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Preface
This is a set of notes I developed for an e-learning course in Algebraic Structures offered by Maseno, University in Western Kenya.
The idea is to introduce the key concepts of algebraic structures without assuming much background in higher mathematics. Math
education in Kenya is heavy on calculation (it's relatively easier to teach and evaluate), but often falls short when it comes to
teaching students to think creatively about mathematics, and really understand the subject as it relates to the world beyond the test.
On the bright side, these same students are usually very ready to take a more creative approach to mathematics: good skills in
calculation provides at least a good intuition for working with numbers, and gives a good foundation from which to build. Kenyan
students are also generally very enthusiastic when presented with interesting mathematics.

The notes are trying, then, to accomplish the following:

1. Give students a first encounter with algebraic structures: Groups, rings, fields, and vector spaces,
2. Create an intuition for how these objects appear 'in the world,' meaning both in the real world and in the broader scope of

mathematics,
3. Encourage students to engage with the material in a creative way, and
4. Teach/Reinforce important points from the foundations of mathematics, such as induction.

It's a lot to ask for a single ten-week term. Let's see where we get.

The notes themselves are divided into eleven 'chapters,' one for each week of Maseno's term, plus this introductory chapter. Taking
a cue from computer science, all numbering of chapters and sections starts at 0. As the course becomes fully developed, I will be
inserting videos for each section, giving an alternate presentation of the ideas. But the text is primary!

Here are some underlying principles that I believe strongly in, which also guide the formation of these notes.

1. We live in the future. Computers are somewhere between a million and a billion times faster at computation than humans are.
Therefore, we should focus our teaching on what humans do better than computers: Understanding, problem solving, and
placing things in context. It is often essential to understand how to compute things (indeed, otherwise we would not be able to
tell the computer how to do computations for us!), but computation should not be the aim of a course.

2. We live in the future. We can communicate at almost zero-cost at slightly less than the speed of light. Information is governed
by post-scarcity economics, and we need to treat it as such. This means we cannot treat information like a scarce resource to be
hoarded: we must share our infinite wealth freely. Thus, these notes will remain free, and will be distributed under the Gnu
Public License.

Design Principles
This book is also a programming project! As of this writing, I'm learning some modern web-programming tools; this book runs on
Django, HTML5, Javascript, JQuery, MathJAX, the Sage Cell Server, and probably more by the time I'm done. HTML5 support is
becoming more common in browsers, and should be an available standard for a long time to come.

Here is a list of design principles that I hope to adhere to for the final product:

1. An important principle of the book is to support multiple learning modes: there should be a combination of video and text for
every section.

2. Videos, for their part, should be no longer than five or ten minutes long. Likewise, sections of the text should be somewhere
south of 1000 words.

3. Each section should have at least one exercise, and these exercises should encourage both basic mechanical understanding and
encourage creative approaches to the material.

4. The finished work should be free and freely available.
5. The finished work should meet the standards of a Maseno University e-learning course; in particular, have at least ten 'topics' to

be digested at a rate of one-per-week, with clearly marked exercises to act as assignments.
6. Wherever reasonable, interactive elements (probably using Sage) should be included.
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CHAPTER OVERVIEW

1: Symmetry
Groups arise in nature whenever we can find symmetry. For example, the human body has a lateral symmetry: if you imagine
reversing left and right, most people would look more-or-less the same.

1.1: Symmetry
1.2: Counting Symmetries
1.3: Symmetric Polynomials
1.4: Abstraction. What is a group?
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1.1: Symmetry

Groups arise in nature whenever we can find symmetry. For example, the human body has a lateral symmetry: if you imagine
reversing left and right, most people would look more-or-less the same. (In fact, we see an example of this every time we look in a
mirror.)

Figure 1: Da Vinci's famous sketch demonstrates lateral symmetry in the human body. (Source)

Another example is in the formation of crystals. In a crystal, the atomic structure arranges itself into a very symmetrical pattern,
which you can see even with the unaided eye. The symmetry of the atomic structure means the atoms are packed very regularly,
which leads to the nice shapes we see. In the late 1800's, mathematicians used group theory to classify all of the shapes of crystals
that could ever exist in the world.

Algebraic Structures 1.0 - SymmetryAlgebraic Structures 1.0 - Symmetry
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Figure 2: Twinned pyrite crystal. (Source)

Tiling patterns -- two-dimensional pictures that repeat in regular ways -- are also an example of symmetry. Many cultures have
explored symmetry through tiling patterns, though the study of tiling was especially refined in the Islamic cultures during the
middle ages. Bans on the depiction of human forms led Islamic artists to very deep explorations of abstract designs, with a strong
emphasis on tiling. Group theory can also classify all of the possible regular tiling patterns, also known as tessellations, allowing us
to verify that all of the possible tiling patterns were actually discovered by Islamic artists! There are many, many interesting tiling
patterns out there: here's a place to start reading about them if you're interested.

Figure 3: Tiling patterns exhibit interesting symmetries! (Source)

A very deep example of symmetry occurs in our most fundamental assumptions in physics. A basic principle states that what
matters in a physical system is the relationship between all of the objects, not their absolute position. This principle allows us to say
that the physics we figure out on Earth should work the same on Mars. (Thus far in the history of the world, it's been a very useful
assumption.) So if you move the entire system in any direction (or rotate it or reflect it), the system will not 'notice.' This invariance
is also a kind of symmetry. Since you can move a physical system by any amount without changing it, the physical system has an
infinite number of symmetries!

So what is a group? How can we create mathematics to encompass the study of symmetry? This is what we'll explore in this
chapter.
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Find some examples symmetry other than those that we talked about above.
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1.2: Counting Symmetries

So how can we use mathematics to study symmetry? Well, the first thing we learn about in mathematics is counting, so perhaps we
should try to count symmetries!

If we think of a perfectly symmetrical face, there are two symmetries: one from flipping left-to-right, and another from leaving the
face alone. Some might argue that the face only has one symmetry, and leaving it alone doesn't count. In fact, we could argue all
day about this point and make no progress until we became very precise about what is meant by 'a symmetry.'

An almost perfectly symmetrical face.

To settle the argument, we require a definition! This first definition of the text is intentionally very loose.

A symmetry of an object is a way of moving the object back onto itself without changing it.

In fact, doing nothing to an object is a way of moving it back onto itself. Thus, we will say that a symmetrical face has two
symmetries.

Let's consider some more mathematical objects. A line segment always has two symmetries, just like a face. An equilateral triangle,
though, has six symmetries: three rotations (including the rotation by ), and three rotations when flipped over. You can keep track
of the various symmetries by labelling the corners of the triangle, and seeing where they end up after applying one of the
symmetries. (See the illustration.)

Algebraic Structures - 1.1 - Counting SyAlgebraic Structures - 1.1 - Counting Sy……

 Definition 1.1.0: Symmetry
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The six symmetries of an equilateral triangle. The top row contains the three rotational symmetries, while the second row has the
'flipped' and rotated symmetries.

We can also imagine an object which is symmetrical under some number of rotations, but which can't be flipped over. You can
make such an object in many ways; one way is to take a square (or any other regular polygon) and then add an identical 'bump' just
to one side of each corner. This object has rotational symmetry, but cannot be flipped.

In three dimensions, we have regular polyhedra. These are three dimensional objects with many symmetries! A tetrahedron has 24
symmetries, for example: twelve of these are rotations, and another 12 can be obtained by reflecting and then rotating.

Of course, some objects have an infinite number of symmetries. A circle is a good example of this: every rotation is a symmetry,
and there are infinitely many angles by which the circle may be rotated, all of which preserves its shape.

Thinking back to our regular tiling patterns, these also have infinitely many symmetries. All of them have translational symmetry,
since you can translate the whole picture back onto itself. And you can translate in one direction as many times as you like, so
there's at least one symmetry for every integer.
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 How many symmetries does a square have? How about an -sided regular polygon?n

 There are five regular polyhedra: the tetrahedron, the cube, the octahedron, the dodecahedron, and the
icosahedron. How many symmetries does each one have? Try working it out directly for the smaller cases, then
see if you can arrive at a formula for the polyhedra with more sides.

https://libretexts.org/
https://math.libretexts.org/@go/page/687?pdf
http://inventingsituations.net/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/01%3A_Symmetry/1.02%3A_Counting_Symmetries
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/01%3A_Symmetry/1.02%3A_Counting_Symmetries?no-cache
https://inventingsituations.net/


1.3.1 https://math.libretexts.org/@go/page/688

1.3: Symmetric Polynomials

So far, we've considered geometric objects. Let's also have an example of something that isn't geometric. Let  be a polynomial in
some number of variables. For now, we'll stick with 3 variables, , and . We say that  is a symmetric polynomial if every way
of switching around (ie, permuting) the variables leaves  the same.

For example, the polynomial  is symmetric: switching the  and the , for example, gives , which
is the same as . As a more complicated example, you can check that  is also
symmetric.

On the other hand,  is not symmetric, since switching  and  produces , which is not equal
to . This polynomial does have some symmetry, since switching  and  leaves  the same, but we save the name 'symmetric
polynomial' for the fully symmetric polynomials.

Let  be a symmetric polynomial with  variables. how many symmetries does  have?

If you haven't tried a problem like this before - working in  variables - it is extremely important to get some practice. Try writing
down some different symmetric polynomials with small numbers of variables. Is there a formula that describes the the number of
symmetries in terms of the number of variables?

Symmetric polynomials are really interesting things, and we'll see them again when we talk about rings and vector spaces!

Contributors and Attributions

Tom Denton (Fields Institute/York University in Toronto)

This page titled 1.3: Symmetric Polynomials is shared under a not declared license and was authored, remixed, and/or curated by Tom Denton.

Algebraic Structures 1.2 - Symmetric FuAlgebraic Structures 1.2 - Symmetric Fu……

f

x, y z f

f

f(x, y, z) = x+y +z x z z+y +x

f g(x, y, z) = y + z+ x+ z+ x+ yx2 x2 y2 y2 z2 z2

h(x, y, z) = + +zx3 y3 x z + +xz3 y3

h x y h

 Exercise 1.2.0:

f n f

n

https://libretexts.org/
https://math.libretexts.org/@go/page/688?pdf
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/01%3A_Symmetry/1.03%3A_Symmetric_Polynomials
http://inventingsituations.net/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/01%3A_Symmetry/1.03%3A_Symmetric_Polynomials
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/01%3A_Symmetry/1.03%3A_Symmetric_Polynomials?no-cache
https://inventingsituations.net/
https://www.youtube.com/watch?v=KvuYN_O031A
https://www.youtube.com/watch?v=KvuYN_O031A


1.4.1 https://math.libretexts.org/@go/page/689

1.4: Abstraction. What is a group?
So we now have many examples of symmetry, but what, exactly is a group?

First, let's remember where numbers come from. You can imagine having a set of three pineapples, or a set of three people, or a set
of three bottles. All of these share the property of 'three-ness.' So when we say the number three, it describes all of these different
sets. The number three is an abstraction of the property of a set containing three things.

What's a group? A group is an abstraction of symmetry! Just like a number describes all sets with a certain number of things in it, a
given group describes all objects with a certain kind of symmetry. Here's an example: The 'very symmetrical face' has two
symmetries, related by a reflection. Likewise, the symmetric polynomial  has a two symmetries, one from leaving 

 alone, and one from exchanging the two variables  and . If we think of switching  and  as a reflection, we see that the face
and the polynomial somehow have the same kind of symmetry! The group is that measure of symmetry.

Now, in that last example, the two objects had the same number of symmetries. It turns out that just counting symmetries ins't
enough to tell whether the two objects have the same group of symmetries. Think of the symmetries of our equilateral triangle:
there were rotational symmetries, and there was a reflection symmetry. And there were six symmetries in all. Now, consider a
regular hexagon with some regularly placed bumps on each side, so that there is no reflection symmetry available. Thus, this object
has six rotational symmetries, but can't be flipped over like the triangle. Therefore it has the same number of symmetries as the
equilateral triangle, but the set of symmetries is somehow different.

The six rotational symmetries of the bumpy hexagon. The blue arrow represents the rotation ; .
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2: Groups I
We give a precise definition of a group and explore some different groups in the context of this definition.

2.1: Symmetry and Functions
2.2: Definition of a Group
2.3: Integers Modulo n
2.4: Permutations
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2.1: Symmetry and Functions

 
(For best results, view this video in full-screen.)

Now we will work towards a precise definition of a group. In mathematics, we often begin explorations with some general concept
(in our case, symmetry) and then work on those concepts until we can arrive at a very precise definition. Having precise definitions
allows us better abstractions and generalizations; the more precise our definitions, the better the mathematics we can expect to
derive.

Recall our definition of the symmetries of a geometric object: all of the ways of moving that object back onto itself without
changing it. Each of these different ways of moving the object back onto itself we can identify as a function. Let's call our object 

. Then every symmetry of  we can identify as a certain special function .

Earlier we noted that leaving  alone should also be a symmetry of . This is the identity function! , with 
for all points .

Next, we notice that composition of functions is a helpful operation: Indeed, if we have two different symmetries  and  of ,
then their composition  will also be a symmetry. The first function applied to  'moves  onto itself without changing it,' and
then the second does as well. Thus, the composition is also a symmetry.

Finally, we note in passing that the composition of functions is associative: for three symmetries , we have 
.

Algebraic Structures 2.0 - Symmetry and FunctionsAlgebraic Structures 2.0 - Symmetry and Functions

X X f : X → X

X X id : X → X id(x) = x

x ∈ X

f g X

g∘ f X X

f , g,h

(f ∘ g) ∘ h = f ∘ (g∘ h)
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Composition of two symmetries of a rectangle.

