 1 w⃗ m

 Example : Subset of a Span4.10.13

W

span , , , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

2

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

3

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

8

19

−8

8

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−6

−15

6

−6

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

3

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

5

0

1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪
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Find a basis for  which consists of a subset of the given vectors.

Solution
You can use the reduced row-echelon form to accomplish this reduction. Form the matrix which has the given vectors as
columns.

Then take the reduced row-echelon form

It follows that a basis for  is

Since the first, second, and fifth columns are obviously a basis for the column space of the , the same is true for the matrix
having the given vectors as columns.

Consider the following theorems regarding a subspace contained in another subspace.

Let  and  be subspaces of , and suppose that . Then  with equality when .

Let  be any non-zero subspace  and let  where  is also a subspace of . Then every basis of  can be
extended to a basis for .

The proof is left as an exercise but proceeds as follows. Begin with a basis for  and add in vectors from  until
you obtain a basis for . Not that the process will stop because the dimension of  is no more than .

Consider the following example.

Let  and let

Extend this basis of  to a basis of .

W

⎡

⎣

⎢⎢
⎢

1

2

−1

1

1

3

−1

1

8

19

−8

8

−6

−15

6

−6

1

3

0

1

1

5

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

0

1

0

0

5

3

0

0

−3

−3

0

0

0

0

1

0

−2

2

1

0

⎤

⎦

⎥⎥⎥

W

, ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1

2

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

0

1

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Theorem : Subset of a Subspace4.10.10

V W R
n W ⊆ V dim(W ) ≤ dim(V ) W = V

 Theorem : Extending a Basis4.10.11

W R
n W ⊆ V V R

n W

V

W , { , ⋯ , }w⃗ 1 w⃗ s V

V V n

 Example : Extending a Basis4.10.14

V = R
4

W = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

0

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

W R
n
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Solution
An easy way to do this is to take the reduced row-echelon form of the matrix

Note how the given vectors were placed as the first two columns and then the matrix was extended in such a way that it is clear
that the span of the columns of this matrix yield all of . Now determine the pivot columns. The reduced row-echelon form is

Therefore the pivot columns are

and now this is an extension of the given basis for  to a basis for .

Why does this work? The columns of  obviously span . In fact the span of the first four is the same as the span of
all six.

Consider another example.

Let  be the span of  in . Let  consist of the span of the vectors

Find a basis for  which extends the basis for .

Solution
Note that the above vectors are not linearly independent, but their span, denoted as  is a subspace which does include the
subspace .

Using the process outlined in the previous example, form the following matrix

Next find its reduced row-echelon form

⎡

⎣

⎢⎢
⎢

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎤

⎦

⎥⎥
⎥

(4.10.1)

R
4

⎡

⎣

⎢
⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

−1

−1

1

0

1

0

−1

⎤

⎦

⎥
⎥⎥

(4.10.2)

, , ,

⎡

⎣

⎢
⎢⎢

1

0

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

0

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

0

⎤

⎦

⎥
⎥⎥

W R
4

(4.10.1) R
4

 Example : Extending a Basis4.10.15

W

⎡

⎣

⎢⎢⎢

1

0

1

0

⎤

⎦

⎥⎥⎥
R

4 V

, , , ,

⎡

⎣

⎢
⎢⎢

1

0

1

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

7

−6

1

−6

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−5

7

2

7

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

0

0

1

⎤

⎦

⎥
⎥⎥

V W

V

W

⎡

⎣

⎢
⎢⎢

1

0

1

0

0

1

1

1

7

−6

1

−6

−5

7

2

7

0

0

0

1

⎤

⎦

⎥
⎥⎥
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It follows that a basis for  consists of the first two vectors and the last.

Thus  is of dimension 3 and it has a basis which extends the basis for .

Row Space, Column Space, and Null Space of a Matrix
We begin this section with a new definition.

Let  be an  matrix. The column space of , written , is the span of the columns. The row space of , written 
, is the span of the rows.

Using the reduced row-echelon form, we can obtain an efficient description of the row and column space of a matrix. Consider the
following lemma.

Let  and  be  matrices such that  can be carried to  by elementary row  operations. Then 
 .

Proof

We will prove that the above is true for row operations, which can be easily applied to column operations.

Let  denote the rows of .

If  is obtained from  by a interchanging two rows of , then  and  have exactly the same rows, so 
.

Suppose , and suppose that for some , ,  is obtained from  by multiplying row  by . Then

Since

it follows that . Conversely, since

it follows that . Therefore, .

Suppose , and suppose that for some  and , ,  is obtained from  by adding  time row  to row .
Without loss of generality, we may assume .

Then

Since

⎡

⎣

⎢⎢
⎢

1

0

0

0

0

1

0

0

7

−6

0

0

−5

7

0

0

0

0

1

0

⎤

⎦

⎥⎥
⎥

V

, ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

0

1

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

0

0

1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

V W

 Definition : Row and Column Space4.10.9

A m×n A col(A) A

row(A)

 Lemma : Effect of Row Operations on Row Space4.10.1

A B m×n A B [column]

row(A) = row(B) [col(A) = col(B)]

, , … ,r ⃗ 1 r ⃗ 2 r ⃗ m A

B A A A B

row(B) = row(A)

p ≠ 0 j 1 ≤ j≤ m B A j p

row(B) = span{ , … , p , … , }.r ⃗ 1 r ⃗ j r ⃗ m

{ , … , p , … , } ⊆ row(A),r ⃗ 1 r ⃗ j r ⃗ m

row(B) ⊆ row(A)

{ , … , } ⊆ row(B),r ⃗ 1 r ⃗ m

row(A) ⊆ row(B) row(B) = row(A)

p ≠ 0 i j 1 ≤ i, j≤ m B A p j i

i < j

row(B) = span{ , … , , +p , … , , … , }.r ⃗ 1 r ⃗ i−1 r ⃗ i r ⃗ j r ⃗ j r ⃗ m

{ , … , , +p , … , } ⊆ row(A),r ⃗ 1 r ⃗ i−1 r ⃗ i r ⃗ j r ⃗ m
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it follows that .

Conversely, since

it follows that . Therefore, .

Consider the following lemma.

Let  be an  matrix and let  be its reduced row-echelon form. Then the nonzero rows of  form a basis of ,
and consequently of .

This lemma suggests that we can examine the reduced row-echelon form of a matrix in order to obtain the row space. Consider
now the column space. The column space can be obtained by simply saying that it equals the span of all the columns. However,
you can often get the column space as the span of fewer columns than this. A variation of the previous lemma provides a solution.
Suppose  is row reduced to its reduced row-echelon form . Identify the pivot columns of  (columns which have leading ones),
and take the corresponding columns of . It turns out that this forms a basis of .

Before proceeding to an example of this concept, we revisit the definition of rank.

Previously, we defined  to be the number of leading entries in the row-echelon form of . Using an understanding of
dimension and row space, we can now define rank as follows:

Consider the following example.

Find the rank of the following matrix and describe the column and row spaces.

Solution
The reduced row-echelon form of  is

Therefore, the rank is .

Notice that the first two columns of  are pivot columns. By the discussion following Lemma , we find the
corresponding columns of , in this case the first two columns. Therefore a basis for  is given by

row(B) ⊆ row(A)

{ , … , } ⊆ row(B),r ⃗ 1 r ⃗ m

row(A) ⊆ row(B) row(B) = row(A)

 Lemma : Row Space of a reduced row-echelon form Matrix4.10.2

A m×n R R row(R)

row(A)

A R R

A col(A)

 Definition : Rank of a Matrix4.10.10

rank(A) A

rank(A) = dim(row(A))

 Example : Rank, Column and Row Space4.10.16

A =
⎡

⎣
⎢

1

1

3

2

3

7

1

6

8

3

0

6

2

2

6

⎤

⎦
⎥

A

⎡

⎣
⎢

1

0

0

0

1

0

−9

5

0

9

−3

0

2

0

0

⎤

⎦
⎥

2

R 4.10.2

A col(A)

,

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

1

3

⎤

⎦
⎥
⎡

⎣
⎢

2

3

7

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
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For example, consider the third column of the original matrix. It can be written as a linear combination of the first two columns
of the original matrix as follows.

What about an efficient description of the row space? By Lemma  we know that the nonzero rows of  create a basis of 
. For the above matrix, the row space equals

Notice that the column space of  is given as the span of columns of the original matrix, while the row space of  is the span of
rows of the reduced row-echelon form of .

Consider another example.

Find the rank of the following matrix and describe the column and row spaces.

Solution
The reduced row-echelon form is

and so the rank is . The row space is given by

Notice that the first three columns of the reduced row-echelon form are pivot columns. The column space is the span of the
first three columns in the original matrix,

Consider the solution given above for Example , where the rank of  equals . Notice that the row space and the column
space each had dimension equal to . It turns out that this is not a coincidence, and this essential result is referred to as the Rank
Theorem and is given now. Recall that we defined .

Let  be an  matrix. Then , the dimension of the column space, is equal to the dimension of the row space,
.

= −9 +5
⎡

⎣
⎢

1

6

8

⎤

⎦
⎥

⎡

⎣
⎢

1

1

3

⎤

⎦
⎥

⎡

⎣
⎢

2

3

7

⎤

⎦
⎥

4.10.2 R

row(A)

row(A) = span{[ ] , [ ]}1 0 −9 9 2 0 1 5 −3 0

A A

A

 Example : Rank, Column and Row Space4.10.17

⎡

⎣

⎢⎢
⎢

1

1

1

1

2

3

2

3

1

6

1

2

3

0

3

4

2

2

2

0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

2

−1

0

13
2

− 5
2
1
2

0

⎤

⎦

⎥⎥⎥⎥⎥

3

row(A) = span{[ ] , [ ] , [ ]}1 0 0 0 13
2

0 1 0 2 − 5
2

0 0 1 −1 1
2

col(A) = span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

1

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

3

2

3

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

6

1

2

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

4.10.17 A 3

3

rank(A) = dim(row(A))

 Theorem : Rank Theorem4.10.12

A m×n dim(col(A))

dim(row(A))

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21268?pdf


4.10.20 https://math.libretexts.org/@go/page/21268

The following statements all follow from the Rank Theorem.

Let  be a matrix. Then the following are true:

1. .
2. For  of size ,  and .
3. For  of size ,  is invertible if and only if .
4. For invertible matrices  and  of appropriate size, .

Consider the following example.

Let

Find  and .

Solution
To find  we first row reduce to find the reduced row-echelon form.

Therefore the rank of  is . Now consider  given by

Again we row reduce to find the reduced row-echelon form.

You can see that , the same as .

We now define what is meant by the null space of a general  matrix.

The null space of a matrix , also referred to as the kernel of , is defined as follows.

It can also be referred to using the notation . Similarly, we can discuss the image of , denoted by . The image of 
consists of the vectors of  which “get hit” by . The formal definition is as follows.

The image of , written  is given by

Consider  as a mapping from  to  whose action is given by multiplication. The following diagram displays this scenario.

 Corollary : Results of the Rank Theorem4.10.5

A

rank(A) = rank( )AT

A m×n rank(A) ≤ m rank(A) ≤ n

A n×n A rank(A) = n

B C rank(A) = rank(BA) = rank(AC)

 Example : Rank of the Transpose4.10.18

A = [ ]
1

−1

2

1

rank(A) rank( )AT

rank(A)

A = [ ] → ⋯ → [ ]
1

−1

2

1

1

0

0

1

A 2 AT

= [ ]AT 1

2

−1

1

[ ] → ⋯ → [ ]
1

2

−1

1

1

0

0

1

rank( ) = 2AT rank(A)

m×n

 Definition : Null Space, or Kernel, of 4.10.11 A

A A

null (A) ={ : A = }x⃗  x⃗  0⃗ 

ker(A) A im (A) A

R
m A

 Definition : Image of 4.10.12 A

A im (A)

im (A) = {A : ∈ }x⃗  x⃗  R
n

A R
n

R
m
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As indicated,  is a subset of  while  is a subset of .

It turns out that the null space and image of  are both subspaces. Consider the following example.

Let  be an  matrix. Then the null space of ,  is a subspace of .

Solution

Since , .
Let . Then  and , so

and thus .
Let  and . Then , so

and thus .

Therefore by the subspace test,  is a subspace of .

The proof that  is a subspace of  is similar and is left as an exercise to the reader.

We now wish to find a way to describe  for a matrix . However, finding  is not new! There is just some new
terminology being used, as  is simply the solution to the system .

Let  be an  matrix such that . Then the system  has  basic solutions, providing a basis of 
 with .

Consider the following example.

Let

Find  and .

Solution

In order to find , we simply need to solve the equation . This is the usual procedure of writing the augmented
matrix, finding the reduced row-echelon form and then the solution. The augmented matrix and corresponding reduced row-
echelon form are

   R
n

null(A)

→
A

R
m

im(A)

im (A) R
m null (A) R

n

A

 Example : Null Space4.10.19

A m×n A null(A) R
n

A =0⃗ 
n 0⃗ 

m ∈ null(A)0⃗ 
n

, ∈ null(A)x⃗  y ⃗  A =x⃗  0⃗ 
m A =y ⃗  0⃗ 

m

A( + ) = A +A = + = ,x⃗  y ⃗  x⃗  y ⃗  0⃗ 
m 0⃗ 

m 0⃗ 
m

+ ∈ null(A)x⃗  y ⃗ 

∈ null(A)x⃗  k ∈ R A =x⃗  0⃗ 
m

A(k ) = k(A ) = k = ,x⃗  x⃗  0⃗ 
m 0⃗ 

m

k ∈ null(A)x⃗ 

null(A) R
n

im(A) R
m

null(A) A null (A)

null (A) A =x⃗  0⃗ 

 Theorem : Basis of null(A)4.10.13

A m×n rank(A) = r A =x⃗  0⃗ 
m n−r

null(A) dim(null(A)) = n−r

 Example : Null Space of 4.10.20 A

A =
⎡

⎣
⎢

1

0

2

2

−1

3

1

1

3

⎤

⎦
⎥

null (A) im (A)

null (A) A =x⃗  0⃗ 

→ ⋯ →
⎡

⎣
⎢⎢

1

0

2

2

−1

3

1

1

3

0

0

0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

3

−1

0

0

0

0

⎤

⎦
⎥⎥
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The third column is not a pivot column, and therefore the solution will contain a parameter. The solution to the system 
is given by

which can be written as

Therefore, the null space of  is all multiples of this vector, which we can write as

Finally  is just  and hence consists of the span of all columns of , that is .

Notice from the above calculation that that the first two columns of the reduced row-echelon form are pivot columns. Thus the
column space is the span of the first two columns in the original matrix, and we get

Here is a larger example, but the method is entirely similar.

Let

Find the null space of .

Solution
To find the null space, we need to solve the equation . The augmented matrix and corresponding reduced row-echelon
form are given by

It follows that the first two columns are pivot columns, and the next three correspond to parameters. Therefore,  is
given by

A =x⃗  0⃗ 

: t ∈ R

⎡

⎣
⎢

−3t

t

t

⎤

⎦
⎥

t : t ∈ R

⎡

⎣
⎢

−3

1

1

⎤

⎦
⎥

A

null(A) = span
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−3

1

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

im (A) {A : ∈ }x⃗  x⃗  R
n A im (A) = col(A)

im (A) = col(A) = span ,

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

0

2

⎤

⎦
⎥
⎡

⎣
⎢

2

−1

3

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Example : Null Space of 4.10.21 A

A =

⎡

⎣

⎢⎢
⎢

1

2

3

4

2

−1

1

−2

1

1

2

2

0

3

3

6

1

0

1

0

⎤

⎦

⎥⎥
⎥

A

AX = 0

→ ⋯ →

⎡

⎣

⎢⎢⎢⎢

1

2

3

4

2

−1

1

−2

1

1

2

2

0

3

3

6

1

0

1

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢⎢

1

0

0

0

0

1

0

0

3
5

1
5

0

0

6
5

− 3
5

0

0

1
5

2
5

0

0

0

0

0

0

⎤

⎦

⎥
⎥⎥⎥⎥

null (A)
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We write this in the form

In other words, the null space of this matrix equals the span of the three vectors above. Thus

Notice also that the three vectors above are linearly independent and so the dimension of  is 3. The following is true in
general, the number of parameters in the solution of  equals the dimension of the null space. Recall also that the number of
leading ones in the reduced row-echelon form equals the number of pivot columns, which is the rank of the matrix, which is the
same as the dimension of either the column or row space.

Before we proceed to an important theorem, we first define what is meant by the nullity of a matrix.

The dimension of the null space of a matrix is called the nullity, denoted .

From our observation above we can now state an important theorem.

Let  be an  matrix. Then .

Let

Find  and .

Solution
In the above Example  we determined that the reduced row-echelon form of  is given by

: s, t, r ∈ R.

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

(− ) s+(− ) t+( ) r3
5

6
5

1
5

(− ) s+( ) t+(− ) r1
5

3
5

2
5

s

t

r

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

s + t +r : s, t, r ∈ R.

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

− 3
5

− 1
5

1

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

− 6
5

3
5

0

1

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

1
5

− 2
5

0

0

1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

null (A) = span , ,

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

− 3
5

− 1
5

1

0

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

− 6
5

3
5

0

1

0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

1
5

− 2
5

0

0

1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪

null (A)

AX = 0

 Definition : Nullity4.10.13

dim(null (A))

 Theorem : Rank and Nullity4.10.14

A m×n rank (A) +dim(null (A)) = n

 Example : Rank and Nullity4.10.22

A =
⎡

⎣
⎢

1

0

2

2

−1

3

1

1

3

⎤

⎦
⎥

rank (A) dim(null (A))

4.10.20 A
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Therefore the rank of  is . We also determined that the null space of  is given by

Therefore the nullity of  is . It follows from Theorem  that , which is the
number of columns of .

We conclude this section with two similar, and important, theorems.

Let  be an  matrix. The following are equivalent.

1. .
2. , i.e., the rows of  span .
3. The columns of  are independent in .
4. The  matrix  is invertible.
5. There exists an  matrix  so that .
6. If  for some , then .

Let  be an  matrix. The following are equivalent.

1. .
2. , i.e., the columns of  span .
3. The rows of  are independent in .
4. The  matrix  is invertible.
5. There exists an  matrix  so that .
6. The system  is consistent for every .

This page titled 4.10: Spanning, Linear Independence and Basis in Rⁿ is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

⎡

⎣
⎢

1

0

0

0

1

0

3

−1

0

⎤

⎦
⎥

A 2 A

null(A) = span
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−3

1

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

A 1 4.10.14 rank (A) +dim(null (A)) = 2 +1 = 3

A

 Theorem 4.10.15

A m×n

rank(A) = n

row(A) = R
n A R

n

A R
m

n×n AAT

n×m C CA = In

A =x⃗  0⃗ 
m ∈x⃗  R

n =x⃗  0⃗ 
n

 Theorem 4.10.16

A m×n

rank(A) = m

col(A) = R
m A R

m

A R
n

m×m AAT

n×m C AC = Im

A =x⃗  b ⃗  ∈b ⃗  R
m
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4.11: Orthogonality

A. Determine if a given set is orthogonal or orthonormal.
B. Determine if a given matrix is orthogonal.
C. Given a linearly independent set, use the Gram-Schmidt Process to find corresponding orthogonal and orthonormal sets.
D. Find the orthogonal projection of a vector onto a subspace.
E. Find the least squares approximation for a collection of points.

In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary
to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of
vectors. We include the definitions and examples here for convenience.

The collection of all linear combinations of a set of vectors  in  is known as the span of these vectors and is
written as . 
We call a collection of the form  a subspace of .

Consider the following example.

Describe the span of the vectors  and .

Solution

You can see that any linear combination of the vectors  and  yields a vector  in the -plane.

Moreover every vector in the -plane is in fact such a linear combination of the vectors  and . That’s because

Thus span  is precisely the -plane.

The span of a set of a vectors in  is what we call a subspace of . A subspace  is characterized by the feature that any linear
combination of vectors of  is again a vector contained in .

Another important property of sets of vectors is called linear independence.

A set of non-zero vectors  in  is said to be linearly independent if no vector in that set is in the span of the
other vectors of that set.

Here is an example.

Consider vectors , , and . Verify whether the set  is
linearly independent.

 Outcomes

 Definition : Span of a Set of Vectors and Subspace4.11.1

{ , ⋯ , }u⃗ 1 u⃗ k R
n

span{ , ⋯ , }u⃗ 1 u⃗ k
span{ , ⋯ , }u⃗ 1 u⃗ k R

n

 Example : Spanning Vectors4.11.1

=u⃗  [ ]1 1 0 T = ∈v ⃗  [ ]3 2 0 T
R

3

u⃗  v ⃗  [ ]x y 0 T
XY

XY u⃗  v ⃗ 

= (−2x +3y) +(x −y)
⎡

⎣
⎢

x

y

0

⎤

⎦
⎥

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

⎡

⎣
⎢

3
2
0

⎤

⎦
⎥

{ , }u⃗  v ⃗  XY

R
n

R
n W

W W

 Definition : Linear Independence4.11.2

{ , ⋯ , }u⃗ 1 u⃗ k R
n

 Example : Linearly Independent Vectors4.11.2

=u⃗  [ ]1 1 0 T =v ⃗  [ ]3 2 0 T = ∈w⃗  [ ]4 5 0 T
R

3 { , , }u⃗  v ⃗  w⃗ 
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Solution
We already verified in Example  that  is the -plane. Since  is clearly also in the -plane, then the set 

 is not linearly independent.

In terms of spanning, a set of vectors is linearly independent if it does not contain unnecessary vectors. In the previous example you
can see that the vector  does not help to span any new vector not already in the span of the other two vectors. However you can
verify that the set  is linearly independent, since you will not get the -plane as the span of a single vector.

We can also determine if a set of vectors is linearly independent by examining linear combinations. A set of vectors is linearly
independent if and only if whenever a linear combination of these vectors equals zero, it follows that all the coefficients equal zero.
It is a good exercise to verify this equivalence, and this latter condition is often used as the (equivalent) definition of linear
independence.

If a subspace is spanned by a linearly independent set of vectors, then we say that it is a basis for the subspace.

Let  be a subspace of . Then  is a basis for  if the following two conditions hold.

1. 
2.  is linearly independent

Thus the set of vectors  from Example  is a basis for -plane in  since it is both linearly independent and spans
the -plane.

Recall from the properties of the dot product of vectors that two vectors  and  are orthogonal if . Suppose a vector is
orthogonal to a spanning set of . What can be said about such a vector? This is the discussion in the following example.

Let  and suppose . Furthermore, suppose that there exists a vector 
for which  for all , . What type of vector is ?

Solution
Write  for some  (this is possible because  span ).

Then

Since , . We know that  if and only if . Therefore, . In conclusion, the only vector
orthogonal to every vector of a spanning set of  is the zero vector.

We can now discuss what is meant by an orthogonal set of vectors.

Let  be a set of vectors in . Then this set is called an orthogonal set if the following conditions hold:

1.  for all 
2.  for all 

4.11.1 span{ , }u⃗  v ⃗  XY w⃗  XY

{ , , }u⃗  v ⃗  w⃗ 

w⃗ 
{ , }u⃗  v ⃗  XY

 Definition : Basis4.11.3

V R
n { , ⋯ , }u⃗ 1 u⃗ k V

span{ , ⋯ , } = Vu⃗ 1 u⃗ k
{ , ⋯ , }u⃗ 1 u⃗ k

{ , }u⃗  v ⃗  4.11.2 XY R
3

XY

u⃗  v ⃗  ⋅ = 0u⃗  v ⃗ 
R

n

 Example : Orthogonal Vector to a Spanning Set4.11.3

{ , , … , } ∈x⃗ 1 x⃗ 2 x⃗ k R
n = span{ , , … , }R

n x⃗ 1 x⃗ 2 x⃗ k ∈u⃗  R
n

⋅ = 0u⃗  x⃗ j j 1 ≤ j ≤ k u⃗ 

= + +⋯ +u⃗  t1x⃗ 1 t2x⃗ 2 tkx⃗ k , , … , ∈ Rt1 t2 tk , , … ,x⃗ 1 x⃗ 2 x⃗ k R
n

∥u⃗ ∥2 = ⋅u⃗  u⃗ 
= ⋅ ( + +⋯ + )u⃗  t1x⃗ 1 t2x⃗ 2 tkx⃗ k
= ⋅ ( ) + ⋅ ( ) +⋯ + ⋅ ( )u⃗  t1x⃗ 1 u⃗  t2x⃗ 2 u⃗  tkx⃗ k
= ( ⋅ ) + ( ⋅ ) +⋯ + ( ⋅ )t1 u⃗  x⃗ 1 t2 u⃗  x⃗ 2 tk u⃗  x⃗ k
= (0) + (0) +⋯ + (0) = 0.t1 t2 tk

∥ = 0u⃗ ∥2 ∥ ∥ = 0u⃗  ∥ ∥ = 0u⃗  =u⃗  0⃗ 
n =u⃗  0⃗ 

n

R
n

 Definition : Orthogonal Set of Vectors4.11.4

{ , , ⋯ , }u⃗ 1 u⃗ 2 u⃗ m R
n

⋅ = 0u⃗ i u⃗ j i ≠ j

≠u⃗ i 0⃗  i
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If we have an orthogonal set of vectors and normalize each vector so they have length 1, the resulting set is called an orthonormal
set of vectors. They can be described as follows.

A set of vectors,  is said to be an orthonormal set if

Note that all orthonormal sets are orthogonal, but the reverse is not necessarily true since the vectors may not be normalized. In
order to normalize the vectors, we simply need divide each one by its length.

Normalizing an orthogonal set is the process of turning an orthogonal (but not orthonormal) set into an orthonormal set. If 
 is an orthogonal subset of , then

is an orthonormal set.

We illustrate this concept in the following example.

Consider the set of vectors given by

Show that it is an orthogonal set of vectors but not an orthonormal one. Find the corresponding orthonormal set.

Solution
One easily verifies that  and  is an orthogonal set of vectors. On the other hand one can compute that 

 and thus it is not an orthonormal set.

Thus to find a corresponding orthonormal set, we simply need to normalize each vector. We will write  for the
corresponding orthonormal set. Then,

Similarly,

 Definition  Orthonormal Set of Vectors4.11. :5

{ , ⋯ , }w⃗ 1 w⃗ m

⋅ = ={w⃗ i w⃗ j δij

1 if i = j

0 if i ≠ j

 Definition : Normalizing an Orthogonal Set4.11.6

{ , , … , }u⃗ 1 u⃗ 2 u⃗ k R
n

{ , , … , }
1

∥ ∥u⃗ 1
u⃗ 1

1
∥ ∥u⃗ 2

u⃗ 2
1

∥ ∥u⃗ k
u⃗ k

 Example : Orthonormal Set4.11.4

{ , } ={[ ] , [ ]}u⃗ 1 u⃗ 2
1
1

−1
1

⋅ = 0u⃗ 1 u⃗ 2 { , }u⃗ 1 u⃗ 2
∥ ∥ = ∥ ∥ = ≠ 1u⃗ 1 u⃗ 2 2

–√

{ , }w⃗ 1 w⃗ 2

w⃗ 1 =
1

∥ ∥u⃗ 1
u⃗ 1

= [ ]
1

2–√
1
1

=
⎡

⎣

1
2√

1
2√

⎤

⎦
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Therefore the corresponding orthonormal set is

You can verify that this set is orthogonal.

Consider an orthogonal set of vectors in , written  with . The span of these vectors is a subspace  of .
If we could show that this orthogonal set is also linearly independent, we would have a basis of . We will show this in the next
theorem.

Let  be an orthonormal set of vectors in . Then this set is linearly independent and forms a basis for the
subspace .

Proof

To show it is a linearly independent set, suppose a linear combination of these vectors equals , such as:

We need to show that all . To do so, take the dot product of each side of the above equation with the vector  and
obtain the following.

Now since the set is orthogonal,  for all , so we have:

Since the set is orthogonal, we know that . It follows that . Since the  was chosen arbitrarily, the set 
 is linearly independent.

Finally since , the set of vectors also spans  and therefore forms a basis of .

If an orthogonal set is a basis for a subspace, we call this an orthogonal basis. Similarly, if an orthonormal set is a basis, we call this
an orthonormal basis.

We conclude this section with a discussion of Fourier expansions. Given any orthogonal basis  of  and an arbitrary vector 
, how do we express  as a linear combination of vectors in ? The solution is Fourier expansion.

Let  be a subspace of  and suppose  is an orthogonal basis of . Then for any ,

w⃗ 2 =
1

∥ ∥u⃗ 2
u⃗ 2

= [ ]
1

2–√
−1

1

=
⎡

⎣

− 1
2√

1
2√

⎤

⎦

{ , } = ,w⃗ 1 w⃗ 2
⎧

⎩
⎨
⎡

⎣

1
2√

1
2√

⎤

⎦

⎡

⎣

− 1
2√

1
2√

⎤

⎦

⎫

⎭
⎬

R
n { , ⋯ , }w⃗ 1 w⃗ k k ≤ n W R

n

W

 Theorem : Orthogonal Basis of a Subspace4.11.1

{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ k R
n

W = span{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ k

0⃗ 

+ +⋯ + = , ∈ Ra1w⃗ 1 a2w⃗ 2 akw⃗ k 0⃗  ai

= 0ai w⃗ i

⋅ ( + +⋯ + )w⃗ i a1w⃗ 1 a2w⃗ 2 akw⃗ k
( ⋅ ) + ( ⋅ ) +⋯ + ( ⋅ )a1 w⃗ i w⃗ 1 a2 w⃗ i w⃗ 2 ak w⃗ i w⃗ k

= ⋅w⃗ i 0⃗ 

= 0

⋅ = 0w⃗ i w⃗ m m ≠ i

(0) +⋯ + ( ⋅ ) +⋯ + (0) = 0a1 ai w⃗ i w⃗ i ak

∥ = 0ai w⃗ i∥2

∥ ≠ 0w⃗ i∥2 = 0ai ai

{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ k

W = span{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ k W W

B R
n

∈x⃗  R
n x⃗  B

 Theorem : Fourier Expansion4.11.2

V R
n { , , … , }u⃗ 1 u⃗ 2 u⃗ m V ∈ Vx⃗ 

=( ) +( ) +⋯ +( )x⃗ 
⋅x⃗  u⃗ 1

∥u⃗ 1∥2
u⃗ 1

⋅x⃗  u⃗ 2
∥u⃗ 2∥2

u⃗ 2
⋅x⃗  u⃗ m

∥u⃗ m∥2
u⃗ m
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This expression is called the Fourier expansion of , and

 are the Fourier coefficients.

Consider the following example.

Let , and , and let .

Then  is an orthogonal basis of .

Compute the Fourier expansion of , thus writing  as a linear combination of the vectors of .

Solution
Since  is a basis (verify!) there is a unique way to express  as a linear combination of the vectors of . Moreover since  is
an orthogonal basis (verify!), then this can be done by computing the Fourier expansion of .

That is:

We readily compute:

Therefore,

Orthogonal Matrices
Recall that the process to find the inverse of a matrix was often cumbersome. In contrast, it was very easy to take the transpose of a
matrix. Luckily for some special matrices, the transpose equals the inverse. When an  matrix has all real entries and its
transpose equals its inverse, the matrix is called an orthogonal matrix.

The precise definition is as follows.

A real  matrix  is called an orthogonal matrix if

Note since  is assumed to be a square matrix, it suffices to verify only one of these equalities  or  holds to
guarantee that  is the inverse of .

Consider the following example.

x⃗ 

,
⋅x⃗  u⃗ j

∥u⃗ j∥2

j = 1, 2, … , m

 Example : Fourier Expansion4.11.5

= , =u⃗ 1
⎡

⎣
⎢

1
−1

2

⎤

⎦
⎥ u⃗ 2

⎡

⎣
⎢

0
2
1

⎤

⎦
⎥ =u⃗ 3

⎡

⎣
⎢

5
1

−2

⎤

⎦
⎥ =x⃗ 

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

B = { , , }u⃗ 1 u⃗ 2 u⃗ 3 R
3

x⃗  x⃗  B

B x⃗  B B

x⃗ 

=( ) +( ) +( ) .x⃗ 
⋅x⃗  u⃗ 1

∥u⃗ 1∥2
u⃗ 1

⋅x⃗  u⃗ 2
∥u⃗ 2∥2

u⃗ 2
⋅x⃗  u⃗ 3

∥u⃗ 3∥2
u⃗ 3

= , = ,  and  = .
⋅x⃗  u⃗ 1

∥u⃗ 1∥2

2
6

⋅x⃗  u⃗ 2
∥u⃗ 2∥2

3
5

⋅x⃗  u⃗ 3
∥u⃗ 3∥2

4
30

= + + .
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

1
3

⎡

⎣
⎢

1
−1

2

⎤

⎦
⎥

3
5

⎡

⎣
⎢

0
2
1

⎤

⎦
⎥

2
15

⎡

⎣
⎢

5
1

−2

⎤

⎦
⎥

n ×n

 Definition : Orthogonal Matrices4.11.7

n ×n U

U = U = I.U T U T

U U = IU T U = IU T

U T U
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Orthogonal Matrix Show the matrix

is orthogonal.

Solution
All we need to do is verify (one of the equations from) the requirements of Definition .

Since , this matrix is orthogonal.

Here is another example.

Orthogonal Matrix Let  Is  orthogonal?

Solution
Again the answer is yes and this can be verified simply by showing that :

When we say that  is orthogonal, we are saying that , meaning that

where  is the Kronecker symbol defined by

In words, the product of the  row of  with the  row gives  if  and  if  The same is true of the columns because
 also. Therefore,

 Example : Orthogonal Matrix4.11.6

U =
⎡

⎣

1
2√

1
2√

1
2√

− 1
2√

⎤

⎦

4.11.7

U = = [ ]U T
⎡

⎣

1
2√

1
2√

1
2√

− 1
2√

⎤

⎦

⎡

⎣

1
2√

1
2√

1
2√

− 1
2√

⎤

⎦

1
0

0
1

U = IU T

 Example : Orthogonal Matrix4.11.7

U = .
⎡

⎣
⎢

1
0
0

0
0

−1

0
−1

0

⎤

⎦
⎥ U

U = IU T

UU T =
⎡

⎣
⎢

1
0
0

0
0

−1

0
−1

0

⎤

⎦
⎥

T

⎡

⎣
⎢

1
0
0

0
0

−1

0
−1

0

⎤

⎦
⎥

=
⎡

⎣
⎢

1
0
0

0
0

−1

0
−1

0

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

0
0

−1

0
−1

0

⎤

⎦
⎥

=
⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

U U = IU T

= =∑
j

uijuT
jk ∑

j

uijukj δik

δij

={δij

1 if i = j

0 if i ≠ j

ith U kth 1 i = k 0 i ≠ k.
U = IU T

= =∑
j

uT
ijujk ∑

j

ujiujk δik
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which says that the product of one column with another column gives  if the two columns are the same and  if the two columns
are different.

More succinctly, this states that if  are the columns of  an orthogonal matrix, then

We will say that the columns form an orthonormal set of vectors, and similarly for the rows. Thus a matrix is orthogonal if its rows
(or columns) form an orthonormal set of vectors. Notice that the convention is to call such a matrix orthogonal rather than
orthonormal (although this may make more sense!).

The rows of an  orthogonal matrix form an orthonormal basis of . Further, any orthonormal basis of  can be used to
construct an  orthogonal matrix.

Proof

Recall from Theorem  that an orthonormal set is linearly independent and forms a basis for its span. Since the rows of
an  orthogonal matrix form an orthonormal set, they must be linearly independent. Now we have  linearly
independent vectors, and it follows that their span equals . Therefore these vectors form an orthonormal basis for .

Suppose now that we have an orthonormal basis for . Since the basis will contain  vectors, these can be used to
construct an  matrix, with each vector becoming a row. Therefore the matrix is composed of orthonormal rows,
which by our above discussion, means that the matrix is orthogonal. Note we could also have construct a matrix with each
vector becoming a column instead, and this would again be an orthogonal matrix. In fact this is simply the transpose of the
previous matrix.

Consider the following proposition.

Det Suppose  is an orthogonal matrix. Then 

Proof

This result follows from the properties of determinants. Recall that for any matrix , . Now if  is
orthogonal, then:

Therefore  and it follows that .

Orthogonal matrices are divided into two classes, proper and improper. The proper orthogonal matrices are those whose
determinant equals 1 and the improper ones are those whose determinant equals . The reason for the distinction is that the
improper orthogonal matrices are sometimes considered to have no physical significance. These matrices cause a change in
orientation which would correspond to material passing through itself in a non physical manner. Thus in considering which
coordinate systems must be considered in certain applications, you only need to consider those which are related by a proper
orthogonal transformation. Geometrically, the linear transformations determined by the proper orthogonal matrices correspond to
the composition of rotations.

We conclude this section with two useful properties of orthogonal matrices.

Suppose  and  are orthogonal matrices. Then  and  both exist and are orthogonal.

1 0

, ⋯ ,u⃗ 1 u⃗ n U,

⋅ = ={u⃗ i u⃗ j δij
1 if i = j

0 if i ≠ j

 Proposition : Orthonormal Basis4.11.1

n ×n R
n

R
n

n ×n

4.11.1
n ×n n

R
n

R
n

R
n n

n ×n

 Proposition : Determinant of Orthogonal Matrices4.11.2

U det (U) = ±1.

A det(A = det(A))T U

(det (U) = det( )det (U) = det( U) = det (I) = 1)2 U T U T

(det(U) = 1)2 det (U) = ±1

−1

 Example : Product and Inverse of Orthogonal Matrices4.11.8

A B AB A−1
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Solution
First we examine the product .

Since  is square,  is the inverse of , so  is invertible, and  Therefore,  is
orthogonal.

Next we show that  is also orthogonal.

Therefore  is also orthogonal.

Gram-Schmidt Process
The Gram-Schmidt process is an algorithm to transform a set of vectors into an orthonormal set spanning the same subspace, that is
generating the same collection of linear combinations (see Definition 9.2.2).

The goal of the Gram-Schmidt process is to take a linearly independent set of vectors and transform it into an orthonormal set with
the same span. The first objective is to construct an orthogonal set of vectors with the same span, since from there an orthonormal
set can be obtained by simply dividing each vector by its length.

Let  be a set of linearly independent vectors in .

I: Construct a new set of vectors  as follows:

II: Now let  for .

Then

1.  is an orthogonal set.
2.  is an orthonormal set.
3. .

Solution
The full proof of this algorithm is beyond this material, however here is an indication of the arguments.

To show that  is an orthogonal set, let

then:

AB

(AB)( ) = A(B ) = A = IBT AT BT AT AT

AB = (ABBT AT )T AB AB (AB = (AB)−1 )T AB

=A−1 AT

( = A = ( = (A−1)−1 AT )T A−1)T

A−1

 Algorithm : Gram-Schmidt Process4.11.1

{ , ⋯ , }u⃗ 1 u⃗ n R
n

{ , ⋯ , }v ⃗ 1 v ⃗ n

v ⃗ 1

v ⃗ 2

v ⃗ 3

⋮

v ⃗ n

= u⃗ 1

= −( )u⃗ 2
⋅u⃗ 2 v ⃗ 1

∥v ⃗ 1∥2
v ⃗ 1

= −( ) −( )u⃗ 3
⋅u⃗ 3 v ⃗ 1

∥v ⃗ 1∥2
v ⃗ 1

⋅u⃗ 3 v ⃗ 2
∥v ⃗ 2∥2

v ⃗ 2

= −( ) −( ) −⋯ −( )u⃗ n
⋅u⃗ n v ⃗ 1

∥v ⃗ 1∥2
v ⃗ 1

⋅u⃗ n v ⃗ 2
∥v ⃗ 2∥2

v ⃗ 2
⋅u⃗ n v ⃗ n−1

∥v ⃗ n−1∥2
v ⃗ n−1

=w⃗ i
v ⃗ i

∥ ∥v ⃗ i
i = 1, ⋯ , n

{ , ⋯ , }v ⃗ 1 v ⃗ n
{ , ⋯ , }w⃗ 1 w⃗ n
span{ , ⋯ , } = span{ , ⋯ , } = span{ , ⋯ , }u⃗ 1 u⃗ n v ⃗ 1 v ⃗ n w⃗ 1 w⃗ n

{ , ⋯ , }v ⃗ 1 v ⃗ n

=a2
⋅u⃗ 2 v ⃗ 1

∥v ⃗ 1∥2
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Now that you have shown that  is orthogonal, use the same method as above to show that  is also
orthogonal, and so on.

Then in a similar fashion you show that .

Finally defining  for  does not affect orthogonality and yields vectors of length 1, hence an

orthonormal set. You can also observe that it does not affect the span either and the proof would be complete.

Consider the following example.

Consider the set of vectors  given as in Example . That is

Use the Gram-Schmidt algorithm to find an orthonormal set of vectors  having the same span.

Solution
We already remarked that the set of vectors in  is linearly independent, so we can proceed with the Gram-Schmidt
algorithm:

Now to normalize simply let

You can verify that  is an orthonormal set of vectors having the same span as , namely the -plane.

⋅v ⃗ 1 v ⃗ 2 = ⋅ ( − )v ⃗ 1 u⃗ 2 a2v ⃗ 1
= ⋅ − ( ⋅v ⃗ 1 u⃗ 2 a2 v ⃗ 1 v ⃗ 1

= ⋅ − ∥v ⃗ 1 u⃗ 2
⋅u⃗ 2 v ⃗ 1

∥v ⃗ 1∥2
v ⃗ 1∥2

= ( ⋅ ) −( ⋅ ) = 0v ⃗ 1 u⃗ 2 u⃗ 2 v ⃗ 1

{ , }v ⃗ 1 v ⃗ 2 { , , }v ⃗ 1 v ⃗ 2 v ⃗ 3

span{ , ⋯ , } = span{ , ⋯ , }u⃗ 1 u⃗ n v ⃗ 1 v ⃗ n

=w⃗ i
v ⃗ i

∥ ∥v ⃗ i
i = 1, ⋯ , n

 Example : Find Orthonormal Set with Same Span4.11.9

{ , }u⃗ 1 u⃗ 2 4.11.1

= , = ∈u⃗ 1
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥ u⃗ 2

⎡

⎣
⎢

3
2
0

⎤

⎦
⎥ R

3

{ , }w⃗ 1 w⃗ 2

{ , }u⃗ 1 u⃗ 2

v ⃗ 1

v ⃗ 2

= =u⃗ 1
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

= −( )u⃗ 2
⋅u⃗ 2 v ⃗ 1

∥v ⃗ 1∥2
v ⃗ 1

= −
⎡

⎣
⎢

3
2
0

⎤

⎦
⎥

5
2

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

=
⎡

⎣

⎢⎢

1
2

− 1
2

0

⎤

⎦

⎥⎥

w⃗ 1

w⃗ 2

= =
v ⃗ 1

∥ ∥v ⃗ 1

⎡

⎣

⎢⎢⎢

1
2√

1
2√

0

⎤

⎦

⎥⎥⎥

= =
v ⃗ 2

∥ ∥v ⃗ 2

⎡

⎣

⎢⎢⎢

1
2√

− 1
2√

0

⎤

⎦

⎥⎥⎥

{ , }w⃗ 1 w⃗ 2 { , }u⃗ 1 u⃗ 2 XY
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In this example, we began with a linearly independent set and found an orthonormal set of vectors which had the same span. It
turns out that if we start with a basis of a subspace and apply the Gram-Schmidt algorithm, the result will be an orthogonal basis of
the same subspace. We examine this in the following example.

Let

and let . Use the Gram-Schmidt Process to construct an orthogonal basis  of .

Solution

First .

Next,

Finally,

Therefore,

is an orthogonal basis of . However, it is sometimes more convenient to deal with vectors having integer entries, in which
case we take

Orthogonal Projections

An important use of the Gram-Schmidt Process is in orthogonal projections, the focus of this section.

You may recall that a subspace of  is a set of vectors which contains the zero vector, and is closed under addition and scalar
multiplication. Let’s call such a subspace . In particular, a plane in  which contains the origin, , is a subspace of 

.

 Example : Find a Corresponding Orthogonal Basis4.11.10

= , = ,  and  = ,x⃗ 1

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

x⃗ 2

⎡

⎣

⎢⎢
⎢

1
0
1
1

⎤

⎦

⎥⎥
⎥

x⃗ 3

⎡

⎣

⎢⎢
⎢

1
1
0
0

⎤

⎦

⎥⎥
⎥

U = span{ , , }x⃗ 1 x⃗ 2 x⃗ 3 B U

=f ⃗ 
1 x⃗ 1

= − = .f ⃗ 
2

⎡

⎣

⎢
⎢⎢

1
0
1
1

⎤

⎦

⎥
⎥⎥

2
2

⎡

⎣

⎢
⎢⎢

1
0
1
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
0
0
1

⎤

⎦

⎥
⎥⎥

= − − = .f ⃗ 
3

⎡

⎣

⎢⎢⎢

1
1
0
0

⎤

⎦

⎥⎥⎥
1
2

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥
0
1

⎡

⎣

⎢⎢⎢

0
0
0
1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1/2

1
−1/2

0

⎤

⎦

⎥⎥⎥⎥

, ,

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
0
0
1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1/2

1
−1/2

0

⎤

⎦

⎥⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪⎪

⎪⎪⎪⎪

U

B = , , .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0
0
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
2

−1
0

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

R
n

W R
n (0, 0, ⋯ , 0)

R
n
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Suppose a point  in  is not contained in , then what point  in  is closest to ? Using the Gram-Schmidt Process, we can
find such a point. Let  represent the position vectors of the points  and  respectively, with  representing the vector
connecting the two points  and . It will follow that if  is the point on  closest to , then  will be perpendicular to 
(can you see why?); in other words,  is orthogonal to  (and to every vector contained in ) as in the following diagram.

Figure 

The vector  is called the orthogonal projection of  on . The definition is given as follows.

Let  be a subspace of , and  be any point in . Then the orthogonal projection of  onto  is given by

where  is any orthogonal basis of .

Therefore, in order to find the orthogonal projection, we must first find an orthogonal basis for the subspace. Note that one could
use an orthonormal basis, but it is not necessary in this case since as you can see above the normalization of each vector is included
in the formula for the projection.

Before we explore this further through an example, we show that the orthogonal projection does indeed yield a point  (the point
whose position vector is the vector  above) which is the point of  closest to .

Let  be a subspace of  and  any point in . Let  be the point whose position vector is the orthogonal projection of 
onto .

Then,  is the point in  closest to .

Proof

First  is certainly a point in  since it is in the span of a basis of .

To show that  is the point in  closest to , we wish to show that  for all . We begin by
writing . Now, the vector  is orthogonal to , and  is contained in .
Therefore these vectors are orthogonal to each other. By the Pythagorean Theorem, we have that

This follows because  so 

Hence, . Taking the square root of each side, we obtain the desired result.

Consider the following example.

Y R
n W Z W Y

,y ⃗  z ⃗  Y Z −y ⃗  z ⃗ 
Y Z Z W Y −y ⃗  z ⃗  W

−y ⃗  z ⃗  W W

4.11.1

z ⃗  y ⃗  W

 Definition : Orthogonal Projection4.11.8

W R
n Y R

n Y W

= ( ) =( ) +( ) +⋯ +( )z ⃗  projW y ⃗ 
⋅y ⃗  w⃗ 1

∥w⃗ 1∥2
w⃗ 1

⋅y ⃗  w⃗ 2
∥w⃗ 2∥2

w⃗ 2
⋅y ⃗  w⃗ m

∥w⃗ m∥2
w⃗ m

{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ m W

Z

z ⃗  W Y

 Theorem : Approximation Theorem4.11.3

W R
n Y R

n Z Y

W

Z W Y

Z W W

Z W Y | − | > | − |y ⃗  z ⃗ 1 y ⃗  z ⃗  ≠ ∈ Wz ⃗ 1 z ⃗ 
− = ( − ) +( − )y ⃗  z ⃗ 1 y ⃗  z ⃗  z ⃗  z ⃗ 1 −y ⃗  z ⃗  W −z ⃗  z ⃗ 1 W

∥ − = ∥ − +∥ − > ∥ −y ⃗  z ⃗ 1∥2 y ⃗  z ⃗ ∥2 z ⃗  z ⃗ 1∥2 y ⃗  z ⃗ ∥2

≠z ⃗  z ⃗ 1 ∥ − > 0.z ⃗  z ⃗ 1∥2

∥ − > ∥ −y ⃗  z ⃗ 1∥2 y ⃗  z ⃗ ∥2
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Let  be the plane through the origin given by the equation . Find the point in  closest to the point 
.

Solution
We must first find an orthogonal basis for . Notice that  is characterized by all points  where . In other
words,

We can thus write  as

Notice that this span is a basis of  as it is linearly independent. We will use the Gram-Schmidt Process to convert this to an
orthogonal basis, . In this case, as we remarked it is only necessary to find an orthogonal basis, and it is not required
that it be orthonormal.

Therefore an orthogonal basis of  is

We can now use this basis to find the orthogonal projection of the point  on the subspace . We will write the

position vector  of  as . Using Definition , we compute the projection as follows:

 Example : Orthogonal Projection4.11.11

W x −2y +z = 0 W

Y = (1, 0, 3)

W W (a, b, c) c = 2b −a

W = = a +b , a, b ∈ R

⎡

⎣
⎢

a

b

2b −a

⎤

⎦
⎥

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥

⎡

⎣
⎢

0
1
2

⎤

⎦
⎥

W

W = span{ , }u⃗ 1 u⃗ 2

= span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

W

{ , }w⃗ 1 w⃗ 2

= =w⃗ 1 u⃗ 1
⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥

w⃗ 2 = −( )u⃗ 2
⋅u⃗ 2 w⃗ 1

∥w⃗ 1∥2
w⃗ 1

= −( )
⎡

⎣
⎢

0
1
2

⎤

⎦
⎥

−2
2

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥

= +
⎡

⎣
⎢

0
1
2

⎤

⎦
⎥
⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥

=
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

W

{ , } = ,w⃗ 1 w⃗ 2
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

Y = (1, 0, 3) W

y ⃗  Y =y ⃗ 
⎡

⎣
⎢

1
0
3

⎤

⎦
⎥ 4.11.8
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Therefore the point  on  closest to the point  is .

Recall that the vector  is perpendicular (orthogonal) to all the vectors contained in the plane . Using a basis for , we can
in fact find all such vectors which are perpendicular to . We call this set of vectors the orthogonal complement of  and
denote it .

Let  be a subspace of . Then the orthogonal complement of , written , is the set of all vectors  such that 
for all vectors  in .

The orthogonal complement is defined as the set of all vectors which are orthogonal to all vectors in the original subspace. It turns
out that it is sufficient that the vectors in the orthogonal complement be orthogonal to a spanning set of the original space.

Let  be a subspace of  such that . Then  is the set of all vectors which are orthogonal
to each  in the spanning set.

The following proposition demonstrates that the orthogonal complement of a subspace is itself a subspace.

Let  be a subspace of . Then the orthogonal complement  is also a subspace of .

Consider the following proposition.

The complement of  is the set containing the zero vector:

Similarly,

Proof

Here,  is the zero vector of . Since  for all , . Since , the equality follows, i.e., 
.

z ⃗ = ( )projW y ⃗ 

=( ) +( )
⋅y ⃗  w⃗ 1

∥w⃗ 1∥2
w⃗ 1

⋅y ⃗  w⃗ 2
∥w⃗ 2∥2

w⃗ 2

=( ) +( )
−2
2

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥

4
3

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

=
⎡

⎣

⎢⎢

1
3
4
3
7
3

⎤

⎦

⎥⎥

Z W (1, 0, 3) ( , , )1
3

4
3

7
3

−y ⃗  z ⃗  W W

W W

W ⊥

 Definition : Orthogonal Complement4.11.9

W R
n W W ⊥ x⃗  ⋅ = 0x⃗  z ⃗ 

z ⃗  W

= { ∈ such that ⋅ = 0 for all ∈ W }W ⊥ x⃗  R
n x⃗  z ⃗  z ⃗ 

 Proposition : Orthogonal to Spanning Set4.11.3

W R
n W = span{ , , ⋯ , }w⃗ 1 w⃗ 2 w⃗ m W ⊥

w⃗ i

 Proposition : The Orthogonal Complement4.11.4

W R
n W ⊥

R
n

 Proposition : Orthogonal Complement of 4.11.5 R
n

R
n

( ={ }R
n)⊥ 0⃗ 

= ( ).{ }0⃗ 
⊥

R
n

0⃗  R
n ⋅ = 0x⃗  0⃗  ∈x⃗  R

n ⊆ {R
n 0⃗ }⊥ { ⊆0⃗ }⊥

R
n

{ =0⃗ }⊥
R

n
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Again, since  for all , , so . Suppose , . Since  and 
, , so . Therefore , and thus .

In the next example, we will look at how to find .

Let  be the plane through the origin given by the equation . Find a basis for the orthogonal complement of 
.

Solution
From Example  we know that we can write  as

In order to find , we need to find all  which are orthogonal to every vector in this span.

Let . In order to satisfy , the following equation must hold.

In order to satisfy , the following equation must hold.

Both of these equations must be satisfied, so we have the following system of equations.

To solve, set up the augmented matrix.

Using Gaussian Elimination, we find that , and hence  is a basis for .

The following results summarize the important properties of the orthogonal projection.

Let  be a subspace of ,  be any point in , and let  be the point in  closest to . Then,

1. The position vector  of the point  is given by 
2.  and 
3.  for all 

Consider the following example of this concept.

⋅ = 0x⃗  0⃗  ∈x⃗  R
n ∈ (0⃗ 

R
n)⊥ { } ⊆ (0⃗ 

R
n)⊥ ∈x⃗  R

n ≠x⃗  0⃗  ⋅ = || |x⃗  x⃗  x⃗ |2

≠x⃗  0⃗  ⋅ ≠ 0x⃗  x⃗  ∉ (x⃗  R
n)⊥ ( ⊆ { }R

n)⊥ 0⃗  ( = { }R
n)⊥ 0⃗ 

W ⊥

 Example : Orthogonal Complement4.11.12

W x −2y +z = 0
W

4.11.11 W

W = span{ , } = span ,u⃗ 1 u⃗ 2
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0

−1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

W ⊥ x⃗ 

=x⃗ 
⎡

⎣
⎢

x1

x2

x3

⎤

⎦
⎥ ⋅ = 0x⃗  u⃗ 1

− = 0x1 x3

⋅ = 0x⃗  u⃗ 2

+2 = 0x2 x3

− = 0x1 x3

+2 = 0x2 x3

[ ]
1
0

0
1

−1
2

0
0

= spanW ⊥
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−2

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−2

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
W ⊥

 Theorem : Orthogonal Projection4.11.4

W R
n Y R

n Z W Y

z ⃗  Z = ( )z ⃗  projW y ⃗ 
∈ Wz ⃗  − ∈y ⃗  z ⃗  W ⊥

|Y −Z| < |Y − |Z1 ≠ Z ∈ WZ1
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Let

We want to find the vector in  closest to .

Solution
We will first use the Gram-Schmidt Process to construct the orthogonal basis, , of :

By Theorem ,

is the vector in  closest to .

Consider the next example.

Let  be a subspace given by , and . 

Find the point  in  closest to , and moreover write  as the sum of a vector in  and a vector in .

Solution
From Theorem  the point  in  closest to  is given by .

Notice that since the above vectors already give an orthogonal basis for , we have:

 Example : Find a Vector Closest to a Given Vector4.11.13

= , = , = ,  and  = .x⃗ 1

⎡

⎣

⎢
⎢⎢

1
0
1
0

⎤

⎦

⎥
⎥⎥

x⃗ 2

⎡

⎣

⎢
⎢⎢

1
0
1
1

⎤

⎦

⎥
⎥⎥

x⃗ 3

⎡

⎣

⎢
⎢⎢

1
1
0
0

⎤

⎦

⎥
⎥⎥

v ⃗ 

⎡

⎣

⎢
⎢⎢

4
3

−2
5

⎤

⎦

⎥
⎥⎥

W = span{ , , }x⃗ 1 x⃗ 2 x⃗ 3 y ⃗ 

B W

B = , , .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0
0
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
2

−1
0

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

4.11.4

( ) = + + =projU v ⃗ 
2
2

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥
5
1

⎡

⎣

⎢⎢⎢

0
0
0
1

⎤

⎦

⎥⎥⎥
12
6

⎡

⎣

⎢⎢⎢

1
2

−1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

3
4

−1
5

⎤

⎦

⎥⎥⎥

U y ⃗ 

 Example : Vector Written as a Sum of Two Vectors4.11.14

W W = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1
0
1
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
1
0
2

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

Y = (1, 2, 3, 4)

Z W Y y ⃗  W W ⊥

4.11.3 Z W Y = ( )z ⃗  projW y ⃗ 

W
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Therefore the point in  closest to  is . 
Now, we need to write  as the sum of a vector in  and a vector in . This can easily be done as follows:

since  is in  and as we have seen  is in . 
The vector  is given by

Therefore, we can write  as

Find the point  in the plane  that is closest to the point .

Solution
The solution will proceed as follows.

1. Find a basis  of the subspace  of  defined by the equation .
2. Orthogonalize the basis  to get an orthogonal basis  of .
3. Find the projection on  of the position vector of the point .

We now begin the solution.

1.  is a system of one equation in three variables. Putting the augmented matrix in reduced row-echelon
form:

gives general solution , ,  for any . Then

z ⃗ = ( )projW y ⃗ 

=( ) +( )
⋅y ⃗  w⃗ 1

∥w⃗ 1∥2
w⃗ 1

⋅y ⃗  w⃗ 2
∥w⃗ 2∥2

w⃗ 2

=( ) +( )
4
2

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

10
5

⎡

⎣

⎢⎢
⎢

0
1
0
2

⎤

⎦

⎥⎥
⎥

=

⎡

⎣

⎢⎢
⎢

2
2
2
4

⎤

⎦

⎥⎥
⎥

W Y Z = (2, 2, 2, 4)
y ⃗  W W ⊥

= +( − )y ⃗  z ⃗  y ⃗  z ⃗ 

z ⃗  W −y ⃗  z ⃗  W ⊥

−y ⃗  z ⃗ 

− = − =y ⃗  z ⃗ 

⎡

⎣

⎢⎢⎢

1
2
3
4

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2
2
2
4

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1
0
1
0

⎤

⎦

⎥⎥⎥

y ⃗ 

= +

⎡

⎣

⎢⎢
⎢

1
2
3
4

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2
2
2
4

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−1
0
1
0

⎤

⎦

⎥⎥
⎥

 Example : Point in a Plane Closest to a Given Point4.11.15

Z 3x +y −2z = 0 Y = (1, 1, 1)

X W R
3 3x +y −2z = 0

X B W

W Y

3x +y −2z = 0

[ ]→ [ ]3 1 −2 0 1 1
3 − 2

3 0

x = s + t1
3

2
3 y = s z = t s, t ∈ R

W = span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

− 1
3

1
0

⎤

⎦
⎥
⎡

⎣
⎢

2
3

0
1

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪
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Let . Then  is linearly independent and , so  is a basis of .

2. Use the Gram-Schmidt Process to get an orthogonal basis of :

Therefore  is an orthogonal basis of .

3. To find the point  on  closest to , compute

Therefore, .

Least Squares Approximation
It should not be surprising to hear that many problems do not have a perfect solution, and in these cases the objective is always to
try to do the best possible. For example what does one do if there are no solutions to a system of linear equations ? It turns
out that what we do is find  such that  is as close to  as possible. A very important technique that follows from orthogonal
projections is that of the least square approximation, and allows us to do exactly that.

We begin with a lemma.

Recall that we can form the image of an  matrix  by . Rephrasing Theorem  using the
subspace  gives the equivalence of an orthogonality condition with a minimization condition. The following picture
illustrates this orthogonality condition and geometric meaning of this theorem.

Figure 

Let  and let  be an  matrix.

Choose  given by , and let  such that .

Then

1. 

X = ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−1
3
0

⎤

⎦
⎥
⎡

⎣
⎢

2
0
3

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
X span(X) = W X W

W

=  and  = − = .f ⃗ 
1

⎡

⎣
⎢

−1
3
0

⎤

⎦
⎥ f ⃗ 

2

⎡

⎣
⎢

2
0
3

⎤

⎦
⎥

−2
10

⎡

⎣
⎢

−1
3
0

⎤

⎦
⎥

1
5

⎡

⎣
⎢

9
3

15

⎤

⎦
⎥

B = ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−1
3
0

⎤

⎦
⎥
⎡

⎣
⎢

3
1
5

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
W

Z W Y = (1, 1, 1)

projW

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥ = +

2
10

⎡

⎣
⎢

−1
3
0

⎤

⎦
⎥

9
35

⎡

⎣
⎢

3
1
5

⎤

⎦
⎥

= .
1
7

⎡

⎣
⎢

4
6
9

⎤

⎦
⎥

Z = ( , , )4
7

6
7

9
7

A =x⃗  b ⃗ 

x⃗  Ax⃗  b ⃗ 

m ×n A im (A) == {A : ∈ }x⃗  x⃗  R
n 4.11.4

W = im (A)

4.11.2

 Theorem : Existence of Minimizers4.11.5

∈y ⃗  R
m A m ×n

∈ W = im (A)z ⃗  = ( )z ⃗  projW y ⃗  ∈x⃗  R
n = Az ⃗  x⃗ 

−A ∈y ⃗  x⃗  W ⊥
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2.  for all 

We note a simple but useful observation.

Let  be an  matrix. Then

Proof

This follows from the definitions:

The next corollary gives the technique of least squares.

A specific value of  which solves the problem of Theorem  is obtained by solving the equation

Furthermore, there always exists a solution to this system of equations.

Proof

For  the minimizer of Theorem ,  for all  and from Lemma , this is the same as
saying

for all  This implies

Therefore, there is a solution to the equation of this corollary, and it solves the minimization problem of Theorem .

Note that  might not be unique but , the closest point of  to  is unique as was shown in the above argument.

Consider the following example.

Find a least squares solution to the system

Solution
First, consider whether there exists a real solution. To do so, set up the augmnented matrix given by

∥ −A ∥ < ∥ − ∥y ⃗  x⃗  y ⃗  u⃗  ≠ ∈ Wu⃗  z ⃗ 

 Lemma : Transpose and Dot Product4.11.1

A m ×n

A ⋅ = ⋅x⃗  y ⃗  x⃗  AT y ⃗ 

A ⋅ = = = ⋅x⃗  y ⃗  ∑
i,j

aijxjyi ∑
i,j

xjajiyi x⃗  AT y ⃗ 

 Corollary : Least Squares and Normal Equation4.11.1

x⃗  4.11.5

A =AT x⃗  AT y ⃗ 

x⃗  4.11.5 ( −A ) ⋅ A = 0y ⃗  x⃗  u⃗  ∈u⃗  R
n 4.11.1

( −A ) ⋅ = 0AT y ⃗  x⃗  u⃗ 

u ∈ .R
n

− A = .AT y ⃗  AT x⃗  0⃗ 

4.11.5

x⃗  Ax⃗  A ( )R
n y ⃗ 

 Example : Least Squares Solution to a System4.11.16

[ ] =
⎡

⎣
⎢

2
−1

4

1
3
5

⎤

⎦
⎥

x

y

⎡

⎣
⎢

2
1
1

⎤

⎦
⎥

⎡

⎣
⎢⎢

2
−1

4

1
3
5

2
1
1

⎤

⎦
⎥⎥
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The reduced row-echelon form of this augmented matrix is

It follows that there is no real solution to this system. Therefore we wish to find the least squares solution. The normal
equations are

and so we need to solve the system

This is a familiar exercise and the solution is

Consider another example.

Find a least squares solution to the system

Solution
First, consider whether there exists a real solution. To do so, set up the augmnented matrix given by

The reduced row-echelon form of this augmented matrix is

It follows that the system has a solution given by . However we can also use the normal equations and find the least
squares solution.

Then

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥⎥

AAT x⃗ 

[ ] [ ]
2
1

−1
3

4
5

⎡

⎣
⎢

2
−1

4

1
3
5

⎤

⎦
⎥

x

y

= AT y ⃗ 

= [ ]
2
1

−1
3

4
5

⎡

⎣
⎢

2
1
1

⎤

⎦
⎥

[ ][ ] = [ ]
21
19

19
35

x

y

7
10

[ ] = [ ]
x

y

5
34
7

34

 Example : Least Squares Solution to a System4.11.17

[ ] =
⎡

⎣
⎢

2
−1

4

1
3
5

⎤

⎦
⎥

x

y

⎡

⎣
⎢

3
2
9

⎤

⎦
⎥

⎡

⎣
⎢⎢

2
−1

4

1
3
5

3
2
9

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

1
1
0

⎤

⎦
⎥⎥

x = y = 1

[ ] [ ] = [ ]
2
1

−1
3

4
5

⎡

⎣
⎢

2
−1

4

1
3
5

⎤

⎦
⎥

x

y

2
1

−1
3

4
5

⎡

⎣
⎢

3
2
9

⎤

⎦
⎥
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The least squares solution is

which is the same as the solution found above.

An important application of Corollary  is the problem of finding the least squares regression line in statistics. Suppose you
are given points in the  plane

and you would like to find constants  and  such that the line  goes through all these points. Of course this will be
impossible in general. Therefore, we try to find  such that the line will be as close as possible. The desired system is

which is of the form . It is desired to choose  and  to make

as small as possible. According to Theorem  and Corollary , the best values for  and  occur as the solution to

Thus, computing 

Solving this system of equations for  and  (using Cramer’s rule for example) yields:

and

Consider the following example.

Find the least squares regression line  for the following set of data points:

Solution

[ ][ ] = [ ]
21
19

19
35

x

y

40
54

[ ] = [ ]
x

y

1
1

4.11.1
xy

{( , ) , ( , ) , ⋯ , ( , )}x1 y1 x2 y2 xn yn

m b = m +by ⃗  x⃗ 
m, b

= [ ]
⎡

⎣

⎢⎢

y1

⋮
yn

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

x1

⋮
xn

1

⋮
1

⎤

⎦

⎥⎥
m

b

= Ay ⃗  x⃗  m b

A[ ]−

∥

∥

∥
∥
∥

m

b

⎡

⎣

⎢⎢

y1

⋮
yn

⎤

⎦

⎥⎥

∥

∥

∥
∥
∥

2

4.11.5 4.11.1 m b

A[ ] = ,   where A =AT m

b
AT

⎡

⎣

⎢⎢

y1

⋮
yn

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

x1

⋮
xn

1

⋮
1

⎤

⎦

⎥⎥

A,AT

[ ][ ] = [ ]
∑n

i=1 x2
i

∑n

i=1 xi

∑n
i=1 xi

n

m

b

∑n

i=1 xiyi

∑n
i=1 yi

m b

m =
−( ) ( ) +( ) n∑n

i=1 xi ∑n
i=1 yi ∑n

i=1 xiyi

( )n −∑n
i=1 x2

i ( )∑n
i=1 xi

2

b = .
−( ) +( )∑n

i=1 xi ∑n
i=1 xiyi ∑n

i=1 yi ∑n
i=1 x2

i

( )n −∑n

i=1 x2
i ( )∑n

i=1 xi
2

 Example : Least Squares Regression4.11.18

= m +by ⃗  x⃗ 

{(0, 1), (1, 2), (2, 2), (3, 4), (4, 5)}
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In this case we have  data points and we obtain:

and hence

The least squares regression line for the set of data points is:

One could use this line to approximate other values for the data. For example for  one could use  as
an approximate value for the data.

The following diagram shows the data points and the corresponding regression line.

Figure 

One could clearly do a least squares fit for curves of the form  in the same way. In this case you want to solve as
well as possible for  and  the system

and one would use the same technique as above. Many other similar problems are important, including many in higher dimensions
and they are all solved the same way.

This page titled 4.11: Orthogonality is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

n = 5

= 10∑5
i=1 xi

= 38∑5
i=1 xiyi

= 14∑5
i=1 yi

= 30∑5
i=1 x2

i

m

b

= = 1.00
−10 ∗ 14 +5 ∗ 38

5 ∗ 30 −102

= = 0.80
−10 ∗ 38 +14 ∗ 30

5 ∗ 30 −102

= +.8y ⃗  x⃗ 

x = 6 y(6) = 6 +.8 = 6.8

4.11.3

y = a +bx +cx2

a, b, c

=
⎡

⎣

⎢⎢

x2
1

⋮
x2

n

x1

⋮
xn

1

⋮
1

⎤

⎦

⎥⎥
⎡

⎣
⎢

a

b

c

⎤

⎦
⎥

⎡

⎣

⎢⎢

y1

⋮
yn

⎤

⎦

⎥⎥

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21269?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R/4.11%3A_Orthogonality
https://creativecommons.org/licenses/by/4.0
https://math.byu.edu/?mtt_page=kenneth-kuttler
https://lyryx.com/
https://lyryx.com/first-course-linear-algebra


4.12.1 https://math.libretexts.org/@go/page/21270

4.12: Applications

Applications

A. Apply the concepts of vectors in  to the applications of physics and work.

Vectors and Physics

Suppose you push on something. Then, your push is made up of two components, how hard you push and the direction you push.
This illustrates the concept of force.

Force is a vector. The magnitude of this vector is a measure of how hard it is pushing. It is measured in units such as Newtons
or pounds or tons. The direction of this vector is the direction in which the push is taking place.

Vectors are used to model force and other physical vectors like velocity. As with all vectors, a vector modeling force has two
essential ingredients, its magnitude and its direction.

Recall the special vectors which point along the coordinate axes. These are given by

where the  is in the  slot and there are zeros in all the other spaces. The direction of  is referred to as the  direction.

Consider the following picture which illustrates the case of  Recall that in , we may refer to these vectors as  and .

Figure 

Given a vector  it follows that

What does addition of vectors mean physically? Suppose two forces are applied to some object. Each of these would be represented
by a force vector and the two forces acting together would yield an overall force acting on the object which would also be a force
vector known as the resultant. Suppose the two vectors are  and . Then the vector  involves a

 Outcomes

R
n

 Definition : Force4.12.1
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4.12.1

= ,u⃗  [ ⋯ ]u1 un
T

= +⋯ + =u⃗  u1e ⃗ 1 une ⃗ n ∑
k=1

n

uie ⃗ i

=u⃗  ∑n
k=1 uie ⃗ i =v ⃗  ∑n

k=1 vie ⃗ i u⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/21270?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R/4.12%3A_Applications


4.12.2 https://math.libretexts.org/@go/page/21270

component in the  direction given by , while the component in the  direction of  is  Then the vector  should
have a component in the  direction equal to  This is exactly what is obtained when the vectors,  and  are added.

Thus the addition of vectors according to the rules of addition in  which were presented earlier, yields the appropriate vector
which duplicates the cumulative effect of all the vectors in the sum.

Consider now some examples of vector addition.

There are three ropes attached to a car and three people pull on these ropes. The first exerts a force of 
Newtons, the second exerts a force of  Newtons and the third exerts a force of  Newtons. Find
the total force in the direction of .

Solution
To find the total force, we add the vectors as described above. This is given by

Hence, the total force is  Newtons. Therefore, the force in the  direction is  Newtons.

Consider another example.

An airplane flies North East at 100 miles per hour. Write this as a vector.

Solution
A picture of this situation follows.

Figure 

Therefore, we need to find the vector  which has length 100 and direction as shown in this diagram. We can consider the
vector  as the hypotenuse of a right triangle having equal sides, since the direction of  corresponds with the  line. The
sides, corresponding to the  and  directions, should be each of length 100/  Therefore, the vector is given by

This example also motivates the concept of velocity, defined below.

ith uie ⃗ i ith v ⃗  .vie ⃗ i +u⃗  v ⃗ 

ith ( + ) .ui vi e ⃗ i u⃗  v ⃗ 

+u⃗  v ⃗ = [ + ⋯ + ]u1 v1 un vn
T

= ( + )∑
i=1

n

ui vi e ⃗ i

R
n

 Example : The Resultant of Three Forces4.12.1

= 2 +3 −2F ⃗ 
1 i ⃗  j ⃗  k⃗ 

= 3 +5 +F ⃗ 
2 i ⃗  j ⃗  k⃗  5 − +2i ⃗  j ⃗  k⃗ 

i ⃗ 

(2 +3 −2 ) +(3 +5 + ) +(5 − +2 )i ⃗  j ⃗  k⃗  i ⃗  j ⃗  k⃗  i ⃗  j ⃗  k⃗ 

= (2 +3 +5) +(3 +5 +−1) +(−2 +1 +2)i ⃗  j ⃗  k⃗ 

= 10 +7 +i ⃗  j ⃗  k⃗ 

10 +7 +i ⃗  j ⃗  k⃗  i ⃗  10

 Example : Finding a Vector from Geometric Description4.12.2
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The speed of an object is a measure of how fast it is going. It is measured in units of length per unit time. For example, miles
per hour, kilometers per minute, feet per second. The velocity is a vector having the speed as the magnitude but also specifying
the direction.

Thus the velocity vector in the above example is , while the speed is  miles per hour.

Consider the following example.

The velocity of an airplane is  measured in kilometers per hour and at a certain instant of time its position is 

Find the position of this airplane one minute later.

Solution
Here imagine a Cartesian coordinate system in which the third component is altitude and the first and second components are
measured on a line from West to East and a line from South to North.

Consider the vector  which is the initial position vector of the airplane. As the plane moves, the position vector
changes according to the velocity vector. After one minute (considered as  of an hour) the airplane has moved in the 
direction a distance of  kilometer. In the  direction it has moved  kilometer during this same time, while it

moves  kilometer in the  direction. Therefore, the new displacement vector for the airplane is

Now consider an example which involves combining two velocities.

A certain river is one half kilometer wide with a current flowing at 4 kilometers per hour from East to West. A man swims
directly toward the opposite shore from the South bank of the river at a speed of 3 kilometers per hour. How far down the river
does he find himself when he has swam across? How far does he end up swimming?

Solution
Consider the following picture which demonstrates the above scenario.

Figure 

First we want to know the total time of the swim across the river. The velocity in the direction across the river is  kilometers
per hour, and the river is  kilometer wide. It follows the trip takes  hour or  minutes.

Now, we can compute how far downstream he will end up. Since the river runs at a rate of  kilometers per hour, and the trip
takes  hour, the distance traveled downstream is given by  kilometers.

 Definition : Speed and Velocity4.12.2
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 Example : Sum of Two Velocities4.12.4
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The distance traveled by the swimmer is given by the hypotenuse of a right triangle. The two arms of the triangle are given by
the distance across the river, km, and the distance traveled downstream,  km. Then, using the Pythagorean Theorem, we
can calculate the total distance  traveled.

Therefore, the swimmer travels a total distance of  kilometers.

Work

The mathematical concept of work is an application of vectors in . The physical concept of work differs from the notion of work
employed in ordinary conversation. For example, suppose you were to slide a 150 pound weight off a table which is three feet high
and shuffle along the floor for 50 yards, keeping the height always three feet and then deposit this weight on another three foot high
table. The physical concept of work would indicate that the force exerted by your arms did no work during this project. The reason
for this definition is that even though your arms exerted considerable force on the weight, the direction of motion was at right
angles to the force they exerted. The only part of a force which does work in the sense of physics is the component of the force in
the direction of motion.

Work is defined to be the magnitude of the component of this force times the distance over which it acts, when the component of
force points in the direction of motion. In the case where the force points in exactly the opposite direction of motion work is given
by  times the magnitude of this component times the distance. Thus the work done by a force on an object as the object moves
from one point to another is a measure of the extent to which the force contributes to the motion. This is illustrated in the following
picture in the case where the given force contributes to the motion.

Figure 

Recall that for any vector  in , we can write  as a sum of two vectors, as in

For any force , we can write this force as the sum of a vector in the direction of the motion and a vector perpendicular to the
motion. In other words,

In the above picture the force,  is applied to an object which moves on the straight line from  to  There are two vectors
shown,  and  and the picture is intended to indicate that when you add these two vectors you get . In other words, 

. Notice that  acts in the direction of motion and  acts perpendicular to the direction of motion. Only 
contributes to the work done by  on the object as it moves from  to .  is called the component of the force in the direction
of motion. From trigonometry, you see the magnitude of  should equal  Thus, since  points in the direction of the
vector from  to  the total work done should equal

1
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Now, suppose the included angle had been obtuse. Then the work done by the force  on the object would have been negative
because  would point in  times the direction of the motion. In this case,  would also be negative and so it is still the case
that the work done would be given by the above formula. Thus from the geometric description of the dot product given above, the
work equals

This explains the following definition.

Let  be a force acting on an object which moves from the point  to the point , which have position vectors given by  and
 respectively. Then the work done on the object by the given force equals 

Consider the following example.

Let  Newtons. Find the work done by this force in moving from the point  to the point 
along the straight line segment joining these points where distances are measured in meters.

Solution
First, compute the vector , given by

According to Definition  the work done is

Note that if the force had been given in pounds and the distance had been given in feet, the units on the work would have been foot
pounds. In general, work has units equal to units of a force times units of a length. Recall that  Newton meter is equal to  Joule.
Also notice that the work done by the force can be negative as in the above example.

This page titled 4.12: Applications is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.E: Exercises

Find .

Answer

Find .

Decide whether

is a linear combination of the vectors

Answer

Decide whether

is a linear combination of the vectors
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Answer

The system

has no solution.

Find the vector equation for the line through  and . Then, find the parametric equations for this line.

Find parametric equations for the line through the point  with a direction vector .

Parametric equations of the line are

Find a direction vector for the line and a point on the line.

Find the vector equation for the line through the two points . Then, find the parametric equations.

The equation of a line in two dimensions is written as . Find parametric equations for this line.

Find parametric equations for the line through  and .

Find the vector equation and parametric equations for the line through the point  with a direction vector 

.
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 Exercise 4.E. 5
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 Exercise 4.E. 6
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 Exercise 4.E. 7
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= 6 −3t
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 Exercise 4.E. 8

(−5, 5, 1), (2, 2, 4)

 Exercise 4.E. 9

y = x−5

 Exercise 4.E. 10
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Parametric equations of the line are

Find a direction vector for the line and a point on the line, and write the vector equation of the line.

Find the vector equation and parametric equations for the line through the two points .

Find the point on the line segment from  to  which is  of the way from  to .

Suppose a triangle in  has vertices at  and . Consider the lines which are drawn from a vertex to the mid point of
the opposite side. Show these three lines intersect in a point and find the coordinates of this point.

Find .

Answer

Use the formula given in Proposition 4.7.2 to verify the Cauchy Schwarz inequality and to show that equality occurs if and
only if one of the vectors is a scalar multiple of the other

Answer

This formula says that  where  is the included angle between the two vectors. Thus

and equality holds if and only if  or . This means that the two vectors either point in the same direction or opposite
directions. Hence one is a multiple of the other.

 Exercise 4.E. 12
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 Exercise 4.E. 17

∙ = || || || || cosθu⃗  v ⃗  u⃗  v ⃗  θ
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For ,  vectors in , define the product, . Show the axioms for a dot product all hold for this
product. Prove

Answer

This follows from the Cauchy Schwarz inequality and the proof of Theorem 4.7.1 which only used the properties of the dot
product. Since this new product has the same properties the Cauchy Schwarz inequality holds for it as well.

Let ,  be vectors. Show that 

Using the axioms of the dot product, prove the parallelogram identity:

Let  be a real  matrix and let  and . Show . Hint: Use the definition of matrix
multiplication to do this.

Answer

Use the result of Problem  to verify directly that  without making any reference to subscripts.

Answer

Since this is true for all , it follows that, in particular, it holds for

and so from the axioms of the dot product,

and so . However, this is true for all  and so .

Find the angle between the vectors

 Exercise 4.E. 18
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 Exercise 4.E. 21
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Answer

 Therefore we need to solve

Thus  radians.

Find the angle between the vectors

Answer

 Therefore we need to solve , which gives  radians.

Find  where  and .

Answer

Find  where  and .

Answer

= , =u⃗ 
⎡

⎣
⎢

3

−1

−1

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

1

4

2

⎤

⎦
⎥

= = −0.19739 = cosθ
∙[ ]3 −1 −1 T [ ]1 4 2 T

9+1+1√ 1+16+4√

−3

11√ 21√

−0.19739 = cosθ

θ = 1.7695

 Exercise 4.E. 24

= , =u⃗ 
⎡

⎣
⎢

1

−2

1

⎤

⎦
⎥ v ⃗ 

⎡

⎣
⎢

1

2

−7

⎤

⎦
⎥

= −0.55555 = cosθ−10

1+4+1√ 1+4+49√
−0.55555 = cosθ θ = 2.0313

 Exercise 4.E. 25

( )projv ⃗  w⃗  =w⃗ 
⎡

⎣
⎢

1

0

−2

⎤

⎦
⎥ =v ⃗ 

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥

= =∙u ⃗  v ⃗ 

∙u ⃗  u ⃗ 
u⃗  −5

14

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

− 5
14

− 5
7

− 15
14

⎤

⎦

⎥⎥⎥

 Exercise 4.E. 26

( )projv ⃗  w⃗  =w⃗ 
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥ =v ⃗ 

⎡

⎣
⎢

1

0

3

⎤

⎦
⎥

= =∙u ⃗  v ⃗ 

∙u ⃗  u ⃗ 
u⃗  −5

10

⎡

⎣
⎢

1

0

3

⎤

⎦
⎥

⎡

⎣

⎢⎢

− 1
2

0

− 3
2

⎤

⎦

⎥⎥

 Exercise 4.E. 27
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Find  where  and .

Answer

Let  be a point in . Let  be the line through the point  with direction vector . Find

the shortest distance from  to , and find the point  on  that is closest to .

Let  be a point in . Let  be the line through the point  with direction vector . Find the

shortest distance from  to , and find the point  on  that is closest to .

Does it make sense to speak of ?

Answer

No, it does not. The  vector has no direction. The formula for  doesn’t make sense either.

Prove the Cauchy Schwarz inequality in  as follows. For ,  vectors, consider

Simplify using the axioms of the dot product and then put in the formula for the projection. Notice that this expression equals 
and you get equality in the Cauchy Schwarz inequality if and only if . What is the geometric meaning of 

?

Answer

And so

You get equality exactly when  in other words, when  is a multiple of .

( )projv ⃗  w⃗  =w⃗ 

⎡

⎣

⎢⎢
⎢

1

2

−2

1

⎤

⎦

⎥⎥
⎥

=v ⃗ 

⎡

⎣

⎢⎢
⎢

1

2

3

0

⎤

⎦

⎥⎥
⎥

= =∙u ⃗  v ⃗ 

∙u ⃗  u ⃗ 
u⃗  ∙[ ]1 2 −2 1 T [ ]1 2 3 0 T

1+4+9

⎡

⎣

⎢⎢⎢

1

2

3

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

− 1
14

− 1
7

− 3
14

0

⎤

⎦

⎥⎥⎥⎥⎥

 Exercise 4.E. 28

P = (1, 2, 3) R
3 L = (1, 4, 5)P0 =d ⃗ 

⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥

P L Q L P

 Exercise 4.E. 29

P = (0, 2, 1) R
3 L = (1, 1, 1)P0 =d ⃗ 

⎡

⎣
⎢

3

0

1

⎤

⎦
⎥

P L Q L P

 Exercise 4.E. 30

( )proj0⃗  w⃗ 

0 ( )proj
0⃗  w⃗ 

 Exercise 4.E. 31

R
n u⃗ v ⃗ 

( − ) ∙ ( − ) ≥ 0w⃗  projv ⃗ w⃗  w⃗  projv ⃗ w⃗ 

0
=w⃗  projv ⃗ w⃗ 

=w⃗  projv ⃗ w⃗ 

( − ) ∙( − ) = || | −2( ∙ +( ∙ ≥ 0u⃗ 
∙u⃗  v ⃗ 

|| |v ⃗ |2
v ⃗  u⃗ 

∙u⃗  v ⃗ 

|| |v ⃗ |2
v ⃗  u⃗ |2 u⃗  v ⃗ )2 1

|| |v ⃗ |2
u⃗  v ⃗ )2 1

|| |v ⃗ |2

|| | || | ≥ ( ∙u⃗ |2 v ⃗ |2 u⃗  v ⃗ )2

= =u⃗  projv ⃗ u⃗  ∙u ⃗  v ⃗ 

|| |v ⃗ |2
v ⃗  u⃗  v ⃗ 
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Let  be vectors. Show that  where .

