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1.1: Statements

a sentence that is either true or false

1. All prime numbers are odd.
2. Some trees have leaves and some trees have needles.
3. If you pay attention in class and work through all the homework problems, then you will do well in this course.

part of a logical statement that could be considered a statement on its own

“Some trees have leaves” is a substatement of statement 2 in Example 

does not contain any proper substatements

contains two or more substatements

a connecting word between substatements in a compound statement

Reconsidering the statements in Example :

1. statement 1 is simple;
2. statement 2 is a compound statement made up of two (simple) substatements linked by the connective “and”; and
3. statement 3 is a compound statement made up of two substatements linked by the connective “if … then …”, where the

substatement that constitutes the “if” part is itself a compound statement.

The substatements in a compound statement can be related to each other by connectives in various ways.

negation “not”

conjuction “and”

disjunction “or”

conditional “if … then …”

biconditional “if and only if”

 Definition: Statement

 Example : Logical Statements1.1.1

 Definition: Substatement

 Example : Substatements1.1.2

1.1.1

 Definition: Simple Statement

 Definition: Compound Statement

 Definition: Connective

 Example : Simple and Compound Statements1.1.3

1.1.1

 Definition: Five Basic Connectives
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Given statements  and , we use these connectives to construct new statements:

negation of not 

conjuction of  and  and 

disjunction of  and  or 

conditional where  implies if  then 

biconditional involving  and  if and only if 

1. All statements we will consider can be constructed starting from a finite number of simple statements and
modifying/joining them using connectives as above.

2. Always take “  or ” to mean “  or  or both” (known as inclusive or). However, in everyday language it may be
reasonable to take “either  or ” to mean “(  or ) and not (  and )” (known as exclusive or).

3. The conditional and biconditional connectives are actually superfluous — they can be constructed from the first three.
(See Worked Example 2.1.1 and Exercise 2.5.5.) But they occur frequently, and such constructions from other connectives
obscure their meaning, so it is more convenient to include these two connectives in our list of of basic connectives.

A conversation.

Alice It is raining.

Bob No, it isn't.

Alice Either it's raining or it isn't.

Bob How can we decide?

Alice If we go outside and we get wet, then it's raining.

Bob We'd get wet outside if the sprinklers are on, too.

Alice Don't be silly!

Alice(continuing...)
We'll get wet if it's raining, and this is the only way we'll get
wet.

Let us rewrite the above conversation to clearly identify the substatements and connectives.

Alice it is raining

Bob not (it is raining)

Alice (it is raining) or (not (it is raining))

Bob [not a statement!]

Alice if ((we are outside) and (we get wet)) then (it is raining)

Bob if ((we are outside) and (the sprinklers are on)) then (we get wet)

Alice [not a statement!]

Bob
if (we are outside) then ((we get wet) if and only if (it is
raining))

A B

A A

A B A B

A B A B

A B A B

A B A B

Remark 1.1.1

A B A B

A B A B A B

 Example : Translating Everyday English into Logical Statements1.1.4
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If  is an English language sentence and the phrase “It is true that ” makes sense as an English language sentence, then  is a
logical statement.

Strictly speaking, many mathematical statements are not logical statements, for a different reason then the one used in the test
above.

The phrase “  is a differentiable function” is not a logical statement, since whether it is true or false depends on the free
variable  For example, if we substitute the function  into this statement, the statement becomes true. However, if
we substitute the function  the statement becomes false. We will deal with this issue in Chapter 4.

This page titled 1.1: Statements is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Test : Checking Whether a Sentence is a Logical Statement1.1.1

S S S

 Example : An Ambiguous Mathematical Statement1.1.5

f

f . f(x) = x

f(x) = |x|,
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1.2: Converting language to symbols
As we have already begun to do, we will use letters to represent (possibly variable) logical statements and substatements. To
complete the conversion from verbose language to compact symbolism, we will introduce symbols to represent the Five basic
connectives.

negation of 

conjuction of  and 

disjunction of  and 

conditional where  implies 

biconditional involving  and 

Using variables to represent statements and the above symbols to represent connectives allows us to isolate the task of analyzing
logical structure, without being distracted or influenced by the content of the statements.