We really need some examples here! So let's consider the perfectly symmetrical face. There are only two symmetries: the identity
and the left-to-right flip (reflection over the vertical axis). Call the identity  and the flip . Then we see that, considered as
functions from the face to itself, .

The red arrows describe the flip over the vertical axis. Do it twice, and you end up where you started: .

Now remember our 'bumpy' hexagon, which only had rotational symmetries. Call the identity  and let  be the clockwise rotation
by . All of the other rotations we can think of as  composed with itself some number of times; we'll just write this as . So all
of the symmetries of the bumpy hexagon are . We notice that . This is quite interesting! In fact,
we can make a 'composition table' to keep track of what happens when we compose any two of the symmetries.

The six rotational symmetries of the bumpy hexagon. The blue arrow represents the rotation ; .

e f

f ∘ f = e

F ∘F = id

e r

60∘ r rk

{e, r, , , , }r2 r3 r4 r5 ∘ r = = er5 r6

r = idr6
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And now we can make a slightly less obvious observation: For any of these functions, we can find another symmetry taking the
object 'back' to its original orientation. Thus, for any symmetry , there exists a  such that . The function  is then called
the inverse of . We've already seen two examples of this.
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 Write down all of the symmetries of an equilateral triangle. Make a 'composition table' of the symmetries,
showing what happens when any two of them are composed. Then make a list of each symmetry and its
inverse. What do you observe?
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2.2: Definition of a Group

Consider an object  with some symmetries . We've seen that we can compose any of the symmetries in  and obtain another
symmetry of . We've also seen that these symmetries obey certain rules. We can now, at last, define a group.

A group is a set  with an operation  satisfying the following properties:

1. Identity: There exists an element  such that for any  we have .
2. Inverses: For any element  there exists  such that .
3. Associativity: For any , we have .

An essential notion in mathematics is abstraction. Note that our definition certainly applies to any collection  of symmetries of an
object, but in fact there are other contexts where the definitions apply as well! The operation can be any way of combining two
things in  and getting another back;  doesn't need to be a collection of functions, and the operation doesn't need to be
composition. A group is defined purely by the rules that it follows! This is our first example of an algebraic structure; all the others
that we meet will follow a similar template: A set with some operation(s) that follow some particular rules.

For example, consider the integers  with the operation of addition. To check that the integers form a group, we need to check four
things:

1. Addition takes two integers and gives another integer back. (Here we're checking the requirement that the operation is one from 
. Notice that the the output of the operation is always in ! This is called closure of the operation.)

2. There's an identity element, , where for any integer , we have .
3. Every integer  has an inverse, , with .
4. Addition of integers is associative.

Thus, the integers - with the operation of addition - form a group.

On the other hand, the set of integers with the operation of multiplication do not form a group. Multiplication does indeed take two
integers and return another integer, and there is an identity , and multiplication is associative. But not every element has an
inverse that is also an integer. For example, the multiplicative inverse of  is , but this isn't an integer! Thus, integers with
multiplication do not form a group.

Algebraic Structures 2.1 - Group De�nitiAlgebraic Structures 2.1 - Group De�niti……

X S S

X

 Definition 2.1.0: Group

S ∘ : S ×S → S

e ∈ S f ∈ S e ∘ f = f ∘ e = f

f ∈ S g ∈ S f∘ = e

f , g, h ∈ S (f ∘ g) ∘ h = f ∘ (g ∘ h)

S

S S

Z

S ×S → S S

0 n n +0 = 0 +n = n

n −n n +(−n) = (−n) +n = 0

1

2 1
2

 An important note about inverses: An inverse means, roughly, that we can go back to where we started after
applying an operation. Algebraically, this means we can cancel elements. When we have something like 

, we can multiply both sides on the left by  to get . We have to be careful to multiply on the
same side on both sides, since groups aren't always commutative! If , it doesn't necessarily tell us that 

!

gh = gk g−1 h = k
gh = kg

h = k
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 Show that the symmetries of an equilateral triangle are not commutative. In other words, find two symmetries
 of the equilateral triangle such that .f , g fg ≠ gf
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2.3: Integers Modulo n

Recall the 'bumpy' hexagon, which had rotational symmetry but no reflection symmetry. The group of symmetries of the bumpy
hexagon is called . In this section, we'll consider the general case, , which we can initially think of as the group of symmetries
of a 'bumpy' -sided polygon.

There are many different ways in which  appears in mathematics; it's a very important group! We now describe a number of
different ways in which it arises.

1. Well, first we have the group of symmetries of the 'bumpy' -sided polygon. By the exercise at the end of the last section, we
know this is a group.

2. For our second definition, we'll define the 'remainder by ' operation: for any integer , define  to be the remainder of 
when divided by . For example, , because the remainder of  when divided by  is . (You should check that for any
integer , .) This operation is usually called 'modulus' or 'mod.' So  is read 'twelve modulo 5' or 'twelve mod
5.' (And is equal, of course, to two!)

Usually, we don't write  for the addition. From now on, whenever you see an expression like , you will have to be
mindful of the context! If we consider  and  as plain old integers, the answer is . If they are integers mod , then the answer
is !

3. The next definition is really just an easy way to think of the second definition. Imagine a distant planet where the clock has 
hours on it instead of  (or ). Then, just as our hours 'wrap around' the circle beyond  o'clock, the hours wrap around at .
Now if we imagine the clock is numbered  through  instead of  to , we have exactly the situation of .

4. Our last definition will identify  with the -th roots of unity, which are complex numbers. Recall that any complex number
may be written as , where  is a positive real number and  is any angle. Now let  and  be some positive integers, and
consider the complex number . Then we can see that . Then we call  an th root of
unity, because raising it to the th power gives us  (aka, unity).

All of these are somehow the same; but there's a question of how to formally show that two groups are the same. What do we mean
by the same? This is an important question to consider, which we will come back to later. For now, an exercise.

1. composition of the rotations of the 'bumpy' -gon,
2. addition in ,
3. addition of hours on an extraterrestrial clock with  hours,
4. and for multiplication of the -th roots of unity.

In what ways are all of these groups the same? In what ways are they different?

Algebraic Structures 2.2 - Integers Mod nAlgebraic Structures 2.2 - Integers Mod n
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2.4: Permutations
A permutation of  distinct objects is just a listing of the objects in some order. For example,  is a permutation of the set 

 of three objects. Likewise, [triangle, melon, airplane] is a permutation of three objects as well. From our mathematical
point of view, the objects we use don't actually matter; all we care about is the order they are arranged in. So usually we'll just talk
about permutations of the numbers  through . You can think of each number as just counting the objects involved: first object,
second object, th object.

Permutations arise in the world in a many, many ways. For example, suppose you are asked to list your preferences amongst a
bunch of presidential candidates. The list you make up, from favorite to least favorite, is a permutation of the candidates. In fact,
you can use the mathematics of permutations to learn interesting things about different kinds of voting systems.

Figure 2.3: Instant run-off voting uses a full permutation of the candidates to find a winner. (Source)

Another example is a deck of playing cards. In a standard deck, each card appears exactly once. When you shuffle the deck, you are
just creating a random permutation of the cards. One can use mathematics related to permutations to answer interesting questions
about cards. Like: 'How many times do I need to shuffle the deck before it is truly randomized?' The answer, by the way, seems to
be 7 for a standard riffle shuffle. But proving that is well beyond the scope of these notes!

Because permutations are so common, problems involving permutations tend to be very applicable! For example, suppose you have
two hundred students in a class and they all hand in an exam. The stack of exams they give you is a permutation of the students;
most likely, the list of student scores you keep is alphabetical. This suggests a problem: What is the fastest way to sort the exams?
(In fact, sorting is a fundamental problem in computer science.)

How many permutations are there of a set of  objects? Suppose we try to build a permutation by successively choosing objects.
Then there are  choices for the first object,  choices for the second, and so on, until there is only one choice for the last
object. Then to get the total number of possible permutations, we multiply these numbers together, and get .
This number, if you haven't seen it before, is called -factorial, written .

Suppose we have some initial ordering of our objects. The letters , for example, can be organized alphabetically. Then
every permutation we can think of as a mixing-up of this initial order. In this sense, the permutation is a special kind of function
from the set of objects back to itself. (By special, I mean it's a bijection, which is to say a one-to-one and onto function.) (TODO:
Wikipedia link) A permutation of these objects is then the list ; this list is called the one-line notation for .

These permutations-as-functions can be composed: if you think of two permutations  and  as different ways to mix up the set,
you can mix them up according to  and then according to . Then the composition is specified by the list 

.

n [c, b, a]

{a, b, c}

1 n

n

n

n n −1

n(n −1)(n −2) ⋯ 1

n n!

 Write out all of the permutations of the set . How many are there in all? Find a sensible way to
organize your list!

{1, 2, 3, 4}

{a, b, c}

[σ(a), σ(b), σ(c)] σ

σ τ

σ τ

[τ(σ(a)), τ(σ(b)), τ(σ(c))]
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For example, if  and , then . (In particular, , and , so the first
entry of  is . The other three entries are computed similarly.) On the other hand, . This is different from 

! So we see that the group of permutations has elements where ; we say that  is non-commutative. (But
remember that nothing in our group definition says that a group needs to be commutative, so this is ok.)

A very nice way to keep track of this mixing-up is the braid notation for a permutation. This simply writes the list of objects in two
lines, and draws a line connecting an object on the top to the object it is sent to under the permutation.

Braid diagrams for some permutations. At this point, we can ask whether the permutations with the composition operation are in
fact a group. In fact, they are! Let's check. Let  be permutations of the set  Then we can specify  by the
list .

Composition of two permutations is again a permutation. Since each permutation contains every element of  exactly once, the
composition  must also contain each element of  exactly once. Identity: The permutation  acts as the identity.
Inverses: Roughly speaking, if you can mix things up, you can just as easily sort them back out. The 'sorting permutation' of  is
exactly . Associativity: Suppose we compose three permutations, , , and . Int he braid notation, this just means placing the
three braids on top of each other top-to-bottom, and then 'forgetting' the two sets of intermediate dots. (TODO: a picture!)
Associativity is tantamount to forgetting the two sets of dots in two different orders; the resulting picture is the same either way, so
composition of permutations is associative!
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σ = [2, 3, 1, 4] τ = [3, 4, 1, 2] τ ∘ σ = [4, 3, 1, 2] σ(1) = 2 τ(2) = 4

τ ∘ σ 4 σ ∘ τ = [3, 1, 4, 2]

τ ∘ σ f ∘ g ≠ g ∘ f Sn

σ, τ X = {1, 2, 3, … , n} σ

[σ(1), σ(2), … , σ(n)]

X

τ ∘ σ X [1, 2, … , n]

σ

σ−1 σ τ ρ

 Carefully work through the above and check for yourself that permutations satisfy the definition of a group.
For example, where it is stated that the identity permutation has one-line notation , you should check
that this is actually the identity. Likewise, how can you explicitly compute the inverse of a permutation explicitly?

[1, 2, … , n]
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CHAPTER OVERVIEW

3: Groups II
In this chapter we explore the structure of groups using Cayley graphs and generating sets. We also learn about Lagrange's theorem,
which gives an interesting numerical relationship between the size of a group and the size of a subgroup.

3.1: Generating Sets
3.2: Visualizing Groups- Cayley Graphs
3.3: Subgroups
3.4: Cosets and Lagrage's Theorem
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3.1: Generating Sets
We have now seen a few different kinds of groups: groups of symmetries of a geometric object, integers under addition, integers
modulo , and permutations. We can easily visualize the objects related to the group - like the geometric object, numbers, or the
braid notation for permutations - but how can we visualize the group itself?

An excellent way to go about this is to identify a set of generators for the group. In a group we can always combine some elements
using the group operation to get another group element. Generators are some special elements that we pick out which can be used
to get to any other element in the group.

As an example, remember the dihedral group, the symmetries of an -sided polygon. There are  symmetries in all, but we can
build up any of the symmetries using just a small rotation and a flip. For the symmetries of the equilateral triangle, we let  denote
the rotation by  degrees, and let  be the flip over one of the axes of the triangle. Then the six elements of the dihedral group
are given by: . Thus,  is a set of generators for the dihedral group.

Here's the formal definition:

Let  be a group, and  a subset of . We say that  generates  (and that  is a set of generators for ) if every element of 
 can be expressed as a product of elements of  and their inverses.

We include the inverses of the generators in the definition because we know that every element has an inverse. If we think of the
integers under addition, we can write every positive number as a many-times sum of the number : for example,  is just 

. If we allow inverses as well, we can then get every element of the group from a single generator: the inverse of
 is , so we can write (for example) . (Including the inverses also means we don't need to

include the identity, since for any , .)

On the other hand, for any group , we can certainly take  itself as a generating set! Then every element is considered a
'generator,' so every element can be written as a (trivial) product of generators. This tells us that for any group we can find a
generating set. Usually, we try to find a generating set as small as possible. Sometimes, though, a larger generating set might be
interesting if it helps us to better understand the group in question.

Once we have a generating set for a graph , we can produce a very nice visualization of the group called the Cayley graph. By
graph, we mean a number of points (called vertices) connected by some arrows (called edges). Graphs are good for keeping track
of relationships between things, and appear in many, many places in mathematics and in applications.

The Cayley graph of a group has one vertex for each element  in the group. Each vertex has one arrow coming out of it for each
generator , pointing to the element . (This creates the left Cayley graph. The right Cayley graph has arrows pointing from  to 

.) Usually we make the arrows different colors to correspond to the different generators; this is very useful for being able to
visualize the structure of the group!