Answer

This follows because

Show that

and conclude every vector in  can be written as the sum of two vectors, one which is perpendicular and one which is parallel
to the given vector.

Answer

. Therefore, . The first is

perpendicular to  and the second is a multiple of  so it is parallel to .

Show that if  for any unit vector , then .

Answer

If , then the condition says that  for all angles . Hence  after all.

Find the area of the triangle determined by the three points  and .

Answer

. So the area is .

Find the area of the triangle determined by the three points  and .

Answer

 Exercise 4.E. 32

, ,v ⃗  w⃗  u⃗  ( + = +w⃗  u⃗ )⊥ w⃗ ⊥ u⃗ ⊥ = − ( )w⃗ ⊥ w⃗  projv ⃗  w⃗ 

− ( ) + − ( )w⃗  projv ⃗  w⃗  u⃗  projv ⃗  u⃗  = + −( ( ) + ( ))w⃗  u⃗  projv ⃗  w⃗  projv ⃗  u⃗ 

= + − ( + )w⃗  u⃗  projv ⃗  w⃗  u⃗ 

( ) + ( )projv ⃗  w⃗  projv ⃗  u⃗  = +
∙u⃗  v ⃗ 

|| |v ⃗ |2
v ⃗ 

∙w⃗  v ⃗ 

|| |v ⃗ |2
v ⃗ 

=
( + ) ∙u⃗  w⃗  v ⃗ 

|| |v ⃗ |2
v ⃗ 

= ( + )projv ⃗  w⃗  u⃗ 

 Exercise 4.E. 33

( − ( ), ) = ( − ( )) ∙ = 0v ⃗  proju ⃗  v ⃗  u⃗  v ⃗  proju ⃗  v ⃗  u⃗ 

R
n

( − ( )) ∙ = ∙ −( ) ∙ = ∙ − ∙ = 0v ⃗  proju ⃗  v ⃗  u⃗  v ⃗  u⃗  ( ⋅v ⃗ u ⃗ 

|| |u ⃗  |2
u⃗  u⃗  v ⃗  u⃗  v ⃗  u⃗  = − ( ) + ( )v ⃗  v ⃗  proju ⃗  v ⃗  proju ⃗  v ⃗ 

u⃗  u⃗  u⃗ 

 Exercise 4.E. 34

× =a⃗  u⃗  0⃗  u⃗  =a⃗  0⃗ 

≠a⃗  0⃗  || × || = || || sinθ = 0a⃗  u⃗  a⃗  θ =a⃗  0⃗ 

 Exercise 4.E. 35

(1, 2, 3), (4, 2, 0) (−3, 2, 1)

× =
⎡

⎣
⎢

3

0

−3

⎤

⎦
⎥
⎡

⎣
⎢

−4

0

−2

⎤

⎦
⎥

⎡

⎣
⎢

0

18

0

⎤

⎦
⎥ 9

 Exercise 4.E. 36

(1, 0, 3), (4, 1, 0) (−3, 1, 1)
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. The area is given by

Find the area of the triangle determined by the three points,  and . Did something interesting happen
here? What does it mean geometrically?

Answer

. The area is . It means the three points are on the same line.

Find the area of the parallelogram determined by the vectors , .

Answer

. The area is .

Find the area of the parallelogram determined by the vectors , .

Answer

. The area is .

Is ? What is the meaning of ? Explain. Hint: Try .

Answer

. However,  and so the cross product is not associative.

Verify directly that the coordinate description of the cross product,  has the property that it is perpendicular to both  and 
. Then show by direct computation that this coordinate description satisfies

× =
⎡

⎣
⎢

3

1

−3

⎤

⎦
⎥
⎡

⎣
⎢

−4

1

−2

⎤

⎦
⎥

⎡

⎣
⎢

1

18

7

⎤

⎦
⎥

=
1

2
1 +(18 +49)2
− −−−−−−−−−−

√
1

2
374−−−√

 Exercise 4.E. 37

(1, 2, 3), (2, 3, 4) (3, 4, 5)

[ ] × [ ] = [ ]1 1 1 2 2 2 0 0 0 0

 Exercise 4.E. 38

⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

3

−2

1

⎤

⎦
⎥

× =
⎡

⎣
⎢

1

2

3

⎤

⎦
⎥
⎡

⎣
⎢

3

−2

1

⎤

⎦
⎥

⎡

⎣
⎢

8

8

−8

⎤

⎦
⎥ 8 3–√

 Exercise 4.E. 39

⎡

⎣
⎢

1

0

3

⎤

⎦
⎥
⎡

⎣
⎢

4

−2

1

⎤

⎦
⎥

× =
⎡

⎣
⎢

1

0

3

⎤

⎦
⎥
⎡

⎣
⎢

4

−2

1

⎤

⎦
⎥

⎡

⎣
⎢

6

11

−2

⎤

⎦
⎥ =36 +121 +4− −−−−−−−−−√ 161−−−√

 Exercise 4.E. 40

×( × ) = ( × ) ×u⃗  v ⃗  w⃗  u⃗  v ⃗  w⃗  × ×u⃗  v ⃗  w⃗  ( × )×i ⃗  j ⃗  k⃗ 

( × )× = × = ii ⃗  j ⃗  j ⃗  k⃗  j ⃗  i ⃗  ×( × )=i ⃗  j ⃗  j ⃗  0⃗ 

 Exercise 4.E. 41

×u⃗  v ⃗  u⃗ 

v ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/93323?pdf


4.E.9 https://math.libretexts.org/@go/page/93323

where  is the angle included between the two vectors. Explain why  has the correct magnitude.

Answer

Verify directly from the coordinate description of the cross product that the right hand rule applies to the vectors .
Next verify that the distributive law holds for the coordinate description of the cross product. This gives another way to
approach the cross product. First define it in terms of coordinates and then get the geometric properties from this. However,
this approach does not yield the right hand rule property very easily. From the coordinate description,

and so  is perpendicular to . Similarly,  is perpendicular to . Now we need that

and so , the area of the parallelogram determined by , . Only the right hand rule is a little
problematic. However, you can see right away from the component definition that the right hand rule holds for each of the
standard unit vectors. Thus  etc.

Suppose  is a  skew symmetric matrix such that . Show there exists a vector  such that for all 

Hint: Explain why since  is skew symmetric it is of the form

where the  are numbers. Then consider .

Find the volume of the parallelepiped determined by the vectors , , and .

Answer

|| × |u⃗  v ⃗ |2 = || | || | −( ∙u⃗ |2 v ⃗ |2 u⃗  v ⃗ )2

= || | || | (1 − (θ))u⃗ |2 v ⃗ |2 cos2

θ || × ||u⃗  v ⃗ 

, ,i ⃗  j ⃗  k⃗ 

× ⋅ = = − = − = − × ⋅a⃗  b ⃗  a⃗  ϵijkajbkai ϵjikakbkai ϵjikbkaiaj a⃗  b ⃗  a⃗ 

×a⃗  b ⃗  a⃗  ×a⃗  b ⃗  b ⃗ 

|| × | = || | || | (1 − θ) = || | || | θa⃗  b ⃗ |2 a⃗ |2 b ⃗ |2 cos2 a⃗ |2 b ⃗ |2 sin2

|| × || = || || || || sinθa⃗  b ⃗  a⃗  b ⃗  a⃗  b ⃗ 

× =i ⃗  j ⃗  k⃗ 

=

∣

∣

∣
∣
∣

i ⃗ 

1

0

j ⃗ 

0

1

k⃗ 

0

0

∣

∣

∣
∣
∣

k⃗ 

 Exercise 4.E. 42

A 3 ×3 = −AAT Ω⃗  ∈u⃗  R
3

A = ×u⃗  Ω⃗  u⃗ 

A

A =
⎡

⎣
⎢

0

ω3

−ω2

−ω3

0

ω1

ω2

−ω1

0

⎤

⎦
⎥

ωi + +ω1i ⃗  ω2j ⃗  ω3k⃗
 

 Exercise 4.E. 43

⎡

⎣
⎢

1

−7

−5

⎤

⎦
⎥
⎡

⎣
⎢

1

−2

−6

⎤

⎦
⎥

⎡

⎣
⎢

3

2

3

⎤

⎦
⎥

= 113

∣

∣

∣
∣

1

1

3

−7

−2

2

−5

−6

3

∣

∣

∣
∣
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Suppose , , and  are three vectors whose components are all integers. Can you conclude the volume of the parallelepiped
determined from these three vectors will always be an integer?

Answer

Yes. It will involve the sum of product of integers and so it will be an integer.

What does it mean geometrically if the box product of three vectors gives zero?

Answer

It means that if you place them so that they all have their tails at the same point, the three will lie in the same plane.

Using Problem , find an equation of a plane containing the two position vectors,  and  and the point . Hint: If 
 is a point on this plane, the volume of the parallelepiped determined by  and the vectors ,  equals .

Answer

Using the notion of the box product yielding either plus or minus the volume of the parallelepiped determined by the given
three vectors, show that

In other words, the dot and the cross can be switched as long as the order of the vectors remains the same. Hint: There are two
ways to do this, by the coordinate description of the dot and cross product and by geometric reasoning.

Simplify .

Answer

Here  denotes the box product. Consider the cross product term. From the above,

Thus it reduces to

Simplify .

Answer

 Exercise 4.E. 44

u⃗  v ⃗  w⃗ 

 Exercise 4.E. 45

 Exercise 4.E. 46

4.E. 45 p ⃗  q ⃗  0
(x, y, z) (x, y, z) p ⃗  q ⃗  0

∙( × )= 0x⃗  a⃗  b ⃗ 

 Exercise 4.E. 47

( × ) ∙ = ∙ ( × )u⃗  v ⃗  w⃗  u⃗  v ⃗  w⃗ 

 Exercise 4.E. 48

( × ) ∙ ( × ) ×( × )u⃗  v ⃗  v ⃗  w⃗  w⃗  z ⃗ 

[ , , ]v ⃗  w⃗  z ⃗ 

( × ) ×( × )v ⃗  w⃗  w⃗  z ⃗  = [ , , ] − [ , , ]v ⃗  w⃗  z ⃗ w⃗  w⃗  w⃗  z ⃗ v ⃗ 

= [ , , ]v ⃗  w⃗  z ⃗ w⃗ 

( × ) ∙ [ , , ] = [ , , ][ , , ]u⃗  v ⃗  v ⃗  w⃗  z ⃗ w⃗  v ⃗  w⃗  z ⃗  u⃗  v ⃗  w⃗ 

 Exercise 4.E. 49

|| × | +( ∙ −|| | || |u⃗  v ⃗ |2 u⃗  v ⃗ )2 u⃗ |2 v ⃗ |2
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It follows that the expression reduces to . You can also do the following.

which implies the expression equals .

For  functions of , prove the following product rules:

Answer

We will show it using the summation convention and permutation symbol

and so .

Here are some vectors.

Describe the span of these vectors as the span of as few vectors as possible.

Here are some vectors.

Describe the span of these vectors as the span of as few vectors as possible.

Here are some vectors.

Describe the span of these vectors as the span of as few vectors as possible.

|| × |u⃗  v ⃗ |2 = = ( − )ϵijkujvkϵirsurvs δjrδks δkrδjs urvsujvk

= − = || | || | −( ∙ujvkujvk ukvjujvk u⃗ |2 v ⃗ |2 u⃗  v ⃗ )2

0

|| × |u⃗  v ⃗ |2 = || | || | θu⃗ |2 v ⃗ |2 sin2

= || | || | (1 − θ)u⃗ |2 v ⃗ |2 cos2

= || | || | − || | || | θu⃗ |2 v ⃗ |2 u⃗ |2 v ⃗ |2 cos2

= || | || | −( ∙u⃗ |2 v ⃗ |2 u⃗  v ⃗ )2

0

 Exercise 4.E. 50

, ,u⃗  v ⃗  w⃗  t

( ×u⃗  v ⃗ )′

( ∙u⃗  v ⃗ )′

= × + ×u⃗ ′ v ⃗  u⃗  v ⃗ ′

= ∙ + ∙u⃗ ′ v ⃗  u⃗  v ⃗ ′

(( ×u⃗  v ⃗ )′)i = (( × = (u⃗  v ⃗ )i)′ ϵijkujvk)′

= + = ( × + ×ϵijku
′
jvk ϵijkukv

′
k u⃗ ′ v ⃗  u⃗  v ⃗ ′)i

( × = × + ×u⃗  v ⃗ )′ u⃗ ′ v ⃗  u⃗  v ⃗ ′

 Exercise 4.E. 51

, , , ,
⎡

⎣
⎢

1

1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

2

7

−4

⎤

⎦
⎥
⎡

⎣
⎢

5

7

−10

⎤

⎦
⎥
⎡

⎣
⎢

12

17

−24

⎤

⎦
⎥

 Exercise 4.E. 52

, , , , .
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

12

29

−24

⎤

⎦
⎥
⎡

⎣
⎢

1

3

−2

⎤

⎦
⎥
⎡

⎣
⎢

2

9

−4

⎤

⎦
⎥
⎡

⎣
⎢

5

12

−10

⎤

⎦
⎥

 Exercise 4.E. 53

, , , ,
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

3

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−2

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1

0

2

⎤

⎦
⎥
⎡

⎣
⎢

1

3

−1

⎤

⎦
⎥
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Here are some vectors.

Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Here are some vectors.

Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Here are some vectors.

Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Here are some vectors,

 Exercise 4.E. 54

, , ,
⎡

⎣
⎢

1

1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−3

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1

1

2

⎤

⎦
⎥

⎡

⎣
⎢

1

2

−1

⎤

⎦
⎥

 Exercise 4.E. 55

, , ,
⎡

⎣
⎢

1

1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−3

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1

1

2

⎤

⎦
⎥

⎡

⎣
⎢

2

−3

−4

⎤

⎦
⎥

 Exercise 4.E. 56

, , ,
⎡

⎣
⎢

1

1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

2

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−3

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

2

−1

⎤

⎦
⎥

⎡

⎣
⎢

1

9

1

⎤

⎦
⎥

 Exercise 4.E. 57
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Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Here are some vectors.

Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Here are some vectors.

Now here is another vector:

Is this vector in the span of the first four vectors? If it is, exhibit a linear combination of the first four vectors which equals this
vector, using as few vectors as possible in the linear combination.

Suppose  is a set of vectors from . Show that  is in .

Answer

, , ,
⎡

⎣
⎢

1

−1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

0

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−5

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1

5

2

⎤

⎦
⎥

⎡

⎣
⎢

1

1

−1

⎤

⎦
⎥

 Exercise 4.E. 58

, , ,
⎡

⎣
⎢

1

−1

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

0

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

−5

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1

5

2

⎤

⎦
⎥

⎡

⎣
⎢

1

1

−1

⎤

⎦
⎥

 Exercise 4.E. 59

, , ,
⎡

⎣
⎢

1

0

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

1

−2

⎤

⎦
⎥
⎡

⎣
⎢

2

−2

−3

⎤

⎦
⎥
⎡

⎣
⎢

−1

4

2

⎤

⎦
⎥

⎡

⎣
⎢

−1

−4

2

⎤

⎦
⎥

 Exercise 4.E. 60

{ , ⋯ , }x⃗ 1 x⃗ k R
n 0⃗  span{ , ⋯ , }x⃗ 1 x⃗ k

0 =∑
i=1

k

x⃗ k 0⃗ 
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Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others.

 Exercise 4.E. 61

, , ,

⎡

⎣

⎢
⎢⎢

1

3

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

10

2

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 62

, , ,

⎡

⎣

⎢
⎢⎢

−1

−2

2

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−3

−4

3

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

−1

4

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

−1

6

4

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 63

, , ,

⎡

⎣

⎢
⎢⎢

1

5

−2

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

6

−3

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

−4

1

−1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

6

−2

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 64

, , ,

⎡

⎣

⎢
⎢⎢

1

−1

3

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

6

34

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

7

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

8

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 65

, , ,

⎡

⎣

⎢
⎢⎢

1

3

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−3

−10

3

−3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

0

1

⎤

⎦

⎥
⎥⎥
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Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others.

Are the following vectors linearly independent? If they are, explain why and if they are not, exhibit one of them as a linear
combination of the others. Also give a linearly independent set of vectors which has the same span as the given vectors.

 Exercise 4.E. 66

, , ,

⎡

⎣

⎢
⎢⎢

1

3

−3

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

−5

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

−4

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

10

−14

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 67

, , ,

⎡

⎣

⎢
⎢⎢

1

0

3

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

1

8

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

7

34

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

1

7

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 68

, , ,

⎡

⎣

⎢
⎢⎢

1

4

−2

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

5

−3

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

7

−5

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

5

−2

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 69

, , ,

⎡

⎣

⎢
⎢⎢

1

2

2

−4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

3

4

1

−4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

−1

0

4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

−1

−2

5

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 70

, , ,

⎡

⎣

⎢
⎢⎢

2

3

1

−3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−5

−6

0

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

−2

1

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

−2

0

4

⎤

⎦

⎥
⎥⎥
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Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

 Exercise 4.E. 71

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

1

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

2

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

−2

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

2

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

−1

−1

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 72

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

2

−2

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

−3

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

−2

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

4

3

−1

4

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

3

−2

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 73

R
4

, , , ,

⎡

⎣

⎢⎢⎢

1

1

0

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

2

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

−2

−3

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

−5

−7

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

2

2

1

⎤

⎦

⎥⎥⎥

 Exercise 4.E. 74

R
4

, , , ,

⎡

⎣

⎢⎢⎢

1

2

−2

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

3

−3

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

−1

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

−3

3

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

3

−2

1

⎤

⎦

⎥⎥⎥

 Exercise 4.E. 75

R
4

, , , ,

⎡

⎣

⎢⎢⎢

1

4

−2

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

5

−3

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

5

−2

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

4

11

−1

4

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

5

−3

1

⎤

⎦

⎥⎥⎥
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These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

 Exercise 4.E. 76

R
4

, , , ,

⎡

⎣

⎢⎢⎢

1

3

−1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢
⎢⎢
⎢⎢

− 3
2

− 9
2
3
2

− 3
2

⎤

⎦

⎥
⎥⎥
⎥⎥

⎡

⎣

⎢⎢⎢

1

4

−1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

−1

−2

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

4

0

1

⎤

⎦

⎥⎥⎥

 Exercise 4.E. 77

R
4

, , , ,

⎡

⎣

⎢
⎢⎢

1

3

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

−1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

2

−1

−2

2

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

4

0

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 78

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

4

−2

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

5

−3

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

1

1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2

1

3

2

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

5

−2

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 79

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

−1

3

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

7

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

8

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

4

−9

−6

4

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

8

1

⎤

⎦

⎥⎥
⎥
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Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Here are some vectors in .

These vectors can’t possibly be linearly independent. Tell why. Next obtain a linearly independent subset of these vectors
which has the same span as these vectors. In other words, find a basis for the span of these vectors.

Let . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

 Exercise 4.E. 80

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

−1

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−3

3

3

−3

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

−1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2

−9

−2

2

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

0

0

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 81

R
4

, , , ,

⎡

⎣

⎢⎢
⎢

1

b+1

a

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

3

3b+3

3a

3

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

b+2

2a+1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2

2b−5

−5a−7

2

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1

b+2

2a+2

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 82

H = span , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

2

1

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

0

−1

−1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

5

2

3

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

−1

1

−2

−2

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 83

H span , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

0

1

1

−1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1

−1

−2

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

3

5

−5

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

2

−2

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 84

H span , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

−2

1

1

−3

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−9

4

3

−9

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−33

15

12

−36

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−22

10

8

−24

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 85

H span , , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

−1

1

−1

−2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−4

3

−2

−4

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−3

2

−1

−2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1

1

−2

−4

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−7

5

−3

−6

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H
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Let  denote . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

Let  denote . Find the dimension of  and determine a basis.

Let . Is  a subspace? Explain.

Answer

No. Let . Then  although .

Let . Is  a subspace? Explain.

Answer

 Exercise 4.E. 86

H span , , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

2

3

2

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

8

15

6

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

3

6

2

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

4

6

6

3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

8

15

6

3

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 87

H span , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

0

2

0

−1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−1

6

0

−2

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−2

16

0

−6

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

−3

22

0

−8

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 88

H span , , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

5

1

1

4

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

14

3

2

8

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

38

8

6

24

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

47

10

7

28

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

10

2

3

12

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 89

H span , , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

6

1

1

5

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

17

3

2

10

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

52

9

7

35

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

18

3

4

20

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

H

 Exercise 4.E. 90

M = = ∈ : sin( ) = 1

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢
⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥
⎥⎥

R
4 u1

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M

=u⃗ 

⎡

⎣

⎢⎢⎢⎢

π

2

0

0

0

⎤

⎦

⎥⎥⎥⎥
2 Mu⃗ ∈ ∈ Mu⃗ 

 Exercise 4.E. 91

M = = ∈ : || || ≤ 4

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢⎢
⎢

u1

u2

u3

u4

⎤

⎦

⎥⎥
⎥

R
4 u1

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M
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No.  but .

Let . Is  a subspace? Explain.

Answer

This is not a subspace.  is in it. However,  is not.

Let ,  be given vectors in  and define

Is  a subspace? Explain.

Answer

This is a subspace because it is closed with respect to vector addition and scalar multiplication.

Let  and let . Is  a subspace? Explain.

Answer

Yes, this is a subspace because it is closed with respect to vector addition and scalar multiplication.

Let . Is  a subspace? Explain.

Answer

∈ M

⎡

⎣

⎢
⎢⎢

1

0

0

0

⎤

⎦

⎥
⎥⎥

10 M

⎡

⎣

⎢
⎢⎢

1

0

0

0

⎤

⎦

⎥
⎥⎥

∈

 Exercise 4.E. 92

M = = ∈ : ≥ 0 for each i = 1, 2, 3, 4

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢
⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥
⎥⎥

R
4 u1

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M

⎡

⎣

⎢
⎢⎢

1

1

1

1

⎤

⎦

⎥
⎥⎥

(−1)

⎡

⎣

⎢
⎢⎢

1

1

1

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 93

w⃗  w⃗ 1 R
4

M = = ∈ : ∙ = 0 and  ∙ = 0 .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥⎥⎥
R

4 w⃗  u⃗  w⃗ 1 u⃗ 

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M

 Exercise 4.E. 94

∈w⃗  R
4 M = = ∈ : ∙ = 0

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥⎥⎥
R

4 w⃗  u⃗ 

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M

 Exercise 4.E. 95

M = = ∈ : ≥

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥⎥⎥
R

4 u3 u1

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M
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This is not a subspace.  is in it. However  is not.

Let . Is  a subspace? Explain.

Answer

This is a subspace. It is closed with respect to vector addition and scalar multiplication.

Consider the set of vectors  given by

Is  a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the set of vectors  given by

Is  a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the set of vectors  given by

Is this set of vectors a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the vectors of the form

Is this set of vectors a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

⎡

⎣

⎢
⎢⎢

0

0

1

0

⎤

⎦

⎥
⎥⎥

(−1) =

⎡

⎣

⎢
⎢⎢

0

0

1

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

0

−1

0

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 96

M = = ∈ : = = 0

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

u⃗ 

⎡

⎣

⎢
⎢⎢

u1

u2

u3

u4

⎤

⎦

⎥
⎥⎥

R
4 u3 u1

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

M

 Exercise 4.E. 97

S

S = : u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

4u+v−5w

12u+6v−6w

4u+4v+4w

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

S R
3

 Exercise 4.E. 98

S

S = : u, v,w ∈ R .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

2u+6v+7w

−3u−9v−12w

2u+6v+6w

u+3v+3w

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

S R
4

 Exercise 4.E. 99

S

S = : u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

2u+v

6v−3u+3w

3v−6u+3w

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

R
3

 Exercise 4.E. 100

: u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

2u+v+7w

u−2v+w

−6v−6w

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

R
3
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Consider the vectors of the form

Is this set of vectors a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the vectors of the form

Is this set of vectors a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the set of vectors  given by

Is  is a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

Consider the set of vectors  given by

Is  is a subspace of ? If so, explain why, give a basis for the subspace and find its dimension.

If you have  vectors in  and the vectors are linearly independent, can it always be concluded they span ? Explain.

Answer

Yes. If not, there would exist a vector not in the span. But then you could add in this vector and obtain a linearly
independent set of vectors with more vectors than a basis.

If you have  vectors in , is it possible they are linearly independent? Explain.

Answer

 Exercise 4.E. 101

: u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

3u+v+11w

18u+6v+66w

28u+8v+100w

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

R
3

 Exercise 4.E. 102

: u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

3u+v

2w−4u

2w−2v−8u

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

R
3

 Exercise 4.E. 103

S

: u, v,w ∈ R .

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

u+v+w

2u+2v+4w

u+v+w

0

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

S R
4

 Exercise 4.E. 104

S

: u, v,w ∈ R .
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

v

−3u−3w

8u−4v+4w

⎤

⎦
⎥

⎫

⎭
⎬
⎪

⎪

S R
4

 Exercise 4.E. 105

5 R
5

R
5

 Exercise 4.E. 106

6 R
5
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They can't be.

Suppose  is an  matrix and  is a linearly independent set of vectors in . Now suppose 
. Show  is also independent.

Answer

Say . Then apply  to it as follows.

and so, by linear independence of the , it follows that each .

Suppose  are subspaces of . Let  be all vectors which are in both  and . Show that  is a subspace
also.

Answer

If , then for scalars , the linear combination  must be in both  and  since they are both
subspaces.

Suppose  and  both have dimension equal to  and they are subspaces of . What are the possibilities for the dimension
of ? Hint: Remember that a linear independent set can be extended to form a basis.

Suppose  has dimension  and  has dimension  and they are each contained in a subspace,  which has dimension equal
to  where . What are the possibilities for the dimension of ? Hint: Remember that a linearly
independent set can be extended to form a basis.

Answer

Let  be a basis for . Then there is a basis for  and  which are respectively

It follows that you must have  and so you must have

Suppose  is an  matrix and  is an  matrix. Show that

Consider the subspace,  and suppose a basis for this subspace is . Now suppose  is
a basis for . Let  be such that  and argue that

 Exercise 4.E. 107

A m×n { , ⋯ , }w⃗ 1 w⃗ k A( ) ⊆R
n

R
m

A =z ⃗ i w⃗ i { , ⋯ , }z ⃗ 1 z ⃗ k

=∑
i=1

k

ciz ⃗ i 0⃗  A

A = =∑
i=1

k

ca z ⃗ i ∑
i=1

k

ciw⃗ i 0⃗ 

w⃗ i = 0ci

 Exercise 4.E. 108

V , W R
n V ∩W V W V ∩W

, ∈ V ∩Wx⃗  y ⃗  α, β α +βx⃗  y ⃗  V W

 Exercise 4.E. 109

V W 7 R
10

V ∩W

 Exercise 4.E. 110

V p W q U

n n > max(p, q) V ∩W

{ , ⋯ , }x1 xk V ∩W V W

{ , ⋯ , , , ⋯ , }, { , ⋯ , , , ⋯ }x1 xk yk+1 yp x1 xk zk+1 zq

k+p−k+q−k ≤ n

p+q−n ≤ k

 Exercise 4.E. 111

A m×n B n×p

dim(ker(AB)) ≤ dim(ker(A)) +dim(ker(B)).

B( ) ∩ ker(A)R
p { , ⋯ , }w⃗ 1 w⃗ k { , ⋯ , }u⃗ 1 u⃗ r

ker(B) { , ⋯ , }z ⃗ 1 z ⃗ k B =z ⃗ 1 w⃗ i
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Answer

Here is how you do this. Suppose . Then  and so  showing that

Consider  and let a basis be . Then each  is of the form . Therefore, 
 is linearly independent and . Now let  be a basis for . If , then 

 and so  which implies

and so it is of the form

It follows that if  so that , then

Therefore,

Show that if  is an  matrix, then  is a subspace of .

Answer

If ,  then

and so  is closed under linear combinations. Hence it is a subspace.

Find the rank of the following matrix. Also find a basis for the row and column spaces.

ker(AB) ⊆ span{ , ⋯ , , , ⋯ , }.u⃗ 1 u⃗ r z ⃗ 1 z ⃗ k

AB =x⃗  0⃗  B ∈ ker(A) ∩B( )x⃗  R
p B = Bx⃗  ∑

i=1

k

z ⃗ i

− ∈ ker(B)x⃗  ∑
i=1

k

z ⃗ i

B( ) ∩ ker(A)R
p { , ⋯ , }w⃗ 1 w⃗ k w⃗ i B =z ⃗ i w⃗ i

{ , ⋯ , }z ⃗ 1 z ⃗ k AB = 0z ⃗ i { , ⋯ , }u⃗ 1 u⃗ r ker(B) AB =x⃗  0⃗ 

B ∈ ker(A) ∩B( )x⃗  R
p B = Bx⃗  ∑

i=1

k

ci z ⃗ 1

− ∈ ker(B)x⃗  ∑
i=1

k

ciz ⃗ i

− =x⃗  ∑
i=1

k

ciz ⃗ i ∑
j=1

r

dju⃗ j

AB =x⃗  0⃗  ∈ ker(AB)x⃗ 

∈ span( , ⋯ , , , ⋯ , ).x⃗  z ⃗ 1 z ⃗ k u⃗ 1 u⃗ r

dim(ker(AB)) ≤ k+r = dim(B( ) ∩ ker(A)) +dim(ker(B))R
p

≤ dim(ker(A)) +dim(ker(B))

 Exercise 4.E. 112

A m×n ker(A) R
n

x⃗  ∈ ker(A)y ⃗ 

A(a +b ) = aA +bA = a +b =x⃗  y ⃗  x⃗  y ⃗  0⃗  0⃗  0⃗ 

ker(A)

 Exercise 4.E. 113

⎡

⎣

⎢
⎢⎢

1

3

1

1

3

9

3

3

0

1

1

−1

−2

−7

−3

−1

0

0

1

−2

3

8

−1

10

⎤

⎦

⎥
⎥⎥
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Find the rank of the following matrix. Also find a basis for the row and column spaces.

Find the rank of the following matrix. Also find a basis for the row and column spaces.

Find the rank of the following matrix. Also find a basis for the row and column spaces.

Find the rank of the following matrix. Also find a basis for the row and column spaces.

Find the rank of the following matrix. Also find a basis for the row and column spaces.

Find  for the following matrices.

a. 

b. 

 Exercise 4.E. 114

⎡

⎣

⎢
⎢⎢

1

3

1

1

3

9

3

3

0

1

1

−1

−2

−7

−3

−1

7

23

9

5

3

8

2

4

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 115

⎡

⎣

⎢
⎢⎢

1

3

1

1

0

1

1

−1

3

10

4

2

0

0

1

−2

7

23

7

9

0

0

0

1

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 116

⎡

⎣

⎢
⎢⎢

1

3

1

1

0

1

1

−1

3

10

4

2

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 117

⎡

⎣

⎢
⎢⎢

0

1

1

−1

0

2

2

−2

−1

3

2

−2

0

−2

−1

1

1

−18

−11

11

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 118

⎡

⎣

⎢
⎢⎢

1

3

−1

1

0

1

1

−1

3

10

−2

2

0

0

1

−2

⎤

⎦

⎥
⎥⎥

 Exercise 4.E. 119

ker(A)

A = [ ]
2

4

3

6

A =
⎡

⎣
⎢

1

−1

3

0

1

2

−1

3

1

⎤

⎦
⎥
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c. 

d. 

Determine whether the following set of vectors is orthogonal. If it is orthogonal, determine whether it is also orthonormal.

If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the same span.

Determine whether the following set of vectors is orthogonal. If it is orthogonal, determine whether it is also orthonormal.

If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the same span.

Determine whether the following set of vectors is orthogonal. If it is orthogonal, determine whether it is also orthonormal.

If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the same span.

Determine whether the following set of vectors is orthogonal. If it is orthogonal, determine whether it is also orthonormal.

If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the same span.

Determine whether the following set of vectors is orthogonal. If it is orthogonal, determine whether it is also orthonormal.

A =
⎡

⎣
⎢

2

3

1

4

6

2

0

−2

−2

⎤

⎦
⎥

A =

⎡

⎣

⎢⎢
⎢

2

2

6

0

−1

0

4

2

3

1

−5

−4

5

2

−6

−6

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 120

, ,

⎡

⎣

⎢⎢

1
6 2–√ 3–√
1
3 2

–√ 3
–√

− 1
6 2–√ 3–√

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

1
2

2–√

0
1
2 2–√

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

− 1
3 3–√

1
3 3

–√

1
3 3–√

⎤

⎦

⎥⎥

 Exercise 4.E. 121

, ,
⎡

⎣
⎢

1

2

−1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

1

⎤

⎦
⎥
⎡

⎣
⎢

−1

1

1

⎤

⎦
⎥

 Exercise 4.E. 122

, ,
⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥
⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥
⎡

⎣
⎢

0

1

1

⎤

⎦
⎥

 Exercise 4.E. 123

, ,
⎡

⎣
⎢

1

−1

1

⎤

⎦
⎥
⎡

⎣
⎢

2

1

−1

⎤

⎦
⎥
⎡

⎣
⎢

1

2

1

⎤

⎦
⎥

 Exercise 4.E. 124
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If the set of vectors is orthogonal but not orthonormal, give an orthonormal set of vectors which has the same span.

Here are some matrices. Label according to whether they are symmetric, skew symmetric, or orthogonal.

a. 

b. 

c. 

Answer
a. Orthogonal
b. Symmetric
c. Skew Symmetric

For  an orthogonal matrix, explain why  for any vector . Next explain why if  is an  matrix with the
property that  for all vectors, , then  must be orthogonal. Thus the orthogonal matrices are exactly those
which preserve length.

Answer

. Next suppose distance is preserved by . Then

But since  preserves distances, it is also the case that

Hence

and so

Since  is arbitrary, it follows that . Thus  is orthogonal.

, ,

⎡

⎣

⎢⎢
⎢

1

0

0

0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0

1

−1

0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0

0

0

1

⎤

⎦

⎥⎥
⎥

 Exercise 4.E. 125

⎡

⎣

⎢⎢⎢

1

0

0

0
1

2√

1
2√

0

− 1

2√

1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1

2

−3

2

1

4

−3

4

7

⎤

⎦
⎥

⎡

⎣
⎢

0

2

3

−2

0

4

−3

−4

0

⎤

⎦
⎥

 Exercise 4.E. 126

U ||U || = || ||x⃗  x⃗  x⃗  U n×n

||U || = || ||x⃗  x⃗  x⃗  U

||U | = U ∙U = U ∙ = I ∙ = || |x⃗ |2 x⃗  x⃗  U T x⃗  x⃗  x⃗  x⃗  x⃗ |2 U

(U( + )) ∙ (U( + ))x⃗  y ⃗  x⃗  y ⃗  = ||Ux| + ||Uy| +2(Ux ∙Uy)|2 |2

= || | +|| | +2( U ∙ )x⃗ |2 y ⃗ |2 U T x⃗  y ⃗ 

U

(U( + ) ∙U( + )) = || | +|| | +2( ∙ )x⃗  y ⃗  x⃗  y ⃗  x⃗ |2 y ⃗ |2 x⃗  y ⃗ 

∙ = U ∙x⃗  y ⃗  U T x⃗  y ⃗ 

(( U −I) ) ∙ = 0U T x⃗  y ⃗ 

y U −I = 0U T U
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Suppose  is an orthogonal  matrix. Explain why .

Answer

You could observe that  so .

Fill in the missing entries to make the matrix orthogonal.

Answer

This requires, .

Fill in the missing entries to make the matrix orthogonal.

Answer

This requires .

 Exercise 4.E. 127

U n×n rank(U) = n

det(U ) = (det(U) −1U T )2 det(U) ≠ 0

 Exercise 4.E. 128

.

⎡

⎣

⎢⎢⎢⎢

−1

2√

1
2√

–

−1

6√

–
6√

3

1
3√

–

–

⎤

⎦

⎥⎥⎥⎥

=

⎡

⎣

⎢⎢⎢⎢

−1

2√

1

2√

0

−1

6√

−1

6√

6√

3

1
3√

a

b

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

−1

2√

1

2√

0

−1

6√

−1

6√

6√

3

1
3√

a

b

⎤

⎦

⎥⎥⎥⎥

T

⎡

⎣

⎢⎢⎢

1

a−1
3 3–√ 1

3

b−1
3 3–√ 1

3

a−1
3 3–√ 1

3

+a2 2
3

ab− 1
3

b−1
3 3–√ 1

3

ab− 1
3

+b2 2
3

⎤

⎦

⎥⎥⎥

a = 1/ , b = 1/3–√ 3–√

=

⎡

⎣

⎢⎢⎢⎢

−1

2√

1
2√

0

−1

6√

−1

6√

6√

3

1

3√

1/ 3
–√

1/ 3–√

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

−1

2√

1
2√

0

−1

6√

−1

6√

6√

3

1

3√

1/ 3
–√

1/ 3–√

⎤

⎦

⎥⎥⎥⎥

T

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

 Exercise 4.E. 129

⎡

⎣

⎢
⎢

2
3
2
3

–

2√
2

–
0

1
6 2–√

–

–

⎤

⎦

⎥
⎥

=

⎡

⎣

⎢⎢⎢⎢

2
3

2
3

− 1
3

2√

2

− 2√

2

0

1
6

2–√

a

b

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

2
3

2
3

− 1
3

2√

2

− 2√

2

0

1
6

2–√

a

b

⎤

⎦

⎥⎥⎥⎥

T

⎡

⎣

⎢⎢⎢

1

a−1
6

2–√ 1
18

b−1
6

2–√ 2
9

a−1
6 2–√ 1

18

+a2 17
18

ab− 2
9

b−1
6 2–√ 2

9

ab− 2
9

+b2 1
9

⎤

⎦

⎥⎥⎥

a = , b =1

3 2√

4

3 2√
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Fill in the missing entries to make the matrix orthogonal.

Answer

Try

This requires that .

Find an orthonormal basis for the span of each of the following sets of vectors.

a. 

b. 

c. 

Answer

a. 

=

⎡

⎣

⎢⎢⎢
⎢

2
3

2
3

− 1
3

2√

2

− 2√

2

0

1
6 2–√

1

3 2√

4

3 2√

⎤

⎦

⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢
⎢

2
3

2
3

− 1
3

2√

2

− 2√

2

0

1
6 2–√

1

3 2√

4

3 2√

⎤

⎦

⎥⎥⎥
⎥

T

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

 Exercise 4.E. 130

⎡

⎣

⎢⎢⎢

1
3

2
3

–

− 2
5√

0

–

–

–
4

15 5–√

⎤

⎦

⎥⎥⎥

=

⎡

⎣

⎢⎢
⎢

1
3

2
3
2
3

− 2

5√

0
1

5√

c

d

4
15

5–√

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
3

2
3
2
3

− 2

5√

0
1

5√

c

d

4
15

5–√

⎤

⎦

⎥⎥
⎥

T

⎡

⎣

⎢⎢⎢

+c2 41
45

cd+ 2
9

c−4
15 5

–√ 8
45

cd+ 2
9

+d2 4
9

d+4
15 5

–√ 4
9

c−4
15

5–√ 8
45

d+4
15

5–√ 4
9

1

⎤

⎦

⎥⎥⎥

c = , d =2

3 5√

−5

3 5√

=

⎡

⎣

⎢⎢⎢⎢

1
3

2
3

2
3

− 2

5√

0

1

5√

2

3 5√

−5

3 5√

4
15 5–√

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1
3

2
3

2
3

− 2

5√

0

1

5√

2

3 5√

−5

3 5√

4
15 5–√

⎤

⎦

⎥⎥⎥⎥

T

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

 Exercise 4.E. 131

, ,
⎡

⎣
⎢

3

−4

0

⎤

⎦
⎥
⎡

⎣
⎢

7

−1

0

⎤

⎦
⎥
⎡

⎣
⎢

1

7

1

⎤

⎦
⎥

, ,
⎡

⎣
⎢

3

0

−4

⎤

⎦
⎥
⎡

⎣
⎢

11

0

2

⎤

⎦
⎥
⎡

⎣
⎢

1

1

7

⎤

⎦
⎥

, ,
⎡

⎣
⎢

3

0

−4

⎤

⎦
⎥
⎡

⎣
⎢

5

0

10

⎤

⎦
⎥
⎡

⎣
⎢

−7

1

1

⎤

⎦
⎥

, ,

⎡

⎣

⎢⎢

3
5

− 4
5

0

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

4
5
3
5

0

⎤

⎦

⎥⎥
⎡

⎣
⎢

0

0

1

⎤

⎦
⎥
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b. 

c. 

Using the Gram Schmidt process find an orthonormal basis for the following span:

Answer

A solution is

Using the Gram Schmidt process find an orthonormal basis for the following span:

Answer

Then a solution is

The set  is a subspace of . Find an orthonormal basis for this subspace.

Answer

The subspace is of the form

, ,

⎡

⎣

⎢⎢

3
5

0

− 4
5

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

4
5

0
3
5

⎤

⎦

⎥⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥

, ,
⎡

⎣

⎢⎢

3
5

0

− 4
5

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

4
5

0
3
5

⎤

⎦

⎥⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥

 Exercise 4.E. 132

span , ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

2

1

⎤

⎦
⎥
⎡

⎣
⎢

2

−1

3

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

, ,

⎡

⎣

⎢⎢⎢

1
6

6–√
1
3

6–√
1
6

6–√

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

3
10

2–√

− 2
5

2–√

1
2

2–√
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5
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1
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⎤
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5
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1
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V = : 2x+3y−z = 0
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⎡
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⎬
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⎪
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and a basis is . Therefore, an orthonormal basis is

Consider the following scalar equation of a plane.

Find the orthogonal complement of the vector . Also find the point on the plane which is closest to .

Consider the following scalar equation of a plane.

Find the orthogonal complement of the vector . Also find the point on the plane which is closest to .

Let  be a vector and let  be a normal vector for a plane through the origin. Find the equation of the line through the point
determined by  which has direction vector . Show that it intersects the plane at the point determined by . Hint:
The line: . It is in the plane if . Determine . Then substitute in to the equation of the line.

As shown in the above problem, one can find the closest point to~v in a plane through the origin by finding the intersection of
the line through  having direction vector equal to the normal vector to the plane with the plane. If the plane does not pass
through the origin, this will still work to find the point on the plane closest to the point determined by . Here is a relation
which defines a plane

and here is a point: . Find the point on the plane which is closest to this point. Then determine the distance from the
point to the plane by taking the distance between these two points. Hint: Line: . Now require
that it intersect the plane.

⎡

⎣
⎢

x

y

2x+3y
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⎦
⎥

,
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⎣
⎢
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0
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⎡

⎣
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1
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⎦
⎥
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⎡

⎣

⎢⎢

1
5 5–√

0
2
5 5
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⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

− 3
35 5–√ 14

−−√

1
14 5–√ 14

−−√

3
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−−
√

⎤

⎦

⎥⎥⎥
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2x−3y+z = 0

=v ⃗ 
⎡

⎣
⎢

3

4

1

⎤

⎦
⎥ (3, 4, 1)
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x+3y+z = 0

=v ⃗ 
⎡

⎣
⎢

1

2

1

⎤

⎦
⎥ (3, 4, 1)
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v ⃗  n⃗ 

v ⃗  n⃗  −prov ⃗  jn⃗ v ⃗ 

+ tv ⃗  n⃗  ∙ ( + t ) = 0n⃗  v ⃗  n⃗  t

 Exercise 4.E. 138

v ⃗ 

v ⃗ 

2x+y+z = 11

(1, 1, 2)
(x, y, z) = (1, 1, 2) + t(2, 1, 1)
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In general, you have a point  and a scalar equation for a plane  where .
Determine a formula for the closest point on the plane to the given point. Then use this point to get a formula for the distance
from the given point to the plane. Hint: Find the line perpendicular to the plane which goes through the given point: 

. Now require that this point satisfy the equation for the plane to determine .

Find the least squares solution to the following system.

Answer

Solution is: 

You are doing experiments and have obtained the ordered pairs,

Find  and  such that  approximates these four points as well as possible.

Suppose you have several ordered triples, . Describe how to find a polynomial such as

giving the best fit to the given ordered triples.

The wind blows from the South at  kilometers per hour and an airplane which flies at  kilometers per hour in still air is
heading East. Find the velocity of the airplane and its location after two hours.

 Exercise 4.E. 139

( , , )x0 y0 z0 ax+by+cz = d + + > 0a2 b2 c2

(x, y, z) = ( , , ) + t(a, b, c)x0 y0 z0 t
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(0, 1), (1, 2), (2, 3.5), (3, 4)

m b = m +by ⃗  x⃗ 

 Exercise 4.E. 142

( , , )xi yi zi

z = a+bx+cy+dxy+e +fx2 y2

 Exercise 4.E. 143
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The wind blows from the West at  kilometers per hour and an airplane which flies at  kilometers per hour in still air is
heading North East. Find the velocity of the airplane and its position after two hours.

The wind blows from the North at  kilometers per hour. An airplane which flies at  kilometers per hour in still air is
supposed to go to the point whose coordinates are at  In what direction should the airplane fly?

Three forces act on an object. Two are  and  Newtons. Find the third force if the object is not to move.

Three forces act on an object. Two are  and  Newtons. Find the third force if the total force on the object is to be 

A river flows West at the rate of  miles per hour. A boat can move at the rate of  miles per hour. Find the smallest value of 
such that it is not possible for the boat to proceed directly across the river.

The wind blows from West to East at a speed of  miles per hour and an airplane which travels at  miles per hour in still
air is heading North West. What is the velocity of the airplane relative to the ground? What is the component of this velocity in
the direction North?

Answer

The velocity is the sum of two vectors.  The component in the direction of

North is then  and the velocity relative to the ground is

The wind blows from West to East at a speed of  miles per hour and an airplane can travel travels at  miles per hour in
still air. How many degrees West of North should the airplane head in order to travel exactly North?

 Exercise 4.E. 144

30 400

 Exercise 4.E. 145

10 300
(100, 100) .

 Exercise 4.E. 146
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⎣
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⎦
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⎡

⎣
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−3

4

⎤

⎦
⎥
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⎡

⎣
⎢

6

−3

3

⎤

⎦
⎥

⎡

⎣
⎢

2

1

3

⎤

⎦
⎥

.
⎡

⎣
⎢

7

1

3

⎤

⎦
⎥
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b 8 b

 Exercise 4.E. 149

50 400

50 + ( + )= (50 + ) + .i ⃗  300

2√
i ⃗  j ⃗  300

2√
i ⃗  300

2√
j ⃗ 

= 150300

2√
2–√

(50 + ) +
300

2–√
i ⃗ 

300

2–√
j ⃗ 

 Exercise 4.E. 150
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The wind blows from West to East at a speed of  miles per hour and an airplane which travels at  miles per hour in still
air heading somewhat West of North so that, with the wind, it is flying due North. It uses  gallons of gas every hour. If it
has to travel  miles due North, how much gas will it use in flying to its destination?

An airplane is flying due north at  miles per hour but it is not actually going due North because there is a wind which is
pushing the airplane due east at  miles per hour. After one hour, the plane starts flying  East of North. Assuming the
plane starts at  where is it after  hours? Let North be the direction of the positive  axis and let East be the direction of
the positive  axis.

Answer

Velocity of plane for the first hour:  After one hour it is at  Next the

velocity of the plane is  in miles per hour. After two hours it is then at 

City A is located at the origin  while city B is located at  where distances are in miles. An airplane flies at 
miles per hour in still air. This airplane wants to fly from city A to city B but the wind is blowing in the direction of the
positive  axis at a speed of  miles per hour. Find a unit vector such that if the plane heads in this direction, it will end up at
city B having flown the shortest possible distance. How long will it take to get there?

Answer

Wind:  Direction it needs to travel:  Then you need  to have this direction

where  is an appropriate unit vector. Thus you need

Thus  The velocity of the plane relative to the ground is  The speed of the plane relative to the
ground is given by

It has to go a distance of  miles. Therefore, it takes

A certain river is one half mile wide with a current flowing at  miles per hour from East to West. A man swims directly
toward the opposite shore from the South bank of the river at a speed of  miles per hour. How far down the river does he find
himself when he has swam across? How far does he end up traveling?

Answer

Water:  Swimmer:  Speed relative to earth:  It takes him  of an hour to get across. Therefore,
he ends up traveling  miles. He ends up  mile down stream.

 Exercise 4.E. 151

50 400
30.0

600.0
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150.0
40.0 30∘

(0, 0) , 2 y

x
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2
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2
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(0, 0) (300, 500) 250

y 50

[ ] .0 50 (3, 5) .1

34√
250 [ ] +[ ]a b 0 50

[ ]a b
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=
5

3
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5
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5 [ ] .150 250
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− −−−−−−−−−−−

√
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√
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291. 55

 Exercise 4.E. 154
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A certain river is one half mile wide with a current flowing at 2 miles per hour from East to West. A man can swim at  miles
per hour in still water. In what direction should he swim in order to travel directly across the river? What would the answer to
this problem be if the river flowed at 3 miles per hour and the man could swim only at the rate of 2 miles per hour?

Answer

Man:  Water:  Then you need  and so  and hence . The vector is then 

In the second case, he could not do it. You would need to have a unit vector  such that  which is not possible.

Three forces are applied to a point which does not move. Two of the forces are  Newtons and 
Newtons. Find the third force.

The total force acting on an object is to be  Newtons. A force of  Newtons is being applied. What
other force should be applied to achieve the desired total force?

A bird flies from its nest  km in the direction  north of east where it stops to rest on a tree. It then flies  km in the
direction due southeast and lands atop a telephone pole. Place an  coordinate system so that the origin is the bird’s nest, and
the positive  axis points east and the positive  axis points north. Find the displacement vector from the nest to the telephone
pole.

If  is a force and  is a vector, show  where  is the unit vector in the direction of , where 

 and  is the included angle between the two vectors,  and .  is sometimes called the component of
the force,  in the direction, .

Answer

A boy drags a sled for  feet along the ground by pulling on a rope which is  degrees from the horizontal with a force of 
 pounds. How much work does this force do?

Answer

 Exercise 4.E. 155

3

3 [ ]a b [ ]−2 0 3a = 2 a = 2/3 b = /35–√

[ ] .2
3

5√

3

[ ]a b 2a = 3

 Exercise 4.E. 156

2 +2 −6i ⃗  j ⃗  k⃗  8 +8 +3i ⃗  j ⃗  k⃗ 

 Exercise 4.E. 157

4 +2 −3i ⃗  j ⃗  k⃗  −3 −1 +8i ⃗  j ⃗  k⃗ 

 Exercise 4.E. 158

8 π5
6 1

xy

x y

 Exercise 4.E. 159

F ⃗  D⃗  ( )= (∥ ∥ cosθ)proj
D⃗  F ⃗  F ⃗  u⃗  u⃗  D⃗ 

= /∥ ∥u⃗  D⃗  D⃗  θ F ⃗  D⃗  ∥ ∥ cosθF ⃗ 

F ⃗  D⃗ 

( )= = (∥ ∥ cosθ) = (∥ ∥ cosθ)proj
D⃗  F ⃗  ∙F ⃗  D⃗ 

∥ ∥D⃗ 
D⃗ 

∥ ∥D⃗  F ⃗  D⃗ 

∥ ∥D⃗  F ⃗  u⃗ 

 Exercise 4.E. 160
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A girl drags a sled for  feet along the ground by pulling on a rope which is  degrees from the horizontal with a force of 
 pounds. How much work does this force do?

Answer

A large dog drags a sled for  feet along the ground by pulling on a rope which is  degrees from the horizontal with a
force of  pounds. How much work does this force do?

Answer

How much work does it take to slide a crate  meters along a loading dock by pulling on it with a  Newton force at an
angle of  from the horizontal? Express your answer in Newton meters.

Answer

An object moves  meters in the direction of . There are two forces acting on this object, , and 
. Find the total work done on the object by the two forces. Hint: You can take the work done by the

resultant of the two forces or you can add the work done by each force. Why?

Answer

 You can consider the resultant of the two forces because of the properties of the dot product.

An object moves  meters in the direction of . There are two forces acting on this object, , and 
. Find the total work done on the object by the two forces. Hint: You can take the work done by the

resultant of the two forces or you can add the work done by each force. Why?

Answer

 Exercise 4.E. 161

200 30
20

20 cos( )200 = 3464.1π

6

 Exercise 4.E. 162

300 45
20

20 (cos )300 = 4242.6π

4
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200(cos( )) 20 = 3464.1π
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An object moves  meters in the direction of . There are two forces acting on this object, , and 
. Find the total work done on the object by the two forces. Hint: You can take the work done by the

resultant of the two forces or you can add the work done by each force.

Answer

This page titled 4.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

4.12: Applications by Ken Kuttler is licensed CC BY 4.0. Original source: https://lyryx.com/first-course-linear-algebra.
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5.1: Linear Transformations

A. Understand the definition of a linear transformation, and that all linear transformations are determined by matrix
multiplication.

Recall that when we multiply an  matrix by an  column vector, the result is an  column vector. In this section we
will discuss how, through matrix multiplication, an  matrix transforms an  column vector into an  column
vector.

Recall that the  vector given by

is said to belong to , which is the set of all  vectors. In this section, we will discuss transformations of vectors in 

Consider the following example.

Consider the matrix  Show that by matrix multiplication  transforms vectors in  into vectors in .

Solution

First, recall that vectors in  are vectors of size , while vectors in  are of size . If we multiply , which is a 
 matrix, by a  vector, the result will be a  vector. This what we mean when we say that  transforms vectors.

Now, for  in , multiply on the left by the given matrix to obtain the new vector. This product looks like

The resulting product is a  vector which is determined by the choice of  and . Here are some numerical examples.

Here, the vector  in  was transformed by the matrix into the vector  in .

Here is another example:

 Outcomes

m ×n n ×1 m ×1
m ×n n ×1 m ×1

n ×1

=x⃗ 

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

R
n n ×1 .R

n

 Example : A Function Which Transforms Vectors5.1.1

A = [ ] .
1
2

2
1

0
0

A R
3

R
2

R
3 3 ×1 R

2 2 ×1 A

2 ×3 3 ×1 2 ×1 A

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥ R

3

[ ] = [ ]
1
2

2
1

0
0

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +2y

2x +y

2 ×1 x y

[ ] =  [ ]
1
2

2
1

0
0

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

5
4

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥ R

3 [ ]
5
4

R
2

[ ] =  [ ]
1
2

2
1

0
0

⎡

⎣
⎢

10
5

−3

⎤

⎦
⎥

20
25
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The idea is to define a function which takes vectors in  and delivers new vectors in  In this case, that function is
multiplication by the matrix .

Let  denote such a function. The notation  means that the function  transforms vectors in  into vectors in .
The notation  means the transformation  applied to the vector . The above example demonstrated a transformation
achieved by matrix multiplication. In this case, we often write

Therefore,  is the transformation determined by the matrix . In this case we say that  is a matrix transformation.

Recall the property of matrix multiplication that states that for  and  scalars,

In particular, for  an  matrix and  and   vectors in , this formula holds.

In other words, this means that matrix multiplication gives an example of a linear transformation, which we will now define.

Let  be a function, where for each  Then  is a linear transformation if whenever 
are scalars and  and  are vectors in   vectors

Consider the following example.

Let  be a transformation defined by  is defined by

Show that  is a linear transformation.

Solution
By Definition  we need to show that  for all scalars  and vectors . Let

Then

R
3 .R

2

A

T T : ↦R
n

R
m T R

n
R

m

T ( )x⃗  T x⃗ 

( ) = ATA x⃗  x⃗ 

TA A T

k p

A (kB +pC) = kAB +pAC

A m ×n B C, n ×1 R
n

 Definition : Linear Transformation5.1.1

T : ↦R
n

R
m ∈ , T ( ) ∈ .x⃗  R

n x⃗  R
m T k, p

x⃗ 1 x⃗ 2 R
n (n ×1 ),

T (k +p ) = kT ( ) +pT ( )x⃗ 1 x⃗ 2 x⃗ 1 x⃗ 2

 Example : Linear Transformation5.1.2

T T : →R
3

R
2

T = [ ]  for all  ∈
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +y

x −z

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥ R

3

T

5.1.1 T (k +p ) = kT ( ) +pT ( )x⃗ 1 x⃗ 2 x⃗ 1 x⃗ 2 k, p ,x⃗ 1 x⃗ 2

= , =x⃗ 1
⎡

⎣
⎢

x1

y1

z1

⎤

⎦
⎥ x⃗ 2

⎡

⎣
⎢

x2

y2

z2

⎤

⎦
⎥
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Therefore  is a linear transformation.

Two important examples of linear transformations are the zero transformation and identity transformation. The zero transformation
defined by  for all  is an example of a linear transformation. Similarly the identity transformation defined by 

 is also linear. Take the time to prove these using the method demonstrated in Example .

We began this section by discussing matrix transformations, where multiplication by a matrix transforms vectors. These matrix
transformations are in fact linear transformations.

Let  be a transformation defined by . Then  is a linear transformation.

It turns out that every linear transformation can be expressed as a matrix transformation, and thus linear transformations are exactly
the same as matrix transformations.

This page titled 5.1: Linear Transformations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

T (k +p )x⃗ 1 x⃗ 2 = T k +p
⎛

⎝
⎜

⎡

⎣
⎢

x1

y1

z1

⎤

⎦
⎥

⎡

⎣
⎢

x2

y2

z2

⎤

⎦
⎥
⎞

⎠
⎟

= T +
⎛

⎝
⎜
⎡

⎣
⎢

kx1

ky1

kz1

⎤

⎦
⎥

⎡

⎣
⎢

px2

py2

pz2

⎤

⎦
⎥
⎞

⎠
⎟

= T
⎛

⎝
⎜
⎡

⎣
⎢

k +px1 x2

k +py1 y2

k +pz1 z2

⎤

⎦
⎥
⎞

⎠
⎟

= [ ]
(k +p ) +(k +p )x1 x2 y1 y2

(k +p ) −(k +p )x1 x2 z1 z2

= [ ]
(k +k ) +(p +p )x1 y1 x2 y2

(k −k ) +(p −p )x1 z1 x2 z2

= [ ]+[ ]
k +kx1 y1

k −kx1 z1

p +px2 y2

p −px2 z2

= k[ ]+p [ ]
+x1 y1

−x1 z1

+x2 y2

−x2 z2

= kT ( ) +pT ( )x⃗ 1 x⃗ 2

T

T ( ) = 0)x⃗  ( ⃗  x⃗ 

T ( ) = x)x⃗  ( ⃗  5.1.2

 Theorem : Matrix Transformations are Linear Transformations5.1.1

T : ↦R
n

R
m T ( ) = Ax⃗  x⃗  T
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5.2: The Matrix of a Linear Transformation I

A. Find the matrix of a linear transformation with respect to the standard basis.
B. Determine the action of a linear transformation on a vector in .

In the above examples, the action of the linear transformations was to multiply by a matrix. It turns out that this is always the case
for linear transformations. If  is any linear transformation which maps  to  there is always an  matrix  with the
property that

for all .

Let  be a linear transformation. Then we can find a matrix  such that . In this case, we say that 
is determined or induced by the matrix .

Here is why. Suppose  is a linear transformation and you want to find the matrix defined by this linear
transformation as described in . Note that

where  is the  column of , that is the  vector which has zeros in every slot but the  and a 1 in this slot.

Then since  is linear,

The desired matrix is obtained from constructing the  column as  Recall that the set  is called the
standard basis of . Therefore the matrix of  is found by applying  to the standard basis. We state this formally as the
following theorem.

Let  be a linear transformation. Then the matrix  satisfying  is given by

where  is the  column of , and then  is the  column of .

 Outcomes

R
n

T R
n ,R

m m ×n A

T ( ) = Ax⃗  x⃗  (5.2.1)

∈x⃗  R
n

 Theorem : Matrix of a Linear Transformation5.2.1

T : ↦R
n

R
m A T ( ) = Ax⃗  x⃗  T

A

T : ↦R
n

R
m

(5.2.1)

= = + +⋯ + =x⃗ 

⎡

⎣

⎢
⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥
⎥⎥⎥

x1

⎡

⎣

⎢
⎢⎢⎢

1
0

⋮
0

⎤

⎦

⎥
⎥⎥⎥

x2

⎡

⎣

⎢
⎢⎢⎢

0
1

⋮
0

⎤

⎦

⎥
⎥⎥⎥

xn

⎡

⎣

⎢
⎢⎢⎢

0
0

⋮
1

⎤

⎦

⎥
⎥⎥⎥

∑
i=1

n

xie ⃗ i

e ⃗ i ith In n ×1 ith

T

T ( )x⃗  = T ( )∑
i=1

n

xi e ⃗ i

=
⎡

⎣
⎢

|
T ( )e ⃗ 1

|
⋯

|
T ( )e ⃗ n

|

⎤

⎦
⎥
⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥

= A

⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥

ith T ( ) .e ⃗ i { , , ⋯ , }e ⃗ 1 e ⃗ 2 e ⃗ n
R

n T T

 Theorem : Matrix of a Linear Transformation5.2.2

T : ↦R
n

R
m A T ( ) = Ax⃗  x⃗ 

A =
⎡

⎣
⎢

|
T ( )e ⃗ 1

|
⋯

|
T ( )e ⃗ n

|

⎤

⎦
⎥

e ⃗ i ith In T ( )e ⃗ i ith A
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The following Corollary is an essential result.

A transformation  is a linear transformation if and only if it is a matrix transformation.

Consider the following example.

Suppose  is a linear transformation,  where

Find the matrix  of  such that  for all .

Solution
By Theorem  we construct  as follows:

In this case,  will be a  matrix, so we need to find  and . Luckily, we have been given these
values so we can fill in  as needed, using these vectors as the columns of . Hence,

In this example, we were given the resulting vectors of  and . Constructing the matrix  was simple, as we
could simply use these vectors as the columns of . The next example shows how to find  when we are not given the  so
clearly.

Suppose  is a linear transformation,  and

Find the matrix  of  such that  for all .

Solution
By Theorem  to find this matrix, we need to determine the action of  on  and . In Example 9.9.2, we were given
these resulting vectors. However, in this example, we have been given  of two different vectors. How can we find out the
action of  on  and ? In particular for , suppose there exist  and  such that

Then, since  is linear,

 Corollary : Matrix and Linear Transformation5.2.1

T : →R
n

R
m

 Example : The Matrix of a Linear Transformation5.2.1

T T : →R
3

R
2

T = [ ] ,  T = [ ] ,  T = [ ]
⎡

⎣
⎢

1
0
0

⎤

⎦
⎥

1
2

⎡

⎣
⎢

0
1
0

⎤

⎦
⎥

9
−3

⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

1
1

A T T ( ) = Ax⃗  x⃗  x⃗ 

5.2.2 A

A =
⎡

⎣
⎢

|
T ( )e ⃗ 1

|

⋯
|

T ( )e ⃗ n
|

⎤

⎦
⎥

A 2 ×3 T ( ) , T ( ) ,e ⃗ 1 e ⃗ 2 T ( )e ⃗ 3
A A

A = [ ]
1
2

9
−3

1
1

T ( ) , T ( ) ,e ⃗ 1 e ⃗ 2 T ( )e ⃗ 3 A

A A T ( )e ⃗ i

 Example : The Matrix of Linear Transformation: Inconveniently Defined5.2.2

T T : →R
2

R
2

T [ ] = [ ] ,  T [ ] = [ ]
1
1

1
2

0
−1

3
2

A T T ( ) = Ax⃗  x⃗  x⃗ 

5.2.2 T e ⃗ 1 e ⃗ 2
T

T e ⃗ 1 e ⃗ 2 e ⃗ 1 x y

[ ] = x [ ]+y [ ]
1
0

1
1

0
−1

(5.2.2)

T
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Substituting in values, this sum becomes

Therefore, if we know the values of  and  which satisfy , we can substitute these into equation . By doing so,
we find  which is the first column of the matrix .

We proceed to find  and . We do so by solving , which can be done by solving the system

We see that  and  is the solution to this system. Substituting these values into equation , we have

Therefore  is the first column of .

Computing the second column is done in the same way, and is left as an exercise.

The resulting matrix  is given by

This example illustrates a very long procedure for finding the matrix of . While this method is reliable and will always result in
the correct matrix , the following procedure provides an alternative method.

Suppose  is a linear transformation. Suppose there exist vectors  in  such that 
exists, and

Then the matrix of  must be of the form

We will illustrate this procedure in the following example. You may also find it useful to work through Example  using this
procedure.

Suppose  is a linear transformation and

Find the matrix of this linear transformation.

Solution

T [ ] = xT [ ]+yT [ ]
1
0

1
1

0
−1

T [ ] = x [ ]+y [ ]
1
0

1
2

3
2

(5.2.3)

x y (5.2.2) (5.2.3)
T ( )e ⃗ 1 A

x y (5.2.2)

x = 1
x −y = 0

x = 1 y = 1 (5.2.3)

T [ ] = 1 [ ]+1 [ ] = [ ]+[ ] = [ ]
1
0

1
2

3
2

1
2

3
2

4
4

[ ]
4
4

A

A

A = [ ]
4
4

−3
−2

A

A

 Procedure : Finding the Matrix of Inconveniently Defined Linear Transformation5.2.1

T : →R
n

R
m { , ⋯ , }a⃗ 1 a⃗ n R

n [ ]a⃗ 1 ⋯ a⃗ n
−1

T ( ) =a⃗ i b ⃗ 
i

T

[ ]b ⃗ 
1 ⋯ b ⃗ 

n
[ ]a⃗ 1 ⋯ a⃗ n

−1

5.2.2

 Example : Matrix of a Linear Transformation Given Inconveniently5.2.3

T : →R
3

R
3

T = , T = , T =
⎡

⎣
⎢

1
3
1

⎤

⎦
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣
⎢

2
1
3

⎤

⎦
⎥

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

⎡

⎣
⎢

0
0
1

⎤

⎦
⎥
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By Procedure ,  and 

Then, Procedure  claims that the matrix of  is

Indeed you can first verify that  for the 3 vectors above:

But more generally  for any . To see this, let  and then using linearity of :

Recall the dot product discussed earlier. Consider the map   which takes a vector a transforms it to its projection
onto a given vector . It turns out that this map is linear, a result which follows from the properties of the dot product. This is
shown as follows.

Consider the following example.

Let  and let  be the projection map  defined by

for any .

1. Does this transformation come from multiplication by a matrix?
2. If so, what is the matrix?

Solution
1. First, we have just seen that  is linear. Therefore by Theorem , we can find a matrix  such that 

.
2. The columns of the matrix for  are defined above as . It follows that  gives the  column of the

desired matrix. Therefore, we need to find

5.2.1 A =
⎡

⎣
⎢

1
3
1

0
1
1

1
1
0

⎤

⎦
⎥

−1

B =
⎡

⎣
⎢

0
1
1

2
1
3

0
0
1

⎤

⎦
⎥

5.2.1 T

C = B =A−1
⎡

⎣
⎢

2
0
4

−2
0

−3

4
1
6

⎤

⎦
⎥

T ( ) = Cx⃗  x⃗ 

= ,   =
⎡

⎣
⎢

2
0
4

−2
0

−3

4
1
6

⎤

⎦
⎥
⎡

⎣
⎢

1
3
1

⎤

⎦
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣
⎢

2
0
4

−2
0

−3

4
1
6

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣
⎢

2
1
3

⎤

⎦
⎥

=
⎡

⎣
⎢

2
0
4

−2
0

−3

4
1
6

⎤

⎦
⎥
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

T ( ) = Cx⃗  x⃗  x⃗  =y ⃗  A−1 x⃗  T

T ( ) = T (A ) = T ( ) =∑ T ( )∑ = B = B = Cx⃗  y ⃗  ∑
i

y ⃗ ia⃗ i y ⃗ i a⃗ i y ⃗ ib ⃗ 
i y ⃗  A−1 x⃗  x⃗ 

v ⃗ ↦ ( )proju ⃗  v ⃗ 
u⃗ 

(k +p )proju ⃗  v ⃗  w⃗  =( )
(k +p ) ∙v ⃗  w⃗  u⃗ 

∙u⃗  u⃗ 
u⃗ 

= k( ) +p(0.05in )
∙v ⃗  u⃗ 

∙u⃗  u⃗ 
u⃗ 

∙w⃗  u⃗ 

∙u⃗  u⃗ 
u⃗ 

= k ( ) +p ( )proju ⃗  v ⃗  proju ⃗  w⃗ 

 Example : Matrix of a Projection Map5.2.4

=u⃗ 
⎡

⎣
⎢

1
2
3

⎤

⎦
⎥ T T : ↦R

3
R

3

T ( ) = ( )v ⃗  proju ⃗  v ⃗ 

∈v ⃗  R
3

T ( ) = ( )v ⃗  proju ⃗  v ⃗  5.2.1 A

T ( ) = Ax⃗  x⃗ 
T T ( )e ⃗ i T ( ) = ( )e ⃗ i proju ⃗  e ⃗ i ith
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For the given vector , this implies the columns of the desired matrix are

which you can verify. Hence the matrix of  is

This page titled 5.2: The Matrix of a Linear Transformation I is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

( ) =( )proju ⃗  e ⃗ i
∙e ⃗ i u⃗ 

∙u⃗  u⃗ 
u⃗ 

u⃗ 

, ,
1

14

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

2
14

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

3
14

⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

T

1
14

⎡

⎣
⎢

1
2
3

2
4
6

3
6
9

⎤

⎦
⎥
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5.3: Properties of Linear Transformations

A. Use properties of linear transformations to solve problems.
B. Find the composite of transformations and the inverse of a transformation.

Let  be a linear transformation. Then there are some important properties of  which will be examined in this
section. Consider the following theorem.

Properties of Linear Transformationsproperties Let  be a linear transformation and let .

 preserves the zero vector.

 preserves the negative of a vector:

 preserves linear combinations:

These properties are useful in determining the action of a transformation on a given vector. Consider the following example.

Let  be a linear transformation such that

Find .

Solution

Using the third property in Theorem 9.6.1, we can find  by writing  as a linear combination of  and 

.

Therefore we want to find  such that

 Outcomes

T : ↦R
n

R
m T

 Theorem : Properties of Linear Transformations5.3.1

T : ↦R
n

R
m ∈x⃗  R

n

T

T (0 ) = 0T ( ).  Hence T ( ) =x⃗  x⃗  0⃗  0⃗ 

T

T ((−1) ) = (−1)T ( ).  Hence T (− ) = −T ( ).x⃗  x⃗  x⃗  x⃗ 

T

Let  , . . . , ∈  and  , . . . , ∈ R.x⃗ 1 x⃗ k R
n a1 ak

Then if  = + +. . . + , it follows that y ⃗  a1x⃗ 1 a2x⃗ 2 akx⃗ k

T ( ) = T ( + +. . . + ) = T ( ) + T ( )+. . . + T ( ).y ⃗  a1x⃗ 1 a2x⃗ 2 akx⃗ k a1 x⃗ 1 a2 x⃗ 2 ak x⃗ k

 Example : Linear Combination5.3.1

T : ↦R
3

R
4

T = , T =
⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

4

4

0

−2

⎤

⎦

⎥
⎥⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

4

5

−1

5

⎤

⎦

⎥
⎥⎥

T
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

T
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥

a, b ∈ R
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The necessary augmented matrix and resulting reduced row-echelon form are given by:

Hence  and

Now, using the third property above, we have

Therefore, .

Suppose two linear transformations act in the same way on  for all vectors. Then we say that these transformations are equal.

Let  and  be linear transformations from  to . Then  if and only if for every ,

Suppose two linear transformations act on the same vector , first the transformation  and then a second transformation given by 
. We can find the composite transformation that results from applying both transformations.

Let  and  be linear transformations. Then the composite of  and  is

The action of  is given by

= a +b
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥

→ ⋯ →
⎡

⎣
⎢⎢

1

3

1

4

0

5

−7

3

−9

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

1

−2

0

⎤

⎦
⎥⎥

a = 1, b = −2

= 1 +(−2)
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥

T
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥ = T 1 +(−2)

⎛

⎝
⎜

⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥
⎞

⎠
⎟

= 1T −2T
⎡

⎣
⎢

1

3

1

⎤

⎦
⎥

⎡

⎣
⎢

4

0

5

⎤

⎦
⎥

= −2

⎡

⎣

⎢⎢⎢

4

4

0

−2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

4

5

−1

5

⎤

⎦

⎥⎥⎥

=

⎡

⎣

⎢⎢
⎢

−4

−6

2

−12

⎤

⎦

⎥⎥
⎥

T =
⎡

⎣
⎢

−7

3

−9

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

−4

−6

2

−12

⎤

⎦

⎥⎥⎥

x⃗ 

 Definition : Equal Transformations5.3.1

S T R
n

R
m S = T ∈x⃗  R

n

S ( ) = T ( )x⃗  x⃗ 

x⃗  T

S

 Definition : Composition of Linear Transformations5.3.2

T : ↦R
k

R
n S : ↦R

n
R

m S T

S ∘ T : ↦R
k

R
m

S ∘ T
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Notice that the resulting vector will be in . Be careful to observe the order of transformations. We write  but apply the
transformation  first, followed by .

Let  and  be linear transformations such that  is induced by the matrix  and  is induced by the
matrix . Then  is a linear transformation which is induced by the matrix .

Consider the following example.

Let  be a linear transformation induced by the matrix

and  a linear transformation induced by the matrix

Find the matrix of the composite transformation . Then, find  for .

Solution
By Theorem , the matrix of  is given by .

To find , multiply  by  as follows

To check, first determine :

Then, compute  as follows:

Consider a composite transformation , and suppose that this transformation acted such that . That is, the
transformation  took the vector  and returned it to . In this case,  and  are inverses of each other. Consider the following
definition.

Let  and  be linear transformations. Suppose that for each ,

(S ∘ T )( ) = S(T ( )) for all ∈x⃗  x⃗  x⃗  R
k

R
m S ∘ T

T S

 Theorem : Composition of Transformations5.3.2

T : ↦R
k

R
n S : ↦R

n
R

m T A S

B S ∘ T BA

 Example : Composition of Transformations5.3.2

T

A = [ ]
1

2

2

0

S

B = [ ]
2

0

3

1

S ∘ T (S ∘ T )( )x⃗  = [ ]x⃗ 
1

4

5.3.2 S ∘ T BA

BA = [ ][ ] = [ ]
2

0

3

1

1

2

2

0

8

2

4

0

(S ∘ T )( )x⃗  x⃗  BA

[ ][ ] = [ ]
8

2

4

0

1

4

24

2

T ( )x⃗ 

[ ][ ] = [ ]
1

2

2

0

1

4

9

2

S(T ( ))x⃗ 

[ ][ ] = [ ]
2

0

3

1

9

2

24

2

S ∘ T (S ∘ T )( ) =x⃗  x⃗ 

S T ( )x⃗  x⃗  S T

 Definition : Inverse of a Transformation5.3.3

T : ↦R
n

R
n S : ↦R

n
R

n ∈x⃗  R
n

(S ∘ T )( ) =x⃗  x⃗ 
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and

Then,  is called an inverse of  and  is called an inverse of . Geometrically, they reverse the action of each other.

The following theorem is crucial, as it claims that the above inverse transformations are unique.

Let  be a linear transformation induced by the matrix . Then  has an inverse transformation if and only if the
matrix  is invertible. In this case, the inverse transformation is unique and denoted .  is induced by the
matrix .

Consider the following example.

Let  be a linear transformation induced by the matrix

Show that  exists and find the matrix  which it is induced by.

Solution
Since the matrix  is invertible, it follows that the transformation  is invertible. Therefore,  exists.

You can verify that  is given by:

Therefore the linear transformation  is induced by the matrix .

This page titled 5.3: Properties of Linear Transformations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

(T ∘ S)( ) =x⃗  x⃗ 

S T T S

 Theorem : Inverse of a Transformation5.3.3

T : ↦R
n

R
n A T

A : ↦T −1
R

n
R

n T −1

A−1

 Example : Inverse of a Transformation5.3.3

T : ↦R
2

R
2

A = [ ]
2

3

3

4

T −1 B

A T T −1

A−1

= [ ]A−1 −4

3

3

−2

T −1 A−1
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5.4: Special Linear Transformations in R²

A. Find the matrix of rotations and reflections in  and determine the action of each on a vector in .

In this section, we will examine some special examples of linear transformations in  including rotations and reflections. We will
use the geometric descriptions of vector addition and scalar multiplication discussed earlier to show that a rotation of vectors
through an angle and reflection of a vector across a line are examples of linear transformations.

More generally, denote a transformation given by a rotation by . Why is such a transformation linear? Consider the following
picture which illustrates a rotation. Let  denote vectors.

Figure 

Let’s consider how to obtain . Simply, you add  and . Here is why. If you add  to  you get the
diagonal of the parallelogram determined by  and , as this action is our usual vector addition. Now, suppose we first add 

 and , and then apply the transformation  to . Hence, we find . As shown in the diagram, this will result in the
same vector. In other words, .

This is because the rotation preserves all angles between the vectors as well as their lengths. In particular, it preserves the shape of
this parallelogram. Thus both  and  give the same vector. It follows that  distributes across addition of the
vectors of .

Similarly, if  is a scalar, it follows that . Thus rotations are an example of a linear transformation by Definition
9.6.1.

The following theorem gives the matrix of a linear transformation which rotates all vectors through an angle of .

Let  be a linear transformation given by rotating vectors through an angle of . Then the matrix  of  is
given by

Proof

Let  and  These identify the geometric vectors which point along the positive  axis and positive 

axis as shown.

 Outcomes

R
2

R
2

R
2

T

,u⃗  v ⃗ 

5.4.1

T [ + ]u⃗  v ⃗  T ( )u⃗  T ( )v ⃗  T ( )u⃗  T ( )v ⃗ 

T ( )u⃗  T ( )v ⃗ 

u⃗  v ⃗  T +u⃗  v ⃗  T ( + )u⃗  v ⃗ 

T ( + ) = T ( ) +T ( )u⃗  v ⃗  u⃗  v ⃗ 

T [ ] +T [ ]u⃗  v ⃗  T [ + ]u⃗  v ⃗  T

R
2

k T [k ] = kT [ ]u⃗  u⃗ 

θ

 Theorem : Rotation5.4.1

: →Rθ R
2

R
2 θ A Rθ

[ ]
cos[θ]

sin[θ]

−sin[θ]

cos[θ]

= [ ]e ⃗ 1
1

0
= [ ] .e ⃗ 2

0

1
x y
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Figure 

From Theorem 5.2.2, we need to find  and  and use these as the columns of the matrix  of . We can use 
 of the angle  to find the coordinates of  as shown in the above picture. The coordinates of  also

follow from trigonometry. Thus

Therefore, from Theorem 5.2.2,

We can also prove this algebraically without the use of the above picture. The definition of  is as the
coordinates of the point of . Now the point of the vector  is exactly  further along the unit circle from the
point of , and therefore after rotation through an angle of  the coordinates  and  of the point of  are given by

Consider the following example.

Let  denote rotation through . Find the matrix of . Then, find  where .

Solution
By Theorem , the matrix of  is given by

To find , we multiply the matrix of  by  as follows

We now look at an example of a linear transformation involving two angles.

5.4.2

( )Rθ e ⃗ 1 ( ),Rθ e ⃗ 2 A T

cos, sin θ ( )Rθ e ⃗ 1 ( )Rθ e ⃗ 2

( ) = [ ] , ( ) = [ ]Rθ e ⃗ 1
cos θ

sinθ
Rθ e ⃗ 2

−sinθ

cos θ

A = [ ]
cos θ

sinθ

−sinθ

cos θ

[cos[θ], sin[θ]]
( )Rθ e ⃗ 1 e ⃗ 2 π/2

e ⃗ 1 θ x y ( )Rθ e ⃗ 2

[x, y] = [cos[θ +π/2], sin[θ +π/2]] = [−sinθ, cos θ]

 Example : Rotation in 5.4.1 R
2

: →R π

2
R

2
R

2 π/2 R π

2
( )R π

2
x⃗  = [ ]x⃗ 

1

−2

5.4.1 R π

2

[ ] = [ ] = [ ]
cos[θ]

sin[θ]

−sin[θ]

cos[θ]

cos[π/2]

sin[π/2]

−sin[π/2]

cos[π/2]

0

1

−1

0

( )R π

2
x⃗  R π

2
x⃗ 

[ ][ ] = [ ]
0

1

−1

0

1

−2

2

1
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Find the matrix of the linear transformation which is obtained by first rotating all vectors through an angle of  and then
through an angle  Hence the linear transformation rotates all vectors through an angle of 

Solution
Let  denote the linear transformation which rotates every vector through an angle of  Then to obtain  we first
apply  and then  where  is the linear transformation which rotates through an angle of  and  is the linear
transformation which rotates through an angle of . Denoting the corresponding matrices by ,  and  it follows that
for every 

Notice the order of the matrices here!

Consequently, you must have

The usual matrix multiplication yields

Don’t these look familiar? They are the usual trigonometric identities for the sum of two angles derived here using linear
algebra concepts.

Here we have focused on rotations in two dimensions. However, you can consider rotations and other geometric concepts in any
number of dimensions. This is one of the major advantages of linear algebra. You can break down a difficult geometrical procedure
into small steps, each corresponding to multiplication by an appropriate matrix. Then by multiplying the matrices, you can obtain a
single matrix which can give you numerical information on the results of applying the given sequence of simple procedures.

Linear transformations which reflect vectors across a line are a second important type of transformations in . Consider the
following theorem.

Let  be a linear transformation given by reflecting vectors over the line . Then the matrix of  is
given by

Consider the following example.

Let  denote reflection over the line . Then  is a linear transformation. Find the matrix of . Then,

find  where .

 Example : The Rotation Matrix of the Sum of Two Angles5.4.2

ϕ

θ. θ +ϕ.

Rθ+ϕ θ +ϕ. ,Rθ+ϕ

Rϕ Rθ Rϕ ϕ Rθ

θ Aθ+ϕ ,Aϕ ,Aθ

u⃗ 

[ ] = = = [ ]Rθ+ϕ u⃗  Aθ+ϕ u⃗  AθAϕu⃗  RθRϕ u⃗ 

Aθ+ϕ = [ ]
cos[θ +ϕ]

sin[θ +ϕ]

−sin[θ +ϕ]

cos[θ +ϕ]

= [ ][ ] =
cos θ

sinθ

−sinθ

cos θ

cos ϕ

sinϕ

−sinϕ

cos ϕ
AθAϕ

Aθ+ϕ = [ ]
cos[θ +ϕ]

sin[θ +ϕ]

−sin[θ +ϕ]

cos[θ +ϕ]

= [ ]
cos θ cos ϕ −sinθ sinϕ

sinθ cos ϕ +cos θ sinϕ

−cos θ sinϕ −sinθ cos ϕ

cos θ cos ϕ −sinθ sinϕ

= AθAϕ

R
2

 Theorem : Reflection5.4.2

: →Qm R
2

R
2 = my ⃗  x⃗  Qm

[ ]
1

1 +m2

1 −m2

2m

2m

−1m2

 Example : Reflection in 5.4.3 R
2

: →Q2 R
2

R
2 = 2y ⃗  x⃗  Q2 Q2

( )Q2 x⃗  = [ ]x⃗ 
1

−2
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Solution
By Theorem , the matrix of  is given by

To find  we multiply  by the matrix of  as follows:

Consider the following example which incorporates a reflection as well as a rotation of vectors.