In mathematics, the symbol  is also used in function notation; you will need to determine from the context which role this
symbol is playing.

Consider the statement “if we are outside and we get wet then it is raining.” Assign statement variables:

Then symbolically, the statement can be written

Using substatement variables is not the same as using free variables. You should think of substatement variables as
placeholders for specific logical statements which, by definition, can each be determined to be either true or false.

This page titled 1.2: Converting language to symbols is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

A ¬A

A B A∧B

A B A∨B

A B A→ B

A B A↔ B

Warning 1.2.1

→

 Example : Translating English Language into Symbolic Language1.2.1

A =  “we are outside,” B =  “we get wet,” C =  “it is raining.”

A∧B→C.

 Remark 1.2.1
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1.3: Logical Analysis
We will now leave the English language behind and concentrate on logical statements consisting only of variables and connectives.
Keep in mind that variables are not limited to representing simple statements; they can represent compound statements as well.

the property of being true or false

Given a logical statement, view the variables as inputs and the truth value of the entire statement as an output. We would like a
systematic way to determine how the truth value of the output changes as we vary the truth values of the inputs.

the process of determining the truth value of a statement based on the truth values of its variable substatements

tabular method of carrying out logical analysis

If a statement involves a finite number of variables, then since each variable can have one of only two possible truth values, there
are a finite number of different combinations of input truth values for the statement. So we can test each combination one after the
other to determine all possible outputs. Arrange this analysis in a table with all possibilities for the input variables on the left and
the resulting outputs on the right.

In fact, if there are  variables, then there are exactly  different combinations of truth values for the variables.

First, let's establish the truth tables of the basic connectives (that is, of statements containing exactly one connective).

Figure :  The truth tables of the Five Basic Connectives.

1. Conjunction  is true only when both  and  are true.
2. Disjunction  is true when at least one of  and  is true.
3. The first two rows of the truth table for  are consistent with the reading “if  is true then  is also true.” Really, this

reading of the conditional says nothing in the case that  is actually false, but we cannot leave the “output” column of the
truth table blank for the corresponding rows where  Instead, the outputs in the last two rows of the truth table for 

 are “default” values chosen to avoid inconsistencies. (See Exercise 1.6.3.)
4. Looking at all four rows of the truth table for  we can succinctly say that  is true except when  is true but  is

false.

 Definition: Truth Value

 Definition: Logical Analysis

 Definition: Truth Table

 Note 1.3.1

n 2

n

1.3.1

 Note 1.3.2

p∧ q p q

p∨ q p q

p→ q p q

p

p = F .

p→ q

p→ q, p→ q p q
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5. Biconditional  reads “  is true when  is true, and only when  is true.” But this means that when  is false,  cannot
be true, hence must by false, which explains the fourth row of the truth table.

6. Looking at all four rows of the truth table for  we can succinctly say that  is true when  and  have the same
truth value.

See

Statement 2 of Remark 1.1.1 for the difference between inclusive or and exclusive or.

We can now use the truth tables of the basic connectives to analyze more complicated statements. Liberal use of extra
“intermediate” columns to analyze substatements separately is highly recommended.

Analyze 

Solution

The logical statement  analyzed in Worked Example  is one way to realize exclusive or:  or  but not both.

Analyze 

Solution

p↔ q p q q q p

p↔ q, p↔ q p q

 Example 1.3.1

¬(p↔ q).

p q p↔ q ¬(p↔ q)

T T T F

T F F T

F T F T

F F T F

 Note 1.3.2

¬(p↔ q) 1.3.1 p q

 Example 1.3.2

(p∧ q) → (p↔ r).

p q r p∧q p↔ r (p∧q) → (p↔ r)

T T T T T T

T T F T F F

T F T F T T

T F F F F T

F T T F F T

F T F F T T

F F T F F T

F F F F T T
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Analyze 

Solution

This page titled 1.3: Logical Analysis is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated
by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example 1.3.3

((p→ q) → r↔(p→(q→ r).

p q r p→ q q→ r A B A↔ B

T T T T T T T T

T T F T F F F T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F T F F T F

F F T T T T T T

F F F T T F T F
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1.4: Tautologies and contradictions

a logical statement that is always true for all possible truth values of its variable substatements

synonym for tautology

1. 
2. 
3. Law of the Excluded Middle: 

Verification:

The table verifies that the statement is a tautology as the last column consists only of  values.