For the dihedral group, we found a set of generators with two elements: the rotation and the flip over one of the axes. In fact, the
dihedral group has many different sets of generators of size two! We could have chosen the clockwise rotation instead of the
counter-clockwise rotation, for example. Or we could have chosen any of the other flips. But the resulting Cayley graph would
have been more-or-less the same.
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Figure 3.1: Dihedral group Cayley graph, generated by a flip and rotation.

A quite different set of generators for the dihedral group is to take two different flips, across axes that are adjacent to one another.
Let's call them  and . You can actually still write any element of the dihedral group as a product of these two flips. And the
resulting Cayley graph looks quite different.

Figure. 3.2: The Cayley graph for the dihedral group with generators given by two different flips.

Suppose we have a generator where . It's tedious to draw arrows in both directions from every element, so we sometimes
omit the arrow heads in this case.

Identify generators for the permutation group . Make a Cayley graph.
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3.2: Visualizing Groups- Cayley Graphs
So far, we've seen three different kinds of groups: Groups of symmetries (including the dihedral group of symmetries of a
polygon), the integers modulo , and the permutation group, . We've seen Cayley graphs for the dihedral group; let's see some
Cayley graphs for some others.

Integers Modulo 
The integers modulo  only require a single generator to obtain the entire group.  is a nice choice of generator, as we know that
every number  in  can be written as , which is to say, the sum of  with itself  times. The Cayley graph for
this situation is simple: it's just  vertices, arranged in a loop with an arrow pointing from each number to the next. This creates a
cycle! When , the cycle is this:

. Any group which is generated by a single element (including the usual integers!) is called a cyclic group. (This is yet another
interpretation of !)

We can choose other numbers than  as the generator, though! Take , and consider the number . We can make our Cayley
graph by drawing a vertex for each number in  and an arrow from each  to . Then the cycle draws out as:
[0\rightarrow 3\rightarrow 6\rightarrow 1\rightarrow 4\rightarrow 7\rightarrow 2\rightarrow 5\rightarrow 0].

Here's a Cayley graph for  shown with three generators. Any one of the three generators would work just fine. The red vertex is
the identity, . The green arrows are for the generator , blue for the generator , and green for the generator . What would
happen if we included the generators  or ?

Figure 3.1: Cayley graph for  with three different generators. The identity is marked as the red dot.

Not every number is a generator of . For example, in , if we choose , the cycle is just: . Since the cycle doesn't
contain every element of the group, we see that  doesn't generate the group on its own.

Suppose . Show that  generates  if and only if  is relatively prime to . (ie, the only common divisor of  and  is
.)

Suppose  and  is not relatively prime to . Is it possible to find another umber  not relatively prime to  such that 
and  together generate ? Try some examples! Explain why or why not
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Permutation Groups
The permutation group  has a number of interesting generating sets. We'll show a few of these generating sets for  and 

 for easy comparison.

The first generating set is a minimal set, using just two generators. The first generator is the 'rotation' with list notation 
. The second is a flip, exchanging only the first two things, .

To check that these actually generate , we need to see that we can construct an arbitrary permutation using just these generators.
So consider an arbitrary permutation , written in list notation. If there are two adjacent entries that are out of order (big to the left
of the small), we can apply rotations until the two things sit in the first two entries (suppose we use  rotations to do this). Then we
apply the flip. And then we 'unrotate'  times to put the now-sorted numbers back. Then we find two more adjacent numbers and
repeat. Once there are no adjacent numbers out of order, then we must be at the identity! Then the reverse of the sequence of moves
we just made builds the permutation we wanted. Since the permutation was arbitrary, our two moves must generate the group.

Figure 3.2: A Cayley graph for , generated by the rotation  (in red) and reflection \([2,1,3,4]) (cyan).

A second set of generators is given by the set of all transpositions. These are all of the permutations that have two things switched
and everything else in order. For example,  and  are transpositions. Modifying the above argument, you
can see that the set of all transpositions are a generating set. There are more than 2 transpositions, so this isn't a minimal generating
set. But it is an interesting set of generators when studying the permutation group more closely.

Exercise 3.1.2

How many transpositions are there in ?
 

Yet a third set of generators is given by the simple transpositions. This is the set of transpositions  that just exchange  and 
 while leaving everything else alone. There are  simple transpositions. This is a very important set of generators in the

further study of permutations! But it shows up in one simple context, as well.
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Figure 3.1.3: Cayley graph for ; permutations are marked by different symmetries of the tetrahedron. Generators are three 'flips'
exchanging two vertices.

A basic problem in computer science is sorting. Given a list of  things, how quickly can they be sorted? What is a good algorithm
for sorting an arbitrary list? There are many different sorting algorithms. One of the easiest is called Bubble Sort. For bubble sort,
you read through the list, beginning to end, and whenever you see two adjacent entries that are out of order, you switch them. You
may have to read through the list performing switches many times, but eventually the list will be sorted. Bubble Sort uses the fact
that the simple transpositions are a generating set for the permutations in order to sort an arbitrary list. (This is the first step into the
study of complexity theory.)

What permutation of  things takes the longest to be sorted by Bubble Sort? How many simple transpositions are necessary to
sort that permutation?

For the same 'long' permutation from the last exercise, sort the permutation using the first set of generators for , the rotation
and the flip. How many steps are needed to sort the permutation this way?

We see that there's a trade-off between having a smaller set of generators and being able to write different group elements as
products of fewer generators. (Indeed, if we took the whole group as the generating set, every element could be written as a product
of just one generator! But this usually isn't so helpful for understanding the group...)
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3.3: Subgroups
When we consider the symmetries of, say, a pentagon, we notice that it has rotational symmetries like the 'bumpy' pentagon. From
the bumpy pentagon, we see that the rotations themselves form a group; there's a group of rotations inside the group of symmetries
of the pentagon! Likewise, if we consider just the flip, we see a group similar to the symmetries of the perfectly symmetrical face.
This yields another group inside the symmetries of the pentagon. We can make this precise:

Let  be a group, and  a subset of . Then  is a subgroup of  if  is itself a group using the same operation as .

Ostensibly, to check that a subset  is a subgroup, we would need to check all four properties of the group. That is, closure (ie, the
operation gives a map ; products of things in  are always in ), identity, the existence of inverses, and
associativity.

In fact, since  has the same operation as , we know that the operation in  is associative (since  is a group). Furthermore, if
the operation is closed and inverses exist, then we know that for any ,  must be in . So really we only need to
check two things:

1. Closure:  for all , and
2. Inverses:  for all .

Some important things to notice:

1. The group  is always a subgroup of itself! (  is a subset of itself, which is a group with the same operation as .)
2. The subset containing just the identity element is also a subgroup! This is called the trivial subgroup.
3. The set of all powers of an element  ( ) is a subgroup of . This is called the cyclic subgroup

generated by .

Let  be a geometric object. Show that the rotations of  back onto itself forms a subgroup of the group of symmetries of .
(Try this in particular on a regular polygon and a regular polyhedron. What happens with a 'bumpy' polygon?)

Let  be a group, and . Consider a function  given by . (This is the 'left multiplication by '
function.) What happens if, for some , ? Then , so , and . This tells us that 

 is a one-to-one, or injective, function. If  has a finite number of elements, then  is also an onto function, and is thus a
bijection from  back to itself. Then we can consider  as a permutation of !

If we consider  as a set, we can think of any left multiplication as a permutation of . But the set of all left multiplications is
itself a group. This gives us what is known as Cayley's Theorem!

The ideal gas law is easy to remember and apply in solving problems, as long as you get the proper values a

Label the six symmetries of the equilateral triangle. Demonstrate that the symmetries of the triangle are a subgroup of , the
permutations of  objects.

It is worth noticing that for any  in a group , the powers of  generate a subgroup of . The set  is closed under the
group operation, and includes the identity and inverses. This is called the cyclic subgroup generated by .
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Find all of the subgroups of the permutation group  for three objects. Which subgroups are subgroups of other subgroups?
Name each subgroup, and arrange them according to which is contained in which.
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3.4: Cosets and Lagrage's Theorem
In this section, we'll prove Lagrange's Theorem, a very beautiful statement about the size of the subgroups of a finite group. But to
do so,we'll need to learn about cosets.

Recall the Cayley graph for the dihedral group  as generated by a flip and a rotation. Notice that the darker blue arrows look like
two different 'copies' of  sitting inside of the dihedral group. Likewise, the light arrow loops look like five copies of . Both 
and  are subgroups of , generated by the rotation and flip respectively. These 'copies' of the subgroups that we see in the
Cayley graph are examples of cosets.

Dihedral group Cayley graph, generated by a flip and rotation. The Cayley graph for the dihedral group with generators given by a
flip and a rotation.

Let  be a subgroup of , and . Then for any choice of , the coset  is the set .

These are precisely the 'copies' of the subgroups that we saw in . The elements of  can all be written as  with 
and . The rotation subgroup consists of the element . Then  has two distinct cosets,  and 

. For any  we choose,  is equal to one of these two cosets! Likewise, if we consider the subgroup 
, there are five distinct cosets given by , where . Notice that the cosets evenly divide up the group;

this isn't an accident!

Proposition 3.3.1

Suppose that  is a subgroup of . Let . Then either  or  and  have no elements in common.
 

Proof 3.3.2

Suppose  and . In particular, there exist  such that , and . We need to show that 
, so take any  and consider . Then , since . Thus, if  and  share any

elements, then they are equal, and if they share no elements, they are tautologically disjoint!
 

We'll need one more piece of notation.

The order of a group , written , is the number of elements in .

So the order of  is , and the order of the flip subgroup . We can now prove Lagrange's Theorem!

D5
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Theorem 3.3.4: Lagrange's Theorem

Let  be a subgroup of a finite group . Then  divides .

Proof 3.3.5: Lagrange's Theorem

Notice that every element of the group  shows up in some coset of : since , we have  for every . Therefore, every element of the
group shows up in exactly one coset of . Also notice that every coset of  has the same number of elements as . (If the size of  were less
than , there would be have to be two different elements  with . But cancelling the 's gives , a contradiction.)
Then the cosets of  break up  evenly into subsets of size . Thus,  divides , as desired.
 

Find all of the subgroups of the permutation group  and the dihedral group .

Find a subgroup of the permutation group  with twelve elements. What are it's cosets?
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4.1: Homomorphisms
When we think of the integers, it is useful not just to think of individual numbers, but relations between numbers; people do this
automatically, comparing two numbers to see which is bigger. And if neither number is bigger, we see that the two numbers are
equal. In fact, this is a very important way to approach mathematics: We consider not just objects but also how objects are related
to one another. So far, we have thought extensively about group as objects. But are there interesting relationships between groups?
If so, can we come up with a notion of when two groups are the same?

We can relate groups using special functions between different groups called homomorphisms. There's a way to think of
relationships between numbers as functions, too: if you have  cows and  chickens, we can try to make a one-to-one function
from cows to chickens. If it's impossible, we know the number of cows is larger. If there are chickens left over (ie, the function is
not onto) then the number of chickens is larger. But if the function is one-to-one and onto, then the two numbers  and  are equal.

Symmetry and Length-Preserving Functions
Think for a moment of the symmetries of the equilateral triangle. These were given by functions from the triangle back to itself.
But not just any functions: the symmetries don't distort the triangle in any way: For example, The center of the triangle never gets
moved closer to one of the vertices. In particular, the symmetries are length-preserving functions, are known as isometries. We can
be quite precise about what a length-preserving function is.

Let  denote the distance between two points  and . Then a function  is length-preserving if 
for every pair of points . In other words, distances before we apply the function are the same as distances after we apply the
operation.

We should look at lots of examples to build up some intuition! Take the integers with the operation of addition. Define :

So symmetries are a special kind of function which preserve distances. When we try to relate groups to one another, we use special
kinds of functions between the groups.

Homomorphisms

A group is a set with an operation which obeys certain rules. So we'll consider functions that preserve the operation. That is,
functions for which it doesn't matter whether we perform our group operation before or after applying the function. More precisely:

Let  and  be groups, and . Then  is a homomorphism if . If a homomorphism is also a
bijection, then it is called an isomorphism.

We should look at lots of examples to build up some intuition! Take the integers with the operation of addition. Define 
by . Note that the definition of homomorphism works regardless of the symbol we're using for the group operation, and
for  we use addition. Then to show that  is a homomorphism, we need to check that ; the operation
before applying  is the same as the operation after applying . So we check! , while 

. Since , we see that  is a homomorphism.

We can also have homomorphisms between groups where the operations are written differently! For example, there is a
homomorphism between the integers modulo  ( ) and the th roots of unity. Remember that  is written with

an addition operation, while the th roots of unity are written with multiplication. We define  by . Then we check that 
 is a homomorphism! Since the operations are written differently (addition and multiplication), we need to check whether 

. This isn't so bad: . On the other hand, . So this is a
homomorphism; in fact, it is an isomorphism, since the -th roots of unity and  have the same number of elements.

k p

p k

Definition 4.0.0: Length Preserving Functions
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some  such that , , but  is not length-preserving.
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Isomorphisms are very special homomorphisms. If two groups are isomorphic, it is impossible to tell them apart using just the tools
of group theory. True, the two groups may look very different, but they are structurally identical. When we saw the integers
modulo , we saw four different realizations of 'the same' group; they were all isomorphic.

There are many things we can say about homomorphisms with just a little work. We'll prove two basic statements right away.