Find the matrix of the linear transformation which is obtained by first rotating all vectors through an angle of  and then
reflecting through the  axis.

Solution
By Theorem , the matrix of the transformation which involves rotating through an angle of  is

Reflecting across the  axis is the same action as reflecting vectors over the line  with . By Theorem , the
matrix for the transformation which reflects all vectors through the  axis is

Therefore, the matrix of the linear transformation which first rotates through  and then reflects through the  axis is given
by

This page titled 5.4: Special Linear Transformations in R² is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

5.4.2 Q2

[ ] = [ ] = [ ]
1

1 +m2

1 −m2

2m

2m

−1m2

1

1 +(2)2

1 −(2)2

2(2)

2(2)

(2 −1)2

1

5

−3

8

8

3

( )Q2 x⃗  x⃗  Q2

[ ][ ] = [ ]
1

5

−3

8

8

3

1

−2

− 19
5
2
5

 Example : Rotation Followed by a Reflection5.4.4

π/6
x

5.4.1 π/6

[ ] = [ ]
cos[π/6]

sin[π/6]

−sin[π/6]

cos[π/6]

1
2

3
–

√
1
2

− 1
2

1
2

3
–

√

x = my ⃗  x⃗  m = 0 5.4.2
x

[ ] = [ ] = [ ]
1

1 +m2

1 −m2

2m

2m

−1m2

1

1 +(0)2

1 −(0)2

2(0)

2(0)

(0 −1)2

1

0

0

−1

π/6 x

[ ][ ] =  [ ]
1

0

0

−1

1
2

3
–

√
1
2

− 1
2

1
2

3
–

√

1
2

3
–

√

− 1
2

− 1
2

− 1
2

3
–

√
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5.5: One-to-One and Onto Transformations

A. Determine if a linear transformation is onto or one to one.

Let  be a linear transformation. We define the range or image of  as the set of vectors of  which are of the form
 (equivalently, ) for some . It is common to write , , or  to denote these vectors.

Let  be an  matrix where  denote the columns of  Then, for a vector  in ,

Therefore,  is the collection of all linear combinations of these products.

Proof

This follows from the definition of matrix multiplication.

This section is devoted to studying two important characterizations of linear transformations, called one to one and onto. We define
them now.

Suppose  and  are vectors in . A linear transformation  is called one to one (often written as  if
whenever  it follows that :

Equivalently, if  then . Thus,  is one to one if it never takes two different vectors to the same
vector.

The second important characterization is called onto.

Let  be a linear transformation. Then  is called onto if whenever  there exists  such that 

We often call a linear transformation which is one-to-one an injection. Similarly, a linear transformation which is onto is often
called a surjection.

The following proposition is an important result.

Let  be a linear transformation. Then  is one to one if and only if  implies .

Proof

We need to prove two things here. First, we will prove that if  is one to one, then  implies that . Second,
we will show that if  implies that , then it follows that  is one to one. Recall that a linear transformation

 Outcomes

T : ↦R
n

R
m T R

m

T ( )x⃗  Ax⃗  ∈x⃗  R
n TRn T ( )R

n Im (T )

 Lemma : Range of a Matrix Transformation5.5.1

A m×n , ⋯ ,A1 An A. =x⃗ 
⎡

⎣

⎢⎢

x1

⋮
xn

⎤

⎦

⎥⎥ R
n

A =x⃗  ∑
k=1

n

xkAk

A ( )R
n

 Definition : One to One5.5.1

x⃗ 1 x⃗ 2 R
n T : ↦R

n
R
m 1 −1)

≠x⃗ 1 x⃗ 2

T ( ) ≠ T ( )x⃗ 1 x⃗ 2

T ( ) = T ( ) ,x⃗ 1 x⃗ 2 =x⃗ 1 x⃗ 2 T

 Definition : Onto5.5.2

T : ↦R
n

R
m T ∈x⃗ 2 R

m ∈x⃗ 1 R
n

T ( ) = .x⃗ 1 x⃗ 2

 Proposition : One to One5.5.1

T : ↦R
n

R
m T T ( ) =x⃗  0⃗  =x⃗  0⃗ 

T T ( ) =x⃗  0⃗  =x⃗  0⃗ 

T ( ) =x⃗  0⃗  =x⃗  0⃗  T

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14528?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/05%3A_Linear_Transformations/5.05%3A_One-to-One_and_Onto_Transformations


5.5.2 https://math.libretexts.org/@go/page/14528

has the property that .

Suppose first that  is one to one and consider .

and so, adding the additive inverse of  to both sides, one sees that . If  it must be the case that 
 because it was just shown that  and  is assumed to be one to one.

Now assume that if  then it follows that  If  then

which shows that . In other words, , and  is one to one.

Note that this proposition says that if  then  is one to one if and only if whenever

it follows that each scalar .

We will now take a look at an example of a one to one and onto linear transformation.

Suppose

Then,  is a linear transformation. Is  onto? Is it one to one?

Solution
Recall that because  can be expressed as matrix multiplication, we know that  is a linear transformation. We will start by

looking at onto. So suppose  Does there exist  such that  If so, then since  is an

arbitrary vector in  it will follow that  is onto.

This question is familiar to you. It is asking whether there is a solution to the equation

This is the same thing as asking for a solution to the following system of equations.

Set up the augmented matrix and row reduce.

You can see from this point that the system has a solution. Therefore, we have shown that for any , there is a  such that

. Thus  is onto.

T ( ) =0⃗  0⃗ 

T T ( )0⃗ 

T ( ) = T ( + )= T ( ) +T ( )0⃗  0⃗  0⃗  0⃗  0⃗ 

T ( )0⃗  T ( ) =0⃗  0⃗  T ( ) =x⃗  0⃗ 

=x⃗  0⃗  T ( ) =0⃗  0⃗  T

T ( ) = ,x⃗  0⃗  = .x⃗  0⃗  T ( ) = T ( ),v ⃗  u⃗ 

T ( ) −T ( ) = T ( − ) =v ⃗  u⃗  v ⃗  u⃗  0⃗ 

− = 0v ⃗  u⃗  =v ⃗  u⃗  T

A = [ ]A1 ⋯ An A

0 =∑
k=1

n

ckAk

= 0ck

 Example : A One to One and Onto Linear Transformation5.5.1

T [ ] = [ ][ ]
x

y

1
1

1
2

x

y

T : →R
2

R
2 T

T T

[ ] ∈ .
a

b
R

2 [ ] ∈
x

y
R

2 T [ ] = [ ]?
x

y

a

b
[ ]
a

b

,R
2 T

[ ][ ] = [ ]
1
1

1
2

x

y

a

b

x+y = a

x+2y = b

[ ] → [ ]
1
1

1
2

a

b

1
0

0
1

2a−b

b−a
(5.5.1)

a, b [ ]
x

y

T [ ] = [ ]
x

y

a

b
T
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Now we want to know if  is one to one. By Proposition  it is enough to show that  implies . Consider the
system  given by:

This is the same as the system given by

We need to show that the solution to this system is  and . By setting up the augmented matrix and row reducing, we
end up with

This tells us that  and . Returning to the original system, this says that if

then

In other words,  implies that . By Proposition ,  is one to one, and so  is also one to one.

We also could have seen that  is one to one from our above solution for onto. By looking at the matrix given by , you
can see that there is a unique solution given by  and . Therefore, there is only one vector, specifically 

 such that . Hence by Definition ,  is one to one.

Let  be a linear transformation defined by

Prove that  is onto but not one to one.

Solution
You can prove that  is in fact linear.

To show that  is onto, let  be an arbitrary vector in . Taking the vector  we have

T 5.5.1 A = 0x⃗  = 0x⃗ 
A = 0x⃗ 

[ ][ ] = [ ]
1
1

1
2

x

y

0
0

x+y = 0
x+2y = 0

x = 0 y = 0

[ ]
1
0

0
1

0
0

x = 0 y = 0

[ ][ ] = [ ]
1
1

1
2

x

y

0
0

[ ] = [ ]
x

y

0
0

A = 0x⃗  = 0x⃗  5.5.1 A T

T (5.5.1)
x = 2a−b y = b−a

[ ] = [ ]
x

y

2a−b

b−a
T [ ] = [ ]

x

y

a

b
5.5.1 T

 Example : An Onto Transformation5.5.2

T : ↦R
4

R
2

T = [ ]  for all  ∈

⎡

⎣

⎢⎢
⎢

a

b

c

d

⎤

⎦

⎥⎥
⎥

a+d

b+c

⎡

⎣

⎢⎢
⎢

a

b

c

d

⎤

⎦

⎥⎥
⎥

R
4

T

T

T [ ]
x

y
R

2 ∈

⎡

⎣

⎢⎢
⎢

x

y

0
0

⎤

⎦

⎥⎥
⎥

R
4

T = [ ] = [ ]

⎡

⎣

⎢⎢⎢

x

y

0
0

⎤

⎦

⎥⎥⎥
x+0
y+0

x

y
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This shows that  is onto.

By Proposition   is one to one if and only if  implies that . Observe that

There exists a nonzero vector  in  such that . It follows that  is not one to one.

The above examples demonstrate a method to determine if a linear transformation  is one to one or onto. It turns out that the
matrix  of  can provide this information.

Let  be a linear transformation induced by the  matrix . Then  is one to one if and only if the rank of 
 is .  is onto if and only if the rank of  is .

Consider Example . Above we showed that  was onto but not one to one. We can now use this theorem to determine this fact
about .

Let  be a linear transformation defined by

Prove that  is onto but not one to one.

Solution
Using Theorem  we can show that  is onto but not one to one from the matrix of . Recall that to find the matrix  of 

, we apply  to each of the standard basis vectors  of . The result is the  matrix A given by

Fortunately, this matrix is already in reduced row-echelon form. The rank of  is . Therefore by the above theorem  is onto
but not one to one.

Recall that if  and  are linear transformations, we can discuss their composite denoted . The following examines what
happens if both  and  are onto.

Let  and  be linear transformations. If  and  are onto, then  is onto.

Solution
Let . Since  is onto, there exists a vector  such that . Furthermore, since  is onto, there exists a
vector  such that . Thus

T

5.5.1T T ( ) =x⃗  0⃗  =x⃗  0⃗ 

T = [ ] = [ ]

⎡

⎣

⎢
⎢⎢

1
0
0

−1

⎤

⎦

⎥
⎥⎥

1 +−1
0 +0

0
0

x⃗  R
4 T ( ) =x⃗  0⃗  T

T

A T

 Theorem : Matrix of a One to One or Onto Transformation5.5.1

T : ↦R
n

R
m m×n A T

A n T A m

5.5.2 T

T

 Example : An Onto Transformation5.5.3

T : ↦R
4

R
2

T = [ ]  for all  ∈

⎡

⎣

⎢⎢⎢

a

b

c

d

⎤

⎦

⎥⎥⎥
a+d

b+c

⎡

⎣

⎢⎢⎢

a

b

c

d

⎤

⎦

⎥⎥⎥
R

4

T

5.5.1 T T A

T T e ⃗ i R
4 2 ×4

A = [ ]
1
0

0
1

0
1

1
0

A 2 T

S T S ∘ T
S T

 Example : Composite of Onto Transformations5.5.4

T : ↦R
k

R
n S : ↦R

n
R
m T S S ∘ T

∈z ⃗  R
m S ∈y ⃗  R

n S( ) =y ⃗  z ⃗  T

∈x⃗  R
k T ( ) =x⃗  y ⃗ 
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showing that for each  there exists and  such that . Therefore,  is onto.

The next example shows the same concept with regards to one-to-one transformations.

Let  and  be linear transformations. Prove that if  and  are one to one, then  is one-to-one.

Solution

To prove that  is one to one, we need to show that if  it follows that . Suppose that .
Since  is one to one, it follows that . Similarly, since  is one to one, it follows that . Hence  is one to
one.

This page titled 5.5: One-to-One and Onto Transformations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

= S( ) = S(T ( )) = (ST )( ),z ⃗  y ⃗  x⃗  x⃗ 

∈z ⃗  R
m ∈x⃗  R

k (ST )( ) =x⃗  z ⃗  S ∘ T

 Example : Composite of One to One Transformations5.5.5

T : ↦R
k

R
n S : ↦R

n
R
m T S S ∘ T

S ∘ T S(T ( )) =v ⃗  0⃗  =v ⃗  0⃗  S(T ( )) =v ⃗  0⃗ 

S T ( ) =v ⃗  0⃗  T =v ⃗  0⃗  S ∘ T
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5.6: Isomorphisms

A. Determine if a linear transformation is an isomorphism.
B. Determine if two subspaces of  are isomorphic.

Recall the definition of a linear transformation. Let  and  be two subspaces of  and  respectively. A mapping 
 is called a linear transformation or linear map if it preserves the algebraic operations of addition and scalar

multiplication. Specifically, if  are scalars and  are vectors,

Consider the following important definition.

A linear map  is called an isomorphism if the following two conditions are satisfied.

 is one to one. That is, if  then 
 is onto. That is, if  there exists  such that .

Two such subspaces which have an isomorphism as described above are said to be isomorphic.

Consider the following example of an isomorphism.

Let  be defined by

Show that  is an isomorphism.

Solution
To prove that  is an isomorphism we must show

1.  is a linear transformation;
2.  is one to one;
3.  is onto.

We proceed as follows.

1.  is a linear transformation:

Let  be scalars.

 Outcomes

R
n

V W R
n

R
m

T : V → W

a, b ,x⃗  y ⃗ 

T (a +b ) = aT ( )+bT ( )x⃗  y ⃗  x⃗  y ⃗ 

 Definition : Isomorphism5.6.1

T

T T ( ) = T ( ),x⃗  y ⃗  = .x⃗  y ⃗ 

T ∈ W ,w⃗  ∈ Vv ⃗  T ( ) =v ⃗  w⃗ 

 Example : Isomorphism5.6.1

T : ↦R
2

R
2

T [ ]= [ ]
x

y

x+y

x−y

T

T

T

T

T

T

k, p
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Therefore  is linear.

2.  is one to one:

We need to show that if  for a vector , then it follows that . Let .

This provides a system of equations given by

You can verify that the solution to this system if . Therefore

and  is one to one.

3.  is onto:

Let  be scalars. We want to check if there is always a solution to

This can be represented as the system of equations

Setting up the augmented matrix and row reducing gives

This has a solution for all  and therefore  is onto.

Therefore  is an isomorphism.

An important property of isomorphisms is that its inverse is also an isomorphism.

T (k[ ]+p [ ])
x1

y1

x2

y2

= T ([ ]+[ ])
kx1

ky1

px2

py2

= T ([ ])
k +px1 x2

k +py1 y2

= [ ]
(k +p )+(k +p )x1 x2 y1 y2

(k +p )−(k +p )x1 x2 y1 y2

= [ ]
(k +k )+(p +p )x1 y1 x2 y2

(k −k )+(p −p )x1 y1 x2 y2

= [ ]+[ ]
k +kx1 y1

k −kx1 y1

p +px2 y2

p −px2 y2

= k[ ]+p [ ]
+x1 y1

−x1 y1

+x2 y2

−x2 y2

= kT ([ ])+pT ([ ])
x1

y1

x2

y2

T

T

T ( ) =x⃗  0⃗  ∈x⃗  R
2 =x⃗  0⃗  = [ ]x⃗ 

x

y

T ([ ]) = [ ]= [ ]
x

y

x+y

x−y

0

0

x+y

x−y

= 0

= 0

x = y = 0

= [ ]= [ ]x⃗ 
x

y

0

0

T

T

a, b

T ([ ]) = [ ]= [ ]
x

y

x+y

x−y

a

b

x+y

x−y

= a

= b

[ ]→⋯ →
1

1

1

−1

a

b

⎡

⎣

1

0

0

1

a+b

2

a−b

2

⎤

⎦

a, b T

T
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Let  be an isomorphism and  be subspaces of . Then  is also an isomorphism.

Proof

Let  be an isomorphism. Since  is onto, a typical vector in  is of the form  where . Consider then for 
scalars,

where . Is this equal to

Since  is one to one, this will be so if

However, the above statement is just the condition that  is a linear map. Thus  is indeed a linear map. If  is
given, then  and so  is onto. If  then

and so  is one to one.

Another important result is that the composition of multiple isomorphisms is also an isomorphism.

Let  and  be isomorphisms where  are subspaces of . Then  defined by 
 is also an isomorphism.

Proof

Suppose  and  are isomorphisms. Why is  a linear map? For  scalars,

Hence  is a linear map. If  then  and it follows that  and hence by this
lemma again, . Thus  is one to one. It remains to verify that it is onto. Let . Then since  is onto, there
exists  such that  Also, since  is onto, there exists  such that  It follows that 

 and so  is also onto.

Consider two subspaces  and , and suppose there exists an isomorphism mapping one to the other. In this way the two
subspaces are related, which we can write as . Then the previous two propositions together claim that  is an equivalence
relation. That is:  satisfies the following conditions:

If  it follows that 
If  and  then 

We leave the verification of these conditions as an exercise.

Consider the following example.

 Proposition : Inverse of an Isomorphism5.6.1

T : V → W V ,W R
n : W → VT −1

T T W T ( )v ⃗  ∈ Vv ⃗  a, b

(aT ( )+bT ( ))T −1 v ⃗ 1 v ⃗ 2

, ∈ Vv ⃗ 1 v ⃗ 2

a (T ( ))+b (T ( )) = a +b ?T −1 v ⃗ 1 T −1 v ⃗ 2 v ⃗ 1 v ⃗ 2

T

T (a +b ) = T ( (aT ( )+bT ( )))= aT ( )+bT ( ).v ⃗ 1 v ⃗ 2 T −1 v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2

T T −1 ∈ Vv ⃗ 

= (T ( ))v ⃗  T −1 v ⃗  T −1 ( ) = 0,T −1 v ⃗ 

= T ( ( ))= T ( ) =v ⃗  T −1 v ⃗  0⃗  0⃗ 

T −1

 Proposition : Composition of Isomorphisms5.6.2

T : V → W S : W → Z V ,W ,Z R
n S ∘ T

(S ∘ T ) ( ) = S (T ( ))v ⃗  v ⃗ 

T : V → W S : W → Z S ∘ T a, b

S ∘ T (a +b( ))v ⃗ 1 v ⃗ 2 = S (T (a +b )) = S (aT +bT )v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2
= aS (T )+bS (T ) = a (S ∘ T ) ( )+b (S ∘ T ) ( )v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2

S ∘ T (S ∘ T ) ( ) = 0,v ⃗  S (T ( )) = 0v ⃗  T ( ) =v ⃗  0⃗ 

=v ⃗  0⃗  S ∘ T ∈ Zz ⃗  S

∈ Ww⃗  S( ) = .w⃗  z ⃗  T ∈ Vv ⃗  T ( ) = .v ⃗  w⃗ 

S (T ( )) =v ⃗  z ⃗  S ∘ T

V W

V ∼ W ∼

∼

V ∼ V

V ∼ W , W ∼ V

V ∼ W W ∼ Z, V ∼ Z
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Let  be defined by  where  is an invertible  matrix. Then  is an isomorphism.

Solution

The reason for this is that, since  is invertible, the only vector it sends to  is the zero vector. Hence if  then 
 and so . It is onto because if

In fact, all isomorphisms from  to  can be expressed as  where  is an invertible  matrix. One simply
considers the matrix whose  column is .

Recall that a basis of a subspace  is a set of linearly independent vectors which span . The following fundamental lemma
describes the relation between bases and isomorphisms.

Let  be a linear transformation where  are subspaces of . If  is one to one, then it has the property that if 
 is linearly independent, so is .

More generally,  is an isomorphism if and only if whenever  is a basis for  it follows that 
 is a basis for .

Proof

First suppose that  is a linear transformation and is one to one and  is linearly independent. It is required to
show that  is also linearly independent. Suppose then that

Then, since  is linear,

Since  is one to one, it follows that

Now the fact that  is linearly independent implies that each . Hence  is linearly
independent.

Now suppose that  is an isomorphism and  is a basis for . It was just shown that  is
linearly independent. It remains to verify that span . If  then since  is onto there exists 

 such that . Since  is a basis, it follows that there exists scalars  such that

Hence,

 Example : Matrix Isomorphism5.6.2

T : →R
n

R
n T ( ) = A( )x⃗  x⃗  A n×n T

A 0⃗  A( ) = A( ),x⃗  y ⃗ 

A ( − ) =x⃗  y ⃗  0⃗  =x⃗  y ⃗ 

∈ ,A ( ( ))= (A ) ( ) = .y ⃗  R
n A−1 y ⃗  A−1 y ⃗  y ⃗ 

R
n

R
n T ( ) = A( )x⃗  x⃗  A n×n

ith T e ⃗ i

V V

 Lemma : Mapping Bases5.6.1

T : V → W V ,W R
n T

{ ,⋯ , }u⃗ 1 u⃗ k {T ( ),⋯ ,T ( )}u⃗ 1 u⃗ k

T { ,⋯ , }v ⃗ 1 v ⃗ n V ,

{T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n W

T { ,⋯ , }u⃗ 1 u⃗ k
{T ( ),⋯ ,T ( )}u⃗ 1 u⃗ k

T ( ) =∑
i=1

k

ci u⃗ i 0⃗ 

T

T ( ) =∑
i=1

n

ciu⃗ i 0⃗ 

T

= 0∑
i=1

n

ciu⃗ i

{ ,⋯ , }u⃗ 1 u⃗ n = 0ci {T ( ),⋯ ,T ( )}u⃗ 1 u⃗ n

T { ,⋯ , }v ⃗ 1 v ⃗ n V {T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n
{T ( ),⋯ ,T ( )} = Wv ⃗ 1 v ⃗ n ∈ W ,w⃗  T

∈ Vv ⃗  T ( ) =v ⃗  w⃗  { ,⋯ , }v ⃗ 1 v ⃗ n { }ci
n
i=1

= .∑
i=1

n

civ ⃗ i v ⃗ 

= T ( ) = T ( ) = T ( )w⃗  v ⃗  ∑
i=1

n

civ ⃗ i ∑
i=1

n

ci v ⃗ i
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It follows that span  showing that this set of vectors is a basis for .

Next suppose that  is a linear transformation which takes a basis to a basis. This means that if  is a basis for 
 it follows  is a basis for  Then if  there exist scalars  such that 

 showing that  is onto. If  then  and since the
vectors  are linearly independent, it follows that each  Since  is a typical vector in ,
this has shown that if  then  and so  is also one to one. Thus  is an isomorphism.

The following theorem illustrates a very useful idea for defining an isomorphism. Basically, if you know what it does to a basis,
then you can construct the isomorphism.

Suppose  and  are two subspaces of . Then the two subspaces are isomorphic if and only if they have the same
dimension. In the case that the two subspaces have the same dimension, then for a linear map , the following are
equivalent.

1.  is one to one.
2.  is onto.
3.  is an isomorphism.

Proof

Suppose first that these two subspaces have the same dimension. Let a basis for  be  and let a basis for  be
. Now define  as follows.

for  an arbitrary vector of 

It is necessary to verify that this is well defined. Suppose then that

Then

and since  is a basis,  for each . Hence

and so the mapping is well defined. Also if  are scalars,

{T ( ),⋯ ,T ( )} = Wv ⃗ 1 v ⃗ n W

T { ,⋯ , }v ⃗ 1 v ⃗ n
V , {T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n W . w ∈ W , ci

w = T ( ) = T ( )∑n
i=1 ci v ⃗ i ∑n

i=1 civ ⃗ i T T ( ) =∑n
i=1 civ ⃗ i 0⃗  T ( ) =∑n

i=1 ci v ⃗ i 0⃗ 

{T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n = 0.ci ∑n
i=1 civ ⃗ i V

T ( ) =v ⃗  0⃗  =v ⃗  0⃗  T T

 Theorem : Isomorphic Subspaces5.6.1

V W R
n

T : V → W

T

T

T

V { ,⋯ , }v ⃗ 1 v ⃗ n W

{ ,⋯ , }w⃗ 1 w⃗ n T

T ( ) =v ⃗ i w⃗ i

∑n
i=1 civ ⃗ i V ,

T ( ) = T = .∑
i=1

n

civ ⃗ i ∑
i=1

n

ci v ⃗ i ∑
i=1

n

ciw⃗ i

=∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i

( − ) =∑
i=1

n

ci ĉ i v ⃗ i 0⃗ 

{ ,⋯ , }v ⃗ 1 v ⃗ n =ci ĉ i i

=∑
i=1

n

ciw⃗ i ∑
i=1

n

ĉ iw⃗ i

a, b

T (a +b )∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i = T ( (a +b ) ) = (a +b )∑
i=1

n

ci ĉ i v ⃗ i ∑
i=1

n

ci ĉ i w⃗ i

= a +b∑
i=1

n

ciw⃗ i ∑
i=1

n

ĉ iw⃗ i

= aT ( )+bT ( )∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i
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Thus  is a linear transformation.

Now if

then since the  are independent, each  and so  also. Hence  is one to one. If 
 is a vector in  then it equals

showing that  is also onto. Hence  is an isomorphism and so  and  are isomorphic.

Next suppose  is an isomorphism, so these two subspaces are isomorphic. Then for  a basis for ,
it follows that a basis for  is  showing that the two subspaces have the same dimension.

Now suppose the two subspaces have the same dimension. Consider the three claimed equivalences.

First consider the claim that  If  is one to one and if  is a basis for  then  is
linearly independent. If it is not a basis, then it must fail to span . But then there would exist 

 and it follows that  would be linearly independent which is
impossible because there exists a basis for  of  vectors.

Hence  and so  is a basis. If  there exist scalars  such that

showing that  is onto. This shows that 

Next consider the claim that  Since  holds, it follows that  is onto. It remains to verify that  is one to one.
Since  is onto, there exists a basis of the form  Then it follows that  is linearly
independent. Suppose

Then

Hence each  and so,  is a basis for . Now it follows that a typical vector in  is of the form 
. If  it follows that

and so, since  is independent, it follows each  and hence . Thus  is one to one
as well as onto and so it is an isomorphism.

If  is an isomorphism, it is both one to one and onto by definition so  implies both  and .

Note the interesting way of defining a linear transformation in the first part of the argument by describing what it does to a basis
and then “extending it linearly” to the entire subspace.

T

T ( ) = = ,∑
i=1

n

civ ⃗ i ∑
i=1

n

ciw⃗ i 0⃗ 

{ ,⋯ , }w⃗ 1 w⃗ n = 0ci =∑n
i=1 civ ⃗ i 0⃗  T

∑n
i=1 ciw⃗ i W ,

T ( ) = T ( )∑
i=1

n

ci v ⃗ i ∑
i=1

n

civ ⃗ i

T T V W

T : V ↦ W { ,⋯ , }v ⃗ 1 v ⃗ n V

W {T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n

1.) ⇒ 2.). T { ,⋯ , }v ⃗ 1 v ⃗ n V , {T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n
W

∉ span{T ( ),⋯ ,T ( )}w⃗  v ⃗ 1 v ⃗ n {T ( ),⋯ ,T ( ), }v ⃗ 1 v ⃗ n w⃗ 

W n

span{T ( ),⋯ ,T ( )} = Wv ⃗ 1 v ⃗ n {T ( ),⋯ ,T ( )}v ⃗ 1 v ⃗ n ∈ W ,w⃗  ci

= T ( ) = T ( )w⃗  ∑
i=1

n

ci v ⃗ i ∑
i=1

n

civ ⃗ i

T 1.) ⇒ 2.).

2.) ⇒ 3.). 2.) T T

T {T ( ),⋯ ,T ( )} .v ⃗ i v ⃗ n { ,⋯ , }v ⃗ 1 v ⃗ n

=∑
i=1

n

civ ⃗ i 0⃗ 

T ( ) =∑
i=1

n

ci v ⃗ i 0⃗ 

= 0ci { ,⋯ , }v ⃗ 1 v ⃗ n V V

∑n
i=1 civ ⃗ i T ( ) = ,∑n

i=1 civ ⃗ i 0⃗ 

T ( ) =∑
i=1

n

ci v ⃗ i 0⃗ 

{T ( ),⋯ ,T ( )}v ⃗ i v ⃗ n = 0ci =∑n
i=1 civ ⃗ i 0⃗  T

T 3.) 1.) 2.)
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Let  and let  denote

Show that  and  are isomorphic.

Solution
First observe that these subspaces are both of dimension 3 and so they are isomorphic by Theorem . The three vectors
which span  are easily seen to be linearly independent by making them the columns of a matrix and row reducing to the
reduced row-echelon form.

You can exhibit an isomorphism of these two spaces as follows.

and extend linearly. Recall that the matrix of this linear transformation is just the matrix having these vectors as columns. Thus
the matrix of this isomorphism is

You should check that multiplication on the left by this matrix does reproduce the claimed effect resulting from an application
by .

Consider the following example.

Let  and let  denote

Let  be defined as follows.

Find the matrix of this isomorphism .

Solution

 Example : Isomorphic Subspaces5.6.4

V =R
3 W

span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

2

1

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

0

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

1

2

0

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

V W

5.6.1

W

T ( ) = ,T ( ) = ,T ( ) =e ⃗ 1

⎡

⎣

⎢⎢⎢

1

2

1

1

⎤

⎦

⎥⎥⎥
e ⃗ 2

⎡

⎣

⎢⎢⎢

0

1

0

1

⎤

⎦

⎥⎥⎥
e ⃗ 3

⎡

⎣

⎢⎢⎢

1

1

2

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢
⎢⎢

1

2

1

1

0

1

0

1

1

1

2

0

⎤

⎦

⎥
⎥⎥

T

 Example : Finding the Matrix of an Isomorphism5.6.5

V =R
3 W

span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

2

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

1

2

0

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T : V ↦ W

T = ,T = ,T =
⎡

⎣
⎢
1

1

0

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1

2

1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢
0

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

0

1

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢
1

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1

1

2

0

⎤

⎦

⎥⎥
⎥

T
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First note that the vectors

are indeed a basis for  as can be seen by making them the columns of a matrix and using the reduced row-echelon form.

Now recall the matrix of  is a  matrix  which gives the same effect as  Thus, from the way we multiply matrices,

Hence,

Note how the span of the columns of this new matrix must be the same as the span of the vectors defining .

This idea of defining a linear transformation by what it does on a basis works for linear maps which are not necessarily
isomorphisms.

Let  and let  denote

Let  be defined as follows.

Find the matrix of this linear transformation.

Solution
Note that in this case, the three vectors which span  are not linearly independent. Nevertheless the above procedure will still
work. The reasoning is the same as before. If  is this matrix, then

and so

, ,
⎡

⎣
⎢

1

1

0

⎤

⎦
⎥
⎡

⎣
⎢

0

1

1

⎤

⎦
⎥
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

R
3

T 4×3 A T .

A =
⎡

⎣
⎢

1

1

0

0

1

1

1

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1

2

1

1

0

1

0

1

1

1

2

0

⎤

⎦

⎥⎥⎥

A = =

⎡

⎣

⎢
⎢⎢

1

2

1

1

0

1

0

1

1

1

2

0

⎤

⎦

⎥
⎥⎥

⎡

⎣
⎢

1

1

0

0

1

1

1

1

1

⎤

⎦
⎥

−1 ⎡

⎣

⎢
⎢⎢

1

0

2

−1

0

2

−1

2

0

−1

1

−1

⎤

⎦

⎥
⎥⎥

W

 Example : Finding the Matrix of an Isomorphism5.6.6

V =R
3 W

span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

0

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

1

1

2

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T : V ↦ W

T = ,T = ,T =
⎡

⎣
⎢
1

1

0

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1

0

1

1

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢
0

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

0

1

0

1

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢
1

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1

1

1

2

⎤

⎦

⎥⎥
⎥

W

A

A =
⎡

⎣
⎢

1

1

0

0

1

1

1

1

1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1

0

1

1

0

1

0

1

1

1

1

2

⎤

⎦

⎥⎥⎥
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The columns of this last matrix are obviously not linearly independent.

This page titled 5.6: Isomorphisms is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

A = =

⎡

⎣

⎢⎢
⎢

1

0

1

1

0

1

0

1

1

1

1

2

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢
1

1

0

0

1

1

1

1

1

⎤

⎦
⎥

−1 ⎡

⎣

⎢⎢
⎢

1

0

1

1

0

0

0

0

0

1

0

1

⎤

⎦

⎥⎥
⎥
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5.7: The Kernel and Image of A Linear Map

A. Describe the kernel and image of a linear transformation, and find a basis for each.

In this section we will consider the case where the linear transformation is not necessarily an isomorphism. First consider the
following important definition.

Let  and  be subspaces of  and let  be a linear transformation. Then the image of  denoted as  is
defined to be the set

In words, it consists of all vectors in  which equal  for some .

The kernel of , written , consists of all  such that . That is,

It follows that  and  are subspaces of  and  respectively.

Let  be subspaces of  and let  be a linear transformation. Then  is a subspace of  and  is a
subspace of .

Proof

First consider  It is necessary to show that if  are vectors in  and if  are scalars, then  is
also in  But

Thus  is a subspace of .

Next suppose  are two vectors in  Then if  are scalars,

and this last vector is in  by definition.

We will now examine how to find the kernel and image of a linear transformation and describe the basis of each.

Let  be defined by

Then  is a linear transformation. Find a basis for  and .

 Outcomes

 Definition : Kernel and Image5.7.1

V W R
n T : V ↦ W T im (T )

im (T ) = {T ( ) : ∈ V }v ⃗  v ⃗ 

W T ( )v ⃗  ∈ Vv ⃗ 

T ker(T ) ∈ Vv ⃗  T ( ) =v ⃗  0⃗ 

ker(T ) ={ ∈ V : T ( ) = }v ⃗  v ⃗  0⃗ 

im (T ) ker(T ) W V

 Proposition : Kernel and Image as Subspaces5.7.1

V ,W R
n T : V → W ker(T ) V im (T )

W

ker(T ). ,v ⃗ 1 v ⃗ 2 ker(T ) a, b a +bv ⃗ 1 v ⃗ 2
ker(T ).

T (a +b ) = aT ( ) +bT ( ) = a +b =v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2 0⃗  0⃗  0⃗ 

ker(T ) V

T ( ),T ( )v ⃗ 1 v ⃗ 2 im (T ) . a, b

aT ( ) +bT ( ) = T (a +b )v ⃗ 2 v ⃗ 2 v ⃗ 1 v ⃗ 2

im (T )

 Example : Kernel and Image of a Linear Transformation5.7.1

T : ↦R
4

R
2

T = [ ]

⎡

⎣

⎢
⎢⎢

a

b

c

d

⎤

⎦

⎥
⎥⎥

a−b

c+d

T ker(T ) im(T )
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Solution
You can verify that  is a linear transformation.

First we will find a basis for . To do so, we want to find a way to describe all vectors  such that . Let 

 be such a vector. Then

The values of  that make this true are given by solutions to the system

The solution to this system is  where  are scalars. We can describe  as follows.

Notice that this set is linearly independent and therefore forms a basis for .

We move on to finding a basis for . We can write the image of  as

We can write this in the form

This set is clearly not linearly independent. By removing unnecessary vectors from the set we can create a linearly independent
set with the same span. This gives a basis for  as

Recall that a linear transformation  is called one to one if and only if  implies . Using the concept of kernel, we
can state this theorem in another way.

Let  be a linear transformation where  is the kernel of . Then  is one to one if and only if  consists of only
the zero vector.

A major result is the relation between the dimension of the kernel and dimension of the image of a linear transformation. In the
previous example  had dimension , and  also had dimension of . Is it a coincidence that the dimension of  is 

? Consider the following theorem.

T

ker(T ) ∈x⃗  R
4 T ( ) =x⃗  0⃗ 

=x⃗ 

⎡

⎣

⎢
⎢⎢

a

b

c

d

⎤

⎦

⎥
⎥⎥

T = [ ] =( )

⎡

⎣

⎢⎢
⎢

a

b

c

d

⎤

⎦

⎥⎥
⎥

a−b

c+d

0

0

a, b, c, d

a−b

c+d

= 0

= 0

a = s, b = s, c = t, d = −t s, t ker(T )

ker(T ) = = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

s

s

t

−t

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1

1

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

0

1

−1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

ker(T )

im(T ) T

im(T ) ={[ ]}
a−b

c+d

span ={[ ] , [ ] , [ ] , [ ]}
1

0

−1

0

0

1

0

1

im(T )

im(T ) = span{[ ] , [ ]}
1

0

0

1

T T ( ) =x⃗  0⃗  =x⃗  0⃗ 

 Theorem : One to One and Kernel5.7.1

T ker(T ) T T ker(T )

ker(T ) 2 im(T ) 2 M22

4 = 2 +2
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Let  be a linear transformation where  are subspaces of . Suppose the dimension of  is . Then

Proof

From Proposition ,  is a subspace of  We know that there exists a basis for , 
Similarly, there is a basis for . Then if  there exist scalars  such that

Hence  It follows that  is in . Hence there are scalars  such that

Hence  Since  is arbitrary, it follows that

If the vectors  are linearly independent, then it will follow that this set is a basis. Suppose then that

Apply  to both sides to obtain

Since  is linearly independent, it follows that each  Hence  and so, since the 
 are linearly independent, it follows that each  also. Therefore  is a basis for 

and so

The above theorem leads to the next corollary.

Let  be a linear transformation where  are subspaces of . Suppose the dimension of  is . Then

This follows directly from the fact that .

Consider the following example.

Let  be defined by

 Theorem : Dimension of Kernel and Image5.7.2

T : V → W V ,W R
n V m

m = dim(ker(T )) +dim(im (T ))

5.7.1 im (T ) W . im (T ) {T ( ), ⋯ ,T ( )} .v ⃗ 1 v ⃗ r
ker(T ), { , ⋯ , }u⃗ 1 u⃗ s ∈ V ,v ⃗  ci

T ( ) = T ( )v ⃗  ∑
i=1

r

ci v ⃗ i

T ( − ) = 0.v ⃗  ∑r
i=1 civ ⃗ i −v ⃗  ∑r

i=1 civ ⃗ i ker(T ) ai

− =v ⃗  ∑
i=1

r

civ ⃗ i ∑
j=1

s

aju⃗ j

= + .v ⃗  ∑r
i=1 civ ⃗ i ∑s

j=1 aju⃗ j v ⃗ 

V = span{ , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r

{ , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r

+ = 0∑
i=1

r

civ ⃗ i ∑
j=1

s

aju⃗ j

T

T ( ) + T ( = T ( ) = 0∑
i=1

r

ci v ⃗ i ∑
j=1

s

aj u⃗ )j ∑
i=1

r

ci v ⃗ i

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ r = 0.ci = 0∑s
j=1 aju⃗ j

{ , ⋯ , }u⃗ 1 u⃗ s = 0aj { , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r V

n = s+r = dim(ker(T )) +dim(im (T ))

 Corollary 5.7.1

T : V → W V ,W R
n V m

dim(ker(T )) ≤ m

dim(im (T )) ≤ m

n = dim(ker(T )) +dim(im (T ))

 Example 5.7.2

T : →R
2

R
3

T ( ) =x⃗ 
⎡

⎣
⎢

1

1

0

0

0

1

⎤

⎦
⎥ x⃗ 
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Then  is a subspace of  and  is an isomorphism of  and . Find a  matrix  such that the restriction
of multiplication by  to  equals .

Solution
Since the two columns of the above matrix are linearly independent, we conclude that  and therefore 

 by Theorem . Then by Theorem  it follows that  is one to one.

Thus  is an isomorphism of  and the two dimensional subspace of  which is the span of the columns of the given
matrix. Now in particular,

Thus

Extend  to all of  by defining

Notice that the vectors

are linearly independent so  can be extended linearly to yield a linear transformation defined on . The matrix of 
denoted as  needs to satisfy

and so

Note that

so the restriction to  of matrix multiplication by this matrix yields 

im (T ) = V R
3 T R

2 V 2 ×3 A

A V = im (T ) T −1

dim(im(T )) = 2

dim(ker(T )) = 2 −dim(im(T )) = 2 −2 = 0 5.7.2 5.7.1 T

T R
2

R
3

T ( ) = ,  T ( ) =e ⃗ 1
⎡

⎣
⎢

1

1

0

⎤

⎦
⎥ e ⃗ 2

⎡

⎣
⎢

0

0

1

⎤

⎦
⎥

= ,   =T −1
⎡

⎣
⎢

1

1

0

⎤

⎦
⎥ e ⃗ 1 T −1

⎡

⎣
⎢

0

0

1

⎤

⎦
⎥ e ⃗ 2

T −1
R

3

=T −1
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥ e ⃗ 1

, ,

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

1

0

⎤

⎦
⎥
⎡

⎣
⎢

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

T −1
R

3 T −1

A

A = [ ]
⎡

⎣
⎢

1

1

0

0

0

1

0

1

0

⎤

⎦
⎥

1

0

0

1

1

0

A = [ ] = [ ]
1

0

0

1

1

0

⎡

⎣
⎢

1

1

0

0

0

1

0

1

0

⎤

⎦
⎥

−1

0

0

1

0

0

1

[ ] = [ ]
0

0

1

0

0

1

⎡

⎣
⎢

1

1

0

⎤

⎦
⎥

1

0

[ ] = [ ]
0

0

1

0

0

1

⎡

⎣
⎢

0

0

1

⎤

⎦
⎥

0

1

V .T −1
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5.8: The Matrix of a Linear Transformation II

A. Find the matrix of a linear transformation with respect to general bases.

We begin this section with an important lemma.

Let  be an isomorphism. Then  maps any basis of  to another basis for .

Conversely, if  is a linear transformation which maps a basis of  to another basis of , then it is an
isomorphism.

Proof

First, suppose  is a linear transformation which is one to one and onto. Let  be a basis for .
We wish to show that  is also a basis for .

First consider why it is linearly independent. Suppose . Then by linearity we have 
and since  is one to one, it follows that . This requires that each  because  is
independent, and it follows that  is linearly independent.

Next take  Since  is onto, there exists  such that . Since  is a basis, in particular it
is a spanning set and there are scalars  such that . Therefore  which is
in the  Therefore,  is a basis as claimed.

Suppose now that  is a linear transformation such that  where  and 
are two bases for .

To show that  is one to one, let . Then . It follows that each 
 because it is given that  is linearly independent. Hence  implies that 

 and so  is one to one.

To show that  is onto, let  be an arbitrary vector in . This vector can be written as 
 Therefore,  is also onto.

Consider now an important definition.

Let  be a basis for  and let  be an arbitrary vector in . Then  is uniquely represented as 
 for scalars .

The coordinate vector of  with respect to the basis , written  or , is given by

Consider the following example.

 Outcomes

 Lemma : Mapping of a Basis5.8.1

T : ↦R
n

R
n

T R
n

R
n

T : ↦R
n

R
n

R
n

R
n

T : ↦R
n

R
n { , ⋯ , }v ⃗ 1 v ⃗ 

n R
n

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ 
n R

n

T ( ) =∑n

k=1 ak v ⃗ 
k 0⃗ 

T ( ) =∑n

k=1 akv ⃗ 
k 0⃗ 

T =∑n

k=1 akv ⃗ k 0⃗  = 0ak { , ⋯ , }v ⃗ 1 v ⃗ n
{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n

∈ .w⃗  R
n

T ∈v ⃗  R
n

T ( ) =v ⃗  w⃗  { , ⋯ , }v ⃗ 1 v ⃗ 
n

bk T ( ) = T ( ) =∑n

k=1 bkv ⃗ 
k v ⃗  w⃗  = T ( )w⃗  ∑n

k=1 bk v ⃗ 
k

span{T ( ), ⋯ ,T ( )} .v ⃗ 1 v ⃗ 
n {T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ 

n

T : ↦R
n

R
n

T ( ) =v ⃗ i w⃗ i { , ⋯ , }v ⃗ 1 v ⃗ n { , ⋯ , }w⃗ 1 w⃗ n
R
n

T T ( ) =∑n

k=1 ckv ⃗ k 0⃗  T ( ) = =∑n

k=1 ck v ⃗ k ∑n

k=1 ckw⃗ k 0⃗ 

= 0ck { , ⋯ , }w⃗ 1 w⃗ 
n T ( ) =∑n

k=1 ckv ⃗ 
k 0⃗ 

=∑n

k=1 ckv ⃗ k 0⃗  T

T w⃗  R
n

= = T ( ) = T ( ) .w⃗  ∑n

k=1 dkw⃗ 
k ∑n

k=1 dk v ⃗ 
k ∑n

k=1 dkv ⃗ 
k T

 Definition : Coordinate Vector5.8.1

B = { , , ⋯ , }v ⃗ 1 v ⃗ 2 v ⃗ n R
n

x⃗  R
n

x⃗ 
= + +⋯ +x⃗  a1v ⃗ 1 a2v ⃗ 2 anv ⃗ n , ⋯ ,a1 an

x⃗  B ( )CB x⃗  [x⃗ ]B

( ) = ( + +⋯ + ) =CB x⃗  CB a1v ⃗ 1 a2v ⃗ 2 anv ⃗ n

⎡

⎣

⎢⎢
⎢⎢

a1

a2

⋮
an

⎤

⎦

⎥⎥
⎥⎥
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Let  be a basis of  and let  be a vector in . Find .

Solution
First, note the order of the basis is important so label the vectors in the basis  as

Now we need to find  such that , that is:

Solving this system gives . Therefore the coordinate vector of  with respect to the basis  is

Given any basis , one can easily verify that the coordinate function is actually an isomorphism.

For any basis  of , the coordinate function

is a linear transformation, and moreover an isomorphism.

We now discuss the main result of this section, that is how to represent a linear transformation with respect to different bases.

Let  be a linear transformation, and let  and  be bases of  and  respectively.

Then the following holds

where  is a unique  matrix.

If the basis  is given by  in this order, then

Proof

The above equation  can be represented by the following diagram.

Since  is an isomorphism, then the matrix we are looking for is the matrix of the linear transformation

 Example : Coordinate Vector5.8.1

B ={[ ] , [ ]}
1
0

−1
1

R
2 = [ ]x⃗ 

3
−1

R
2 ( )CB x⃗ 

B

B ={[ ] , [ ]} = { , }
1
0

−1
1

v ⃗ 1 v ⃗ 2

,a1 a2 = +x⃗  a1v ⃗ 1 a2v ⃗ 2

[ ] = [ ]+ [ ]
3

−1
a1

1
0

a2
−1

1

= 2, = −1a1 a2 x⃗  B

( ) = [ ] = [ ]CB x⃗ 
a1

a2

2
−1

B

 Theorem : Transformation is a Linear5.8.1 CB

B R
n

: →CB R
n

R
n

 Theorem : The Matrix of a Linear5.8.2

T : ↦R
n

R
m

B1 B2 R
n

R
m

T =CB2 MB2B1CB1 (5.8.1)

MB2B1 m×n

B1 = { , ⋯ , }B1 v ⃗ 1 v ⃗ n

= [ (T ( )) (T ( )) ⋯ (T ( ))]MB2B1 CB2 v ⃗ 1 CB2 v ⃗ 2 CB2 v ⃗ n

(5.8.1)

R
n

↓CB1

R
n

T

→
∘

→
MB2B1

R
m

↓ CB2

R
m

CB1

T : ↦ .CB2 C
−1
B1

R
n

R
m
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By Theorem 5.2.2, the columns are given by the image of the standard basis . But since , we
readily obtain that

and this completes the proof.

Consider the following example.

Let  be a linear transformation defined by .

Consider the two bases

and

Find the matrix  of  with respect to the bases  and .

Solution
By Theorem , the columns of  are the coordinate vectors of  with respect to .

Since

a standard calculation yields

the first column of  is .

The second column is found in a similar way. We have

and with respect to  calculate:

Hence the second column of  is given by . We thus obtain

{ , , ⋯ , }e ⃗ 1 e ⃗ 2 e ⃗ 
n ( ) =C

−1
B1

e ⃗ 
i v ⃗ 

i

MB2B1 = [ T ( ) T ( ) ⋯ T ( )]CB2 C
−1
B1

e ⃗ 1 CB2 C
−1
B1

2⃗ 
2 CB2 C

−1
B1

e ⃗ n

= [ (T ( )) (T ( )) ⋯ (T ( ))]CB2 v ⃗ 1 CB2 v ⃗ 2 CB2 v ⃗ n

 Example : Matrix of a Linear5.8.2

T : ↦R
2

R
2

T ([ ]) = [ ]
a

b

b

a

= { , } ={[ ] , [ ]}B1 v ⃗ 1 v ⃗ 2
1
0

−1
1

={[ ] , [ ]}B2
1
1

1
−1

M ,B2 B1
T B1 B2

5.8.2 MB2B1
T ( ),T ( )v ⃗ 1 v ⃗ 2 B2

T ([ ]) = [ ] ,
1
0

0
1

[ ] =( )[ ]+(− )[ ] ,
0
1

1
2

1
1

1
2

1
−1

MB2B1
[ ]

1
2

− 1
2

T ([ ]) = [ ] ,
−1

1
1

−1

B2

[ ] = 0 [ ]+1 [ ]
1

−1
1
1

1
−1

MB2B1 [ ]
0
1

= [ ]MB2B1

1
2

− 1
2

0

1
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We can verify that this is the correct matrix  on the specific example

First applying  gives

and one can compute that

On the other hand, one compute  as

and finally applying  gives

as above.

We see that the same vector results from either method, as suggested by Theorem .

If the bases  and  are equal, say , then we write  instead of . The following example illustrates how to compute
such a matrix. Note that this is what we did earlier when we considered only  to be the standard basis.

Consider the basis  of  given by

And let  be the linear transformation defined on  as:

1. Find the matrix  of  relative to the basis .
2. Then find the usual matrix of  with respect to the standard basis of .

Solution
Equation  gives , and thus .

Now , so the matrix of  (with respect to the standard basis) is given by

Moreover the matrix of  is given by

MB2B1

= [ ]v ⃗ 
3

−1

T

T ( ) = T ([ ]) = [ ]v ⃗  3
−1

−1
3

([ ]) = [ ] .CB2

−1
3

1
−2

( )CB1 v ⃗ 

([ ]) = [ ] ,CB1

3
−1

2
−1

MB1B2

[ ] [ ] = [ ]
1
2

− 1
2

0

1
2

−1
1

−2

5.8.2

B1 B2 B MB MBB

=B1 B2

 Example : Matrix of a Linear Transformation with respect to an Arbitrary5.8.3

B R
3

B = { , , } = , ,v ⃗ 1 v ⃗ 2 v ⃗ 3
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

−1
1
0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

T : ↦R
3

R
3

B

T = ,T = ,T =
⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
−1

1

⎤

⎦
⎥

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

1
2

−1

⎤

⎦
⎥

⎡

⎣
⎢

−1
1
0

⎤

⎦
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

MB T B

T R
3

(5.8.1) T =CB MBCB = TMB CB C
−1
B

( ) =CB v ⃗ i e ⃗ i C
−1
B

[ ( ) ( ) ( )] =C
−1
B

e ⃗ 1 C
−1
B

e ⃗ 2 C
−1
B

e ⃗ 2
⎡

⎣
⎢

1
0
1

1
1
1

−1
1
0

⎤

⎦
⎥

TC
−1
B
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Thus

Consider how this works. Let  be an arbitrary vector in .

Apply  to  to get

Apply  to this linear combination to obtain

Now take the matrix  of the transformation (as found above) and multiply it by .

Is this the coordinate vector of the above relative to the given basis? We check as follows.

You see it is the same thing.

Now lets find the matrix of  with respect to the standard basis. Let  be this matrix. That is, multiplication by  is the same
as doing . Thus

Hence

[T ( ) T ( ) T ( )] =C
−1
B

e ⃗ 1 C
−1
B

e ⃗ 2 C
−1
B

e ⃗ 2
⎡

⎣
⎢

1
−1

1

1
2

−1

0
1
1

⎤

⎦
⎥

MB = T = [ [T ]CB C
−1
B

C
−1
B

]−1
C

−1
B

=
⎡

⎣
⎢

1
0
1

1
1
1

−1
1
0

⎤

⎦
⎥

−1
⎡

⎣
⎢

1
−1

1

1
2

−1

0
1
1

⎤

⎦
⎥

=
⎡

⎣
⎢

2
−1

0

−5
4

−2

1
0
1

⎤

⎦
⎥

=b ⃗ 
⎡

⎣
⎢

b1

b2

b3

⎤

⎦
⎥ R

3

C
−1
B

b
⃗ 

+ +b1

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥ b2

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥ b3

⎡

⎣
⎢

−1
1
0

⎤

⎦
⎥

T

+ + =b1

⎡

⎣
⎢

1
−1

1

⎤

⎦
⎥ b2

⎡

⎣
⎢

1
2

−1

⎤

⎦
⎥ b3

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣
⎢

+b1 b2

− +2 +b1 b2 b3

− +b1 b2 b3

⎤

⎦
⎥

MB b ⃗ 

=
⎡

⎣
⎢

2
−1

0

−5
4

−2

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

b1

b2

b3

⎤

⎦
⎥

⎡

⎣
⎢

2 −5 +b1 b2 b3

− +4b1 b2

−2 +b2 b3

⎤

⎦
⎥

(2 −5 + ) +(− +4 ) +(−2 + )b1 b2 b3

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥ b1 b2

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥ b2 b3

⎡

⎣
⎢

−1
1
0

⎤

⎦
⎥

=
⎡

⎣
⎢

+b1 b2

− +2 +b1 b2 b3

− +b1 b2 b3

⎤

⎦
⎥

T A A

T

A =
⎡

⎣
⎢

1
0
1

1
1
1

−1
1
0

⎤

⎦
⎥

⎡

⎣
⎢

1
−1

1

1
2

−1

0
1
1

⎤

⎦
⎥
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Of course this is a very different matrix than the matrix of the linear transformation with respect to the non standard basis.

This page titled 5.8: The Matrix of a Linear Transformation II is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

A = =
⎡

⎣
⎢

1
−1

1

1
2

−1

0
1
1

⎤

⎦
⎥
⎡

⎣
⎢

1
0
1

1
1
1

−1
1
0

⎤

⎦
⎥

−1
⎡

⎣
⎢

0
2

−3

0
3

−2

1
−3

4

⎤

⎦
⎥
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5.9: The General Solution of a Linear System

A. Use linear transformations to determine the particular solution and general solution to a system of equations.
B. Find the kernel of a linear transformation.

Recall the definition of a linear transformation discussed above.  is a linear transformation if whenever  are vectors and 
are scalars,

Thus linear transformations distribute across addition and pass scalars to the outside.

It turns out that we can use linear transformations to solve linear systems of equations. Indeed given a system of linear equations of
the form , one may rephrase this as  where  is the linear transformation  induced by the coefficient matrix .
With this in mind consider the following definition.

Suppose a linear system of equations can be written in the form

If  then  is called a particular solution of the linear system.

Recall that a system is called homogeneous if every equation in the system is equal to . Suppose we represent a homogeneous
system of equations by . It turns out that the  for which  are part of a special set called the null space of .
We may also refer to the null space as the kernel of , and we write .

Consider the following definition.

Let  be a linear transformation. Define

The kernel,  consists of the set of all vectors  for which . This is also called the null space of .

We may also refer to the kernel of  as the solution space of the equation .

Consider the following example.

Let  denote the linear transformation defined on  the functions which are defined on  and have a continuous derivative.
Find 

Solution

The example asks for functions  which the property that  As you may know from calculus, these functions are the
constant functions. Thus  is the set of constant functions.

Definition  states that  is the set of solutions to the equation,

 Outcomes

T ,x⃗  y ⃗  k, p

T (k +p ) = kT ( ) +pT ( )x⃗  y ⃗  x⃗  y ⃗ 

A =x⃗  b ⃗  T ( ) =x⃗  b ⃗  T TA A

 Definition : Particular Solution of a System of Equations5.9.1

T ( ) =x⃗  b ⃗ 

T ( ) = ,x⃗ p b ⃗  x⃗ p

0

T ( ) = 0x⃗  x⃗  T ( ) = 0x⃗  T

T ker (T )

 Definition : Null Space or Kernel of a Linear Transformation5.9.2

T

ker(T ) = { : T ( ) = }x⃗  x⃗  0⃗ 

ker(T ) x⃗  T ( ) =x⃗  0⃗  T

T T ( ) =x⃗  0⃗ 

 Example : The Kernel of the Derivative5.9.1

d

dx
f , R

ker( ).d

dx

f = 0.
df

dx

ker( )d

dx

5.9.2 ker(T )
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Since we can write  as , you have been solving such equations for quite some time.

We have spent a lot of time finding solutions to systems of equations in general, as well as homogeneous systems. Suppose we look
at a system given by , and consider the related homogeneous system. By this, we mean that we replace  by  and look at 

. It turns out that there is a very important relationship between the solutions of the original system and the solutions of the
associated homogeneous system. In the following theorem, we use linear transformations to denote a system of equations.
Remember that .

Suppose  is a solution to the linear system given by ,

Then if  is any other solution to , there exists  such that

Hence, every solution to the linear system can be written as a sum of a particular solution, , and a solution  to the
associated homogeneous system given by .

Proof

Consider  Then . Since  and  are both solutions to the system, it
follows that  and .

Hence, . Let . Then,  so  is a solution to the associated
homogeneous system and so is in .

Sometimes people remember the above theorem in the following form. The solutions to the system  are given by 
 where  is a particular solution to .

For now, we have been speaking about the kernel or null space of a linear transformation . However, we know that every linear
transformation  is determined by some matrix . Therefore, we can also speak about the null space of a matrix. Consider the
following example.

Let

Find . Equivalently, find the solutions to the system of equations .

Solution

We are asked to find  In other words we want to solve the system, . Let  Then this

amounts to solving

T ( ) =x⃗  0⃗ 

T ( )x⃗  Ax⃗ 

A =x⃗  b ⃗  b ⃗  0⃗ 

A =x⃗  0⃗ 

T ( ) = Ax⃗  x⃗ 

 Theorem : Particular Solution and General Solution5.9.1

x⃗ p

T ( ) =x⃗  b ⃗ 

y ⃗  T ( ) =x⃗  b ⃗  ∈ ker(T )x⃗ 0

= +y ⃗  x⃗ p x⃗ 0

x⃗ p x⃗ 0

T ( ) =x⃗  0⃗ 

− = +(−1) .y ⃗  x⃗ p y ⃗  x⃗ p T ( − ) = T ( ) −T ( )y ⃗  x⃗ p y ⃗  x⃗ p y ⃗  x⃗ p

T ( ) =y ⃗  b ⃗  T ( ) =x⃗ p b ⃗ 

T ( ) −T ( ) = − =y ⃗  x⃗ p b ⃗  b ⃗  0⃗  = −x⃗ 0 y ⃗  x⃗ p T ( ) =x⃗ 0 0⃗  x⃗ 0
ker(T )

T ( ) =x⃗  b ⃗ 

+ker(T )x⃗ p x⃗ p T ( ) =x⃗  b ⃗ 

T

T A

 Example : The Null Space of a Matrix5.9.2

A =
⎡

⎣
⎢

1

2

4

2

1

5

3

1

7

0

2

2

⎤

⎦
⎥

null (A) A =x⃗  0⃗ 

{ : A = } .x⃗  x⃗  0⃗  A =x⃗  0⃗  = .x⃗ 

⎡

⎣

⎢
⎢⎢

x

y

z

w

⎤

⎦

⎥
⎥⎥
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This is the linear system

To solve, set up the augmented matrix and row reduce to find the reduced row-echelon form.

This yields  and  Since  consists of the solutions to this system, it consists vectors of the
form,

Consider the following example.

The general solution of a linear system of equations is the set of all possible solutions. Find the general solution to the linear
system,

given that  is one solution.

Solution
Note the matrix of this system is the same as the matrix in Example . Therefore, from Theorem , you will obtain all
solutions to the above linear system by adding a particular solution  to the solutions of the associated homogeneous system, 

. One particular solution is given above by

Using this particular solution along with the solutions found in Example , we obtain the following solutions,

=
⎡

⎣
⎢

1

2

4

2

1

5

3

1

7

0

2

2

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

x+2y+3z = 0

2x+y+z+2w = 0

4x+5y+7z+2w = 0

→ ⋯ →
⎡

⎣
⎢⎢

1

2

4

2

1

5

3

1

7

0

2

2

0

0

0

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

− 1
3

5
3

0

4
3

− 2
3

0

0

0

0

⎤

⎦

⎥⎥⎥

x = z− w1
3

4
3

y = w− z.2
3

5
3

null (A)

= z +w

⎡

⎣

⎢
⎢⎢⎢

z− w1
3

4
3

w− z2
3

5
3

z

w

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

1
3

− 5
3

1

0

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

− 4
3

2
3

0

1

⎤

⎦

⎥
⎥⎥⎥

 Example : A General Solution5.9.3

=
⎡

⎣
⎢

1

2

4

2

1

5

3

1

7

0

2

2

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢

9

7

25

⎤

⎦
⎥

=

⎡

⎣

⎢⎢⎢

x

y

z

w

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

1

2

1

⎤

⎦

⎥⎥⎥

5.9.2 5.9.1

x⃗ p
x⃗ 

= =x⃗ p

⎡

⎣

⎢
⎢⎢

x

y

z

w

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

1

2

1

⎤

⎦

⎥
⎥⎥

5.9.2
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Hence, any solution to the above linear system is of this form.

This page titled 5.9: The General Solution of a Linear System is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

z +w +

⎡

⎣

⎢
⎢⎢⎢

1
3

− 5
3

1

0

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢
⎢⎢⎢

− 4
3

2
3

0

1

⎤

⎦

⎥
⎥⎥⎥

⎡

⎣

⎢⎢
⎢

1

1

2

1

⎤

⎦

⎥⎥
⎥
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5.E: Exercises

Show the map :  defined by  where  is an  matrix and  is an  column vector is a linear
transformation.

Answer

This result follows from the properties of matrix multiplication.

Show that the function  defined by  is also a linear transformation.

Answer

Let  be a fixed vector. The function  defined by  has the effect of translating all vectors by adding .
Show this is not a linear transformation. Explain why it is not possible to represent  in  by multiplying by a  matrix.

Answer

Linear transformations take  to  which  does not. Also .

Consider the following functions which map  to .

a.  multiplies the th component of  by a nonzero number .
b.  replaces the th component of  with  times the th component added to the th component.
c.  switches the th and th components.

Show these functions are linear transformations and describe their matrices  such that .

Answer
a. The matrix of  is the elementary matrix which multiplies the th diagonal entry of the identity matrix by .
b. The matrix of  is the elementary matrix which takes  times the th row and adds to the th row.
c. The matrix of  is the elementary matrix which switches the th and the th rows where the two components are in the 

th and th positions.

You are given a linear transformation  :  and you know that

where  exists. Show that the matrix of  is of the form

 Exercise 5.E. 1

T →R
n

R
m T ( ) = Ax⃗  x⃗  A m ×n x⃗  m ×1

 Exercise 5.E. 2

Tu ⃗  ( ) = −pro ( )Tu ⃗  v ⃗  v ⃗  ju ⃗  v ⃗ 

(a +b )Tu ⃗  v ⃗  w⃗  = a +b −v ⃗  w⃗ 
(a +b ∙ )v ⃗  w⃗  u⃗ 

|| |u⃗ |2
u⃗ 

= a −a +b −bv ⃗ 
( ∙ )v ⃗  u⃗ 

|| |u⃗ |2
u⃗  w⃗ 

( ∙ )w⃗  u⃗ 

|| |u⃗ |2
u⃗ 

= a ( ) +b ( )Tu ⃗  v ⃗  Tu ⃗  w⃗ 

 Exercise 5.E. 3

u⃗  Tu ⃗  = +Tu ⃗ v ⃗  u⃗  v ⃗  ≠u⃗  0⃗ 

Tu ⃗  R
3 3 ×3

0⃗  0⃗  T ( + ) ≠ +Ta⃗  u⃗  v ⃗  Ta⃗ u⃗  Ta⃗ v ⃗ 

 Exercise 5.E. 4

R
n

R
n

T j x⃗  b

T i x⃗  b j i

T i j

A T ( ) = Ax⃗  x⃗ 

T j b

T b j i

T i j

i j

 Exercise 5.E. 5

T →R
n

R
m

T ( ) =Ai Bi

[ ⋯A1 an]−1 T
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Answer

Suppose

Thus . Therefore

Thus . If  is arbitrary, then since the matrix  is
invertible, there exists a unique  such that  Hence

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

[ ⋯ ][ ⋯B1 Bn A1 An]−1

=

⎡

⎣

⎢⎢⎢

c ⃗ T1

⋮

c ⃗ T
n

⎤

⎦

⎥⎥⎥ [ ]a⃗ 1 ⋯ a⃗ n
−1

=c ⃗ Ti a⃗ j δij

[ ]b ⃗ 
1 ⋯ b ⃗ 

n
[ ]a⃗ 1 ⋯ a⃗ n

−1 a⃗ i = [ ]b ⃗ 
1 ⋯ b ⃗ 

n

⎡

⎣

⎢⎢⎢

c ⃗ T1

⋮

c ⃗ T
n

⎤

⎦

⎥⎥⎥ a⃗ i

= [ ]b ⃗ 
1 ⋯ b ⃗ 

n e ⃗ i

= b ⃗ 
i

T = [ ] = Aa⃗ i b ⃗ 
1 ⋯ b ⃗ 

n [ ]a⃗ 1 ⋯ a⃗ n
−1 a⃗ i a⃗ i x⃗  [ ]a⃗ 1 ⋯ a⃗ n

y ⃗  [ ] =a⃗ 1 ⋯ a⃗ n y ⃗  x⃗ 

T = T ( ) = T = A = A( ) = Ax⃗  ∑
i=1

n

yia⃗ i ∑
i=1

n

yi a⃗ i ∑
i=1

n

yi a⃗ i ∑
i=1

n

yia⃗ i x⃗ 

 Exercise 5.E. 6

T

T
⎡

⎣
⎢

1
2

−6

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−1

5

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

5
1
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
1
5

⎤

⎦
⎥

=
⎡

⎣
⎢

5
3

−2

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

5
1
3

1
1
5

5
3

−2

⎤

⎦
⎥
⎡

⎣
⎢

3
2
4

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

37
17
11

17
7

14

11
5
6

⎤

⎦
⎥

 Exercise 5.E. 7

T
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Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

T
⎡

⎣
⎢

1
1

−8

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
0
6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3
1

⎤

⎦
⎥

=
⎡

⎣
⎢

2
4
1

⎤

⎦
⎥

=
⎡

⎣
⎢

6
1

−1

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

1
3
1

2
4
1

6
1

−1

⎤

⎦
⎥
⎡

⎣
⎢

6
5
6

3
3
2

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

52
44
5

21
23
4

9
8
1

⎤

⎦
⎥

 Exercise 5.E. 8

T

T
⎡

⎣
⎢

1
3

−7

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−2

6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

−3
1
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3

−3

⎤

⎦
⎥

=
⎡

⎣
⎢

5
3

−3

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

−3
1
3

1
3

−3

5
3

−3

⎤

⎦
⎥
⎡

⎣
⎢

2
1
4

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

15
17
−9

1
11
−3

3
7

−3

⎤

⎦
⎥

 Exercise 5.E. 9

T

T
⎡

⎣
⎢

1
1

−7

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
0
6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3

−1

⎤

⎦
⎥
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Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Consider the following functions . Show that each is a linear transformation and determine for each the matrix 
such that .

a. 

b. 

c. 

d. 

Consider the following functions . Explain why each of these functions  is not linear.

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

3
3
3

1
2
3

1
3

−1

⎤

⎦
⎥
⎡

⎣
⎢

6
5
6

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

29
46
27

9
13
11

5
8
5

⎤

⎦
⎥

 Exercise 5.E. 10

T

T
⎡

⎣
⎢

1
2

−18

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−1
15

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

4

⎤

⎦
⎥

=
⎡

⎣
⎢

5
2
5

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
5

⎤

⎦
⎥

=
⎡

⎣
⎢

2
5

−2

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

5
2
5

3
3
5

2
5

−2

⎤

⎦
⎥
⎡

⎣
⎢

11
10
12

4
4
3

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

109
112
81

38
35
34

10
10
8

⎤

⎦
⎥

 Exercise 5.E. 11

T : →R
3

R
2 A

T ( ) = Ax⃗  x⃗ 

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +2y +3z

2y −3x +z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

7x +2y +z

3x −11y +2z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

3x +2y +z

x +2y +6z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

2y −5x +z

x +y +z

 Exercise 5.E. 12

T : →R
3

R
2 T
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a. 

b. 

c. 

d. 

Suppose

exists where each  and let vectors  in  be given. Show that there always exists a linear
transformation  such that .

Find the matrix for  where .

Answer

Recall that  and so the desired matrix has th column equal to . Therefore, the matrix desired

is

Find the matrix for  where .

Answer

Find the matrix for  where .

Answer

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +2y +3z +1
2y −3x +z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +2 +3zy2

2y +3x +z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

sinx +2y +3z

2y +3x +z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x +2y +3z

2y +3x −lnz

 Exercise 5.E. 13

[ ⋯A1 An]−1

∈Aj R
n { , ⋯ , }B1 Bn R

m

T T ( ) =Ai Bi

 Exercise 5.E. 14

T ( ) = pro ( )w⃗  jv ⃗  w⃗  =v ⃗  [ ]1 −2 3 T

pro ( ) =ju ⃗  v ⃗  ∙v ⃗  u ⃗ 

|| |u ⃗  |2
u⃗  i pro ( )ju ⃗  e ⃗ i

1
14

⎡

⎣
⎢

1
−2
3

−2
4

−6

3
−6
9

⎤

⎦
⎥

 Exercise 5.E. 15

T ( ) = pro ( )w⃗  jv ⃗  w⃗  =v ⃗  [ ]1 5 3 T

1
35

⎡

⎣
⎢

1
5
3

5
25
15

3
15
9

⎤

⎦
⎥

 Exercise 5.E. 16

T ( ) = pro ( )w⃗  jv ⃗  w⃗  =v ⃗  [ ]1 0 3 T

1
10

⎡

⎣
⎢

1
0
3

0
0
0

3
0
9

⎤

⎦
⎥
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Show that if a function  is linear, then it is always the case that .

Let  be a linear transformation induced by the matrix  and  a linear transformation induced by 

. Find matrix of  and find  for .

Answer

The matrix of  is given by .

Now, .

Let  be a linear transformation and suppose . Suppose  is a linear transformation induced by the

matrix . Find  for .

Answer

To find  we compute .

Let  be a linear transformation induced by the matrix  and  a lienar transformation induced by 

. Find matrix of  and find  for .

Let  be a linear transformation induced by the matrix . Find the matrix of .

Answer

The matrix of  is .

 Exercise 5.E. 17

T : →R
n

R
m T ( ) =0⃗  0⃗ 

 Exercise 5.E. 18

T A = [ ]
3

−1
1
2

S

B = [ ]
0
4

−2
2

S ∘ T (S ∘ T )( )x⃗  = [ ]x⃗ 
2

−1

S ∘ T BA

[ ][ ] = [ ]
0
4

−2
2

3
−1

1
2

2
10

−4
8

(S ∘ T )( ) = (BA)x⃗  x⃗ 

[ ][ ] = [ ]
2

10
−4
8

2
−1

8
12

 Exercise 5.E. 19

T T ([ ]) = [ ]
1

−4
2

−3
S

B = [ ]
1

−1
2
3

(S ∘ T )( )x⃗  = [ ]x⃗ 
1

−4

(S ∘ T )( )x⃗  S(T ( ))x⃗ 

[ ][ ] = [ ]
1

−1
2
3

2
−3

−4
−11

 Exercise 5.E. 20

T A = [ ]
2
1

3
1

S

B = [ ]
−1
1

3
−2

S ∘ T (S ∘ T )( )x⃗  = [ ]x⃗ 
5
6

 Exercise 5.E. 21

T A = [ ]
2
5

1
2

T −1

T −1 A−1

= [ ][ ]
2
5

1
2

−1 −2
5

1
−2
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Let  be a linear transformation induced by the matrix . Find the matrix of .

Let  be a linear transformation and suppose . Find the matrix of .

Find the matrix for the linear transformation which rotates every vector in  through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of . Hint: Note that 
.

Answer

 Exercise 5.E. 22

T A = [ ]
4
2

−3
−2

T −1

 Exercise 5.E. 23

T T ([ ]) = [ ] , T ([ ]) = [ ]
1
2

9
8

0
−1

−4
−3

T −1

 Exercise 5.E. 24

R
2 π/3

[ ] = [ ]
cos( )π

3

sin( )π

3

−sin( )π

3

cos( )π

3

1
2

1
2

3–√

− 1
2

3–√
1
2

 Exercise 5.E. 25

R
2 π/4

[ ] = [ ]
cos( )π

4

sin( )π

4

−sin( )π

4

cos( )π

4

1
2

2–√
1
2 2–√

− 1
2

2–√
1
2 2–√

 Exercise 5.E. 26

R
2 −π/3

[ ] = [ ]
cos(− )π

3

sin(− )π

3

−sin(− )π

3

cos(− )π

3

1
2

− 1
2 3–√

1
2 3–√

1
2

 Exercise 5.E. 27

R
2 2π/3

[ ] = [ ]
cos( )2π

3

sin( )2π

3

−sin( )2π

3

cos( )2π

3

− 1
2

1
2 3–√

− 1
2

3–√

− 1
2

 Exercise 5.E. 28

R
2 π/12

π/12 = π/3 −π/4

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/93452?pdf


5.E.8 https://math.libretexts.org/@go/page/93452

Find the matrix for the linear transformation which rotates every vector in  through an angle of  and then reflects
across the  axis.

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of  and then reflects across
the  axis.

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of  and then reflects across
the  axis.

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of  and then reflects across
the  axis followed by a reflection across the  axis.

Answer

Find the matrix for the linear transformation which rotates every vector in  across the  axis and then rotates every vector
through an angle of .

=

[ ][ ]
cos( )π

3

sin( )π

3

−sin( )π

3

cos( )π

3

cos(− )π

4

sin(− )π

4

−sin(− )π

4

cos(− )π

4

[ ]
+1

4 2
–√ 3–√ 1

4 2
–√

−1
4 2

–√ 3–√ 1
4 2

–√

−1
4 2

–√ 1
4 2

–√ 3–√

+1
4 2

–√ 3–√ 1
4 2

–√

 Exercise 5.E. 29

R
2 2π/3

x

[ ][ ] = [ ]
1
0

0
−1

cos( )2π

3

sin( )2π

3

−sin( )2π

3

cos( )2π

3

− 1
2

− 1
2 3

–√

− 1
2 3–√
1
2

 Exercise 5.E. 30

R
2 π/3

x

[ ][ ] = [ ]
1
0

0
−1

cos( )π

3

sin( )π

3

−sin( )π

3

cos( )π

3

1
2

− 1
2

3–√

− 1
2

3–√

− 1
2

 Exercise 5.E. 31

R
2 π/4

x

[ ][ ] = [ ]
1
0

0
−1

cos( )π

4

sin( )π

4

−sin( )π

4

cos( )π

4

1
2 2–√

− 1
2 2

–√

− 1
2 2–√

− 1
2 2

–√

 Exercise 5.E. 32

R
2 π/6

x y

[ ] = [ ]
−1
0

0
1

⎡

⎣
⎢

cos( )π

6

sin( )π

6

−sin( )π

6

cos( )π

6

⎤

⎦
⎥

− 1
2 3–√
1
2

1
2

1
2 3

–√

 Exercise 5.E. 33

R
2 x

π/4
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Answer

Find the matrix for the linear transformation which rotates every vector in  across the  axis and then rotates every vector
through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  across the  axis and then rotates every vector
through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  across the  axis and then rotates every vector
through an angle of .

Answer

Find the matrix for the linear transformation which rotates every vector in  through an angle of . Hint: Note that 
.

Answer

Note that it doesn't matter about the order in this case.

[ ] [ ] = [ ]
cos( )π

4

sin( )π

4

−sin( )π

4

cos( )π

4

1
0

0
−1

1
2 2

–√
1
2 2

–√

1
2 2

–√

− 1
2 2

–√

 Exercise 5.E. 34

R
2 y

π/4

[ ] [ ] = [ ]
cos( )π

4

sin( )π

4

−sin( )π

4

cos( )π

4

−1
0

0
1

− 1
2

2–√

− 1
2

2–√

− 1
2

2–√
1
2

2–√

 Exercise 5.E. 35

R
2 x

π/6

[ ] = [ ]
⎡

⎣
⎢

cos( )π

6

sin( )π

6

−sin( )π

6

cos( )π

6

⎤

⎦
⎥

1
0

0
−1

1
2

3–√
1
2

1
2

− 1
2 3–√

 Exercise 5.E. 36

R
2 y

π/6

[ ] = [ ]
⎡

⎣
⎢

cos( )π

6

sin( )π

6

−sin( )π

6

cos( )π

6

⎤

⎦
⎥

−1
0

0
1

− 1
2 3

–√

− 1
2

− 1
2

1
2

3–√

 Exercise 5.E. 37

R
2 5π/12

5π/12 = 2π/3 −π/4

[ ][ ] =
cos( )2π

3

sin( )2π

3

−sin( )2π

3

cos( )2π

3

cos(− )π

4

sin(− )π

4

−sin(− )π

4

cos(− )π

4

[ ]
−1

4
2–√ 3–√ 1

4
2–√

+1
4

2–√ 3–√ 1
4

2–√

− −1
4

2–√ 3–√ 1
4

2–√

−1
4

2–√ 3–√ 1
4

2–√
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Find the matrix of the linear transformation which rotates every vector in  counter clockwise about the  axis when viewed
from the positive  axis through an angle of  and then reflects through the  plane.

Answer

Let  be a unit vector in . Find the matrix which reflects all vectors across this vector, as shown in the following

picture.

Figure 

Hint: Notice that  for some . First rotate through . Next reflect through the  axis. Finally rotate through 

.

Answer

Now to write in terms of , note that , . Now plug this in to the above. The
result is

Since this is a unit vector,  and so you get

 Exercise 5.E. 38

R
3 z

z 30◦ xy

=
⎡

⎣
⎢

1
0
0

0
1
0

0
0

−1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢⎢

cos( )π

6

sin( )π

6

0

−sin( )π

6

cos( )π

6

0

0

0

1

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢

1
2

3–√
1
2

0

− 1
2

1
2

3–√

0

0

0

−1

⎤

⎦

⎥⎥

 Exercise 5.E. 39

= [ ]u⃗ 
a

b
R

2

5.E. 1

[ ] = [ ]
a

b

cos θ

sinθ
θ −θ x

θ

=

[ ][ ][ ]
cos(θ)
sin(θ)

−sin(θ)
cos(θ)

1
0

0
−1

cos(−θ)
sin(−θ)

−sin(θ)
cos(−θ)

[ ]
θ − θcos2 sin2

2 cos θ sinθ

2 cos θ sinθ

θ − θsin2 cos2

(a, b) a/ = cos θ+a2 b2− −−−−−√ b/ = sinθ+a2 b2− −−−−−√

= [ ]
⎡

⎣
⎢

−a2 b2

+a2 b2

2 ab

+a2 b2

2 ab

+a2 b2

−b2 a2

+a2 b2

⎤

⎦
⎥

1
+a2 b2

−a2 b2

2ab

2ab

−b2 a2

+ = 1a2 b2

[ ]
−a2 b2

2ab

2ab

−b2 a2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/93452?pdf


5.E.11 https://math.libretexts.org/@go/page/93452

Let  be a linear transformation given by

Is  one to one? Is  onto?

Let  be a linear transformation given by

Is  one to one? Is  onto?

Let  be a linear transformation given by

Is  one to one? Is  onto?

Let  be a linear transformation given by

Is  one to one? Is  onto?

Give an example of a  matrix with the property that the linear transformation determined by this matrix is one to one but
not onto.

Answer

Suppose  is an  matrix in which . Suppose also that the rank of  equals . Show that the transformation 
determined by  maps  onto . Hint: The vectors  occur as columns in the reduced row-echelon form for .

Answer

 Exercise 5.E. 40

T

T [ ] = [ ][ ]
x

y

2
0

1
1

x

y

T T

 Exercise 5.E. 41

T

T [ ] = [ ]
x

y

⎡

⎣
⎢

−1
2
1

2
1
4

⎤

⎦
⎥

x

y

T T

 Exercise 5.E. 42

T

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

2
1

0
2

1
−1

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

T T

 Exercise 5.E. 43

T

T =
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
2
2

3
0
4

−5
2

−6

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

T T

 Exercise 5.E. 44

3 ×2

⎡

⎣
⎢

1
0
0

0
1
0

⎤

⎦
⎥

 Exercise 5.E. 45

A m ×n m ≤ n A m T

A R
n

R
m , ⋯ ,e ⃗ 1 e ⃗ m A
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This says that the columns of  have a subset of  vectors which are linearly independent. Therefore, this set of vectors is
a basis for . It follows that the span of the columns is all of . Thus  is onto.

Suppose  is an  matrix in which . Suppose also that the rank of  equals . Show that  is one to one. Hint: If
not, there exists a vector,  such that , and this implies at least one column of  is a linear combination of the others.
Show this would require the rank to be less than .

Answer

The columns are independent. Therefore,  is one to one.

Explain why an  matrix  is both one to one and onto if and only if its rank is .

Answer

The rank is  is the same as saying the columns are independent which is the same as saying  is one to one which is the
same as saying the columns are a basis. Thus the span of the columns of  is all of  and so  is onto. If  is onto, then
the columns must be linearly independent since otherwise the span of these columns would have dimension less than  and
so the dimension of  would be less than .

Let  and  be subspaces of  and  respectively and let  be a linear transformation. Suppose that 
 is linearly independent. Show that it must be the case that  is also linearly independent.

Answer

If , then using linearity properties of  we get

Since we assume that  is linearly independent, we must have all , and therefore we conclude that 
 is also linearly independent.

Let

Let  where  is the matrix

Give a basis for .

A m

R
m

R
m A

 Exercise 5.E. 46

A m ×n m ≥ n A n A

x⃗  A = 0x⃗  A

n

A

 Exercise 5.E. 47

n ×n A n

n A

A R
n A A

n

R
n n

 Exercise 5.E. 48

V W R
n

R
m T : V → W

{T , ⋯ , T }v ⃗ 1 v ⃗ r {T , ⋯ , T }v ⃗ 1 v ⃗ r

= 0∑r
i aiv ⃗ r T

0 = T (0) = T ( ) = T ( ).∑
i

r

aiv ⃗ r ∑
i

r

ai v ⃗ r

{T , ⋯ , T }v ⃗ a v ⃗ r = 0ai

{ , ⋯ , }v ⃗ 1 v ⃗ r

 Exercise 5.E. 49

V = span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
1
2
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
1
1
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
1
0
1

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = Ax⃗  x⃗  A

⎡

⎣

⎢
⎢⎢

1
0
0
1

1
1
1
1

1
1
2
1

1
0
1
2

⎤

⎦

⎥
⎥⎥

im(T )
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Let

Let  where  is the matrix

Find a basis for . In this case, the original vectors do not form an independent set.

Answer

Since the third vector is a linear combinations of the first two, then the image of the third vector will also be a linear
combinations of the image of the first two. However the image of the first two vectors are linearly independent (check!),
and hence form a basis of the image.

Thus a basis for  is:

If  is linearly independent and  is a one to one linear transformation, show that  is also linearly
independent. Give an example which shows that if  is only linear, it can happen that, although  is linearly
independent,  is not. In fact, show that it can happen that each of the  equals .

Let  and  be subspaces of  and  respectively and let  be a linear transformation. Show that if  is onto 
 and if  is a basis for , then .

Define :  as follows.

Find a basis for . Also find a basis for .