4. Law of Contradiction: 

Verification:

The table verifies that the statement is a tautology as the last column consists only of  values.

Is  a tautology? No, since it is false when  is false.

a statement that must always be false, regardless of the truth values of its variable substatements

synonym for contradiction

Negation of a tautology is always a contradiction (and negation of a contradiction is always a tautology).

Statement  is a contradiction:

 Definition: Tautology

 Definition: Logically True Statement

 Example : Basic tautologies1.4.1

p→ p.

p↔ p.

p∨¬p.

p ¬p p∨¬p

T F T

F T T

T

¬(p∧¬p).

p ¬p p∧¬p ¬(p∧¬p)

T F F T

F T F T

T

 Example : Not a tautology1.4.2

p∨ p p

 Definition: Contradiction

 Definition: Logically False Statement

 Example : Contradiction1.4.3

(p∨¬p) → (q∧¬q)

p q ¬p ¬q p∨¬p q ∧¬q (p∨¬p) → (q ∧¬q)
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The table verifies that the statement is a contradiction as the last column consists only of  values.

Implication  can only be a contradiction if  is a tautology and  is a contradiction.

Suppose  is a logical statement involving substatement variables  If  is logically true or logically false, then
so is every statement obtained from  by replacing each statement variable  by some logical statement  for every possible
collection of logical statements 

1. We know  is a tautology, therefore so is

using substitution 

2. We know  is a contradiction, therefore so are

In mathematics, we often wish to prove that a condition  is actually a tautology. (See Chapter 6.)

if the conditional  is a tautology, we say that  logically implies 

notation for logical implication

1. If  and  then 
2. If  and  then 

As we will see in Chapter 6, verifying logical implications in mathematical contexts is one of the main tasks of mathematical
proof. And to verify a logical implication  we want to focus on the idea of conditional as expressing “If  is true then 

 is true,” and we really don't want to concern ourselves with what happens in the case that  is false. Here is where our
“default” values in the rows of the truth table for the conditional  where  is false help out — as the conditional 

T T F F T F F

T F F T T F F

F T T F T F F

F F T T T F F

F

 Example : Conditional versus contradiction1.4.4

A→B A B

 Theorem : Substitution Rule1.4.1

A , ,… , .p

1

p

2

p

m

A

A p

i

,B

i

, ,… , .B

1

B

2

B

m

 Example : Using the Substitution Rule1.4.5

p∨¬p

(q→(r∧¬s))∨¬(q→(r∧¬s))

p = (q→(r∧¬s)).

(p∨¬p) → (q∧¬q)

(p∨¬p) → (p∧¬p) (by p = p, q = p),

((r∨ s)∨¬(r∨ s)) → (q∧¬q) (by p = r∨ s, q = q),

(r∧ (s↔ t))∨¬(r∧ (s↔ t)) → (t∧¬t) (by p = r∧ (s↔ t), q = t).

A→B

 Definition: Logically Implies

A→B A B

 Definition: A⇒ B

 Example : Logical Implication1.4.6

A= p B= p∨ q, A⇒B.

A= p∧ q B= p, A⇒B.

Remark 1.4.1

A⇒B, A

B A

A→B A
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 is automatically true when  is false, regardless of the truth value of  we really only need to consider what happens
when  is true to verify 

This page titled 1.4: Tautologies and contradictions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

A→B A B,

A A⇒B.
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1.5: Activities

Consider the following statement.

If the game is on and the popcorn is ready, then Joe is happy.

a. Assign statement variables and rewrite the statement in symbolic language.
b. Write out the truth table for your symbolic statement.
c. You visit Joe's residence room and found that Joe is unhappy even though the game is on. Assuming that the above

conditional statement is a true statement about Joe, what can you conclude about the popcorn? Which rows in your truth
table justify this conclusion?