Proposition 4.0.5

Let  be a homomorphism. Then:

1. .
2. For any , .

 

Proof 4.0.6

1. Choose any element . Then . So . Cancelling the  on both side leaves us with 
.

2. We have , so , giving us . Then we can multiply both sides on the left by  to get
the result.

 

1. Show that for any homomorphism , we have .
2. Show that if two finite cyclic groups have the same order, then they are isomorphic.

This tells us that group homomorphisms, in addition to preserving the group operation, also preserve inverses and exponents. Thus,
group homorphisms also preserve inverses and exponents!
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n

 Define  by  for each  in . Show that  is a isomorphism. (Hint: Show that the
map is a homomorphism, and argue that the two sets have the same cardinality.)

ρ : →Zn Z2n ρ(x) = 2x x Zn rho

 Let  be a subgroup of . Define the inclusion  by  for each . Show that  is a
homomorphism.

H G ι : H → G ι(x) = x x ∈ H ι

ϕ : G → H

ϕ(1) = 1

x ∈ G ϕ( ) = ϕ(xx−1 )−1

x ∈ G rho(x) = ρ(1x) = ρ(1)ρ(x) rho(x) = ρ(1)ρ(x) rho(x)

1 = ρ(1)

ϕ(1) = 1 1 = ϕ(x ) = ϕ(x)ϕ( )x−1 x−1 1 = ϕ(x)ϕ( )x−1 ϕ(x)−1

 Exercise 4.0.7

ϕ ϕ( ) = ϕ(xxn )n
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4.2: Product Groups
So far, we have a fairly small collection of examples of groups: the dihedral groups, the symmetric group, and . In this section,
we'll look at products of groups and find a way to make new groups from the groups we already know.

A very famous group - though not a very complicated one - is the Klein Four-Group. This is the symmetry group of a rectangle. It
has a pair of generators, given by the flips over the horizontal and vertical axes.

Figure 4.2.1. The symmetries of a rectangle, given by the Klien 4-group.

But the Klein Four-Group can also be thought of as a kind of mash-up of two copies of . Let  be the additive group with
elements , and operation given by just adding the elements coordinate-wise as elements of . (So that

. Then  is a group (check!), and is in fact isomorphic to the Klein Four-Group. It's an example of a
product group!

Let's be more precise and set a definition of a product group.

The direct product (or just product) of two groups  and  is the group  with elements  where  and 
. The group operation is given by , where the coordinate-wise operations are the

operations in  and .

Here's an example. Take  and , and consider the product . The product group has 18 elements: there are
three choices for the first coordinate and 6 choices for the second coordinate. Since we use addition as the operation in both of the
coordinate groups, we'll use addition as the operation in the product. So consider elements  and . Then 

; addition in the first coordinate is according to , and addition in the second coordinate is according to 
.

We should check that the product of any pair of groups  and  is actually a group.

1. The product group has an identity : .
2. Associativity follows from associativity of  and .
3. Closure also follows from closure in  and .
4. The inverse of  is .

So  really is a group.

We saw in the example that  has 18 elements. This isn't a coincidence! For any finite groups  and , the product group
has  elements.

An interesting question at this point is suggested by Lagrange's Theorem, which told us that the cardinality of any subgroup divides
the cardinality of the original group. We've seen that we can form product group sto 'multiply' groups: Is it also possible to 'divide'
groups? Over the next few sections, we'll develop ideas that will let us build quotient groups.

Zn

Z2 H

{(0, 0), (1, 0), (0, 1), (1, 1)} Z2

(1, 0) +(1, 1) = (0, 1) H

 Definition 4.1.0: Direct Product

G H G×H (g, h) g ∈ G

h ∈ H ( , ) ⋅ ( , ) = ( , )g1 h1 g2 h2 g1g2 h1h2

G H

G = Z3 H = Z6 G×H

(2, 4) (1, 3)

(2, 4) +(1, 3) = (0, 1) Z3

Z6

G H

(1, 1) (1, 1) ⋅ (g, h) = (1g, 1h) = (g, h)

G H

G H

(g, h) ( , )g−1 h−1

G×H

×Z3 Z6 G H

|G||H|
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 Not all product groups are commutative. How many elements are in ? Identify the identity. Write
down a few non-identity elements and compute their respective products.

G = ×S4 Z3
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4.3: Image and Kernel

The image of a homomorphism  is the set , written . The kernel of  is the set 
, written , where  is the identity of .

Let's try an example. Recall the homomorphism , defined by  for any . The image of  is the set of all
even integers. Notice that the set of all even integers is a subgroup of . The kernel of  is just .

Here's another example. Consider the map  given by . So , , and . This is
actually a homomorphism (of additive groups): . The image is the set ,
and, again, the kernel is just .

And another example. There's a homomorphism  given by  (divide by 3 and keep the remainder). Then 
, , , ,  and finally . You can check that this is actually a homomorphism,

whose image is all of  and whose kernel is .

So the image is the set of everything in  which has something in  which maps to it. The kernel is the set of elements of  which
map to the identity of . The kernel is a subset of , while the kernel is a subset of . In fact, both are subgroups!

Proposition 4.2.1

The image  is a subgroup of . The kernel  is a subgroup of .
 

To see that the kernel is a subgroup, we need to show that for any  and  in the kernel,  is also in the kernel; in other words, we
need to show that . But that follows from the definition of a homomorphism: . We leave
it to the reader to find the proof that the image is a subgroup of .

We can use the kernel and image to discern important properties of  as a function.

Proposition 4.2.3

Let  be a homomorphism. Then  is injective (one-to-one) if and only if the kernel .
 

Proof 4.2.4

If we assume  is injective, then we know (from the exercise in the last section) that . For the reverse direction, suppose 
, and assume (for contradiction) that  is not injective. Then there exist  with . But then 

. Since , , giving a contradiction.
 

The kernel is actually a very special kind of subgroup.

Proposition 4.2.5

Let  be a homomorphism, and let  be the kernel of . Then for any  and , we have .
 

Proof 4.2.6

The proof is a simple computation: . Therefore,  is in the kernel of .
 

 Definition 4.2.0

ρ : G → H {ρ(g) ∣ g ∈ G} ⊂ H ρ(G) ρ

{g ∣ g ∈ G, ρ(g) = 1} (1)ρ−1 1 H

ϕ : Z → Z ϕ(n) = 2n n ∈ Z ϕ

Z ϕ 0

ϕ : →Z3 Z6 ϕ(n) = 2n ϕ(0) = 0 ϕ(1) = 2 ϕ(2) = 4

ϕ(a +b) = 2(a +b) = 2a +2b = ϕ(a) +ϕ(b) {0, 2, 4}

0

ρ : →Z6 Z3 ρ(a) = a

ρ(0) = 0 ρ(1) = 1 ρ(2) = 2 ρ(3) = 0 ρ(4) = 1 ρ(5) = 2

Z3 {0, 3}

H G G

H G H

ρ(G) H (1)ρ−1 G

g h gh

ρ(gh) = 1 ρ(gh) = ρ(g)ρ(h) = 1 ⋅ 1 = 1

H

 Show that for any homomorphism ,  is a subgroup of .ρ : G → H ρ(G) H

ρ

ρ : G → H ρ (1) = {1}ρ−1

ρ (1) = {1}ρ−1

(1) = {1}ρ−1 ρ x ≠ y ρ(x) = ρ(y)

ρ(x)ρ(y = ρ(x ) = 1)−1 y−1 x ≠ y x ≠ 1y−1

ρ : G → H K ρ k ∈ K x ∈ G xk ∈ Kx−1

ρ(xk ) = ρ(x)ρ(k)ρ( ) = ρ(x)1ρ( ) = 1x−1 x−1 x−1 xkx−1 ρ
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5.1: Quotient Groups
Previously we saw product groups; now we'll learn about quotient groups. The construction is a bit more involved than the
construction of product groups, just as division of natural numbers is a bit more complicated than multiplication...

Let's think for a moment about how quotients of natural numbers work, for the sake of building an imperfect analogy. When we
write , we have a numerator, denominator, and a quotient. The quotient  can be thought of as the number of times we can
divide  into groups of  objects.

In making a quotient group, then, we would like to start with a group , identify a subgroup  (the divisor) and do something to
get a group . Using our analogy of dividing natural numbers, we would like to divide the group  into collections
according to . The notion of coset does this quite nicely, and in fact previously allowed us to see that the order of any subgroup 

 divides the order of .

The set of cosets of a subgroup  of  is denoted .

Then we can try to take the cosets of  as the underlying set of our would-be quotient group . The question is whether we can
now identify a reasonable group operation on the set of cosets of . The answer is 'sometimes!'

A Bad Choice of Product on Cosets
Suppose we have two cosets of ,  and . We would like to define an operation on the two, so we naively write 

, using the group operation in  to multiply  and . And indeed, sometimes this works, but often it doesn't. What
might cause it to fail? A problem arises because the set on which we're defining our new quotient group is the set of cosets, and it
isn't generally obvious which element to take as the representative of the coset; ie, there is more than one way to write a coset as 

, and different choices might lead to different answers when we multiply our cosets.

Here's an example.

Take the group , the symmetries of a pentagon generated by a flip  and a rotation . Let  be the subgroup consisting of
just the identity and the flip . Then . This subgroup has five different cosets; suppose we want to multiply the cosets 

 and . Notice that there are two different ways to write  in the from :  and .
Each arises from a different choice of representative from . The same is true for :  and . Depending on the
choice of representatives, our rule for multiplying cosets then yields different answers. For example, , but 

.

Then we see that a more nuanced approach is necessary: in particular, our notion of a product shouldn't depend on a choice of coset
representative!

Products of Cosets
The initial idea for a product on cosets fell down because we were multiplying coset representatives, instead of thinking about how
to multiply the actual cosets. So let's try to define an actual product of cosets!

Earlier, we saw what we might call left cosets, of the form  where  are all the elements of . But we can
easily imagine right cosets as well, , and even double cosets . More generally, we
can define product of sets: if , then  is the set obtained by taking products of elements of  and  in every
possible way: . We can use the product of sets to compute explicit products of cosets.

Proposition 5.0.2

If  is a subgroup of , then .
 

Proof 5.0.3

= qn

d
q

n d

G H

G/H = Q G

H

H G

 Definition 5.0.0

H G G/H

H Q

H

H aH bH

aH ⋅ bH = abH G a b

gH

G= D5 f r H

f H = {1, f}

C = {r, rf} D = { , f}r3 r3 C gH C = rH C = rfH

H D D = Hr3 D = fHr3

rH ⋅ H = Hr3

rfH ⋅ H = rf H = fH ≠ Hr3 r3 r2

  depend on the choice of coset representatives!

aH = {a , a , …}h1 h2 hi H

Ha = { a, a, …}h1 h2 aHb = {a b, a b, …}h1 h2

A = { , , …}a1 a2 AH A H

AH = {ah|a ∈ A,h ∈ H}

H G HH = H
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Since  is closed under the group operation, every element of  is in . Furthermore, since , every element  in  appears in  (for
example, as ). Then .
 

We build up these definitions so we can talk about products of cosets: . One fear of this approach is that taking a set-
product like this may not give back a real left coset of . In fact, sometimes it does and sometimes it doesn't!

If  is a commutative group, then right cosets and left cosets are the same thing:  for every , so . In this
case, when examining products like , we have . Then defining a product on cosets 

 makes sense, and will end up giving a nice group structure. The identity is , associativity follows from the
multiplication rule in , and inverses are easy: .

We should also check that this product doesn't depend on choice of coset representative. Suppose , and consider the
product . Then notice that , and .
Thus, we have .

Normal subgroups
If we look closely at what we've just done, we didn't actually need  to be commutative: all that we needed was  for
every . For example, we know this is true for the kernel of any homomorphism from the proposition in Section 4.2.

A subgroup  of a group  is called a normal subgroup if  for every .

Then we've already proven the following theorem:

Theorem 5.0.5

Let  be a normal subgroup of . Then  is a group.
 

We'll also make explicit an earlier observation.

Proposition 5.0.6

Let  be a commutative group. Then every subgroup  of  is a normal subgroup, and  is a group.
 

We have already noticed that the kernel of any homomorphism is a normal subgroup. We can also define the quotient map 
, defined by  for any . So long as the quotient is actually a group (ie,  is a normal subgroup of 

), then  is a homomorphism. In fact, the kernel of  is exactly . So we observe:

Corollary 5.0.7

A subgroup of  is normal if and only if it is the kernel of a homomorphism.
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H HH H 1 ∈ H h H HH

1h HH = H

(aH)(bH)

H

G a = ahi hi hi aH = Ha

(aH)(bH) aHbH = abHH = abH

(aH)(bH) = abH 1H

G gH H = Hg−1

aH = xH

(aH)(bH) = aHHb = aHb (aH)(bH) = aHb = abH (xH)(bH) = xHb = (aH)b = abH

aH = bH

G aH = Ha

a ∈ G

 Definition 5.0.4: Normal Subgroups

H G aH = Ha a ∈ G

H G GH

G H G G/H

π : G→ G/H π(a) = aH a ∈ G H

G π π H

G

 Let  be a finite group and  a subgroup with . Show that  is a normal subgroup of .G H = 2
|G|

|H|
H G
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5.2: Examples of Quotient Groups
Now that we've learned a bit about normal subgroups and quotients, we should build more examples.

Integers mod , Again
Recall the group . This can also be realized as the quotient group!

Let  denote the set of integers divisible by : . This forms a subgroup:  is always
divisible by , and if  and  are divisible by , then so is . Since every subgroup of a commutative group is a normal
subgroup, we can from the quotient group .