 Exercise 5.E. 50

V = span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1
0
0
1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1
1
1
1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1
4
4
1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = Ax⃗  x⃗  A

⎡

⎣

⎢
⎢⎢

1
0
0
1

1
1
1
1

1
1
2
1

1
0
1
2

⎤

⎦

⎥
⎥⎥

im(T )

im(T )

V = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

2
0
1
3

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

4
2
4
5

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Exercise 5.E. 51

{ , ⋯ , }v ⃗ 1 v ⃗ r T {T , ⋯ , T }v ⃗ 1 v ⃗ r
T { , ⋯ , }v ⃗ 1 v ⃗ r

{T , ⋯ , T }v ⃗ 1 v ⃗ r T v ⃗ j 0

 Exercise 5.E. 52

V W R
n

R
m T : V → W T

W { , ⋯ , }v ⃗ 1 v ⃗ r V span{T , ⋯ , T } = Wv ⃗ 1 v ⃗ r

 Exercise 5.E. 53

T →R
4

R
3

T =x⃗ 
⎡

⎣
⎢

3
2
1

2
2
1

1
−2
−1

8
6
3

⎤

⎦
⎥ x⃗ 

im(T ) ker(T )
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Define :  as follows.

where on the right, it is just matrix multiplication of the vector  which is meant. Explain why  is an isomorphism of  to 
.

Suppose :  is a linear transformation given by

where  is a  matrix. Show that  is an isomorphism if and only if  is invertible.

Suppose :  is a linear transformation given by

where  is an  matrix. Show that  is never an ismorphism if . In particular, show that if ,  cannot be
onto and if , then  cannot be one to one.

Define :  as follows.

where on the right, it is just matrix multiplication of the vector  which is meant. Show that  is one to one. Next let 
. Show that  is an isomorphism of  and .

In the above problem, find a  matrix  such that the restriction of  to  gives the same result as  on .
Hint: You might let  be such that

now find another vector  such that

is a basis. You could pick

 Exercise 5.E. 54

T →R
3

R
3

T =x⃗ 
⎡

⎣
⎢

1
1
0

2
1
1

0
1
1

⎤

⎦
⎥ x⃗ 

x⃗  T R
3

R
3

 Exercise 5.E. 55

T →R
3

R
3

T = Ax⃗  x⃗ 

A 3 ×3 T A

 Exercise 5.E. 56

T →R
n

R
m

T = Ax⃗  x⃗ 

A m ×n T m ≠ n m > n T

m < n T

 Exercise 5.E. 57

T →R
2

R
3

T =x⃗ 
⎡

⎣
⎢

1
1
0

0
1
1

⎤

⎦
⎥ x⃗ 

x⃗  T

W = im(T ) T R
2 im(T )

 Exercise 5.E. 58

2 ×3 A A im(T ) T −1 im(T )
A

A = [ ] , A = [ ]
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

1
0

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

0
1

∈v ⃗  R
3

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥ v ⃗ 

⎫

⎭
⎬
⎪

⎪
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for example. Explain why this one works or one of your choice works. Then you could define  to equal some vector in .
Explain why there will be more than one such matrix  which will deliver the inverse isomorphism  on .

Now let  equan  and let :  be a linear transformation where

and

Explain why  is an isomorphism. Determine a matrix  which, when multiplied on the left gives the same result as  on 
and a matrix  which delivers  on . Hint: You need to have

Now enlarge  to obtain a basis for . You could add in  for example, and then pick another vector in 

and let  equal this other vector. Then you would have

This would involve picking for the new vector in  the vector . Then you could find . You can do
something similar to find a matrix for  denoted as .

Let  and let

=v ⃗ 
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

Av ⃗  R
2

A T −1 im(T )

 Exercise 5.E. 59

V span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
T V → W

W = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1
0
1
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
1
1
1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = , T =
⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

0
1
1
1

⎤

⎦

⎥⎥⎥

T A T V

B T −1 W

A =
⎡

⎣
⎢

1
0
1

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

1
0
1
0

0
1
1
1

⎤

⎦

⎥
⎥⎥

,
⎡

⎣
⎢

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥ R

3
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥ R

4

A
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

A =
⎡

⎣
⎢

1
0
1

0
1
1

0
0
1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1
0
1
0

0
1
1
1

0
0
0
1

⎤

⎦

⎥⎥
⎥

R
4 [ ]0 0 0 1 T A

T −1 B

 Exercise 5.E. 60

V = R
3

W = span(S),  where S = , , ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−1

1

⎤

⎦
⎥
⎡

⎣
⎢

−2
2

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

1
−1

3

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
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Find a basis of  consisting of vectors in .

Answer

In this case  and a basis for  consisting of vectors in  can be obtained by taking any (nonzero) vector from
.

Let  be a linear transformation given by

Find a basis for  and .

Answer

A basis for  is  and a basis for  is . There are many other possibilities for the specific

bases, but in this case  and .

Let  be a linear transformation given by

Find a basis for  and .

Answer

In this case  and  (pick any basis of ).

Let  and let

Extend this basis of  to a basis of .

Answer

There are many possible such extensions, one is (how do we know?):

Let  be a linear transformation given by

W S

dim(W ) = 1 W S

S

 Exercise 5.E. 61

T

T [ ] = [ ][ ]
x

y

1
1

1
1

x

y

ker(T ) im(T )

ker(T ) {[ ]}
1

−1
im(T ) {[ ]}

1
1

dim(ker(T )) = 1 dim(im(T )) = 1

 Exercise 5.E. 62

T

T [ ] = [ ][ ]
x

y

1
1

0
1

x

y

ker(T ) im(T )

ker(T ) = {0} im(T ) = R
2

R
2

 Exercise 5.E. 63

V = R
3

W = span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

−1
2

−1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

W V

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

−1
2

−1

⎤

⎦
⎥
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Exercise 5.E. 64

T
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What is ?

Answer

We can easily see that , and thus .

Let  be a basis of  and let  be a vector in . Find .

Let  be a basis of  and let  be a vector in . Find .

Answer

Let :  be a linear transformation defined by .

Consider the two bases

and

Find the matrix  of  with respect to the bases  and .

Answer

Write the solution set of the following system as a linear combination of vectors

Answer

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

1
1

1
1

1
1

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

dim(ker(T ))

dim(im(T )) = 1 dim(ker(T )) = 3 −dim(im(T )) = 3 −1 = 2

 Exercise 5.E. 65

B ={[ ] , [ ]}
2

−1
3
2

R
2 = [ ]x⃗ 

5
−7

R
2 ( )CB x⃗ 

 Exercise 5.E. 66

B = , ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−1

2

⎤

⎦
⎥
⎡

⎣
⎢

2
1
2

⎤

⎦
⎥
⎡

⎣
⎢

−1
0
2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
R

3 =x⃗ 
⎡

⎣
⎢

5
−1

4

⎤

⎦
⎥ R

2 ( )CB x⃗ 

( ) =CB x⃗ 
⎡

⎣
⎢

2
1

−1

⎤

⎦
⎥

 Exercise 5.E. 67

T →R
2

R
2 T ([ )] = [ ]

a

b

a +b

a −b

= { , } ={[ ] , [ ]}B1 v ⃗ 1 v ⃗ 2
1
0

−1
1

={[ ] , [ ]}B2
1
1

1
−1

M ,B2 B1 T B1 B2

= [ ]MB2B1

1
−1

0
1

 Exercise 5.E. 68

=
⎡

⎣
⎢

1
1
3

−1
−2
−4

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥
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Solution is: . A basis for the solution space is 

Using Exercise  find the general solution to the following linear system.

Answer

Note that this has the same matrix as the above problem. Solution is: 

Write the solution set of the following system as a linear combination of vectors

Answer

Solution is: , A basis is 

Using Exercise  find the general solution to the following linear system.

Answer

Solution is: 

Write the solution set of the following system as a linear combination of vectors.

, ∈ R

⎡

⎣

⎢⎢

−3 t̂

−t̂

t̂

⎤

⎦

⎥⎥ t̂ 3

⎡

⎣
⎢

−3
−1

1

⎤

⎦
⎥

 Exercise 5.E. 69

5.E. 68

=
⎡

⎣
⎢

1
1
3

−1
−2
−4

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
2
4

⎤

⎦
⎥

+ , ∈ R

⎡

⎣

⎢⎢

−3 t̂ 3

−t̂ 3

t̂ 3

⎤

⎦

⎥⎥
⎡

⎣
⎢

0
−1

0

⎤

⎦
⎥ t̂ 3

 Exercise 5.E. 70

=
⎡

⎣
⎢

0
1
1

−1
−2
−4

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

⎡

⎣

⎢⎢

3 t̂

2 t̂

t̂

⎤

⎦

⎥⎥
⎡

⎣
⎢

3
2
1

⎤

⎦
⎥

 Exercise 5.E. 71

5.E. 70

=
⎡

⎣
⎢

0
1
1

−1
−2
−4

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
−1
1

⎤

⎦
⎥

+ , ∈ R

⎡

⎣

⎢⎢

3 t̂

2 t̂

t̂

⎤

⎦

⎥⎥
⎡

⎣
⎢

−3
−1
0

⎤

⎦
⎥ t̂

 Exercise 5.E. 72

=
⎡

⎣
⎢

1
1
3

−1
−2
−4

2
0
4

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥
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Answer

Solution is: . A basis is 

Using Exercise  find the general solution to the following linear system.

Answer

Solution is: 

Write the solution set of the following system as a linear combination of vectors

Answer

Solution is: 

Using Exercise  find the general solution to the following linear system.

Answer

Solution is: 

Write the solution set of the following system as a linear combination of vectors

⎡

⎣
⎢⎢

−4 t̂

−2 t̂

t̂

⎤

⎦
⎥⎥

⎡

⎣
⎢

−4
−2

1

⎤

⎦
⎥

 Exercise 5.E. 73

5.E. 72

=
⎡

⎣
⎢

1
1
3

−1
−2
−4

2
0
4

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
2
4

⎤

⎦
⎥

+ , ∈ R

⎡

⎣
⎢⎢

−4 t̂

−2 t̂

t̂

⎤

⎦
⎥⎥
⎡

⎣
⎢

0
−1

0

⎤

⎦
⎥ t̂

 Exercise 5.E. 74

=
⎡

⎣
⎢

0
1
1

−1
0

−2

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

, ∈ R

⎡

⎣
⎢⎢

−t̂

2 t̂

t̂

⎤

⎦
⎥⎥ t̂

 Exercise 5.E. 75

5.E. 74

=
⎡

⎣
⎢

0
1
1

−1
0

−2

2
1
5

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

1
−1
1

⎤

⎦
⎥

+
⎡

⎣
⎢⎢

−t̂

2 t̂

t̂

⎤

⎦
⎥⎥
⎡

⎣
⎢

−1
−1

0

⎤

⎦
⎥

 Exercise 5.E. 76
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Answer

Solution is: 

Using Exercise  find the general solution to the following linear system.

Answer

Solution is: 

Write the solution set of the following system as a linear combination of vectors

Answer

Solution is: . A basis is

Using Exercise  find the general solution to the following linear system.

=

⎡

⎣

⎢⎢
⎢

1
1
3
3

0
−1
−1
3

1
1
3
0

1
0
2
3

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0
0
0

⎤

⎦

⎥⎥
⎥

, ∈ R

⎡

⎣

⎢⎢⎢⎢

0

−t̂

−t̂

t̂

⎤

⎦

⎥⎥⎥⎥
t̂

 Exercise 5.E. 77

5.E. 76

=

⎡

⎣

⎢
⎢⎢

1
1
3
3

0
−1
−1
3

1
1
3
0

1
0
2
3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

x

y

z

w

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1
2
4
3

⎤

⎦

⎥
⎥⎥

+

⎡

⎣

⎢⎢⎢⎢

0

−t̂

−t̂

t̂

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢
⎢⎢

2
−1
−1

0

⎤

⎦

⎥
⎥⎥

 Exercise 5.E. 78

=

⎡

⎣

⎢⎢⎢

1
2
1
0

1
1
0
0

0
1
1
0

1
2
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

x

y

z

w

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
0
0
0

⎤

⎦

⎥⎥⎥

, s, t ∈ R

⎡

⎣

⎢⎢⎢

−s − t

s

s

t

⎤

⎦

⎥⎥⎥

,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

−1
1
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1
0
0
1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Exercise 5.E. 79

5.E. 78
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Answer

Solution is:

Write the solution set of the following system as a linear combination of vectors

Answer

Solution is:

for . A basis is

Using Exercise  find the general solution to the following linear system.

Answer

Solution is:

=

⎡

⎣

⎢⎢
⎢

1
2
1
0

1
1
0

−1

0
1
1
1

1
2
1
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2
−1
−3

0

⎤

⎦

⎥⎥
⎥

+

⎡

⎣

⎢⎢⎢⎢

−t̂

t̂

t̂

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢
⎢

−8
5
0
5

⎤

⎦

⎥⎥
⎥

 Exercise 5.E. 80

=

⎡

⎣

⎢
⎢⎢

1
1
3
3

1
−1

1
3

0
1
1
0

1
0
2
3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

x

y

z

w

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
0
0
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

− s − t1
2

1
2

s − t1
2

1
2

s

t

⎤

⎦

⎥⎥⎥⎥⎥

s, t ∈ R

,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

−1
1
2
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

−1
1
0
1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Exercise 5.E. 81

5.E. 80

=

⎡

⎣

⎢⎢⎢

1
1
3
3

1
−1

1
3

0
1
1
0

1
0
2
3

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢
⎢⎢

x

y

z

w

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢⎢⎢

1
2
4
3

⎤

⎦

⎥⎥⎥
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Write the solution set of the following system as a linear combination of vectors

Answer

Solution is: , a basis is .

Using Exercise  find the general solution to the following linear system.

Answer

Solution is: .

Suppose  has a solution. Explain why the solution is unique precisely when  has only the trivial solution.

Answer

If not, then there would be a infintely many solutions to  and each of these added to a solution to  would be
a solution to .

This page titled 5.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) .

+

⎡

⎣

⎢⎢⎢⎢⎢

3
2

− 1
2

0
0

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

− s − t1
2

1
2

s − t1
2

1
2

s

t

⎤

⎦

⎥⎥⎥⎥⎥

 Exercise 5.E. 82

=

⎡

⎣

⎢⎢⎢

1
2
1
0

1
1
0

−1

0
1
1
1

1
2
1
1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

x

y

z

w

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
0
0
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

−t̂

t̂

t̂

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢
⎢

1
1
1
0

⎤

⎦

⎥⎥
⎥

 Exercise 5.E. 83

5.E. 82

=

⎡

⎣

⎢⎢
⎢

1
2
1
0

1
1
0

−1

0
1
1
1

1
2
1
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

x

y

z

w

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

2
−1
−3

1

⎤

⎦

⎥⎥
⎥

+ , t ∈ R

⎡

⎣

⎢⎢⎢⎢

−t̂

t̂

t̂

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢
⎢

−9
5
0
6

⎤

⎦

⎥⎥
⎥

 Exercise 5.E. 84

A =x⃗  b ⃗  A =x⃗  0⃗ 

A =x⃗  0⃗  A =x⃗  b ⃗ 

A =x⃗  b ⃗ 
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6.1: Complex Numbers

A. Understand the geometric significance of a complex number as a point in the plane.
B. Prove algebraic properties of addition and multiplication of complex numbers, and apply these properties. Understand the

action of taking the conjugate of a complex number.
C. Understand the absolute value of a complex number and how to find it as well as its geometric significance.

Although very powerful, the real numbers are inadequate to solve equations such as , and this is where complex
numbers come in. We define the number  as the imaginary number such that , and define complex numbers as those of the
form  where  and  are real numbers. We call this the standard form, or Cartesian form, of the complex number .
Then, we refer to  as the real part of , and  as the imaginary part of . It turns out that such numbers not only solve the above
equation, but in fact also solve any polynomial of degree at least 1 with complex coefficients. This property, called the
Fundamental Theorem of Algebra, is sometimes referred to by saying  is algebraically closed. Gauss is usually credited with
giving a proof of this theorem in 1797 but many others worked on it and the first completely correct proof was due to Argand in
1806.

Just as a real number can be considered as a point on the line, a complex number  can be considered as a point  in
the plane whose  coordinate is  and whose  coordinate is  For example, in the following picture, the point  can be
represented as the point in the plane with coordinates 

Figure 

Addition of complex numbers is defined as follows.

This addition obeys all the usual properties as the following theorem indicates.

Let  and  be complex numbers. Then the following properties hold.

Commutative Law for Addition

Additive Identity

Existence of Additive Inverse

Associative Law for Addition

 Outcomes

+1 = 0x2

i = −1i2

z = a+bi a b z

a z b z

C

z = a+bi (a, b)
x a y b. z = 3 +2i

(3, 2) .

6.1.1

(a+bi) +(c+di) = (a+c) +(b+d) i

 Theorem : Properties of Addition of Complex Numbers6.1.1

z,w, v

z+w = w+z

z+0 = z

For each z ∈ C, there exists −z ∈ C such that z+(−z) = 0

In fact if z = a+bi,  then  −z = −a−bi.
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Proof

The proof of this theorem is left as an exercise for the reader.

Now, multiplication of complex numbers is defined the way you would expect, recalling that .

Consider the following examples.

The following are important properties of multiplication of complex numbers.

Let  and  be complex numbers. Then, the following properties of multiplication hold.

Commutative Law for Multiplication

Associative Law for Multiplication

Multiplicative Identity

Existence of Multiplicative Inverse

Distributive Law

You may wish to verify some of these statements. The real numbers also satisfy the above axioms, and in general any mathematical
structure which satisfies these axioms is called a field. There are many other fields, in particular even finite ones particularly useful
for cryptography, and the reason for specifying these axioms is that linear algebra is all about fields and we can do just about
anything in this subject using any field. Although here, the fields of most interest will be the familiar field of real numbers, denoted
as , and the field of complex numbers, denoted as .

An important construction regarding complex numbers is the complex conjugate denoted by a horizontal line above the number, .
It is defined as follows.

Let  be a complex number. Then the conjugate of , written  is given by

(z+w) +v= z+(w+v)

= −1i2

(a+bi) (c+di) = ac+adi+bci+ bdi
2

= (ac−bd) +(ad+bc) i

 Example : Multiplication of Complex Numbers6.1.1

(2 −3i)(−3 +4i) = 6 +17i
(4 −7i)(6 −2i) = 10 −50i
(−3 +6i)(5 − i) = −9 +33i

 Theorem : Properties of Multiplication of Complex Numbers6.1.2

z,w v

zw = wz

(zw)v= z (wv)

1z = z

For each z ≠ 0, there exists  such that z = 1z−1 z−1

z (w+v) = zw+zv

R C

z̄̄̄

 Definition : Conjugate of a Complex Number6.1.1

z = a+bi z z̄̄̄

= a−bia+bi
¯ ¯¯̄¯̄¯̄¯̄¯̄¯
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Geometrically, the action of the conjugate is to reflect a given complex number across the  axis. Algebraically, it changes the sign
on the imaginary part of the complex number. Therefore, for a real number , .

If , then , i.e., .
.

.
.

Consider the following computation.

Notice that there is no imaginary part in the product, thus multiplying a complex number by its conjugate results in a real number.

Let  and  be complex numbers. Then, the following properties of the conjugate hold.

.
.

.

.
 is real if and only if .

Division of complex numbers is defined as follows. Let  and  be complex numbers such that  are not
both zero. Then the quotient  divided by  is

In other words, the quotient  is obtained by multiplying both top and bottom of  by  and then simplifying the expression.

Interestingly every nonzero complex number  has a unique multiplicative inverse. In other words, for a nonzero complex
number , there exists a number  (or ) so that . Note that  is nonzero exactly when , and its

x

a = aā̄̄

 Example : Conjugate of a Complex Number6.1.2

z = 3 +4i = 3 −4iz̄̄̄ = 3 −4i3 +4i
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

= −2 −5i−2 +5i¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

= −ii
¯

= 77¯̄̄

( ) (a+bi)a+bi
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

= (a−bi) (a+bi)

= + −(ab−ab) i = +a2 b2 a2 b2

 Theorem : Properties of the Conjugate6.1.3

z w

= ±z±w
¯ ¯¯̄¯̄¯̄¯̄¯̄

z̄̄̄ w̄̄̄̄

=  (zw)
¯ ¯¯̄¯̄¯̄¯̄

z̄̄̄ w̄̄̄̄

= z( )z̄̄̄
¯ ¯¯̄ ¯̄

=( )z
w

¯ ¯¯̄¯̄¯̄¯ z̄̄̄

w̄̄̄̄

z = zz̄̄̄

z = a+bi w = c+di c, d
z w

z

w
=

a+bi

c+di

= ×
a+bi

c+di

c−di

c−di

=
(ac+bd) +(bc−ad)i

+c2 d2

= + i.
ac+bd

+c2 d2

bc−ad

+c2 d2

z
w

z
w w̄̄̄̄

 Example : Division of Complex Numbers6.1.3

= × = = −i
1

i

1

i

−i

−i

−i

−i2

= × = = = − i
2 − i

3 +4i

2 − i

3 +4i

3 −4i

3 −4i

(6 −4) +(−3 −8)i

+32 42

2 −11i

25

2

25

11

25

= × = = − − i
1 −2i

−2 +5i

1 −2i

−2 +5i

−2 −5i

−2 −5i

(−2 −10) +(4 −5)i

+22 52

12

29

1

29

a+bi

z z−1 1
z

z = 1z−1 z = a+bi + ≠ 0a2 b2
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inverse can be written in standard form as defined now.

Let  be a complex number. Then the multiplicative inverse of , written  exists if and only if  and is
given by

Note that we may write  as . Both notations represent the multiplicative inverse of the complex number . Consider now an
example.

Consider the complex number . Then  is defined, and

You can always check your answer by computing .

Another important construction of complex numbers is that of the absolute value, also called the modulus. Consider the following
definition.

The absolute value, or modulus, of a complex number, denoted  is defined as follows.

Thus, if  is the complex number , it follows that

Also from the definition, if  and  are two complex numbers, then  Take a moment to verify
this.

The triangle inequality is an important property of the absolute value of complex numbers. There are two useful versions which we
present here, although the first one is officially called the triangle inequality.

Let  be complex numbers.

The following two inequalities hold for any complex numbers :

 Definition : Inverse of a Complex Number6.1.2

z = a+bi z z−1 + ≠ 0a2 b2

= = × = = − iz−1 1

a+bi

1

a+bi

a−bi

a−bi

a−bi

+a2 b2

a

+a2 b2

b

+a2 b2

z−1 1
z z

 Example : Inverse of a Complex Number6.1.4

z = 2 +6i z−1

1

z
=

1

2 +6i

= ×
1

2 +6i

2 −6i

2 −6i

=
2 −6i

+22 62

=
2 −6i

40

= − i
1

20

3

20

zz−1

 Definition : Absolute Value6.1.3

|z|

|a+bi| = +a
2

b
2− −−−−−

√

z z = a+bi

|z| = (z )z̄̄̄ 1/2

z = a+bi w = c+di |zw| = |z| |w| .

 Proposition : Triangle Inequality6.1.1

z,w

z,w

|z+w| ≤ |z| + |w|

||z| − |w|| ≤ |z−w|
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The first one is called the Triangle Inequality.

Proof

Let  and . First note that

and so 

Then,

Taking the square root, we have that

so this verifies the triangle inequality.

To get the second inequality, write

and so by the first form of the inequality we get both:

Hence, both  and  are no larger than . This proves the second version because  is one of
 or .

With this definition, it is important to note the following. You may wish to take the time to verify this remark.

Let  and  Then

Thus the distance between the point in the plane determined by the ordered pair  and the ordered pair  equals 
where  and  are as just described.

For example, consider the distance between  and  Letting  and  , 
 so .

Recall that we refer to  as the standard form of the complex number. In the next section, we examine another form in
which we can express the complex number.

This page titled 6.1: Complex Numbers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

z = a+bi w = c+di

z = (a+bi) (c−di) = ac+bd+(bc−ad) iw̄̄̄̄

|ac+bd| ≤ |z | = |z| |w| .w̄̄̄̄

= (a+c+ i (b+d)) (a+c− i (b+d))|z+w|2

= + = + +2ac+2bd+ +(a+c)2 (b+d)2
a2 c2 b2 d2

≤ + +2 |z| |w| =|z|2 |w|2 (|z| + |w|)2

|z+w| ≤ |z| + |w|

z = z−w+w, w = w−z+z

|z| ≤ |z−w| + |w| , |w| ≤ |z−w| + |z|

|z| − |w| |w| − |z| |z−w| ||z| − |w||
|z| − |w| |w| − |z|

z = a+bi w = c+di.

|z−w| = .+(a−c)
2

(b−d)
2

− −−−−−−−−−−−−−−
√

(a, b) (c, d) |z−w|
z w

(2, 5) (1, 8) . z = 2 +5i w = 1 +8i, z−w = 1 −3i

(z−w)( ) = (1 −3i) (1 +3i) = 10z−w¯ ¯¯̄¯̄¯̄¯̄¯̄ |z−w| = 10
−−

√

z = a+bi
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6.2: Polar Form

A. Convert a complex number from standard form to polar form, and from polar form to standard form.

In the previous section, we identified a complex number  with a point  in the coordinate plane. There is another
form in which we can express the same number, called the polar form. The polar form is the focus of this section. It will turn out to
be very useful if not crucial for certain calculations as we shall soon see.

Suppose  is a complex number, and let . Recall that  is the modulus of . Note first that

and so  is a point on the unit circle. Therefore, there exists an angle  (in radians) such that

In other words  is an angle such that  and , that is  and . We call this angle 
 the argument of .

We often speak of the principal argument of . This is the unique angle  such that

The polar form of the complex number  is for convenience written as:

where  is the argument of .

Let  be a complex number. Then the polar form of  is written as

where  and  is the argument of .

When given , the identity  will convert  back to standard form. Here we think of  as a short cut for
. This is all we will need in this course, but in reality  can be considered as the complex equivalent of the

exponential function where this turns out to be a true equality.

 Outcomes

z = a +bi (a, b)

z = a +bi r = = |z|+a2 b2
− −−−−−

√ r z

+ = = 1( )
a

r

2
( )

b

r

2
+a

2
b

2

r2

( , )a

r

b

r
θ

cos θ = ,   sinθ =
a

r

b

r

θ a = r cos θ b = r sinθ θ = (a/r)cos−1
θ = (b/r)sin−1

θ z

z θ ∈ (−π, π]

cos θ = ,   sinθ =
a

r

b

r

z = a +bi = r (cos θ + i sinθ)

z = re
iθ

θ z

 Definition : Polar Form of a Complex Number6.2.1

z = a +bi z

z = re
iθ

r = +a2 b2
− −−−−−

√ θ z

z = re
iθ = cos θ + i sinθe

iθ
z e

iθ

cos θ + i sinθ e
iθ
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Figure 

Thus we can convert any complex number in the standard (Cartesian) form  into its polar form. Consider the following
example.

Let  be a complex number. Write  in the polar form

Solution

First, find . By the above discussion, . Therefore,

Now, to find , we plot the point  and find the angle from the positive  axis to the line between this point and the origin.
In this case, . That is we found the unique angle  such that  and .

Note that in polar form, we always express angles in radians, not degrees.

Hence, we can write  as

Notice that the standard and polar forms are completely equivalent. That is not only can we transform a complex number from
standard form to its polar form, we can also take a complex number in polar form and convert it back to standard form.

Let . Write  in the standard form

Solution

Let  be the polar form of a complex number. Recall that . Therefore using standard values of 
 and  we get:

6.2.1

z = a +bi

 Example : Standard to Polar Form6.2.1

z = 2 +2i z

z = re
iθ

r r = = |z|+a2 b2
− −−−−−

√

r = = = 2+22 22− −−−−−
√ 8

–
√ 2

–
√

θ (2, 2) x

θ = =45∘ π

4
θ θ = (1/ )cos−1 2

–
√ θ = (1/ )sin−1 2

–
√

z

z = 2 2
–

√ e
i

π

4

 Example : Polar to Standard Form6.2.3

z = 2e2πi/3 z

z = a +bi

z = 2e
2πi/3 = cos θ + i sinθe

iθ

sin cos
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which is the standard form of this complex number.

You can always verify your answer by converting it back to polar form and ensuring you reach the original answer.

This page titled 6.2: Polar Form is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

z = 2e
i2π/3 = 2(cos(2π/3) + i sin(2π/3))

= 2(− + i )
1

2

3
–

√

2

= −1 + i3
–

√
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6.3: Roots of Complex Numbers

A. Understand De Moivre’s theorem and be able to use it to find the roots of a complex number.

A fundamental identity is the formula of De Moivre with which we begin this section.

For any positive integer , we have

Thus for any real number  and any positive integer , we have:

Proof

The proof is by induction on . It is clear the formula holds if  Suppose it is true for  Then, consider .

which by induction equals

by the formulas for the cosine and sine of the sum of two angles.

The process used in the previous proof, called mathematical induction is very powerful in Mathematics and Computer Science and
explored in more detail in the Appendix.

Now, consider a corollary of Theorem .

Let  be a non zero complex number. Then there are always exactly  many  roots of  in .

Proof

Let  and let  be the polar form of the complex number. By De Moivre’s theorem, a
complex number

is a  root of  if and only if

This requires  and so . Also, both  and  This can only happen if

for  an integer. Thus

and so the  roots of  are of the form

 Outcomes

 Theorem : De Moivre’s Theorem6.3.1

n

=( )eiθ n
einθ

r > 0 n

= (cos nθ + i sinnθ)(r (cos θ + i sinθ))
n

rn

n n = 1. n. n +1

= (r (cos θ + i sinθ))(r (cos θ + i sinθ)) n+1 (r (cos θ + i sinθ)) n

= (cos nθ + i sinnθ) (cos θ + i sinθ)rn+1

= ((cos nθ cos θ −sinnθ sinθ) + i (sinnθ cos θ +cos nθ sinθ))rn+1

= (cos(n +1)θ + i sin(n +1)θ)rn+1

6.3.1

 Corollary : Roots of Complex Numbers6.3.1

z k kth z C

z = a +bi z = |z| (cos θ + i sinθ)

w = r = r (cos α + i sinα)eiα

kth z

= (r = = (cos kα + i sinkα) = |z| (cos θ + i sinθ)wk eiα)k rkeikα rk

= |z|rk r = |z|1/k cos(kα) = cos θ sin(kα) = sinθ.

kα = θ +2ℓπ

ℓ

α = , ℓ = 0, 1, 2, ⋯ , k −1
θ +2ℓπ

k

kth z
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Since the cosine and sine are periodic of period  there are exactly  distinct numbers which result from this formula.

The procedure for finding the  roots of  is as follows.

Let  be a complex number. We wish to find the  roots of , that is all  such that .

There are  distinct  roots and they can be found as follows:.

1. Express both  and  in polar form . Then  becomes:

We need to solve for  and .
2. Solve the following two equations:

3. The solutions to  are given by .
4. The solutions to  are given by:

or

5. Using the solutions  to the equations given in  construct the  roots of the form .

Notice that once the roots are obtained in the final step, they can then be converted to standard form if necessary. Let’s consider an
example of this concept. Note that according to Corollary , there are exactly  cube roots of a complex number.

Find the three cube roots of  In other words find all  such that .

Solution

First, convert each number to polar form:  and . The equation now becomes

Therefore, the two equations that we need to solve are  and . Given that  and  it follows that 
.

Solving the second equation is as follows. First divide by . Then, since the argument of  is not unique we write 
 for .

For :

(cos( )+ i sin( )) , ℓ = 0, 1, 2, ⋯ , k −1|z|1/k θ +2ℓπ

k

θ +2ℓπ

k

2π, k

kth z ∈ C

 Procedure : Finding Roots of a Complex Number6.3.1

w nth w z = wzn

n nth

z w z = r , w = seiθ eiϕ = wzn

(r = = seiθ)n rneinθ eiϕ

r θ

= srn

=einθ eiϕ (6.3.1)

= srn r = s√n

=einθ eiϕ

nθ = ϕ +2πℓ, for ℓ = 0, 1, 2, ⋯ , n −1

θ = + πℓ, for ℓ = 0, 1, 2, ⋯ , n −1
ϕ

n

2

n

r, θ (6.3.1) nth z = reiθ

6.3.1 3

 Example : Finding Cube Roots6.3.1

i. z = iz3

z = reiθ i = 1eiπ/2

(r = = 1eiθ)3 r3e3iθ eiπ/2

= 1r3 3iθ = iπ/2 r ∈ R = 1r3

r = 1

i i

3θ = π/2 +2πℓ ℓ = 0, 1, 2

3θ

θ

= π/2 +2πℓ for ℓ = 0, 1, 2

= π/6 + πℓ for ℓ = 0, 1, 2
2

3

ℓ = 0
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For :

For :

Therefore, the three roots are given by

Written in standard form, these roots are, respectively,

The ability to find  roots can also be used to factor some polynomials.

Factor the polynomial 

Solution
First find the cube roots of 27. By the above procedure , these cube roots are

and

You may wish to verify this using the above steps.

Therefore,

Note also

and so

where the quadratic polynomial  cannot be factored without using complex numbers.

Note that even though the polynomial  has all real coefficients, it has some complex zeros,  and 

. These zeros are complex conjugates of each other. It is always the case that if a polynomial has real coefficients

θ = π/6 + π(0) = π/6
2

3

ℓ = 1

θ = π/6 + π(1) = π
2

3

5

6

ℓ = 2

θ = π/6 + π(2) = π
2

3

3

2

1 , 1 , 1eiπ/6 ei π
5

6 ei π
3

2

+ i , − + i , −i
3
–

√

2

1

2

3
–

√

2

1

2

kth

 Example : Solving a Polynomial Equation6.3.2

−27.x3

3, 3( + i ) ,
−1

2

3
–

√

2

3( − i ) .
−1

2

3
–

√

2

−27 = (x −3)(x −3( + i ))(x −3( − i ))x3 −1

2

3
–

√

2

−1

2

3
–

√

2

(x −3( + i ))(x −3( − i )) = +3x +9
−1

2

3
–

√

2

−1

2

3
–

√

2
x2

−27 = (x −3)( +3x +9)x3 x2

+3x +9x2

−27x3 3( + i ) ,
−1

2

3
–

√

2

3( − i )
−1

2

3
–

√

2
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and a complex root, it will also have a root equal to the complex conjugate.

This page titled 6.3: Roots of Complex Numbers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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6.4: The Quadratic Formula

A. Use the Quadratic Formula to find the complex roots of a quadratic equation.

The roots (or solutions) of a quadratic equation  where  are real numbers are obtained by solving the
familiar quadratic formula given by

When working with real numbers, we cannot solve this formula if  However, complex numbers allow us to find
square roots of negative numbers, and the quadratic formula remains valid for finding roots of the corresponding quadratic
equation. In this case there are exactly two distinct (complex) square roots of , which are  and .

Here is an example.

Find the solutions to .

Solution
In terms of the quadratic equation above, , , and . Therefore, we can use the quadratic formula with these
values, which becomes

Solving this equation, we see that the solutions are given by

We can verify that these are solutions of the original equation. We will show  and leave  as an
exercise.

Hence  is a solution.

What if the coefficients of the quadratic equation are actually complex numbers? Does the formula hold even in this case? The
answer is yes. This is a hint on how to do Exercise 6.E.26 below, a special case of the fundamental theorem of algebra, and an
ingredient in the proof of some versions of this theorem.

Consider the following example.

Find the solutions to .

Solution

 Outcomes

a +bx +c = 0x
2

a, b, c

x =
−b ± −4acb2

− −−−−−−
√

2a

−4ac < 0.b
2

−4acb
2

i 4ac −b2
− −−−−−−

√ −i 4ac −b2
− −−−−−−

√

 Example : Solutions to Quadratic Equation6.4.1

+2x +5 = 0x
2

a = 1 b = 2 c = 5

x = =
−b ± −4acb2

− −−−−−−
√

2a

−2 ± −4(1)(5)(2)2
− −−−−−−−−−−

√

2(1)

x = = = −1 ±2i
−2i ± 4 −20

− −−−−
√

2

−2 ±4i

2

x = −1 +2i x = −1 −2i

+2x +5x
2 = (−1 +2i +2(−1 +2i) +5)2

= 1 −4i −4 −2 +4i +5

= 0

x = −1 +2i

 Example : Solutions to Quadratic Equation6.4.2

−2ix −5 = 0x
2
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In terms of the quadratic equation above, , , and . Therefore, we can use the quadratic formula with these
values, which becomes

Solving this equation, we see that the solutions are given by

We can verify that these are solutions of the original equation. We will show  and leave  as an exercise.

Hence  is a solution.

We conclude this section by stating an essential theorem.

Any polynomial of degree at least  with complex coefficients has a root which is a complex number.

This page titled 6.4: The Quadratic Formula is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

a = 1 b = −2i c = −5

x = =
−b ± −4acb2

− −−−−−−
√

2a

2i ± −4(1)(−5)(−2i)
2

− −−−−−−−−−−−−−
√

2(1)

x = = = i ±2
2i ± −4 +20

− −−−−−−
√

2

2i ±4

2

x = i +2 x = i −2

−2ix −5x
2 = (i +2 −2i(i +2) −5)2

= −1 +4i +4 +2 −4i −5

= 0

x = i +2

 Theorem : The Fundamental Theorem of Algebra6.4.1

1
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6.E: Exercises

Let  and let . Compute the following.

a. 
b. 
c. 
d. 

Answer
a. 
b. 
c. 
d. 

Let . Compute the following.

a. 
b. 
c. 

Let  and . Compute the following.

a. 
b. 
c. 

If  is a complex number, show there exists a complex number  with  and .

Answer

If , let . If , let 

If  are complex numbers prove  and then show by induction that . Also verify that 

. In words this says the conjugate of a product equals the product of the conjugates and the conjugate of a sum

equals the sum of the conjugates.

Answer

which is the same thing. Thus it holds for a product of two complex numbers. Now suppose you have that it is true for the
product of n complex numbers. Then

 Exercise 6.E. 1

z = 2 +7i w = 3 −8i

z+w

z−2w
zw
w

z

z+w = 5 − i

z−2w = −4 +23i
zw = 62 +5i

= − − iw

z

50
53

37
53

 Exercise 6.E. 2

z = 1 −4i

z̄̄̄

z−1

|z|

 Exercise 6.E. 3

z = 3 +5i w = 2 − i

zw¯ ¯¯̄¯̄

|zw|
wz−1

 Exercise 6.E. 4

z w |w| = 1 wz = |z|

z = 0 w = 1 z ≠ 0 w = z̄̄

|z|

 Exercise 6.E. 5

z, w =zw¯ ¯¯̄¯̄ z̄̄̄ w̄̄̄̄ = ⋯⋯z1 zm¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄ z1
¯ ¯¯̄¯ zm¯ ¯¯̄¯̄

=∑
k=1

m

zk

¯ ¯¯̄¯̄¯̄¯̄¯̄

∑
k=1

m

zk¯ ¯¯̄¯

= = (ac−bd) −(ad+bc)i(a−bi)(c−di) = ac−bd−(ad+bc)i(a+bi)(c+di)
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

ac−bd+(ad+bc)i
¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄
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and now, by induction this equals

As to sums, this is even easier.

Suppose  where all the  are real numbers. Suppose also that  for some
. Show it follows that  also.

Answer

If , then you have

I claim that . Here is why.

This is clearly a remarkable result but is there something wrong with it? If so, what is wrong?

Answer

The problem is that there is no single .

Let  be a complex number written in standard form. Convert  to polar form, and write it in the form .

Let  be a complex number written in standard form. Convert  to polar form, and write it in the form .

Let  be a complex number written in polar form. Convert  to standard form, and write it in the form .

=⋯z1 zn+1
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄¯̄¯ ⋯z1 zn¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯ zn+1

¯ ¯¯̄¯̄ ¯̄¯

⋯z1
¯ ¯¯̄¯ zn¯ ¯¯̄¯ zn+1

¯ ¯¯̄¯̄ ¯̄¯

=( + i )∑
j=1

n

xj yj

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

+ i∑
j=1

n

xj ∑
j=1

n

yj

¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

= − i = − i = .∑
j=1

n

xj ∑
j=1

n

yj ∑
j=1

n

xj yj ∑
j=1

n

( + i )xj yj
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

 Exercise 6.E. 6

p(x) = + +⋯ + x+anx
n an−1x

n−1 a1 a0 ak p(z) = 0
z ∈ C p( ) = 0z̄̄̄

p(z) = 0

p(z)
¯ ¯¯̄¯̄¯̄¯

= 0 = + +⋯ + z+anz
n an−1z

n−1 a1 a0
¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

= + +⋯ + +anz
n¯ ¯¯̄¯̄¯̄¯̄

an−1z
n−1¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

za1
¯ ¯¯̄¯̄¯ a0

¯ ¯¯̄¯

= + +⋯ + +an¯ ¯¯̄¯ z̄̄̄n an−1
¯ ¯¯̄¯̄¯̄¯̄ z̄̄̄n−1 a1

¯ ¯¯̄¯ z̄̄̄ a0
¯ ¯¯̄¯

= + +⋯ + +an z̄̄̄
n

an−1 z̄̄̄
n−1

a1 z̄̄̄ a0

= p( )z̄̄̄

 Exercise 6.E. 7

1 = −1

−1 = = = = = 1i2 −1
−−−

√ −1
−−−

√ (−1)2
− −−−−

√ 1
–

√

−1
−−−

√

 Exercise 6.E. 8

z = 3 +3i z z = reiθ

 Exercise 6.E. 9

z = 2i z z = reiθ

 Exercise 6.E. 10

z = 4e i
2π

3 z z = a+bi
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Let  be a complex number written in polar form. Convert  to standard form, and write it in the form .

If  and  are two complex numbers and the polar form of  involves the angle  while the polar form of  involves the angle 
, show that in the polar form for  the angle involved is .

Answer

You have  and . Then when you multiply these, you get

Give the complete solution to .

Answer

Solution is:

Find the complex cube roots of .

Answer

The cube roots are the solutions to , Solution is: 

Find the four fourth roots of .

Answer

The fourth roots are the solutions to , Solution is:

De Moivre’s theorem says  for  a positive integer. Does this formula continue to
hold for all integers n, even negative integers? Explain.

Answer

Yes, it holds for all integers. First of all, it clearly holds if . Suppose now that n is a negative integer. Then 
and so

 Exercise 6.E. 11

z = −1e i
π

6 z z = a+bi

 Exercise 6.E. 12

z w z θ w

φ zw θ+φ

z = |z|(cosθ+ i sinθ) w = |w|(cosφ+ i sinφ)

=

=

|z| |w|(cosθ+ i sinθ)(cosφ+ i sinφ)

|z| |w|(cosθcosφ−sinθ sinφ+ i(cosθ sinφ+cosφ sinθ))

|z| |w|(cos(θ+φ) + i sin(θ+φ))

 Exercise 6.E. 13

+16 = 0x4

(1 − i) , −(1 + i) , −(1 − i) , (1 + i)2
–

√ 2
–

√ 2
–

√ 2
–

√

 Exercise 6.E. 14

8

−8 = 0z3 −1 + i , −1 + i , 23
–

√ 3
–

√

 Exercise 6.E. 15

−16

+16 = 0z4

(1 − i) , −(1 + i) , −(1 − i) , (1 + i)2
–

√ 2
–

√ 2
–

√ 2
–

√

 Exercise 6.E. 16

[r(cos t+ i sin t) = (cosnt+ i sinnt)]n rn n

n = 0 −n > 0

[r(cos t+ i sin t) = =]n
1

[r(cos t+ i sin t)]−n

1

(cos(−nt) + i sin(−nt))r−n
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because .

Factor  as a product of linear factors. Hint: Use the result of .

Answer

Solution is:  and so this polynomial equals

Write  in the form  where  cannot be factored any more using only real numbers.

Answer

Completely factor  as a product of linear factors. Hint: Use the result of .

Answer

Solution is:

These are just the fourth roots of . Then to factor, you get

Factor  as the product of two quadratic polynomials each of which cannot be factored further without using complex
numbers.

Answer

. You can use the information in the preceding problem. Note that 
 has real coefficients.

If  is an integer, is it always true that ? Explain.

Answer

Yes, this is true.

= =
rn

(cos(nt) − i sin(nt))

(cos(nt) + i sin(nt))rn

(cos(nt) − i sin(nt))(cos(nt) + i sin(nt))

= (cos(nt) + i sin(nt))rn

(cos(nt) − i sin(nt))(cos(nt) + i sin(nt)) = 1

 Exercise 6.E. 17

+8x3 6.E. 14

i +1, 1 − i , −23
–

√ 3
–

√

(x+2) (x−(i +1)) (x−(1 − i ))3–√ 3–√

 Exercise 6.E. 18

+27x3 (x+3)( +ax+b)x2 +ax+bx2

+27 = (x+3)( −3x+9)x3 x2

 Exercise 6.E. 19

+16x4 6.E. 15

(1 − i) , −(1 + i) , −(1 − i) , (1 + i) .2
–

√ 2
–

√ 2
–

√ 2
–

√

−16

(x−((1 − i) )) (x−(−(1 + i) )) .2
–

√ 2
–

√

(x−(−(1 − i) )) (x−((1 + i) ))2
–

√ 2
–

√

 Exercise 6.E. 20

+16x4

+16 = ( −2 x+4) ( +2 x+4)x4 x2 2
–

√ x2 2
–

√

(x−z)(x− )z̄̄̄

 Exercise 6.E. 21

n (cosθ− i sinθ = cos(nθ) − i sin(nθ))n
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Suppose  is a polynomial and it has  zeros,

listed according to multiplicity. (  is a root of multiplicity  if the polynomial  divides  but 
does not.) Show that

Answer

 where  is a nonzero constant or equal to . However,  and so . Now
do to  what was done to  and continue until the degree of the resulting  equals . Then you have the above
factorization.

Show that  are the only two roots to

Hence complex zeros do not necessarily come in conjugate pairs if the coefficients of the equation are not real.

Answer

Give the solutions to the following quadratic equations having real coefficients.

a. 
b. 
c. 
d. 
e. 

Answer
a. Solution is: 
b. Solution is: 
c. Solution is: 
d. Solution is: 
e. Solution is: 

Give the solutions to the following quadratic equations having complex coefficients.

a. 
b. 

(cosθ− i sinθ)n = (cos(−θ) + i sin(−θ))n

= cos(−nθ) + i sin(−nθ)
= cos(nθ) − i sin(nθ)

 Exercise 6.E. 22

p(x) = + +⋯ + x+anx
n an−1x

n−1 a1 a0 n

, , ⋯ ,z1 z2 zn

z m f(x) = (x−z)m p(x) (x−z)f(x)

p(x) = (x− )(x− ) ⋯ (x− )an z1 z2 zn

p(x) = (x− )q(x) +r(x)z1 r(x) 0 r( ) = 0z1 r(x) = 0
q(x) p(x) q(x) 0

 Exercise 6.E. 23

1 + i, 2 + i

p(x) = −(3 +2i)x+(1 +3i)x2

(x−(1 + i))(x−(2 + i)) = −(3 +2i)x+1 +3ix2

 Exercise 6.E. 24

−2x+2 = 0x2

3 +x+3 = 0x2

−6x+13 = 0x2

+4x+9 = 0x2

4 +4x+5 = 0x2

1 + i, 1 − i

i − , − i −1
6

35
−−

√ 1
6

1
6

35
−−

√ 1
6

3 +2i, 3 −2i
i −2, −i −25

–
√ 5

–
√

− + i, − − i1
2

1
2

 Exercise 6.E. 25

+2x+1 + i = 0x2

4 +4ix−5 = 0x2
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c. 
d. 
e. 

Answer

a. Solution is: 
b. Solution is: 
c. Solution is: 
d. Solution is: 

e. Solution is: 

Prove the fundamental theorem of algebra for quadratic polynomials having coefficients in . That is, show that an equation of
the form  where  are complex numbers,  has a complex solution. Hint: Consider the fact, noted
earlier that the expressions given from the quadratic formula do in fact serve as solutions.

This page titled 6.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

4 +(4 +4i)x+1 +2i = 0x2

−4ix−5 = 0x2

3 +(1 − i)x+3i = 0x2

x = −1 + − i , x = −1 − + i1
2

2
–

√ 1
2

2
–

√ 1
2

2
–

√ 1
2

2
–

√

x = 1 − i, x = −1 − i1
2

1
2

x = − , x = − − i1
2

1
2

x = −1 +2i, x = 1 +2i

x = − + +( − ) i, x = − − +( + ) i1
6

1
6

19
−−

√ 1
6

1
6

19
−−

√ 1
6

1
6

19
−−

√ 1
6

1
6

19
−−

√

 Exercise 6.E. 26

C

a +bx+c = 0x2 a, b, c a ≠ 0
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7.1: Eigenvalues and Eigenvectors of a Matrix

A. Describe eigenvalues geometrically and algebraically.
B. Find eigenvalues and eigenvectors for a square matrix.

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of fundamental importance in many areas and
is the subject of our study for this chapter.

Definition of Eigenvectors and Eigenvalues
In this section, we will work with the entire set of complex numbers, denoted by . Recall that the real numbers,  are contained
in the complex numbers, so the discussions in this section apply to both real and complex numbers.

To illustrate the idea behind what will be discussed, consider the following example.

Let

Compute the product  for

What do you notice about  in each of these products?

Solution
First, compute  for

This product is given by

In this case, the product  resulted in a vector which is equal to  times the vector . In other words, .

Let’s see what happens in the next product. Compute  for the vector

This product is given by

 Outcomes

C R

 Example : Eigenvectors and Eigenvalues7.1.1

A =
⎡

⎣
⎢

0

0

0

5

22

−9

−10

16

−2

⎤

⎦
⎥

AX

X = , X =
⎡

⎣
⎢

−5

−4

3

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

AX

AX

X =
⎡

⎣
⎢

−5

−4

3

⎤

⎦
⎥

AX = = = 10
⎡

⎣
⎢

0

0

0

5

22

−9

−10

16

−2

⎤

⎦
⎥
⎡

⎣
⎢

−5

−4

3

⎤

⎦
⎥

⎡

⎣
⎢

−50

−40

30

⎤

⎦
⎥

⎡

⎣
⎢

−5

−4

3

⎤

⎦
⎥

AX 10 X AX = 10X

AX

X =
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥
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In this case, the product  resulted in a vector equal to  times the vector , .

Perhaps this matrix is such that  results in , for every vector . However, consider

In this case,  did not result in a vector of the form  for some scalar .

There is something special about the first two products calculated in Example . Notice that for each,  where  is
some scalar. When this equation holds for some  and , we call the scalar  an eigenvalue of . We often use the special symbol

 instead of  when referring to eigenvalues. In Example , the values  and  are eigenvalues for the matrix  and we can
label these as  and .

When  for some , we call such an  an eigenvector of the matrix . The eigenvectors of  are associated to an
eigenvalue. Hence, if  is an eigenvalue of  and , we can label this eigenvector as . Note again that in order to be
an eigenvector,  must be nonzero.

There is also a geometric significance to eigenvectors. When you have a nonzero vector which, when multiplied by a matrix results
in another vector which is parallel to the first or equal to 0, this vector is called an eigenvector of the matrix. This is the meaning
when the vectors are in 

The formal definition of eigenvalues and eigenvectors is as follows.

Let  be an  matrix and let  be a nonzero vector for which

for some scalar  Then  is called an eigenvalue of the matrix  and  is called an eigenvector of  associated with , or a 
-eigenvector of .

The set of all eigenvalues of an  matrix  is denoted by  and is referred to as the spectrum of 

The eigenvectors of a matrix  are those vectors  for which multiplication by  results in a vector in the same direction or
opposite direction to . Since the zero vector  has no direction this would make no sense for the zero vector. As noted above,  is
never allowed to be an eigenvector.

Let’s look at eigenvectors in more detail. Suppose  satisfies . Then

for some  Equivalently you could write , which is more commonly used. Hence, when we are looking for
eigenvectors, we are looking for nontrivial solutions to this homogeneous system of equations!

Recall that the solutions to a homogeneous system of equations consist of basic solutions, and the linear combinations of those
basic solutions. In this context, we call the basic solutions of the equation  basic eigenvectors. It follows that any
(nonzero) linear combination of basic eigenvectors is again an eigenvector.

Suppose the matrix  is invertible, so that  exists. Then the following equation would be true.

AX = = = 0
⎡

⎣
⎢

0

0

0

5

22

−9

−10

16

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥

AX 0 X AX = 0X

AX kX X

=
⎡

⎣
⎢

0

0

0

5

22

−9

−10

16

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

−5

38

−11

⎤

⎦
⎥

AX kX k

7.1.1 AX = kX k

X k k A

λ k 7.1.1 10 0 A

= 10λ1 = 0λ2

AX = λX X ≠ 0 X A A

λ1 A AX = Xλ1 X1

X

.R
n

 Definition : Eigenvalues and Eigenvectors7.1.1

A n ×n X ∈ C
n

AX = λX (7.1.1)

λ. λ A X A λ

λ A

n ×n A σ (A) A.

A X A

X 0 0

X (7.1.1)

AX −λX = 0

or

(A −λI) X = 0

X ≠ 0. (λI −A) X = 0

(λI −A) X = 0

(λI −A) (λI −A)
−1
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This claims that . However, we have required that . Therefore  cannot have an inverse!

Recall that if a matrix is not invertible, then its determinant is equal to . Therefore we can conclude that

Note that this is equivalent to .

The expression  is a polynomial (in the variable ) called the characteristic polynomial of , and 
 is called the characteristic equation. For this reason we may also refer to the eigenvalues of  as

characteristic values, but the former is often used for historical reasons.

The following theorem claims that the roots of the characteristic polynomial are the eigenvalues of . Thus when [eigen2] holds, 
 has a nonzero eigenvector.

Let  be an  matrix and suppose  for some . 
Then  is an eigenvalue of  and thus there exists a nonzero vector  such that .

Proof

For  an  matrix, the method of Laplace Expansion demonstrates that  is a polynomial of degree  As
such, the equation  has a solution  by the Fundamental Theorem of Algebra. The fact that  is an eigenvalue
is left as an exercise.

Finding Eigenvectors and Eigenvalues
Now that eigenvalues and eigenvectors have been defined, we will study how to find them for a matrix .

First, consider the following definition.

Let  be an  matrix with characteristic polynomial given by . Then, the multiplicity of an eigenvalue  of 
 is the number of times  occurs as a root of that characteristic polynomial.

For example, suppose the characteristic polynomial of  is given by . Solving for the roots of this polynomial, we set 
 and solve for . We find that  is a root that occurs twice. Hence, in this case,  is an eigenvalue of  of

multiplicity equal to .

We will now look at how to find the eigenvalues and eigenvectors for a matrix  in detail. The steps used are summarized in the
following procedure.

Let  be an  matrix.

1. First, find the eigenvalues  of  by solving the equation .
2. For each , find the basic eigenvectors  by finding the basic solutions to .

To verify your work, make sure that  for each  and associated eigenvector .

We will explore these steps further in the following example.

X = IX

= ( (λI −A))X(λI −A)−1

= ((λI −A) X)(λI −A)
−1

= 0(λI −A)
−1

= 0

X = 0 X ≠ 0 (λI −A)

0

det (λI −A) = 0 (7.1.2)

det (A −λI) = 0

det (λI −A) x A

det (λI −A) = 0 A

A

A

 Theorem : The Existence of an Eigenvector7.1.1

A n ×n det (λI −A) = 0 λ ∈ C

λ A X ∈ C
n AX = λX

A n ×n det (λI −A) n.

(7.1.2) λ ∈ C λ

A

 Definition : Multiplicity of an Eigenvalue7.1.2

A n ×n det (λI −A) λ

A λ

A (λ −2) 2

= 0(λ −2) 2 λ λ = 2 λ = 2 A

2

A

 Procedure : Finding Eigenvalues and Eigenvectors7.1.1

A n ×n

λ A det (λI −A) = 0

λ X ≠ 0 (λI −A) X = 0

AX = λX λ X
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Let . Find its eigenvalues and eigenvectors.

Solution
We will use Procedure . First we find the eigenvalues of  by solving the equation

This gives

Computing the determinant as usual, the result is

Solving this equation, we find that  and .

Now we need to find the basic eigenvectors for each . First we will find the eigenvectors for . We wish to find all
vectors  such that . These are the solutions to .

The augmented matrix for this system and corresponding reduced row-echelon form are given by

The solution is any vector of the form

Multiplying this vector by  we obtain a simpler description for the solution to this system, given by

This gives the basic eigenvector for  as

To check, we verify that  for this basic eigenvector.

This is what we wanted, so we know this basic eigenvector is correct.

 Example : Find the Eigenvalues and Eigenvectors7.1.2

A = [ ]
−5

−7

2

4

7.1.1 A

det (λI −A) = 0

det(λ [ ]−[ ])
1

0

0

1

−5

−7

2

4

det[ ]
λ +5

7

−2

λ −4

= 0

= 0

+λ −6 = 0λ2

= 2λ1 = −3λ2

λ = 2λ1

X ≠ 0 AX = 2X (2I −A)X = 0

(2 [ ]−[ ])[ ]
1

0

0

1

−5

−7

2

4

x

y

[ ][ ]
7

7

−2

−2

x

y

= [ ]
0

0

= [ ]
0

0

[ ] → ⋯ → [ ]
7

7

−2

−2

0

0

1

0

− 2
7

0

0

0

[ ] = s[ ]
s2

7

s

2
7

1

7

t [ ]
2

7

= 2λ1

[ ]
2

7

AX = 2X

[ ][ ] = [ ] = 2 [ ]
−5

−7

2

4

2

7

4

14

2

7
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Next we will repeat this process to find the basic eigenvector for . We wish to find all vectors  such that 
. These are the solutions to .

The augmented matrix for this system and corresponding reduced row-echelon form are given by

The solution is any vector of the form

This gives the basic eigenvector for  as

To check, we verify that  for this basic eigenvector.

This is what we wanted, so we know this basic eigenvector is correct.

The following is an example using Procedure  for a  matrix.

Find the eigenvalues and eigenvectors for the matrix

Solution
We will use Procedure . First we need to find the eigenvalues of . Recall that they are the solutions of the equation

In this case the equation is

which becomes

Using Laplace Expansion, compute this determinant and simplify. The result is the following equation.

= −3λ2 X ≠ 0

AX = −3X ((−3)I −A)X = 0

((−3)[ ]−[ ])[ ]
1

0

0

1

−5

−7

2

4

x

y

[ ][ ]
2

7

−2

−7

x

y

= [ ]
0

0

= [ ]
0

0

[ ] → ⋯ → [ ]
2

7

−2

−7

0

0

1

0

−1

0

0

0

[ ] = s[ ]
s

s

1

1

= −3λ2

[ ]
1

1

AX = −3X

[ ][ ] = [ ] = −3 [ ]
−5

−7

2

4

1

1

−3

−3

1

1

7.1.1 3 ×3

 Example : Find the Eigenvalues and Eigencectors7.1.3

A =
⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥

7.1.1 A

det (λI −A) = 0

det λ − = 0
⎛

⎝
⎜

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥
⎞

⎠
⎟

det = 0
⎡

⎣
⎢

λ −5

−2

4

10

λ −14

8

5

−2

λ −6

⎤

⎦
⎥
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Solving this equation, we find that the eigenvalues are  and . Notice that  is a root of multiplicity
two due to

Therefore,  is an eigenvalue of multiplicity two.

Now that we have found the eigenvalues for , we can compute the eigenvectors.

First we will find the basic eigenvectors for  In other words, we want to find all non-zero vectors  so that .
This requires that we solve the equation  for  as follows.

That is you need to find the solution to

By now this is a familiar problem. You set up the augmented matrix and row reduce to get the solution. Thus the matrix you
must row reduce is

The reduced row-echelon form is

and so the solution is any vector of the form

where . If we multiply this vector by , we obtain a simpler description for the solution to this system, as given by

where . Here, the basic eigenvector is given by

Notice that we cannot let  here, because this would result in the zero vector and eigenvectors are never equal to 0! Other
than this value, every other choice of  in  results in an eigenvector.

It is a good idea to check your work! To do so, we will take the original matrix and multiply by the basic eigenvector . We
check to see if we get .

(λ −5)( −20λ +100) = 0λ2

= 5, = 10λ1 λ2 = 10λ3 10

−20λ +100 =λ2 (λ −10)2

= 10λ2

A

= 5.λ1 X AX = 5X

(5I −A) X = 0 X

5 − =
⎛

⎝
⎜

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥
⎞

⎠
⎟
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

=
⎡

⎣
⎢

0

−2

4

10

−9

8

5

−2

−1

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

⎡

⎣
⎢⎢

0

−2

4

10

−9

8

5

−2

−1

0

0

0

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

− 5
4

1
2

0

0

0

0

⎤

⎦

⎥⎥⎥

= s

⎡

⎣

⎢⎢

s5
4

− s1
2

s

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

5
4

− 1
2

1

⎤

⎦

⎥⎥

s ∈ R 4

t
⎡

⎣
⎢

5

−2

4

⎤

⎦
⎥ (7.1.3)

t ∈ R

=X1

⎡

⎣
⎢

5

−2

4

⎤

⎦
⎥

t = 0

t (7.1.3)

X1

5X1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14538?pdf


7.1.7 https://math.libretexts.org/@go/page/14538

This is what we wanted, so we know that our calculations were correct.

Next we will find the basic eigenvectors for  These vectors are the basic solutions to the equation,

That is you must find the solutions to

Consider the augmented matrix

The reduced row-echelon form for this matrix is

and so the eigenvectors are of the form

Note that you can’t pick  and  both equal to zero because this would result in the zero vector and eigenvectors are never
equal to zero.

Here, there are two basic eigenvectors, given by

Taking any (nonzero) linear combination of  and  will also result in an eigenvector for the eigenvalue  As in the
case for , always check your work! For the first basic eigenvector, we can check  as follows.

This is what we wanted. Checking the second basic eigenvector, , is left as an exercise.

It is important to remember that for any eigenvector , . However, it is possible to have eigenvalues equal to zero. This is
illustrated in the following example.

= = 5
⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥
⎡

⎣
⎢

5

−2

4

⎤

⎦
⎥

⎡

⎣
⎢

25

−10

20

⎤

⎦
⎥

⎡

⎣
⎢

5

−2

4

⎤

⎦
⎥

, = 10.λ2 λ3

10 − =
⎛

⎝
⎜

⎡

⎣
⎢

1

0

0

0

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥
⎞

⎠
⎟
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

=
⎡

⎣
⎢

5

−2

4

10

−4

8

5

−2

4

⎤

⎦
⎥
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

⎡

⎣
⎢⎢

5

−2

4

10

−4

8

5

−2

4

0

0

0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

2

0

0

1

0

0

0

0

0

⎤

⎦
⎥⎥

= s + t
⎡

⎣
⎢

−2s − t

s

t

⎤

⎦
⎥

⎡

⎣
⎢

−2

1

0

⎤

⎦
⎥

⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

t s

= , =X2

⎡

⎣
⎢

−2

1

0

⎤

⎦
⎥ X3

⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

X2 X3 λ = 10.

λ = 5 A = 10X2 X2

= = 10
⎡

⎣
⎢

5

2

−4

−10

14

−8

−5

2

6

⎤

⎦
⎥
⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

⎡

⎣
⎢

−10

0

10

⎤

⎦
⎥

⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

X3

X X ≠ 0
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Let

Find the eigenvalues and eigenvectors of .

Solution
First we find the eigenvalues of . We will do so using Definition .

In order to find the eigenvalues of , we solve the following equation.

This reduces to . You can verify that the solutions are . Notice that while
eigenvectors can never equal , it is possible to have an eigenvalue equal to .

Now we will find the basic eigenvectors. For , we need to solve the equation . This equation becomes 
, and so the augmented matrix for finding the solutions is given by

The reduced row-echelon form is

Therefore, the eigenvectors are of the form  where  and the basic eigenvector is given by

We can verify that this eigenvector is correct by checking that the equation  holds. The product  is given by

This clearly equals , so the equation holds. Hence,  and so  is an eigenvalue of .

Computing the other basic eigenvectors is left as an exercise.

In the following sections, we examine ways to simplify this process of finding eigenvalues and eigenvectors by using properties of
special types of matrices.

 Example : A Zero Eigenvalue7.1.4

A =
⎡

⎣
⎢

2

1

−1

2

3

1

−2

−1

1

⎤

⎦
⎥

A

A 7.1.1

A

det (λI −A) = det = 0
⎡

⎣
⎢

λ −2

−1

1

−2

λ −3

−1

2

1

λ −1

⎤

⎦
⎥

−6 +8λ = 0λ3 λ2 = 0, = 2, = 4λ1 λ2 λ3

0 0

= 0λ1 (0I −A) X = 0

−AX = 0

⎡

⎣
⎢⎢

−2

−1

1

−2

−3

−1

2

1

−1

0

0

0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

−1

0

0

0

0

0

⎤

⎦
⎥⎥

t
⎡

⎣
⎢

1

0

1

⎤

⎦
⎥ t ≠ 0

=X1

⎡

⎣
⎢

1

0

1

⎤

⎦
⎥

A = 0X1 X1 AX1

A = =X1

⎡

⎣
⎢

2

1

−1

2

3

1

−2

−1

1

⎤

⎦
⎥
⎡

⎣
⎢

1

0

1

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

0X1 A = 0X1 X1 0 A
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Eigenvalues and Eigenvectors for Special Types of Matrices
There are three special kinds of matrices which we can use to simplify the process of finding eigenvalues and eigenvectors.
Throughout this section, we will discuss similar matrices, elementary matrices, as well as triangular matrices.

We begin with a definition.

Let  and  be  matrices. Suppose there exists an invertible matrix  such that

Then  and  are called similar matrices.

It turns out that we can use the concept of similar matrices to help us find the eigenvalues of matrices. Consider the following
lemma.

Let  and  be similar matrices, so that  where  are  matrices and  is invertible. Then  have
the same eigenvalues.

Proof

We need to show two things. First, we need to show that if , then  and  have the same eigenvalues.
Secondly, we show that if  and  have the same eigenvalues, then .

Here is the proof of the first statement. Suppose  and  is an eigenvalue of , that is  for some 
 Then

and so

Since  is one to one and , it follows that . Here,  plays the role of the eigenvector in this equation.
Thus  is also an eigenvalue of . One can similarly verify that any eigenvalue of  is also an eigenvalue of , and thus
both matrices have the same eigenvalues as desired.

Proving the second statement is similar and is left as an exercise.

Note that this proof also demonstrates that the eigenvectors of  and  will (generally) be different. We see in the proof that 
, while . Therefore, for an eigenvalue ,  will have the eigenvector  while  will have the

eigenvector .

The second special type of matrices we discuss in this section is elementary matrices. Recall from Definition 2.8.1 that an
elementary matrix  is obtained by applying one row operation to the identity matrix.

It is possible to use elementary matrices to simplify a matrix before searching for its eigenvalues and eigenvectors. This is
illustrated in the following example.

Find the eigenvalues for the matrix

 Definition : Similar Matrices7.1.3

A B n ×n P

A = BPP −1

A B

 Lemma : Similar Matrices and Eigenvalues7.1.1

A B A = BPP −1 A, B n ×n P A, B

A = BPP −1 A B

A B A = BPP −1

A = BPP −1 λ A AX = λX

X ≠ 0.

BP X = λXP −1

BP X = λP X

P X ≠ 0 P X ≠ 0 P X

λ B B A

A B

AX = λX B (P X) = λ (P X) λ A X B

P X

E

 Example : Simplify Using Elementary Matrices7.1.5

A =
⎡

⎣
⎢

33

10

−20

105

28

−60

105

30

−62

⎤

⎦
⎥
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Solution
This matrix has big numbers and therefore we would like to simplify as much as possible before computing the eigenvalues.

We will do so using row operations. First, add  times the second row to the third row. To do so, left multiply  by .
Then right multiply  by the inverse of  as illustrated.

By Lemma , the resulting matrix has the same eigenvalues as  where here, the matrix  plays the role of .

We do this step again, as follows. In this step, we use the elementary matrix obtained by adding  times the second row to the
first row.

Again by Lemma , this resulting matrix has the same eigenvalues as . At this point, we can easily find the eigenvalues.
Let

Then, we find the eigenvalues of  (and therefore of ) by solving the equation . You should verify that this
equation becomes

Solving this equation results in eigenvalues of , and . Therefore, these are also the eigenvalues of .

Through using elementary matrices, we were able to create a matrix for which finding the eigenvalues was easier than for . At
this point, you could go back to the original matrix  and solve  to obtain the eigenvectors of .

Notice that when you multiply on the right by an elementary matrix, you are doing the column operation defined by the elementary
matrix. In  multiplication by the elementary matrix on the right merely involves taking three times the first column and
adding to the second. Thus, without referring to the elementary matrices, the transition to the new matrix in  can be
illustrated by

The third special type of matrix we will consider in this section is the triangular matrix. Recall Definition 3.1.6 which states that an
upper (lower) triangular matrix contains all zeros below (above) the main diagonal. Remember that finding the determinant of a
triangular matrix is a simple procedure of taking the product of the entries on the main diagonal.. It turns out that there is also a
simple way to find the eigenvalues of a triangular matrix.

In the next example we will demonstrate that the eigenvalues of a triangular matrix are the entries on the main diagonal.

Let  Find the eigenvalues of .

2 A E (2, 2)

A E (2, 2)

=
⎡

⎣
⎢

1

0

0

0

1

2

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

33

10

−20

105

28

−60

105

30

−62

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

0

1

−2

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

33

10

0

−105

−32

0

105

30

−2

⎤

⎦
⎥

7.1.1 A E (2, 2) P

−3

=
⎡

⎣
⎢

1

0

0

−3

1

0

0

0

1

⎤

⎦
⎥
⎡

⎣
⎢

33

10

0

−105

−32

0

105

30

−2

⎤

⎦
⎥
⎡

⎣
⎢

1

0

0

3

1

0

0

0

1

⎤

⎦
⎥

⎡

⎣
⎢

3

10

0

0

−2

0

15

30

−2

⎤

⎦
⎥ (7.1.4)

7.1.1 A

B =
⎡

⎣
⎢

3

10

0

0

−2

0

15

30

−2

⎤

⎦
⎥

B A det (λI −B) = 0

(λ +2) (λ +2) (λ −3) = 0

= −2, = −2λ1 λ2 = 3λ3 A

A

A (λI −A) X = 0 A

(7.1.4)

(7.1.4)

→ →
⎡

⎣
⎢

33

10

0

−105

−32

0

105

30

−2

⎤

⎦
⎥

⎡

⎣
⎢

3

10

0

−9

−32

0

15

30

−2

⎤

⎦
⎥

⎡

⎣
⎢

3

10

0

0

−2

0

15

30

−2

⎤

⎦
⎥

 Example : Eigenvalues for a Triangular Matrix7.1.6

A = .
⎡

⎣
⎢

1

0

0

2

4

0

4

7

6

⎤

⎦
⎥ A
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Solution
We need to solve the equation  as follows

Solving the equation  for  results in the eigenvalues  and . Thus the
eigenvalues are the entries on the main diagonal of the original matrix.

The same result is true for lower triangular matrices. For any triangular matrix, the eigenvalues are equal to the entries on the main
diagonal. To find the eigenvectors of a triangular matrix, we use the usual procedure.

In the next section, we explore an important process involving the eigenvalues and eigenvectors of a matrix.

This page titled 7.1: Eigenvalues and Eigenvectors of a Matrix is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

det (λI −A) = 0

det (λI −A) = det = (λ −1) (λ −4) (λ −6) = 0
⎡

⎣
⎢

λ −1

0

0

−2

λ −4

0

−4

−7

λ −6

⎤

⎦
⎥

(λ −1) (λ −4) (λ −6) = 0 λ = 1, = 4λ1 λ2 = 6λ3
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7.2: Diagonalization

A. Determine when it is possible to diagonalize a matrix.
B. When possible, diagonalize a matrix.

Similarity and Diagonalization
We begin this section by recalling the definition of similar matrices. Recall that if  are two  matrices, then they are
similar if and only if there exists an invertible matrix  such that

In this case we write . The concept of similarity is an example of an equivalence relation.

Similarity is an equivalence relation, i.e. for  matrices  and ,

1.  (reflexive)
2. If , then  (symmetric)
3. If  and , then  (transitive)

Proof

It is clear that , taking .

Now, if  then for some  invertible,

and so

But then

which shows that .

Now suppose  and . Then there exist invertible matrices  such that

Then,

showing that  is similar to .

Another important concept necessary to this section is the trace of a matrix. Consider the definition.

If  is an  matrix, then the trace of  is

 Outcomes

A,B n×n

P

A = BPP −1

A ∼ B

 Lemma : Similarity is an Equivalence Relation7.2.1

n×n A,B, C

A ∼ A

A ∼ B B ∼ A

A ∼ B B ∼ C A ∼ C

A ∼ A P = I

A ∼ B, P

A = BPP −1

PA = BP −1

A = B( )P −1 −1
P −1

B ∼ A

A ∼ B B ∼ C P ,Q

A = BP ,  B = CQP −1 Q−1

A = ( CQ)P = C (QP )P −1 Q−1 (QP )−1

A C

 Definition : Trace of a Matrix7.2.1

A = [ ]aij n×n A

trace(A) = .∑
i=1

n

aii
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In words, the trace of a matrix is the sum of the entries on the main diagonal.

For  matrices  and , and any ,

1. 
2. 
3. 

The following theorem includes a reference to the characteristic polynomial of a matrix. Recall that for any  matrix , the
characteristic polynomial of  is .

If  and  are  matrices and , then

1. 
2. 
3. 
4. 
5.  and  have the same eigenvalues

We now proceed to the main concept of this section. When a matrix is similar to a diagonal matrix, the matrix is said to be
diagonalizable. We define a diagonal matrix  as a matrix containing a zero in every entry except those on the main diagonal.
More precisely, if  is the  entry of a diagonal matrix , then  unless . Such matrices look like the following.

where  is a number which might not be zero.

The following is the formal definition of a diagonalizable matrix.

Let  be an  matrix. Then  is said to be diagonalizable if there exists an invertible matrix  such that

where  is a diagonal matrix.

Notice that the above equation can be rearranged as . Suppose we wanted to compute . By diagonalizing  first
it suffices to then compute , which reduces to . This last computation is much simpler than . While
this process is described in detail later, it provides motivation for diagonalization.

Diagonalizing a Matrix
The most important theorem about diagonalizability is the following major result.

An  matrix  is diagonalizable if and only if there is an invertible matrix  given by

where the  are eigenvectors of .

Moreover if  is diagonalizable, the corresponding eigenvalues of  are the diagonal entries of the diagonal matrix .

 Lemma : Properties of Trace7.2.2

n×n A B k ∈ R

trace(A+B) = trace(A) +trace(B)
trace(kA) = k ⋅ trace(A)
trace(AB) = trace(BA)

n×n A

A (x) = det(xI −A)cA

 Theorem : Properties of Similar Matrices7.2.1

A B n×n A ∼ B

det(A) = det(B)
rank(A) = rank(B)
trace(A) = trace(B)

(x) = (x)cA cB
A B

D

dij ijth D = 0dij i = j

D =
⎡

⎣

⎢⎢

∗

0
⋱

0

∗

⎤

⎦

⎥⎥

∗

 Definition : Diagonalizable7.2.2

A n×n A P

AP = DP −1

D

A = PDP −1 A100 A

(PD )P −1 100
PD100P −1 A100

 Theorem : Eigenvectors and Diagonalizable Matrices7.2.2

n×n A P

P = [ ]X1 X2 ⋯ Xn

Xk A

A A D
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Proof

Suppose  is given as above as an invertible matrix whose columns are eigenvectors of . Then  is of the form

where  which is the Kronecker’s symbol defined by

Then

Conversely, suppose  is diagonalizable so that  Let

where the columns are the  and

Then

and so

showing the  are eigenvectors of  and the  are eigenvectors.

Notice that because the matrix  defined above is invertible it follows that the set of eigenvectors of , , form a
basis of .

We demonstrate the concept given in the above theorem in the next example. Note that not only are the columns of the matrix 
formed by eigenvectors, but  must be invertible so must consist of a wide variety of eigenvectors. We achieve this by using basic

P A P −1

=P −1

⎡

⎣

⎢⎢⎢⎢⎢

W T
1

W T
2

⋮
W T

n

⎤

⎦

⎥⎥⎥⎥⎥

= ,W T
k Xj δkj

= {δij
1 if i = j

0 if i ≠ j

APP −1 = [ ]

⎡

⎣

⎢⎢⎢⎢⎢

W T
1

W T
2

⋮
W T

n

⎤

⎦

⎥⎥⎥⎥⎥
AX1 AX2 ⋯ AXn

= [ ]

⎡

⎣

⎢⎢⎢⎢⎢

W T
1

W T
2

⋮
W T

n

⎤

⎦

⎥⎥⎥⎥⎥
λ1X1 λ2X2 ⋯ λnXn

=
⎡

⎣

⎢⎢

λ1

0
⋱

0

λn

⎤

⎦

⎥⎥

A AP = D.P −1

P = [ ]X1 X2 ⋯ Xn

Xk

D =
⎡

⎣

⎢⎢

λ1

0
⋱

0

λn

⎤

⎦

⎥⎥

AP = PD = [ ]X1 X2 ⋯ Xn

⎡

⎣

⎢⎢

λ1

0
⋱

0

λn

⎤

⎦

⎥⎥

[ ] = [ ]AX1 AX2 ⋯ AXn λ1X1 λ2X2 ⋯ λnXn

Xk A λk

P A { , , ⋯ , }X1 X2 Xn

R
n

P

P
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eigenvectors for the columns of .

Let

Find an invertible matrix  and a diagonal matrix  such that .

Solution
By Theorem  we use the eigenvectors of  as the columns of , and the corresponding eigenvalues of  as the diagonal
entries of .

First, we will find the eigenvalues of . To do so, we solve  as follows.

This computation is left as an exercise, and you should verify that the eigenvalues are , and .

Next, we need to find the eigenvectors. We first find the eigenvectors for . Solving  to find the
eigenvectors, we find that the eigenvectors are

where  are scalars. Hence there are two basic eigenvectors which are given by

You can verify that the basic eigenvector for  is 

Then, we construct the matrix  as follows.

That is, the columns of  are the basic eigenvectors of . Then, you can verify that

Thus,

P

 Example : Diagonalize a Matrix7.2.1

A =
⎡

⎣
⎢

2
1

−2

0
4

−4

0
−1

4

⎤

⎦
⎥

P D AP = DP −1

7.2.2 A P A

D

A det (λI −A) = 0

det λ − = 0
⎛

⎝
⎜

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

2
1

−2

0
4

−4

0
−1

4

⎤

⎦
⎥
⎞

⎠
⎟

= 2, = 2λ1 λ2 = 6λ3

, = 2λ1 λ2 (2I −A)X = 0

t +s
⎡

⎣
⎢

−2
1
0

⎤

⎦
⎥

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

t, s

= , =X1

⎡

⎣
⎢

−2
1
0

⎤

⎦
⎥ X2

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

= 6λ3 =X3

⎡

⎣
⎢

0
1

−2

⎤

⎦
⎥

P

P = [ ] =X1 X2 X3

⎡

⎣
⎢

−2
1
0

1
0
1

0
1

−2

⎤

⎦
⎥

P A

=P −1
⎡

⎣

⎢
⎢

− 1
4
1
2
1
4

1
2

1
1
2

1
4
1
2

− 1
4

⎤

⎦

⎥
⎥
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You can see that the result here is a diagonal matrix where the entries on the main diagonal are the eigenvalues of . We
expected this based on Theorem . Notice that eigenvalues on the main diagonal must be in the same order as the
corresponding eigenvectors in .

Consider the next important theorem.

Let  be an  matrix, and suppose that  has distinct eigenvalues . For each , let  be a -eigenvector
of . Then  is linearly independent.

The corollary that follows from this theorem gives a useful tool in determining if  is diagonalizable.

Let  be an  matrix and suppose it has  distinct eigenvalues. Then it follows that  is diagonalizable.

It is possible that a matrix  cannot be diagonalized. In other words, we cannot find an invertible matrix  so that .

Consider the following example.

Let

If possible, find an invertible matrix  and diagonal matrix  so that .

Solution
Through the usual procedure, we find that the eigenvalues of  are  To find the eigenvectors, we solve the
equation . The matrix  is given by

Substituting in , we have the matrix

Then, solving the equation  involves carrying the following augmented matrix to its reduced row-echelon
form.

Then the eigenvectors are of the form

APP −1 =
⎡

⎣

⎢⎢

− 1
4
1
2
1
4

1
2

1
1
2

1
4
1
2

− 1
4

⎤

⎦

⎥⎥
⎡

⎣
⎢

2
1

−2

0
4

−4

0
−1

4

⎤

⎦
⎥
⎡

⎣
⎢

−2
1
0

1
0
1

0
1

−2

⎤

⎦
⎥

=
⎡

⎣
⎢

2
0
0

0
2
0

0
0
6

⎤

⎦
⎥

A

7.2.2
P

 Theorem : Linearly Independent Eigenvectors7.2.3

A n×n A , , … ,λ1 λ2 λm i Xi λi
A { , , … , }X1 X2 Xm

A

 Corollary : Distinct Eigenvalues7.2.1

A n×n n A

A P AP = DP −1

 Example : A Matrix which cannot be Diagonalized7.2.2

A = [ ]
1
0

1
1

P D AP = DP −1

A = 1, = 1.λ1 λ2

(λI −A)X = 0 (λI −A)

[ ]
λ−1

0
−1
λ−1

λ = 1

[ ] = [ ]
1 −1

0
−1

1 −1
0
0

−1
0

(λI −A)X = 0

[ ] → ⋯ → [ ]
0
0

−1
0

0
0

0
0

−1
0

0
0
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and the basic eigenvector is

In this case, the matrix  has one eigenvalue of multiplicity two, but only one basic eigenvector. In order to diagonalize , we
need to construct an invertible  matrix . However, because  only has one basic eigenvector, we cannot construct this 

. Notice that if we were to use  as both columns of ,  would not be invertible. For this reason, we cannot repeat
eigenvectors in .

Hence this matrix cannot be diagonalized.

The idea that a matrix may not be diagonalizable suggests that conditions exist to determine when it is possible to diagonalize a
matrix. We saw earlier in Corollary  that an  matrix with  distinct eigenvalues is diagonalizable. It turns out that there
are other useful diagonalizability tests.

First we need the following definition.

Let  be an  matrix and . The eigenspace of  corresponding to , written  is the set of all eigenvectors
corresponding to .

In other words, the eigenspace  is all  such that . Notice that this set can be written ,
showing that  is a subspace of .

Recall that the multiplicity of an eigenvalue  is the number of times that it occurs as a root of the characteristic polynomial.

Consider now the following lemma.

If  is an  matrix, then

where  is an eigenvalue of  of multiplicity .

This result tells us that if  is an eigenvalue of , then the number of linearly independent -eigenvectors is never more than the
multiplicity of . We now use this fact to provide a useful diagonalizability condition.

Let  be an  matrix . Then  is diagonalizable if and only if for each eigenvalue  of ,  is equal to the
multiplicity of .

Complex Eigenvalues

In some applications, a matrix may have eigenvalues which are complex numbers. For example, this often occurs in differential
equations. These questions are approached in the same way as above.

Consider the following example.

Let

t [ ]
1
0

= [ ]X1
1
0

A A

2 ×2 P A

P X1 P P

P

7.2.1 n×n n

 Definition : Eigenspace7.2.3

A n×n λ ∈ R A λ (A)Eλ

λ

(A)Eλ X AX = λX (A) = null(λI −A)Eλ

(A)Eλ R
n

λ

 Lemma : Dimension of the Eigenspace7.2.3

A n×n

dim( (A)) ≤ mEλ

λ A m

λ A λ

λ

 Theorem : Diagonalizability Condition7.2.4

A n×n A A λ A dim( (A))Eλ

λ

 Example : A Real Matrix with Complex Eigenvalues7.2.3
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Find the eigenvalues and eigenvectors of .