Consider the logical statement

a. Make up an English language statement that has the same logical structure as this symbolic statement. (Do not just make a
word-for-word translation of the logical connectives — make sure you have a reasonable-sounding English sentence when
read out loud.)

b. Argue convincingly that this symbolic statement is a tautology, not by writing out its truth table, but by arguing that it is not
possible for the statement to be false.

Don't Skip Ahead

In Chapter 2, we will learn that the two substatements involved in this conditional are logically equivalent. If you have
already read ahead into that chapter, do not just use this equivalence of these two statements to carry out this task.

Hint

Start with the assumption that this conditional statement is false, and then work backwards from the statement to the
possible truth values of  and  based on that assumption to conclude that the statement being false is not actually possible.

Consider the logical statement

a. Make the statement simpler by assigning new variables to represent compound statements and rewriting the statement in
terms of the new variables.

b. Argue that your new statement is a tautology. What does this mean about the original statement?

First, re-familiarize yourself with what it means when one statement logically implies another.

Suppose that  logically implies  and  logically implies  Must  logically imply  Argue convincingly in support of
your answer by arguing that the technical definition of logically implies is satisfied.

If there is still time: work through Exercise 1.6.3 from this chapter.

Activity 1.5.1

Activity 1.5.2

(p→ q) → (¬p∨ q).

p q

Activity 1.5.3

(p∧¬r) → [(p→ q) → (p∧¬r)].

Activity 1.5.4

A B B C. A C?

Activity 1.5.5
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1.6: Exercises

Let   and  represent the following statements.

Suppose the following compound statement is true.

If the game is on and the popcorn is ready, then Joe is happy.

However, you just visited Joe's residence room and found that Joe is unhappy even though the game is on. What can you
conclude about the popcorn? Use a truth table to justify your answer.

Consider the logical statement  Partially translated, this statement says:

if  and  are both true, then at least one of  and  is true.

Would you expect this statement to be a tautology? … a contradiction? … neither?

Use a truth table to check.

The wizard Hatty Porrer is studying logic at Cowpimples School for Second-Rate Wizards. As an exercise, he is filling out the
truth table for the conditional

But he forgets what to do for the lines where the “if” part of the conditional evaluates to false, so he only gets this far:

?

?

?

a. Help Hatty out by finishing his homework for him.
b. While you were filling out the truth table, Hatty got bored and opened up a portal to a parallel universe. Parallel Hatty is

also working on the same truth table, and is stuck at the same spot that normal Hatty was. However, you notice that parallel
Hatty's textbook is open to the page with the truth table for the basic conditional  and it looks as follows.

 Exercise 1.6.1

p, q, r

p:

q:

r:

The game is on.

The popcorn is ready.

Joe is happy.

 Exercise 1.6.2

(p∧ ) → ( ∨ ).q

1

q

1

q

2

p q

1

q

1

q

2

 Exercise 1.6.3

(r∧ s) → (r∨ s).

r s r∧s r∨s (r∧s) → (r∨s)

T T T T T

T F F T

F T F T

F F F F

p → q,

p q p → q

T T T

T F F

F T F

F F T
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Finish parallel Hatty's homework exercise. Make sure parallel Hatty's instructor will like the result!

c. While you were finishing parallel Hatty's homework, Hatty got bored again and opened up a portal to another parallel
universe! Parallel Hatty number two is also working on the same truth table, and is stuck at the same spot that the previous
two Hattys were. This time, however, parallel Hatty number two's textbook says that the truth table for the basic conditional

 is as follows.

Finish parallel Hatty number two's homework exercise. Make sure parallel Hatty number two's instructor will approve!

d. You'll never believe what happened while you were finishing parallel Hatty number two's homework! Yep, Hatty got bored
again and opened up a portal to a third parallel universe. Parallel Hatty number three is also working on the same truth
table, and is stuck at the same spot that the previous three Hattys were. The truth table for the basic conditional  is
different in parallel Hatty number three's universe, yet again.