To see this concretely, let . Then the cosets of  are , , and . We can then add cosets, like so: 
 The last equality is true because , so that 

.

The Alternating Group
Another example is a very special subgroup of the symmetric group called the Alternating group, . There are a couple different
ways to interpret the alternating group, but they mainly come down to the idea of the sign of a permutation, which is always .
The set  forms a group under multiplication, isomorphic to . The sign of a permutation is actually a homomorphism.
There are numerous ways to compute the sign or a permutation:

1. Determinants. A permutation matrix is the matrix of the linear transformation of -dimensional space sending the -th
coordinate vector  to . Such matrices have entries all equal to zero or one, with exactly one 1 in each row and each
column. One can easily show that such a matrix has determinant equal to . Since the determinant is a multiplicative function
-  - we can observe the the determinant is a homomorphism from the group of permutation
matrices to the group .

2. Count inversions. An inversion in a permutation  is a pair  with . For example, the permutation 
has  and , and thus has three inversions. If there are  inversions, then the sign of the
permutation is .

3. Count crossings. Draw a braid notation for the permutation where no more than two lines cross at any point and no line
intersects itself. Then count the number of crossings, . Then . The alternating group is the subgroup of  with 

. (To prove that this method of counting works, one needs a notion of Reidemeister moves, which originally arise in
the fascinating study of mathematical knots.)

We call a permutation with sign  a positive permutation, and a permutation with sign  a negative permutation.

Now we can define the alternating group.

The alternating group  is the kernel of the homomorphism . Equivalently,  is the subgroup of all positive
permutations in .

n

Zn

nZ n nZ = {… , −3n, −2n, −n, 0, n, 2n, 3n, …} 0

n a b n a +b

Z/nZ

n = 3 3Z 3Z 1 +3Z 2 +3Z

(1 +3Z) +(2 +3Z) = 3 +3Z = 3Z. 3Z = {… , −6, −3, 0, 3, 6, …}

3 +3Z = {… , −3, 0, 3, 6, 9, …} = 3Z

 Write out addition tables for  as a quotient group, and check that it is isomorphic to  as previously
defined.

Z/5Z Z5

An

±1

{1, −1} Z2

n i

ei eσ(i)

±1

det(MN) = det(M) det(N)

{±1}

σ i < j σ(i) > σ(j) [3, 1, 4, 2]

σ(1) > σ(2), σ(1) > σ(3) σ(3) > σ(4) i

(−1)i

c s(σ) = (−1)c Sn

s(σ) = 1

 Find the inversion number for every permutation in , and then sort the permutations by their inversion
number.

S4

 Show that each of the three definitions of the sign of a permutation give a homomorphism from  to 
. (For the third definition, a sketch of a proof will suffice. Be sure to argue that different braid notations

for the same permutation give the same sign, even if the total number of crossings is different.)

Sn

{1, −1}

+1 −1

 Show that there are  positive permutations in .n!
2

Sn

 Definition 5.1.4: Alternating Groups

An s : →Sn Z2 An

Sn
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In fact, the alternating group has exactly two cosets. The quotient group  is then isomorphic to .

Figure 5.1.2: Quotient of  by .
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 Write out all elements  as a subgroup of . Find a nice generating set for  and make a Cayley graph.A4 S4 A4

/Sn An Z2

S3 A3
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5.3: Isomorphism Theorem
We've observed a few cases now where we: 1. Define a homomorphism , and then 2. Notice that , where 
is the kernel of . This isn't an accident!

The proof is just to build a correspondence between the cosets of the kernel  and elements of the image . Indeed, in any coset 
 all elements map to the same element of the image.  for any .

This suggests a homomorphism from the set of cosets to the image: set . This is a homomorphism, since 
.

The map  is also one-to-one: if , we have , so that , meaning . Then 
, which tells us that , since cosets are either equal or disjoint.

The map  is onto, since any element in the image may be written as  for some , which is also the image of  under .
Therefore, the map  is an isomorphism.

TODO: Pictures!

This theorem is often called the "First Isomorphism Theorem." There are three isomorphism theorems, all of which are about
relationships between quotient groups. The third isomorphism theorem has a particularly nice statement: ,
which one can relate to the the numerical identity
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5.4: Classifying Finite Groups
We've seen that group theory can't distinguish between groups that are isomorphic. So a natural question is whether we can make a
list of all of the groups!

We can make new groups from old groups using the direct product. So it would be nice to focus on groups that are not direct
products. In the commutative case, this turns out to be pretty straightforward: a (finite) commutative group is a direct product of
subgroups if and only if it has a proper subgroup.

The non-commutative case is much more difficult, though. There are actually a few other ways to build new groups from old
groups; the most important of these other ways is the semi-direct product; we won't describe how to build semi-direct products
here, but you can read about them elsewhere. Importantly, one can 'undo' a semi-direct product using a quotient, the same way one
can undo a direct product. To get a sense of how useful the construction is, the symmetric group  is the semi-direct product of 

 and . Also, the dihedral group  is a semi-direct product of  and .

An interesting question, then, is 'Which groups have no quotients?' We've seen that we can form a quotient group whenever there is
a normal subgroup.

A group is simple if it has no proper normal subgroups. (A proper subgroup is any subgroup of  that is not equal to  or ,
which are always normal subgroups.)

We'll now actually classify all of the finite simple groups, and discuss some of the history of the non-commutative case.

The Commutative Case
We can actually classify all of the finite commutative groups pretty easily. First, recall that every subgroup of a commutative group
is normal.

Proposition 5.3.1

A finite commutative group is simple if and only if it has prime order . In this case, it is isomorphic to the cyclic group, .
 

Proof 5.3.2

If a finite commutative group has prime order then it has no proper subgroups, by Lagrange's theorem. Then it must be simple.
For the other direction, we assume  is a finite commutative simple group.  must be cyclic, or else we could form a proper subgroup by taking
powers of a generator. So  for some . But if  is not prime we can find a subgroup using a proper divisor of . Then  for some
prime .
 

Theorem 5.3.3

Every finite commutative group is a direct product of cyclic groups of prime order.
 

Proof 5.3.4

Let  be a commutative group with  elements. Take any element  not equal to the identity in ; we know that there is some minimal integer 
for which . Then  has a subgroup of order  generated by , isomorphic to . As a result, we have , where  is the
quotient .
We can repeat that procedure indefinitely (taking an  in  and writing  as a product, and so on), until we obtain a decomposition 

, a product of cyclic groups.
We can then use the same trick to decompose each  into a direct product of cyclic groups of prime order, completing the proof.
 

One can extend this trick to some infinite groups: those which have a finite number of generators. (Such groups, unsurprisingly, are
called finitely-generated.) This gives rise to the Fundamental theorem of finitely-generated commutative groups.

Sn

An Z2 Dn Zn Z2

 Definition 5.3.0: Simple Groups

G G {1}

p Zp

G G
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p
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The Non-Commutative Case
One of the major projects of 20th century mathematics research was to classify all of the finite simple groups; the project took fifty
years, and the proof of the classification is estimated to span 10,000 pages written by over 100 authors. There's currently an effort
underway to simplify the proof, however.

The classification shows that all finite simple groups are of one of four types:

1. Commutative groups of prime order,
2. Alternating groups  with ,
3. Groups of Lie type,
4. The 26 sporadic groups.

We've already seen the first two types of simple group. It turns out that 'most' finite simple groups are in the third class, groups of
Lie type, which are well beyond the scope of these notes to construct. Basically, though, groups of Lie type are certain groups of
matrices with entries from a finite field, which are we'll see in the next chapter. The 'sporadic' groups are just those groups that don't
fit into any of the other three classes!

Contributors and Attributions
Tom Denton (Fields Institute/York University in Toronto)

This page titled 5.4: Classifying Finite Groups is shared under a not declared license and was authored, remixed, and/or curated by Tom Denton.

 Suppose  is a finitely generated commutative group with infinite cardinality. Show that , where 
 is a finitely-generated commutative group.

A A ∼ Z ⊗ A′

A′

An n ≥ 5

https://libretexts.org/
https://math.libretexts.org/@go/page/699?pdf
http://inventingsituations.net/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/05%3A_Groups_IV/5.04%3A_Classifying_Finite_Groups
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/05%3A_Groups_IV/5.04%3A_Classifying_Finite_Groups?no-cache
https://inventingsituations.net/


1

CHAPTER OVERVIEW

6: Group Actions
In this chapter, we examine group actions and some fun applications of group theory.

6.1: Group Actions
6.2: Orbits and Stabilizers
6.3: Counting
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6.1: Group Actions
Group actions bring us back to our original view of groups as measures of symmetry. We begin with a definition.

Let  be a group. A set  is a (left) -set if there is a function from  (which we will write as  for 
) satisfying:

1.  for all , and
2.  for all .

An analogous definition can be written for a right -set; a right -set has a function from .

These conditions say, in plain language, that elements of  move objects in the set to other objects, in a way which respects the
group operation. (ie, it doesn't matter whether you perform the operation before or after applying the action.) Furthermore, the
identity fixes every element of the set.

It's best to start with some easy combinatorial examples.

1. Let  be a group and  be any set. The trivial action of  on  is given by  for every . One can easily
check that the conditions for a group action hold!

2. Consider  and a set  of  labelled objects. Then the permutations of the objects constitute an action of  on .
3. But  can also act on sets with more than  elements! Consider a regular deck of playing cards; each card has one of four suits

(Clubs, Spades, Hearts, or Diamonds) and are numbered  to . (Where a Jack is , Queen is  and King is .) We can
write each card in a short form:  is short for 'four of diamonds.' Then  acts on the deck of cards by permuting the suits of
the cards. For example, consider the permutation  which transposes hearts and diamonds while leaving clubs and spades alone.
Then , and .

On the other hand,  acts on the values of the cards while leaving the suits alone. For convenience, we write the action on
values of cards on the right and the action on suits on the left. Let  be the permutation in  which sends  to , and  to 

. Then . Combining the left and right actions, we have , for example.

4. And  can act on sets with fewer than  elements. Consider a coin, with a 'heads' side ( ) and a 'tails' side ( ). We can define
an action of  where  flips the coin if the sign of  is negative, and leaves the coin alone if the sign of  is positive. Here the
set we're acting on is actually the set of states of the coin: .

Just as we made Cayley graphs of groups, we can also make Cayley graphs of group actions. If our group  has a generating set 
, then the Cayley graph has one vertex for each element of the set  and colored edges from each  to .

For the example of  acting on a coin, the Cayley graph will just have two vertices,  and , and arrows according to the action
of the generators. If we consider the generating set of simple transpositions (which, we'll recall, exchange  and  and leave
everything else alone), the Cayley graph will have arrows from  to  and back for each simple transposition. (Because all simple
transpositions have sign .)

 Definition 6.0.1

G S G G×S → S g ⋅ s

g ∈ G, s ∈ S

(gh) ⋅ s = g ⋅ (h ⋅ s) g, h ∈ G, s ∈ S

1 ⋅ s = s s ∈ S

G G S ×G → S

G

G S G S g ⋅ s = s g ∈ G, s ∈ S

Sn S n Sn S

Sn n

1 13 11 12 13

4D S4

σ

σ(4D) = 4H σ(12C) = 12C

S13

τ S13 i i +1 13

1 4D ⋅ τ = 5D σ ⋅ 4D ⋅ τ = 5H

Sn n H T

Sn σ σ σ

{H, T }

G

{ , , … , }g1 g2 gk S s ⋅ sgi

Sn H T

i i +1

H T

−1
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Figure 6.1: Cayley graph for action of  on a coin, with generators given by the simple transpositions.

Let's build a Cayley graph for the cards, but with a smaller set of cards to make things easier to draw. Imagine our deck only has
two suits - Spades and Diamonds - and only numbers  through . Then let  act on the left by permuting numbers. The Cayley
graph is below.

Figure 6.2: Cayley diagram for  acting on some cards numbered  through , whose suits are all either diamonds (D) or spades
(S).

Notice that the action is broken up into two different connected pieces: Exchanging numbers will never allow us to change suits,
but we can switch around numbers freely. As a result, the suits each form a 'block' from which the other blocks can't be reached.
These blocks are called orbits; we'll study them intensively in the next section.
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  has another generating set consisting of the transposition  and the rotation 
. Draw the Cayley graph of  acting on the coin with these generators. (Note that the Cayley

graph may be different for different .)

Sn [2, 1, 3, 4, … , n]
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n

1 4 S4

S4 1 4

https://libretexts.org/
https://math.libretexts.org/@go/page/700?pdf
http://inventingsituations.net/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/06%3A_Group_Actions/6.01%3A_Group_Actions
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/06%3A_Group_Actions/6.01%3A_Group_Actions?no-cache
https://inventingsituations.net/


6.2.1 https://math.libretexts.org/@go/page/701

6.2: Orbits and Stabilizers
In this section, we'll examine orbits and stabilizers, which will allow us to relate group actions to our previous study of cosets and
quotients.

Let  be a -set, and . The orbit of  is the set , the full set of objects that  is sent to under the
action of .

There are a few questions that come up when encountering a new group action. The foremost is 'Given two elements  and  from
the set , is there a group element such that ?' In other words, can I use the group to get from any element of the set to any
other? In the case of the action of  on a coin, the answer is yes. But in the case of  acting on the deck of cards, the answer is
no. In fact, this is just a question about orbits. If there is only one orbit, then I can always find a group element to move from any
object to any other object. This case has a special name.