Solution
We will first find the eigenvalues as usual by solving the following equation.

This reduces to  The solutions are  and 

There is nothing new about finding the eigenvectors for  so this is left as an exercise.

Consider now the eigenvalue  As usual, we solve the equation  as given by

In other words, we need to solve the system represented by the augmented matrix

We now use our row operations to solve the system. Divide the first row by  and then take  times the second row and
add to the third row. This yields

Now multiply the second row by  to obtain the reduced row-echelon form, given by

Therefore, the eigenvectors are of the form

and the basic eigenvector is given by

As an exercise, verify that the eigenvectors for  are of the form

A =
⎡

⎣
⎢

1
0
0

0
2
1

0
−1

2

⎤

⎦
⎥

A

det λ − = 0
⎛

⎝
⎜

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
2
1

0
−1

2

⎤

⎦
⎥
⎞

⎠
⎟

(λ−1)( −4λ+5) = 0.λ2 = 1, = 2 + iλ1 λ2 = 2 − i.λ3

= 1λ1

= 2 + i.λ2 (λI −A)X = 0

(2 + i) − X =
⎛

⎝
⎜

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
2
1

0
−1

2

⎤

⎦
⎥
⎞

⎠
⎟

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

⎡

⎣
⎢⎢

1 + i

0
0

0
i

−1

0
1
i

0
0
0

⎤

⎦
⎥⎥

(1 + i) −i

⎡

⎣
⎢⎢

1
0
0

0
i

0

0
1
0

0
0
0

⎤

⎦
⎥⎥

−i

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
−i

0

0
0
0

⎤

⎦
⎥⎥

t
⎡

⎣
⎢

0
i

1

⎤

⎦
⎥

=X2

⎡

⎣
⎢

0
i

1

⎤

⎦
⎥

= 2 − iλ3
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Hence, the basic eigenvector is given by

As usual, be sure to check your answers! To verify, we check that  as follows.

Therefore, we know that this eigenvector and eigenvalue are correct.

Notice that in Example , two of the eigenvalues were given by  and . You may recall that these two
complex numbers are conjugates. It turns out that whenever a matrix containing real entries has a complex eigenvalue , it also
has an eigenvalue equal to , the conjugate of .

This page titled 7.2: Diagonalization is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

t
⎡

⎣
⎢

0
−i

1

⎤

⎦
⎥

=X3

⎡

⎣
⎢

0
−i

1

⎤

⎦
⎥

A = (2 − i)X3 X3

= = (2 − i)
⎡

⎣
⎢

1
0
0

0
2
1

0
−1

2

⎤

⎦
⎥
⎡

⎣
⎢

0
−i

1

⎤

⎦
⎥

⎡

⎣
⎢

0
−1 −2i

2 − i

⎤

⎦
⎥

⎡

⎣
⎢

0
−i

1

⎤

⎦
⎥

7.2.3 = 2 + iλ2 = 2 − iλ3

λ

λ
¯¯̄

λ
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7.3: Applications of Spectral Theory

A. Use diagonalization to find a high power of a matrix.
B. Use diagonalization to solve dynamical systems.

Raising a Matrix to a High Power
Suppose we have a matrix  and we want to find . One could try to multiply  with itself 50 times, but this is computationally
extremely intensive (try it!). However diagonalization allows us to compute high powers of a matrix relatively easily. Suppose  is
diagonalizable, so that . We can rearrange this equation to write .

Now, consider . Since , it follows that

Similarly,

In general,

Therefore, we have reduced the problem to finding . In order to compute , then because  is diagonal we only need to raise
every entry on the main diagonal of  to the power of .

Through this method, we can compute large powers of matrices. Consider the following example.

Let  Find 

Solution
We will first diagonalize . The steps are left as an exercise and you may wish to verify that the eigenvalues of  are 

, and .

The basic eigenvectors corresponding to  are

The basic eigenvector corresponding to  is

Now we construct  by using the basic eigenvectors of  as the columns of . Thus

Then also

 Outcomes

A A50 A

A

AP = DP −1 A = PDP −1

A2 A = PDP −1

= = PD PD = PA2 (PD )P −1 2
P −1 P −1 D2P −1

= = PD PD PD = PA3 (PD )P −1 3
P −1 P −1 P −1 D3P −1

= = PAn (PD )P −1 n
DnP −1

Dn Dn D

D n

 Example : Raising a Matrix to a High Power7.3.1

A = .
⎡

⎣
⎢

2
0

−1

1
1

−1

0
0
1

⎤

⎦
⎥ .A50

A A

= 1, = 1λ1 λ2 = 2λ3

, = 1λ1 λ2

= , =X1

⎡

⎣
⎢

0
0
1

⎤

⎦
⎥ X2

⎡

⎣
⎢

−1
1
0

⎤

⎦
⎥

= 2λ3

=X3

⎡

⎣
⎢

−1
0
1

⎤

⎦
⎥

P A P

P = [ ] =X1 X2 X3

⎡

⎣
⎢

0
0
1

−1
1
0

−1
0
1

⎤

⎦
⎥
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which you may wish to verify.

Then,

Now it follows by rearranging the equation that

Therefore,

By our discussion above,  is found as follows.

It follows that

Through diagonalization, we can efficiently compute a high power of . Without this, we would be forced to multiply this by
hand!

The next section explores another interesting application of diagonalization.

Raising a Symmetric Matrix to a High Power

We already have seen how to use matrix diagonalization to compute powers of matrices. This requires computing eigenvalues of
the matrix , and finding an invertible matrix of eigenvectors  such that  is diagonal. In this section we will see that if
the matrix  is symmetric (see Definition 2.5.2), then we can actually find such a matrix  that is an orthogonal matrix of
eigenvectors. Thus  is simply its transpose , and  is diagonal. When this happens we say that  is orthogonally
diagonalizable

In fact this happens if and only if  is a symmetric matrix as shown in the following important theorem.

=P −1
⎡

⎣
⎢

1
0

−1

1
1

−1

1
0
0

⎤

⎦
⎥

APP −1 =
⎡

⎣
⎢

1
0

−1

1
1

−1

1
0
0

⎤

⎦
⎥

⎡

⎣
⎢

2
0

−1

1
1

−1

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

0
0
1

−1
1
0

−1
0
1

⎤

⎦
⎥

=
⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

= D

A = PD =P −1
⎡

⎣
⎢

0
0
1

−1
1
0

−1
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

⎡

⎣
⎢

1
0

−1

1
1

−1

1
0
0

⎤

⎦
⎥

A50 = PD50P −1

=
⎡

⎣
⎢

0
0
1

−1
1
0

−1
0
1

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

50
⎡

⎣
⎢

1
0

−1

1
1

−1

1
0
0

⎤

⎦
⎥

D50

=
⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

50
⎡

⎣
⎢

150

0

0

0
150

0

0
0

250

⎤

⎦
⎥

A50 =
⎡

⎣
⎢

0
0
1

−1
1
0

−1
0
1

⎤

⎦
⎥

⎡

⎣
⎢

150

0
0

0

150

0

0

0
250

⎤

⎦
⎥

⎡

⎣
⎢

1
0

−1

1
1

−1

1
0
0

⎤

⎦
⎥

=
⎡

⎣
⎢

250

0
1 −250

−1 +250

1
1 −250

0
0
1

⎤

⎦
⎥

A

A P APP −1

A P

P −1 P T APP T A

A
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The following conditions are equivalent for an  matrix :

1.  is symmetric.
2.  has an orthonormal set of eigenvectors.
3.  is orthogonally diagonalizable.

Proof

The complete proof is beyond this course, but to give an idea assume that  has an orthonormal set of eigenvectors, and let 
 consist of these eigenvectors as columns. Then , and  a diagonal matrix. But then ,

and

so  is symmetric.

Now given a symmetric matrix , one shows that eigenvectors corresponding to different eigenvalues are always
orthogonal. So it suffices to apply the Gram-Schmidt process on the set of basic eigenvectors of each eigenvalue to obtain
an orthonormal set of eigenvectors.

We demonstrate this in the following example.

Let  Find an orthogonal matrix  such that  is a diagonal matrix.

Solution
In this case, verify that the eigenvalues are 2 and 1. First we will find an eigenvector for the eigenvalue . This involves row
reducing the following augmented matrix.

The reduced row-echelon form is

and so an eigenvector is

Finally to obtain an eigenvector of length one (unit eigenvector) we simply divide this vector by its length to yield:

 Theorem : Principal Axis Theorem7.3.1

n×n A

A

A

A

A

P =P −1 P T AP = DP T A = PDP T

= (PD = ( = PD = AAT P T )T P T )TDTP T P T

A

A

 Example : Orthogonal Diagonalization of a Symmetric Matrix7.3.2

A = .
⎡

⎣

⎢⎢

1

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥ P APP T

2

⎡

⎣

⎢⎢⎢

2 −1
0

0

0
2 − 3

2

− 1
2

0
− 1

2

2 − 3
2

0
0

0

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
−1

0

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥
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Next consider the case of the eigenvalue . To obtain basic eigenvectors, the matrix which needs to be row reduced in this case
is

The reduced row-echelon form is

Therefore, the eigenvectors are of the form

Note that all these vectors are automatically orthogonal to eigenvectors corresponding to the first eigenvalue. This follows
from the fact that  is symmetric, as mentioned earlier.

We obtain basic eigenvectors

Since they are themselves orthogonal (by luck here) we do not need to use the Gram-Schmidt process and instead simply
normalize these vectors to obtain

An orthogonal matrix  to orthogonally diagonalize  is then obtained by letting these basic vectors be the columns.

We verify this works.  is of the form

which is the desired diagonal matrix.

We can now apply this technique to efficiently compute high powers of a symmetric matrix.

1

⎡

⎣

⎢⎢⎢

1 −1

0

0

0

1 − 3
2

− 1
2

0

− 1
2

1 − 3
2

0

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

0
0
0

1
0
0

1
0
0

0
0
0

⎤

⎦

⎥⎥

⎡

⎣
⎢

s

−t

t

⎤

⎦
⎥

A

 and 
⎡

⎣
⎢

1
0
0

⎤

⎦
⎥

⎡

⎣
⎢

0
−1

1

⎤

⎦
⎥

 and 
⎡

⎣
⎢

1
0
0

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

⎤

⎦

⎥⎥⎥

P A

P =

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

APP T

⎡

⎣

⎢⎢⎢

0

1

0

− 1
2√

0
1
2√

1
2√

0
1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

1

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

=
⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥
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Let  Compute .

Solution
We found in Example  that  is diagonal, where

Thus  and  which gives:

Markov Matrices

There are applications of great importance which feature a special type of matrix. Matrices whose columns consist of non-negative
numbers that sum to one are called Markov matrices. An important application of Markov matrices is in population migration, as
illustrated in the following definition.

Let  locations be denoted by the numbers  Suppose it is the case that each year the proportion of residents in
location  which move to location  is . Also suppose no one escapes or emigrates from without these  locations. This last
assumption requires , and means that the matrix , such that , is a Markov matrix. In this context,  is
also called a migration matrix.

Consider the following example which demonstrates this situation.

Let  be a Markov matrix given by

 Example : Powers of a Symmetric Matrix7.3.3

A = .
⎡

⎣

⎢⎢

1

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥ A7

7.3.2 AP = DP T

P =  and D =

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

A = PDP T = PD PD ⋯PD = PA7 P T P T P T D7P T

A7 =

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

7 ⎡

⎣

⎢⎢⎢

0

1

0

− 1
2√

0
1
2√

1
2√

0
1
2√

⎤

⎦

⎥⎥⎥

=

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1
0

0

0
1

0

0
0

27

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

0

1
0

− 1
2√

0
1
2√

1
2√

0
1
2√

⎤

⎦

⎥⎥⎥

=

⎡

⎣

⎢⎢⎢

0
− 1

2√
1
2√

1
0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0

1

0

− 1
2√

0
27

2√

1
2√

0
27

2√

⎤

⎦

⎥⎥⎥

=
⎡

⎣

⎢⎢⎢

1

0

0

0
+127

2
−127

2

0
−127

2
+127

2

⎤

⎦

⎥⎥⎥

 Definition : Migration Matrices7.3.1

m 1, 2, ⋯ ,m.
j i aij m

= 1∑i aij A A = [ ]aij A

 Example : Migration Matrix7.3.4

A

A = [ ]
.4
.6

.2

.8
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Verify that  is a Markov matrix and describe the entries of  in terms of population migration.

Solution
The columns of  are comprised of non-negative numbers which sum to . Hence,  is a Markov matrix.

Now, consider the entries  of  in terms of population. The entry  is the proportion of residents in location one
which stay in location one in a given time period. Entry  is the proportion of residents in location 1 which move to
location 2 in the same time period. Entry  is the proportion of residents in location 2 which move to location 1.
Finally, entry  is the proportion of residents in location 2 which stay in location 2 in this time period.

Considered as a Markov matrix, these numbers are usually identified with probabilities. Hence, we can say that the probability
that a resident of location one will stay in location one in the time period is .

Observe that in Example  if there was initially say 15 thousand people in location 1 and 10 thousands in location 2, then after
one year there would be  thousands people in location 1 the following year, and similarly there would be 

 thousands people in location 2 the following year.

More generally let  where  is the population of location  at time period . We call  the state vector at
period . In particular, we call  the initial state vector. Letting  be the migration matrix, we compute the population in each
location  one time period later by . In order to find the population of location  after  years, we compute the  component
of  This discussion is summarized in the following theorem.

Let  be the migration matrix of a population and let  be the vector whose entries give the population of each location at
time period . Then  is the state vector at period  and it follows that

The sum of the entries of  will equal the sum of the entries of the initial vector . Since the columns of  sum to , this sum is
preserved for every multiplication by  as demonstrated below.

Consider the following example.

Consider the migration matrix

for locations  and  Suppose initially there are  residents in location ,  in location  and  in location . Find
the population in the three locations after  and  units of time.

Solution
Using Theorem  we can find the population in each location using the equation . For the population after 
unit, we calculate  as follows.

A A

A 1 A

aij A = .4a11

= .6a21

= .2a12

= .8a22

.4

7.3.4
.4 ×15 +.2 ×10 = 8

.6 ×15 +.8 ×10 = 17

=Xn [ ⋯ ]x1n xmn
T xin i n Xn

n X0 A

i AXn i k ith

X.Ak

 Theorem : State Vector7.3.2

A Xn

n Xn n

= AXn+1 Xn

Xn X0 A 1
A

= ( ) =∑
i

∑
j

aijxj ∑
j

xj ∑
i

aij ∑
j

xj

 Example : Using a Migration Matrix7.3.5

A =
⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

1, 2, 3. 100 1 200 2 400 3
1, 2, 10

7.3.2 = AXn+1 Xn 1
= AX1 X0
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Therefore after one time period, location  has  residents, location  has , and location  has . Notice that the total
population is unchanged, it simply migrates within the given locations. We find the locations after two time periods in the same
way.

We could progress in this manner to find the populations after  time periods. However from our above discussion, we can
simply calculate , where  denotes the number of time periods which have passed. Therefore, we compute the
populations in each location after  units of time as follows.

Since we are speaking about populations, we would need to round these numbers to provide a logical answer. Therefore, we
can say that after  units of time, there will be  residents in location one,  in location two, and  in location three.

A second important application of Markov matrices is the concept of random walks. Suppose a walker has  locations to choose
from, denoted . Let  refer to the probability that the person will travel to location  from location . Again, this
requires that

In this context, the vector  contains the probabilities  the walker ends up in location  at time 
.

Suppose three locations exist, referred to as locations  and . The Markov matrix of probabilities  is given by

If the walker starts in location , calculate the probability that he ends up in location  at time .

X1

⎡

⎣
⎢
x11

x21

x31

⎤

⎦
⎥

= AX0

=
⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

⎡

⎣
⎢

100
200
400

⎤

⎦
⎥

=
⎡

⎣
⎢

100
180
420

⎤

⎦
⎥

1 100 2 180 3 420

X2

⎡

⎣
⎢
x12

x22

x32

⎤

⎦
⎥

= AX1

=
⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

⎡

⎣
⎢

100
180
420

⎤

⎦
⎥

=
⎡

⎣
⎢

102
164
434

⎤

⎦
⎥

10
( )AnX0 i n

10

X10

⎡

⎣
⎢

x110

x210

x310

⎤

⎦
⎥

= A10X0

=
⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

10
⎡

⎣
⎢

100
200
400

⎤

⎦
⎥

=
⎡

⎣
⎢

115. 085 829 22
120. 130 672 44
464. 783 498 34

⎤

⎦
⎥

10 115 120 465

m

1, 2, ⋯ ,m aij i j

= 1∑
i=1

k

aij

=Xn [ ⋯ ]x1n xmn
T

xin i, 1 ≤ i ≤ m

n

 Example : Random Walks7.3.6

1, 2 3 A = [ ]aij

⎡

⎣
⎢

0.4
0.4
0.2

0.1
0.6
0.3

0.5
0.1
0.4

⎤

⎦
⎥

1 3 n = 2
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Solution
Since the walker begins in location , we have

The goal is to calculate . To do this we calculate , using .

This gives the probabilities that our walker ends up in locations 1, 2, and 3. For this example we are interested in location 3,
with a probability on .

Returning to the context of migration, suppose we wish to know how many residents will be in a certain location after a very long
time. It turns out that if some power of the migration matrix has all positive entries, then there is a vector  such that 
approaches  as  becomes very large. Hence as more time passes and  increases,  will become closer to the vector .

Consider Theorem . Let  increase so that  approaches . As  becomes closer to , so too does . For
sufficiently large , the statement  can be written as .

This discussion motivates the following theorem.

Let  be a migration matrix. Then there exists a steady state vector written  such that

where  has positive entries which have the same sum as the entries of .

As  increases, the state vectors  will approach .

Note that the condition in Theorem  can be written as , representing a homogeneous system of equations.

Consider the following example. Notice that it is the same example as the Example  but here it will involve a longer time
frame.

Consider the migration matrix

1

=X0

⎡

⎣
⎢

1
0
0

⎤

⎦
⎥

x32 X2 = AXn+1 Xn

X1 = AX0

=
⎡

⎣
⎢

0.4
0.4
0.2

0.1
0.6
0.3

0.5
0.1
0.4

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

⎤

⎦
⎥

=
⎡

⎣
⎢

0.4
0.4
0.2

⎤

⎦
⎥

X2 = AX1

=
⎡

⎣
⎢

0.4
0.4
0.2

0.1
0.6
0.3

0.5
0.1
0.4

⎤

⎦
⎥

⎡

⎣
⎢

0.4
0.4
0.2

⎤

⎦
⎥

=
⎡

⎣
⎢

0.3
0.42
0.28

⎤

⎦
⎥

0.28

Xs AnX0

Xs n n AnX0 Xs

7.3.2 n Xn Xs Xn Xs Xn+1

n = AXn+1 Xn = AXs Xs

 Theorem : Steady State Vector7.3.3

A Xs

= AXs Xs

Xs X0

n Xn Xs

7.3.3 (I −A) = 0Xs

7.3.5

 Example : Populations over the Long Run7.3.7
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for locations  and  Suppose initially there are 100 residents in location 1, 200 in location 2 and 400 in location 4. Find
the population in the three locations after a long time.

Solution
By Theorem  the steady state vector  can be found by solving the system .

Thus we need to find a solution to

The augmented matrix and the resulting reduced row-echelon form are given by

Therefore, the eigenvectors are

The initial vector  is given by

Now all that remains is to choose the value of  such that

Solving this equation for  yields . Therefore the population in the long run is given by

Again, because we are working with populations, these values need to be rounded. The steady state vector  is given by

We can see that the numbers we calculated in Example  for the populations after the  unit of time are not far from the long
term values.

Consider another example.

A =
⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

1, 2, 3.

7.3.3 Xs (I −A) = 0Xs

− =
⎛

⎝
⎜

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣
⎢

.6

.2

.2

0
.8
.2

.1
0

.9

⎤

⎦
⎥

⎞

⎠
⎟

⎡

⎣
⎢
x1s

x2s

x3s

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

→ ⋯ →
⎡

⎣

⎢⎢

0.4
−0.2
−0.2

0
0.2

−0.2

−0.1
0

0.1

0
0
0

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

1
0
0

0
1
0

−0.25
−0.25

0

0
0
0

⎤

⎦

⎥⎥

t
⎡

⎣
⎢

0.25
0.25

1

⎤

⎦
⎥

X0

⎡

⎣
⎢

100
200
400

⎤

⎦
⎥

t

0.25t+0.25t+ t = 100 +200 +400

t t =   1400
3

  =
1400

3

⎡

⎣
⎢

0.25
0.25

1

⎤

⎦
⎥

⎡

⎣
⎢

116.666 666 666 666 7
116.666 666 666 666 7
466.666 666 666 666 7

⎤

⎦
⎥

Xs

⎡

⎣
⎢

117
117
466

⎤

⎦
⎥

7.3.5 10th
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Suppose a migration matrix is given by

Find the comparison between the populations in the three locations after a long time.

Solution
In order to compare the populations in the long term, we want to find the steady state vector . Solve

The augmented matrix and the resulting reduced row-echelon form are given by

and so an eigenvector is

Therefore, the proportion of population in location 2 to location 1 is given by . The proportion of population 3 to location 2
is given by .

Eigenvalues of Markov Matrices

The following is an important proposition.

Let  be a migration matrix. Then  is always an eigenvalue for 

Proof

Remember that the determinant of a matrix always equals that of its transpose. Therefore,

because  Thus the characteristic equation for  is the same as the characteristic equation for . Consequently, 
and  have the same eigenvalues. We will show that  is an eigenvalue for  and then it will follow that  is an
eigenvalue for .

Remember that for a migration matrix,  Therefore, if  with  it follows that

Therefore, from matrix multiplication,

 Example : Populations After a Long Time7.3.8

A =
⎡

⎣

⎢
⎢

  1
5

  1
4

  11
20

  1
2

  1
4

  1
4

  1
5

  1
2

  3
10

⎤

⎦

⎥
⎥

Xs

− =
⎛

⎝

⎜⎜
⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥

⎡

⎣

⎢⎢

  1
5

  1
4

  11
20

  1
2

  1
4

  1
4

  1
5

  1
2

  3
10

⎤

⎦

⎥⎥

⎞

⎠

⎟⎟
⎡

⎣
⎢
x1s

x2s

x3s

⎤

⎦
⎥

⎡

⎣
⎢

0
0
0

⎤

⎦
⎥

→ ⋯ →

⎡

⎣

⎢⎢⎢

  4
5

−  1
4

−  11
20

−  1
2

  3
4

−  1
4

−  1
5

−  1
2

  7
10

0

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

−  16
19

−  18
19

0

0

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

16
18
19

⎤

⎦
⎥

  18
16

  19
18

 Proposition : Eigenvalues of a Migration Matrix7.3.1

A = [ ]aij 1 A.

det (λI −A) = det( )= det(λI − )(λI −A)T AT

= I.I T A AT A

AT 1 AT 1
A

= 1.∑i aij = [ ]AT bij = ,bij aji

= = 1∑
j

bij ∑
j

aji
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Notice that this shows that  is an eigenvector for  corresponding to the eigenvalue,  As explained above,

this shows that  is an eigenvalue for  because  and  have the same eigenvalues.

Dynamical Systems
The migration matrices discussed above give an example of a discrete dynamical system. We call them discrete because they
involve discrete values taken at a sequence of points rather than on a continuous interval of time.

An example of a situation which can be studied in this way is a predator prey model. Consider the following model where  is the
number of prey and  the number of predators in a certain area at a certain time. These are functions of  where 
are the ends of intervals of time which may be of interest in the problem. In other words,  is the number of prey at the end of
the  interval of time. An example of this situation may be modeled by the following equation

This says that from time period  to ,  increases if there are more  and decreases as there are more . In the context of this
example, this means that as the number of predators increases, the number of prey decreases. As for  it increases if there are more

 and also if there are more .

This is an example of a matrix recurrence which we define now.

Suppose a dynamical system is given by

This system can be expressed as  where  and .

In this section, we will examine how to find solutions to a dynamical system given certain initial conditions. This process involves
several concepts previously studied, including matrix diagonalization and Markov matrices. The procedure is given as follows.
Recall that when diagonalized, we can write .

Suppose a dynamical system is given by

Given initial conditions  and , the solutions to the system are found as follows:

1. Express the dynamical system in the form .
2. Diagonalize  to be written as .
3. Then  where  is the vector containing the initial conditions.
4. If given specific values for , substitute into this equation. Otherwise, find a general solution for .

We will now consider an example in detail.

= =AT

⎡

⎣

⎢⎢

1

⋮
1

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

∑j bij

⋮
∑j bij

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

1

⋮
1

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

1

⋮
1

⎤

⎦

⎥⎥ AT λ = 1.

λ = 1 A A AT

x

y n ∈ N n = 1, 2, ⋯
x (n)

nth

[ ] = [ ][ ]
x (n+1)

y (n+1)
2
1

−3
4

x (n)

y (n)

n n+1 x x y

y,
y x

 Definition : Matrix Recurrence7.3.2

xn+1

yn+1

= a +bxn yn
= c +dxn yn

= AVn+1 Vn = [ ]Vn
xn

yn
A = [ ]

a

c

b

d

= PAn DnP −1

 Procedure : Solving a Dynamical System7.3.1

xn+1

yn+1

= a +bxn yn
= c +dxn yn

x0 y0

= AVn+1 Vn
A A = PDP −1

= PVn DnP −1V0 V0

n n
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Suppose a dynamical system is given by

Express this system as a matrix recurrence and find solutions to the dynamical system for initial conditions .

Solution
First, we express the system as a matrix recurrence.

Then

You can verify that the eigenvalues of  are  and . By diagonalizing, we can write  in the form

Now given an initial condition

the solution to the dynamical system is given by

If we let  become arbitrarily large, this vector approaches

Thus for large 

Now suppose the initial condition is given by

Then, we can find solutions for various values of . Here are the solutions for values of  between  and 

 Example : Solutions of a Discrete Dynamical System7.3.9

xn+1

yn+1

= 1.5 −0.5xn yn
= 1.0xn

= 20, = 10x0 y0

Vn+1

[ ]
x (n+1)

y (n+1)

= AVn

= [ ][ ]
1.5
1.0

−0.5
0

x (n)

y (n)

A = [ ]
1.5
1.0

−0.5
0

A 1 .5 A

DP = [ ][ ][ ]P −1 1
1

1
2

1
0

0
.5

2
−1

−1
1

= [ ]V0
x0

y0

Vn

[ ]
x (n)

y (n)

= PDnP −1V0

= [ ] [ ][ ]
1
1

1
2

[ ]
1
0

0
.5

n 2
−1

−1
1

x0

y0

= [ ][ ][ ][ ]
1
1

1
2

1
0

0
(.5)n

2
−1

−1
1

x0

y0

= [ ]
( −1) − ( −2)y0 (.5)n x0 (.5)n

(2 −1) − (2 −2)y0 (.5)n x0 (.5)n

n

[ ]
2 −x0 y0

2 −x0 y0

n,

[ ] ≈ [ ]
x (n)

y (n)
2 −x0 y0

2 −x0 y0

[ ] = [ ]
x0

y0

20
10

n n 1 5

n = 1 : [ ] ,n = 2 : [ ] ,n = 3 : [ ]
25.0
20.0

27.5
25.0

28.75
27.5
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Notice that as  increases, we approach the vector given by

These solutions are graphed in the following figure.

Figure 

The following example demonstrates another system which exhibits some interesting behavior. When we graph the solutions, it is
possible for the ordered pairs to spiral around the origin.

Suppose a dynamical system is of the form

Find solutions to the dynamical system for given initial conditions.

Solution
Let

To find solutions, we must diagonalize . You can verify that the eigenvalues of  are complex and are given by 
 and . The eigenvector for  is

and that the eigenvector for  is

Thus the matrix  can be written in the form

n = 4 : [ ] ,n = 5 : [ ]
29.375

28.75
29.688
29.375

n

[ ] = [ ] = [ ]
2 −x0 y0

2 −x0 y0

2 (20) −10
2 (20) −10

30
30

7.3.1

 Example : Finding Solutions to a Dynamical System7.3.10

[ ] = [ ][ ]
x (n+1)

y (n+1)
0.7

−0.7
0.7
0.7

x (n)

y (n)

A = [ ]
0.7

−0.7
0.7
0.7

A A

= .7 +.7iλ1 = .7 −.7iλ2 = .7 +.7iλ1

[ ]
1
i

= .7 −.7iλ2

[ ]
1

−i

A
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and so,

The explicit solution is given by

Suppose the initial condition is

Then one obtains the following sequence of values which are graphed below by letting 

Figure 

In this picture, the dots are the values and the dashed line is to help to picture what is happening.

These points are getting gradually closer to the origin, but they are circling the origin in the clockwise direction as they do so.

As  increases, the vector  approaches 

This type of behavior along with complex eigenvalues is typical of the deviations from an equilibrium point in the Lotka Volterra
system of differential equations which is a famous model for predator-prey interactions. These differential equations are given by

where  are positive constants. For example, you might have  be the population of moose and  the population of wolves
on an island.

[ ][ ][ ]
1
i

1
−i

.7 +.7i
0

0
.7 −.7i

1
2
1
2

− i1
2

i1
2

Vn

[ ]
x (n)

y (n)

= PDnP −1V0

= [ ][ ][ ] [ ]
1
i

1
−i

(.7 +.7i)n

0

0

(.7 −.7i)n

1
2
1
2

− i1
2

i1
2

x0

y0

[ ]
( + )+ ( i − i )x0

1
2 (0.7 −0.7i)n 1

2 (0.7 +0.7i)n y0
1
2 (0.7 −0.7i)n 1

2 (0.7 +0.7i)n

( + )− ( i − i )y0
1
2 (0.7 −0.7i)n 1

2 (0.7 +0.7i)n x0
1
2 (0.7 −0.7i)n 1

2 (0.7 +0.7i)n

[ ] = [ ]
x0

y0

10
10

n = 1, 2, ⋯ , 20

7.3.2

n [ ]
x (n)
y (n)

[ ]
0
0

x′

y′
= x (a−by)
= −y (c−dx)

a, b, c, d X Y
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Note that these equations make logical sense. The top says that the rate at which the moose population increases would be  if
there were no predators . However, this is modified by multiplying instead by  because if there are predators, these will
militate against the population of moose. The more predators there are, the more pronounced is this effect. As to the predator
equation, you can see that the equations predict that if there are many prey around, then the rate of growth of the predators would
seem to be high. However, this is modified by the term  because if there are many predators, there would be competition for
the available food supply and this would tend to decrease 

The behavior near an equilibrium point, which is a point where the right side of the differential equations equals zero, is of great
interest. In this case, the equilibrium point is

Then one defines new variables according to the formula

In terms of these new variables, the differential equations become

Multiplying out the right sides yields

The interest is for  small and so these equations are essentially equal to

Replace  with the difference quotient  where  is a small positive number and  with a similar difference quotient.
For example one could have  correspond to one day or even one hour. Thus, for  small enough, the following would seem to be
a good approximation to the differential equations.

Let  denote the ends of discrete intervals of time having length  chosen above. Then the above equations take the form

Note that the eigenvalues of this matrix are always complex.

We are not interested in time intervals of length  for  very small. Instead, we are interested in much longer lengths of time. Thus,
replacing the time interval with 

For example, if  you would have

aX

Y (a−bY )

−cY

.Y ′

x = , y =
c

d

a

b

x+ = x,  y = y+
c

d

a

b

x′

y′

= (x+ )(a−b(y+ ))
c

d

a

b

= −(y+ )(c−d(x+ ))
a

b

c

d

x′

y′

= −bxy−b y
c

d

= dxy+ dx
a

b

x, y

= −b y,   = dxx′ c

d
y′ a

b

x′ x(t+h)−x(t)
h

h y′

h h

x (t+h)

y (t+h)

= x (t) −hb y
c

d

= y (t) +h dx
a

b

1, 2, 3, ⋯ h

[ ] = [ ] [ ]
x (n+1)
y (n+1)

1
had

b

− hbc

d

1

x (n)
y (n)

h h

mh,

[ ] = [ ]
x (n+m)

y (n+m)
[ ]

1
had
b

− hbc

d

1

m
x (n)

y (n)

m = 2,

[ ] = [ ] [ ]
x (n+2)
y (n+2)

1 −ach2

2 dha

b

−2b hc
d

1 −ach2

x (n)
y (n)
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Note that most of the time, the eigenvalues of the new matrix will be complex.

You can also notice that the upper right corner will be negative by considering higher powers of the matrix. Thus letting 
denote the ends of discrete intervals of time, the desired discrete dynamical system is of the form

where  are positive constants and the matrix will likely have complex eigenvalues because it is a power of a matrix which
has complex eigenvalues.

You can see from the above discussion that if the eigenvalues of the matrix used to define the dynamical system are less than 1 in
absolute value, then the origin is stable in the sense that as  the solution converges to the origin. If either eigenvalue is
larger than 1 in absolute value, then the solutions to the dynamical system will usually be unbounded, unless the initial condition is
chosen very carefully. The next example exhibits the case where one eigenvalue is larger than 1 and the other is smaller than 1.

The following example demonstrates a familiar concept as a dynamical system.

The Fibonacci sequence is the sequence given by

which is defined recursively in the form

Show how the Fibonacci Sequence can be considered a dynamical system.

Solution
This sequence is extremely important in the study of reproducing rabbits. It can be considered as a dynamical system as
follows. Let  Then the above recurrence relation can be written as

Let

The eigenvalues of the matrix  are  and . The corresponding eigenvectors are, respectively,

You can see from a short computation that one of the eigenvalues is smaller than 1 in absolute value while the other is larger
than 1 in absolute value. Now, diagonalizing  gives us

Then it follows that for a given initial condition, the solution to this dynamical system is of the form

1, 2, 3, ⋯

[ ] = [ ][ ]
x (n+1)
y (n+1)

a

c

−b

d

x (n)
y (n)

a, b, c, d

n → ∞,

 Example : The Fibonacci Sequence7.3.11

1, 1, 2, 3, 5, ⋯

x (0) = 1 = x (1) ,  x (n+2) = x (n+1) +x (n)

y (n) = x (n+1) .

[ ] = [ ][ ] ,  [ ] = [ ]
x (n+1)
y (n+1)

0
1

1
1

x (n)
y (n)

x (0)
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1
1

A = [ ]
0
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1
1

A = −λ1
1
2

1
2 5
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2

1
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2

1

A

[ ][ ][ ]
−1

2
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2

1
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2
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2

1

−1
0
1

1
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−1
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It follows that

Here is a picture of the ordered pairs  for .

Figure 

There is so much more that can be said about dynamical systems. It is a major topic of study in differential equations and what is
given above is just an introduction.

The Matrix Exponential

The goal of this section is to use the concept of the matrix exponential to solve first order linear differential equations. We begin by
proving the matrix exponential.

Suppose  is a diagonalizable matrix. Then the matrix exponential, written , can be easily defined. Recall that if  is a
diagonal matrix, then

 is of the form

and it follows that

[ ]
x (n)
y (n)

= [ ][ ] ⋅
−1

2 5
–√ 1

2

1

− −1
2 5

–√ 1
2

1

( + )1
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− 1
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2
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1
1

x (n) = ( + )+ ( − )( + )
1
2
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1
2

n 1
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1
2

( − )
1
2

1
2

5–√
n 1

2
1

10
5–√

(x (n) , y (n)) n = 0, 1, ⋯ ,n

7.3.3

A eA D

AP = DP −1

D

⎡

⎣

⎢⎢

λ1

0
⋱

0

λn

⎤

⎦

⎥⎥ (7.3.1)

=Dm

⎡

⎣

⎢⎢

λm1

0
⋱

0

λmn

⎤
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Since  is diagonalizable,

and

Recall why this is true.

and so

We now will examine what is meant by the matrix exponental . Begin by formally writing the following power series for :

If  is given above in , the above sum is of the form

This can be rearranged as follows:

This justifies the following theorem.

Let  be a diagonalizable matrix, with eigenvalues and corresponding matrix of eigenvectors . Then the matrix
exponential, , is given by

Let

A

A = PDP −1

= PAm DmP −1

A = PDP −1

Am = PD PD PD ⋯PDP −1 P −1 P −1 P −1
  m times

= PDmP −1

eA eA

= = = P ( )eA ∑
k=0

∞ Ak

k!
∑
k=0

∞ PDkP −1

k!
∑
k=0

∞ Dk

k!
P −1

D (7.3.1)

P

⎛

⎝

⎜⎜⎜∑
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∞
⎡

⎣

⎢⎢⎢

1
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k
1

0

⋱

0

1
k!λ

k
n

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟⎟⎟P −1

= PeA

⎡

⎣

⎢⎢⎢

∑∞
k=0

1
k!λ

k
1

0

⋱

0

∑∞
k=0

1
k!λ

k
n

⎤

⎦

⎥⎥⎥
P −1

= P

⎡

⎣

⎢⎢

eλ1

0

⋱

0

eλn

⎤

⎦

⎥⎥P −1

 Theorem : The Matrix Exponential7.3.4

A , . . . ,λ1 λn P

eA

= PeA
⎡

⎣

⎢⎢

eλ1

0
⋱

0

eλn

⎤

⎦
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 Example : Compute  for a Matrix 7.3.12 eA A
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Find .

Solution
The eigenvalues work out to be  and eigenvectors associated with these eigenvalues are

Then let

and so

Then the matrix exponential is

The matrix exponential is a useful tool to solve autonomous systems of first order linear differential equations. These are equations
which are of the form

where  is a diagonalizable  matrix and  is a constant vector.  is a vector of functions in one variable, :

Then  refers to the first derivative of  and is given by

Then it turns out that the solution to the above system of equations is . To see this, suppose  is diagonalizable so
that

A =
⎡

⎣
⎢

2
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2
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⎥
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⎢
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⎢
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⎢
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Then

Differentiating  yields

Therefore  is a solution to .

To prove that  if :

Solve the initial value problem

Solution
The matrix is diagonalizable and can be written as

Therefore, the matrix exponential is of the form

A = P

⎡
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⋱
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 Example : Solving an Initial Value Problem7.3.13
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The solution to the initial value problem is

We can check that this works:

Lastly,

and

which is the same thing. Thus this is the solution to the initial value problem.

This page titled 7.3: Applications of Spectral Theory is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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7.4: Orthogonality

Orthogonal Diagonalization

We begin this section by recalling some important definitions. Recall from Definition 4.11.4 that non-zero vectors are called
orthogonal if their dot product equals . A set is orthonormal if it is orthogonal and each vector is a unit vector.

An orthogonal matrix , from Definition 4.11.7, is one in which . In other words, the transpose of an orthogonal matrix
is equal to its inverse. A key characteristic of orthogonal matrices, which will be essential in this section, is that the columns of an
orthogonal matrix form an orthonormal set.

We now recall another important definition.

A real  matrix  is symmetric if  If  then  is called skew symmetric.

Before proving an essential theorem, we first examine the following lemma which will be used below.

Let  be a real symmetric  matrix, and let . Then

Proof

This result follows from the definition of the dot product together with properties of matrix multiplication, as follows:

The last step follows from , since  is symmetric.

We can now prove that the eigenvalues of a real symmetric matrix are real numbers. Consider the following important theorem.

Let  be a real symmetric matrix. Then the eigenvalues of  are real numbers and eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Proof

Recall that for a complex number  the complex conjugate, denoted by  is given by  The

notation,  will denote the vector which has every entry replaced by its complex conjugate.

Suppose  is a real symmetric matrix and . Then

Dividing by  on both sides yields  which says  is real. To do this, we need to ensure that . Notice that 

 if and only if . Since we chose  such that ,  is an eigenvector and therefore must be nonzero.

0

U U = IU T

 Definition : Symmetric and Skew Symmetric Matrices7.4.1

n×n A, = A.AT A = − ,AT A

 Lemma : The Dot Product7.4.1

A = ( )aij n×n , ∈x⃗  y ⃗  R
n

A ⋅ = ⋅Ax⃗  y ⃗  x⃗  y ⃗ 

A ⋅x⃗  y ⃗ =∑
k,l

aklxlyk

= (∑
k,l

alk)Txlyk

= ⋅x⃗  AT y ⃗ 
= ⋅Ax⃗  y ⃗ 

= AAT A

 Theorem : Orthogonal Eigenvectors7.4.1

A A

a+ ib, a+ ib
¯ ¯¯̄¯̄¯̄¯̄¯̄¯ = a− ib.a+ ib

¯ ¯¯̄¯̄¯̄¯̄¯̄¯

x⃗ ¯̄̄

A A = λx⃗  x⃗ 

= = = A = λλx⃗ ¯ ¯¯̄¯̄ T

x⃗  ( )Ax⃗ ¯ ¯¯̄¯̄¯ T

x⃗  x⃗ ¯̄̄ T

AT x⃗  x⃗ ¯̄̄ T

x⃗  x⃗ ¯̄̄ T

x⃗ 

x⃗ ¯̄̄ T

x⃗  = λλ
¯¯̄

λ ≠ 0x⃗ ¯̄̄ T

x⃗ 

= 0x⃗ ¯̄̄ T

x⃗  =x⃗  0⃗  x⃗  A = λx⃗  x⃗  x⃗ 
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Now suppose  is real symmetric and ,  where . Then since  is symmetric, it follows from
Lemma  about the dot product that

Hence  It follows that, since  it must be that . Therefore the eigenvectors form an
orthogonal set.

The following theorem is proved in a similar manner.

The eigenvalues of a real skew symmetric matrix are either equal to  or are pure imaginary numbers.

Proof

First, note that if  is the zero matrix, then  is skew symmetric and has eigenvalues equal to .

Suppose  so  is skew symmetric and . Then

and so, dividing by  as before,  Letting  this means  and so  Thus  is
pure imaginary.

Consider the following example.

Let  Find its eigenvalues.

Solution
First notice that  is skew symmetric. By Theorem , the eigenvalues will either equal  or be pure imaginary. The
eigenvalues of  are obtained by solving the usual equation

Hence the eigenvalues are  pure imaginary.

Consider the following example.

Let  Find its eigenvalues.

Solution
First, notice that  is symmetric. By Theorem , the eigenvalues will all be real. The eigenvalues of  are obtained by
solving the usual equation

A A = λx⃗  x⃗  A = μy ⃗  y ⃗  μ ≠ λ A

7.4.1

λ ⋅ = A ⋅ = ⋅A = ⋅μ = μ ⋅x⃗  y ⃗  x⃗  y ⃗  x⃗  y ⃗  x⃗  y ⃗  x⃗  y ⃗ 

(λ−μ) ⋅ = 0.x⃗  y ⃗  λ−μ ≠ 0, ⋅ = 0x⃗  y ⃗ 

 Theorem : Eigenvalues of Skew Symmetric Matrix7.4.2

0

A = 0 A 0

A = −AT A A = λx⃗  x⃗ 

= = = − A = −λλx⃗ ¯ ¯¯̄¯̄ T

x⃗  ( )Ax⃗ ¯ ¯¯̄¯̄¯ T

x⃗  x⃗ ¯̄̄ T

AT x⃗  x⃗ ¯̄̄ T

x⃗  x⃗ ¯̄̄ T

x⃗ 

x⃗ ¯̄̄ T

x⃗  = −λ.λ¯¯̄ λ = a+ ib, a− ib = −a− ib a = 0. λ

 Example : Eigenvalues of a Skew Symmetric Matrix7.4.1

A = [ ] .
0
1

−1
0

A 7.4.2 0
A

det(λI −A) = det[ ] = +1 = 0
λ

−1
1
λ

λ2

±i,

 Example : Eigenvalues of a Symmetric Matrix7.4.2

A = [ ] .
1
2

2
3

A 7.4.1 A

det(λI −A) = det[ ] = −4λ−1 = 0
λ−1

−2
−2

λ−3
λ2
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The eigenvalues are given by  and  which are both real.

Recall that a diagonal matrix  is one in which  whenever . In other words, all numbers not on the main
diagonal are equal to zero.

Consider the following important theorem.

Let  be a real symmetric matrix. Then there exists an orthogonal matrix  such that

where  is a diagonal matrix. Moreover, the diagonal entries of  are the eigenvalues of .

We can use this theorem to diagonalize a symmetric matrix, using orthogonal matrices. Consider the following corollary.

If  is a real  symmetric matrix, then there exists an orthonormal set of eigenvectors, 

Proof

Since  is symmetric, then by Theorem , there exists an orthogonal matrix  such that  a diagonal
matrix whose diagonal entries are the eigenvalues of  Therefore, since  is symmetric and all the matrices are real,

showing  is real because each entry of  equals its complex conjugate.

Now let

where the  denote the columns of  and

The equation,  implies  and

where the entries denote the columns of  and  respectively. Therefore, . Since the matrix  is
orthogonal, the  entry of  equals  and so

This proves the corollary because it shows the vectors  form an orthonormal set.

Let  be an  matrix. Then the principal axes of  is a set of orthonormal eigenvectors of .

In the next example, we examine how to find such a set of orthonormal eigenvectors.

= 2 +λ1 5–√ = 2 −λ2 5–√

D = ( )dij = 0dij i ≠ j

 Theorem : Orthogonal Diagonalization7.4.3

A U

AU = DU T

D D A

 Corollary : Orthonormal Set of Eigenvectors7.4.1

A n×n { , ⋯ , } .u⃗ 1 u⃗ n

A 7.4.3 U AU = D,U T

A. A

= = = U = AU = DD
¯ ¯¯̄

DT¯ ¯¯̄¯̄¯
UU TAT¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

U TAT U T

D D

U = [ ]u⃗ 1 u⃗ 2 ⋯ u⃗ n

u⃗ i U

D =
⎡

⎣

⎢⎢

λ1

0
⋱

0

λn

⎤

⎦

⎥⎥

AU = DU T AU = UD

AU = [ ]Au⃗ 1 Au⃗ 2 ⋯ Au⃗ n
= [ ]λ1u⃗ 1 λ2u⃗ 2 ⋯ λnu⃗ n
= UD

AU UD A =u⃗ i λiu⃗ i U

ijth UU T δij

= = ⋅δij u⃗ T
i u⃗ j u⃗ i u⃗ j

{ }u⃗ i

 Definition : Principal Axes7.4.2

A n×n A A
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Find an orthonormal set of eigenvectors for the symmetric matrix

Solution
Recall Procedure 7.1.1 for finding the eigenvalues and eigenvectors of a matrix. You can verify that the eigenvalues are 

 First find the eigenvector for  by solving the equation . The appropriate augmented matrix is
given by

The reduced row-echelon form is

Therefore an eigenvector is

Next find the eigenvector for  The augmented matrix and resulting reduced row-echelon form are

Thus an eigenvector for  is

Finally find an eigenvector for  The appropriate augmented matrix and reduced row-echelon form are

Thus an eigenvector for  is

The set of eigenvectors for  is given by

 Example : Find an Orthonormal Set of Eigenvectors7.4.3

A =
⎡

⎣
⎢

17
−2
−2

−2
6
4

−2
4
6

⎤

⎦
⎥

18, 9, 2. 18 (18I −A)X = 0

⎡

⎣
⎢⎢

18 −17
2
2

2
18 −6

−4

2
−4

18 −6

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

4
−1

0

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢

−4
1
1

⎤

⎦
⎥

λ = 9.

→ ⋯ →
⎡

⎣
⎢⎢

9 −17
2
2

2
9 −6
−4

2
−4

9 −6

0
0
0

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢

1

0
0

0

1
0

− 1
2

−1
0

0

0
0

⎤

⎦

⎥⎥

λ = 9

⎡

⎣
⎢

1
2
2

⎤

⎦
⎥

λ = 2.

→ ⋯ →
⎡

⎣
⎢⎢

2 −17
2
2

2
2 −6
−4

2
−4

2 −6

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

0
1
0

0
0
0

⎤

⎦
⎥⎥

λ = 2

⎡

⎣
⎢

0
−1

1

⎤

⎦
⎥

A
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You can verify that these eigenvectors form an orthogonal set. By dividing each eigenvector by its magnitude, we obtain an
orthonormal set:

Consider the following example.

Find an orthonormal set of three eigenvectors for the matrix

Solution
You can verify that the eigenvalues of  are  (with multiplicity two) and  (with multiplicity one). Consider the
eigenvectors corresponding to . The appropriate augmented matrix and reduced row-echelon form are given by

and so eigenvectors are of the form

We need to find two of these which are orthogonal. Let one be given by setting  and , giving .

In order to find an eigenvector orthogonal to this one, we need to satisfy

The values  and  satisfy this equation, giving another eigenvector corresponding to  as

Next find the eigenvector for  The augmented matrix and the resulting reduced row-echelon form are given by

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−4
1
1

⎤

⎦
⎥
⎡

⎣
⎢

1
2
2

⎤

⎦
⎥
⎡

⎣
⎢

0
−1

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

, ,
⎧

⎩
⎨
⎪

⎪

1

18−−√

⎡

⎣
⎢

−4
1
1

⎤

⎦
⎥

1
3

⎡

⎣
⎢

1
2
2

⎤

⎦
⎥

1

2–√

⎡

⎣
⎢

0
−1

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Example : Repeated Eigenvalues7.4.4

A =
⎡

⎣
⎢

10
2
2

2
13

4

2
4

13

⎤

⎦
⎥

A 9 18
λ = 9

→ ⋯ →
⎡

⎣
⎢⎢

9 −10
−2
−2

−2
9 −13

−4

−2
−4

9 −13

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

2
0
0

2
0
0

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢

−2y−2z
y

z

⎤

⎦
⎥

z = 0 y = 1
⎡

⎣
⎢

−2
1
0

⎤

⎦
⎥

⋅ = 5y+4z = 0
⎡

⎣
⎢

−2
1
0

⎤

⎦
⎥
⎡

⎣
⎢

−2y−2z
y

z

⎤

⎦
⎥

y = −4 z = 5 λ = 9

=
⎡

⎣
⎢

−2 (−4) −2 (5)

(−4)
5

⎤

⎦
⎥

⎡

⎣
⎢

−2
−4

5

⎤

⎦
⎥

λ = 18.

→ ⋯ →
⎡

⎣

⎢⎢

18 −10
−2
−2

−2
18 −13

−4

−2
−4

18 −13

0
0
0

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

1

0
0

0

1
0

− 1
2

−1
0

0

0
0

⎤

⎦

⎥⎥
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and so an eigenvector is

Dividing each eigenvector by its length, the orthonormal set is

In the above solution, the repeated eigenvalue implies that there would have been many other orthonormal bases which could have
been obtained. While we chose to take , we could just as easily have taken  or even  Any such
change would have resulted in a different orthonormal set.

Recall the following definition.

An  matrix  is said to be non defective or diagonalizable if there exists an invertible matrix  such that 
where  is a diagonal matrix.

As indicated in Theorem  if  is a real symmetric matrix, there exists an orthogonal matrix  such that  where 
 is a diagonal matrix. Therefore, every symmetric matrix is diagonalizable because if  is an orthogonal matrix, it is invertible

and its inverse is . In this case, we say that  is orthogonally diagonalizable. Therefore every symmetric matrix is in fact
orthogonally diagonalizable. The next theorem provides another way to determine if a matrix is orthogonally diagonalizable.

Let  be an  matrix. Then  is orthogonally diagonalizable if and only if  has an orthonormal set of eigenvectors.

Recall from Corollary  that every symmetric matrix has an orthonormal set of eigenvectors. In fact these three conditions are
equivalent.

In the following example, the orthogonal matrix  will be found to orthogonally diagonalize a matrix.

Let  Find an orthogonal matrix  such that  is a diagonal matrix.

Solution
In this case, the eigenvalues are  (with multiplicity one) and  (with multiplicity two). First we will find an eigenvector for the
eigenvalue . The appropriate augmented matrix and resulting reduced row-echelon form are given by

and so an eigenvector is

⎡

⎣
⎢

1
2
2

⎤

⎦
⎥

, ,
⎧

⎩
⎨
⎪

⎪

1

5–√

⎡

⎣
⎢

−2
1
0

⎤

⎦
⎥

5–√
15

⎡

⎣
⎢

−2
−4

5

⎤

⎦
⎥

1
3

⎡

⎣
⎢

1
2
2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

z = 0, y = 1 y = 0 y = z = 1.

 Definition : Diagonalizable7.4.3

n×n A P AP = DP −1

D

7.4.3 A U AU = DU T

D U

U T A

 Theorem : Orthogonally Diagonalizable7.4.4

A n×n A A

7.4.1

U

 Example : Diagonalize a Symmetric Matrix7.4.5

A = .
⎡

⎣

⎢⎢

1

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥ U AUU T

2 1
2

→ ⋯ →
⎡

⎣

⎢⎢⎢

2 −1

0

0

0

2 − 3
2

− 1
2

0

− 1
2

2 − 3
2

0

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

1
0
0

0
1
0

0
−1

0

0
0
0

⎤

⎦

⎥⎥
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However, it is desired that the eigenvectors be unit vectors and so dividing this vector by its length gives

Next find the eigenvectors corresponding to the eigenvalue equal to . The appropriate augmented matrix and resulting
reduced row-echelon form are given by:

Therefore, the eigenvectors are of the form

Two of these which are orthonormal are , choosing  and , and , letting ,  and normalizing

the resulting vector.

To obtain the desired orthogonal matrix, we let the orthonormal eigenvectors computed above be the columns.

To verify, compute  as follows:

the desired diagonal matrix. Notice that the eigenvectors, which construct the columns of , are in the same order as the
eigenvalues in .

We conclude this section with a Theorem that generalizes earlier results.

Let  be an  matrix. If  has  real eigenvalues, then an orthogonal matrix  can be found to result in the upper
triangular matrix .

triangulation

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

1

→ ⋯ →
⎡

⎣

⎢⎢⎢

1 −1

0

0

0

1 − 3
2

− 1
2

0

− 1
2

1 − 3
2

0

0

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

0
0
0

1
0
0

1
0
0

0
0
0

⎤

⎦

⎥⎥

⎡

⎣
⎢

s

−t

t

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

⎤

⎦
⎥ s = 1 t = 0

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

⎤

⎦

⎥⎥⎥ s = 0 t = 1

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

AUU T

AU =U T

⎡

⎣

⎢⎢⎢

0

1

0

− 1
2√

0
1
2√

1
2√

0
1
2√

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢

1

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢⎢

0

− 1
2√

1
2√

1

0

0

0
1
2√

1
2√

⎤

⎦

⎥⎥⎥

= = D
⎡

⎣
⎢

1
0
0

0
1
0

0
0
2

⎤

⎦
⎥

U

D

 Theorem : Triangulation of a Matrix7.4.5

A n×n A n U

AUU T
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This Theorem provides a useful Corollary.

Let  be an  matrix with eigenvalues . Then it follows that  is equal to the product of the , while 
 is equal to the sum of the .

Proof

By Theorem , there exists an orthogonal matrix  such that , where  is an upper triangular matrix.
Since  is similar to , the eigenvalues of  are . Furthermore, since  is (upper) triangular, the entries on
the main diagonal of  are its eigenvalues, so  and . Since  and 

 are similar,  and , and therefore the results follow.

The Singular Value Decomposition
We begin this section with an important definition.

Let  be an  matrix. The singular values of  are the square roots of the positive eigenvalues of 

Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to
an arbitrary  matrix. This decomposition is the focus of this section.

The following is a useful result that will help when computing the SVD of matrices.

Let  be an  matrix. Then  and  have the same nonzero eigenvalues.

Proof

Suppose  is an  matrix, and suppose that  is a nonzero eigenvalue of . Then there exists a nonzero vector 
 such that

Multiplying both sides of this equation by  yields:

Since  and , , and thus by equation , ; thus , implying that 
.

Therefore  is an eigenvector of  corresponding to eigenvalue . An analogous argument can be used to show that
every nonzero eigenvalue of  is an eigenvalue of , thus completing the proof.

Given an  matrix , we will see how to express  as a product

where

 is an  orthogonal matrix whose columns are eigenvectors of .
 is an  orthogonal matrix whose columns are eigenvectors of .
 is an  matrix whose only nonzero values lie on its main diagonal, and are the singular values of .

How can we find such a decomposition? We are aiming to decompose  in the following form:

 Corollary : Determinant and Trace7.4.2

A n×n , ⋯ ,λ1 λn det(A) λi
trace(A) λi

7.4.5 U AU = PU T P

P A P , , … ,λ1 λ2 λn P

P det(P ) = ⋯λ1λ2 λn trace(P ) = + +⋯ +λ1 λ2 λn P

A det(A) = det(P ) trace(A) = trace(P )

 Definition : Singular Values7.4.4

A m×n A A.AT

m×n

 Proposition : Same Nonzero Eigenvalues7.4.1

A m×n AAT AAT

A m×n λ AAT

X ∈ R
n

( A)X = λX.AT (7.4.1)

A

A( A)XAT

(A )(AX)AT

= AλX

= λ(AX).

λ ≠ 0 X ≠ 0n λX ≠ 0n (7.4.1) ( A)X ≠AT 0m (AX) ≠AT 0m
AX ≠ 0m

AX AAT λ

AAT AAT

m×n A A

A = UΣV T

U m×m AAT

V n×n AAT

Σ m×n A

A
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where  is of the form

Thus  and it follows that

and so  Similarly,  Therefore, you would find an orthonormal basis of

eigenvectors for  make them the columns of a matrix such that the corresponding eigenvalues are decreasing. This gives 
You could then do the same for  to get .

We formalize this discussion in the following theorem.

Let  be an  matrix. Then there exist orthogonal matrices  and  of the appropriate size such that  where
 is of the form

and  is of the form

for the  the singular values of 

Proof

There exists an orthonormal basis,  such that  where  for  and equals
zero if  Thus for   because

For  define  by

Thus  Now

Thus  is an orthonormal set of vectors in  Also,

Now extend  to an orthonormal basis for all of  and let

A = U [ ]
σ

0
0
0

V T

σ

σ =
⎡

⎣

⎢⎢

σ1

0
⋱

0

σk

⎤

⎦

⎥⎥

= V [ ]AT σ

0
0
0

U T

A = V [ ] U [ ] = V [ ]AT σ

0
0
0

U T σ

0
0
0

V T σ2

0
0
0

V T

AV = V [ ] .AT σ2

0
0
0

A U = U [ ] .AT σ2

0
0
0

AAT U.
AAT V

 Theorem : Singular Value Decomposition7.4.6

A m×n U V A = UΣV T

Σ

Σ = [ ]
σ

0
0
0

σ

σ =
⎡

⎣

⎢⎢

σ1

0
⋱

0

σk

⎤

⎦

⎥⎥

σi A.

{ }v ⃗ i
n

i=1 A =AT v ⃗ i σ2
i v ⃗ i > 0σ2

i i = 1, ⋯ , k, ( > 0)σi

i > k. i > k, A =v ⃗ i 0⃗ 

A ⋅A = A ⋅ = ⋅ = 0.v ⃗ i v ⃗ i AT v ⃗ i v ⃗ i 0⃗  v ⃗ i

i = 1, ⋯ , k, ∈u⃗ i R
m

= A .u⃗ i σ−1
i v ⃗ i

A = .v ⃗ i σiu⃗ i

⋅u⃗ i u⃗ j = A ⋅ A = ⋅ Aσ−1
i v ⃗ i σ−1

j v ⃗ j σ−1
i v ⃗ i σ−1

j AT v ⃗ j

= ⋅ = ( ⋅ ) = .σ−1
i v ⃗ i σ−1

j σ2
j v ⃗ j

σj

σi
v ⃗ i v ⃗ j δij

{ }u⃗ i
k

i=1 .R
m

A = A A = A A = A = .AT u⃗ i ATσ−1
i v ⃗ i σ−1

i AT v ⃗ i σ−1
i σ2

i v ⃗ i σ2
i u⃗ i

{ }u⃗ i
k

i=1 ,R
m { }u⃗ i

m

i=1
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while  Thus  is the matrix which has the  as columns and  is defined as the matrix which has the 
as columns. Then

where  is given in the statement of the theorem.

The singular value decomposition has as an immediate corollary which is given in the following interesting result.

Let  be an  matrix. Then the rank of  and equals the number of singular values.

Let’s compute the Singular Value Decomposition of a simple matrix.

Let . Find the Singular Value Decomposition (SVD) of .

Solution
To begin, we compute  and .

Since  is  while  is , and  and  have the same nonzero eigenvalues (by Proposition ), we
compute the characteristic polynomial  (because it’s easier to compute than ).

U = [ ]u⃗ 1 ⋯ u⃗ m

V = ( ⋯ ) .v ⃗ 1 v ⃗ n U u⃗ i V v ⃗ i

AV = A [ ⋯ ]U T

⎡

⎣

⎢⎢⎢⎢
⎢⎢⎢⎢⎢

u⃗ T1

⋮

u⃗ T
k

⋮

u⃗ Tm

⎤

⎦

⎥⎥⎥⎥
⎥⎥⎥⎥⎥

v ⃗ 1 v ⃗ n

= [ ] = [ ]

⎡

⎣

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢

u⃗ T1

⋮

u⃗ Tk

⋮

u⃗ T
m

⎤

⎦

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥

σ1u⃗ 1 ⋯ σku⃗ k 0⃗  ⋯ 0⃗  σ

0
0
0

σ

 Corollary : Rank and Singular Values7.4.3

A m×n A AT

 Example : Singular Value Decomposition7.4.6

A = [ ]
1
3

−1
1

3
1

A

AAT AAT

A = [ ] = [ ] .AT 1
3

−1
1

3
1

⎡

⎣
⎢

1
−1

3

3
1
1

⎤

⎦
⎥

11
5

5
11

A = [ ] = .AT
⎡

⎣
⎢

1
−1

3

3
1
1

⎤

⎦
⎥

1
3

−1
1

3
1

⎡

⎣
⎢

10
2
6

2
2

−2

6
−2
10

⎤

⎦
⎥

AAT 2 ×2 AAT 3 ×3 AAT AAT 7.4.1
(x)cAAT (x)c AAT

(x)cAAT = det(xI −A ) =AT ∣
∣
∣
x−11

−5
−5

x−11
∣
∣
∣

= (x−11 −25)2

= −22x+121 −25x2

= −22x+96x2

= (x−16)(x−6)
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Therefore, the eigenvalues of  are  and .

The eigenvalues of  are , , and , and the singular values of  are  and .
By convention, we list the eigenvalues (and corresponding singular values) in non increasing order (i.e., from largest to
smallest).

To find the matrix :

To construct the matrix  we need to find eigenvectors for . Since the eigenvalues of  are distinct, the corresponding
eigenvectors are orthogonal, and we need only normalize them.

: solve .

: solve .

: solve .

Let

Then

Also,

and we use , , and  to find .

Since  is orthogonal and , it follows that . Let , and let , where 
 and  are the two columns of .

Then we have

which implies that  and .

Thus,

AAT = 16λ1 = 6λ2

AAT = 16λ1 = 6λ2 = 0λ3 A = = 4σ1 16−−√ =σ2 6–√

V

V AAT AAT

= 16λ1 (16I − A)Y = 0AT

→ ,  so Y = = t , t ∈ R.
⎡

⎣
⎢⎢

6
−2
−6

−2
14

2

−6
2
6

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

−1
0
0

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢
t

0
t

⎤

⎦
⎥

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

= 6λ2 (6I − A)Y = 0AT

→ ,  so Y = = s , s ∈ R.
⎡

⎣

⎢⎢

−4
−2
−6

−2
4
2

−6
2

−4

0
0
0

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

1
0
0

0
1
0

1
1
0

0
0
0

⎤

⎦

⎥⎥
⎡

⎣
⎢

−s

−s

s

⎤

⎦
⎥

⎡

⎣
⎢

−1
−1

1

⎤

⎦
⎥

= 0λ3 (− A)Y = 0AT

→ ,  so Y = = r , r ∈ R.
⎡

⎣
⎢⎢

−10
−2
−6

−2
−2

2

−6
2

−10

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1
0
0

0
1
0

1
−2

0

0
0
0

⎤

⎦
⎥⎥

⎡

⎣
⎢

−r

2r
r

⎤

⎦
⎥

⎡

⎣
⎢

−1
2
1

⎤

⎦
⎥

= , = , = .V1
1

2
–√

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥ V2

1

3
–√

⎡

⎣
⎢

−1
−1

1

⎤

⎦
⎥ V3

1

6
–√

⎡

⎣
⎢

−1
2
1

⎤

⎦
⎥

V = .
1

6
–√

⎡

⎣
⎢

3
–√

0
3–√

− 2
–√

− 2
–√

2–√

−1
2
1

⎤

⎦
⎥

Σ = [ ] ,
4
0

0
6–√

0
0

A V T Σ U

V A = UΣV T AV = UΣ V = [ ]V1 V2 V3 U = [ ]U1 U2

U1 U2 U

A [ ]V1 V2 V3

[ ]AV1 AV2 AV3

= [ ] ΣU1 U2

= [ ]+0σ1U1 U2 0 +U1 σ2U2 0 +0U1 U2

= [ ]σ1U1 σ2U2 0

A = = 4V1 σ1U1 U1 A = =V2 σ2U2 6–√ U2
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and

Therefore,

and

Here is another example.

Find an SVD for .

Solution
Since  is ,  is a  matrix whose eigenvalues are easier to find than the eigenvalues of the  matrix .

Thus  has eigenvalue , and the eigenvalues of  are , , and . Furthermore,  has only
one singular value, .

To find the matrix : To do so we find an eigenvector for  and normalize it. In this case, finding a unit eigenvector is
trivial: , and

Also, , and we use , , and  to find .

Now , with , and , where , , and  are the columns of . Thus

This gives us , so

= A = [ ] = [ ] = [ ] ,U1
1
4

V1
1
4

1
3

−1
1

3
1

1

2–√

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

1

4 2–√
4
4

1

2–√
1
1

= A = [ ] = [ ] = [ ] .U2
1

6–√
V2

1

6–√
1
3

−1
1

3
1

1

3–√

⎡

⎣
⎢

−1
−1

1

⎤

⎦
⎥

1

3 2–√
3

−3
1

2–√
1

−1

U = [ ] ,
1

2
–√

1
1

1
−1

A = [ ]
1
3

−1
1

3
1

=( [ ])[ ] .
1

2
–√

1
1

1
−1

4
0

0
6
–√

0
0

⎛

⎝
⎜

1
6–√

⎡

⎣
⎢

3
–√

− 2
–√

−1

0
− 2

–√
2

3
–√

2
–√
1

⎤

⎦
⎥
⎞

⎠
⎟

 Example : Finding the SVD7.4.7

A =
⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥

A 3 ×1 AAT 1 ×1 3 ×3 AAT

A = [ ] = [ ] .AT −1 2 2
⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥ 9

AAT = 9λ1 AAT = 9λ1 = 0λ2 = 0λ3 A

= 3σ1

V AAT

= [ ]V1 1

V = [ ] .1

Σ =
⎡

⎣
⎢

3
0
0

⎤

⎦
⎥ A V T Σ U

AV = UΣ V = [ ]V1 U = [ ]U1 U2 U3 U1 U2 U3 U

A [ ]V1

[ ]AV1

= [ ] ΣU1 U2 U3

= [ ]+0 +0σ1U1 U2 U3

= [ ]σ1U1

A = = 3V1 σ1U1 U1
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The vectors  and  are eigenvectors of  corresponding to the eigenvalue . Instead of solving the system 
 and then using the Gram-Schmidt process on the resulting set of two basic eigenvectors, the following

approach may be used.

Find vectors  and  by first extending  to a basis of , then using the Gram-Schmidt algorithm to orthogonalize the
basis, and finally normalizing the vectors.

Starting with  instead of  makes the arithmetic a bit easier. It is easy to verify that

is a basis of . Set

and apply the Gram-Schmidt algorithm to .

This gives us

Therefore,

and

Finally,

Consider another example.

Find a singular value decomposition for the matrix

= A = [ ] = .U1
1
3

V1
1
3

⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥ 1

1
3

⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥

U2 U3 AAT = = 0λ2 λ3

(0I −A )X = 0AT

U2 U3 { }U1 R
3

{3 }U1 { }U1

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥
⎡

⎣
⎢

1
0
0

⎤

⎦
⎥
⎡

⎣
⎢

0
1
0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

R
3

= , = , = ,E1

⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥ X2

⎡

⎣
⎢

1
0
0

⎤

⎦
⎥ X3

⎡

⎣
⎢

0
1
0

⎤

⎦
⎥

{ , , }E1 X2 X3

=  and  = .E2

⎡

⎣
⎢

4
1
1

⎤

⎦
⎥ E3

⎡

⎣
⎢

0
1

−1

⎤

⎦
⎥

= , = ,U2
1

18
−−

√

⎡

⎣
⎢

4
1
1

⎤

⎦
⎥ U3

1

2–√

⎡

⎣
⎢

0
1

−1

⎤

⎦
⎥

U = .

⎡

⎣

⎢⎢⎢⎢

− 1
3

2
3

2
3

4
18√
1
18√

1
18√

0

1
2√

− 1
2√

⎤

⎦

⎥⎥⎥⎥

A = = [ ] .
⎡

⎣
⎢

−1
2
2

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢⎢

− 1
3

2
3

2
3

4
18√

1
18√
1
18√

0

1
2√

− 1
2√

⎤

⎦

⎥⎥⎥⎥

⎡

⎣
⎢

3
0
0

⎤

⎦
⎥ 1

 Example : Find the SVD7.4.8

A = [ ]
2
5 2–√ 5–√
2
5 2

–√ 5
–√

4
5 2–√ 5–√
4
5 2

–√ 5
–√

0

0
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Solution
First consider 

What are some eigenvalues and eigenvectors? Some computing shows these are

Thus the matrix  is given by

Next consider 

Eigenvectors and eigenvalues are

Thus you can let  be given by

Lets check this. 

This illustrates that if you have a good way to find the eigenvectors and eigenvalues for a Hermitian matrix which has nonnegative
eigenvalues, then you also have a good way to find the singular value decomposition of an arbitrary matrix.

Positive Definite Matrices
Positive definite matrices are often encountered in applications such mechanics and statistics.

We begin with a definition.

Let  be an  symmetric matrix. Then  is positive definite if all of its eigenvalues are positive.

The relationship between a negative definite matrix and positive definite matrix is as follows.

AAT

⎡

⎣

⎢⎢

16
5

32
5

0

32
5

64
5

0

0

0

0

⎤

⎦

⎥⎥

, ↔ 0, ↔ 16

⎧

⎩
⎨
⎪⎪

⎪⎪

⎡

⎣
⎢

0
0
1

⎤

⎦
⎥
⎡

⎣

⎢⎢

− 2
5

5–√
1
5 5

–√

0

⎤

⎦

⎥⎥

⎫

⎭
⎬
⎪⎪

⎪⎪

⎧

⎩
⎨
⎪⎪

⎪⎪

⎡

⎣

⎢⎢

1
5

5–√
2
5 5

–√

0

⎤

⎦

⎥⎥

⎫

⎭
⎬
⎪⎪

⎪⎪

V

V =
⎡

⎣

⎢⎢

1
5 5

–√
2
5 5–√

0

− 2
5 5

–√
1
5 5–√

0

0

0

1

⎤

⎦

⎥⎥

AAT

[ ]
8
8

8
8

{[ ]}↔ 0,{[ ]}↔ 16
− 1

2 2–√
1
2 2–√

1
2 2–√
1
2 2–√

U

U = [ ]
1
2 2–√
1
2 2

–√

− 1
2 2–√

1
2 2

–√

AV =U T

[ ][ ]
1
2 2

–√

− 1
2 2

–√

1
2 2

–√
1
2 2

–√

2
5 2

–√ 5
–√

2
5 2

–√ 5–√

4
5 2

–√ 5
–√

4
5 2

–√ 5–√

0

0

⎡

⎣

⎢⎢

1
5 5–√
2
5 5

–√

0

− 2
5 5–√

1
5 5

–√

0

0

0

1

⎤

⎦

⎥⎥

= [ ]
4
0

0
0

0
0

 Definition : Positive Definite Matrix7.4.5

A n×n A
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An  matrix  is negative definite if and only if  is positive definite

Consider the following lemma.

If  is positive definite, then it is invertible.

Proof

If  then  is an eigenvalue if  is nonzero, which does not happen for a positive definite matrix. Hence  and
so  is one to one. This is sufficient to conclude that it is invertible.

Notice that this lemma implies that if a matrix  is positive definite, then .

The following theorem provides another characterization of positive definite matrices. It gives a useful test for verifying if a matrix
is positive definite.

Let  be a symmetric matrix. Then  is positive definite if and only if  is positive for all nonzero .

Proof

Since  is symmetric, there exists an orthogonal matrix  so that

where  are the (not necessarily distinct) eigenvalues of . Let , , and define . Then

Writing ,

 First we will assume that  is positive definite and prove that  is positive.

Suppose  is positive definite, and , . Since  is invertible, , and thus  for some ,
implying  for some . Furthermore, since all eigenvalues of  are positive,  for all  and .

Therefore, .

 Now we will assume  is positive and show that  is positive definite.

If  whenever , choose , where  is the  column of . Since  is invertible, , and thus

Thus  and  when , so

i.e., . Therefore,  is positive definite.

 Lemma : Negative Definite Matrix7.4.2

n×n A −A

 Lemma : Positive Definite Matrix and Invertibility7.4.3

A

A = ,v ⃗  0⃗  0 v ⃗  =v ⃗  0⃗ 

A

A det(A) > 0

 Theorem : Positive Definite Matrix7.4.7

A A Ax⃗ T x⃗  ∈x⃗  R
n

A U

AU = diag( , , … , ) = D,U T λ1 λ2 λn

, , … ,λ1 λ2 λn A ∈x⃗  R
n ≠x⃗  0⃗  =y ⃗  U T x⃗ 

A = (UD ) = ( U)D( ) = D .x⃗ T x⃗  x⃗ T U T x⃗  x⃗ T U T x⃗  y ⃗ T y ⃗ 

= [ ]y ⃗ T y1 y2 ⋯ yn

Ax⃗ T x⃗ = [ ] diag( , , … , )y1 y2 ⋯ yn λ1 λ2 λn

⎡

⎣

⎢
⎢⎢⎢

y1

y2

⋮
yn

⎤

⎦

⎥
⎥⎥⎥

= + +⋯ .λ1y2
1 λ2y2

2 λny2
n

(⇒) A Ax⃗ T x⃗ 

A ∈x⃗  R
n ≠x⃗  0⃗  U T = ≠y ⃗  U T x⃗  0⃗  ≠ 0yj j

> 0y2
j j A ≥ 0λiy2

i i > 0λjy2
j

A > 0x⃗ T x⃗ 

(⇐) Ax⃗ T x⃗  A

A > 0x⃗ T x⃗  ≠x⃗  0⃗  = Ux⃗  e ⃗ j e ⃗ j jth In U ≠x⃗  0⃗ 

= = (U ) = .y ⃗  U T x⃗  U T e ⃗ j e ⃗ j

= 1yj = 0yi i ≠ j

+ +⋯ = ,λ1y2
1 λ2y2

2 λny2
n λj

= A > 0λj x⃗ T x⃗  A
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There are some other very interesting consequences which result from a matrix being positive definite. First one can note that the
property of being positive definite is transferred to each of the principal submatrices which we will now define.

Let  be an  matrix. Denote by  the  matrix obtained by deleting the  columns and the 
 rows from  Thus  and  is the  submatrix of  which occupies the upper left corner of 

Let  be an  positive definite matrix. Then each submatrix  is also positive definite.

Proof

This follows right away from the above definition. Let  be nonzero. Then

by the assumption that  is positive definite.

There is yet another way to recognize whether a matrix is positive definite which is described in terms of these submatrices. We
state the result, the proof of which can be found in more advanced texts.

Let  be a symmetric matrix. Then  is positive definite if and only if  is greater than  for every submatrix , 
.

Proof

We prove this theorem by induction on  It is clearly true if  Suppose then that it is true for  where .
Since  it follows that all the eigenvalues are nonzero. We need to show that they are all positive.
Suppose not. Then there is some even number of them which are negative, even because the product of all the eigenvalues
is known to be positive, equaling . Pick two,  and  and let  where  for  and 

 Now if  is an element of  then since these are eigenvalues and 
a short computation shows

Now letting  we can use the induction hypothesis to write

Now the dimension of  is  and the dimension of  and so there must be some
nonzero  which is in both of these subspaces of . However, the first computation would require that 
while the second would require that  This contradiction shows that all the eigenvalues must be positive. This
proves the if part of the theorem. The converse can also be shown to be correct, but it is the direction which was just shown
which is of most interest.

Let  be symmetric. Then  is negative definite if and only if

 Definition : The Submatrix 7.4.6 Ak

A n×n Ak k×k k+1, ⋯ ,n
k+1, ⋯ ,n A. = AAn Ak k×k A A.

 Lemma : Positive Definite and Submatrices7.4.4

A n×n Ak

∈x⃗  R
k

= [ ]A[ ] > 0x⃗ TAkx⃗  x⃗ T 0
x⃗ 

0

A

 Theorem : Positive Matrix and Determinant of 7.4.8 Ak

A A det ( )Ak 0 Ak

k = 1, ⋯ ,n

n. n = 1. n−1 n ≥ 2
det (A) = det ( ) > 0,An

det (A) λ1 λ2 A =u⃗ i λiu⃗ i ≠u⃗ i 0⃗  i = 1, 2
⋅ = 0.u⃗ 1 u⃗ 2 ≡ +y ⃗  α1u⃗ 1 α2u⃗ 2 span { , } ,u⃗ 1 u⃗ 2   ⋅ = 0,u⃗ 1 u⃗ 2

A ( + )( + )α1u⃗ 1 α2u⃗ 2
T

α1u⃗ 1 α2u⃗ 2

= + < 0.| |α1
2λ1u⃗ 21 | |α2

2λ2u⃗ 22

∈ ,x⃗  R
n−1

[ ]A[ ] = > 0.xT 0
x⃗ 

0
x⃗ TAn−1x⃗ 

{ ∈ : = 0}z ⃗  R
n zn n−1 span { , } = 2u⃗ 1 u⃗ 2

∈x⃗  R
n

R
n A < 0x⃗ T x⃗ 

A > 0.x⃗ T x⃗ 

 Corollary : Symmetric and Negative Definite Matrix7.4.4

A A

det ( ) > 0(−1)k Ak
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for every .

Proof

This is immediate from the above theorem when we notice, that  is negative definite if and only if  is positive definite.
Therefore, if  for all  it follows that  is negative definite. However, 

The Cholesky Factorization
Another important theorem is the existence of a specific factorization of positive definite matrices. It is called the Cholesky
Factorization and factors the matrix into the product of an upper triangular matrix and its transpose.

Let  be a positive definite matrix. Then there exists an upper triangular matrix  whose main diagonal entries are positive,
such that  can be written

This factorization is unique.

The process for finding such a matrix  relies on simple row operations.

Let  be a positive definite matrix. The matrix  that creates the Cholesky Factorization can be found through two steps.

1. Using only type  elementary row operations (multiples of rows added to other rows) put  in upper triangular form. Call
this matrix . Then  has positive entries on the main diagonal.

2. Divide each row of  by the square root of the diagonal entry in that row. The result is the matrix .

Of course you can always verify that your factorization is correct by multiplying  and  to ensure the result is the original
matrix .

Consider the following example.

Show that  is positive definite, and find the Cholesky factorization of .

Solution
First we show that  is positive definite. By Theorem  it suffices to show that the determinant of each submatrix is
positive.

so  and . Since , it follows that  is positive definite.

Now we use Procedure  to find the Cholesky Factorization. Row reduce (using only type  row operations) until an upper
triangular matrix is obtained.

k = 1, ⋯ ,n

A −A

det (− ) > 0Ak k = 1, ⋯ ,n, A

det (− ) = det ( ) .Ak (−1)k Ak

 Theorem : Cholesky Factorization7.4.9

A U

A

A = UU T

U

 Procedure : Finding the Cholesky Factorization7.4.1

A U

3 A

Û Û

Û U

U U T

A

 Example : Cholesky Factorization7.4.9

A =
⎡

⎣
⎢

9
−6

3

−6
5

−3

3
−3

6

⎤

⎦
⎥ A

A 7.4.8

= [ ]  and  = [ ] ,A1 9 A2
9

−6
−6

5

det( ) = 9A1 det( ) = 9A2 det(A) = 36 A

7.4.1 3
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Now divide the entries in each row by the square root of the diagonal entry in that row, to give

You can verify that .

Let  be a positive definite matrix given by

Determine its Cholesky factorization.

Solution
You can verify that  is in fact positive definite.

To find the Cholesky factorization we first row reduce to an upper triangular matrix.

Now divide the entries in each row by the square root of the diagonal entry in that row and simplify.

QR Factorization

In this section, a reliable factorization of matrices is studied. Called the  factorization of a matrix, it always exists. While much
can be said about the  factorization, this section will be limited to real matrices. Therefore we assume the dot product used
below is the usual dot product. We begin with a definition.

Let  be a real  matrix. Then a  factorization of  consists of two matrices,  orthogonal and  upper triangular,
such that 

qrfactorization

The following theorem claims that such a factorization exists.

→ →
⎡

⎣
⎢

9
−6

3

−6
5

−3

3
−3

6

⎤

⎦
⎥

⎡

⎣
⎢

9
0
0

−6
1

−1

3
−1

5

⎤

⎦
⎥

⎡

⎣
⎢

9
0
0

−6
1
0

3
−1

4

⎤

⎦
⎥

U =
⎡

⎣
⎢

3
0
0

−2
1
0

1
−1

2

⎤

⎦
⎥

U = AU T

 Example : Cholesky Factorization7.4.10

A

⎡

⎣
⎢

3
1
1

1
4
2

1
2
5

⎤

⎦
⎥

A

→ →
⎡

⎣
⎢

3
1
1

1
4
2

1
2
5

⎤

⎦
⎥

⎡

⎣

⎢⎢

3

0

0

1
11
3
5
3

1
5
3
14
5

⎤

⎦

⎥⎥

⎡

⎣

⎢⎢

3

0

0

1
11
3

0

1
5
3
43
11

⎤

⎦

⎥⎥

U =
⎡

⎣

⎢⎢

3
–√

0

0

1
3 3

–√
1
3 3–√ 11

−−
√

0

1
3 3

–√
5

33 3–√ 11
−−

√
1

11 11
−−√ 43

−−√

⎤

⎦

⎥⎥

QR

QR

 Definition : Factorization7.4.7 QR

A m×n QR A Q R

A = QR.
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Let  be any real  matrix with linearly independent columns. Then there exists an orthogonal matrix  and an upper
triangular matrix  having non-negative entries on the main diagonal such that

The procedure for obtaining the  factorization for any matrix  is as follows.

Let  be an  matrix given by  where the  are the linearly independent columns of .

1. Apply the Gram-Schmidt Process 4.11.1 to the columns of , writing  for the resulting columns.
2. Normalize the , to find .
3. Construct the orthogonal matrix  as .
4. Construct the upper triangular matrix  as

5. Finally, write  where  is the orthogonal matrix and  is the upper triangular matrix obtained above.

Notice that  is an orthogonal matrix as the  form an orthonormal set. Since  for all  (since the length of a vector is
always positive), it follows that  is an upper triangular matrix with positive entries on the main diagonal.

Consider the following example.

Let

Find an orthogonal matrix  and upper triangular matrix  such that .