Finish parallel Hatty number three's homework exercise. Make sure parallel Hatty number three's instructor will give him full
marks!

e. OK, so what the heck is the point of all this? The statement  could be read as:

If  and  are both true statements, then at least one of  and  is a true statement.

This conditional statement seems “obviously true”. Based on this example, what do you think of each parallel universe's
system of logic compared to our own?

Suppose  are logical statements such that  is a tautology and  is a contradiction.

a. Show that  is always a tautology.
b. Show that  is always a contradiction.

Suppose that   and  are logical statements such that  and  Must 
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p→ q

p q p→ q

T T T

T F F

F T T

F F F

p→ q

p q p→ q

T T T

T F F

F T F

F F F

(r∧ s) → (r∨ s)

r s r s

 Exercise 1.6.4

A,E,U U E

A∨U

A∧E

 Exercise 1.6.5

A, B, C A⇒B B⇒C. A⇒C?
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2.1: Equivalence

statements  such that  is a tautology

statements  and  are equivalent

Statements  and  are logically equivalent if  and  always have the same output truth value whenever the same input
truth values are substituted for the substatement variables in each. That is,  if  and  have the same truth table.

Demonstrate that the following are equivalent statements.

If it's nice outside, I will ride my bike.

It's not nice outside, or I will ride my bike.

Solution

Let  represent the substatement “it's nice outside,” and let  represent the substatement “I will ride my bike.” Then the
equivalence we want to establish is

We can analyze the truth tables of both statements in the same table.

We see that the two statements always have the same truth value in all rows of the truth table, so they are equivalent.

 

Worked Example   shows that the basic conditional connective “if … then …” can be constructed out of the basic
connectives “not” and “or”.

Demonstrate the equivalence 

Solution

Again we build a truth table, and see that the “output” columns for the two statements are identical.

Definition: Equivalence Statements

A,B A↔B

Definition: A⇔ B

A B

Test : Equivalence of Logical Statements2.1.1

A B A B

A⇔B A B

Example : Testing Logical Equivalence2.1.1

A:

B:

p q

p→ q⇔¬p∨ q.

p q ¬p ¬p∨q p→ q

T T F T T

T F F F F

F T T T T

F F T T T

Note 2.1.1

2.1.1

Example : Testing Logical Equivalence2.1.2

p↔ q⇔¬p↔¬q.
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Logical equivalence has the following properties.

1. It is reflexive. That is,  is always true.
2. It is symmetric. That is, whenever  then also 
3. It is transitive. That is, whenever  and  then also 
4. Every pair of tautologies is an equivalent pair of logical statements.
5. Every pair of contradictions is an equivalent pair of logical statements.

Check your understanding. Thinking in terms of truth tables, consider why each of the statements of Proposition  holds.

This page titled 2.1: Equivalence is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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p q ¬p ¬q p↔ q ¬p↔ ¬q

T T F F T T

T F F T F F

F T T F F F

F F T T T T

Proposition 2.1.1

A⇔A

A⇔B, B⇔A.

A⇔B B⇔C, A⇔C.

2.1.1
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2.2: Propositional Calculus
Logical equivalence gives us something like an “equals sign” that we can use to perform logical “calculations” and manipulations,
similar to algebraic calculations and manipulations. To enable us to do such calculations, we first need a “tool chest” of basic
logical equivalences to use therein. 

Suppose  are logical statements, where  is a contradiction and  is a tautology. Then the following
equivalences always hold.

1. Rules involving tautologies.

a. 
b. 

2. Rules involving contradictions.

a. 
b. 

3. Duality of tautologies and contradictions.

a. 
b. 

4. Double negation.

5. Idempotence.

a. 
b. 

6. Commutativity.

a. 
b. 

7. Associativity.

a. 
b. 

8. Distributivity.

a. 
b. 
c. 
d. 

9. DeMorgan's Laws.

a. 
b. 

10. Constructing the conditional and biconditional.

a. 
b. 