A group action is transitive if . In other words, for any , there exists  such that . Equivalently, 
 contains a single orbit.

Equally important is the stabilizer of an element, the subset of  which leaves a given element  alone.

The stabilizer of  is the set , the set of elements of  which leave  unchanged under the action.

For example, the stabilizer of the coin with heads (or tails) up is , the set of permutations with positive sign. In our example with
 acting on the small deck of eight cards, consider the card . The stabilizer of  is the set of permutations  with ;

there are six such permutations.

In both of these examples, the stabilizer was a subgroup; this is a general fact!

Proposition 6.1.3

The stabilizer  of any element  is a subgroup of .
 

Proof 6.1.4

Let . Then . Thus, . If , then so is : By definition of a group action, , so: 
.

Thus,  is a subgroup.
 

Group action morphisms
And now some algebraic examples!

1. Let  be any group and . The left regular action of  on itself is given by left multiplication: . The first
condition for a group action holds by associativity of the group, and the second condition follows from the definition of the
identity element. (There is also a right regular action, where ; the action is 'on the right'.) The Cayley graph of the
left regular action is the same as the usual Cayley graph of the group!

2. Let  be a subgroup of , and let  be the set of cosets . The coset action is given by .

 Definition 6.1.0: The Orbit

S G s ∈ S s G ⋅ s = {g ⋅ s ∣ g ∈ G} s

G

s t

S g ⋅ s = t

Sn S4

 Definition 6.1.1: Transitive Group Action

G ⋅ s = S s, t ∈ S g ∈ G g ⋅ s = t

S

G s

 Definition 6.1.2: The Stabilizer

s = {g ∈ G ∣ g ⋅ s = s}Gs G s

An

S4 4D 4D σ σ(4) = 4

Gs s ∈ S G
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Figure 6.1:  is the subgroup of  with  for all  in . This illustrates the action of  on cosets of .

1. Show  is a subgroup of .
2. Now let  and Sketch the Cayley graph of the coset action of  on  and .

The coset action is quite special; we can use it to get a general idea of how group actions are put together.

Proposition 6.1.6

Let  be a -set, with  and . For any ,  if and only if . As a result, there is a bijection between elements
of the orbit of  and cosets of the stabilizer .
 

Proof 6.1.7

We have  if and only if , if and only if , if and only if , as desired.
 

In fact, we can generalize this idea considerably. We're actually identifying elements of the -set with cosets of the stabilizer
group, which is also a -set; in other words, defining a function  between two -sets. The theorem says that this function
preserves the group operation: .

Let  be -sets. A morphism of -sets is a function  such that  for all . We say
the -sets are isomorphic if  is a bijection.

We can then restate the proposition:

Theorem 6.1.9

For any  in a -set , the orbit of  is isomorphic to the coset action on .
 

Now we can use LaGrange's theorem in a very interesting way! We know that the cardinality of a subgroup divides the order of the
group, and that the number of cosets of a subgroup  is equal to . Then we can use the relationship between cosets and
orbits to observe the following:

Theorem 6.1.10

Let  be a -set, with . Then the size of the orbit of  is .
 

For a somewhat obvious example, considering  acting on the numerical values of playing cards, we can observe that any given
card is fixed by a subgroup of  isomorphic to  (switching around the other twelve numbers in any way doesn't change affect
the given card). Then the size of the orbit of the card is . That's a number we could have figured out directly by
reasoning a bit, but it shows us that the theorem is working sensibly!

Now that we have a notion of isomorphism of -sets, we can say something to classify -sets. What kinds of actions are possible?

Let  be a finite group, and  a finite -set. Then  is a collection of orbits. We knw that every orbit is isomorphic to  acting on
the cosets of some subgroup of . So we have the following theorem:

H S4 σ(1) = 1 σ H S4 H

 Consider the permutation group , and fix a number  such that . Let  be the set of
permutations in  with .

Sn i 1 ≤ i ≤ n Hi

Sn σ(i) = i

Hi Sn

n = 5 S5 H1 H3

S G s ∈ S Gs g,h ∈ G g ⋅ s = h ⋅ s g = hGs Gs

s Gs

g = hGs Gs g ∈h−1 Gs ( g) ⋅ s = sh−1 h ⋅ s = g ⋅ s

G

G ϕ G

ϕ(g ⋅ s) = g ⋅ ϕ(s)

 Definition

S, T G G ϕ : S → T ϕ(g ⋅ s) = g ⋅ ϕ(s) g ∈ G, s ∈ S

G ϕ

s G S S Gs
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Theorem 6.1.11: Classification of -Sets

Let  be a finite group, and  a finite -set. Then  is isomorphic to a union of coset actions of  on subgroups.

For example,  acting on a full deck of cards decomposes as a union of four orbits, each isomorphic to the coset action of  on
a subgroup isomorphic to .

In short, to understand all possible -sets, we should try to understand all of the subgroups of . In general, this is a hard problem,
though it's easy for some cases.

1. For , draw Cayley graphs of the coset action of  on each of it's cosets.
2. Describe all the subgroups of  for arbitrary .

1. Decompose the action of  on the subsets of  into orbits.
2. Draw a Cayley graph of the action.
3. Identify each orbit with the coset action on a subgroup of .
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6.3: Counting
We saw previously that the size of an orbit is equal to . We can use this to figure out how many orbits there are in a -set
in all. This is a very useful thing to count: It's useful for counting things 'up to symmetry.' We'll denote the orbits of  by , and
thus the number of orbits is . The notation should be read ' -mod- '; it's useful when two things are 'the same' in  if they
are related by an application of an element of .

For example, let's suppose we wanted to count all of the ways of painting the sides of a cube with three colors. We would naturally
think of two ways of painting as being the same if we could rotate the cube to line up the colors in the same way. Then the group 
might be symmetries of the cube, and the set  would be all ways of painting the cube in fixed position: What we're really trying to
count is .

Let  denote the set . This is like the stabilizer in reverse: we're collecting up all of the elements of the set 
that are fixed by .

Theorem 6.2.0:

(Burnside's Lemma) The number of orbits in a -set  is .

(Note that there's ample evidence that Burnside didn't actually invent Burnside's lemma; we include the name because it's what
everyone knows it by.)

Proof 6.2.1:

Let  denote the orbit of  under . First notice that the sum of the size of the fixed sets  is equal to the sum of the size of
the stabilizer groups : Both are counting the number of pairs  such that . Then:

    

Then dividing both sides by  gives the desired result.

Let's try an example. We mentioned earlier the question of the number of ways to color a cube with three colors. Let's try it out.
There is an initial question of which group of symmetries we're interested in: Do we allow reflections of the cube or only rotations?
Since we can't naturally reflect things in three-dimensional space, we'll stick with the rotation group of the cube. (This choice, by
the way, has consequences in chemistry. And here's an excellent Radiolab piece on the topic.)

The rotation group has  elements: From a base-position of the cube, you can rotate a marked face to any other face (there are six
choices), and from there four rotations are available, making  symmetries in all. Every rotation in 3-dimensional space has an
axis of rotation. So each rotational symmetry will have an axis of rotation; we can identify the symmetries by their axis and amount
of rotation. We classify these symmetries into five classes, and determine the number of fixed points for each class.

Axes of symmetric rotation for a cube.

The types of rotational axis for a cube which produce symmetries. From left to right, a 'face' axis, a 'vertex' axis, and an 'edge' axis.

There are  colorings of the base cube to consider in all; for each symmetry, we determine the number of colorings that the
symmetry fixes.

1. The identity permutation. This permutation fixes all  colorings.
2. Face rotations by . These are formed by rotating around the axis through the center of two opposite faces. There are six

such rotations. In order to fix a coloring, the coloring must have the four 'moving' sides all colored with the same color. The
other two sides may be colored in any way. Thus, each of these symmetries fixes  colorings.

3. Face rotations by . Rotation by  about the axis through opposite faces. There are three such symmetries. Each
requires that opposite 'moving' faces be the same color, while the 'fixed' faces may be colored arbitrarily. Thus, there are 
fixed points for these rotations.

4. Vertex rotations by . Rotation through an axis between opposite vertices of the cube. There are four such axes, with two
non-trivial rotations through each such axis, for a total of eight symmetries in this class. To fix a coloring, the coloring must
have same-colored faces touching the vertices of rotation. There are thus  fixed points for these rotations.

5. Edge rotations by . Rotation through the axis connecting the centers of opposite edges. There are six such rotations. To
fix a coloring, such a rotation needs all opposite sides to have the same color. Thus, each one fixes  colorings.

|G|/| |Gs G

S S/G

|S/G| S G S

G

G

S

|S/G|

Sg {s ∈ S ∣ g ⋅ s = s} S

g

G S |S/G| = | |1

|G|
∑g∈G Sg

G ⋅ s s G Sg

Gs (g, s) g ⋅ s = s

| | = | |∑g∈G Sg ∑s∈S Gs = |G|/|G ⋅ s|∑s∈S = |G|∑s∈S
1

|G⋅s|
= |G| 1∑S/G = |G||S/G|

|G|

24

24

36

36

±90∘

33

±180∘ 180∘

34

±120∘

32

±180∘

33

https://libretexts.org/
https://math.libretexts.org/@go/page/702?pdf
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/06%3A_Group_Actions/6.03%3A_Counting
http://en.wikipedia.org/wiki/Burnside's_lemma#History:_the_lemma_that_is_not_Burnside.27s
http://en.wikipedia.org/wiki/Chirality_(chemistry)
http://www.radiolab.org/2011/apr/18/mirror-mirror/
http://en.wikipedia.org/wiki/Euler%27s_rotation_theorem


6.3.2 https://math.libretexts.org/@go/page/702

We can then use Burnside's Lemma to find the total number of colorings up to rotation: 
.

1. Find the number of colorings of the cube with  colors up to rotation.
2. Find the number of colorings of the octahedron with  colors up to rotation.
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(1 ⋅ +6 ⋅ +3 ⋅ +8 ⋅ +6 ⋅ ) = 571
G

36 33 34 32 33

 Exercise 6.2.2

n

n

 Up to rotation or flip, how many colorings of the board are possible? How about for a  board?k × k
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7: Rings I
A brief overview of the study of ring theory.

7.1: Juggling With Two Operations
7.2: Ring Homomorphisms

Contributors and Attributions

Tom Denton (Fields Institute/York University in Toronto)

This page titled 7: Rings I is shared under a not declared license and was authored, remixed, and/or curated by Tom Denton.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/07%3A_Rings_I/7.01%3A_Juggling_With_Two_Operations
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/07%3A_Rings_I/7.02%3A_Ring_Homomorphisms
http://inventingsituations.net/
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/07%3A_Rings_I
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Algebraic_Structures_(Denton)/07%3A_Rings_I?no-cache
https://inventingsituations.net/


7.1.1 https://math.libretexts.org/@go/page/703

7.1: Juggling With Two Operations
We'll now start looking at algebraic structures with more than one operation. Typically, these structures will have rules governing
the different operations, and additional rules for how the operations interact. We'll begin by looking at rings, which have two
operations, usually written as addition and multiplication, related by the distributive property.

There are many reasons to study ring theory, often having to do with generalizing the properties that we observe in many of the
rings we deal with in day-to-day life, like the integers and the rational numbers. By making precise the algebraic structures that (for
example) the integers satisfy, we can figure out what makes our favorite facts about the integers true, and easily see where those
same facts hold true.

It's also an area where most of the real pay-off comes later. Understanding ring theory is essential for algebraic geometry in
particular, which is a major force in modern mathematics. The basic idea of algebraic geometry is to study geometry using zeroes
of polynomials: for example, a line in the plane can be thought of as the zeroes of the polynomial  where 
and  are constants. In other words, to understand properties of geometry, it is helpful to understand properties of polynomials. And
polynomials are an example of a ring, as we'll see.

A ring is a set  with operations  and  such that:

1.  is a commutative group under ,
2. (Distributivity) For all , we have , and .

This is the most general type of ring. There are many different types of ring which arise from placing extra conditions, especially
on the multiplicative operation. In fact, ring theory is kind of a zoo, divided up into the study of different 'species' of rings. Possibly
the most important rings to study are commutative, associative rings with unity, which we define now.

Let  be a ring, and . Then  is:

1. Associative if the multiplication operation is associative: ,
2. A ring with unity if there is a multiplicative identity , such that ,
3. Commutative if the operation  is commutative: .

Usually we'll deal with associative rings with unity; in fact, when we write 'ring' we'll mean an associative ring with unity unless
otherwise noted. As a result, 'commutative ring' will mean a ring that is commutative, associative and with unity.

There are numerous examples of rings! Here are some familiar examples.

1. Integers. The integers are a commutative group under addition, and have the distributive property. Additionally, the integers are
associative and commutative under multiplication, and have a multiplicative identity, . Thus, the integers are an commutative
associative ring with unity.

2. Rational Numbers, Real Numbers, Complex Numbers. All of these familiar number systems are examples of commutative
associative rings with unity.

3. Integers modulo , . The multiplication operation works just as the addition operation does: do the normal multiplication,
and then divide by  and keep the remainder: . This is an associative and commutative operation, and there is a
multiplicative identity.

4. Matrices. Recall that matrix addition is just entry-by-entry, and that the multiplication of matrices adds and multiplies the
entries according to a certain rule: if  and  are matrices, then . Since this only uses addition and
multiplication, we can thus form matrices with entries in any ring , since  has notions of addition and multiplication. The set
of all  matrices with entries in  is denoted .

f(x, y) = y −mx −b m

b

 Definition 7.0.0

R + ⋅

R +

r, s, t ∈ R r ⋅ (s + t) = r ⋅ s +r ⋅ t (s + t) ⋅ r = s ⋅ r + t ⋅ r

 Show, using the definition of a ring, that for any ring  with additive identity , we have  for every 
.