Solution
First, observe that , , the columns of , are linearly independent. Therefore we can use the Gram-Schmidt Process to
create a corresponding orthogonal set  as follows:

 Theorem : Existence of Factorization7.4.10 QR

A m×n Q

R

A = QR

QR A

 Procedure : Factorization7.4.2 QR

A m×n A = [ ]A1 A2 ⋯ An Ai A

A Bi

Bi =Ci
1
Bi
Bi

Q Q = [ ]C1 C2 ⋯ Cn

R

R =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

B1

0
0

⋮
0

⋅A2 C1

B2

0

⋮
0

⋅A3 C1

⋅A3 C2

B3

⋮
0

⋯
⋯
⋯

⋯

⋅An C1

⋅An C2

⋅An C3

⋮
Bn

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

A = QR Q R

Q Ci > 0Bi i

R

 Example : Finding a Factorization7.4.11 QR

A =
⎡

⎣
⎢

1
0
1

2
1
0

⎤

⎦
⎥

Q R A = QR

A1 A2 A

{ , }B1 B2

https://libretexts.org/
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Normalize each vector to create the set  as follows:

Now construct the orthogonal matrix  as

Finally, construct the upper triangular matrix  as

It is left to the reader to verify that .

The  Factorization and Eigenvalues

The  factorization of a matrix has a very useful application. It turns out that it can be used repeatedly to estimate the
eigenvalues of a matrix. Consider the following procedure.

Let  be an invertible matrix. Define the matrices  as follows:

1.  factored as 
2.  factored as 
3.  factored as 

Continue in this manner, where in general  and .

Then it follows that this sequence of  converges to an upper triangular matrix which is similar to . Therefore the
eigenvalues of  can be approximated by the entries on the main diagonal of this upper triangular matrix.

B1

B2

= =A1

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

= −A2
⋅A2 B1

B2
1

B1

= −
⎡

⎣
⎢

2
1
0

⎤

⎦
⎥

2
2

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

=
⎡

⎣
⎢

1
1

−1

⎤

⎦
⎥

{ , }C1 C2

C1

C2

= =
1
B1

B1
1

2
–√

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

= =
1
B2

B2
1

3–√

⎡

⎣
⎢

1
1

−1

⎤

⎦
⎥

Q

Q = [ ]C1 C2 ⋯ Cn

=

⎡

⎣

⎢⎢⎢⎢

1
2√

0

1
2√

1
3√

1
3√

− 1
3√

⎤

⎦

⎥⎥⎥⎥

R

R = [ ]
B1

0
⋅A2 C1

B2

= [ ]
2
–√

0
2
–√

3–√

A = QR

QR

QR

 Procedure : Using the  Factorization to Estimate Eigenvalues7.4.3 QR

A , , ⋯A1 A2

= AA1 =A1 Q1R1

=A2 R1Q1 =A2 Q2R2

=A3 R2Q2 =A3 Q3R3

=Ak QkRk =Ak+1 RkQk

Ai A

A
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Power Methods

While the  algorithm can be used to compute eigenvalues, there is a useful and fairly elementary technique for finding the
eigenvector and associated eigenvalue nearest to a given complex number which is called the shifted inverse power method. It tends
to work extremely well provided you start with something which is fairly close to an eigenvalue.

Power methods are based the consideration of powers of a given matrix. Let  be a basis of eigenvectors for  such
that  Now let  be some nonzero vector. Since  is a basis, there exists unique scalars,  such that

Assume you have not been so unlucky as to pick  in such a way that  Then let  so that

For large  the last term,  determines quite well the direction of the vector on the right. This is because  is larger than
 for  and so for a large  the sum,  on the right is fairly insignificant. Therefore, for large   is

essentially a multiple of the eigenvector  the one which goes with  The only problem is that there is no control of the size of
the vectors  You can fix this by scaling. Let  denote the entry of  which is largest in absolute value. We call this a
scaling factor. Then  will not be just  but  Next let  denote the entry of  which has largest absolute value
and define  Continue this way. The scaling just described does not destroy the relative insignificance of the term
involving a sum in . Indeed it amounts to nothing more than changing the units of length. Also note that from this scaling
procedure, the absolute value of the largest element of  is always equal to 1. Therefore, for large 

Therefore, the entry of  which has the largest absolute value is essentially equal to the entry having largest absolute value of

and so for large  it must be the case that  This suggests the following procedure.

1. Start with a vector  which you hope has a component in the direction of  The vector  is usually a pretty
good choice.

2. If  is known,

where  is the entry of  which has largest absolute value.
3. When the scaling factors,  are not changing much,  will be close to the eigenvalue and  will be close to an

eigenvector.
4. Check your answer to see if it worked well.

The shifted inverse power method involves finding the eigenvalue closest to a given complex number along with the associated
eigenvalue. If  is a complex number and you want to find  which is closest to  you could consider the eigenvalues and
eigenvectors of . Then  if and only if

If and only if

QR

{ , ⋯ , }x⃗ 1 x⃗ n C
n

A = .x⃗ n λnx⃗ n u⃗ 1 { , ⋯ , }x⃗ 1 x⃗ n ci

=u⃗ 1 ∑
k=1

n

ckx⃗ k

u⃗ 1 = 0.cn A =u⃗ k u⃗ k+1

= = + .u⃗ m Amu⃗ 1 ∑
k=1

n−1

ckλ
m
k x⃗ k λmn cnx⃗ n (7.4.2)

m ,λmn cnx⃗ n | |λn

| |λk k < n m, ,∑n−1
k=1 ckλ

m
k
x⃗ k m, u⃗ m

,x⃗ n .λn
.u⃗ m S2 Au⃗ 1

u⃗ 2 Au⃗ 1 A / .u⃗ 1 S2 S3 Au⃗ 2
≡ A / .u⃗ 3 u⃗ 2 S3

(7.4.2)
u⃗ k m,

= +(relatively insignificant term) .u⃗ m
λmn cnx⃗ n

⋯S2S3 Sm

Au⃗ m

A( ) = ≈
λmn cnx⃗ n

⋯S2S3 Sm

λm+1
n cnx⃗ n

⋯S2S3 Sm

λnu⃗ m

m, ≈ .λn Sm+1

 Procedure : Finding the Largest Eigenvalue with its Eigenvector7.4.4

u⃗ 1 .x⃗ n (1, ⋯ , 1)T

u⃗ k

=u⃗ k+1
Au⃗ k
Sk+1

Sk+1 Au⃗ k
Sk Sk+1 u⃗ k+1

μ λ μ,
(A−μI) −1 A = λx⃗  x⃗ 

(A−μI) = (λ−μ)x⃗  x⃗ 

=
1

λ−μ
x⃗  (A−μI)−1

x⃗ 
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Thus, if  is the closest eigenvalue of  to  then out of all eigenvalues of  you would have  would be the

largest. Thus all you have to do is apply the power method to  and the eigenvector you get will be the eigenvector
which corresponds to  where  is the closest to  of all eigenvalues of . You could use the eigenvector to determine this
directly.

Find the eigenvalue and eigenvector for

which is closest to .

Solution

Then pick an initial guess an multiply by this matrix raised to a large power.

This equals

Now divide by an entry to make the vector have reasonable size. This yields

which is close to

Then

Now to determine the eigenvalue, you could just take the ratio of corresponding entries. Pick the two corresponding entries
which have the largest absolute values. In this case, you would get the eigenvalue is  which happens to be the exact
eigenvalue. Thus an eigenvector and eigenvalue are

λ A μ ,(A−μI) −1 1
λ−μ

(A−μI) −1

λ λ μ A

 Example : Finding Eigenvalue and Eigenvector7.4.12

⎡

⎣
⎢

3
−2
−2

2
0

−2

1
−1

0

⎤

⎦
⎥

.9 +.9i

−(.9 +.9i)
⎛

⎝
⎜
⎡

⎣
⎢

3
−2
−2

2
0

−2

1
−1

0

⎤

⎦
⎥

⎡

⎣
⎢

1
0
0

0
1
0

0
0
1

⎤

⎦
⎥
⎞

⎠
⎟

−1

=
⎡

⎣
⎢

−0.619 19 −10. 545i
5. 524 9 +4. 972 4i
0.741 14 +11. 643i

−5. 524 9 −4. 972 4i
5. 276 2 +0.248 62i
5. 524 9 +4. 972 4i

−0.370 57 −5. 821 3i
2. 762 4 +2. 486 2i
0.492 52 +6. 918 9i

⎤

⎦
⎥

=
⎡

⎣
⎢

−0.619 19 −10. 545i
5. 524 9 +4. 972 4i
0.741 14 +11. 643i

−5. 524 9 −4. 972 4i
5. 276 2 +0.248 62i
5. 524 9 +4. 972 4i

−0.370 57 −5. 821 3i
2. 762 4 +2. 486 2i
0.492 52 +6. 918 9i

⎤

⎦
⎥

15
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

1. 562 9 × −3. 899 3 × i1013 1012

−5. 864 5 × +9. 764 2 × i1012 1012

−1. 562 9 × +3. 899 9 × i1013 1012

⎤

⎦
⎥

⎡

⎣
⎢

−0.999 99 −3. 614 0 × i10−5

0.499 99 −0.499 99i
1.0

⎤

⎦
⎥

⎡

⎣
⎢

−1
0.5 −0.5i

1.0

⎤

⎦
⎥

=
⎡

⎣
⎢

3
−2
−2

2
0

−2

1
−1

0

⎤

⎦
⎥
⎡

⎣
⎢

−1
0.5 −0.5i

1.0

⎤

⎦
⎥

⎡

⎣
⎢

−1.0 −1.0i
1.0

1.0 +1.0i

⎤

⎦
⎥

1 + i
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Usually it won’t work out so well but you can still find what is desired. Thus, once you have obtained approximate eigenvalues
using the  algorithm, you can find the eigenvalue more exactly along with an eigenvector associated with it by using the shifted
inverse power method.

Quadratic Forms

One of the applications of orthogonal diagonalization is that of quadratic forms and graphs of level curves of a quadratic form. This
section has to do with rotation of axes so that with respect to the new axes, the graph of the level curve of a quadratic form is
oriented parallel to the coordinate axes. This makes it much easier to understand. For example, we all know that 
represents the equation in two variables whose graph in  is a circle of radius . But how do we know what the graph of the
equation  represents?

We first formally define what is meant by a quadratic form. In this section we will work with only real quadratic forms, which
means that the coefficients will all be real numbers.

A quadratic form is a polynomial of degree two in  variables , written as a linear combination of  terms and
 terms.

Consider the quadratic form . We can write  as the vector whose

entries are the variables contained in the quadratic form.

Similarly, let  be the matrix whose entries are the coefficients of  and  from . Note that the

matrix  is not unique, and we will consider this further in the example below. Using this matrix , the quadratic form can be
written as .

Let’s explore how to find this matrix . Consider the following example.

, 1 + i
⎡

⎣
⎢

−1
0.5 −0.5i

1.0

⎤

⎦
⎥

QR

+ = 1x2
1 x2

2
R

2 1
5 +4 +3 = 1x2

1 x1x2 x2
2

 Definition : Quadratic Form7.4.8

n , , ⋯ ,x1 x2 xn x2
i

xixj

q = + +⋯ + + +⋯a11x
2
1 a22x

2
2 annx

2
n a12x1x2 =x⃗ 

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

A =

⎡

⎣

⎢
⎢⎢⎢

a11

a21

⋮
an1

a12

a22

⋮
an2

⋯
⋯

⋯

a1n

a2n

⋮
ann

⎤

⎦

⎥
⎥⎥⎥

x2
i xixj q

A A

q = Ax⃗ T x⃗ 

q = Ax⃗ T x⃗ 

= [ ]x1 x2 ⋯ xn

⎡

⎣

⎢⎢
⎢⎢

a11

a21

⋮
an1

a12

a22

⋮
an2

⋯
⋯

⋯

a1n

a2n

⋮
ann

⎤

⎦

⎥⎥
⎥⎥

⎡

⎣

⎢⎢
⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥
⎥⎥

= [ ]x1 x2 ⋯ xn

⎡

⎣

⎢⎢⎢
⎢

+ +⋯ +a11x1 a21x2 an1xn

+ +⋯ +a12x1 a22x2 an2xn

⋮
+ +⋯ +a1nx1 a2nx2 annxn

⎤

⎦

⎥⎥⎥
⎥

= + +⋯ + + +⋯a11x
2
1 a22x

2
2 annx

2
n a12x1x2

A

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14541?pdf


7.4.24 https://math.libretexts.org/@go/page/14541

Let a quadratic form  be given by

Write  in the form .

Solution

First, let  and .

Then, writing  gives

Notice that we have an  term as well as an  term. Since multiplication is commutative, these terms can be combined.
This means that  can be written

Equating this to  as given in the example, we have

Therefore,

This demonstrates that the matrix  is not unique, as there are several correct solutions to . However, we will
always choose the coefficients such that . This results in . This choice is key, as it
will ensure that  turns out to be a symmetric matrix.

Hence,

You can verify that  holds for this choice of .

The above procedure for choosing  to be symmetric applies for any quadratic form . We will always choose coefficients such
that .

We now turn our attention to the focus of this section. Our goal is to start with a quadratic form  as given above and find a way to
rewrite it to eliminate the  terms. This is done through a change of variables. In other words, we wish to find  such that

Letting  and , we can write  where  is the matrix of coefficients from . There is something

special about this matrix  that is crucial. Since no  terms exist in , it follows that  for all . Therefore,  is a
diagonal matrix. Through this change of variables, we find the principal axes  of the quadratic form.

 Example : Matrix of a Quadratic Form7.4.13

q

q = 6 +4 +3x2
1 x1x2 x2

2

q Ax⃗ T x⃗ 

= [ ]x⃗ 
x1

x2
A = [ ]

a11

a21

a12

a22

q = Ax⃗ T x⃗ 

q = [ ] [ ][ ]x1 x2
a11

a21

a12

a22

x1

x2

= + + +a11x2
1 a21x1x2 a12x1x2 a22x2

2

x1x2 x2x1

q

q = +( + ) +a11x
2
1 a21 a12 x1x2 a22x

2
2

q

+( + ) + = 6 +4 +3a11x
2
1 a21 a12 x1x2 a22x

2
2 x2

1 x1x2 x2
2

a11

a22

+a21 a12

= 6
= 3
= 4

A + = 4a21 a12

= = ( + )a21 a12
1
2 a21 a12 = = 2a21 a12

A

A = [ ] = [ ]
a11

a21

a12

a22

6
2

2
3

q = Ax⃗ T x⃗  A

A q

=aij aji

q

xixj yi

q = + +⋯ +d11y
2
1 d22y

2
2 dnny

2
n

=y ⃗ 

⎡

⎣

⎢⎢⎢⎢

y1

y2

⋮
yn

⎤

⎦

⎥⎥⎥⎥
D = [ ]dij q = Dy ⃗ T y ⃗  D q

D yiyj q = 0dij i ≠ j D

, , ⋯ ,y1 y2 yn
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This discussion sets the stage for the following essential theorem.

Let  be a quadratic form in the variables . It follows that  can be written in the form  where

and  is the symmetric matrix of coefficients of .

New variables  can be found such that  where

and  is a diagonal matrix. The matrix  contains the eigenvalues of  and is found by orthogonally diagonalizing .

While not a formal proof, the following discussion should convince you that the above theorem holds. Let  be a quadratic form in
the variables . Then,  can be written in the form  for a symmetric matrix . By Theorem  we can
orthogonally diagonalize the matrix  such that  for an orthogonal matrix  and diagonal matrix .

Then, the vector  is found by . To see that this works, rewrite  as . Letting ,

proceed as follows:

The following procedure details the steps for the change of variables given in the above theorem.

Let  be a quadratic form in the variables  given by

Then,  can be written as  as follows:

1. Write  for a symmetric matrix .
2. Orthogonally diagonalize  to be written as  for an orthogonal matrix  and diagonal matrix .

3. Write . Then, .

4. The quadratic form  will now be given by

 Theorem : Diagonalizing a Quadratic Form7.4.11

q , ⋯ ,x1 xn q q = Ax⃗ T x⃗ 

=x⃗ 

⎡

⎣

⎢⎢
⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥
⎥⎥

A = [ ]aij q

, , ⋯ ,y1 y2 yn q = Dy ⃗ T y ⃗ 

=y ⃗ 

⎡

⎣

⎢⎢⎢⎢

y1

y2

⋮
yn

⎤

⎦

⎥⎥⎥⎥

D = [ ]dij D A A

q

, ⋯ ,x1 xn q q = Ax⃗ T x⃗  A 7.4.3
A AU = DU T U D

=y ⃗ 

⎡

⎣

⎢⎢⎢
⎢

y1

y2

⋮
yn

⎤

⎦

⎥⎥⎥
⎥

=y ⃗  U T x⃗  =y ⃗  U T x⃗  = Ux⃗  y ⃗  q = Ax⃗ T x⃗ 

q = Ax⃗ T x⃗ 
= (U A(U )y ⃗ )T y ⃗ 

= ( AU)y ⃗ T U T y ⃗ 

= Dy ⃗ T y ⃗ 

 Procedure : Diagonalizing a Quadratic Form7.4.5

q , ⋯ ,x1 xn

q = + +⋯ + + +⋯a11x
2
1 a22x

2
2 annx

2
n a12x1x2

q q = +⋯ +d11y
2
1 dnny

2
n

q = Ax⃗ T x⃗  A

A AU = DU T U D

=y ⃗ 

⎡

⎣

⎢⎢⎢⎢

y1

y2

⋮
yn

⎤

⎦

⎥⎥⎥⎥
= Ux⃗  y ⃗ 

q

q = +⋯ + = Dd11y
2
1 dnny

2
n y ⃗ T y ⃗ 
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where  is the diagonal matrix found by orthogonally diagonalizing .

Consider the following example.

Consider the following level curve

shown in the following graph.

Figure 

Use a change of variables to choose new axes such that the ellipse is oriented parallel to the new coordinate axes. In other
words, use a change of variables to rewrite  to eliminate the  term.

Solution
Notice that the level curve is given by  for . This is the same quadratic form that we examined
earlier in Example . Therefore we know that we can write  for the matrix

Now we want to orthogonally diagonalize  to write  for an orthogonal matrix  and diagonal matrix . The
details are left to the reader, and you can verify that the resulting matrices are

Next we write . It follows that .

We can now express the quadratic form  in terms of , using the entries from  as coefficients as follows:

Hence the level curve can be written . The graph of this equation is given by:

D = [ ]dij A

 Example : Choosing New Axes to Simplify a Quadratic Form7.4.14

6 +4 +3 = 7x2
1 x1x2 x2

2

7.4.1

q x1x2

q = 7 q = 6 +4 +3x2
1 x1x2 x2

2

7.4.13 q = Ax⃗ T x⃗ 

A = [ ]
6
2

2
3

A AU = DU T U D

U

D

=
⎡

⎣

2
5√

1
5√

− 1
5√

2
5√

⎤

⎦

= [ ]
7
0

0
2

= [ ]y ⃗ 
y1

y2
= Ux⃗  y ⃗ 

q y D

q = +d11y
2
1 d22y

2
2

= 7 +2y2
1 y2

2

7 +2 = 7y2
1 y2

2
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Figure 

The change of variables results in new axes such that with respect to the new axes, the ellipse is oriented parallel to the
coordinate axes. These are called the principal axes of the quadratic form.

The following is another example of diagonalizing a quadratic form.

Consider the level curve

shown in the following graph.

Figure 

Use a change of variables to choose new axes such that the ellipse is oriented parallel to the new coordinate axes. In other
words, use a change of variables to rewrite  to eliminate the  term.

7.4.2

 Example : Choosing New Axes to Simplify a Quadratic Form7.4.15

5 −6 +5 = 8x2
1 x1x2 x2

2

7.4.3

q x1x2
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Solution

First, express the level curve as  where  and  is symmetric. Let . Then  is

given by

Equating this to the given description for , we have

This implies that  and in order for  to be symmetric, . The result is 

. We can write  as

Next, orthogonally diagonalize the matrix  to write . The details are left to the reader and the necessary matrices
are given by

Write , such that . Then it follows that  is given by

Therefore the level curve can be written as .

This is an ellipse which is parallel to the coordinate axes. Its graph is of the form

Figure 

Ax⃗ T x⃗  = [ ]x⃗ 
x1

x2
A A = [ ]

a11

a21

a12

a22
q = Ax⃗ T x⃗ 

q = [ ] [ ][ ]x1 x2
a11

a21

a12

a22

x1

x2

= +( + ) +a11x
2
1 a12 a21 x1x2 a22x

2
2

q

5 −6 +5 = +( + ) +x2
1 x1x2 x2

2 a11x
2
1 a12 a21 x1x2 a22x

2
2

= 5, = 5a11 a22 A = = ( + ) = −3a12 a22
1
2 a12 a21

A = [ ]
5

−3
−3

5
q = Ax⃗ T x⃗ 

[ ] [ ][ ] = 8x1 x2
5

−3
−3

5
x1

x2

A AU = DU T

U

D

= [ ]
1
2

2–√
1
2 2

–√

1
2

2–√

− 1
2 2

–√

= [ ]
2
0

0
8

= [ ]y ⃗ 
y1

y2
= Ux⃗  y ⃗  q

q = +d11y
2
1 d22y

2
2

= 2 +8y2
1 y2

2

2 +8 = 8y2
1 y2

2
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Thus this change of variables chooses new axes such that with respect to these new axes, the ellipse is oriented parallel to the
coordinate axes.
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7.E: Exercises

If  is an invertible  matrix, compare the eigenvalues of  and . More generally, for  an arbitrary integer,
compare the eigenvalues of  and .

Answer

 for any integer. In the case of  so . Thus the eigenvalues of 
 are just  where  is an eigenvalue of .

If  is an  matrix and  is a nonzero constant, compare the eigenvalues of  and .

Answer

Say . Then  and so the eigenvalues of  are just  where  is an eigenvalue of .

Let  be invertible  matrices which commute. That is, . Suppose  is an eigenvector of . Show that
then  must also be an eigenvector for .

Answer

. Here it is assumed that .

Suppose  is an  matrix and it satisfies  for some  a positive integer larger than . Show that if  is an
eigenvalue of  then  equals either  or .

Answer

Let  be the eigenvector. Then  and so

Hence if , then

and so .

Show that if  and , then whenever  are scalars,

Does this imply that  is an eigenvector? Explain.

Answer

The formula follows from properties of matrix multiplications. However, this vector might not be an eigenvector because it
might equal  and eigenvectors cannot equal .

 Exercise 7.E. 1

A n ×n A A−1 m

A Am

X = XAm λm −1, λX = A X = XA−1 A−1 X = XA−1 λ−1

A−1 λ−1 λ A

 Exercise 7.E. 2

A n ×n c A cA

AX = λX cAX = cλX cA cλ λ A

 Exercise 7.E. 3

A, B n ×n AB = BA X B

AX B

BAX = ABX = AλX = λAX BX = λX

 Exercise 7.E. 4

A n ×n = AAm m 1 λ

A |λ| 0 1

X X = X, X = AX = λXAm λm Am

= λλm

λ ≠ 0

= 1λm−1

|λ| = 1

 Exercise 7.E. 5

AX = λX AY = λY k, p

A(kX +pY ) = λ(kX +pY )

kX +pY

0 0
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Suppose  is a  matrix and the following information is available.

Find .

Suppose  is a  matrix and the following information is available.

Find .

Suppose  is a  matrix and the following information is available.

Find .

 Exercise 7.E. 6

A 3 ×3

A
⎡

⎣
⎢

0

−1

−1

⎤

⎦
⎥

A
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

A
⎡

⎣
⎢

−2

−3

−2

⎤

⎦
⎥

= 0
⎡

⎣
⎢

0

−1

−1

⎤

⎦
⎥

= −2
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

= −2
⎡

⎣
⎢

−2

−3

−2

⎤

⎦
⎥

A
⎡

⎣
⎢

1

−4

3

⎤

⎦
⎥

 Exercise 7.E. 7

A 3 ×3

A
⎡

⎣
⎢

−1

−2

−2

⎤

⎦
⎥

A
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

A
⎡

⎣
⎢

−1

−4

−3

⎤

⎦
⎥

= 1
⎡

⎣
⎢

−1

−2

−2

⎤

⎦
⎥

= 0
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

= 2
⎡

⎣
⎢

−1

−4

−3

⎤

⎦
⎥

A
⎡

⎣
⎢

3

−4

3

⎤

⎦
⎥

 Exercise 7.E. 8

A 3 ×3

A
⎡

⎣
⎢

0

−1

−1

⎤

⎦
⎥

A
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

A
⎡

⎣
⎢

−3

−5

−4

⎤

⎦
⎥

= 2
⎡

⎣
⎢

0

−1

−1

⎤

⎦
⎥

= 1
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

= −3
⎡

⎣
⎢

−3

−5

−4

⎤

⎦
⎥

A
⎡

⎣
⎢

2

−3

3

⎤

⎦
⎥
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Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is .

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is .

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is .

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is .

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is .

Is it possible for a nonzero matrix to have only  as an eigenvalue?

Answer

 Exercise 7.E. 9

⎡

⎣
⎢

−6

0

−2

−92

0

−31

12

0

4

⎤

⎦
⎥

−2

 Exercise 7.E. 10

⎡

⎣
⎢

−2

0

1

−17

0

9

−6

0

3

⎤

⎦
⎥

1

 Exercise 7.E. 11

⎡

⎣
⎢

9

2

−8

2

−6

2

8

−2

−5

⎤

⎦
⎥

−3

 Exercise 7.E. 12

⎡

⎣
⎢

6

−2

2

76

−21

64

16

−4

17

⎤

⎦
⎥

−2

 Exercise 7.E. 13

⎡

⎣
⎢

3

−8

10

5

−11

11

2

−4

3

⎤

⎦
⎥

−3

 Exercise 7.E. 14

0
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Yes.  works.

If  is the matrix of a linear transformation which rotates all vectors in  through , explain why  cannot have any real
eigenvalues. Is there an angle such that rotation through this angle would have a real eigenvalue? What eigenvalues would be
obtainable in this way?

Let  be the  matrix of the linear transformation which rotates all vectors in  through an angle of . For which values
of  does  have a real eigenvalue?

Answer

When you think of this geometrically, it is clear that the only two values of  are  and  or these added to integer
multiples of .

Let  be the linear transformation which reflects vectors about the  axis. Find a matrix for  and then find its eigenvalues
and eigenvectors.

Answer

The matrix of  is . The eigenvectors and eigenvalues are:

Let  be the linear transformation which rotates all vectors in  counterclockwise through an angle of . Find a matrix of 
 and then find eigenvalues and eigenvectors.

Answer

The matrix of  is . The eigenvectors and eigenvalues are:

Let  be the linear transformation which reflects all vectors in  through the  plane. Find a matrix for  and then obtain its
eigenvalues and eigenvectors.

Answer

The matrix of  is . The eigenvectors and eigenvalues are:

[ ]
0

0

1

0

 Exercise 7.E. 15

A R
2 60∘ A

 Exercise 7.E. 16

A 2 ×2 R
2 θ

θ A

θ 0 π

2π

 Exercise 7.E. 17

T x T

T [ ]
1

0

0

−1

{[ ]} ↔ −1, {[ ]} ↔ 1
0

1

1

0

 Exercise 7.E. 18

T R
2 π/2

T

T [ ]
0

1

−1

0

{[ ]} ↔ −i, {[ ]} ↔ i
−i

1

i

1

 Exercise 7.E. 19

T R
3 xy T

T
⎡

⎣
⎢

1

0

0

0

1

0

0

0

−1

⎤

⎦
⎥
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Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

Answer

The eigenvalues are . The eigenvectors corresponding to the eigenvalues are:

Therefore this matrix is not diagonalizable.

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

Answer

The eigenvectors and eigenvalues are:

The matrix  needed to diagonalize the above matrix is

and the diagonal matrix  is

↔ −1, , ↔ 1
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

0

0

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1

0

0

⎤

⎦
⎥
⎡

⎣
⎢

0

1

0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Exercise 7.E. 20

⎡

⎣
⎢

5

0

2

−18

5

−5

−32

4

−11

⎤

⎦
⎥

1

−1, −1, 1

{[ ]} ↔ −1, ↔ 110 −2 3

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

7

−2

2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Exercise 7.E. 21

⎡

⎣
⎢

−12

4

−4

−28

9

−8

28

−8

9

⎤

⎦
⎥

3

↔ 1, ↔ 1, ↔ 3
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

2

0

1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−2

1

0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

7

−2

2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

P

⎡

⎣
⎢

2

0

1

−2

1

0

7

−2

2

⎤

⎦
⎥

D

⎡

⎣
⎢

1

0

0

0

1

0

0

0

3

⎤

⎦
⎥
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Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

Answer

The eigenvectors and eigenvalues are:

The matrix  needed to diagonalize the above matrix is

and the diagonal matrix  is

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible.

 Exercise 7.E. 22

⎡

⎣
⎢

89

14

−30

38

2

−12

268

40

−90

⎤

⎦
⎥

−3

↔ 6, ↔ −3, ↔ 2
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−6

−1

−2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−5

−2

2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−8

−2

3

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

P

⎡

⎣
⎢

−6

−1

2

−5

−2

2

−8

−2

3

⎤

⎦
⎥

D

⎡

⎣
⎢

6

0

0

0

−3

0

0

0

−2

⎤

⎦
⎥

 Exercise 7.E. 23

⎡

⎣
⎢

1

0

3

90

−2

89

0

0

−2

⎤

⎦
⎥

1

 Exercise 7.E. 24

⎡

⎣
⎢

11

10

−20

45

26

−60

30

20

−44

⎤

⎦
⎥

1

 Exercise 7.E. 25

⎡

⎣
⎢

95

−196

−164

25

−53

−42

24

−48

−43

⎤

⎦
⎥

5
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Suppose  is an  matrix and let  be an eigenvector such that . Also suppose the characteristic polynomial of
 is

Explain why

If  is diagonalizable, give a proof of the Cayley Hamilton theorem based on this. This theorem says  satisfies its
characteristic equation

Suppose the characteristic polynomial of an  matrix  is . Find  where  is an integer.

Answer

The eigenvalues are distinct because they are the th roots of . Hence if  is a given vector with

then

so .

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible. Hint: This one has some complex eigenvalues.

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible. Hint: This one has some complex eigenvalues.

 Exercise 7.E. 26

A n ×n V AV = λV

A

det(xI −A) = + +⋯ + x +xn an−1xn−1 a1 a0

( + +⋯ + A + I)V = 0An an−1An−1 a1 a0

A A

+ +⋯ + A + I = 0An an−1An−1 a1 a0

 Exercise 7.E. 27

n ×n A 1 −Xn Amn m

n 1 X

X =∑
j=1

n

ajVj

X = = = = XAnm Anm∑
j=1

n

ajVj ∑
j=1

n

ajAnmVj ∑
j=1

n

ajVj

= IAnm

 Exercise 7.E. 28

⎡

⎣
⎢

15

−6

−58

−24

5

76

7

−1

−20

⎤

⎦
⎥

−2

 Exercise 7.E. 29

⎡

⎣
⎢

15

−13

−91

−25

23

155

6

−4

−30

⎤

⎦
⎥

2
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Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible. Hint: This one has some complex eigenvalues.

Find the eigenvalues and eigenvectors of the matrix

One eigenvalue is . Diagonalize if possible. Hint: This one has some complex eigenvalues.

Suppose  is an  matrix consisting entirely of real entries but  is a complex eigenvalue having the eigenvector, 
 Here  and  are real vectors. Show that then  is also an eigenvalue with the eigenvector, . Hint: You

should remember that the conjugate of a product of complex numbers equals the product of the conjugates. Here  is a
complex number whose conjugate equals .

Answer

. Now take conjugates of both sides. Since  is real,

Let . Diagonalize  to find .

Answer

First we write .

Therefore .

 Exercise 7.E. 30

⎡

⎣
⎢

−11

8

−4

−12

17

28

4

−4

−3

⎤

⎦
⎥

1
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⎡

⎣
⎢

14

−6

−69

−12

2

51

5

−1

−21

⎤

⎦
⎥

−3
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A n ×n a + ib

X + iY X Y a − ib X − iY

a + ib

a − ib

AX = (a + ib)X A

A = (a − ib)X¯ ¯¯̄ X¯ ¯¯̄

 Exercise 7.E. 33

A = [ ]
1

2

2

1
A A10

A = P DP −1

[ ] = [ ][ ] = [ ]
1

2

2

1

−1

1

1

1

−1

0

0

3

− 1
2
1
2

1
2
1
2

= PA10 D10P −1

[ ]
1

2

2

1

10

= [ ] [ ]
−1

1

1

1
[ ]

−1

0

0

3

10 − 1
2
1
2

1
2
1
2

= [ ][ ][ ]
−1

1

1

1

(−1)10

0

0

310

− 1
2
1
2

1
2
1
2

= [ ]
29525

29524

29524

29525
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Let . Diagonalize  to find .

Let . Diagonalize  to find .

The following is a Markov (migration) matrix for three locations

a. Initially, there are  people in location  in location , and  in location . How many are in each location after one
time period?

b. The total number of individuals in the migration process is . After a long time, how many are in each location?

Answer

a. Multiply the given matrix by the initial state vector given by . After one time period there are  people in

location ,  in location , and  in location .

b. Solve the system given by  where  is the migration matrix and  is the steady state

vector. The solution to this system is given by

Letting  and using the fact that there are a total of  individuals, we must solve

We find that . Therefore after a long time, there are  people in location  in location , and  in location 
.

The following is a Markov (migration) matrix for three locations

 Exercise 7.E. 34

A =
⎡

⎣
⎢

1

0

0

4

2

0

1

5

5

⎤

⎦
⎥ A A50
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A =
⎡

⎣
⎢

1

2

−2

−2

−1

3

−1

1

1

⎤

⎦
⎥ A A100
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⎡

⎣

⎢
⎢

7
10
1

10
1
5

1
9
7
9
1
9

1
5
2
5
2
5

⎤

⎦

⎥
⎥

90 1, 81 2 85 3

256

⎡

⎣
⎢

90

81

85

⎤

⎦
⎥ 89

1 106 2 61 3

(I −A) = 0Xs A =Xs

⎡

⎣
⎢

x1s

x2s

x3s

⎤

⎦
⎥

x1s

x2s

=
8

5
x3s

=
63

25
x3s

= tx3s 256

t + t + t = 256
8

5

63

25

t = 50 80 1, 126 2 50
3
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a. Initially, there are  individuals in location  in location , and  in location . How many are in each location
after two time periods?

b. The total number of individuals in the migration process is . After a long time, how many are in each location?

The following is a Markov (migration) matrix for three locations

The total number of individuals in the migration process is . After a long time, how many are in each location?

Answer

We solve  to find the steady state vector . The solution to the system is given by

Letting  and using the fact that there are a total of  individuals, we must solve

We find that . Therefore after a long time, there are  people in location  in location , and  in location 
.

The following is a Markov (migration) matrix for three locations

The total number of individuals in the migration process is . After a long time, how many are in each location?

The following is a Markov (migration) matrix for three locations

The total number of individuals in the migration process is . After a long time, how many are in each location?

130 1, 300 2 70 3

500

 Exercise 7.E. 38

⎡

⎣

⎢
⎢
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3
8
3
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1
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1
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⎤

⎦

⎥
⎥
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(I −A) = 0Xs =Xs

⎡

⎣
⎢

x1s

x2s

x3s

⎤

⎦
⎥

x1s

x2s

=
5

6
x3s

=
2

3
x3s

= tx3s 480

t + t + t = 480
5

6

2

3

t = 192 160 1, 128 2 192
3
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⎤

⎦

⎥
⎥
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A person sets off on a random walk with three possible locations. The Markov matrix of probabilities  is given by

If the walker starts in location , what is the probability of ending back in location  at time ?

Answer

Therefore the probability of ending up back in location  is .

A person sets off on a random walk with three possible locations. The Markov matrix of probabilities  is given by

It is unknown where the walker starts, but the probability of starting in each location is given by

What is the probability of the walker being in location  at time ?

Answer

Therefore the probability of ending up in location  is .

You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one
in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the
following table is observed to take place.

Table 
SE NE NW SW

SE

NE

NW

SW

 Exercise 7.E. 41

A = [ ]aij

⎡

⎣
⎢

0.1

0.1

0.8

0.3

0.3

0.4

0.7

0.2

0.1

⎤

⎦
⎥

2 2 n = 3

=X3

⎡

⎣
⎢

0.38

0.18

0.44

⎤

⎦
⎥

2 0.18
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A = [ ]aij

⎡

⎣
⎢

0.5

0.2

0.3

0.1

0.9

0

0.6

0.2

0.2

⎤

⎦
⎥

=X0

⎡

⎣
⎢

0.2

0.25

0.55

⎤

⎦
⎥

1 n = 2

=X2

⎡

⎣
⎢

0.367

0.4625

0.1705

⎤

⎦
⎥

1 0.367
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In this table, the probability that a trailer starting at NE ends in NW is , the probability
that a trailer starting at SW ends in NW is , and so forth. Approximately how many will
you have in each location after a long time if the total number of trailers is ?

Answer

The migration matrix is

To find the number of trailers in each location after a long time we solve system  for the steady state vector 

. The solution to the system is

Letting  and using the fact that there are a total of  trailers we must solve

We find that . Therefore after a long time, there are  trailers in the SE,  in the NE,  in the NW and  in the
SW.

You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one
in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the
following table is observed to take place.

Table 
SE NE NW SW

SE

NE

NW

SW

In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability
that a trailer starting at SW ends in NW is 1/5, and so forth. Approximately how many will
you have in each location after a long time if the total number of trailers is 1469.

1/10
1/5

413

A =

⎡

⎣

⎢⎢⎢⎢⎢⎢

1
3

1
3
2
9
1
9

1
10
7

10
1

10
1

10

1
10

1
5
3
5
1

10

1
5

1
10
1
5
1
2

⎤

⎦

⎥⎥⎥⎥⎥⎥

(I −A) = 0Xs

=Xs

⎡

⎣

⎢
⎢⎢

x1s

x2s

x3s

x4s

⎤

⎦

⎥
⎥⎥

x1s

x2s

x3s

=
9

10
x4s

=
12

5
x4s

=
8

5
x4s

= tx4s 413

t + t + t + t = 413
9

10

12

5

8

5

t = 70 63 168 112 70
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The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c.
indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability . If it starts off sunny, it ends up
sunny the next day with probability  and so forth.

Table 
rains sunny p.c.

rains

sunny

p.c.

Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c.
indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability . If it starts off sunny, it ends
up sunny the next day with probability  and so forth.

Table 
rains sunny p.c.

rains

sunny

p.c.

Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

You own a trailer rental company in a large city and you have four locations, one in the South East, one in the North East, one
in the North West, and one in the South West. Denote these locations by SE, NE, NW, and SW respectively. Suppose that the
following table is observed to take place.

Table 
SE NE NW SW

SE

NE

NW

SW

In this table, the probability that a trailer starting at NE ends in NW is 1/10, the probability that a trailer starting at SW ends in
NW is 1/5, and so forth. Approximately how many will you have in each location after a long time if the total number of
trailers is 407?

The University of Poohbah offers three degree programs, scouting education (SE), dance appreciation (DA), and engineering
(E). It has been determined that the probabilities of transferring from one program to another are as in the following table.

Table 

 Exercise 7.E. 45
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7.E. 5
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SE DA ESE DA E

SE

DA

E

where the number indicates the probability of transferring from the top program to the program on the left. Thus the probability
of going from DA to E is . Find the probability that a student is enrolled in the various programs.

In the city of Nabal, there are three political persuasions, republicans (R), democrats (D), and neither one (N). The following
table shows the transition probabilities between the political parties, the top row being the initial political party and the side
row being the political affiliation the following year.

Table 
R D N

R

D

N

Find the probabilities that a person will be identified with the various political persuasions. Which party will end up being most
important?

The following table describes the transition probabilities between the states rainy, partly cloudy and sunny. The symbol p.c.
indicates partly cloudy. Thus if it starts off p.c. it ends up sunny the next day with probability . If it starts off sunny, it ends up
sunny the next day with probability  and so forth.

Table 
rains sunny p.c.

rains

sunny

p.c.

Given this information, what are the probabilities that a given day is rainy, sunny, or partly cloudy?

Find the solution to the initial value problem

Hint: form the matrix exponential  and then the solution is  where  is the initial vector,

Answer

The solution is

.8 .1 .3

.1 .7 .5

.1 .2 .2

.2
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Find the solution to the initial value problem

Hint: form the matrix exponential  and then the solution is  where  is the initial vector.

Find the solution to the initial value problem

Hint: form the matrix exponential  and then the solution is  where  is the initial vector.

Find the eigenvalues and an orthonormal basis of eigenvectors for .

Hint: Two eigenvalues are  and .

Answer

The eigenvectors and eigenvalues are:

Find the eigenvalues and an orthonormal basis of eigenvectors for .

Hint: One eigenvalue is .

Answer

The eigenvectors and eigenvalues are:

C = [ ]eAt 8 −6e2t e3t

18 −16e3t e2t

 Exercise 7.E. 52
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Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Hint: One eigenvalue is .

Answer

The eigenvectors and eigenvalues are:

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Hint: Two eigenvalues are  and .

Answer

The eigenvectors and eigenvalues are:

The matrix  has these as its columns.
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A A U

D AU = DU T
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Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Hint: Two eigenvalues are  and .

Answer

The eigenvectors and eigenvalues are:

The matrix  has these as its columns.

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Hint: The eigenvalues are .

Answer

The eigenvectors and eigenvalues are:

These vectors are the columns of .

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Answer

The eigenvectors and eigenvalues are:

 Exercise 7.E. 58

A A U

D AU = DU T

A =
⎡

⎣
⎢

13

1

4

1

13

4

4

4

10

⎤

⎦
⎥

12 18

↔ 6, ↔ 12, ↔ 18.

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

− 1
6

6
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√

− 1
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6
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√
1
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2
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√ 3
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⎤
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⎫

⎭
⎬
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⎩
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⎪⎪

⎪⎪
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2
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√
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2
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⎪⎪⎪
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⎢⎢⎢

1
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3
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√
1
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3
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√
1
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3
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√
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⎪⎪⎪

U

 Exercise 7.E. 59

A A U

D AU = DU T

A =

⎡

⎣

⎢⎢

− 5
3

1
15

6
–

√ 5
–

√

8
15

5
–

√

1
15

6
–

√ 5
–

√

− 14
5

− 1
15

6
–

√

8
15

5
–

√

− 1
15

6
–

√

7
15

⎤

⎦

⎥⎥

−3, −2, 1

↔ 1, −2, ↔ −3
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6
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⎪⎪⎪
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⎢⎢⎢

− 1
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2
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2
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⎪⎪⎪
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⎢⎢⎢
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⎪⎪⎪

U

 Exercise 7.E. 60

A A U

D AU = DU T

A =
⎡

⎣

⎢⎢

3

0

0

0
3
2
1
2

0
1
2
3
2

⎤

⎦

⎥⎥
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These vectors are the columns of the matrix .

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Answer

The eigenvectors and eigenvalues are:

These vectors are the columns of .

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

Hint: The eigenvalues are  where  is listed twice because it is a root of multiplicity .

Answer

The eigenvectors and eigenvalues are:

The columns are these vectors.

Find the eigenvalues and an orthonormal basis of eigenvectors for . Diagonalize  by finding an orthogonal matrix  and a
diagonal matrix  such that .

↔ 1, ↔ 2, ↔ 3.
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⎢
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U

 Exercise 7.E. 61

A A U

D AU = DU T

A =
⎡

⎣
⎢

2

0

0

0

5

1

0

1

5

⎤

⎦
⎥

↔ 2, ↔ 4, ↔ 6.
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢
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⎦
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⎪⎪

⎡
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√
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 Exercise 7.E. 62

A A U

D AU = DU T

A =

⎡

⎣

⎢⎢

4
3

1
3

3
–

√ 2
–

√

1
3

2
–

√

1
3

3
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√ 2
–

√

1

− 1
3

3
–

√

1
3

2
–

√

− 1
3

3
–

√

5
3

⎤

⎦

⎥⎥

0, 2, 2 2 2

↔ 0, , ↔ 2.

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢
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⎫

⎭
⎬
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⎪⎪⎪

⎪⎪⎪
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√
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⎢⎢⎢

1
5

2
–

√ 5
–

√

1
5

3
–

√ 5
–

√
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⎪⎪⎪

 Exercise 7.E. 63

A A U

D AU = DU T

A =

⎡

⎣

⎢⎢

1
1
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3
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1
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3
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3
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√
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1
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√ 6
–

√

1
6

3
–
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√
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Hint: The eigenvalues are .

Answer

The eigenvectors and eigenvalues are:

The columns are these vectors.

Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix

Hint: The eigenvalues are .

Answer

The eigenvectors and eigenvalues are:

Then the columns of  are these vectors.

Find the eigenvalues and an orthonormal basis of eigenvectors for the matrix

Hint: The eigenvalues are  where  is listed twice because it has multiplicity  as a zero of the characteristic
equation.

Answer

The eigenvectors and eigenvalues are:

The columns of  are these vectors.

2, 1, 0

↔ 0, ↔ 1, ↔ 2.
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⎪⎪⎪

 Exercise 7.E. 64

A =

⎡

⎣

⎢⎢⎢

1
3

1
6
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√
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√
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√
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2
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√
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6

⎤

⎦

⎥⎥⎥

1, 2, −2

↔ 1, ↔ −2, ↔ 2.
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 Exercise 7.E. 65

A =

⎡

⎣

⎢
⎢

− 1
2
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5
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√
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√
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√
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√
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−1, 2, −1 −1 2

, ↔ −1, ↔ 2.
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√
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Explain why a matrix  is symmetric if and only if there exists an orthogonal matrix  such that  for  a
diagonal matrix.

Answer

If  is given by the formula, then

Next suppose . Then by the theorems on symmetric matrices, there exists an orthogonal matrix  such that

for  diagonal. Hence

Show that if  is a real symmetric matrix and  and  are two different eigenvalues, then if  is an eigenvector for  and  is
an eigenvector for , then . Also all eigenvalues are real. Supply reasons for each step in the following argument.
First

and so . This shows that all eigenvalues are real. It follows all the eigenvectors are real. Why? Now let  and 
be given as above.

and so

Why does it follow that ?

Answer

Since , it follows .

Find the Cholesky factorization for the matrix

.

⎡

⎣

⎢⎢⎢
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√
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√
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√

− 2
5

5
–

√

1
30

30
−−

√

⎤

⎦

⎥⎥⎥

T

⎡

⎣

⎢⎢⎢

− 1
2

− 1
5

6
–

√ 5
–

√

1
10

5
–

√

− 1
5

6
–

√ 5
–

√

7
5

− 1
5

6
–

√

1
10

5
–

√

− 1
5

6
–

√

− 9
10

⎤

⎦

⎥⎥⎥

=

⎡

⎣

⎢⎢⎢

− 1
6

6
–

√

0

1
6

5
–

√ 6
–

√

1
3

2
–

√ 3
–

√

1
5

5
–

√

1
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1
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⎥

 Exercise 7.E. 66

A U A = DUU T D

A

= U = DU = AAT U T DT U T

A = AT U

UA = DU T

D

A = DUU T

 Exercise 7.E. 67

A λ µ X λ Y

µ X ∙ Y = 0

λ = (AX = A = = =XT X¯ ¯¯̄ )T X¯ ¯¯̄ XT X¯ ¯¯̄ XT AX
¯ ¯¯̄¯̄¯̄

XT λX
¯ ¯¯̄¯̄¯

λ
¯¯̄

XT X¯ ¯¯̄

λ = λ
¯¯̄

X, Y , µ λ

λ(X ∙ Y ) = λX ∙ Y = AX ∙ Y = X ∙ AY = X ∙ μY = μ(X ∙ Y ) = μ(X ∙ Y )

(λ −μ)X ∙ Y = 0

X ∙ Y = 0

λ ≠ μ X ∙ Y = 0

 Exercise 7.E. 68

⎡
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Find the Cholesky factorization for the matrix

Find the Cholesky factorization for the matrix

Find the Cholesky factorization for the matrix

Find the Cholesky factorization for the matrix

Suppose you have a lower triangular matrix  and it is invertible. Show that  must be positive definite.

Using the Gram Schmidt process or the  factorization, find an orthonormal basis for the following span:

Answer

Using the  factorization, we have:

A solution is then

 Exercise 7.E. 69

⎡

⎣
⎢

4

8

0

8
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2
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 Exercise 7.E. 70

⎡

⎣
⎢
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8
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8
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 Exercise 7.E. 71

⎡
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⎢
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⎦
⎥

 Exercise 7.E. 72

⎡
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 Exercise 7.E. 73

L LLT

 Exercise 7.E. 74

QR

span , ,
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⎢
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⎢
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Using the Gram Schmidt process or the  factorization, find an orthonormal basis for the following span:

Answer

Then a solution is

a. 

b. 

c. 

d. 

e.  Hint: Notice that the columns are orthogonal.

, ,
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 Exercise 7.E. 75

QR
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Using a computer algebra system, find a QR factorization for the following matrices.

a. 

b. 

c.  Find the thin QR factorization of this one.

A quadratic form in three variables is an expression of the form . Show that
every such quadratic form may be written as

where  is a symmetric matrix.

Answer

Given a quadratic form in three variables,  and , show there exists an orthogonal matrix  and variables  such
that

with the property that in terms of the new varaibles, the quadratic form is

where the numbers, , , and  are the eigenvalues of the matrix  in Exercise .

Answer

The quadratic form may be written as

where . By the theorem about diagonalizing a symmetric matrix, there exists an orthogonal matrix  such that

Then the quadratic form is
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x, y, z U x', y', z'

= U
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⎣
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Ax⃗ T x⃗ 

A = AT U

AU = D, A = UDU T U T

UD = ( D( )x⃗ T U T x⃗  U T x⃗ )T U T x⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/93820?pdf


7.E.24 https://math.libretexts.org/@go/page/93820

where  is a diagonal matrix having the real eigenvalues of  down the main diagonal. Now simply let

Consider the quadratic form  given by .

a. Write  in the form  for an appropriate symmetric matrix .
b. Use a change of variables to rewrite  to eliminate the  term.

Consider the quadratic form  given by .

a. Write  in the form  for an appropriate symmetric matrix .
b. Use a change of variables to rewrite  to eliminate the  term.

Consider the quadratic form  given by .

a. Write  in the form  for an appropriate symmetric matrix .
b. Use a change of variables to rewrite  to eliminate the  term.
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8.1: Polar Coordinates and Polar Graphs

A. Understand polar coordinates.
B. Convert points between Cartesian and polar coordinates.

You have likely encountered the Cartesian coordinate system in many aspects of mathematics. There is an alternative way to
represent points in space, called polar coordinates. The idea is suggested in the following picture.

Figure 

Consider the point above, which would be specified as  in Cartesian coordinates. We can also specify this point using polar
coordinates, which we write as . The number  is the distance from the origin  to the point, while  is the angle shown
between the positive  axis and the line from the origin to the point. In this way, the point can be specified in polar coordinates as 

.

Now suppose we are given an ordered pair  where  and  are real numbers. We want to determine the point specified by this
ordered pair. We can use  to identify a ray from the origin as follows. Let the ray pass from  through the point 
as shown.

Figure 

The ray is identified on the graph as the line from the origin, through the point . Now if  go a distance equal
to  in the direction of the displayed arrow starting at . If  move in the opposite direction a distance of . This is the
point determined by .

It is common to assume that  is in the interval  and  In this case, there is a very simple relationship between the
Cartesian and polar coordinates, given by

These equations demonstrate how to find the Cartesian coordinates when we are given the polar coordinates of a point. They can
also be used to find the polar coordinates when we know . A simpler way to do this is the following equations:

 Outcomes

8.1.1

(x, y)
(r, θ) r (0, 0) θ

x

(r, θ)

(r, θ) r θ

θ (0, 0) (cos θ, sinθ)

8.1.2

(cos(θ), sin(θ)) r > 0,
r (0, 0) r < 0, |r|

(r, θ)

θ [0, 2π) r > 0.

x = r cos(θ),   y = r sin(θ) (8.1.1)

(x, y)
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In the next example, we look at how to find the Cartesian coordinates of a point specified by polar coordinates.

The polar coordinates of a point in the plane are . Find the Cartesian coordinates of this point.

Solution
The point is specified by the polar coordinates . Therefore  and . From 

Thus the Cartesian coordinates are . The point is shown in the below graph.

Figure 

Consider the following example of the case where .

The polar coordinates of a point in the plane are  Find the Cartesian coordinates.

Solution
For the point specified by the polar coordinates , , and . From 

Thus the Cartesian coordinates are . The point is shown in the following graph.

r = +x2 y2− −−−−−
√

tan(θ) = y

x

(8.1.2)

 Example : Finding Cartesian Coordinates8.1.1

(5, π/6)

(5, π/6) r = 5 θ = π/6 (8.1.1)

x = r cos(θ) = 5 cos( ) =
π

6
5
2

3–√

y = r sin(θ) = 5 sin( ) =
π

6
5
2

( , )5
2 3–√ 5

2

8.1.3

r < 0

 Example : Finding Cartesian Coordinates8.1.2

(−5, π/6) .

(−5, π/6) r = −5 xθ = π/6 (8.1.1)

x = r cos(θ) = −5 cos( ) = −
π

6
5
2

3–√

y = r sin(θ) = −5 sin( ) = −
π

6
5
2

(− , − )5
2 3

–√ 5
2
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Figure 

Recall from the previous example that for the point specified by , the Cartesian coordinates are . Notice that
in this example, by multiplying  by , the resulting Cartesian coordinates are also multiplied by .

The following picture exhibits both points in the above two examples to emphasize how they are just on opposite sides of  but
at the same distance from .

Figure 

In the next two examples, we look at how to convert Cartesian coordinates to polar coordinates.

Suppose the Cartesian coordinates of a point are . Find a pair of polar coordinates which correspond to this point.

Solution

Using equation , we can find  and . Hence . It remains to identify the angle  between the positive
 axis and the line from the origin to the point. Since both the  and  values are positive, the point is in the first quadrant.

Therefore,  is between  and . Using this and , we have to solve:

Conversely, we can use equation  as follows:

Solving these equations, we find that, approximately,  radians.

Consider the following example.

8.1.4

(5, π/6) ( , )5
2

3–√ 5
2

r −1 −1

(0, 0)
(0, 0)

8.1.5

 Example : Finding Polar Coordinates8.1.3

(3, 4)

(8.1.2) r θ r = = 5+32 42− −−−−−
√ θ

x x y

θ 0 π/2  (8.1.2)

tan(θ) =
4
3

(8.1.1)

3 = 5 cos(θ)

4 = 5 sin(θ)

θ = 0. 927 295
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Suppose the Cartesian coordinates of a point are . Find the polar coordinates which correspond to this point.

Solution
Given the point ,

In this case, the point is in the second quadrant since the  value is negative and the  value is positive. Therefore,  will be
between  and . Solving the equations

we find that  Hence the polar coordinates for this point are .

Consider this example. Suppose we used  and . These coordinates specify the same point as
above. Observe that there are infinitely many ways to identify this particular point with polar coordinates. In fact, every point can
be represented with polar coordinates in infinitely many ways. Because of this, it will usually be the case that  is confined to lie in
some interval of length  and , for real numbers  and .

Just as with Cartesian coordinates, it is possible to use relations between the polar coordinates to specify points in the plane. The
process of sketching the graphs of these relations is very similar to that used to sketch graphs of functions in Cartesian coordinates.
Consider a relation between polar coordinates of the form, . To graph such a relation, first make a table of the form

Table 

Graph the resulting points and connect them with a curve. The following picture illustrates how to begin this process.

Figure 

To find the point in the plane corresponding to the ordered pair , we follow the same process as when finding the point
corresponding to .

Consider the following example of this procedure, incorporating computer software.

 Example : Finding Polar Coordinates8.1.4

(− , 1)3–√

(− , 1)3
–√

r = +(−12 3–√ )2
− −−−−−−−−−

√

= 1 +3− −−−√
= 2

x y θ

π/2 π

− = 2 cos(θ)3–√

1 = 2 sin(θ)

θ = 5π/6. (2, 5π/6)

r = −2 θ = 2π −(π/6) = 11π/6

θ

2π r > 0 r θ

r = f (θ)

8.1.1

θ r

θ1 f( )θ1

θ2 f( )θ2

⋮ ⋮

8.1.6

(f (θ) , θ)
(r, θ)
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Graphing a Polar Equation Graph the polar equation .

Solution
We will use the computer software Maple to complete this example. The command which produces the polar graph of the
above equation is:  plot(1+cos(t),t= 0..2*Pi,coords=polar). Here we use  to represent the variable  for convenience. The
command tells Maple that  is given by  and that .

Figure 

The above graph makes sense when considered in terms of trigonometric functions. Suppose  and let  increase to
. As  increases,  decreases to 0. Thus the line from the origin to the point on the curve should get shorter as  goes

from  to . As  goes from  to ,  decreases, eventually equaling  at . Thus  at this point. This
scenario is depicted in the above graph, which shows a function called a cardioid.

The following picture illustrates the above procedure for obtaining the polar graph of . In this picture, the
concentric circles correspond to values of  while the rays from the origin correspond to the angles which are shown on the
picture. The dot on the ray corresponding to the angle  is located at a distance of  from the origin. The
dot on the ray corresponding to the angle  is located at a distance of  from the origin and so forth. The
polar graph is obtained by connecting such points with a smooth curve, with the result being the figure shown above.

Figure 

 Example 8.1.5

r = 1 +cos θ

> t θ

r 1 +cos(t) t ∈ [0, 2π]

8.1.7

θ = 0, r = 2 θ

π/2 θ cos θ θ

0 π/2 θ π/2 π cos θ −1 θ = π r = 0

r = 1 +cos(θ)
r

π/6 r = 1 +cos(π/6)
π/3 r = 1 +cos(π/3)

8.1.8
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Consider another example of constructing a polar graph.

Graph  for .

Solution
The graph of the polar equation  for  is given as follows.

Figure 

To see the way this is graphed, consider the following picture. First the indicated points were graphed and then the curve was
drawn to connect the points. When done by a computer, many more points are used to create a more accurate picture.

Consider first the following table of points.

Table 

Note how some entries in the table have  To graph these points, simply move in the opposite direction. These types of
points are responsible for the small loop on the inside of the larger loop in the graph.

 Example : A Polar Graph8.1.6

r = 1 +2 cos θ θ ∈ [0, 2π]

r = 1 +2 cos θ θ ∈ [0, 2π]

8.1.9

8.1.2

θ π/6 π/3 π/2 5π/6 π 4π/3 7π/6 5π/3

r + 13–√ 2 1 1 − 3–√ −1 0 1 − 3–√ 2

r < 0.
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Figure 

The process of constructing these graphs can be greatly facilitated by computer software. However, the use of such software should
not replace understanding the steps involved.

The next example shows the graph for the equation . For complicated polar graphs, computer software is used to

facilitate the process.

Graph  for .

Solution

8.1.10

r = 3 +sin( )
7θ

6

 Example : A Polar Graph8.1.7

r = 3 +sin( )
7θ

6
θ ∈ [0, 14π]
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Figure 

The next example shows another situation in which  can be negative.

Graph  for .

Solution

Figure 

We conclude this section with an interesting graph of a simple polar equation.

Graph  for .

Solution
The graph of this polar equation is a spiral. This is the case because as  increases, so does .

8.1.11

r

 Example : A Polar Graph: Negative 8.1.8 r

r = 3sin(4θ) θ ∈ [0, 2π]

8.1.12

 Example : The Graph of a Spiral8.1.9

r = θ θ ∈ [0, 2π]

θ r
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Figure 

In the next section, we will look at two ways of generalizing polar coordinates to three dimensions.

This page titled 8.1: Polar Coordinates and Polar Graphs is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken
Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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8.2: Spherical and Cylindrical Coordinates

A. Understand cylindrical and spherical coordinates.
B. Convert points between Cartesian, cylindrical, and spherical coordinates.

Spherical and cylindrical coordinates are two generalizations of polar coordinates to three dimensions. We will first look at
cylindrical coordinates .

When moving from polar coordinates in two dimensions to cylindrical coordinates in three dimensions, we use the polar
coordinates in the  plane and add a  coordinate. For this reason, we use the notation  to express cylindrical coordinates.
The relationship between Cartesian coordinates  and cylindrical coordinates  is given by

where ,  and  is simply the Cartesian coordinate. Notice that  and  are defined as the usual polar coordinates
in the -plane. Recall that  is defined as the length of the ray from the origin to the point , while  is the angle between
the positive -axis and this same ray.

To illustrate this coordinate system, consider the following two pictures. In the first of these, both  and  are known. The cylinder
corresponds to a given value for . A useful way to think of  is as the distance between a point in three dimensions and the -axis.
Every point on the cylinder shown is at the same distance from the -axis. Giving a value for  results in a horizontal circle, or
cross section of the cylinder at the given height on the  axis (shown below as a black line on the cylinder). In the second picture,
the point is specified completely by also knowing  as shown.

Figure 

Every point of three dimensional space other than the  axis has unique cylindrical coordinates. Of course there are infinitely many
cylindrical coordinates for the origin and for the -axis. Any  will work if  and  is given.

Consider now spherical coordinates, the second generalization of polar form in three dimensions. For a point  in three
dimensional space, the spherical coordinates are defined as follows.

The spherical coordinates are determined by . The relation between these and the Cartesian coordinates  for a point
are as follows.

 Outcomes

xy z (r, θ, z)
(x, y, z) (r, θ, z)

x

y

z

= r cos(θ)

= r sin(θ)

= z

r ≥ 0 θ ∈ [0, 2π), z x y

xy r (x, y, 0) θ

x

r z

r r z

z z

z

θ

8.2.1

z

z θ r = 0 z

(x, y, z)

ρ : the length of the ray from the origin to the point

θ : the angle between the positive x-axis and the ray from the origin to the point (x, y, 0)

ϕ : the angle between the positive z-axis and the ray from the origin to the point of interest

(ρ, ϕ, θ) (x, y, z)
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Consider the pictures below. The first illustrates the surface when  is known, which is a sphere of radius . The second picture
corresponds to knowing both  and , which results in a circle about the -axis. Suppose the first picture demonstrates a graph of
the Earth. Then the circle in the second picture would correspond to a particular latitude.

Figure 

Giving the third coordinate,  completely specifies the point of interest. This is demonstrated in the following picture. If the
latitude corresponds to , then we can think of  as the longitude.

Figure 

The following picture summarizes the geometric meaning of the three coordinate systems.

x

y

z

= ρ sin(ϕ) cos(θ),  ϕ ∈ [0, π]

= ρ sin(ϕ) sin(θ),  θ ∈ [0, 2π)

= ρ cos ϕ, ρ ≥ 0.

ρ ρ

ρ ϕ z

8.2.2

θ

ϕ θ

8.2.3
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Figure 

Therefore, we can represent the same point in three ways, using Cartesian coordinates, , cylindrical coordinates, ,
and spherical coordinates .

Using this picture to review, call the point of interest  for convenience. The Cartesian coordinates for  are . Then  is
the distance between the origin and the point . The angle between the positive  axis and the line between the origin and  is
denoted by . Then  is the angle between the positive  axis and the line joining the origin to the point  as shown. This
gives the spherical coordinates, . Given the line from the origin to ,  is the length of this line. Thus 
and  determine a point in the -plane. In other words,  and  are the usual polar coordinates and  and . Letting 

 denote the usual  coordinate of a point in three dimensions,  are the cylindrical coordinates of .

The relation between spherical and cylindrical coordinates is that  and the  is the same as the  of cylindrical and
polar coordinates.

We will now consider some examples.

Express the surface  in spherical coordinates.

Solution
We will use the equations from above:

To express the surface in spherical coordinates, we substitute these expressions into the equation. This is done as follows:

This reduces to

and so .

8.2.4

(x, y, z) (r, θ, z)
(ρ, ϕ, θ)

P P (x, y, z) ρ

P z P

ϕ θ x (x, y, 0)
(ρ, ϕ, θ) (x, y, 0) r = ρ sin(ϕ) r

θ xy r θ r ≥ 0 θ ∈ [0, 2π)
z z (r, θ, z) P

r = ρ sin(ϕ) θ θ

 Example : Describing a Surface in Spherical Coordinates8.2.1

z = 1
3√

+x2 y2− −−−−−
√

x = ρ sin(ϕ) cos(θ), ϕ ∈ [0, π]

y = ρ sin(ϕ) sin(θ),  θ ∈ [0, 2π)

z = ρ cos ϕ, ρ ≥ 0

ρ cos(ϕ) = = ρ sin(ϕ).
1

3
–

√
+(ρ sin(ϕ) cos(θ))2 (ρ sin(ϕ) sin(θ)) 2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−
√

1

3
3
–

√

tan(ϕ) = 3
–

√

ϕ = π/3
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Express the surface  in terms of spherical coordinates.

Solution
Using the same procedure as the previous example, this says . Simplifying, ,
which you could also write .

We conclude this section with an example of how to describe a surface using cylindrical coordinates.

Express the surface  in cylindrical coordinates.

Solution
Recall that to convert from Cartesian to cylindrical coordinates, we can use the following equations:

Substituting these equations in for  in the equation for the surface, we have

This can be written as . Recall that . Thus  or .

This page titled 8.2: Spherical and Cylindrical Coordinates is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

 Example : Describing a Surface in Spherical Coordinates8.2.2

y = x

ρ sin(ϕ) sin(θ) = ρ sin(ϕ) cos(θ) sin(θ) = cos(θ)
tan(θ) = 1

 Example : Describing a Surface in Cylindrical Coordinates8.2.3

+ = 4x2 y2

x = r cos(θ), y = r sin(θ), z = z

x, y, z

(θ) + (θ) = 4r2 cos2 r2 sin2

( (θ) + (θ)) = 4r2 cos2 sin2 (θ) + (θ) = 1cos2 sin2 = 4r2 r = 2
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8.E: Exercises

In the following, polar coordinates \((r,θ)\) for a point in the plane are given. Find the corresponding Cartesian coordinates.

a. \((2,\pi /4)\)
b. \((-2, \pi/4)\)
c. \((3, \pi/3)\)
d. \((-3, \pi/3)\)
e. \((2,5\pi /6)\)
f. \((-2, 11\pi /6)\)
g. \((2,\pi /2)\)
h. \((1,3\pi /2)\)
i. \((-3, 3\pi /4)\)
j. \((3, 5\pi /4)\)
k. \((-2, \pi /6)\)

Consider the following Cartesian coordinates \((x, y)\). Find polar coordinates corresponding to these points.

a. \((-1,1)\)
b. \((\sqrt{3},-1)\)
c. \((0,2)\)
d. \((-5,0)\)
e. \((-2\sqrt{3},2)\)
f. \((2,-2)\)
g. \((-1,\sqrt{3})\)
h. \((-1,-\sqrt{3})\)

The following relations are written in terms of Cartesian coordinates \((x, y)\). Rewrite them in terms of polar coordinates, \
((r,\theta )\).

a. \(y=x^2\)
b. \(y=2x+6\)
c. \(x^2+y^2=4\)
d. \(x^2-y^2=1\)

Use a calculator or computer algebra system to graph the following polar relations.

a. \(r=1-\sin (2\theta ),\:\theta\in [0,2\pi ]\)
b. \(r=\sin (4\theta ),\:\theta\in [0,2\pi ]\)
c. \(r=\cos (3\theta )+\sin (2\theta ),\: \theta\in [0,2\pi]\)
d. \(r=\theta,\:\theta\in [0,15]\)

Graph the polar equation \(r = 1+\sinθ\) for \(θ ∈ [0, 2π]\).

 Exercise \(\PageIndex{1}\)

 Exercise \(\PageIndex{2}\)

 Exercise \(\PageIndex{3}\)

 Exercise \(\PageIndex{4}\)

 Exercise \(\PageIndex{5}\)
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Graph the polar equation \(r = 2+\sinθ\) for \(θ ∈ [0, 2π]\).

Graph the polar equation \(r = 1+2 \sinθ\) for \(θ ∈ [0, 2π]\).

Graph the polar equation \(r = 2+\sin(2θ)\) for \(θ ∈ [0, 2π]\).

Graph the polar equation \(r = 1+\sin(2θ)\) for \(θ ∈ [0, 2π]\).

Graph the polar equation \(r = 1+\sin(3θ)\) for \(θ ∈ [0, 2π]\).

Describe how to solve for \(r\) and \(θ\) in terms of \(x\) and \(y\) in polar coordinates.

This problem deals with parabolas, ellipses, and hyperbolas and their equations. Let \(l\), \(e > 0\) and consider \[r=\frac{l}
{1\pm e\cos\theta}\nonumber\] Show that if \(e = 0\), the graph of this equation gives a circle. Show that if \(0 < e < 1\), the
graph is an ellipse, if \(e = 1\) it is a parabola and if \(e > 1\), it is a hyperbola.

The following are the cylindrical coordinates of points, \((r,θ,z)\). Find the Cartesian and spherical coordinates of each point.

a. \((5,\frac{5\pi}{6},-3)\)
b. \((3,\frac{\pi}{3},4)\)
c. \((4,\frac{2\pi}{3},1)\)
d. \((2,\frac{3\pi}{4},-2)\)
e. \((3,\frac{3\pi}{2},-1)\)
f. \((8,\frac{11\pi}{6},-11)\)

The following are the Cartesian coordinates of points, \((x, y,z)\). Find the cylindrical and spherical coordinates of these points.

a. \((\frac{5}{2}\sqrt{2},\frac{5}{2}\sqrt{2},-3)\)
b. \((\frac{3}{2},\frac{3}{2}\sqrt{3},2)\)
c. \((-\frac{5}{2}\sqrt{2},\frac{5}{2}\sqrt{2},11)\)
d. \((-\frac{5}{2},\frac{5}{2}\sqrt{3},23)\)
e. \((-\sqrt{3},-1,-5)\)
f. \((\frac{3}{2},-\frac{3}{2}\sqrt{3},-7)\)
g. \((\sqrt{2},\sqrt{6},2\sqrt{2})\)
h. \((-\frac{1}{2}\sqrt{3},\frac{3}{2},1)\)
i. \((-\frac{3}{4}\sqrt{2},\frac{3}{4}\sqrt{2},-\frac{3}{2}\sqrt{3})\)

 Exercise \(\PageIndex{6}\)

 Exercise \(\PageIndex{7}\)

 Exercise \(\PageIndex{8}\)

 Exercise \(\PageIndex{9}\)

 Exercise \(\PageIndex{10}\)

 Exercise \(\PageIndex{11}\)

 Exercise \(\PageIndex{12}\)

 Exercise \(\PageIndex{13}\)

 Exercise \(\PageIndex{14}\)
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j. \((-\sqrt{3}1,2\sqrt{3})\)
k. \((-\frac{1}{4}\sqrt{2},\frac{1}{4}\sqrt{6},-\frac{1}{2}\sqrt{2})\)

The following are spherical coordinates of points in the form \((ρ,φ,θ)\). Find the Cartesian and cylindrical coordinates of each
point.

a. \((4,\frac{\pi}{4},\frac{5\pi}{6})\)
b. \((2,\frac{\pi}{3},\frac{2\pi}{3})\)
c. \((3,\frac{5\pi}{6},\frac{3\pi}{2})\)
d. \((4,\frac{\pi}{2},\frac{7\pi}{4})\)
e. \((4,\frac{2\pi}{3},\frac{\pi}{6})\)
f. \((4,\frac{3\pi}{4},\frac{5\pi}{3})\)

Describe the surface \(φ = π/4\) in Cartesian coordinates, where \(φ\) is the polar angle in spherical coordinates.

Describe the surface \(θ = π/4\) in spherical coordinates, where \(θ\) is the angle measured from the positive \(x\) axis.

Describe the surface \(r=5\) in Cartesian coordinates, where \(r\) is one of the cylindrical coordinates.

Describe the surface \(\rho =4\) in Cartesian coordinates, where \(\rho\) is the distance to the origin.

Give the cone described by \(z=\sqrt{x^2+y^2}\) in cylindrical coordinates and in spherical coordinates.

The following are described in Cartesian coordinates. Rewrite them in terms of spherical coordinates.

a. \(z=x^2+y^2\)
b. \(x^2-y^2=1\)
c. \(z^2+x^2+y^2=6\)
d. \(z=\sqrt{x^2+y^2}\)
e. \(y=x\)
f. \(z=x\)

The following are described in Cartesian coordinates. Rewrite them in terms of cylindrical coordinates.

a. \(z=x^2+y^2\)
b. \(x^2-y^2=1\)
c. \(z^2+x^2+y^2=6\)
d. \(z=\sqrt{x^2+y^2}\)

 Exercise \(\PageIndex{15}\)

 Exercise \(\PageIndex{16}\)

 Exercise \(\PageIndex{17}\)

 Exercise \(\PageIndex{18}\)

 Exercise \(\PageIndex{19}\)

 Exercise \(\PageIndex{20}\)

 Exercise \(\PageIndex{21}\)

 Exercise \(\PageIndex{22}\)
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e. \(y=x\)
f. \(z=x\)

This page titled 8.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source
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9.1: Algebraic Considerations

A. Develop the abstract concept of a vector space through axioms.
B. Deduce basic properties of vector spaces.
C. Use the vector space axioms to determine if a set and its operations constitute a vector space.

In this section we consider the idea of an abstract vector space. A vector space is something which has two operations satisfying the
following vector space axioms.

A vector space  is a set of vectors with two operations defined, addition and scalar multiplication, which satisfy the axioms
of addition and scalar multiplication.

In the following definition we define two operations; vector addition, denoted by  and scalar multiplication denoted by placing
the scalar next to the vector. A vector space need not have usual operations, and for this reason the operations will always be given
in the definition of the vector space. The below axioms for addition (written +) and scalar multiplication must hold for however
addition and scalar multiplication are defined for the vector space.

It is important to note that we have seen much of this content before, in terms of . We will prove in this section that  is an
example of a vector space and therefore all discussions in this chapter will pertain to . While it may be useful to consider all
concepts of this chapter in terms of , it is also important to understand that these concepts apply to all vector spaces.

In the following definition, we will choose scalars  to be real numbers and are thus dealing with real vector spaces. However,
we could also choose scalars which are complex numbers. In this case, we would call the vector space  complex.

Let  be vectors in a vector space . Then they satisfy the following axioms of addition:

Closed under Addition

The Commutative Law of Addition

The Associative Law of Addition

The Existence of an Additive Identity

The Existence of an Additive Inverse

vectorspaceaxiomsaddition

Let  and let  be vectors in a vector space . Then they satisfy the following axioms of scalar multiplication:

Closed under Scalar Multiplication

 Outcomes

 Definition : Vector Space9.1.1

V

+

R
n

R
n

R
n

R
n

a, b

V

 Definition : Axioms of Addition9.1.2

, ,v ⃗  w⃗  z ⃗  V

If , are in V , then + is also in V .v ⃗  w⃗  v ⃗  w⃗ 

+ = +v ⃗  w⃗  w⃗  v ⃗ 

( + ) + = +( + )v ⃗  w⃗  z ⃗  v ⃗  w⃗  z ⃗ 

+ =v ⃗  0⃗  v ⃗ 

+(− ) =v ⃗  v ⃗  0⃗ 

 Definition : Axioms of Scalar Multiplication9.1.3

a, b ∈ R , ,v ⃗  w⃗  z ⃗  V
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Consider the following example, in which we prove that  is in fact a vector space.

, under the usual operations of vector addition and scalar multiplication, is a vector space.

Solution
To show that  is a vector space, we need to show that the above axioms hold. Let  be vectors in . We first prove the
axioms for vector addition.

To show that  is closed under addition, we must show that for two vectors in  their sum is also in . The sum 
is given by:

The sum is a vector with  entries, showing that it is in . Hence  is closed under vector addition.
To show that addition is commutative, consider the following:

Hence addition of vectors in  is commutative.
We will show that addition of vectors in  is associative in a similar way.

If a is a real number, and is in V , then a is in V .v ⃗  v ⃗ 

a ( + ) = a +av ⃗  w⃗  v ⃗  w⃗ 

(a +b) = a +bv ⃗  v ⃗  v ⃗ 

a (b ) = (ab)v ⃗  v ⃗ 

1 =v ⃗  v ⃗ 

R
n

 Example : 9.1.1 R
n

R
n

R
n , ,x⃗  y ⃗  z ⃗  R

n

R
n

R
n

R
n +x⃗  y ⃗ 

+ =

⎡

⎣
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⎤
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Hence addition of vectors is associative.

Next, we show the existence of an additive identity. Let 

Hence the zero vector  is an additive identity.

( + ) +x⃗  y ⃗  z ⃗  = + +

⎛

⎝
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= + +

⎡

⎣

⎢⎢⎢
⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥
⎥

⎛

⎝

⎜⎜⎜
⎜

⎡

⎣

⎢⎢⎢
⎢

y1

y2

⋮
yn

⎤

⎦

⎥⎥⎥
⎥

⎡

⎣

⎢⎢⎢
⎢

z1

z2

⋮
zn

⎤

⎦

⎥⎥⎥
⎥

⎞

⎠

⎟⎟⎟
⎟

= +( + )x⃗  y ⃗  z ⃗ 

= .0⃗ 

⎡

⎣

⎢⎢
⎢⎢

0
0

⋮
0

⎤

⎦

⎥⎥
⎥⎥

+x⃗  0⃗  = +

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

0
0

⋮
0

⎤

⎦

⎥⎥⎥⎥

=

⎡

⎣

⎢
⎢⎢⎢

+0x1

+0x2

⋮
+0xn

⎤

⎦

⎥
⎥⎥⎥

=

⎡

⎣

⎢
⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥
⎥⎥⎥

= x⃗ 

0⃗ 
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Next, we prove the existence of an additive inverse. Let .

Hence  is an additive inverse.

We now need to prove the axioms related to scalar multiplication. Let  be real numbers and let  be vectors in .

We first show that  is closed under scalar multiplication. To do so, we show that  is also a vector with  entries.

The vector  is again a vector with  entries, showing that  is closed under scalar multiplication.
We wish to show that .

− =x⃗ 

⎛

⎝

⎜⎜⎜⎜

−x1

−x2

⋮
−xn

⎞

⎠

⎟⎟⎟⎟

+(− )x⃗  x⃗  = +

⎡

⎣

⎢⎢
⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥
⎥⎥

⎡

⎣

⎢⎢
⎢⎢

−x1

−x2

⋮
−xn

⎤

⎦

⎥⎥
⎥⎥

=

⎡

⎣

⎢⎢⎢
⎢

−x1 x1

−x2 x2

⋮
−xn xn

⎤

⎦

⎥⎥⎥
⎥

=

⎡

⎣

⎢⎢⎢
⎢

0
0

⋮
0

⎤

⎦

⎥⎥⎥
⎥

= 0⃗ 

−x⃗ 

a, b ,x⃗  y ⃗  R
n

R
n ax⃗  n

a = a =x⃗ 

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

ax1

ax2

⋮
axn

⎤

⎦

⎥⎥⎥⎥

ax⃗  n R
n

a( + ) = a +ax⃗  y ⃗  x⃗  y ⃗ 
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Next, we wish to show that .

We wish to show that .

a( + )x⃗  y ⃗  = a +

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢

x1

x2

⋮xn

⎤

⎦

⎥⎥

⎞

⎠

⎟⎟⎟⎟

= a

⎡

⎣

⎢⎢⎢
⎢

+x1 y1

+x2 y2

⋮
+xn yn

⎤

⎦

⎥⎥⎥
⎥

=

⎡

⎣

⎢⎢⎢⎢⎢

a( + )x1 y1

a( + )x2 y2

⋮
a( + )xn yn

⎤

⎦

⎥⎥⎥⎥⎥

=

⎡

⎣

⎢⎢⎢⎢

a +ax1 y1

a +ax2 y2

⋮
a +axn yn

⎤

⎦

⎥⎥⎥⎥

= +

⎡

⎣

⎢⎢⎢⎢

ax1

ax2

⋮
axn

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢
⎢

ay1

ay2

⋮
ayn

⎤

⎦

⎥⎥⎥
⎥

= a +ax⃗  y ⃗ 

(a +b) = a +bx⃗  x⃗  x⃗ 

(a +b)x⃗  = (a +b)

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

=

⎡

⎣

⎢⎢⎢⎢⎢

(a +b)x1

(a +b)x2

⋮
(a +b)xn

⎤

⎦

⎥⎥⎥⎥⎥

=

⎡

⎣

⎢
⎢⎢⎢

a +bx1 x1

a +bx2 x2

⋮
a +bxn xn

⎤

⎦

⎥
⎥⎥⎥

= +

⎡

⎣

⎢⎢
⎢⎢

ax1

ax2

⋮
axn

⎤

⎦

⎥⎥
⎥⎥

⎡

⎣

⎢⎢
⎢⎢

bx1

bx2

⋮
bxn

⎤

⎦

⎥⎥
⎥⎥

= a +bx⃗  x⃗ 

a(b ) = (ab)x⃗  x⃗ 
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Finally, we need to show that .

By the above proofs, it is clear that  satisfies the vector space axioms. Hence,  is a vector space under the usual
operations of vector addition and scalar multiplication.

We now consider some examples of vector spaces.

Let  be the set of all polynomials of at most degree  as well as the zero polynomial. Define addition to be the standard
addition of polynomials, and scalar multiplication the usual multiplication of a polynomial by a number. Then  is a vector
space.

a(b )x⃗  = a b

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟

= a

⎛

⎝

⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

bx1

bx2

⋮
bxn

⎤

⎦

⎥⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟

=

⎡

⎣

⎢⎢⎢⎢⎢

a(b )x1

a(b )x2

⋮
a(b )xn

⎤

⎦

⎥⎥⎥⎥⎥

=

⎡

⎣

⎢⎢⎢⎢⎢

(ab)x1

(ab)x2

⋮
(ab)xn

⎤

⎦

⎥⎥⎥⎥⎥

= (ab)

⎡

⎣

⎢
⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥
⎥⎥⎥

= (ab)x⃗ 

1 =x⃗  x⃗ 

1x⃗ = 1

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥⎥⎥⎥

=

⎡

⎣

⎢
⎢⎢⎢

1x1

1x2

⋮
1xn

⎤

⎦

⎥
⎥⎥⎥

=

⎡

⎣

⎢
⎢⎢⎢

x1

x2

⋮
xn

⎤

⎦

⎥
⎥⎥⎥

= x⃗ 

R
n

R
n

 Example : Vector Space of Polynomials9.1.2

P2 2
P2
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Solution
We can write  explicitly as

To show that  is a vector space, we verify the axioms. Let  be polynomials in  and let  be real
numbers. Write , , and .

We first prove that addition of polynomials in  is closed. For two polynomials in  we need to show that their sum is
also a polynomial in . From the definition of , a polynomial is contained in  if it is of degree at most  or the zero
polynomial.

The sum is a polynomial of degree  and therefore is in . It follows that  is closed under addition.
We need to show that addition is commutative, that is .

Next, we need to show that addition is associative. That is, that .

Next, we must prove that there exists an additive identity. Let .

Hence an additive identity exists, specifically the zero polynomial.
Next we must prove that there exists an additive inverse. Let  and consider the following:

Hence an additive inverse  exists such that .

We now need to verify the axioms related to scalar multiplication.

First we prove that  is closed under scalar multiplication. That is, we show that  is also a polynomial of degree at
most .

Therefore  is closed under scalar multiplication.
We need to show that .