Proposition : Rules of Propositional Calculus2.2.1

A,B,C,E,U E U

A∨U ⇔U

A∧U ⇔A

A∨E⇔A

A∧E⇔E

¬U ⇔E

¬E⇔U

¬¬A⇔A

A∨A⇔A

A∧A⇔A

A∨B⇔B∨A

A∧B⇔B∧A

(A∨B)∨C ⇔A∨ (B∨C)

(A∧B)∧C ⇔A∧ (B∧C)

A∧ (B∨C) ⇔ (A∧B)∨ (A∧C)

A∨ (B∧C) ⇔ (A∨B)∧ (A∨C)

(A∨B)∧C ⇔(A∧C)∨ (B∧C)

(A∧B)∨C ⇔(A∨C)∧ (B∨C)

¬(A∨B) ⇔¬A∧¬B

¬(A∧B) ⇔¬A∨¬B

A→B⇔¬A∨B

A↔B⇔(A→B)∧ (B→A)
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Each of these basic equivalences can be established with a truth table. See Exercise 2.5.4.

Using Rule 9.b of Proposition , the following are equivalent statements.

1. The triangle can't be both right and equilateral.
2. The triangle is not right or it is not equilateral.

To see how the rule applies, let  represent the statement “the triangle is right” and let  represent the statement “the triangle is
equilateral.” Then the first statement above is  while the second statement above is 

Now we need some new substitution rules to enable us to use the rules of Proposition  in logical calculations. 

1. Replacing a substatement by an equivalent one. 

Suppose  is a logical statement and  is a substatement of  If statement  is equivalent to  then the new statement 
obtained from  by replacing substatement  by  is equivalent to  That is, if  then 

2. Substituting into a known equivalence. 

Suppose  and  are logical statements, each of which involves substatement variables  If  and  are
equivalent, then so are new statements  and  obtained by applying substitution  to both  and  for every
collection of statements  

Proof Idea.

Think of  as an intermediate column in the calculation of the truth table of  Replacing  by  does not change this
column, as the truth tables of  and  are the same. We leave this statement for you, the reader, to consider. (Again, think
of the  as intermediate columns in the calculations of the truth tables of  and )

 

One of DeMorgan's Laws (Rule 9.a of Proposition ) says that  Therefore,

using Rule 2 of our new Substitution Rules, with substitutions  

Here is an example of a string of logical manipulations. It also demonstrates the use of Rule 10.a of Proposition  to manipulate
an expression involving a conditional. 

Consider the statement  We may read it as “if either  or  is true, then  will be true as well.” So it seems
that each of  and  must imply  on its own. Let's see what propositional calculus says about this:

with justifications

Remark 2.2.1

Example : DeMorgan2.2.1

2.2.1

p q

¬(p∧ q), ¬p∨¬q.

2.2.1

Theorem : Substitution Rules2.2.1

A X A. Y X, A

′

A X Y A. Y ⇔X ⇔A.A

′

A B , ,… , .p

1

p

2

p

m

A B

A

′

B

′

=p

i

C

i

A B,

, ,… , .C

1

C

2

C

m

X A. X Y

X Y

C

i

A

′

.B

′

Example 2.2.2

2.2.1 ¬(p∨ q) ⇔¬p∧¬q.

¬((r→ t)∨ (t→ r)) ⇔¬(r→ t)∧¬(t→ r),

p = r→ t, q = t→ r.

2.2.1

Example : DeMorgan with a Conditional2.2.3

( ∨ )→ q.p

1

p

2

p

1

p

2

q

p

1

p

2

q

( ∨ )→ qp

1

p

2

⇔¬( ∨ )∨ qp

1

p

2

⇔(¬ ∧¬ )∨ qp

1

p

2

⇔(¬ ∨ q)∧ (¬ ∨ q)p

1

p

2

⇔( → q)∧ ( → q)p

1

p

2

(i)

(ii)

(iii)

(iv),
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1. Rule 2 of our new Substitution Rules, where we substitute  into both sides of the construction of the
conditional (Rule 10.a of Proposition );

2. Rule 1 of our new Substitution Rules, using DeMorgan (Rule 9.a of Proposition ) on the substatement 
3. distributivity (Rule 8.d of Proposition ); and
4. Rule 1 of our new Substitution Rules, using the construction of the conditional (Rule 10.a of Proposition ) on each of

the two “factors” of the conjunction.