R 0 0 ⋅ r = 0

r ∈ R

 Definition 7.0.2:

R r, s, t ∈ R R

r ⋅ (s ⋅ t) = (r ⋅ s) ⋅ t

1 1 ⋅ r = r = r ⋅ 1

⋅ r ⋅ s = s ⋅ r

1

n Zn

n a ⋅ b = (ab)

M N (MN =)i,j ∑k Mi,kNk,j

R R

m ×n R (R)Mm×n
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5. Polynomials. Polynomials can be added and multiplied so long as we know how to add and multiply the coefficients. We let 
 denote the ring of polynomials with coefficients from the ring  and variable  with exponent . For example, if 

, we have .
6. Rings of Functions. Many spaces of functions have a ring structure. For example, if we consider differentiable functions 

, we can add and multiply functions:  and . Sums and products of
differentiable functions are also differentiable, so they are closed. The functions form an additive group, and there's a
multiplicative identity: the constant function defined by .

1. Generate two 'random' matrices  and  in . Compute , , and .
2. Consider , defined by  and . Find  and .
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R[x] R x ≥ 0

R =Z2 (x +1)(x +1) = +1x2

R → R (f +g)(x) = f(x) +g(x) (f ⋅ g)(x) = f(x)g(x)

1(x) = 1

 Exercise 7.0.3

M N ( )M3,3 Z6 M +N MN NM

f , g ∈ Z6 f = +2 +3xx3 x2 g = 4 +5x +4x3 f +g fg
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7.2: Ring Homomorphisms
As we saw with both groups and group actions, it pays to consider structure preserving functions!

Let  and  be rings. Then  is a homomorphism if:

1.  is homomorphism of additive groups: , and
2.  preserves multiplication: .

If the homomorphism is a bijection, then it is an isomorphism.

Examples:
1. We have the inclusion homomorphism , which just sets . This map clearly preserves both addition and

multiplication.
2. Consider the map  sending  to . We've seen that this is a homomorphism of additive groups, and can easily check

that multiplication is preserved. Indeed, 
.

Notice that every element in  can be written as a sum of many copies of . Then we were able to figure out what the
homomorphism does simply by knowing . As an example, consider the map  sending  to . (Thus, 

.) This can be shown, using the same argument as above, to be a ring homomorphism.

3. The evaluation map  is a function from  to . For any polynomial  and , we set . This is a
ring homomorphism! Let , and , where the . (We'll also allow
leading coefficients to be zero in order to make it easy to add  and  formally.) We then check the ring homomorphism
conditions:

b. Since we know that  is an additive homomorphism, we only need to check that it is multiplicative on monomials. But that's
easy: 

Exercise 7.1.1

1. Show that  defined by  is a ring homomorphism. Find the kernel and image of .

Show that  defined by  is a ring homomorphism. Find the kernel and image of . As with groups, we also have direct
products of rings.

Let  and  be rings. Define the direct product  as the set  with coordinate-wise operations: 
, and .

Of course, one should verify that this is a ring by checking the ring axioms.

1. Show that for any rings  and  that the product  is a ring.
2. Show that the inclusion map  given by  is a ring homomorphism.
3. Show that the projection  given by  is a ring homomorphism.

A Small Digression on the Relationship Between Good Computer Science and Good Mathematics
Recall that when we worked with groups the kernel of a homomorphism was quite important; the kernel gave rise to normal
subgroups, which were important in creating quotient groups.

 Definition 7.1.0

R S ϕ : R → S

ϕ ϕ(a +b) = ϕ(a) +ϕ(b)

ϕ ϕ(a ⋅ b) = ϕ(a) ⋅ ϕ(b)

ι : Z →Q ι(n) = n

ϕ : Z → Zn k k

ϕ(a) = ϕ(1 +1 +⋯ +1) = ϕ(1) +ϕ(1) +⋯ +ϕ(1) = aϕ(1) = a

Z 1

ϕ(1) ρ : Z → Z5 k (2k)

ρ(0) = 0, ρ(3) = 1

ek R[x] R f ∈ R[x] k ∈ R (f) = f(k)ek

f(x) = +⋯anxn a0x0 g(x) = +⋯bnxn b0x0 , ∈ Rai bi

f g

ek

((a )(b ))ek xn xm =

=

(ab )ek xn+m

ab = (a ) (b ).kn+m ek xn ek xm

(7.2.1)

(7.2.2)

ρ : Z → Z5 ρ(k) = (3k) ρ

ρ : Z → Z6 ρ(k) = (3k) ρ

 Definition 7.1.2

R S R ×S {(r, s) ∣ r ∈ R, s ∈ S}

( , ) +( , ) = ( + , + )r1 s1 r2 s2 r1 r2 s1 s2 ( , ) ⋅ ( , ) = ( ⋅ , ⋅ )r1 s1 r2 s2 r1 r2 s1 s2

 Exercise 7.1.3

R S R ×S

ι : R → R ×S ι(r) = (r, 0)

π : R ×S → R π((r, s)) = r
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For ring homomorphisms, the situation is very similar. The kernel of a ring homomorphism is still called the kernel and gives rise
to quotient rings. In fact, we will basically recreate all of the theorems and definitions that we used for groups, but now in the
context of rings. Conceptually, we've already done the hard work.

In computer programming, people often speak of the DRY principle: Don't Repeat Yourself, meaning that you shouldn't write the
same code more than once. The reason, in computer science, is that it's easier to fix mistakes or make modifications if a given piece
of code appears in one distinct place.

In mathematics, we have a similar principle: generalization. When you find yourself doing the same thing in different contexts, it
means that there's something deeper going on, and that there's probably a proof of whatever theorem you're re-proving that doesn't
matter as much on the context. It would be nice, for example, to remember just one concept for quotient groups, quotient rings,
quotient vector spaces, and whatever else, instead of a hodgepodge of specific cases of the same basic idea.

For the game of homomorphisms, kernels, and quotients, the generalization involves category theory and universal properties.
Category theory is a bit beyond the scope of these notes, but is an essential part of modern mathematics and serves as a bridge
between many different fields of mathematical study.

Subring, Kernel, Image, Quotient.

We begin with some definitions.

Let  be a ring. A subset  of  is a subring if  is itself a ring using the same operations as . (We don't require that  has a
multiplicative identity, though.)

For example, take , the polynomial ring over . The set of degree  polynomials is closed under addition and multiplication;
indeed, this set is just a copy of . Thus,  is a subring of .

On the other hand, consider the set of all polynomials of degree greater than or equal to 2 in , which we'll denote . This is
closed under addition (the sum of two polynomials has degree equal to the max of their degrees), and is closed under multiplication
(the degree of the product is the sum of the degrees). Thus, it is a subring. However, the multiplicative identity in  is , which
has degree 0. So there is no unit in $P_{\geq 2}.

Another example: Take , the set of even integers. This set is closed under addition and multiplication, and is thus a subring.
(The sum and product of two even integers is still even.) However, the even integers don't have the number , and so there is no
unit in .

Let  be a ring homomorphism. The kernel of  is , which we also write as . The image
of  is the set , which we also write as .

We immediately have the following.

Proposition 7.1.17

Let  be a ring homomorphism. Then the kernel of  is a subring of  and the image of  is a subring of .

Proof 7.1.8

Since  is a homomorphism of commutative additive groups, we know that the kernel and image are closed under addition. The kernel is closed
under multiplication, because if , then . The image is closed because if , then there exist 

 such that . Then .
 

 Definition 7.1.4

R S R S R S

R[x] R 0

R R R[x]

Z[x] P≥2

R[x] 1

2Z ⊂Z

1

2Z

 Let  denote all polynomials in  with degree . Is  a subring of ? Why or why not?P n
≥2 [x]Zn ≥ 2 P 4

≥2 [x]Zn

 Definition 7.1.6

ϕ : R → S ϕ {r ∈ R ∣ ϕ(r) = 0} (0)ϕ−1

ϕ {ϕ(r) ∣ r ∈ R} ϕ(R)

ϕ : R → S ϕ R ϕ S

ϕ

ϕ(a) = ϕ(b) = 0 ϕ(ab) = ϕ(a)ϕ(b) = 0 x,y ∈ ϕ(R)

a,b ∈ R ϕ(a) = x,ϕ(b) = y xy = ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(R)

https://libretexts.org/
https://math.libretexts.org/@go/page/704?pdf


7.2.3 https://math.libretexts.org/@go/page/704

Just as kernels of group homomorphisms were special kinds of subgroups, kernels of ring homomorphisms are special kinds of
subrings.

A subring  of a ring  is an ideal if for any ,  and $xr\in I.

Proposition 7.1.10

Let  be the kernel of a ring homomorphism . Then  is an ideal.
 

Proof 7.1.11

For any , we have . Then . Similarly, . Thus,  is a two-sided ideal.
 

Ideals are playing exactly the same role as normal subgroups in the groups context; in fact, an ideal is a normal subgroup of the
additive group of the ring. In particular, we can form cosets and consider the quotient . Since it's an additive group, cosets of
an ideal  are of the form .

Theorem 7.1.12

If  is an ideal, then  is a ring.
 

Proof 7.1.13

We know that under addition  is a commutative group. So we just need to show that the multiplication distributes over addition. For this we
have: 

. 
One can also check that the multiplication is associative and commutative if  is associative and commutative. Likewise, if  has a unit, then 

 acts as a unit in .
 

Finally, we have the isomorphism theorem.

Theorem 7.1.14: Isomorphism Theorem

Let  and  be rings, and  a homomorphism. Then the image of  is isomorphic to .

Proof 7.1.15

To prove the isomorphism theorem, build a homomorphism from  to the image of , just as we did for groups, and show that it is a bijection.
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 Definition 7.1.9

I R x ∈ I, r ∈ R rx ∈ I

K ϕ : R → S K

x ∈ K ϕ(x) = 0 ϕ(rx) = ϕ(r)ϕ(x) = ϕ(r)0 = 0 ϕ(xr) = 0 K

R/I

I r +I = {r +x|x ∈ I}

I R/I

R/I

((r + I) + (q + I))(s + I) = rs + qs + I = (r + I)(s + I) + (q + I)(s + I)

R R

1 + I R/I

R S ϕ : R → S ϕ R/I

R/I ϕ
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CHAPTER OVERVIEW

8: Rings II
In working with different rings (and different kinds of rings) questions quickly arise about which familiar properties of one ring
might carry over to another ring. To illustrate this kind of question, we'll spend this chapter talking about division.
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8.1: The Problem of Division
Let's consider the problem of division. To get at a notion of division in general rings, let's recap what we know about division for
familiar number systems.

For numbers , we say that  divides  if there exists a number  such that  if . We call  the quotient of  by 
.

We can try to offload the problem of division to a problem of finding multiplicative inverses. If  has a multiplicative inverse, then
division by  is easy: we can set , so that . If every element other than  has a multiplicative inverse,
then  is called a field. You should already know three examples of fields: , and . Part of the reason for the importance of
fields is that most of the basic facts in linear algebra work for any field.

A field  is a commutative ring in which every element other than  has a multiplicative inverse.

Since the field must already be a commutative, associative ring with unity, we see that the set  is a group! Then another
way to define a field is as a ring that is a commutative group under addition, and where  is a commutative group as well.

For example, we've already seen the group , which is just  with the  removed. Since this is a commutative group,  is a
field.

All of this works fine in ,  and : in these rings, for every  and , we can find a unique number  such that . In other
rings, though, things can go wrong in a number of different ways.

1. The first problem that could arise is that  has no multiplicative inverse. For example, in , there is no number  such that 
. Likewise, almost no element of  has a multiplicative inverse.

2. It could be that for a given  and , there is no quotient . An example of this occurs in , where (for example) there is no
number .

3. It could happen that the quotient  exists but is not unique. For example, consider the product ring . Let  and 
. Then for any integer , .

4. There's also a problem if the ring  is not commutative. It could occur that  but . Which 'side' of  is our division
happening on?

We'll see that the different ways of resolving these questions give rise to definitions of different kinds of rings.

Zero-divisors
We'll first consider the question of multiplicative inverses. For a start, in any non-zero ring,  does not have a multiplicative
inverse: For any  we have have , so it can't be the case that . This situation is familiar from working with the
rational and real numbers. But there can be other elements without a multiplicative inverse.

For example, consider . The elements  and  have multiplicative inverses:  and . But none of the other
elements have a multiplicative inverse! For example, if we multiply  times each element of , we get the list .
Since  isn't in the list,  has no multiplicative inverse. Something interesting is happening in that list of multiples of , though:
there are many zeroes!

Let . Then  is a zero-divisor if there exists  such that .

 Definition 8.0.0:

x, y y x z = zx
y

x = zy z x

y

y

y z = xy−1 zy = x y = xy−1 0

R Z,R C

 Definition 8.0.1: Field

F 0

F ∖ {0}

F ∖ {0}

Q
×

Q 0 Q

 For which values of  is  a field?n Zn

R Q C x y z zy = x

y Z6 z

2 ⋅ z = 1 Z

x y z = x
y Z

2
3

z Z×Z x = (4, 0)

y = (2, 0) k (2, k) ⋅ y = x

R yz = x zy ≠ x x

0

x x ⋅ 0 = 0 x ⋅ 0 = 1

Z6 1 5 1 ⋅ 1 = 1 5 ⋅ 5 = 1

2 Z6 [0, 2, 0, 2, 0, 2]

1 2 2

Definition 8.0.3

x ∈ R x y x ⋅ y = 0
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We have the following immediate result.