P2

= { + x + | ∈ R for all i}P2 a2x2 a1 a0 ai

P2 p(x), q(x), r(x) P2 a, b, c

p(x) = + x +p2x2 p1 p0 q(x) = + x +q2x2 q1 q0 r(x) = + x +r2x2 r1 r0

P2 P2

P2 P2 P2 2

p(x) +q(x) = + x + + + x +p2x2 p1 p0 q2x2 q1 q0

= ( + ) +( + )x +( + )p2 q2 x2 p1 q1 p0 q0

2 P2 P2

p(x) +q(x) = q(x) +p(x)

p(x) +q(x) = + x + + + x +p2x2 p1 p0 q2x2 q1 q0

= ( + ) +( + )x +( + )p2 q2 x2 p1 q1 p0 q0

= ( + ) +( + )x +( + )q2 p2 x2 q1 p1 q0 p0

= + x + + + x +q2x2 q1 q0 p2x2 p1 p0

= q(x) +p(x)

(p(x) +q(x)) +r(x) = p(x) +(q(x) +r(x))

(p(x) +q(x)) +r(x) = ( + x + + + x + )+ + x +p2x2 p1 p0 q2x2 q1 q0 r2x2 r1 r0

= ( + ) +( + )x +( + ) + + x +p2 q2 x2 p1 q1 p0 q0 r2x2 r1 r0

= ( + + ) +( + + )x +( + + )p2 q2 r2 x2 p1 q1 r1 p0 q0 r0

= + x + +( + ) +( + )x +( + )p2x2 p1 p0 q2 r2 x2 q1 r1 q0 r0

= + x + +( + x + + + x + )p2x2 p1 p0 q2x2 q1 q0 r2x2 r1 r0

= p(x) +(q(x) +r(x))

0(x) = 0 +0x +0x2

p(x) +0(x) = + x + +0 +0x +0p2x2 p1 p0 x2

= ( +0) +( +0)x +( +0)p2 x2 p1 p0

= + x +p2x2 p1 p0

= p(x)

−p(x) = − − x −p2x2 p1 p0

p(x) +(−p(x)) = + x + +(− − x − )p2x2 p1 p0 p2x2 p1 p0

= ( − ) +( − )x +( − )p2 p2 x2 p1 p1 p0 p0

= 0 +0x +0x2

= 0(x)

−p(x) p(x) +(−p(x)) = 0(x)

P2 ap(x)
2

ap(x) = a ( + x + ) = a +a x +ap2x2 p1 p0 p2x2 p1 p0

P2

a(p(x) +q(x)) = ap(x) +aq(x)
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Next we show that .

The next axiom which needs to be verified is .

Finally, we show that .

Since the above axioms hold, we know that  as described above is a vector space.

Another important example of a vector space is the set of all matrices of the same size.

Let  be the set of all  matrices. Using the usual operations of matrix addition and scalar multiplication, show that 
 is a vector space.

Solution
Let  be  matrices in . We first prove the axioms for addition.

In order to prove that  is closed under matrix addition, we show that the sum  is in . This means showing
that  is a  matrix.

You can see that the sum is a  matrix, so it is in . It follows that  is closed under matrix addition.
The remaining axioms regarding matrix addition follow from properties of matrix addition. Therefore  satisfies the
axioms of matrix addition.

We now turn our attention to the axioms regarding scalar multiplication. Let  be matrices in  and let  be a real
number.

a(p(x) +q(x)) = a ( + x + + + x + )p2x2 p1 p0 q2x2 q1 q0

= a (( + ) +( + )x +( + ))p2 q2 x2 p1 q1 p0 q0

= a( + ) +a( + )x +a( + )p2 q2 x2 p1 q1 p0 q0

= (a +a ) +(a +a )x +(a +a )p2 q2 x2 p1 q1 p0 q0

= a +a x +a +a +a x +ap2x2 p1 p0 q2x2 q1 q0

= ap(x) +aq(x)

(a +b)p(x) = ap(x) +bp(x)

(a +b)p(x) = (a +b)( + x + )p2x2 p1 p0

= (a +b) +(a +b) x +(a +b)p2x2 p1 p0

= a +a x +a +b +b x +bp2x2 p1 p0 p2x2 p1 p0

= ap(x) +bp(x)

a(bp(x)) = (ab)p(x)

a(bp(x)) = a (b ( + x + ))p2x2 p1 p0

= a (b +b x +b )p2x2 p1 p0

= ab +ab x +abp2x2 p1 p0

= (ab)( + x + )p2x2 p1 p0

= (ab)p(x)

1p(x) = p(x)

1p(x) = 1 ( + x + )p2x2 p1 p0

= 1 +1 x +1p2x2 p1 p0

= + x +p2x2 p1 p0

= p(x)

P2

 Example : Vector Space of Matrices9.1.3

M2,3 2 ×3
M2,3

A, B 2 ×3 M2,3

M2,3 A +B M2,3

A +B 2 ×3

A +B = [ ]+[ ]
a11

a21

a12

a22

a13

a23

b11

b21

b12

b22

b13

b23

= [ ]
+a11 b11

+a21 b21

+a12 b12

+a22 b22

+a13 b13

+a23 b23

2 ×3 M2,3 M2,3

M2,3

A, B M2,3 c
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We first show that  is closed under scalar multiplication. That is, we show that  a  matrix.

This is a  matrix in  which proves that the set is closed under scalar multiplication.
The remaining axioms of scalar multiplication follow from properties of scalar multiplication of matrices. Therefore 
satisfies the axioms of scalar multiplication.

In conclusion,  satisfies the required axioms and is a vector space.

While here we proved that the set of all  matrices is a vector space, there is nothing special about this choice of matrix size. In
fact if we instead consider , the set of all  matrices, then  is a vector space under the operations of matrix addition
and scalar multiplication.

We now examine an example of a set that does not satisfy all of the above axioms, and is therefore not a vector space.

Let  denote the set of  matrices. Let addition in  be defined by  for matrices  in . Let scalar
multiplication in  be the usual scalar multiplication of matrices. Show that  is not a vector space.

Solution
In order to show that  is not a vector space, it suffices to find only one axiom which is not satisfied. We will begin by
examining the axioms for addition until one is found which does not hold. Let  be matrices in .

We first want to check if addition is closed. Consider . By the definition of addition in the example, we have that 
. Since  is a  matrix, it follows that the sum  is in , and  is closed under addition.

We now wish to check if addition is commutative. That is, we want to check if  for all choices of  and 
 in . From the definition of addition, we have that  and . Therefore, we can find ,  in 

such that these sums are not equal. One example is

Using the operation defined by , we have

It follows that . Therefore addition as defined for  is not commutative and  fails this axiom. Hence 
is not a vector space.

Consider another example of a vector space.

Let  be a nonempty set and define  to be the set of real functions defined on . In other words, we write .
Letting  be scalars and  functions, the vector operations are defined as

M2,3 cA 2 ×3

cA = c [ ]
a11

a21

a12

a22

a13

a23

= [ ]
ca11

ca21

ca12

ca22

ca13

ca23

2 ×3 M2,3

M2,3

M2,3

2 ×3
Mm,n m ×n Mm,n

 Example : Not a Vector Space9.1.4

V 2 ×3 V A +B = A A, B V

V V

V

A, B V

A +B

A +B = A A 2 ×3 A +B V V

A +B = B +A A

B V A +B = A B +A = B A B V

A = [ ] , B = [ ]
1
0

0
0

0
0

0
1

0
0

0
0

A +B = A

A +B

B +A

= A

= [ ]
1
0

0
0

0
0

= B

= [ ]
0
1

0
0

0
0

A +B ≠ B +A V V V

 Example : Vector Space of Functions9.1.5

S FS S : S ↦RFS

a, b, c f , g, h
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Show that  is a vector space.

Solution
To verify that  is a vector space, we must prove the axioms beginning with those for addition. Let  be functions in .

First we check that addition is closed. For functions  defined on the set , their sum given by

is again a function defined on . Hence this sum is in  and  is closed under addition.
Secondly, we check the commutative law of addition:

Since  is arbitrary, .
Next we check the associative law of addition:

and so 
Next we check for an additive identity. Let  denote the function which is given by  Then this is an additive
identity because

and so .
Finally, check for an additive inverse. Let  be the function which satisfies  Then

Hence .

Now, check the axioms for scalar multiplication.

We first need to check that  is closed under scalar multiplication. For a function  in  and real number , the
function  is again a function defined on the set . Hence  is in  and  is closed under scalar
multiplication.

and so .

and so .

so .
Finally  so .

It follows that  satisfies all the required axioms and is a vector space.

Consider the following important theorem.

(f +g) (x)
(af) (x)

= f (x) +g (x)
= a (f (x))

FS

FS f , g, h FS

f , g S

(f +g)(x) = f(x) +g(x)

S FS FS

(f +g) (x) = f (x) +g (x) = g (x) +f (x) = (g +f) (x)

x f +g = g +f

((f +g) +h) (x) = (f +g) (x) +h (x) = (f (x) +g (x)) +h (x)

= f (x) +(g (x) +h (x)) = (f (x) +(g +h) (x)) = (f +(g +h)) (x)

(f +g) +h = f +(g +h) .
0 0 (x) = 0.

(f +0) (x) = f (x) +0 (x) = f (x)

f +0 = f

−f (−f) (x) = −f (x) .

(f +(−f)) (x) = f (x) +(−f) (x) = f (x) +−f (x) = 0

f +(−f) = 0

FS f(x) FS a

(af)(x) = a(f(x)) S a(f(x)) FS FS

((a +b) f) (x) = (a +b) f (x) = af (x) +bf (x) = (af +bf) (x)

(a +b) f = af +bf

(a (f +g)) (x) = a (f +g) (x) = a (f (x) +g (x))

= af (x) +bg (x) = (af +bg) (x)

a (f +g) = af +bg

((ab) f) (x) = (ab) f (x) = a (bf (x)) = (a (bf)) (x)

(abf) = a (bf)
(1f) (x) = 1f (x) = f (x) 1f = f

V
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In any vector space, the following are true:

1. , the additive identity, is unique
2. , the additive inverse, is unique
3.  for all vectors 
4.  for all vectors 

Proof

1. When we say that the additive identity, , is unique, we mean that if a vector acts like the additive identity, then it is the
additive identity. To prove this uniqueness, we want to show that another vector which acts like the additive identity is

actually equal to . Suppose  is also an additive identity. Then,

Now, for  the additive identity given above in the axioms, we have that

So by the commutative property:

This says that if a vector acts like an additive identity (such as ), it in fact equals . This proves the uniqueness of .
2. When we say that the additive inverse, , is unique, we mean that if a vector acts like the additive inverse, then it is

the additive inverse. Suppose that  acts like an additive inverse:

Then the following holds:

Thus if  acts like the additive inverse, it is equal to the additive inverse . This proves the uniqueness of .
3. This statement claims that for all vectors , scalar multiplication by  equals the zero vector . Consider the following,

using the fact that we can write :

We use a small trick here: add  to both sides. This gives

This proves that scalar multiplication of any vector by  results in the zero vector .
4. Finally, we wish to show that scalar multiplication of  and any vector  results in the additive inverse of that vector, 

. Recall from  above that the additive inverse is unique. Consider the following:

By the uniqueness of the additive inverse shown earlier, any vector which acts like the additive inverse must be equal to
the additive inverse. It follows that .

 Theorem : Uniqueness9.1.1

0⃗ 

−x⃗ 

0 =x⃗  0⃗  x⃗ 
(−1) = −x⃗  x⃗  x⃗ 

0⃗ 

0⃗  0⃗ ′

+ =0⃗  0⃗ ′ 0⃗ 

0⃗ 

+ =0⃗ ′ 0⃗  0⃗ ′

0 = 0 + = +0 =0′ 0′ 0′

0⃗ ′ 0⃗  0⃗ 

−x⃗ 
y ⃗ 

+ =x⃗  y ⃗  0⃗ 

= + = (− + ) + = − +( + ) = − + = −y ⃗  0⃗  y ⃗  x⃗  x⃗  y ⃗  x⃗  x⃗  y ⃗  x⃗  0⃗  x⃗ 

y ⃗  −x⃗  −x⃗ 

x⃗  0 0⃗ 

0 = 0 +0

0 = (0 +0) = 0 +0x⃗  x⃗  x⃗  x⃗ 

−0x⃗ 

0 +(−0 )x⃗  x⃗ 

+00⃗ 

0⃗ 

= 0 +0 +(− )x⃗  x⃗  x⃗ 

= 0 +0x⃗ 

= 0x⃗ 

0 0⃗ 

−1 x⃗ 
−x⃗  2.

(−1) +x⃗  x⃗  = (−1) +1x⃗  x⃗ 

= (−1 +1) x⃗ 
= 0x⃗ 

= 0⃗ 

(−1) = −x⃗  x⃗ 
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An important use of the additive inverse is the following theorem.

Let  be a vector space. Then  implies that  for all 

Proof

The proof follows from the vector space axioms, in particular the existence of an additive inverse ( ). The proof is left as
an exercise to the reader.

This page titled 9.1: Algebraic Considerations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Theorem 9.1.2

V + = +v ⃗  w⃗  v ⃗  z ⃗  =w⃗  z ⃗  , , ∈ Vv ⃗  w⃗  z ⃗ 

−u⃗ 
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9.2: Spanning Sets

A. Determine if a vector is within a given span.

In this section we will examine the concept of spanning introduced earlier in terms of . Here, we will discuss these concepts in
terms of abstract vector spaces.

Consider the following definition.

Let  and  be two sets. If all elements of  are also elements of  then we say that  is a subset of  and we write

In particular, we often speak of subsets of a vector space, such as . By this we mean that every element in the set  is
contained in the vector space .

Let  be a vector space and let . A vector  is called a linear combination of the  if there exist
scalars  such that

This definition leads to our next concept of span.

Let . Then

When we say that a vector  is in  we mean that  can be written as a linear combination of the . We say that
a collection of vectors  is a spanning set for  if .

Consider the following example.

Let , . Determine if  and  are in

Solution
First consider . We want to see if scalars  can be found such that .

The solution to this equation is given by

 Outcomes

R
n

 Definition : Subset9.2.1

X Y X Y X Y

X ⊆ Y

X ⊆ V X

V

 Definition : Linear Combination9.2.2

V , , ⋯ , ⊆ Vv ⃗ 1 v ⃗ 2 v ⃗ n ∈ Vv ⃗  v ⃗ i
∈ Rci

= + +⋯ +v ⃗  c1v ⃗ 1 c2v ⃗ 2 cnv ⃗ n

 Definition : Span of Vectors9.2.3

{ , ⋯ , } ⊆ Vv ⃗ 1 v ⃗ n

span{ , ⋯ , } ={ : ∈ R}v ⃗ 1 v ⃗ n ∑
i=1

n

civ ⃗ i ci

w⃗  span{ , ⋯ , }v ⃗ 1 v ⃗ n w⃗  v ⃗ 1
{ , ⋯ , }v ⃗ 1 v ⃗ n V V = span{ , ⋯ , }v ⃗ 1 v ⃗ n

 Example : Matrix Span9.2.1

A = [ ]
1

0

0

2
B = [ ]

0

1

1

0
A B

span{ , } = span{[ ] , [ ]}M1 M2
1

0

0

0

0

0

0

1

A s, t A = s + tM1 M2

[ ] = s[ ]+ t [ ]
1

0

0

2

1

0

0

0

0

0

0

1
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and it follows that  is in .

Now consider . Again we write  and see if a solution can be found for .

Clearly no values of  and  can be found such that this equation holds. Therefore  is not in .

Consider another example.

Show that  is in .

Solution
To show that  is in the given span, we need to show that it can be written as a linear combination of polynomials in the
span. Suppose scalars  existed such that

If this linear combination were to hold, the following would be true:

You can verify that  satisfies this system of equations. This means that we can write  as follows:

Hence  is in the given span.

Consider the following example.

Let . Show that  is a spanning set for , the set of all polynomials of degree at most .

Solution
Let  be an arbitrary polynomial in . To show that  is a spanning set, it suffices to show that  can
be written as a linear combination of the elements of . In other words, can we find  such that:

If a solution  can be found, then this shows that for any such polynomial , it can be written as a linear combination of
the above polynomials and  is a spanning set.

For this to be true, the following must hold:

1

2

= s

= t

A span{ , }M1 M2

B B = s + tM1 M2 s, t

[ ] = s[ ]+ t [ ]
0

1

1

0

1

0

0

0

0

0

0

1

s t B span{ , }M1 M2

 Example : Polynomial Span9.2.2

p(x) = 7 +4x −3x2 span{4 +x, −2x +3}x2 x2

p(x)

a, b

7 +4x −3 = a(4 +x) +b( −2x +3)x2 x2 x2

4a +b

a −2b

3b

= 7

= 4

= −3

a = 2, b = −1 p(x)

7 +4x −3 = 2(4 +x) −( −2x +3)x2 x2 x2

p(x)

 Example : Spanning Set9.2.3

S = { +1, x −2, 2 −x}x2 x2 S P2 2

p(x) = a +bx +cx2
P2 S p(x)

S r, s, t

p(x) = a +bx +c = r( +1) +s(x −2) + t(2 −x)x2 x2 x2

r, s, t p(x)

S

a +bx +cx2 = r( +1) +s(x −2) + t(2 −x)x2 x2

= r +r +sx −2s +2t − txx2 x2

= (r +2t) +(s − t)x +(r −2s)x2
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To check that a solution exists, set up the augmented matrix and row reduce:

Clearly a solution exists for any choice of . Hence  is a spanning set for .

This page titled 9.2: Spanning Sets is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

a

b

c

= r +2t

= s − t

= r −2s

→ ⋯ →
⎡

⎣
⎢⎢

1

0

1

0

1

−2

2

−1

0

a

b

c

⎤

⎦
⎥⎥

⎡

⎣

⎢⎢⎢

1

0

0

0

1

0

0

0

1

a +2b + c1
2

1
2

a − c1
4

1
4

a −b − c1
4

1
4

⎤

⎦

⎥⎥⎥

a, b, c S P2
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9.3: Linear Independence

A. Determine if a set is linearly independent.

In this section, we will again explore concepts introduced earlier in terms of  and extend them to apply to abstract vector spaces.

Let  be a vector space. If  then it is linearly independent if

where the  are real numbers.

The set of vectors is called linearly dependent if it is not linearly independent.

Let  be a set of polynomials given by

Determine if  is linearly independent.

Solution
To determine if this set  is linearly independent, we write

If it is linearly independent, then  will be the only solution. We proceed as follows.

It follows that

The augmented matrix and resulting reduced row-echelon form are given by

Hence the solution is  and the set is linearly independent.

The next example shows us what it means for a set to be dependent.

 Outcomes

R
n

 Definition : Linear Independence9.3.1

V { , ⋯ , } ⊆ V ,v ⃗ 1 v ⃗ n

= implies = ⋯ = = 0∑
i=1

n

aiv ⃗ i 0⃗  a1 an

ai

 Example : Linear Independence9.3.1

S ⊆ P2

S = { +2x−1, 2 −x+3}x
2

x
2

S

S

a( +2x−1) +b(2 −x+3) = 0 +0x+0x
2

x
2

x
2

a = b = 0

a( +2x−1) +b(2 −x+3)x
2

x
2

a +2ax−a+2b −bx+3bx
2

x
2

(a+2b) +(2a−b)x−a+3bx
2

= 0 +0x+0x
2

= 0 +0x+0x
2

= 0 +0x+0x
2

a+2b

2a−b

−a+3b

= 0

= 0

= 0

→ ⋯ →
⎡

⎣
⎢⎢

1

2

−1

2

−1

3

0

0

0

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

0

0

0

⎤

⎦
⎥⎥

a = b = 0
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Determine if the set  given below is independent.

Solution
To determine if  is linearly independent, we look for solutions to

Notice that this equation has nontrivial solutions, for example ,  and . Therefore  is dependent.

The following is an important result regarding dependent sets.

Let  be a vector space and suppose  is a subset of . Then  is dependent if and only if  can be
written as a linear combination of  for some .

Revisit Example  with this in mind. Notice that we can write one of the three vectors as a combination of the others.

By Lemma  this set is dependent.

If we know that one particular set is linearly independent, we can use this information to determine if a related set is linearly
independent. Consider the following example.

Let  be a vector space and suppose  is a set of linearly independent vectors given by . Let  be
given by . Show that  is also linearly independent.

Solution
To determine if  is linearly independent, we write

If the set is linearly independent, the only solution will be . We proceed as follows.

 Example : Dependent Set9.3.2

S

S = , ,

⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥
⎡

⎣
⎢

1

1

1

⎤

⎦
⎥
⎡

⎣
⎢

1

3

5

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

S

a +b +c =
⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

⎡

⎣
⎢

0

0

0

⎤

⎦
⎥

a = 2 b = 3 c = −1 S

 Lemma : Dependent Sets9.3.1

V W = { , , ⋯ , }v ⃗ 1 v ⃗ 2 v ⃗ k V W v ⃗ i
{ , , ⋯ , , , ⋯ , }v ⃗ 1 v ⃗ 2 v ⃗ i−1 v ⃗ i+1 v ⃗ k i ≤ k

9.3.2

= 2 +3
⎡

⎣
⎢

1

3

5

⎤

⎦
⎥

⎡

⎣
⎢

−1

0

1

⎤

⎦
⎥

⎡

⎣
⎢

1

1

1

⎤

⎦
⎥

9.3.1

 Example : Related Independent Sets9.3.3

V S ⊆ V S = { , , }u⃗  v ⃗  w⃗  R ⊆ V

R = {2 − , + , 3 + }u⃗  w⃗  w⃗  v ⃗  v ⃗  1
2
u⃗  R

R

a(2 − ) +b( + ) +c(3 + ) =u⃗  w⃗  w⃗  v ⃗  v ⃗ 
1

2
u⃗  0⃗ 

a = b = c = 0

a(2 − ) +b( + ) +c(3 + )u⃗  w⃗  w⃗  v ⃗  v ⃗ 
1

2
u⃗ 

2a −a +b +b +3c + cu⃗  w⃗  w⃗  v ⃗  v ⃗ 
1

2
u⃗ 

(2a+ c) +(b+3c) +(−a+b)
1

2
u⃗  v ⃗  w⃗ 

= 0⃗ 

= 0⃗ 

= 0⃗ 
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We know that the set  is linearly independent, which implies that the coefficients in the last line of this equation
must all equal . In other words:

The augmented matrix and resulting reduced row-echelon form are given by:

Hence the solution is  and the set is linearly independent.

The following theorem was discussed in terms in . We consider it here in the general case.

Let  be a vector space and let  be an independent set. If , then  can be written uniquely
as a linear combination of the vectors in .

Consider the span of a linearly independent set of vectors. Suppose we take a vector which is not in this span and add it to the set.
The following lemma claims that the resulting set is still linearly independent.

Suppose  and  is linearly independent. Then the set

is also linearly independent.

Proof

Suppose  It is required to verify that each  and that  But if  then you can solve for
 as a linear combination of the vectors, ,

contrary to the assumption that  is not in the span of the . Therefore,  But then  and the linear
independence of  implies each  also.

Consider the following example.

Let  be a linearly independent set given by

Show that the set  given by

S = { , , }u⃗  v ⃗  w⃗ 

0

2a+ c
1

2
b+3c

−a+b

= 0

= 0

= 0

→ ⋯ →

⎡

⎣

⎢⎢

2

0

−1

0

1

1

1
2

3

0

0

0

0

⎤

⎦

⎥⎥

⎡

⎣
⎢⎢

1

0

0

0

1

0

0

0

1

0

0

0

⎤

⎦
⎥⎥

a = b = c = 0

R
n

 Theorem : Unique Representation9.3.1

V U = { , ⋯ , } ⊆ Vv ⃗ 1 v ⃗ k ∈ span Uv ⃗  v ⃗ 

U

 Lemma : Adding to a Linearly Independent Set9.3.2

∉ span{ , ⋯ , }v ⃗  u⃗ 1 u⃗ k { , ⋯ , }u⃗ 1 u⃗ k

{ , ⋯ , , }u⃗ 1 u⃗ k v ⃗ 

+d = .∑k

i=1 ciu⃗
 i v ⃗  0⃗  = 0ci d = 0. d ≠ 0,

v ⃗  { , ⋯ , }u⃗ 1 u⃗ k

= − ( )v ⃗  ∑
i=1

k
ci

d
u⃗ i

v ⃗  u⃗ i d = 0. =∑k

i=1 ciu⃗
 i 0⃗ 

{ , ⋯ , }u⃗ 1 u⃗ k = 0ci

 Example : Adding to a Linearly Independent Set9.3.4

S ⊆ M22

S ={[ ] , [ ]}
1

0

0

0

0

0

1

0

R ⊆ M22

R ={[ ] , [ ] , [ ]}
1

0

0

0

0

0

1

0

0

1

0

0
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is also linearly independent.

Solution
Instead of writing a linear combination of the matrices which equals  and showing that the coefficients must equal , we can
instead use Lemma .

To do so, we show that

Write

Clearly there are no possible  to make this equation true. Hence the new matrix does not lie in the span of the matrices in .
By Lemma ,  is also linearly independent.

This page titled 9.3: Linear Independence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

0 0

9.3.2

[ ] ∉ span{[ ] , [ ]}
0

1

0

0

1

0

0

0

0

0

1

0

[ ]
0

1

0

0
= a[ ]+b [ ]

1

0

0

0

0

0

1

0

= [ ]+[ ]
a

0

0

0

0

0

b

0

= [ ]
a

0

b

0

a, b S

9.3.2 R
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9.4: Subspaces and Basis

A. Utilize the subspace test to determine if a set is a subspace of a given vector space.
B. Extend a linearly independent set and shrink a spanning set to a basis of a given vector space.

In this section we will examine the concept of subspaces introduced earlier in terms of . Here, we will discuss these concepts in
terms of abstract vector spaces.

Consider the definition of a subspace.

Let  be a vector space. A subset  is said to be a subspace of  if  whenever  and 

The span of a set of vectors as described in Definition 9.2.3 is an example of a subspace. The following fundamental result says
that subspaces are subsets of a vector space which are themselves vector spaces.

Let  be a nonempty collection of vectors in a vector space . Then  is a subspace if and only if  satisfies the vector
space axioms, using the same operations as those defined on .

Proof

Suppose first that  is a subspace. It is obvious that all the algebraic laws hold on  because it is a subset of  and they
hold on . Thus  along with the other axioms. Does  contain  Yes because it contains . See
Theorem 9.1.1.

Are the operations of  defined on  That is, when you add vectors of  do you get a vector in  When you multiply
a vector in  by a scalar, do you get a vector in  Yes. This is contained in the definition. Does every vector in  have
an additive inverse? Yes by Theorem 9.1.1 because  which is given to be in  provided .

Next suppose  is a vector space. Then by definition, it is closed with respect to linear combinations. Hence it is a
subspace.

Consider the following useful Corollary.

Let  be a vector space with . If  then  is a subspace of .

When determining spanning sets the following theorem proves useful.

Let  for a vector space  and suppose .

Let  be a subspace such that . Then it follows that .

In other words, this theorem claims that any subspace that contains a set of vectors must also contain the span of these vectors.

The following example will show that two spans, described differently, can in fact be equal.

 Outcomes

R
n

 Definition : Subspace9.4.1

V W ⊆ V V a +b ∈ Wx⃗  y ⃗  a, b ∈ R , ∈ W .x⃗  y ⃗ 

 Theorem : Subspaces are Vector Spaces9.4.1

W V W W

V

W W V

V + = +u⃗  v ⃗  v ⃗  u⃗  W ?0⃗  0 =u⃗  0⃗ 

V W? W W?

W W? W

− = (−1)v ⃗  v ⃗  W ∈ Wv ⃗ 

W

 Corollary : Span is a Subspace9.4.1

V W ⊆ V W = span{ , ⋯ , }v ⃗ 1 v ⃗ n W V

 Theorem : Spanning Set9.4.2

W ⊆ V V W = span{ , , ⋯ , }v ⃗ 1 v ⃗ 2 v ⃗ n

U ⊆ V , , ⋯ , ∈ Uv ⃗ 1 v ⃗ 2 v ⃗ n W ⊆ U
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Let  be polynomials and suppose  and . Show that 
.

Solution
We will use Theorem  to show that  and . It will then follow that .

1.  Notice that  and  are both in . Then by Theorem   must
contain the span of these polynomials and so .

2.  Notice that

Hence  are in . By Theorem   must contain the span of these
polynomials and so .

To prove that a set is a vector space, one must verify each of the axioms given in Definition 9.1.2 and 9.1.3. This is a cumbersome
task, and therefore a shorter procedure is used to verify a subspace.

Suppose  is a subset of a vector space . To determine if  is a subspace of , it is sufficient to determine if the following
three conditions hold, using the operations of :

1. The additive identity  of  is contained in .
2. For any vectors  in ,  is also in .
3. For any vector  in  and scalar , the product  is also in .

Therefore it suffices to prove these three steps to show that a set is a subspace.

Consider the following example.

Let  be an arbitrary vector space. Then  is a subspace of itself. Similarly, the set  containing only the zero vector is also

a subspace.

Solution

Using the subspace test in Procedure  we can show that  and  are subspaces of .

Since  satisfies the vector space axioms it also satisfies the three steps of the subspace test. Therefore  is a subspace.

Let’s consider the set .

1. The vector  is clearly contained in , so the first condition is satisfied.

2. Let  be in . Then  and  and so

 Example : Equal Span9.4.1

p(x), q(x) U = span{2p(x) −q(x), p(x) +3q(x)} W = span{p(x), q(x)}

U = W

9.4.2 U ⊆ W W ⊆ U U = W

U ⊆ W 2p(x) −q(x) p(x) +3q(x) W = span{p(x), q(x)} 9.4.2W

U ⊆ W

W ⊆ U

p(x)

q(x)

= (2p(x) −q(x)) + (p(x) +3q(x))
3

7

2

7

= − (2p(x) −q(x)) + (p(x) +3q(x))
1

7

2

7

p(x), q(x) span{2p(x) −q(x), p(x) +3q(x)} 9.4.2U

W ⊆ U

 Procedure : Subspace Test9.4.1

W V W V

V

0⃗  V W

,w⃗ 1 w⃗ 2 W +w⃗ 1 w⃗ 2 W

w⃗ 1 W a aw⃗ 1 W

 Example : Improper Subspaces9.4.2

V V { }0⃗ 

9.4.1 V { }0⃗  V

V V

{ }0⃗ 

0⃗  { }0⃗ 

,w⃗ 1 w⃗ 2 { }0⃗  =w⃗ 1 0⃗  =w⃗ 2 0⃗ 

+ = + =w⃗ 1 w⃗ 2 0⃗  0⃗  0⃗ 
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It follows that the sum is contained in  and the second condition is satisfied.

3. Let  be in  and let  be an arbitrary scalar. Then

Hence the product is contained in  and the third condition is satisfied.

It follows that  is a subspace of .

The two subspaces described above are called improper subspaces. Any subspace of a vector space  which is not equal to  or 

 is called a proper subspace.

Consider another example.

Let  be the vector space of polynomials of degree two or less. Let  be all polynomials of degree two or less which
have  as a root. Show that  is a subspace of .

Solution
First, express  as follows:

We need to show that  satisfies the three conditions of Procedure .

1. The zero polynomial of  is given by . Clearly  so  is contained in .
2. Let  be polynomials in . It follows that  and . Now consider . Let  represent

this sum.

Therefore the sum is also in  and the second condition is satisfied.
3. Let  be a polynomial in  and let  be a scalar. It follows that . Consider the product .

Therefore the product is in  and the third condition is satisfied.

It follows that  is a subspace of .

Recall the definition of basis, considered now in the context of vector spaces.

Let  be a vector space. Then  is called a basis for  if the following conditions hold.

1. 
2.  is linearly independent

Consider the following example.

{ }0⃗ 

w⃗ 1 { }0⃗  a

a = a =w⃗ 1 0⃗  0⃗ 

{ }0⃗ 

{ }0⃗  V

V V

{ }0⃗ 

 Example : Subspace of Polynomials9.4.3

P2 W ⊆ P2

1 W P2

W

W = {p(x) = a +bx+c, a, b, c, ∈ R|p(1) = 0}x2

W 9.4.1

P2 0(x) = 0 +0x+0 = 0x2 0(1) = 0 0(x) W

p(x), q(x) W p(1) = 0 q(1) = 0 p(x) +q(x) r(x)

r(1) = p(1) +q(1)

= 0 +0

= 0

W

p(x) W a p(1) = 0 ap(x)

ap(1) = a(0)

= 0

W

W P2

 Definition : Basis9.4.2

V { , ⋯ , }v ⃗ 1 v ⃗ n V

span{ , ⋯ , } = Vv ⃗ 1 v ⃗ n
{ , ⋯ , }v ⃗ 1 v ⃗ n
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Let  be the set polynomials of degree no more than 2. We can write  Is  a basis for ?

Solution
It can be verified that  is a vector space defined under the usual addition and scalar multiplication of polynomials.

Now, since , the set  is a basis if it is linearly independent. Suppose then that

where  are real numbers. It is clear that this can only occur if . Hence the set is linearly independent and
forms a basis of .

The next theorem is an essential result in linear algebra and is called the exchange theorem.

Let  be a linearly independent set of vectors such that each  is contained in span  Then 

Proof

The proof will proceed as follows. First, we set up the necessary steps for the proof. Next, we will assume that  and
show that this leads to a contradiction, thus requiring that .

Define span  Since each  is in span , it follows there exist scalars  such that

Note that not all of these scalars  can equal zero. Suppose that all the . Then it would follow that  and so 
 would not be linearly independent. Indeed, if ,  and so there would exist a

nontrivial linear combination of the vectors  which equals zero. Therefore at least one  is nonzero.

Say  Then solve  for  and obtain

Define  to be

Now we can write

Therefore, . To see this, suppose . Then there exist constants  such that

Replace this  with a linear combination of the vectors  to obtain  The
vector  in the list  has now been replaced with the vector  and the resulting modified list of vectors has
the same span as the original list of vectors, 

We are now ready to move on to the proof. Suppose that  and that

 Example : Polynomials of Degree Two9.4.4

P2 = span{ , x, 1} .P2 x2 { , x, 1}x2 P2

P2

= span{ , x, 1}P2 x2 { , x, 1}x2

a +bx+c = 0 +0x+0x2 x2

a, b, c a = b = c = 0

P2

 Theorem : Exchange Theorem9.4.3

{ , ⋯ , }x⃗ 1 x⃗ r x⃗ i { , ⋯ , } .y ⃗ 1 y ⃗ s r ≤ s.

r > s

r ≤ s

{ , ⋯ , } = V .y ⃗ 
1 y ⃗ 

s x⃗ i { , ⋯ , }y ⃗ 
1 y ⃗ 

s , ⋯ ,c1 cs

=x⃗ 1 ∑
i=1

s

ciy ⃗ i (9.4.1)

ci = 0ci =x⃗ 1 0⃗ 

{ , ⋯ , }x⃗ 1 x⃗ r =x⃗ 1 0⃗  1 + 0 = =x⃗ 1 ∑r
i=2 x⃗ i x⃗ 1 0⃗ 

{ , ⋯ , }x⃗ 1 x⃗ r ci

≠ 0.ck (9.4.1) y ⃗ k

∈ span , .y ⃗ 
k

⎧

⎩
⎨
⎪

⎪
x⃗ 1 , ⋯ , , , ⋯ ,y ⃗ 

1 y ⃗ 
k−1 y ⃗ 

k+1 y ⃗ 
s

  s-1 vectors here ⎫

⎭
⎬
⎪

⎪

{ , ⋯ , }z ⃗ 1 z ⃗ s−1

{ , ⋯ , } = { , ⋯ , , , ⋯ , }z ⃗ 1 z ⃗ s−1 y ⃗ 
1 y ⃗ 

k−1 y ⃗ 
k+1 y ⃗ 

s

∈ span{ , , ⋯ , }y ⃗ 
k x⃗ 1 z ⃗ 1 z ⃗ s−1

span{ , , ⋯ , } = Vx⃗ 1 z ⃗ 1 z ⃗ s−1 ∈ Vv ⃗  , ⋯ ,c1 cs

= + .v ⃗  ∑
i=1

s−1

ciz ⃗ i csy ⃗ k

y ⃗ k { , , ⋯ , }x⃗ 1 z ⃗ 1 z ⃗ s−1 ∈ span{ , , ⋯ , } .v ⃗  x⃗ 1 z ⃗ 1 z ⃗ s−1

,y ⃗ k { , ⋯ , } ,y ⃗ 1 y ⃗ s x⃗ 1
{ , ⋯ , } .y ⃗ 1 y ⃗ s

r > s

span{ , ⋯ , , , ⋯ , } = Vx⃗ 1 x⃗ l z ⃗ 1 z ⃗ p
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where the process established above has continued. In other words, the vectors  are each taken from the set 
 and  This was done for  above. Then since  it follows that  and so 

Therefore,  is a vector not in the list,  and since

there exist scalars,  and  such that

Not all the  can equal zero because if this were so, it would follow that  would be a linearly dependent set
because one of the vectors would equal a linear combination of the others. Therefore,  can be solved for one of the 

 say  in terms of  and the other  and just as in the above argument, replace that  with  to obtain

Continue this way, eventually obtaining

But then   contrary to the assumption that  is linearly independent. Therefore,  as
claimed.

The following corollary follows from the exchange theorem.

Let ,  be two bases of a vector space . Suppose  contains  vectors and  contains  vectors. Then .

Proof

By Theorem ,  and . Therefore .

This corollary is very important so we provide another proof independent of the exchange theorem above.

Proof

Suppose  Then since the vectors  span  there exist scalars  such that

Therefore,

if and only if

Now since  is independent, this happens if and only if

, ⋯ ,z ⃗ 1 z ⃗ p
{ , ⋯ , }y ⃗ 1 y ⃗ s l+p = s. l = 1 r > s, l ≤ s < r l+1 ≤ r.

x⃗ l+1 { , ⋯ , }x⃗ 1 x⃗ l

span{ , ⋯ , , , ⋯ , } = Vx⃗ 1 x⃗ l z ⃗ 1 z ⃗ p

ci dj

= + .x⃗ l+1 ∑
i=1

l

cix⃗ i ∑
j=1

p

djz ⃗ j (9.4.2)

dj { , ⋯ , }x⃗ 1 x⃗ r
(9.4.2)

,z ⃗ i ,z ⃗ k x⃗ l+1 z ⃗ i z ⃗ i x⃗ l+1

span , ⋯ , , = V

⎧

⎩
⎨
⎪⎪

⎪⎪
x⃗ 1 x⃗ l x⃗ l+1 , ⋯ , , ⋯ ,z ⃗ 1 z ⃗ k−1 z ⃗ k+1 z ⃗ p

  
p-1 vectors here ⎫

⎭
⎬
⎪⎪

⎪⎪

span{ , ⋯ , } = V .x⃗ 1 x⃗ s

∈x⃗ r span{ , ⋯ , }x⃗ 1 x⃗ s { , ⋯ , }x⃗ 1 x⃗ r r ≤ s

 Corollary : Two Bases of the Same Length9.4.2

B1 B2 V B1 m B2 n m = n

9.4.3 m ≤ n n ≤ m m = n

n > m. { , ⋯ , }u⃗ 1 u⃗ m V , cij

= .∑
i=1

m

cij u⃗ i v ⃗ j

=  if and only if  =∑
j=1

n

djv ⃗ j 0⃗  ∑
j=1

n

∑
i=1

m

cijdju⃗ i 0⃗ 

( ) =∑
i=1

m

∑
j=1

n

cijdj u⃗ i 0⃗ 

{ , ⋯ , }u⃗ 1 u⃗ n

= 0, i = 1, 2, ⋯ ,m.∑
j=1

n

cijdj
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However, this is a system of  equations in  variables,  and  Therefore, there exists a solution to this
system of equations in which not all the  are equal to zero. Recall why this is so. The augmented matrix for the system is

of the form  where  is a matrix which has more columns than rows. Therefore, there are free variables and

hence nonzero solutions to the system of equations. However, this contradicts the linear independence of .
Similarly it cannot happen that .

Given the result of the previous corollary, the following definition follows.

A vector space  is of dimension  if it has a basis consisting of  vectors.

Notice that the dimension is well defined by Corollary . It is assumed here that  and therefore such a vector space is
said to be finite dimensional.

Let  be the set of all polynomials of degree at most . Find the dimension of .

Solution
If we can find a basis of  then the number of vectors in the basis will give the dimension. Recall from Example  that a
basis of  is given by

There are three polynomials in  and hence the dimension of  is three.

It is important to note that a basis for a vector space is not unique. A vector space can have many bases. Consider the following
example.

Let  be the polynomials of degree no more than 2. Is  a basis for ?

Solution
Suppose these vectors are linearly independent but do not form a spanning set for . Then by Lemma 9.3.2, we could find a
fourth polynomial in  to create a new linearly independent set containing four polynomials. However this would imply that
we could find a basis of  of more than three polynomials. This contradicts the result of Example  in which we
determined the dimension of  is three. Therefore if these vectors are linearly independent they must also form a spanning set
and thus a basis for .

Suppose then that

We know that  is linearly independent, and so it follows that

m n , ⋯ ,d1 dn m < n.

dj

[ ]C 0⃗  C

{ , ⋯ , }u⃗ 1 u⃗ m
m > n

 Definition : Dimension9.4.3

V n n

9.4.2 n < ∞

 Example : Dimension of a Vector Space9.4.5

P2 2 P2

P2 9.4.4

P2

S = { , x, 1}x2

S P2

 Example : A Different Basis for Polynomials of Degree Two9.4.6

P2 { +x+1, 2x+1, 3 +1}x2 x2
P2

P2

P2

P2 9.4.5

P2

P2

a ( +x+1)+b (2x+1) +c (3 +1)x2 x2

(a+3c) +(a+2b)x+(a+b+c)x2

= 0

= 0

{ , x, 1}x2

a+3c

a+2b

a+b+c

= 0

= 0

= 0
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and there is only one solution to this system of equations, . Therefore, these are linearly independent and form a
basis for .

Consider the following theorem.

Let  be a nonzero subspace of a finite dimensional vector space . Suppose  has dimension . Then  has a basis with no
more than  vectors.

Proof

Let  where  If  then it follows that  is a basis for . Otherwise, there exists 
which is not in  By Lemma 9.3.2  is a linearly independent set of vectors. Then  is a basis for 
and we are done. If  then there exists  and  is a larger linearly
independent set of vectors. Continuing this way, the process must stop before  steps because if not, it would be
possible to obtain  linearly independent vectors contrary to the exchange theorem, Theorem .

If in fact  has  vectors, then it follows that .

Let  be a vector space of dimension  and let  be a subspace. Then  if and only if the dimension of  is also .

Proof

First suppose  Then obviously the dimension of 

Now suppose that the dimension of  is . Let a basis for  be . If  is not equal to , then let  be a
vector of  which is not contained in  Thus  is not in  and by Lemma 9.7.2,  is
linearly independent which contradicts Theorem  because it would be an independent set of  vectors even though
each of these vectors is in a spanning set of  vectors, a basis of .

Consider the following example.

Let . Then  is a subspace of  Find a basis of , and hence .

Solution

Let . Then

and

If , then .

Equating entries leads to a system of four equations in the four variables  and .

a = b = c = 0

P2

 Theorem : Every Subspace has a Basis9.4.4

W V V n W

n

∈ Vv ⃗ 1 ≠ 0.v ⃗ 1 span{ } = V ,v ⃗ 1 { }v ⃗ 1 V ∈ Vv ⃗ 2
span{ } .v ⃗ 1 { , }v ⃗ 1 v ⃗ 2 { , }v ⃗ 1 v ⃗ 2 V

span{ , } ≠ V ,v ⃗ 1 v ⃗ 2 ∉ span{ , }v ⃗ 3 v ⃗ 1 v ⃗ 2 { , , }v ⃗ 1 v ⃗ 2 v ⃗ 3
n+1

n+1 9.4.3

W n W = V

 Theorem : Subspace of Same Dimension9.4.5

V n W W = V W n

W = V . W = n.

W n W { , ⋯ , }w⃗ 1 w⃗ n W V v ⃗ 

V W . v ⃗  span{ , ⋯ , }w⃗ 1 w⃗ n { , ⋯ , , }w⃗ 1 w⃗ n v ⃗ 

9.4.3 n+1

n V

 Example : Basis of a Subspace9.4.7

U ={A ∈    A[ ] = [ ]A}M22

∣

∣
∣

1

1

0

−1

1

0

1

−1
U M22 U dim(U)

A = [ ] ∈
a

c

b

d
M22

A[ ] = [ ][ ] = [ ]
1

1

0

−1

a

c

b

d

1

1

0

−1

a+b

c+d

−b

−d

[ ]A = [ ][ ] = [ ] .
1

0

1

−1

1

0

1

−1

a

c

b

d

a+c

−c

b+d

−d

A ∈ U [ ] = [ ]
a+b

c+d

−b

−d

a+c

−c

b+d

−d

a, b, c d
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or

The solution to this system is , , ,  for any , and thus

Let

Then , and it is routine to verify that  is an independent subset of . Therefore  is a basis of , and 
.

The following theorem claims that a spanning set of a vector space  can be shrunk down to a basis of . Similarly, a linearly
independent set within  can be enlarged to create a basis of .

If  is a vector space, then some subset of  is a basis for  Also, if  is
linearly independent and the vector space is finite dimensional, then the set  can be enlarged to obtain a basis of 

Proof

Let

For  let  denote the number of elements of  Let

Thus there exist vectors

such that

and  is as small as possible for this to happen. If this set is linearly independent, it follows it is a basis for  and the
theorem is proved. On the other hand, if the set is not linearly independent, then there exist scalars,  such that

and not all the  are equal to zero. Suppose  Then solve for the vector  in terms of the other vectors.
Consequently,

a+b

−b

c+d

−d

=

=

=

=

a+c

b+d

−c

−d

.

b−c

−2b−d

2c+d

=

=

=

0

0

0

a = s b = − t1
2

c = − t1
2

d = t s, t ∈ R

A = [ ] = s[ ]+ t[ ] .
s

− t

2

t

2

t

1

0

0

0

0

− 1
2

− 1
2

1

B ={[ ] ,[ ]} .
1

0

0

0

0

− 1
2

− 1
2

1

span(B) = U B M22 B U

dim(U) = 2

V V

V V

 Theorem : Basis of 9.4.6 V

V = span{ , ⋯ , }u⃗ 1 u⃗ n { , ⋯ , }u⃗ 1 u⃗ n V . { , ⋯ , } ⊆ Vu⃗ 1 u⃗ k
{ , ⋯ , },u⃗ 1 u⃗ k

V .

S = {E ⊆ { , ⋯ , } such that span{E} = V }.u⃗ 1 u⃗ n

E ∈ S, |E| E.

m = min{|E|  such that E ∈ S}.

{ , ⋯ , } ⊆ { , ⋯ , }v ⃗ 1 v ⃗ m u⃗ 1 u⃗ n

span{ , ⋯ , } = Vv ⃗ 1 v ⃗ m

m V

, ⋯ ,c1 cm

=0⃗  ∑
i=1

m

civ ⃗ i

ci ≠ 0.ck v ⃗ k

V = span{ , ⋯ , , , ⋯ , }v ⃗ 1 v ⃗ k−1 v ⃗ k+1 v ⃗ m
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contradicting the definition of . This proves the first part of the theorem.

To obtain the second part, begin with  and suppose a basis for  is

If

then . If not, there exists a vector

Then from Lemma 9.3.2,  is also linearly independent. Continue adding vectors in this way until 
linearly independent vectors have been obtained. Then

because if it did not do so, there would exist  as just described and  would be a linearly independent set
of vectors having  elements. This contradicts the fact that  is a basis. In turn this would contradict
Theorem . Therefore, this list is a basis.

Recall Example 9.3.4 in which we added a matrix to a linearly independent set to create a larger linearly independent set. By
Theorem  we can extend a linearly independent set to a basis.

Let  be a linearly independent set given by

Enlarge  to a basis of .

Solution
Recall from the solution of Example 9.3.4 that the set  given by

is also linearly independent. However this set is still not a basis for  as it is not a spanning set. In particular,  is not

in . Therefore, this matrix can be added to the set by Lemma 9.3.2 to obtain a new linearly independent set given by

This set is linearly independent and now spans . Hence  is a basis.

Next we consider the case where you have a spanning set and you want a subset which is a basis. The above discussion involved
adding vectors to a set. The next theorem involves removing vectors.

Let  be a vector space and let  be a subspace. Also suppose that . Then there exists a subset of 
 which is a basis for .

Proof

m

{ , ⋯ , }u⃗ 1 u⃗ k V

{ , ⋯ , }v ⃗ 1 v ⃗ n

span{ , ⋯ , } = V ,u⃗ 1 u⃗ k

k = n

∉ span{ , ⋯ , }u⃗ k+1 u⃗ 1 u⃗ k

{ , ⋯ , , }u⃗ 1 u⃗ k u⃗ k+1 n

span{ , ⋯ , } = Vu⃗ 1 u⃗ n

u⃗ n+1 { , ⋯ , }u⃗ 1 u⃗ n+1

n+1 { , ⋯ , }v ⃗ 1 v ⃗ n
9.4.3

9.4.6

 Example : Adding to a Linearly Independent Set9.4.8

S ⊆ M22

S ={[ ] , [ ]}
1

0

0

0

0

0

1

0

S M22

R ⊆ M22

R ={[ ] , [ ] , [ ]}
1

0

0

0

0

0

1

0

0

1

0

0

M22 [ ]
0

0

0

1
spanR

T ={[ ] , [ ] , [ ] , [ ]}
1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

M22 T

 Theorem : Basis from a Spanning Set9.4.7

V W W = span{ , ⋯ , }w⃗ 1 w⃗ m
{ , ⋯ , }w⃗ 1 w⃗ m W
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Let  denote the set of positive integers such that for  there exists a subset of  consisting of exactly 
vectors which is a spanning set for . Thus . Pick the smallest positive integer in . Call it . Then there exists 

 such that  If

and not all of the  then you could pick , divide by it and solve for  in terms of the others.

Then you could delete  from the list and have the same span. In any linear combination involving , the linear
combination would equal one in which  is replaced with the above sum, showing that it could have been obtained as a
linear combination of  for . Thus  contrary to the choice of . Hence each  and so  is
a basis for  consisting of vectors of .

Consider the following example of this concept.

Let  be the vector space of polynomials of degree no more than 3, denoted earlier as . Consider the following vectors in .

Then, as mentioned above,  has dimension 4 and so clearly these vectors are not linearly independent. A basis for  is 
. Determine a linearly independent subset of these which has the same span. Determine whether this subset is a

basis for .

Solution

Consider an isomorphism which maps  to  in the obvious way. Thus

corresponds to  through the use of this isomorphism. Then corresponding to the above vectors in  we would
have the following vectors in 

Now if we obtain a subset of these which has the same span but which is linearly independent, then the corresponding vectors
from  will also be linearly independent. If there are four in the list, then the resulting vectors from  must be a basis for .
The reduced row-echelon form for the matrix which has the above vectors as columns is

S k ∈ S, { , ⋯ , }w⃗ 1 w⃗ m k

W m ∈ S S k

{ , ⋯ , } ⊆ { , ⋯ , }u⃗ 1 u⃗ k w⃗ 1 w⃗ m span { , ⋯ , } = W .u⃗ 1 u⃗ k

=∑
i=1

k

ciw⃗ i 0⃗ 

= 0,ci ≠ 0cj u⃗ j

= (− )w⃗ j ∑
i≠j

ci

cj
w⃗ i

w⃗ j w⃗ j
w⃗ j

w⃗ i i ≠ j k−1 ∈ S k = 0ci { , ⋯ , }u⃗ 1 u⃗ k
W { , ⋯ , }w⃗ 1 w⃗ m

 Example : Basis from a Spanning Set9.4.9

V P3 V

2 +x+1, +4 +2x+2, 2 +2 +2x+1,x2 x3 x2 x3 x2

+4 −3x+2, +3 +2x+1x3 x2 x3 x2

V V

{1, x, , }x2 x3

V

R
4 V

⎡

⎣

⎢⎢⎢

1

1

2

0

⎤

⎦

⎥⎥⎥

2 +x+1x2 V

.R
4

, , , ,

⎡

⎣

⎢⎢⎢

1

1

2

0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

2

4

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

2

2

2

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

2

−3

4

1

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

1

2

3

1

⎤

⎦

⎥⎥⎥

V V V

⎡

⎣

⎢
⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

−15

11

−5

0

0

0

0

1

⎤

⎦

⎥
⎥⎥
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Therefore, a basis for  consists of the vectors

Note how this is a subset of the original set of vectors. If there had been only three pivot columns in this matrix, then we would
not have had a basis for  but we would at least have obtained a linearly independent subset of the original set of vectors in
this way.

Note also that, since all linear relations are preserved by an isomorphism,

Consider the following example.

Consider the set  given by

Show that  spans , then remove vectors from  until it creates a basis.

Solution
First we need to show that  spans . Let  be an arbitrary polynomial in . Write

Then,

It follows that

Clearly a solution exists for all  and so  is a spanning set for . By Theorem , some subset of  is a basis for .

Recall that a basis must be both a spanning set and a linearly independent set. Therefore we must remove a vector from 
keeping this in mind. Suppose we remove  from . The resulting set would be . This set is clearly linearly
dependent (and also does not span ) and so is not a basis.

Suppose we remove  from . The resulting set is  which is both linearly independent and spans . Hence
this is a basis for . Note that removing any one of , or  will result in a basis.

Now the following is a fundamental result about subspaces.

Let  be a finite dimensional vector space and let  be a non-zero subspace. Then  has a basis. That is, there exists a
linearly independent set of vectors  such that

Also if  is a linearly independent set of vectors, then  has a basis of the form  for .

V

2 +x+1, +4 +2x+2, 2 +2 +2x+1,x2 x3 x2 x3 x2

+3 +2x+1.x3 x2

V

=

−15 (2 +x+1)+11 ( +4 +2x+2)+(−5)(2 +2 +2x+1)x2 x3 x2 x3 x2

+4 −3x+2x3 x2

 Example : Shrinking a Spanning Set9.4.10

S ⊆ P2

S = {1, x, , +1}x2 x2

S P2 S

S P2 a +bx+cx2
P2

a +bx+c = r(1) +s(x) + t( ) +u( +1)x2 x2 x2

a +bx+cx2 = r(1) +s(x) + t( ) +u( +1)x2 x2

= (t+u) +s(x) +(r+u)x2

a

b

c

= t+u

= s

= r+u

a, b, c S P2 9.4.6 S P2

S

x S {1, , +1}x2 x2

P2

+1x2 S {1, x, }x2
P2

P2 1, x2 +1x2

 Theorem : Basis of a Vector Space9.4.8

V W W

{ , ⋯ , }w⃗ 1 w⃗ r

{ , ⋯ , } = Ww⃗ 1 w⃗ r

{ , ⋯ , }w⃗ 1 w⃗ s W { , ⋯ , , ⋯ , }w⃗ 1 w⃗ s w⃗ r r ≥ s
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Proof

Let the dimension of  be . Pick  where  If  have been chosen such that  is
linearly independent, if  stop. You have the desired basis. Otherwise, there exists 

 and  is linearly independent. Continue this way until the process stops. It
must stop since otherwise, you could obtain a linearly independent set of vectors having more than  vectors which is
impossible.

The last claim is proved by following the above procedure starting with  as above.

This also proves the following corollary. Let  play the role of  in the above theorem and begin with a basis for , enlarging it
to form a basis for  as discussed above.

Let  be any non-zero subspace of a vector space . Then every basis of  can be extended to a basis for .

Consider the following example.

Let  and let

Extend this basis of  to a basis of .

Solution
An easy way to do this is to take the reduced row-echelon form of the matrix

Note how the given vectors were placed as the first two and then the matrix was extended in such a way that it is clear that the
span of the columns of this matrix yield all of . Now determine the pivot columns. The reduced row-echelon form is

These are

and now this is an extension of the given basis for  to a basis for .

Why does this work? The columns of  obviously span  the span of the first four is the same as the span of all six.

V n ∈ Ww⃗ 1 ≠ .w⃗ 1 0⃗  , ⋯ ,w⃗ 1 w⃗ s { , ⋯ , }w⃗ 1 w⃗ s
span { , ⋯ , } = W ,w⃗ 1 w⃗ r

∉ span { , ⋯ , }w⃗ s+1 w⃗ 1 w⃗ s { , ⋯ , , }w⃗ 1 w⃗ s w⃗ s+1

n

{ , ⋯ , }w⃗ 1 w⃗ s

V W W

V

 Corollary : Basis Extension9.4.3

W V W V

 Example : Basis Extension9.4.11

V =R
4

W = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

1

0

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

W V

⎡

⎣

⎢⎢
⎢

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎤

⎦

⎥⎥
⎥

(9.4.3)

R
4

⎡

⎣

⎢
⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

−1

−1

1

0

1

0

−1

⎤

⎦

⎥
⎥⎥

(9.4.4)

, , ,

⎡

⎣

⎢
⎢⎢

1

0

1

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

1

0

0

0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

1

0

0

⎤

⎦

⎥
⎥⎥

W R
4

(9.4.3) R
4

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14555?pdf


9.4.13 https://math.libretexts.org/@go/page/14555

This page titled 9.4: Subspaces and Basis is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx)
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14555?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/09%3A_Vector_Spaces/9.04%3A_Subspaces_and_Basis
https://creativecommons.org/licenses/by/4.0
https://math.byu.edu/?mtt_page=kenneth-kuttler
https://lyryx.com/
https://lyryx.com/first-course-linear-algebra


9.5.1 https://math.libretexts.org/@go/page/14556

9.5: Sums and Intersections

A. Show that the sum of two subspaces is a subspace.
B. Show that the intersection of two subspaces is a subspace.

We begin this section with a definition.

Let  be a vector space, and let  and  be subspaces of . Then

1.  and is called the sum of  and .
2.  and is called the intersection of  and .

Therefore the intersection of two subspaces is all the vectors shared by both. If there are no vectors shared by both subspaces,

meaning that , the sum  takes on a special name.

Let  be a vector space and suppose  and  are subspaces of  such that . Then the sum of  and  is

called the direct sum and is denoted .

An interesting result is that both the sum  and the intersection  are subspaces of .

Let  be a vector space and suppose  and  are subspaces. Then the intersection  is a subspace of .

Solution
By the subspace test, we must show three things:

1. 
2. For vectors 
3. For scalar  and vector 

We proceed to show each of these three conditions hold.

1. Since  and  are subspaces of , they each contain . By definition of the intersection, .
2. Let . Then in particular, . Since  is a subspace, it follows that . The same

argument holds for . Therefore  is in both  and  and by definition is also in .
3. Let  be a scalar and . Then in particular, . Since  is a subspace, it follows that . The same

argument holds for  so  is in both  and . By definition, it is in .

Therefore  is a subspace of .

It can also be shown that  is a subspace of .

We conclude this section with an important theorem on dimension.

 Outcomes

 Definition : Sum and Intersection9.5.1

V U W V

U +W = { +  |  ∈ U  and  ∈ W }u⃗  w⃗  u⃗  w⃗  U W

U ∩ W = {  |  ∈ U  and  ∈ W }v ⃗  v ⃗  v ⃗  U W

U ∩ W = { }0⃗  U +W

 Definition : Direct Sum9.5.2

V U W V U ∩ W = { }0⃗  U W

U ⊕W

U +W U ∩ W V

 Example : Intersection is a Subspace9.5.1

V U W U ∩ W V

∈ U ∩ W0⃗ 

, ∈ U ∩ W , + ∈ U ∩ Wv ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2
a ∈ U ∩ W , a ∈ U ∩ Wv ⃗  v ⃗ 

U W V 0⃗  ∈ U ∩ W0⃗ 

, ∈ U ∩ W ,v ⃗ 1 v ⃗ 2 , ∈ Uv ⃗ 1 v ⃗ 2 U + ∈ Uv ⃗ 1 v ⃗ 2
W +v ⃗ 1 v ⃗ 2 U W U ∩ W

a ∈ U ∩ Wv ⃗  ∈ Uv ⃗  U a ∈ Uv ⃗ 

W av ⃗  U W U ∩ W

U ∩ W V

U +W V
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Let  be a vector space with subspaces  and . Suppose  and  each have finite dimension. Then  also has finite
dimension which is given by

Notice that when , the sum becomes the direct sum and the above equation becomes

This page titled 9.5: Sums and Intersections is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Theorem : Dimension of Sum9.5.1

V U W U W U +W

dim(U +W ) = dim(U) +dim(W ) −dim(U ∩ W )

U ∩ W = { }0⃗ 

dim(U ⊕W ) = dim(U) +dim(W )
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9.6: Linear Transformations

A. Understand the definition of a linear transformation in the context of vector spaces.

Recall that a function is simply a transformation of a vector to result in a new vector. Consider the following definition.

Let  and  be vector spaces. Suppose  is a function, where for each  Then  is a linear
transformation if whenever  are scalars and  and  are vectors in 

Several important examples of linear transformations include the zero transformation, the identity transformation, and the scalar
transformation.

Let  and  be vector spaces.

1. The zero transformation 
 is defined by  for all .

2. The identity transformation  
 is defined by  for all .

3. The scalar transformation Let . 
 is defined by .

Solution
We will show that the scalar transformation  is linear, the rest are left as an exercise.

By Definition  we must show that for all scalars  and vectors  and  in , .
Assume that  is also a scalar.

Therefore  is a linear transformation.

Consider the following important theorem.

Let  and  be vector spaces, and  a linear transformation. Then

1.  preserves the zero vector.

2.  preserves additive inverses. For all ,

3.  preserves linear combinations. For all  and all ,

 Outcomes

 Definition : Linear Transformation9.6.1

V W T : V ↦ W ∈ V , T ( ) ∈ W .x⃗  x⃗  T

k, p v ⃗ 1 v ⃗ 2 V

T (k +p ) = kT ( ) +pT ( )v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2

 Example : Linear Transformations9.6.1

V W

0 : V → W 0( ) =v ⃗  0⃗  ∈ Vv ⃗ 

: V → V1V ( ) =1V v ⃗  v ⃗  ∈ Vv ⃗ 

a ∈ R

: V → Vsa ( ) = a  for all  ∈ Vsa v ⃗  v ⃗  v ⃗ 

sa

9.6.1 k, p v ⃗ 1 v ⃗ 2 V (k +p ) = k ( ) +p ( )sa v ⃗ 1 v ⃗ 2 sa v ⃗ 1 sa v ⃗ 2
a

(k +p )sa v ⃗ 1 v ⃗ 2 = a (k +p )v ⃗ 1 v ⃗ 2
= ak +apv ⃗ 1 v ⃗ 2
= k (a ) +p (a )v ⃗ 1 v ⃗ 2
= k ( ) +p ( )sa v ⃗ 1 sa v ⃗ 2

sa

 Theorem : Properties of Linear Transformations9.6.1

V W T : V ↦ W

T

T ( ) =0⃗  0⃗ 

T ∈ Vv ⃗ 

T (− ) = −T ( )v ⃗  v ⃗ 

T , , … , ∈ Vv ⃗ 1 v ⃗ 2 v ⃗ m , , … , ∈ Rk1 k2 km
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Proof

1. Let  denote the zero vector of  and let  denote the zero vector of . We want to prove that . Let 
. Then  and

2. Let ; then  is the additive inverse of , so . Thus

3. This result follows from preservation of addition and preservation of scalar multiplication. A formal proof would be by
induction on .

Consider the following example using the above theorem.

Let  be a linear transformation such that

Find .

We provide two solutions to this problem.

Solution 1:

Suppose . Then

Solving for , , and  results in the unique solution , , . Thus

Solution 2:

Notice that  is a basis of , and thus , , and  can each be written as a linear combination
of elements of .

Then

T ( + +⋯ + ) = T ( ) + T ( ) +⋯ + T ( ).k1v ⃗ 1 k2v ⃗ 2 kmv ⃗ m k1 v ⃗ 1 k2 v ⃗ 2 km v ⃗ m

0⃗ 
V V 0⃗ 

W W T ( ) =0⃗ 
V 0⃗ 

W

∈ Vv ⃗  0 =v ⃗  0⃗ 
V

T ( ) = T (0 ) = 0T ( ) = .0⃗ 
V v ⃗  v ⃗  0⃗ 

W

∈ Vv ⃗  − ∈ Vv ⃗  v ⃗  +(− ) =v ⃗  v ⃗  0⃗ 
V

T ( +(− ))v ⃗  v ⃗ 

T ( ) +T (− ))v ⃗  v ⃗ 

T (− )v ⃗ 

= T ( )0⃗ 
V

= 0⃗ 
W

= −T ( ) = −T ( ).0⃗ 
W v ⃗  v ⃗ 

m

 Example : Linear Combination9.6.2

T : → RP2

T ( +x) = −1; T ( −x) = 1; T ( +1) = 3.x
2

x
2

x
2

T (4 +5x −3)x2

a( +x) +b( −x) +c( +1) = 4 +5x −3x2 x2 x2 x2

(a +b +c) +(a −b)x +c = 4 +5x −3.x2 x2

a b c a = 6 b = 1 c = −3

T (4 +5x −3)x
2 = T (6( +x) +( −x) −3( +1))x

2
x

2
x

2

= 6T ( +x) +T ( −x) −3T ( +1)x
2

x
2

x
2

= 6(−1) +1 −3(3) = −14.

S = { +x, −x, +1}x2 x2 x2
P2 x2 x 1

S

x
2

x

1

= ( +x) + ( −x)1
2

x2 1
2

x2

= ( +x) − ( −x)1
2

x2 1
2

x2

= ( +1) − ( +x) − ( −x).x2 1
2

x2 1
2

x2
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Therefore,

The advantage of Solution 2 over Solution 1 is that if you were now asked to find , it is easy to use 
,  and :

More generally,

Suppose two linear transformations act in the same way on  for all vectors. Then we say that these transformations are equal.

Let  and  be linear transformations from  to . Then  if and only if for every ,

The definition above requires that two transformations have the same action on every vector in order for them to be equal. The next
theorem argues that it is only necessary to check the action of the transformations on basis vectors.

Let  and  be vector spaces and suppose that  and  are linear transformations from  to . Then in order for  and 
to be equal, it suffices that  where 

This theorem tells us that a linear transformation is completely determined by its actions on a spanning set. We can also examine
the effect of a linear transformation on a basis.

Suppose  and  are vector spaces and let  be any given vectors in  that may not be distinct. Then there
exists a basis  of  and a unique linear transformation  with .

Furthermore, if

is a vector of , then

T ( )x
2

T (x)

T (1)

= T ( ( +x) + ( −x)) = T ( +x) + T ( −x)1
2

x2 1
2

x2 1
2

x2 1
2

x2

= (−1) + (1) = 0.1
2

1
2

= T ( ( +x) − ( −x)) = T ( +x) − T ( −x)1
2

x2 1
2

x2 1
2

x2 1
2

x2

= (−1) − (1) = −1.1
2

1
2

= T (( +1) − ( +x) − ( −x))x2 1
2

x2 1
2

x2

= T ( +1) − T ( +x) − T ( −x)x2 1
2

x2 1
2

x2

= 3 − (−1) − (1) = 3.1
2

1
2

T (4 +5x −3)x
2 = 4T ( ) +5T (x) −3T (1)x

2

= 4(0) +5(−1) −3(3) = −14.

T (−6 −13x +9)x2

T ( ) = 0x2 T (x) = −1 T (1) = 3

T (−6 −13x +9)x2 = −6T ( ) −13T (x) +9T (1)x2

= −6(0) −13(−1) +9(3) = 13 +27 = 40.

T (a +bx +c)x
2 = aT ( ) +bT (x) +cT (1)x

2

= a(0) +b(−1) +c(3) = −b +3c.

v ⃗ 

 Definition : Equal Transformations9.6.2

S T V W S = T ∈ Vv ⃗ 

S ( ) = T ( )v ⃗  v ⃗ 

 Theorem : Transformation of a Spanning Set9.6.2

V W S T V W S T

S( ) = T ( )v ⃗ i v ⃗ i V = span{ , , … , }.v ⃗ 1 v ⃗ 2 v ⃗ n

 Theorem : Transformation of a Basis9.6.3

V W { , , … , }w⃗ 1 w⃗ 2 w⃗ n W

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ n V T : V ↦ W T ( ) =v ⃗ i w⃗ i

= + +⋯ +v ⃗  k1v ⃗ 1 k2v ⃗ 2 knv ⃗ n

V

T ( ) = + +⋯ + .v ⃗  k1w⃗ 1 k2w⃗ 2 knw⃗ n
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9.7: Isomorphisms

A. Apply the concepts of one to one and onto to transformations of vector spaces.
B. Determine if a linear transformation of vector spaces is an isomorphism.
C. Determine if two vector spaces are isomorphic.

One to One and Onto Transformations
Recall the following definitions, given here in terms of vector spaces.

Let  be vector spaces with  vectors in . Then a linear transformation  is called one to one if
whenever  it follows that

Let  be vector spaces. Then a linear transformation  is called onto if for all  there exists  such
that .

Recall that every linear transformation  has the property that . This will be necessary to prove the following useful
lemma.

The assertion that a linear transformation  is one to one is equivalent to saying that if  then 

Proof

Suppose first that  is one to one.

and so, adding the additive inverse of  to both sides, one sees that . Therefore, if  it must be the
case that  because it was just shown that .

Now suppose that if  then  If  then  which shows that 
 or in other words, .

Consider the following example.

Let  be a linear transformation defined by

for all 

Prove that  is one to one but not onto.

 Outcomes

 Definition : One to One Transformation9.7.1

V ,W ,v ⃗ 1 v ⃗ 2 V T : V ↦ W

≠v ⃗ 1 v ⃗ 2

T ( ) ≠ T ( )v ⃗ 1 v ⃗ 2

 Definition : Onto Transformation9.7.2

V ,W T : V ↦ W ∈w⃗  W⃗  ∈ Vv ⃗ 

T ( ) =v ⃗  w⃗ 

T T ( ) =0⃗  0⃗ 

 Lemma : One to One9.7.1

T T ( ) = ,v ⃗  0⃗  = 0.v ⃗ 

T

T ( ) = T ( + )= T ( ) +T ( )0⃗  0⃗  0⃗  0⃗  0⃗ 

T ( )0⃗  T ( ) =0⃗  0⃗  T ( ) = ,v ⃗  0⃗ 

=v ⃗  0⃗  T ( ) =0⃗  0⃗ 

T ( ) = ,v ⃗  0⃗  = 0.v ⃗  T ( ) = T ( ),v ⃗  u⃗  T ( ) −T ( ) = T ( − ) =v ⃗  u⃗  v ⃗  u⃗  0⃗ 

− = 0v ⃗  u⃗  =v ⃗  u⃗ 

 Example : One to One Transformation9.7.1

S : →P2 M22

S(a +bx+c) = [ ]x2 a+b

b−c

a+c

b+c

a +bx+c ∈ .x2
P2

S
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Solution
By definition,

Suppose . This leads to a homogeneous system of four equations in three variables. Putting the
augmented matrix in reduced row-echelon form:

The solution is . This tells us that if , then . Therefore
it is one to one.

To show that  is not onto, find a matrix  such that for every , . Let

and suppose  is such that . Then

Solving this system

Since the system is inconsistent, there is no  so that , and therefore  is not onto.

Let  be a linear transformation defined by

Prove that  is onto but not one to one.

Solution

Let  be an arbitrary vector in . Since ,  is onto.

By Lemma   is one to one if and only if  implies that  the zero matrix. Observe that

There exists a nonzero matrix  such that . It follows that  is not one to one.

The following example demonstrates that a one to one transformation preserves linear independence.

ker(S) = {a +bx+c ∈  | a+b = 0, a+c = 0, b−c = 0, b+c = 0}.x2
P2

p(x) = a +bx+c ∈ ker(S)x2

→ ⋯ → .

⎡

⎣

⎢⎢⎢⎢

1

1

0

0

1

0

1

1

0

1

−1

1

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

a = b = c = 0 S(p(x)) = 0 p(x) = a +bx+c = 0 +0x+0 = 0x2 x2

S A ∈ M22 p(x) ∈ P2 S(p(x)) ≠ A

A = [ ] ,
0

0

1

2

p(x) = a +bx+c ∈x2 P2 S(p(x)) = A

a+b = 0

b−c = 0

a+c = 1

b+c = 2

→ .

⎡

⎣

⎢⎢⎢⎢

1

1

0

0

1

0

1

1

0

1

−1

1

0

1

0

2

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

1

−1

1

1

0

1

−1

1

0

1

0

2

⎤

⎦

⎥⎥⎥⎥

p(x) ∈ P2 S(p(x)) = A S

 Example : An Onto Transformation9.7.2

T : →M22 R
2

T [ ] = [ ]  for all [ ] ∈ .
a

c

b

d

a+d

b+c

a

c

b

d
M22

T

[ ]
x

y
R

2 T [ ] = [ ]
x

0

y

0

x

y
T

9.7.1T T (A) = 0⃗  A = 0

T ([ ]) = [ ] = [ ]
1

0

0

−1

1 +−1

0 +0

0

0

A T (A) = 0⃗  T
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Let  and  be vector spaces and  a linear transformation. Prove that if  is one to one and  is
an independent subset of , then  is an independent subset of .

Solution

Let  and  denote the zero vectors of  and , respectively. Suppose that

for some . Since linear transformations preserve linear combinations (addition and scalar multiplication),

Now, since  is one to one, , and thus

However,  is independent so . Therefore,  is independent.

A similar claim can be made regarding onto transformations. In this case, an onto transformation preserves a spanning set.

Let  and  be vector spaces and  a linear transformation. Prove that if  is onto and 
, then

Solution
Suppose that  is onto and let . Then there exists  such that . Since , there
exist  such that . Using the fact that  is a linear transformation,

i.e., , and thus

Since , it follows from that , and therefore 
.

Isomorphisms

The focus of this section is on linear transformations which are both one to one and onto. When this is the case, we call the
transformation an isomorphism.

Let  and  be two vector spaces and let  be a linear transformation. Then  is called an isomorphism if the
following two conditions are satisfied.

 is one to one.
 is onto.

 Example : One to One and Independence9.7.3

V W T : V ↦ W T { , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k
V {T ( ),T ( ), … ,T ( )}v ⃗ 1 v ⃗ 2 v ⃗ k W

0⃗ 
V 0⃗ 

W V W

T ( ) + T ( ) +⋯ + T ( ) =a1 v ⃗ 1 a2 v ⃗ 2 ak v ⃗ k 0⃗ 
W

, , … , ∈ Ra1 a2 ak

T ( + +⋯ + ) = .a1v ⃗ 1 a2v ⃗ 2 akv ⃗ k 0⃗ 
W

T ker(T ) = { }0⃗ 
V

+ +⋯ + = .a1v ⃗ 1 a2v ⃗ 2 akv ⃗ k 0⃗ 
V

{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k = = ⋯ = = 0a1 a2 ak {T ( ),T ( ), … ,T ( )}v ⃗ 1 v ⃗ 2 v ⃗ k

 Example : Onto and Spanning9.7.4

V W T : V → W T

V = span{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k

W = span{T ( ),T ( ), … ,T ( )}.v ⃗ 1 v ⃗ 2 v ⃗ k

T ∈ Ww⃗  ∈ Vv ⃗  T ( ) =v ⃗  w⃗  V = span{ , , … , }v ⃗ 1 v ⃗ 2 v ⃗ k
, , … ∈ Ra1 a2 ak = + +⋯ +v ⃗  a1v ⃗ 1 a2v ⃗ 2 akv ⃗ k T

= T ( )w⃗  v ⃗  = T ( + +⋯ + )a1v ⃗ 1 a2v ⃗ 2 akv ⃗ k
= T ( ) + T ( ) +⋯ + T ( ),a1 v ⃗ 1 a2 v ⃗ 2 ak v ⃗ k

∈ span{T ( ),T ( ), … ,T ( )}w⃗  v ⃗ 1 v ⃗ 2 v ⃗ k

W ⊆ span{T ( ),T ( ), … ,T ( )}.v ⃗ 1 v ⃗ 2 v ⃗ k

T ( ),T ( ), … ,T ( ) ∈ Wv ⃗ 1 v ⃗ 2 v ⃗ k span{T ( ),T ( ), … ,T ( )} ⊆ Wv ⃗ 1 v ⃗ 2 v ⃗ k
W = span{T ( ),T ( ), … ,T ( )}v ⃗ 1 v ⃗ 2 v ⃗ k

 Definition : Isomorphism9.7.3

V W T : V ↦ W T

T

T
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Let  and  be two vector spaces and let  be a linear transformation. Then if  is an isomorphism, we say that 
and  are isomorphic.

Consider the following example of an isomorphism.

Let  be defined by

Show that  is an isomorphism.

Solution
Notice that if we can prove  is an isomorphism, it will mean that  and  are isomorphic. It remains to prove that

1.  is a linear transformation;
2.  is one-to-one;
3.  is onto.

 is linear: Let  be scalars.

Therefore  is linear.

 is one-to-one: By Lemma  we need to show that if  then  for some matrix .

 Definition : Isomorphic9.7.4

V W T : V ↦ W T V

W

 Example : Isomorphism9.7.5

T : →M22 R
4

T ( ) =  for all [ ] ∈ .
a

c

b

d

⎡

⎣

⎢
⎢⎢

a

b

c

d

⎤

⎦

⎥
⎥⎥

a

c

b

d
M22

T

T M22 R
4

T

T

T

T k, p

T (k[ ]+p [ ])
a1

c1

b1

d1

a2

c2

b2

d2

= T ([ ]+[ ])
ka1

kc1

kb1

kd1

pa2

pc2

pb2

pd2

= T ([ ])
k +pa1 a2

k +pc1 c2

k +pb1 b2

k +pd1 d2

=

⎡

⎣

⎢⎢
⎢

k +pa1 a2

k +pb1 b2

k +pc1 c2

k +pd1 d2

⎤

⎦

⎥⎥
⎥

= +

⎡

⎣

⎢
⎢⎢

ka1

kb1

kc1

kd1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

pa2

pb2

pc2

pd2

⎤

⎦

⎥
⎥⎥

= k +p

⎡

⎣

⎢
⎢⎢

a1

b1

c1

d1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

a2

b2

c2

d2

⎤

⎦

⎥
⎥⎥

= kT ([ ])+pT ([ ])
a1

c1

b1

d1

a2

c2

b2

d2

T

T 9.7.1 T (A) = 0 A = 0 A ∈ M22

T [ ] = =
a

c

b

d

⎡

⎣

⎢
⎢⎢

a

b

c

d

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0

0

0

0

⎤

⎦

⎥
⎥⎥
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This clearly only occurs when  which means that

Hence  is one-to-one.

 is onto: Let

and define matrix  as follows:

Then , and therefore  is onto.

Since  is a linear transformation which is one-to-one and onto,  is an isomorphism. Hence  and  are isomorphic.

An important property of isomorphisms is that the inverse of an isomorphism is itself an isomorphism and the composition of
isomorphisms is an isomorphism. We first recall the definition of composition.

Let  be vector spaces and suppose  and  are linear transformations. Then the composite of 
and  is

and is defined by

Consider now the following proposition.

Let  be an isomorphism. Then  is also an isomorphism. Also if  is an isomorphism and
if  is an isomorphism for the vector spaces  then  defined by  is also an
isomorphism.

Proof

Consider the first claim. Since  is onto, a typical vector in  is of the form  where . Consider then for 
scalars,

where . Consider if this is equal to

Since  is one to one, this will be so if

However, the above statement is just the condition that  is a linear map. Thus  is indeed a linear map. If  is
given, then  and so  is onto. If  then

a = b = c = d = 0

A = [ ] = [ ] = 0
a

c

b

d

0

0

0

0

T

T

= ∈ ,x⃗ 

⎡

⎣

⎢⎢⎢

x1

x2

x3

x4

⎤

⎦

⎥⎥⎥
R

4

A ∈ M22

A = [ ] .
x1

x3

x2

x4

T (A) = x⃗  T

T T M22 R
4

 Definition : Composition of Transformations9.7.5

V ,W ,Z T : V ↦ W S : W ↦ Z S

T

S ∘ T : V ↦ Z

(S ∘ T )( ) = S(T ( )) for all  ∈ Vv ⃗  v ⃗  v ⃗ 

 Proposition : Composite and Inverse Isomorphism9.7.1

T : V → W : W → VT −1 T : V → W

S : W → Z V ,W ,Z, S ∘ T (S ∘ T ) (v) = S (T (v))

T W T ( )v ⃗  ∈ Vv ⃗  a, b

(aT ( ) +bT ( ))T −1 v ⃗ 1 v ⃗ 2

, ∈ Vv ⃗ 1 v ⃗ 2

a (T ( )) +b (T ( )) = a +b ?T −1 v ⃗ 1 T −1 v ⃗ 2 v ⃗ 1 v ⃗ 2

T

T (a +b ) = T ( (aT ( ) +bT ( ))) = aT ( ) +bT ( )v ⃗ 1 v ⃗ 2 T −1 v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2

T T −1 ∈ Vv ⃗ 

= (T ( ))v ⃗  T −1 v ⃗  T −1 ( ) = ,T −1 v ⃗  0⃗ 
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and so  is one to one.

Next suppose  and  are as described. Why is  a linear map? Let for  scalars,

Hence  is a linear map. If  then  and it follows that  and hence by this
lemma again, . Thus  is one to one. It remains to verify that it is onto. Let . Then since  is onto, there
exists  such that  Also, since  is onto, there exists  such that  It follows that 

 and so  is also onto.

Suppose we say that two vector spaces  and  are related if there exists an isomorphism of one to the other, written as .
Then the above proposition suggests that  is an equivalence relation. That is:  satisfies the following conditions:

If  it follows that 
If  and  then 

We leave the proof of these to the reader.

The following fundamental lemma describes the relation between bases and isomorphisms.

Let  be a linear map where  are vector spaces. Then a linear transformation  which is one to one has the
property that if  is linearly independent, then so is . More generally,  is an isomorphism if
and only if whenever  is a basis for  it follows that  is a basis for .

Proof

First suppose that  is a linear map and is one to one and  is linearly independent. It is required to show that 
 is also linearly independent. Suppose then that

Then, since  is linear,

Since  is one to one, it follows that

Now the fact that  is linearly independent implies that each . Hence  is linearly
independent.

Now suppose that  is an isomorphism and  is a basis for . It was just shown that  is
linearly independent. It remains to verify that the span of  is all of . This is where  is onto is used.
If  there exists  such that . Since  is a basis, it follows that there exists scalars 
such that

= T ( ( )) = T ( ) =v ⃗  T −1 v ⃗  0⃗  0⃗ 

T −1

T S S ∘ T a, b

S ∘ T (a +b )v ⃗ 1 v ⃗ 2 ≡ S (T (a +b )) = S (aT ( ) +bT ( ))v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2
= aS (T ( )) +bS (T ( )) ≡ a (S ∘ T ) ( ) +b (S ∘ T ) ( )v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2

S ∘ T (S ∘ T ) ( ) = 0,v ⃗  S (T ( )) =v ⃗  0⃗  T ( ) =v ⃗  0⃗ 

=v ⃗  0⃗  S ∘ T ∈ Zz ⃗  S

∈ Ww⃗  S( ) = .w⃗  z ⃗  T ∈ Vv ⃗  T ( ) = .v ⃗  w⃗ 

S (T ( )) =v ⃗  z ⃗  S ∘ T

V W V ∼ W

∼ ∼

V ∼ V

V ∼ W , W ∼ V

V ∼ W W ∼ Z, V ∼ Z

 Lemma : Bases and Isomorphisms9.7.2

T : V → W V ,W T

{ , ⋯ , }u⃗ 1 u⃗ k {T ( ), ⋯ ,T ( )}u⃗ 1 u⃗ k T

{ , ⋯ , }v ⃗ 1 v ⃗ n V , {T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n W

T { , ⋯ , }u⃗ 1 u⃗ k
{T ( ), ⋯ ,T ( )}u⃗ 1 u⃗ k

T ( ) =∑
i=1

k

ci u⃗ i 0⃗ 

T

T ( ) =∑
i=1

n

ciu⃗ i 0⃗ 

T

= 0∑
i=1

n

ciu⃗ i

{ , ⋯ , }u⃗ 1 u⃗ n = 0ci {T ( ), ⋯ ,T ( )}u⃗ 1 u⃗ n

T { , ⋯ , }v ⃗ 1 v ⃗ n V {T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n
{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n W T

∈ W ,w⃗  ∈ Vv ⃗  T ( ) =v ⃗  w⃗  { , ⋯ , }v ⃗ 1 v ⃗ n { }ci
n
i=1

= .∑
i=1

n

civ ⃗ i v ⃗ 
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Hence,

which shows that the span of these vectors  is all of  showing that this set of vectors is a basis for 
.