So our intuition about the logic of a disjunction in a conditional in this way was correct.

A Look Ahead

This observation will come in handy — see Section 6.4 and Section 6.5.

This page titled 2.2: Propositional Calculus is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

A= ∨p

1

p

2

2.2.1

2.2.1 ¬( ∨ );p

1

p

2

2.2.1

2.2.1
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2.3: Converse, Inverse, and Contrapositive
Related to the conditional  are three important variations. 

A conditional and its contrapositive are equivalent. 

Proof

We simply compare the truth tables.

As the two “output” columns are identical, we conclude that the statements are equivalent.

The inverse and converse of a conditional are equivalent. 

Proof

The inverse of the conditional  is  The contrapositive of this new conditional is  which is
equivalent to  by double negation.

Mixing up a conditional and its converse.
Assuming that a conditional and its converse are equivalent.

1. Suppose  is a fixed but unspecified whole number that is greater than 

conditional If  is a prime number, then it is an odd number.

contrapositive If  is not an odd number, then it is not a prime number.

converse If  is an odd number, then it is a prime number.

p→ q

Definition: Converse

q→ p

Definition: Inverse

¬p→¬q

Definition: Contrapositive

¬q→¬p

Theorem : Modus Tollens2.3.1

p q ¬p ¬q p→ q ¬q→ ¬p

T T F F T T

T F F T F F

F T T F T T

F F T T T T

Corollary : Modus Tollens for Inverse and Converse2.3.1

p→ q ¬p→¬q. ¬¬q→¬¬p,

q→ p

Warning : Common Mistakes2.3.1

Example : Related Conditionals are not All Equivalent2.3.1

m 2.

m

m

m
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inverse If  is not a prime number, then it is not an odd number.

Only two of these four statements are true!

1. Suppose  is a fixed but unspecified function. 

conditional If  is continuous, then it is differentiable.

contrapositive If  is not differentiable, then it is not continuous.

converse If  is differentiable, then it is continuous.

inverse If  is not continuous, then it is not differentiable.

Only two of these four statements are true!

This page titled 2.3: Converse, Inverse, and Contrapositive is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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2.4: Activities

Write an English language statement that has the logical form  Then write one that has the form  where 
 and  are the same as in your first sentence. DeMorgan's Laws say your two sentences are logically equivalent. Do you

agree?

What do you think DeMorgan's Laws would say about  Use propositional calculus to justify your answer.

Recall that a pair of coordinates  defines a point in the Cartesian plane.

Consider the following conditional statement. 

If Cartesian points  and  are actually the same point, then  

a. Write out the converse, inverse, and contrapositive of the above statement.

b. You now have four conditional statements. For each of the four, decide whether it is true, and justify your answer.

c. For each of the three new conditional statements from Task a in turn, take the view that that statement is the original
conditional, and decide which of the others are its converse, inverse, and contrapositive.

In this activity, we will justify the equivalence

So consider the statements  and 

a. Argue that if  is false, then so is 

Do not use the proposed equivalence above as part of your argument.

b. Argue that if  is false, then so is 

Do not use the proposed equivalence above as part of your argument.

c. Explain why the the two arguments in Task a and Task b, taken together, justify the equivalence  Do this without
making any further arguments about the truth values of  and 

 

Consider the statements  and 

Use propositional calculus and substitution to show that these two statements are equivalent.

This page titled 2.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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Activity 2.4.1

¬(A∨B). ¬A∧¬B,

A B

Activity 2.4.2

¬(A∧B∧C)?

Activity 2.4.3

(x, y)

(a, b) (c, d) a= c.

Activity 2.4.4

p ↔ q⇔(p → q)∧ (q→ p).

A= p ↔ q B= (p → q)∧ (q→ p).

A B.

B A.