Proposition 8.0.5

For ,  cannot be both invertible and a zero-divisor.
 

Proof 8.0.6

Suppose that  is invertible and a zero-divisor, and let  with . Then , a contradiction.
 

As a result, the presence of zero-divisors means that there are non-invertible elements in the ring, and thus throws our division
project into jeopardy. Furthermore, zero divisors also contribute to non-uniqueness of division: if  and , then we also
have , so that both  and  can be considered as solutions to .

To give a concrete example of this phenomenon, consider again . What is the quotient ? Obviously,  is an answer, since 
. But we also have , so we could also write  just as easily. Notice that ; this is

exactly the case described above.

Interestingly, for elements which are neither invertible nor zero-divisors, we still have a cancelation law:

Corollary 8.0.7

Suppose that  is not a zero-divisor and . Then .
 

Proof 8.0.8

We have . Then since  is not a zero-divisor, we must have , so that .
 

One can use this result directly to prove the following:

Corollary 8.0.9

If  is not a zero divisor, then the quotient  is unique if it exists.
 

Then we see that the presence of zero-divisors is a major impediment to doing division in rings. Rings without zero-divisors will
then be nice to work with!

A commutative ring with no zero-divisors is called an integral domain.

Every field is an integral domain, since every non-zero element of a field is invertible. The primary example of an integral domain
that is not a field is the integers: There are no non-zero integers where , but most integers don't have multiplicative inverses,
so  is not a field.

Then we seem to have an answer to the problem of division for commutative rings:

1. The best-case scenario is when every element has an inverse. Such rings are called division rings, or (if the ring is also
commutative) fields.

2. The next-best case is when there are no zero divisors. These are the integral domains.

In the next two sections, we'll look at two different ways to 'solve' a division problem in an integral domain. The first way is to
introduce fractions, which allow us to find inverses for any element of the ring. The second - available only in some rings - allows
us to do division with a remainder.

 Describe all of the zero-divisors in the ring .Z × Z

x ∈ R x

x y ≠ 0 xy = 0 y = ( x)y = (xy) = 0 = 0x−1 x−1 x−1

ry = 0 x = zy

x = (z +r)y z z +r
x
y

Z6
4
2

2

2 ⋅ 2 = 4 2 ⋅ 5 = 4 = 54
2

(2 +3) ⋅ 2 = 4 +0 = 4

r ≠ 0 rx = ry x = y

rx − ry = r(x − y) = 0 r x − y = 0 x = y

r x
r

 Definition 8.0.10: Integral Domain

xy = 0

Z
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8.2: Field of Fractions
In the history of number systems, there is a clear progression: Faced with a void where there could be more numbers, more
numbers are invented. First came the natural numbers (the counting numbers), and when people found that certain subtraction
problems had no solution, negative numbers were introduced to fill the void. Relevant to our current discussion, the rational
numbers come about when one notices that some division problems amongst integers don't have a solution.

Suppose that  is an integral domain. Then the only impediment to division is a lack of actual quotients: if the quotients were to
exist, they would have to be unique.

Consider . This is of course an integral domain, but wouldn't it be nice if  had a multiplicative inverse? We'll extend  by
including . But when we include , we also have to include all possible sums and products in order to ensure that we still have a
ring; the operations of addition and multiplication need to be closed, of course. So in addition to , we also need to include every
number , with  and  in order to ensure that the set is closed under multiplication and addition. Call this set . Then

 is a commutative ring with unity. It's also an integral domain, but still not a field, since, for example,  has no multiplicative
inverse.

In that case, we can go ahead and include the multiplicative inverse of every positive integer, along with all possible sums and
products of those inverses. The resulting ring, of course, is the rational numbers, .

We would like to extend this construction to an arbitrary integral domain: Starting from an integral domain , we introduce
inverses and the appropriate sums and products until every element has an inverse. In fact, this involves copying the whole notion
of fractions.

First we construct a ring . For an integral domain ,  is the set . Each pair  in  can be thought of as
fractions ; note that we disallow . The operation  defined by  and multiplication is defined
by . Then  is a commutative ring; we leave it as an exercise to show this is true.

With rational numbers, it is important to notice that many different fractions are the same: currently our ring  is much too large!
For example, we haven't introduced any mechanism for cancellation of numerator and denominator: 
in .

We'll construct the actual ring of fractions as a quotient of . To construct a quotient, we only need to identify a suitable ideal ;
the quotient will then just be . The ideal should contain everything that is 'equivalent to ' in the ring of fractions. Thinking by
analogy to the rationals, we see that this is the set .

This set is easily shown to be an ideal: . And for any , we have 
. Then  is an ideal.

We can now check that  in the quotient : , and 
, as desired.

We then define the field of fractions as . This is in fact a field: For any , we have , so every
non-zero element in  has a multiplicative inverse.

The field of fractions of an integral domain  is , with  and  as defined above.
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n

2m n ∈ Z m ∈ N R

R 3

Q

D

D′ D D′ D ×(D ∖ {0}) (a, b) D′

a

b
b = 0 + (a, b) +(x, y) = (ay +bx, by)

(a, b) ⋅ (x, y) = (ax, by) D′

 Let  be an integral domain. Show that  is an integral domain. (In particular, check all of the ring axioms,
and then show that there are no zero-divisors in .)

D D′

D′

D′

(a, b) ⋅ (b, a) = (ab, ab) ≠ 1

D′

D′ I

/ID′ 0

I = {(0, x) ∣ x ∈ D}

(0, a) +(0, b) = (0ab, ab) = (0, ab) ∈ I (x, y) ∈ D′

(x, y) ⋅ (0, a) = (0, ya) ∈ I I

(a, b) ⋅ (b, a) = (1, 1) /ID′ (a, b) ⋅ (b, a) = (ab, ab)

(ab, ab) −(1, 1) = (ab −ab, ab) = (0, ab) = 0

Q = /ID′ a, b ≠ 0 (a, b = (b, a))−1

Q

 Definition 8.1.1: Field of Fractions

D /ID′ D′ I
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8.3: Euclidean Domains
Creating a field of fractions is one way to definitively solve the problems of division in an integral domain: Make up fractions to
have an inverse for every non-zero element. But there's (sometimes) another way to define division without resorting to introducing
new elements to the field, familiar from the integers: define division using a 'quotient' and a 'remainder.'

For example, among the integers we can write ; then  has a quotient  and remainder . Generally, to find ,
we write , where . Then  is the quotient and  is the remainder.

We can do something similar with polynomials: Given two polynomials  and , we can divide  by  and uniquely write 
, where  is a polynomial and  is a polynomial of lower degree than .

For example, take  and , we can apply the polynomial long division algorithm and get 
. Here  is the whole part and  is the remainder.

In both the integer division and the polynomial division, the key ingredient is a way of ordering the elements of the ring: in the
integers, we order by the usual ordering of the integers, and with polynomials we order by the degree of the polynomial.

A norm on a ring  is a function  with . A positive norm has  for all .

Any given ring can have many different norms. The norm on the integers is simply the absolute value of the integer; it is a positive
norm. The norm on polynomials is the degree of the polynomial.

A Euclidean domain is an integral domain  with a norm  such that for any , there exist  such that 
with . The element  is called the quotient and  is the remainder.

A Euclidean domain then has the same kind of partial solution to the question of division as we have in the integers.

In fact, Euclidean domains further have a Euclidean algorithm for finding a common divisor of two elements. The Euclidean
algorithm is performed by starting with two elements  and  for which we wish to find a common divisor. Dividing  by  gives a
quotient  and a remainder . We then divide  by  and obtain a new quotinet  and a new remainder, . We then repeat this
process to get quotients  and remainders . Each remainder has smaller norm than the previous, so this
process must eventually terminate with some .

The final quotient,  divides both  and : You can see this by writing , and then expanding : 
. If we imagine the process ending at this point, so that , we then have  divides both  and . On

the other hand, if the process doesn't terminate, we can expand . Then . If
the process terminates, then , and  divides every term, and thus divides  and . If the process doesn't terminate, we repeat
the same basic argument.

(TODO: Examples in Z and Z[x])
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n = qm +r 0 < r < |m| q r

f g f g

f = Qg +R Q R g

f = 2 +3 +x +3x5 x2 g = +1x2

f = (2 −2x +3)g −xx3 2 −2x +3x3 −x

 Definition 8.2.0: Norm on a Ring

R n : R → Z≥0 n(0) = 0 n(r) > 0 r ≠ 0

 Definition 8.2.1: Euclidean Domain

R n a, b ∈ R q, r a = q ⋅ b +r

n(r) < n(b) q r

f g f g

q0 r0 g r0 q1 r1

, , …q2 q3 qk , , …r2 r3 rk

= 0rk

qk g f f = g +q0 r0 r0

f = ( + ) +q0 q1r0 r1 r0 = 0r1 r0 f g

= +r0 q2r1 r2 f = ( ( + ) + ) + +q0 q1 q2r1 r2 r1 q2r1 r2

= 0r2 r1 f g
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We look at vector spaces as algebraic structures.
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9.1: A Return to Linear Algebra
We've now seen numerous examples of algebraic structures, which we can think of as sets with some operations which satisfy
some axioms. Here's a partial list:

1. Groups,
2. Commutative groups,
3. Group actions,
4. Rings,
5. Commutative rings,
6. Integral domains,
7. Fields,
8. and others...

In this chapter, we'll examine vector spaces as algebraic structures. Vector spaces are massively important because these are
algebraic structures where the tools of linear algebra are available. Linear algebra is, in some ways, the branch of mathematics
which is best developed: when a problem in science is converted into a linear algebra problem, we have a pretty good chance of
being able to solve it. This is why, for example, the technique of linearization which comes up in differential equations and
modeling is so important.

In fact, viewing vector spaces as algebraic structures does two things for us.

1. This viewpoint helps us identify more situations as linear algebra situations, allowing us to use our linear algebra tools in a
broader set of circumstances, and

2. Abstracting allows us to better identify precisely what tools we are using when we prove statements in linear algebra, so we can
identify exactly which situations those tools are applicable in. As with rings, there are more than one kind of vector space, and
some vector spaces are more 'friendly' than others.

So let's see the definition.

A vector space is a set  and a field  with two operations, addition  and scalar multiplication 
, satisfying the following axioms.

1.  under addition is a commutative group.
2. (Distributivity I) For any  and , we have .
3. (Distributivity II) For any  and , we have .
4. (Associativity) For any  and , we have .

The elements of the set  are called vectors.

(As an aside: There's a another way to think of vector spaces as well. For any ring , there is a concept of an -module which is
similar to a group action: a module is a set with a ring action. That is to say, a ring pushing around objects in the set in a way that is
compatible with both of the ring operations. From this viewpoint, a vector space is just a -module, where the underlying set is a
commutative group itself. As a result, -modules is a generalization of vector spaces.)

As is traditional, we list some examples. Note that the vector space is a set and a field: usually, the choice of field is derived from
context, but we'll be specific if the context is non-obvious. Often, we say that '  is a vector space over ' to mean that  is the
commutative group and  is the field.

1.  is the vector space whose underlying set is lists of  elements of , with coordinate-wise addition and  acting by scalar
multiplication. This gives rise to the familiar spaces  and . But we also know about finite fields now:  where  is prime
is also a vector space.

2. The set of polynomials  in a single variable is a vector space over .
3. Let  denote the set of  matrices with entries in . Then  is a vector space over .
4. Let  be a vector space over . Set  to be the set of functions from  to . (This is called the dual of .) Addition of

functions is given by , and scalar multiplication is given by .

 Definition 9.0.0: vector space properties

V k + : V ×V → V

⋅ : k×V → V

V

c ∈ k v,w ∈ V c(v+w) = cv+cw

c, d ∈ k v∈ V (c+d)v= cv+dv

c, d ∈ k v∈ V (cd)v= c(dv)

V

R R

k

R

V k V

k

k
n n k k

R
n

C
n

Z
n
p p

k[x] k

(k)Mn,m n×m k (k)Mn,m k

V k V ∗ V k V

(f +g)(x) = f(x) +g(x) (cf)(x) = c ⋅ f(x)
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1. For each of the above examples of vector spaces, write some example elements and give examples of addition and scalar
multiplication in that vector space.

2. Prove that each of these examples is a vector space.

Some kinds of vector spaces only make sense with certain fields. Here's an example in the form of an exercise.

Show that the set of continuous functions from  is a vector space over . (Be sure to explicitly identify what the
operations of addition and scalar multiplication are.)

What extra condition would we need for a vector space  over  in order for the notion of continuous functions  to
make sense?
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9.2: Linear Independence
One of the core concepts in linear algebra is linear independence, and this concept translates to general vector spaces with no
difficulty.

Let  be a set with elements . A linear combination of elements  is given by any finite sum  with
coefficients . (If  is an infinite set, then all but finitely many  must be equal to .)

Let  be a set of vectors in a vector space . Then we say that  is linearly dependent if there exists a linear combination of
elements of  equal to .

Let  be the vector space of sequences of elements of . (ie, the space of sequences , with coordinate-
wise addition and the usual scalar multiplication.) Let  be the sequence with  and  for all . Let

 be the element . Now, let  be the set of all the  and . This is actually a linearly independent set. You
might note that the sum of all of the elements in  (with all coefficients in the sum equal to ) seems to be the -vector. But
this is an infinite sum, and is thus not considered a linear combination of elements of .
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