Next suppose that  is a linear map which takes a basis to a basis. Then for  a basis for  it follows 
 is a basis for  Then if  there exist scalars  such that 

 showing that  is onto. If  then  and since the
vectors  are linearly independent, it follows that each  Since  is a typical vector in ,
this has shown that if  then  and so  is also one to one. Thus  is an isomorphism.

The following theorem illustrates a very useful idea for defining an isomorphism. Basically, if you know what it does to a basis,
then you can construct the isomorphism.

Suppose  and  are two vector spaces. Then the two vector spaces are isomorphic if and only if they have the same
dimension. In the case that the two vector spaces have the same dimension, then for a linear transformation , the
following are equivalent.

1.  is one to one.
2.  is onto.
3.  is an isomorphism.

Proof

Suppose first these two vector spaces have the same dimension. Let a basis for  be  and let a basis for  be 
. Now define  as follows.

for  an arbitrary vector of 

It is necessary to verify that this is well defined. Suppose then that

Then

and since  is a basis,  for each . Hence

and so the mapping is well defined. Also if  are scalars,

= T ( ) = T ( ) = Tw⃗  v ⃗  ∑
i=1

n

civ ⃗ i ∑
i=1

n

ci v ⃗ i

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n W

W

T { , ⋯ , }v ⃗ 1 v ⃗ n V ,

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n W . w ∈ W , ci

w = T ( ) = T ( )∑n
i=1 ci v ⃗ i ∑n

i=1 civ ⃗ i T T ( ) = 0∑n
i=1 civ ⃗ i T ( ) =∑n

i=1 ci v ⃗ i 0⃗ 

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n = 0.ci ∑n
i=1 civ ⃗ i V

T ( ) = 0v ⃗  =v ⃗  0⃗  T T

 Theorem : Isomorphic Vector Spaces9.7.1

V W

T : V → W

T

T

T

V { , ⋯ , }v ⃗ 1 v ⃗ n W

{ , ⋯ , }w⃗ 1 w⃗ n T

T ( ) =v ⃗ i w⃗ i

∑n
i=1 civ ⃗ i V ,

T ( ) = T ( ) = .∑
i=1

n

civ ⃗ i ∑
i=1

n

ci v ⃗ i ∑
i=1

n

ciw⃗ i

=∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i

( − ) = 0∑
i=1

n

ci ĉ i v ⃗ i

{ , ⋯ , }v ⃗ 1 v ⃗ n =ci ĉ i i

=∑
i=1

n

ciw⃗ i ∑
i=1

n

ĉ iw⃗ i

a, b
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Thus  is a linear map.

Now if

then since the  are independent, each  and so  also. Hence  is one to one. If 
 is a vector in  then it equals

showing that  is also onto. Hence  is an isomorphism and so  and  are isomorphic.

Next suppose these two vector spaces are isomorphic. Let  be the name of the isomorphism. Then for  a
basis for , it follows that a basis for  is  showing that the two vector spaces have the same dimension.

Now suppose the two vector spaces have the same dimension.

First consider the claim that  If  is one to one, then if  is a basis for  then 
is linearly independent. If it is not a basis, then it must fail to span . But then there would exist 

 and it follows that  would be linearly independent which is
impossible because there exists a basis for  of  vectors. Hence

and so  is a basis. Hence, if  there exist scalars  such that

showing that  is onto. This shows that 

Next consider the claim that  Since  holds, it follows that  is onto. It remains to verify that  is one to one.
Since  is onto, there exists a basis of the form  If  is linearly independent, then this set
of vectors must also be a basis for  because if not, there would exist  so  would be
a linearly independent set which is impossible because by assumption, there exists a basis which has  vectors. So why is

 linearly independent? Suppose

Then

Hence each  and so, as just discussed,  is a basis for . Now it follows that a typical vector in  is of
the form . If  it follows that

T (a +b )∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i = T ( (a +b ) ) = (a +b )∑
i=1

n

ci ĉ i v ⃗ i ∑
i=1

n

ci ĉ i w⃗ i

= a +b∑
i=1

n

ciw⃗ i ∑
i=1

n

ĉ iw⃗ i

= aT ( )+bT ( )∑
i=1

n

civ ⃗ i ∑
i=1

n

ĉ iv ⃗ i

T

T ( ) = = ,∑
i=1

n

civ ⃗ i ∑
i=1

n

ciw⃗ i 0⃗ 

{ , ⋯ , }w⃗ 1 w⃗ n = 0ci =∑n
i=1 civ ⃗ i 0⃗  T

∑n
i=1 ciw⃗ i W ,

T = T ( )∑
i=1

n

ci v ⃗ i ∑
i=1

n

civ ⃗ i

T T V W

T { , ⋯ , }v ⃗ 1 v ⃗ n
V W {T , ⋯ ,T }v ⃗ 1 v ⃗ n

1.) ⇒ 2.). T { , ⋯ , }v ⃗ 1 v ⃗ n V , {T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n
W

∉ span {T ( ), ⋯ ,T ( )}w⃗  v ⃗ 1 v ⃗ n {T ( ), ⋯ ,T ( ), }v ⃗ 1 v ⃗ n w⃗ 

W n

span {T ( ), ⋯ ,T ( )} = Wv ⃗ 1 v ⃗ n

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ n ∈ W ,w⃗  ci

= T ( ) = T ( )w⃗  ∑
i=1

n

ci v ⃗ i ∑
i=1

n

civ ⃗ i

T 1.) ⇒ 2.).

2.) ⇒ 3.). 2.) T T

T {T ( ), ⋯ ,T ( )} .v ⃗ i v ⃗ n { , ⋯ , }v ⃗ 1 v ⃗ n
V ∉ span { , ⋯ , }u⃗  v ⃗ 1 v ⃗ n { , ⋯ , , }v ⃗ 1 v ⃗ n u⃗ 

n

{ , ⋯ , }v ⃗ 1 v ⃗ n

=∑
i=1

n

civ ⃗ i 0⃗ 

T =∑
i=1

n

ci v ⃗ i 0⃗ 

= 0ci { , ⋯ , }v ⃗ 1 v ⃗ n V V

∑n
i=1 civ ⃗ i T ( ) = ,∑n

i=1 civ ⃗ i 0⃗ 
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and so, since  is independent, it follows each  and hence . Thus  is one to one
as well as onto and so it is an isomorphism.

If  is an isomorphism, it is both one to one and onto by definition so  implies both  and .

Note the interesting way of defining a linear transformation in the first part of the argument by describing what it does to a basis
and then “extending it linearly”.

Consider the following example.

Let  and let  denote the polynomials of degree at most 2. Show that these two vector spaces are isomorphic.

Solution
First, observe that a basis for  is  and a basis for  is  Since these two have the same dimension, the
two are isomorphic. An example of an isomorphism is this:

and extend  linearly as in the above proof. Thus

This page titled 9.7: Isomorphisms is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

T ( ) =∑
i=1

n

ci v ⃗ i 0⃗ 

{T ( ), ⋯ ,T ( )}v ⃗ i v ⃗ n = 0ci =∑n
i=1 civ ⃗ i 0⃗  T

T 3.) 1.) 2.)

 Example 9.7.6

V =R
3 W

W {1, x, }x2 V { , , } .e ⃗ 1 e ⃗ 2 e ⃗ 3

T ( ) = 1,T ( ) = x,T ( ) =e ⃗ 1 e ⃗ 2 e ⃗ 3 x2

T

T (a, b, c) = a+bx+cx2
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9.8: The Kernel and Image of a Linear Map

A. Describe the kernel and image of a linear transformation.
B. Use the kernel and image to determine if a linear transformation is one to one or onto.

Here we consider the case where the linear map is not necessarily an isomorphism. First here is a definition of what is meant by the
image and kernel of a linear transformation.

Let  and  be vector spaces and let  be a linear transformation. Then the image of  denoted as  is
defined to be the set

In words, it consists of all vectors in  which equal  for some . The kernel, , consists of all  such that
. That is,

Then in fact, both  and  are subspaces of  and  respectively.

Let  be vector spaces and let  be a linear transformation. Then  and . In fact, they
are both subspaces.

Proof

First consider  It is necessary to show that if  are vectors in  and if  are scalars, then  is
also in  But

Thus  is a subspace of .

Next suppose  are two vectors in  Then if  are scalars,

and this last vector is in  by definition.

Consider the following example.

Let  be the linear transformation defined by

Find the kernel and image of .

Solution
We will first find the kernel of . It consists of all polynomials in  that have  for a root.

 Outcomes

 Definition : Kernel and Image9.8.1

V W T : V → W T im (T )

{T ( ) : ∈ V }v ⃗  v ⃗ 

W T ( )v ⃗  ∈ Vv ⃗  ker(T ) ∈ Vv ⃗ 

T ( ) =v ⃗  0⃗ 

ker(T ) ={ ∈ V : T ( ) = }v ⃗  v ⃗  0⃗ 

im (T ) ker(T ) W V

 Proposition : Kernel and Image as Subspaces9.8.1

V ,W T : V → W ker(T ) ⊆ V im (T ) ⊆ W

ker(T ). ,v ⃗ 1 v ⃗ 2 ker(T ) a, b a +bv ⃗ 1 v ⃗ 2
ker(T ).

T (a +b ) = aT ( ) +bT ( ) = a +b =v ⃗ 1 v ⃗ 2 v ⃗ 1 v ⃗ 2 0⃗  0⃗  0⃗ 

ker(T ) V

T ( ),T ( )v ⃗ 1 v ⃗ 2 im (T ) . a, b

aT ( ) +bT ( ) = T (a +b )v ⃗ 2 v ⃗ 2 v ⃗ 1 v ⃗ 2

im (T )

 Example : Kernel and Image of a Transformation9.8.1

T : →RP1

T (p(x)) = p(1) for all p(x) ∈ .P1

T

T P1 1
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Therefore a basis for  is

Notice that this is a subspace of .

Now consider the image. It consists of all numbers which can be obtained by evaluating all polynomials in  at .

Therefore a basis for  is

Notice that this is a subspace of , and in fact is the space  itself.

Let  be defined by

Then  is a linear transformation. Find a basis for  and .

Solution
You can verify that  represents a linear transformation.

Now we want to find a way to describe all matrices  such that , that is the matrices in . Suppose 

 is such a matrix. Then

The values of  that make this true are given by solutions to the system

The solution is  where  are scalars. We can describe  as follows.

It is clear that this set is linearly independent and therefore forms a basis for .

We now wish to find a basis for . We can write the image of  as

Notice that this can be written as

ker(T ) = {p(x) ∈  | p(1) = 0}P1

= {ax+b | a, b ∈ R and a+b = 0}

= {ax−a | a ∈ R}

ker(T )

{x−1}

P1

P1 1

im(T ) = {p(1) | p(x) ∈ }P1

= {a+b | ax+b ∈ }P1

= {a+b | a, b ∈ R}

=R

im(T )

{1}

R R

 Example : Kernel and Image of a Linear Transformation9.8.2

T : ↦M22 R
2

T [ ] = [ ]
a

c

b

d

a−b

c+d

T ker(T ) im(T )

T

A T (A) = 0⃗  ker(T )

A = [ ]
a

c

b

d

T [ ] = [ ] = [ ]
a

c

b

d

a−b

c+d

0

0

a, b, c, d

a−b

c+d

= 0

= 0

a = s, b = s, c = t, d = −t s, t ker(T )

ker(T ) ={[ ]} = span{[ ] , [ ]}
s

t

s

−t

1

0

1

0

0

1

0

−1

ker(T )

im(T ) T

im(T ) ={[ ]}
a−b

c+d
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However this is clearly not linearly independent. By removing vectors from the set to create an independent set gives a basis of
.

Notice that these vectors have the same span as the set above but are now linearly independent.

A major result is the relation between the dimension of the kernel and dimension of the image of a linear transformation. A special
case was done earlier in the context of matrices. Recall that for an  matrix  it was the case that the dimension of the kernel of

 added to the rank of  equals .

Let  be a linear transformation where  are vector spaces. Suppose the dimension of  is . Then 
.

Proof

From Proposition ,  is a subspace of  By Theorem 9.4.8, there exists a basis for 
 Similarly, there is a basis for . Then if  there exist scalars 

such that

Hence  It follows that  is in . Hence there are scalars  such that

Hence  Since  is arbitrary, it follows that

If the vectors  are linearly independent, then it will follow that this set is a basis. Suppose then that

Apply  to both sides to obtain

Since  is linearly independent, it follows that each  Hence  and so, since the 
 are linearly independent, it follows that each  also. It follows that  is a basis

for  and so

Consider the following definition.

span{[ ] , [ ] , [ ] , [ ]}
1

0

−1

0

0

1

0

1

im(T )

{[ ] , [ ]}
1

0

0

1

m×n

A A n

 Theorem : Dimension of Kernel + Image9.8.1

T : V → W V ,W V n

n = dim(ker(T )) +dim(im (T ))

9.8.1 im (T ) W .

im (T ) , {T ( ), ⋯ ,T ( )} .v ⃗ 1 v ⃗ r ker(T ), { , ⋯ , }u⃗ 1 u⃗ s ∈ V ,v ⃗  ci

T ( ) = T ( )v ⃗  ∑
i=1

r

ci v ⃗ i

T ( − ) = 0.v ⃗  ∑r
i=1 civ ⃗ i −v ⃗  ∑r

i=1 civ ⃗ i ker(T ) ai

− =v ⃗  ∑
i=1

r

civ ⃗ i ∑
j=1

s

aju⃗ j

= + .v ⃗  ∑r
i=1 civ ⃗ i ∑s

j=1 aju⃗ j v ⃗ 

V = span{ , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r

{ , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r

+ = 0∑
i=1

r

civ ⃗ i ∑
j=1

s

aju⃗ j

T

T ( ) + T ( ) = T ( ) =∑
i=1

r

ci v ⃗ i ∑
j=1

s

aj u⃗ j ∑
i=1

r

ci v ⃗ i 0⃗ 

{T ( ), ⋯ ,T ( )}v ⃗ 1 v ⃗ r = 0.ci = 0∑s
j=1 aju⃗ j

{ , ⋯ , }u⃗ 1 u⃗ s = 0aj { , ⋯ , , , ⋯ , }u⃗ 1 u⃗ s v ⃗ 1 v ⃗ r
V

n = s+r = dim(ker(T )) +dim(im (T ))
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Let  be a linear transformation and suppose  are finite dimensional vector spaces. Then the rank of 
denoted as  is defined as the dimension of  The nullity of  is the dimension of  Thus the above
theorem says that 

Recall the following important result.

Let  be a vector space of dimension  and let  be a subspace. Then  if and only if the dimension of  is also .

From this theorem follows the next corollary.

Let  be a linear map where the dimension of  is  and the dimension of  is . Then  is one to one if and

only if  and  is onto if and only if .

Proof

The statement  is equivalent to saying if  it follows that . Thus by Lemma 9.7.1  is one to

one. If  is onto, then  and so  which is defined as the dimension of  is . If 
then by Theorem , since  is a subspace of  it follows that .

Let  be a linear transformation defined by

Prove that  is one to one but not onto.

Solution
You may recall this example from earlier in Example 9.7.1. Here we will determine that  is one to one, but not onto, using the
method provided in Corollary .

By definition,

Suppose . This leads to a homogeneous system of four equations in three variables. Putting the
augmented matrix in reduced row-echelon form:

Since the unique solution is , , and thus  is one-to-one by Corollary .

Similarly, by Corollary , if  is onto it will have . The image of  is given by

 Definition : Rank of Linear Transformation9.8.2

T : V → W V ,W T

rank (T ) im (T ) . T ker(T ).

rank (T ) +dim(ker(T )) = dim(V ).

 Theorem : Subspace of Same Dimension9.8.2

V n W W = V W n

 Corollary : One to One and Onto Characterization9.8.1

T : V → W V n W m T

ker(T ) ={ }0⃗  T rank (T ) = m

ker(T ) ={ }0⃗  T ( ) = ,v ⃗  0⃗  =v ⃗  0⃗  T

T im (T ) = W rank (T ) im (T ) m rank (T ) = m,

9.8.2 im (T ) W , im (T ) = W

 Example : One to One Transformation9.8.3

S : →P2 M22

S(a +bx+c) = [ ]  for all a +bx+c ∈ .x2 a+b

b−c

a+c

b+c
x2

P2

S

S

9.8.1

ker(S) = {a +bx+c ∈  | a+b = 0, a+c = 0, b−c = 0, b+c = 0}.x2
P2

p(x) = a +bx+c ∈ ker(S)x2

→ ⋯ → .

⎡

⎣

⎢⎢⎢⎢

1

1

0

0

1

0

1

1

0

1

−1

1

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

⎤

⎦

⎥⎥⎥⎥

a = b = c = 0 ker(S) = { }0⃗  S 9.8.1

9.8.1 S rank(S) = dim( ) = 4M22 S

im(S) ={[ ]} = span{[ ] , [ ] , [ ]}
a+b

b−c

a+c

b+c

1

0

1

0

1

1

0

1

0

−1

1

1
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These matrices are linearly independent which means this set forms a basis for . Therefore the dimension of , also
called , is equal to . It follows that  is not onto.

This page titled 9.8: The Kernel and Image of a Linear Map is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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9.9: The Matrix of a Linear Transformation

A. Find the matrix of a linear transformation with respect to general bases in vector spaces.

You may recall from  that the matrix of a linear transformation depends on the bases chosen. This concept is explored in this
section, where the linear transformation now maps from one arbitrary vector space to another.

Let  be an isomorphism where  and  are vector spaces. Recall from Lemma 9.7.2 that  maps a basis in  to a
basis in . When discussing this Lemma, we were not specific on what this basis looked like. In this section we will make such a
distinction.

Consider now an important definition.

Let  be a vector space with , let  be a fixed basis of , and let  denote the
standard basis of . We define a transformation  by

Then  is a linear transformation such that , .

 is an isomorphism, called the coordinate isomorphism corresponding to .

We continue with another related definition.

Let  be a finite dimensional vector space with , and let  be an ordered basis of  (meaning
that the order that the vectors are listed is taken into account). The coordinate vector of  with respect to  is defined as 

.

coordinatevector Consider the following example.

Let  and . Find  for the following bases :

1. 
2. 
3. 

Solution
1. First, note the order of the basis is important. Now we need to find  such that , that

is:

Clearly the solution is

 Outcomes

R
n

T : V ↦ W V W T V

W

 Definition : Coordinate Isomorphism9.9.1

V dim(V ) = n B = { , , … , }b ⃗ 
1 b ⃗ 

2 b ⃗ 
n V { , , … , }e ⃗ 1 e ⃗ 2 e ⃗ n

R
n : V →CB R

n

( + +⋯ + ) = + +⋯ + = .CB a1b ⃗ 
1 a2b ⃗ 

2 anb ⃗ 
n a1e ⃗ 1 a2e ⃗ 2 ane ⃗ n

⎡

⎣

⎢⎢⎢
⎢

a1

a2

⋮
an

⎤

⎦

⎥⎥⎥
⎥

CB ( ) =CB b ⃗ 
i e ⃗ i 1 ≤ i ≤ n

CB B

 Definition : Coordinate Vector9.9.2

V dim(V ) = n B = { , , … , }b ⃗ 
1 b ⃗ 

2 b ⃗ 
n V

v ⃗  B

( )CB v ⃗ 

 Example : Coordinate Vector9.9.1

V = P2 = − −2x+4x⃗  x2 ( )CB x⃗  B

B = {1, x, }x2

B = { , x, 1}x2

B = {x+ , x, 4}x2

, ,a1 a2 a3 = (1) + (x) + ( )x⃗  a1 a2 a3 x2

− −2x+4 = (1) + (x) + ( )x2 a1 a2 a3 x2
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Therefore the coordinate vector is

2. Again remember that the order of  is important. We proceed as above. We need to find  such that 
, that is:

Here the solution is

Therefore the coordinate vector is

3. Now we need to find  such that , that is:

The solution is

and the coordinate vector is

Given that the coordinate transformation  is an isomorphism, its inverse exists.

Let  be a finite dimensional vector space with dimension  and ordered basis . Then  is
an isomorphism whose inverse,

is given by

a1

a2

a3

= 4
= −2
= −1

( ) =CB x⃗ 
⎡

⎣
⎢

4
−2
−1

⎤

⎦
⎥

B , ,a1 a2 a3

= ( ) + (x) + (1)x⃗  a1 x2 a2 a3

− −2x+4 = ( ) + (x) + (1)x2 a1 x2 a2 a3

a1

a2

a3

= −1
= −2
= 4

( ) =CB x⃗ 
⎡

⎣
⎢

−1
−2

4

⎤

⎦
⎥

, ,a1 a2 a3 = (x+ ) + (x) + (4)x⃗  a1 x2 a2 a3

− −2x+4x2 = (x+ ) + (x) + (4)a1 x2 a2 a3

= ( ) +( + )(x) + (4)a1 x2 a1 a2 a3

a1

a2

a3

= −1
= −1
= 1

( ) =CB x⃗ 
⎡

⎣
⎢

−1
−1

1

⎤

⎦
⎥

: V →CB R
n

 Theorem : Inverse of the Coordinate Isomorphism9.9.1

V n B = { , , … , }b ⃗ 
1 b ⃗ 

2 b ⃗ 
n : V →CB R

n

: → VC−1
B R

n

= = + +⋯ +   for all   ∈ .C−1
B

⎡

⎣

⎢⎢⎢⎢

a1

a2

⋮
an

⎤

⎦

⎥⎥⎥⎥
a1b ⃗ 

1 a2b ⃗ 
2 anb ⃗ 

n

⎡

⎣

⎢⎢⎢⎢

a1

a2

⋮
an

⎤

⎦

⎥⎥⎥⎥
R
n
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We now discuss the main result of this section, that is how to represent a linear transformation with respect to different bases.

Let  and  be finite dimensional vector spaces, and suppose

 and  is an ordered basis of ;
 and  is an ordered basis of .

Let  be a linear transformation. If  and , then we can find a matrix  so that . For arbitrary
vector spaces  and , our goal is to represent  as a matrix., i.e., find a matrix  so that  and .

To find the matrix :

and thus for any ,

Since  for each , , which is simply the  column of . Therefore, the  column of  is
equal to .

The matrix of  corresponding to the ordered bases  and  is denoted  and is given by

This result is given in the following theorem.

Let  and  be vectors spaces of dimension  and  respectively, with  an ordered basis of  and 
an ordered basis of . Suppose  is a linear transformation. Then the unique matrix  of  corresponding
to  and  is given by

This matrix satisfies  for all .

We demonstrate this content in the following examples.

Let  be an isomorphism defined by

Suppose  is an ordered basis of  and

be an ordered basis of . Find the matrix .

Solution
To find , we use the following definition.

V W

dim(V ) = n = { , , … , }B1 b ⃗ 
1 b ⃗ 

2 b ⃗ 
n V

dim(W ) = m B2 W

T : V → W V =R
n W =R

m A = TTA
V W T A : →TA R

n
R
m = TTA CB2 C−1

B1

A

= T   implies that   = T ,TA CB2 C−1
B1

TACB1 CB2

∈ Vv ⃗ 

[T ( )] = [ ( )] = A ( ).CB2
v ⃗  TA CB1

v ⃗  CB1
v ⃗ 

( ) =CB1 b ⃗ 
j e ⃗ j ∈b ⃗ 

j B1 A ( ) = ACB1 b ⃗ 
j e ⃗ j jth A jth A

[T ( )]CB2 b ⃗ 
j

T B1 B2 (T )MB2B1

(T ) = [ ] .MB2B1 [T ( )]CB2 b ⃗ 
1 [T ( )]CB2 b ⃗ 

2 ⋯ [T ( )]CB2 b ⃗ 
n

 Theorem 9.9.2

V W n m = { , , … , }B1 b ⃗ 
1 b ⃗ 

2 b ⃗ 
n V B2

W T : V → W (T )MB2B1 T

B1 B2

(T ) = [ ] .MB2B1 [T ( )]CB2 b ⃗ 
1 [T ( )]CB2 b ⃗ 

2 ⋯ [T ( )]CB2 b ⃗ 
n

[T ( )] = (T ) ( )CB2
v ⃗  MB2B1

CB1
v ⃗  ∈ Vv ⃗ 

 Example : Matrix of a Linear Transformation9.9.2

T : ↦P3 R
4

T (a +b +cx+d) =x3 x2

⎡

⎣

⎢⎢⎢

a+b

b−c

c+d

d+a

⎤

⎦

⎥⎥⎥

= { , , x, 1}B1 x3 x2 P3

= , , ,B2

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
1
0
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
0

−1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
0
0
1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

R
4 (T )MB2B1

(T )MB2B1
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First we find the result of applying  to the basis .

Next we apply the coordinate isomorphism  to each of these vectors. We will show the first in detail.

This implies that

which has a solution given by

Therefore .

You can verify that the following are true.

Using these vectors as the columns of  we have

The next example demonstrates that this method can be used to solve different types of problems. We will examine the above
example and see if we can work backwards to determine the action of  from the matrix .

Let  be an isomorphism with

(T ) = [ ]MB2B1 [T ( )]CB2 x3 [T ( )]CB2 x2 [T (x)]CB2 [T ( )]CB2 x2

T B1

T ( ) = ,T ( ) = ,T (x) = ,T (1) =x3

⎡

⎣

⎢⎢
⎢

1
0
0
1

⎤

⎦

⎥⎥
⎥

x2

⎡

⎣

⎢⎢
⎢

1
1
0
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
−1
1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0
1
1

⎤

⎦

⎥⎥
⎥

CB2

= + + +CB2

⎛

⎝

⎜
⎜⎜

⎡

⎣

⎢⎢⎢

1
0
0
1

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟
⎟⎟

a1

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥
a2

⎡

⎣

⎢⎢⎢

0
1
0
0

⎤

⎦

⎥⎥⎥
a3

⎡

⎣

⎢⎢⎢

0
0

−1
0

⎤

⎦

⎥⎥⎥
a4

⎡

⎣

⎢⎢⎢

0
0
0
1

⎤

⎦

⎥⎥⎥

a1

a2

−a1 a3

a4

= 1
= 0
= 0
= 1

a1

a2

a3

a4

= 1
= 0
= 1
= 1

[T ( )] =CB2 x3

⎡

⎣

⎢
⎢⎢

1
0
1
1

⎤

⎦

⎥
⎥⎥

[T ( )] = , [T (x)] = , [T (1)] =CB2 x2

⎡

⎣

⎢
⎢⎢

1
1
1
0

⎤

⎦

⎥
⎥⎥

CB2

⎡

⎣

⎢
⎢⎢

0
−1
−1

0

⎤

⎦

⎥
⎥⎥

CB2

⎡

⎣

⎢
⎢⎢

0
0

−1
1

⎤

⎦

⎥
⎥⎥

(T )MB2B1

(T ) =MB2B1

⎡

⎣

⎢⎢
⎢

1
0
1
1

1
1
1
0

0
−1
−1

0

0
0

−1
1

⎤

⎦

⎥⎥
⎥

T (T )MB2B1

 Example : Finding the Action of a Linear Transformation9.9.3

T : ↦P3 R
4
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where  is an ordered basis of  and

is an ordered basis of . If , find .

Solution
Recall that . Then we have

Therefore

You can verify that this was the definition of  given in the previous example.

We can also find the matrix of the composite of multiple transformations.

Let  and  be finite dimensional vector spaces, and suppose ,  are linear transformations.
Suppose  and  have ordered bases of ,  and  respectively. Then the matrix of the composite transformation 

 (or ) is given by

(T ) = ,MB2B1

⎡

⎣

⎢⎢
⎢

1
0
1
1

1
1
1
0

0
−1
−1

0

0
0

−1
1

⎤

⎦

⎥⎥
⎥

= { , , x, 1}B1 x3 x2
P3

= , , ,B2

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
1
0
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0

−1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
0
0
1

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

R
4 p(x) = a +b +cx+dx3 x2 T (p(x))

[T (p(x))] = (T ) (p(x))CB2
MB2B1

CB1

[T (p(x))]CB2 = (T ) (p(x))MB2B1 CB1

=

⎡

⎣

⎢
⎢⎢

1
0
1
1

1
1
1
0

0
−1
−1

0

0
0

−1
1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

a

b

c

d

⎤

⎦

⎥
⎥⎥

=

⎡

⎣

⎢
⎢⎢

a+b

b−c

a+b−c−d

a+d

⎤

⎦

⎥
⎥⎥

T (p(x)) = C−1
D

⎡

⎣

⎢⎢
⎢

a+b

b−c

a+b−c−d

a+d

⎤

⎦

⎥⎥
⎥

= (a+b) +(b−c) +(a+b−c−d) +(a+d)

⎡

⎣

⎢
⎢⎢

1
0
1
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
1
0
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
0

−1
0

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

0
0
0
1

⎤

⎦

⎥
⎥⎥

=

⎡

⎣

⎢
⎢⎢

a+b

b−c

c+d

a+d

⎤

⎦

⎥
⎥⎥

T (p(x))

 Theorem : Matrix of Composition9.9.3

V ,W U T : V ↦ W S : W ↦ U

V ,W U B1 B2 B3

S ∘ T ST

(ST ) = (S) (T ).MB3B1 MB3B2 MB2B1
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The next important theorem gives a condition on when  is an isomorphism.

Let  and  be vector spaces such that both have dimension  and let  be a linear transformation. Suppose  is
an ordered basis of  and  is an ordered basis of .

Then the conditions that  is invertible for all  and , and that  is invertible for some  and  are
equivalent. In fact, these occur if and only if  is an isomorphism.

If  is an isomorphism, the matrix  is invertible and its inverse is given by .

Consider the following example.

Suppose  is a linear transformation defined by

for all . Let  and

be ordered bases of  and , respectively.

1. Find .
2. Verify that  is an isomorphism by proving that  is invertible.
3. Find , and verify that .
4. Use  to find .

Solution

1. 

2. , so the matrix is invertible, and hence  is an isomorphism.

3. 

so

Therefore,

T

 Theorem : Isomorphism9.9.4

V W n T : V ↦ W B1

V B2 W

(T )MB2B1 B1 B2 (T )MB2B1 B1 B2

T

T (T )MB2B1 = ( )[ (T )]MB2B1

−1
MB1B2 T −1

 Example 9.9.4

T : →P3 M22

T (a +b +cx+d) = [ ]x3 x2 a+d

b+c

b−c

a−d

a +b +cx+d ∈x3 x2
P3 = { , , x, 1}B1 x3 x2

={[ ] , [ ] , [ ] , [ ]}B2
1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
1

P3 M22

(T )MB2B1

T (T )MB2B1

( )MB1B2 T −1 ( ) =MB1B2 T −1 [ (T )]MB2B1
−1

( )MB1B2 T −1 T −1

(T )MB2B1
= [ ][T (1)]CB2 [T (x)]CB2 [T ( )]CB2 x2 [T ( )]CB2 x3

= [ ][ ]CB2

1
0

0
1

[ ]CB2

0
1

1
0

[ ]CB2

0
1

−1
0

[ ]CB2

1
0

0
−1

=

⎡

⎣

⎢
⎢⎢

1
0
0
1

0
1
1
0

0
−1

1
0

1
0
0

−1

⎤

⎦

⎥
⎥⎥

det( (T )) = 4MB2B1 T

[ ] = 1, [ ] = x, [ ] = , [ ] = ,T −1 1
0

0
1

T −1 0
1

1
0

T −1 0
1

−1
0

x2 T −1 1
0

0
−1

x3

[ ] = , [ ] = ,T −1 1
0

0
0

1 +x3

2
T −1 0

0
1
0

x−x2

2

[ ] = , [ ] = .T −1 0
1

0
0

x+x2

2
T −1 0

0
1
0

1 −x3

2
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You should verify that . From this it follows that .

4. 

This page titled 9.9: The Matrix of a Linear Transformation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

( ) =MB1B2 T −1 1
2

⎡

⎣

⎢⎢
⎢

1
0
0
1

0
1

−1
0

0
1
1
0

1
0
0

−1

⎤

⎦

⎥⎥
⎥

(T ) ( ) =MB2B1 MB1B2 T −1 I4 [ (T ) = ( )MB2B1 ]−1 MB1B2 T −1

( [ ])CB1 T −1 p

r

q

s

[ ]T −1 p

r

q

s

= ( ) ([ ])MB1B2 T −1 CB2

p

r

q

s

= ( ( ) ([ ]))C−1
B1

MB1B2 T −1 CB2

p

r

q

s

= C−1
B1

⎛

⎝

⎜
⎜⎜

1
2

⎡

⎣

⎢
⎢⎢

1
0
0
1

0
1

−1
0

0
1
1
0

1
0
0

−1

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

p

q

r

s

⎤

⎦

⎥
⎥⎥

⎞

⎠

⎟
⎟⎟

= C−1
B1

⎛

⎝

⎜⎜⎜
1
2

⎡

⎣

⎢⎢⎢

p+s

q+r

r−q

p−s

⎤

⎦

⎥⎥⎥

⎞

⎠

⎟⎟⎟

= (p+s) + (q+r) + (r−q)x+ (p−s).
1
2

x3 1
2

x2 1
2

1
2
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9.E: Exercises

Suppose you have  and the  operation is as follows:

Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Suppose you have  and the  operation is as follows:

Scalar multiplication is defined in the usual way. Is this a vector space? Explain why or why not.

Suppose you have  and scalar multiplication is defined as  while vector addition is defined as usual. Is this
a vector space? Explain why or why not.

Suppose you have  and the  operation is defined as follows.

Scalar multiplication is same as usual. Is this a vector space? Explain why or why not.

Consider all the functions defined on a non empty set which have values in . Is this a vector space? Explain. The operations
are defined as follows. Here  signify functions and  is a scalar

Denote by  the set of real valued sequences. For ,  two of these, define their sum to be given by

and define scalar multiplication by

Is this a special case of Exercise ? Is this a vector space?

Let  be the set of ordered pairs of complex numbers. Define addition and scalar multiplication in the usual way.

Here the scalars are from . Show this is a vector space.

 Exercise 9.E. 1

R2 +

(a, b) +(c, d) = (a+d, b+c).

 Exercise 9.E. 2

R2 +

(a, b) +(c, d) = (0, b+d)

 Exercise 9.E. 3

R2 c(a, b) = (a, cb)

 Exercise 9.E. 4

R
2 +

(a, b) +(c, d) = (a−c, b−d)

 Exercise 9.E. 5

R

f , g a

(f +g)(x)
(af)(x)

= f(x) +g(x)
= a(f(x))

 Exercise 9.E. 6

RN ≡ {a⃗  an}∞
n=1 ≡ {b ⃗  bn}∞

n=1

+ = { +a⃗  b ⃗  an bn}∞
n=1

c = {c  where  = {a+na⃗  an}∞
n=1 a⃗  }∞

n=1

9.E. 5

 Exercise 9.E. 7

C
2

(z,w) +( , ) = (z+ ,w+ ), u(z,w) ≡ (uz, uw)ẑ ŵ ẑ ŵ

C
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Let  be the set of functions defined on a nonempty set which have values in a vector space . Is this a vector space?
Explain.

Consider the space of  matrices with operation of addition and scalar multiplication defined the usual way. That is, if 
 are two  matrices and  a scalar,

Consider the set of  symmetric matrices. That is, . In other words, . Show that this set of symmetric
matrices is a vector space and a subspace of the vector space of  matrices.

Consider the set of all vectors in  such that . Let the vector space operations be the usual ones. Is this a
vector space? Is it a subspace of ?

Consider the vectors in  such that . Is this a subspace of ? Is it a vector space? The addition and scalar
multiplication are the usual operations.

Define the operation of vector addition on  by . Let scalar multiplication be the usual
operation. Is this a vector space with these operations? Explain.

Let the vectors be real numbers. Define vector space operations in the usual way. That is  means to add the two numbers
and  means to multiply them. Is  with these operations a vector space? Explain.

Let the scalars be the rational numbers and let the vectors be real numbers which are the form  for  rational
numbers. Show that with the usual operations, this is a vector space.

Let  be the set of all polynomials of degree  or less. That is, these are of the form . Addition is defined as

and scalar multiplication is defined as

Show that, with this definition of the vector space operations that  is a vector space. Now let  denote those polynomials 
 such that . Is  a subspace of ? Explain.

 Exercise 9.E. 8

V W

 Exercise 9.E. 9

m×n

A,B m×n c

(A+B = + , (cA ≡ c( ))ij Aij Bij )ij Aij

 Exercise 9.E. 10

n×n A = AT =Aij Aji

n×n

 Exercise 9.E. 11

, (x, y)R2 x+y ≥ 0
R2

 Exercise 9.E. 12

, (x, y)R
2 xy = 0 R

2

 Exercise 9.E. 13

R2 (x, y) +(u, v) = (x+u, y+v+1)

 Exercise 9.E. 14

x+y

xy R

 Exercise 9.E. 15

a+b 2
–√ a, b

 Exercise 9.E. 16

P2 2 a+bx+cx2

(a+bx+c ) +( + x+ ) = (a+ ) +(b+ )x+(c+ )x2 d̂ b̂ ĉx2 â b̂ ĉ x2

d(a+bx+c ) = da+dbx+cdx2 x2

P2 V

a+bx+cx2 a+b+c = 0 V P2
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Let  be subspaces of a vector space  and consider  defined as the set of all  where  and .
Show that  is a subspace of .

Let  be subspaces of a vector space . Then  consists of all vectors which are in both  and . Show that 
 is a subspace of .

Let  be subspaces of a vector space . Then  consists of all vectors which are in either  or . Show that 
 is not necessarily a subspace of  by giving an example where  fails to be a subspace.

Let  consist of the real valued functions which are defined on an interval . For  is the name of the
function which satisfies . For  a real number, . Show this is a vector space.

Answer

The axioms of a vector space all hold because they hold for a vector space. The only thing left to verify is the assertions
about the things which are supposed to exist.  would be the zero function which sends everything to . This is an additive
identity. Now if  is a function, . Then

Hence . For each , let  and  if . Then these vectors are obviously linearly
independent.

Consider functions defined on  having values in . Explain how, if  is the set of all such functions,  can be
considered as .

Answer

Let  be the th component of a vector . Thus a typical element in  is .

Let the vectors be polynomials of degree no more than . Show that with the usual definitions of scalar multiplication and
addition wherein, for  a polynomial,  and for  polynomials , this is a vector
space.

Answer

This is just a subspace of the vector space of functions because it is closed with respect to vector addition and scalar
multiplication. Hence this is a vector space.

 Exercise 9.E. 17

M ,N V M +N m+n m ∈ M n ∈ N

M +N V

 Exercise 9.E. 18

M ,N V M ∩N M N

M ∩N V

 Exercise 9.E. 19

M ,N R2 N ∪M M N

N ∪M R
2 N ∪M

 Exercise 9.E. 20

X [a, b] f , g ∈ X, f +g

(f +g)(x) = f(x) +g(x) s (sf)(x) = s(f(x))

0 0
f −f(x) ≡ (−f(x))

(f +(−f))(x) ≡ f(x) +(−f)(x) ≡ f(x) +(−f(x)) = 0

f +−f = 0 x ∈ [a, b] (x) = 1fx (y) = 0fx y ≠ x

 Exercise 9.E. 21

{1, 2, ⋯ ,n} R V V

R
n

f(i) i ∈x⃗  Rn Rn (f(1), ⋯ , f(n))

 Exercise 9.E. 22

3
p(x) (ap)(x) = ap(x) p, q (p+q)(x) = p(x) +q(x)
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Let  be a vector space and suppose  is a set of vectors in . Show that  is in .

Answer

Determine if  is in the span given by

Determine if  is in the span given by

Determine if  is in the span given by

Show that the spanning set in Exercise  is a spanning set for , the vector space of all  matrices.

Consider the vector space of polynomials of degree at most , . Determine whether the following is a basis for .

Hint: There is a isomorphism from  to . It is defined as follows:

Then extend  linearly. Thus

It follows that if

is a basis for , then the polynomials will be a basis for  because they will be independent. Recall that an isomorphism
takes a linearly independent set to a linearly independent set. Also, since  is an isomorphism, it preserves all linear relations.

 Exercise 9.E. 23

V { , ⋯ , }x⃗ 1 x⃗ l V 0⃗  span{ , ⋯ , }x⃗ 1 x⃗ k

0 =∑
i=1

k

x⃗ k 0⃗ 

 Exercise 9.E. 24

p(x) = 4 −xx2

span{ +x, −1, −x+2}x2 x2

 Exercise 9.E. 25

p(x) = − +x+2x2

span{ +x+1, 2 +x}x2 x2

 Exercise 9.E. 26

A = [ ]
1
0

3
0

span{[ ] , [ ] , [ ] , [ ]}
1
0

0
1

0
1

1
0

1
1

0
1

0
1

1
1

 Exercise 9.E. 27

9.E. 26 M22 2 ×2

 Exercise 9.E. 28

2 P2 P2

{ +x+1, 2 +2x+1, x+1}x2 x2

R
3

P2

T = 1, T = x, T =e ⃗ 1 e ⃗ 2 e ⃗ 3 x2

T

T = +x+1, T = 2 +2x+1, T = 1 +x
⎡

⎣
⎢

1
1
1

⎤

⎦
⎥ x2

⎡

⎣
⎢

1
2
2

⎤

⎦
⎥ x2

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

1
2
2

⎤

⎦
⎥
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

R3 P2

T
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Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others. Hint: This is the
situation in which you have a spanning set and you want to cut it down to form a linearly independent set which is also a
spanning set. Use the same isomorphism above. Since  is an isomorphism, it preserves all linear relations so if such can be
found in , the same linear relations will be present in .

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

 Exercise 9.E. 29

P2

span{1 +x+ , 1 +2x, 1 +5x−3 }x2 x2

T

R3 P2

 Exercise 9.E. 30

P3

span{1 +x− + , 1 +2x+3 , −1 +3x+5 +7 , 1 +6x+4 +11 }x2 x3 x3 x2 x3 x2 x3

 Exercise 9.E. 31

P3

span{1 +x− + , 1 +2x+3 , −1 +3x+5 +7 , 1 +6x+4 +11 }x2 x3 x3 x2 x3 x2 x3

 Exercise 9.E. 32

P3

span{ −2 +x+2, 3 − +2x+2, 7 + +4x+2, 5 +3x+2}x3 x2 x3 x2 x3 x2 x3

 Exercise 9.E. 33

P3

span{ +2 +x−2, 3 +3 +2x−2, 3 +x+2, 3 +x+2}x3 x2 x3 x2 x3 x3

 Exercise 9.E. 34

P3

span{ −5 +x+5, 3 −4 +2x+5, 5 +8 +2x−5, 11 +6x+5}x3 x2 x3 x2 x3 x2 x3

 Exercise 9.E. 35

P3

span{ −3 +x+3, 3 −2 +2x+3, 7 +7 +3x−3, 7 +4x+3}x3 x2 x3 x2 x3 x2 x3
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Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

 Exercise 9.E. 36

P3

span{ − +x+1, 3 +2x+1, 4 + +2x+1, 3 +2x−1}x3 x2 x3 x3 x2 x3

 Exercise 9.E. 37

P3

span{ − +x+1, 3 +2x+1, 13 + +8x+4, 3 +2x−1}x3 x2 x3 x3 x2 x3

 Exercise 9.E. 38

P3

span{ −3 +x+3, 3 −2 +2x+3, −5 +5 −4x−6, 7 +4x−3}x3 x2 x3 x2 x3 x2 x3

 Exercise 9.E. 39

P3

span{ −2 +x+2, 3 − +2x+2, 7 − +4x+4, 5 +3x−2}x3 x2 x3 x2 x3 x2 x3

 Exercise 9.E. 40

P3

span{ −2 +x+2, 3 − +2x+2, 3 +4 +x−2, 7 − +4x+4}x3 x2 x3 x2 x3 x2 x3 x2

 Exercise 9.E. 41

P3

span{ −4 +x+4, 3 −3 +2x+4, −3 +3 −2x−4, −2 +4 −2x−4}x3 x2 x3 x2 x3 x2 x3 x2

 Exercise 9.E. 42

P3

span{ +2 +x−2, 3 +3 +2x−2, 5 + +2x+2, 10 +10 +6x−6}x3 x2 x3 x2 x3 x2 x3 x2
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Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Find a basis in  for the subspace

If the above three vectors do not yield a basis, exhibit one of them as a linear combination of the others.

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

 Exercise 9.E. 43

P3

span{ + +x−1, 3 +2 +2x−1, +1, 4 +3 +2x−1}x3 x2 x3 x2 x3 x3 x2

 Exercise 9.E. 44

P3

span{ − +x+1, 3 +2x+1, +2 −1, 4 + +2x+1}x3 x2 x3 x3 x2 x3 x2

 Exercise 9.E. 45

{ + −x−1, 3 +2 +2x−1}x3 x2 x3 x2

P3

 Exercise 9.E. 46

{ −2 −x+2, 3 − +2x+2}x3 x2 x3 x2

P3

 Exercise 9.E. 47

{ −3 −x+3, 3 −2 +2x+3}x3 x2 x3 x2

P3

 Exercise 9.E. 48

{ −2 −3x+2, 3 − −6x+2, −8 +18x+10}x3 x2 x3 x2 x3

P3

 Exercise 9.E. 49

{ −3 −3x+3, 3 −2 −6x+3, −8 +18x+40}x3 x2 x3 x2 x3

P3
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Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Here are some vectors.

If these are linearly independent, extend to a basis for all of .

Determine if the following set is linearly independent. If it is linearly dependent, write one vector as a linear combination of
the other vectors in the set.

Determine if the following set is linearly independent. If it is linearly dependent, write one vector as a linear combination of
the other vectors in the set.

Determine if the following set is linearly independent. If it is linearly dependent, write one vector as a linear combination of
the other vectors in the set.

Determine if the following set is linearly independent. If it is linearly dependent, write one vector as a linear combination of
the other vectors in the set.

If you have  vectors in  and the vectors are linearly independent, can it always be concluded they span ?

Answer

Yes. If not, there would exist a vector not in the span. But then you could add in this vector and obtain a linearly
independent set of vectors with more vectors than a basis.

 Exercise 9.E. 50

{ − +x+1, 3 +2x+1, 4 +2x+2}x3 x2 x3 x3

P3

 Exercise 9.E. 51

{ + +2x−1, 3 +2 +4x−1, 7 +8x+23}x3 x2 x3 x2 x3

P3

 Exercise 9.E. 52

{x+1, +2, −x−3}x2 x2

 Exercise 9.E. 53

{ +x, −2 −4x−6, 2x−2}x2 x2

 Exercise 9.E. 54

{[ ] , [ ] , [ ]}
1
0

2
1

−7
−2

2
−3

4
1

0
2

 Exercise 9.E. 55

{[ ] , [ ] , [ ] , [ ]}
1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
1

 Exercise 9.E. 56

5 R5 R5
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If you have  vectors in , is it possible they are linearly independent? Explain.

Answer

No. They can't be.

Let  be the polynomials of degree no more than . Determine which of the following are bases for this vector space.

a. 
b. 

Answer
a. 
b. Suppose

Then combine the terms according to power of .

Is there a non zero solution to the system

, Solution is:

Therefore, these are linearly independent.

In the context of the above problem, consider polynomials

Show that this collection of polynomials is linearly independent on an interval  if and only if

is an invertible matrix.

Answer

Let  denote the th of these polynomials. Suppose . Then collecting terms according to the exponent
of , you need to have

 Exercise 9.E. 57

6 R
5

 Exercise 9.E. 58

P3 3

{x+1, + +2x, +x, + +x}x3 x2 x2 x3 x2

{ +1, +x, 2 + , 2 − −3x+1}x3 x2 x3 x2 x3 x2

( +1) + ( +x) + (2 + ) + (2 − −3x+1) = 0c1 x3 c2 x2 c3 x3 x2 c4 x3 x2

x

( +2 +2 ) +( + − ) +( −3 )x+( + ) = 0c1 c3 c4 x3 c2 c3 c4 x2 c2 c4 c1 c4

+2 +2c1 c3 c4

+ −c2 c3 c4

−3c2 c4

+c1 c4

= 0
= 0
= 0
= 0

[ = 0, = 0, = 0, = 0]c1 c2 c3 c4

 Exercise 9.E. 59

{ + + x+ , i = 1, 2, 3, 4}aix
3 bix

2 ci di

[s, t]

⎡

⎣

⎢⎢⎢

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

⎤

⎦

⎥⎥⎥

(x)pi i (x) = 0∑i Cipi
x
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The matrix of coefficients is just the transpose of the above matrix. There exists a non trivial solution if and only if the
determinant of this matrix equals .

Let the field of scalars be , the rational numbers and let the vectors be of the form  where  are rational numbers.
Show that this collection of vectors is a vector space with field of scalars  and give a basis for this vector space.

Answer

When you add two of these you get one and when you multiply one of these by a scalar, you get another one. A basis is 
. By definition, the span of these gives the collection of vectors. Are they independent? Say  where 

 are rational numbers. If , then  which can’t happen since a is rational. If , then 
which again can’t happen because on the left is a rational number and on the right is an irrational. Hence both  and
so this is a basis.

Suppose  is a finite dimensional vector space. Based on the exchange theorem above, it was shown that any two bases have
the same number of vectors in them. Give a different proof of this fact using the earlier material in the book. Hint: Suppose 

 and  are two bases with . Then define

by

Consider the linear transformation, . Argue it is a one to one and onto mapping from  to . Now consider a matrix
of this linear transformation and its reduced row-echelon form.

Answer

This is obvious because when you add two of these you get one and when you multiply one of these by a scalar, you get
another one. A basis is . By definition, the span of these gives the collection of vectors. Are they independent? Say 

 where  are rational numbers. If , then  which can’t happen since  is rational. If ,
then  which again can’t happen because on the left is a rational number and on the right is an irrational. Hence
both  and so this is a basis.

Let . Is  a subspace of ?

Answer

This is not a subspace.  is in it, but  is not.

+ + +C1a1 C2a2 C3a3 C4a4

+ + +C1b1 C2b2 C3b3 C4b4

+ + +C1c1 C2c2 C3c3 C4c4

+ + +C1d1 C2d2 C3d3 C4d4

= 0
= 0
= 0
= 0

0

 Exercise 9.E. 60

Q a+b 2–√ a, b
Q

{1, }2–√ a+b = 02–√
a, b a ≠ 0 b = −a2

–√ b ≠ 0 −a = b 2
–√

a, b = 0

 Exercise 9.E. 61

V

{ , ⋯ , }x⃗ 1 x⃗ n { , ⋯ , }y ⃗ 1 y ⃗ m m < n

φ : ↦ V , ψ : ↦ VR
n

R
m

φ( ) = , ψ( ) =a⃗  ∑
k=1

n

akx⃗ k b ⃗  ∑
j=1

m

bjy ⃗ j

∘φψ−1
Rn Rm

{1, }2–√
a+b = 02–√ a, b a ≠ 0 b = −a2–√ a b ≠ 0

−a = b 2–√
a, b = 0

 Exercise 9.E. 62

M = { = ( , , , ) ∈ : | | ≤ 4}u⃗  u1 u2 u3 u4 R4 u1 M R4

⎡

⎣

⎢⎢⎢

1
1
1
1

⎤

⎦

⎥⎥⎥
20

⎡

⎣

⎢⎢⎢

1
1
1
1

⎤

⎦

⎥⎥⎥
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Let . Is  a subspace of ?

Answer

This is not a subspace.

Let  be a subset of  given by

In words,  is the set of all symmetric  matrices. Is  a subspace of ?

Let  be a subset of  given by

Is  a subspace of ?

Let  be a subset of  given by

Is  a subspace of ?

Let  be a subset of  given by

Is  a subspace of ?

Let :  be a linear transformation such that

Find .

Answer

By linearity we have  and 
. Thus 

.

 Exercise 9.E. 63

M = { = ( , , , ) ∈ : sin( ) = 1}u⃗  u1 u2 u3 u4 R4 u1 M R4

 Exercise 9.E. 64

W M22

W = {A|A ∈ , = A}M22 AT

W 2 ×2 W M22

 Exercise 9.E. 65

W M22

W ={[ ] |a, b, c, d ∈ R, a+b = c+d}
a

c

b

d

W M22

 Exercise 9.E. 66

W P3

W = {a +b +cx+d| a, b, c, d ∈ R, d = 0}x3 x2

W P3

 Exercise 9.E. 67

W P3

W = {p(x) = a +b +cx+d| a, b, c, d ∈ R, p(2) = 1}x3 x2

W P3

 Exercise 9.E. 68

T →RP2

T ( ) = 1; T ( +x) = 5; T ( +x+1) = −1.x2 x2 x2

T (a +bx+c)x2

T ( ) = 1, T (x) = T ( +x− ) = T ( +x) −T ( ) = 5 −1 = 5,x2 x2 x2 x2 x2

T (1) = T ( +x+1 −( +x)) = T ( +x+1) −T ( +x)) = −1 −5 = −6x2 x2 x2 x2

T (a +bx+c) = aT ( ) +bT (x) +cT (1) = a+5b−6cx2 x2
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Consider the following functions : . Explain why each of these functions  is not linear.

a. 

b. 

c. 

d. 

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

 Exercise 9.E. 69

T →R
3

R
2 T

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

x+2y+3z+1
2y−3x+z

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

x+2 +3zy2

2y+3z+z

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

sinx+2y+3z
2y+3z+z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x+2y+3z
2y+3z−lnz

 Exercise 9.E. 70

T

T
⎡

⎣
⎢

1
1

−7

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
0
6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3

−1

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

3
3
3

1
2
3

1
3

−1

⎤

⎦
⎥
⎡

⎣
⎢

6
5
6

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

29
46
27

9
13
11

5
8
5

⎤

⎦
⎥

 Exercise 9.E. 71

T

T
⎡

⎣
⎢

1
2

−18

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−1
15

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

4

⎤

⎦
⎥

=
⎡

⎣
⎢

5
2
5

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
5

⎤

⎦
⎥

=
⎡

⎣
⎢

2
5

−2

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 
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Answer

Consider the following functions : . Show that each is a linear transformation and determine for each the matrix 
such that .

a. 

b. 

c. 

d. 

Suppose

exists where each  and let vectors  in  be given. Show that there always exists a linear
transformation  such that .

Let  and  be subspaces of  and  respectively and let :  be a linear transformation. Suppose that 
 is linearly independent. Show that it must be the case that  is also linearly independent.

Answer

If , then using linearity properties of  we get

Since we assume that  is linearly independent, we must have all , and therefore we conclude that 
 is also linearly independent.

Let

=
⎡

⎣
⎢

5
2
5

3
3
5

2
5

−2

⎤

⎦
⎥
⎡

⎣
⎢

11
10
12

4
4
3

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

109
112
81

38
35
34

10
10
8

⎤

⎦
⎥

 Exercise 9.E. 72

T →R3 R2 A

T ( ) = Ax⃗  x⃗ 

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

x+2y+3z
2y−3x+z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

7x+2y+z

3x−11y+2z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

3x+2y+z

x+2y+6z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

2y−5x+z

x+y+z

 Exercise 9.E. 73

[ ⋯A1 An]−1

∈Aj Rn { , ⋯ , }B1 Bn Rm

T T ( ) =Ai Bi

 Exercise 9.E. 74

V W Rn Rm T V → W

{T , ⋯ ,T }v ⃗ 1 v ⃗ r { , ⋯ , }v ⃗ 1 v ⃗ r

= 0∑
i

r

aiv ⃗ r T

0 = T (0) = T ( ) = T ( ).∑
i

r

aiv ⃗ r ∑
i

r

ai v ⃗ r

{T , ⋯ ,T }v ⃗ 1 v ⃗ r = 0ai
{ , ⋯ , }v ⃗ 1 v ⃗ r

 Exercise 9.E. 75
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Let  where  is the matrix

Give a basis for .

Let

Let  where  is the matrix

Find a basis for . In this case, the original vectors do not form an independent set.

Answer

Since the third vector is a linear combinations of the first two, then the image of the third vector will also be a linear
combinations of the image of the first two. However the image of the first two vectors are linearly independent (check!),
and hence form a basis of the image. Thus a basis for  is:

If  is linearly independent and  is a one to one linear transformation, show that  is also linearly
independent. Give an example which shows that if  is only linear, it can happen that, although  is linearly
independent,  is not. In fact, show that it can happen that each of the  equals .

Let  and  be subspaces of  and  respectively and let :  be a linear transformation. Show that if  is onto 
 and if  is a basis for , then .

V = span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
1
2
0

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

0
1
1
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
1
0
1

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = Ax⃗  x⃗  A

⎡

⎣

⎢⎢⎢

1
0
0
1

1
1
1
1

1
1
2
1

1
0
1
2

⎤

⎦

⎥⎥⎥

Im(T )

 Exercise 9.E. 76

V = span , ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢
⎢

1
0
0
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
1
1
1

⎤

⎦

⎥⎥
⎥

⎡

⎣

⎢⎢
⎢

1
4
4
1

⎤

⎦

⎥⎥
⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = Ax⃗  x⃗  A

⎡

⎣

⎢⎢⎢

1
0
0
1

1
1
1
1

1
1
2
1

1
0
1
2

⎤

⎦

⎥⎥⎥

Im(T )

Im(T )

V = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢
⎢⎢

2
0
1
3

⎤

⎦

⎥
⎥⎥

⎡

⎣

⎢
⎢⎢

4
2
4
5

⎤

⎦

⎥
⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

 Exercise 9.E. 77

{ , ⋯ , }v ⃗ 1 v ⃗ r T {T , ⋯ ,T }v ⃗ 1 v ⃗ r
T { , ⋯ , }v ⃗ 1 v ⃗ r

{T , ⋯ ,T }v ⃗ 1 v ⃗ r Tv ⃗ j 0

 Exercise 9.E. 78

V W Rn Rm T V → W T

W { , ⋯ , }v ⃗ 1 v ⃗ r V span{T , ⋯ ,T } = Wv ⃗ 1 v ⃗ r
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Define :  as follows.

Find a basis for . Also find a basis for .

Define :  as follows.

where on the right, it is just matrix multiplication of the vector  which is meant. Explain why  is an isomorphism of  to 
.

Suppose :  is a linear transformation given by

where  is a  matrix. Show that  is an isomorphism if and only if  is invertible.

Suppose :  is a linear transformation given by

where  is a  matrix. Show that  is never an isomorphism if . In particular, show that if ,  cannot be
onto and if , then  cannot be one to one.

Define :  as follows.

where on the right, it is just matrix multiplication of the vector  which is meant. Show that  is one to one. Next let 
. Show that  is an isomorphism of  and .

In the above problem, find a  matrix  such that the restriction of  to  gives the same result as  on .
Hint: You might let  be such that

 Exercise 9.E. 79

T →R4 R3

T =x⃗ 
⎡

⎣
⎢

3
2
1

2
2
1

1
−2
−1

8
6
3

⎤

⎦
⎥ x⃗ 

Im(T ) ker(T )

 Exercise 9.E. 80

T →R4 R3

T =x⃗ 
⎡

⎣
⎢

1
1
0

2
1
1

0
1
1

⎤

⎦
⎥ x⃗ 

x⃗  T R
3

R3

 Exercise 9.E. 81

T →R3 R3

T = Ax⃗  x⃗ 

A 3 ×3 T A

 Exercise 9.E. 82

T →R3 R3

T = Ax⃗  x⃗ 

A m×n T m ≠ n m > n T

m < n T

 Exercise 9.E. 83

T →R
2

R
3

T =x⃗ 
⎡

⎣
⎢

1
1
0

0
1
1

⎤

⎦
⎥ x⃗ 

x⃗  T

W = Im(T ) T R
2 Im(T )

 Exercise 9.E. 84

2 ×3 A A Im(T ) T −1 Im(T )
A

A = [ ] , A = [ ]
⎡

⎣
⎢

1
1
0

⎤

⎦
⎥

1
0

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

0
1
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now find another vector  such that

is a basis. You could pick

for example. Explain why this one works or one of your choice works. Then you could define  to equal some vector in .
Explain why there will be more than one such matrix  which will deliver the inverse isomorphism  on .

Now let  equal  and let :  be a linear transformation where

and

Explain why  is an isomorphism. Determine a matrix  which, when multiplied on the left gives the same result as  on 
and a matrix  which delivers  on . Hint: You need to have

Now enlarge ,  to obtain a basis for . You could add in  for example, and then pick another vector in  and

let  equal this other vector. Then you would have

This would involve picking for the new vector in  the vector . Then you could find . You can do
something similar to find a matrix for  denoted as .

∈v ⃗  R3

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
0

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥ v ⃗ 

⎫

⎭
⎬
⎪

⎪

=v ⃗ 
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

Av ⃗  R
2

A T −1 Im(T )

 Exercise 9.E. 85

V span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
T V → W

W = span ,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

⎡

⎣

⎢⎢⎢

1
0
1
0

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

0
1
1
1

⎤

⎦

⎥⎥⎥

⎫

⎭

⎬

⎪⎪⎪

⎪⎪⎪

T = , T =
⎡

⎣
⎢

1
0
1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

1
0
1
0

⎤

⎦

⎥⎥
⎥

⎡

⎣
⎢

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢
⎢

0
1
1
1

⎤

⎦

⎥⎥
⎥

T A T V

B T −1 W

A =
⎡

⎣
⎢

1
0
1

0
1
1

⎤

⎦
⎥

⎡

⎣

⎢⎢⎢

1
0
1
0

0
1
1
1

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢

1
0
1

⎤

⎦
⎥
⎡

⎣
⎢

0
1
1

⎤

⎦
⎥ R

3
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥ R

4

A
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥

A =
⎡

⎣
⎢

1
0
1

0
1
1

0
0
1

⎤

⎦
⎥

⎡

⎣

⎢
⎢⎢

1
0
1
0

0
1
1
1

0
0
0
1

⎤

⎦

⎥
⎥⎥

R4 [ ]0 0 0 1 T A

T −1 B
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Let  and let

Find a basis of  consisting of vectors in .

Answer

In this case  and a basis for  consisting of vectors in  can be obtained by taking any (nonzero) vector from
.

Let  be a linear transformation given by

Find a basis for  and .

Answer

A basis for  is  and a basis for  is . There are many other possibilities for the specific

bases, but in this case  and .

Let  be a linear transformation given by

Find a basis for  and .

Answer

In this case  and  (pick any basis of ).

Let  and let

Extend this basis of  to a basis of .

Answer

There are many possible such extensions, one is (how do we know?):

 Exercise 9.E. 86

V =R
3

W = span(S),  where S = , , ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−1

1

⎤

⎦
⎥
⎡

⎣
⎢

−2
2

−2

⎤

⎦
⎥
⎡

⎣
⎢

−1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

1
−1

3

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

W S

dim(W ) = 1 W S

S

 Exercise 9.E. 87

T

T [ ] = [ ][ ]
x

y

1
1

1
1

x

y

ker(T ) Im(T )

ker(T ) {[ ]}
1

−1
Im(T ) {[ ]}

1
1

dim(ker(T )) = 1 dim(Im(T )) = 1

 Exercise 9.E. 88

T

T [ ] = [ ][ ]
x

y

1
1

0
1

x

y

ker(T ) Im(T )

ker(T ) = {0} Im(T ) =R
2

R
2

 Exercise 9.E. 89

V =R3

W = span ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

−1
2

−1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

W V
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Let  be a linear transformation given by

What is ?

Answer

We can easily see that , and thus .

Consider the following functions which map  to .

a.  multiplies the th component of  by a nonzero number .
b.  replaces the th component of  with  times the th component added to the h component.
c.  switches the th and th components.

Show these functions are linear transformations and describe their matrices  such that .

Answer
a. The matrix of  is the elementary matrix which multiplies the th diagonal entry of the identity matrix by .
b. The matrix of  is the elementary matrix which takes  times the th row and adds to the th row.
c. The matrix of  is the elementary matrix which switches the th and the th rows where the two components are in the 

th and th positions.

You are given a linear transformation :  and you know that

where  exists. Show that the matrix of  is of the form

Answer

Suppose

Thus . Therefore

, ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
1
1

⎤

⎦
⎥
⎡

⎣
⎢

−1
2

−1

⎤

⎦
⎥
⎡

⎣
⎢

0
0
1

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪

 Exercise 9.E. 90

T

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

1
1

1
1

1
1

⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

dim(ker(T ))

dim(Im(T )) = 1 dim(ker(T )) = 3 −dim(Im(T )) = 3 −1 = 2

 Exercise 9.E. 91

R
n

R
n

T j x⃗  b

T i x⃗  b j i

T i j

A T ( ) = Ax⃗  x⃗ 

T j b

T b j i

T i j

i j

 Exercise 9.E. 92

T →R
n

R
m

T ( ) =Ai Bi

[ ]A1 ⋯ An
−1

T

[ ]B1 ⋯ Bn [ ]A1 ⋯ An
−1

=

⎡

⎣

⎢⎢⎢

c ⃗ T1

⋮

c ⃗ Tn

⎤

⎦

⎥⎥⎥ [ ]a⃗ 1 ⋯ a⃗ n
−1

=c ⃗ T
i a⃗ j δij

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/94671?pdf


9.E.19 https://math.libretexts.org/@go/page/94671

Thus . If  is arbitrary, then since the matrix  is
invertible, there exists a unique  such that  Hence

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

[ ]b ⃗ 
1 ⋯ b ⃗ 

n
[ ]a⃗ 1 ⋯ a⃗ n

−1 a⃗ i = [ ]b ⃗ 
1 ⋯ b ⃗ 

n

⎡

⎣

⎢⎢⎢

c ⃗ T1

⋮

c ⃗ T
n

⎤

⎦

⎥⎥⎥ a⃗
 i

= [ ]b ⃗ 
1 ⋯ b ⃗ 

n e ⃗ i

= b ⃗ 
i

T = [ ] = Aa⃗ i b ⃗ 
1 ⋯ b ⃗ 

n [ ]a⃗ 1 ⋯ a⃗ n
−1 a⃗ i a⃗ i x⃗  [ ]a⃗ 1 ⋯ a⃗ n

y ⃗  [ ] =a⃗ 1 ⋯ a⃗ n y ⃗  x⃗ 

T = T ( ) = T = A = A( ) = Ax⃗  ∑
i=1

n

yia⃗ i ∑
i=1

n

yi a⃗ i ∑
i=1

n

y1 a⃗ i ∑
i=1

n

yia⃗ i x⃗ 

 Exercise 9.E. 93

T

T
⎡

⎣
⎢

1
2

−6

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−1

5

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

5
1
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
1
5

⎤

⎦
⎥

=
⎡

⎣
⎢

5
3

−2

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

5
1
3

1
1
5

5
3

−2

⎤

⎦
⎥
⎡

⎣
⎢

3
2
4

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

37
17
11

17
7

14

11
5
6

⎤

⎦
⎥

 Exercise 9.E. 94

T

T
⎡

⎣
⎢

1
1

−8

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
0
6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3
1

⎤

⎦
⎥

=
⎡

⎣
⎢

2
4
1

⎤

⎦
⎥

=
⎡

⎣
⎢

6
1

−1

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 
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Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

Find the matrix of . That is find  such that .

Answer

Suppose  is a linear transformation such that

=
⎡

⎣
⎢

1
3
1

2
4
1

6
1

−1

⎤

⎦
⎥
⎡

⎣
⎢

6
5
6

3
3
2

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

52
44
5

21
23
4

9
8
1

⎤

⎦
⎥

 Exercise 9.E. 95

T

T
⎡

⎣
⎢

1
3

−7

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−2

6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

−3
1
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3
−3

⎤

⎦
⎥

=
⎡

⎣
⎢

5
3

−3

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

−3
1
3

1
3

−3

5
3

−3

⎤

⎦
⎥
⎡

⎣
⎢

2
1
4

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

15
17
−9

1
11
−3

3
7

−3

⎤

⎦
⎥

 Exercise 9.E. 96

T

T
⎡

⎣
⎢

1
1

−7

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
0
6

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

2

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
2
3

⎤

⎦
⎥

=
⎡

⎣
⎢

1
3

−1

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

3
3
3

1
2
3

1
3

−1

⎤

⎦
⎥
⎡

⎣
⎢

6
5
6

2
2
1

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

29
46
27

9
13
11

5
8
5

⎤

⎦
⎥

 Exercise 9.E. 97

T
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Find the matrix of . That is find  such that .

Answer

Consider the following functions : . Show that each is a linear transformation and determine for each the matrix 
such that .

a. 

b. 

c. 

d. 

Consider the following functions : . Explain why each of these functions  is not linear.

a. 

b. 

c. 

d. 

T
⎡

⎣
⎢

1
2

−18

⎤

⎦
⎥

T
⎡

⎣
⎢

−1
−1
15

⎤

⎦
⎥

T
⎡

⎣
⎢

0
−1

4

⎤

⎦
⎥

=
⎡

⎣
⎢

5
2
5

⎤

⎦
⎥

=
⎡

⎣
⎢

3
3
5

⎤

⎦
⎥

=
⎡

⎣
⎢

2
5

−2

⎤

⎦
⎥

T A T ( ) = Ax⃗  x⃗ 

=
⎡

⎣
⎢

5
2
5

3
3
5

2
5

−2

⎤

⎦
⎥
⎡

⎣
⎢

11
10
12

4
4
3

1
1
1

⎤

⎦
⎥

⎡

⎣
⎢

109
112
81

38
35
34

10
10
8

⎤

⎦
⎥

 Exercise 9.E. 98

T →R
3

R
2 A

T ( ) = Ax⃗  x⃗ 

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

x+2y+3z
2y−3x+z

T = [ ]
⎡

⎣
⎢
x

y

z

⎤

⎦
⎥

7x+2y+z

3x−11y+2z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

3x+2y+z

x+2y+6z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

2y−5x+z

x+y+z

 Exercise 9.E. 99

T →R3 R2 T

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x+2y+3z+1
2y−3x+z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x+2 +3zy2

2y+3x+z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

sinx+2y+3z
2y+3x+z

T = [ ]
⎡

⎣
⎢

x

y

z

⎤

⎦
⎥

x+2y+3z
2y+3x−lnz
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Suppose

exists where each  and let vectors  in  be given. Show that there always exists a linear
transformation  such that .

Find the matrix for  where .

Answer

Recall that  and so the desired matrix has th column equal to . Therefore, the matrix desired is

Find the matrix for  where .

Answer

Find the matrix for  where .

Answer

Let  be a basis of  and let  be a vector in . Find .

Let  be a basis of  and let  be a vector in . Find .

Answer

 Exercise 9.E. 100

[ ]A1 ⋯ An
−1

∈Aj R
n { , ⋯ , }B1 Bn R

m

T T ( ) =Ai Bi

 Exercise 9.E. 101

T ( ) = ( )w⃗  projv ⃗  w⃗  =v ⃗  [ ]1 −2 3 T

( ) =proju ⃗  v ⃗  ∙v ⃗  u ⃗ 

|| |u ⃗  |2
u⃗  i ( )proju ⃗  e ⃗ i

1
14

⎡

⎣
⎢

1
−2

3

−2
4

−6

3
−6

9

⎤

⎦
⎥

 Exercise 9.E. 102

T ( ) = ( )w⃗  projv ⃗  w⃗  =v ⃗  [ ]1 5 3 T

1
35

⎡

⎣
⎢

1
5
3

5
25
15

3
15
9

⎤

⎦
⎥

 Exercise 9.E. 103

T ( ) = ( )w⃗  projv ⃗  w⃗  =v ⃗  [ ]1 0 3 T

1
10

⎡

⎣
⎢

1
0
3

0
0
0

3
0
9

⎤

⎦
⎥

 Exercise 9.E. 104

B ={[ ] , [ ]}
2

−1
3
2

R
2 = [ ]x⃗ 

5
−7

R
2 ( )CB x⃗ 

 Exercise 9.E. 105

B = , ,
⎧

⎩
⎨
⎪

⎪

⎡

⎣
⎢

1
−1

2

⎤

⎦
⎥
⎡

⎣
⎢

2
1
2

⎤

⎦
⎥
⎡

⎣
⎢

−1
0
2

⎤

⎦
⎥
⎫

⎭
⎬
⎪

⎪
R3 =x⃗ 

⎡

⎣
⎢

5
−1

4

⎤

⎦
⎥ R2 ( )CB x⃗ 
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.

Let :  be a linear transformation defined by .

Consider the two bases

and

Find the matrix  of  with respect to the bases  and .

Answer

This page titled 9.E: Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) .

( ) =CB x⃗ 
⎡

⎣
⎢

2
1

−1

⎤

⎦
⎥

 Exercise 9.E. 106

T ↦R
2

R
2 T ([ ]) = [ ]

a

b

a+b

a−b

= { , } ={[ ] , [ ]}B1 v ⃗ 1 v ⃗ 2
1
0

−1
1

={[ ] , [ ]}B2
1
1

1
−1

M ,B2 B1 T B1 B2

= [ ]MB2B1

1
−1

0
1
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CHAPTER OVERVIEW

10: Some Prerequisite Topics
The topics presented in this section are important concepts in mathematics and therefore should be examined.

10.1: Sets and Set Notation
10.2: Well Ordering and Induction

This page titled 10: Some Prerequisite Topics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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10.1: Sets and Set Notation
A set is a collection of things called elements. For example  would be a set consisting of the elements 1,2,3, and 8. To
indicate that  is an element of  it is customary to write  We can also indicate when an element is not
in a set, by writing  which says that  is not an element of  Sometimes a rule specifies a set. For
example you could specify a set as all integers larger than  This would be written as

This notation says:  is the set of all integers,  such that 

Suppose  and  are sets with the property that every element of  is an element of . Then we say that  is a subset of  For
example,  is a subset of  In symbols, we write

It is sometimes said that “  is contained in " or even “  contains ". The same statement about the two sets may also be written
as

We can also talk about the union of two sets, which we write as . This is the set consisting of everything which is an element
of at least one of the sets,  or . As an example of the union of two sets, consider

This set is made up of the numbers which are in at least one of the two sets.

In general

Notice that an element which is in both  and  is also in the union, as well as elements which are in only one of  or .

Another important set is the intersection of two sets  and , written . This set consists of everything which is in both of the
sets. Thus  because  and  are those elements the two sets have in common. In general,

If  and  are two sets,  denotes the set of things which are in  but not in  Thus

For example, if  and , then .

A special set which is very important in mathematics is the empty set denoted by , which is defined as the set which has no
elements in it. It follows that the empty set is a subset of every set. This is true because if it were not so, there would have to exist a
set  such that  has something in it which is not in  However,  has nothing in it and so it must be that 

We can also use brackets to denote sets which are intervals of numbers. Let  and  be real numbers. Then

These sorts of sets of real numbers are called intervals. The two points  and  are called endpoints, or bounds, of the interval. In
particular,  is the lower bound while  is the upper bound of the above intervals, where applicable. Other intervals such as 

 are defined by analogy to what was just explained. In general, the curved parenthesis, , indicates the end point is not
included in the interval, while the square parenthesis, , indicates this end point is included. The reason that there will always be a

{1, 2, 3, 8}
3 {1, 2, 3, 8} , 3 ∈ {1, 2, 3, 8} .

9 ∉ {1, 2, 3, 8} 9 {1, 2, 3, 8} .
2.

S = {x ∈ Z : x > 2} .

S x, x > 2.

A B A B A B.
{1, 2, 3, 8} {1, 2, 3, 4, 5, 8} .

{1, 2, 3, 8} ⊆ {1, 2, 3, 4, 5, 8} .

A B B A

{1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8} .

A ∪ B

A B

{1, 2, 3, 8} ∪ {3, 4, 7, 8} = {1, 2, 3, 4, 7, 8} .

A ∪ B = {x : x ∈ A or x ∈ B}

A B A B

A B A ∩ B

{1, 2, 3, 8} ∩ {3, 4, 7, 8} = {3, 8} 3 8

A ∩ B = {x : x ∈ A and x ∈ B}

A B A ∖ B A B.

A ∖ B = {x ∈ A : x ∉ B}

A = {1, 2, 3, 8} B = {3, 4, 7, 8} A ∖ B = {1, 2, 3, 8} ∖ {3, 4, 7, 8} = {1, 2}

∅

A, ∅ A. ∅ ∅ ⊆ A.

a b

[a, b] = {x ∈ R : a ≤ x ≤ b}
[a, b) = {x ∈ R : a ≤ x < b}
(a, b) = {x ∈ R : a < x < b}
(a, b] = {x ∈ R : a < x ≤ b}
[a, ∞) = {x ∈ R : x ≥ a}
(−∞, a] = {x ∈ R : x ≤ a}

a b

a b

(−∞, b) (
[
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curved parenthesis next to  or  is that these are not real numbers and cannot be included in the interval in the way a real
number can.

To illustrate the use of this notation relative to intervals consider three examples of inequalities. Their solutions will be written in
the interval notation just described.

Solve the inequality .

Solution
We need to find  such that . Solving for , we see that  is the answer. This is written in terms of an
interval as 

Consider the following example.

Solve the inequality 

Solution
We need to find  such that  The solution is given by  or . Therefore,  which fit into
either of these intervals gives a solution. In terms of set notation this is denoted by 

Consider one last example.

Solve the inequality .

Solution
This inequality is true for any value of  where  is a real number. We can write the solution as  or 

In the next section, we examine another important mathematical concept.

This page titled 10.1: Sets and Set Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

∞ −∞

 Example : Solving an Inequality10.1.1

2x +4 ≤ x −8

x 2x +4 ≤ x −8 x x ≤ −12
(−∞, −12].

 Example : Solving an Inequality10.1.2

(x +1) (2x −3) ≥ 0.

x (x +1) (2x −3) ≥ 0. x ≤ −1 x ≥ 3
2

x

(−∞, −1] ∪ [ , ∞).3
2

 Example : Solving an Inequality10.1.3

x (x +2) ≥ −4

x x R (−∞, ∞) .
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10.2: Well Ordering and Induction
We begin this section with some important notation. Summation notation, written , represents a sum. Here,  is called the
index of the sum, and we add iterations until . For example,

Another example:

The following notation is a specific use of summation notation.

Notation : Summation Notation

Let  be real numbers, and suppose  while . These numbers can be listed in a rectangular array as given
by

Then  means to first sum the numbers in each column (using  as the index) and then to add the sums which
result (using  as the index). Similarly,  means to sum the vectors in each row (using  as the index) and then
to add the sums which result (using  as the index).

Notice that since addition is commutative,

We now consider the main concept of this section. Mathematical induction and well ordering are two extremely important
principles in math. They are often used to prove significant things which would be hard to prove otherwise.

A set is well ordered if every nonempty subset  contains a smallest element  having the property that  for all 

In particular, the set of natural numbers defined as

is well ordered.

Consider the following proposition.

Any set of integers larger than a given number is well ordered.

This proposition claims that if a set has a lower bound which is a real number, then this set is well ordered.

Further, this proposition implies the principle of mathematical induction. The symbol  denotes the set of all integers. Note
that if  is an integer, then there are no integers between  and 

i∑j
i=1 i

i = j

i = 1 +2 +⋯ +j∑
i=1

j

+ + =a11 a12 a13 ∑
i=1

3

a1i

10.2.1

aij 1 ≤ i ≤ r 1 ≤ j ≤ s

a11

a21

⋮
ar1

a12

a22

⋮
ar2

⋯
⋯

⋯

a1s

a2s

⋮
ars

∑
s

j=1 ∑
r

i=1 aij i

j ∑r
i=1 ∑

s
j=1 aij j

i

= .∑
j=1

s

∑
i=1

r

aij ∑
i=1

r

∑
j=1

s

aij

 Definition : Well Ordered10.2.1

S, z z ≤ x

x ∈ S.

N = {1, 2, ⋯}

 Proposition : Well Ordered Sets10.2.1

Z

a a a +1.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://math.libretexts.org/@go/page/14560?pdf
https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/10%3A_Some_Prerequisite_Topics/10.02%3A_Well_Ordering_and_Induction


10.2.2 https://math.libretexts.org/@go/page/14560

A set  having the property that  and  whenever , contains all integers  such that 

Proof

Let  consist of all integers larger than or equal to  which are not in  The theorem will be proved if  If 
 then by the well ordering principle, there would have to exist a smallest element of  denoted as  It must be

the case that  since by definition,  Thus , and so  and  because if  
 then  by the assumed property of  Therefore,  which contradicts the choice of  as

the smallest element of  (  is smaller.) Since a contradiction is obtained by assuming  it must be the case
that  and this says that every integer at least as large as  is also in .

Mathematical induction is a very useful device for proving theorems about the integers. The procedure is as follows.

Suppose  is a statement which is a function of the number , for , and we wish to show that  is true for
all . To do so using mathematical induction, use the following steps.

1. Base Case: Show  is true.
2. Assume  is true for some , which is the induction hypothesis. Then, using this assumption, show that  is

true.

Proving these two steps shows that  is true for all .

We can use this procedure to solve the following examples.

Prove by induction that .

Solution
By Procedure , we first need to show that this statement is true for . When , the statement says that

The sum on the left hand side also equals , so this equation is true for .

Now suppose this formula is valid for some  where  is an integer. Hence, the following equation is true.

We want to show that this is true for .

Suppose we add  to both sides of Equation .

 Theorem : Mathematical Induction10.2.1

S ⊆Z, a ∈ S n +1 ∈ S n ∈ S x ∈ Z

x ≥ a.

T a S. T = ∅.
T ≠ ∅ T , b.

b > a a ∉ T . b ≥ a +1 b −1 ≥ a b −1 ∉ S b −1 ∈
S, b −1 +1 = b ∈ S S. b −1 ∈ T b

T . b −1 T ≠ ∅,
T = ∅ a S

 Procedure : Proof by Mathematical Induction10.2.1

Sn n n = 1, 2, ⋯ Sn

n ≥ 1

S1

Sn n Sn+1

Sn n = 1, 2, ⋯

 Example : Proving by Induction10.2.1

=∑n
k=1 k2 n (n +1) (2n +1)

6

10.2.1 n = 1 n = 1

∑
k=1

1

k2 =
1 (1 +1) (2(1) +1)

6

=
6
6

= 1

1 n = 1

n ≥ 1 n

=∑
k=1

n

k2 n (n +1) (2n +1)
6

(10.2.1)

n +1

(n +1)2 (10.2.1)
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The step going from the first to the second line is based on the assumption that the formula is true for  Now simplify the
expression in the second line,

This equals

and

Therefore,

showing the formula holds for  whenever it holds for  This proves the formula by mathematical induction. In
other words, this formula is true for all .

Consider another example.

Show that for all , 

Solution
Again we will use the procedure given in Procedure  to prove that this statement is true for all . Suppose .
Then the statement says

which is true.

Suppose then that the inequality holds for  In other words,

is true.

Now multiply both sides of this inequality by . This yields

The theorem will be proved if this last expression is less than  This happens if and only if
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which occurs if and only if  and this is clearly true which may be seen from expanding
both sides. This proves the inequality.

Let’s review the process just used. If  is the set of integers at least as large as  for which the formula holds, the first step was
to show  and then that whenever  it follows  Therefore, by the principle of mathematical induction, 
contains  all positive integers. In doing an inductive proof of this sort, the set  is normally not mentioned. One
just verifies the steps above.

This page titled 10.2: Well Ordering and Induction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler
(Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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