A⇔B.

p q.

Activity 2.4.5

p →( ∨ )q

1

q

2

(p∧¬ )→ .q

1

q

2
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2.5: Exercises

Consider again the two collections of related conditional statements in Example 2.3.1.

a. For each of these collections, determine which two of the four related statements are true and which two are false. For the
two false statements in each collection, demonstrate it by providing examples where the statements are false.

b. Give an example of a conditional statement involving mathematical objects for which all four of conditional,
contrapositive, converse, and inverse are all true.

Suppose  is a tautology and  is a contradiction.

a. Show that  for every statement 
b. Show that  for every statement 

Consider the equivalence of statements 

a. Use a truth table to verify the equivalence.
b. Use propositional calculus to demonstrate the equivalence.

Use truth tables to establish the double negation, idempotence, commutativity, associativity, distributivity, and DeMorgan's
Law equivalences presented in Proposition 2.2.1.

This exercise asks you to demonstrate that the basic connective “if and only if” can be constructed out of the basic connectives
“not”, “and”, and “or.”

a. Use a truth table to prove Rule 10.b from Proposition 2.2.1.
b. Starting with Rule 10.b from Proposition 2.2.1, use propositional calculus to prove the equivalence

Use Exercise 5 to demonstrate that exclusive or

is equivalent to

 

See

Statement 2 of Remark 1.1.1 for the difference between inclusive or and exclusive or.

This page titled 2.5: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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Exercise 2.5.1

Exercise 2.5.2

U E

P ∧U ⇔ P P .

P ∨E⇔ P P .

Exercise 2.5.3

p→( ∨ )⇔ (p∧¬ )→ .q

1

q

2

q

1

q

2

Exercise 2.5.4

Exercise 2.5.5

p↔ q⇔(¬p∨ q)∧ (p∨¬q).

Exercise 2.5.6

(p∨ q)∧¬(p∧ q)

p↔¬q.
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3.1: Boolean Polynomials
We can proceed more algebraically by assigning value  to represent false and value  to represent true.

Comparing the two tables below, we see that Boolean multiplication is equivalent to logical conjunction.

Comparing the following two tables, we see that Boolean addition is equivalent to exclusive or.

Boolean Arithmetic

Notice that in the first row for Boolean addition, we use mod  arithmetic to define 

0 1

 Example : Boolean Multiplication3.1.1

x y xy

1 1 1

1 0 0

0 1 0

0 0 0

p q p∧q

T T T

T F F

F T F

F F F

 Example : Boolean addition.3.1.2

2 1+1 = 0.

x y x+ y

1 1 0

1 0 1

0 1 1

0 0 0

p q ¬(p↔ q)

T T F

T F T

F T T

F F F
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In Boolean arithmetic we may realize disjunction by combining both addition and multiplication.

In Boolean algebra, negation is just a matter of shifting one value to the next.

For notation, we borrow symbols  and  from logic, but add new negation notation.

 Boolean negation

With this notation setup, we have

an expression involving variables  representing Boolean values, and operations  often written in function
notation

Every Boolean polynomial can be interpreted as a logical statement.

 Example : Boolean Disjunction3.1.3

x y x+ y+xy

1 1 1

1 0 1

0 1 1

0 0 0

p q p∨q

T T T

T F T

F T T

F F F

 Example : Boolean Negation3.1.4

x x+1

1 0

0 1

p ¬p

T F

F T

∧ ∨

x

′

x∧ y = xy, x∨ y = x+y+xy, x

′

= x+1.

 Definition: Boolean Polynomial

, ,… ,x

1

x

2

x

m

∧, ∨ ,,

′

 Note 3.1.1

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83409?pdf


GNU Free Documentation License 3.1.3 https://math.libretexts.org/@go/page/83409

There are two special constant Boolean polynomials, the zero polynomial and the unit polynomial:

The Boolean polynomials  and  have the same truth table.

Using our knowledge of logical equivalence, we see that the truth tables are the same because as logical statements,  and  are
equivalent by DeMorgan.

Boolean polynomials which represent equivalent logical statements

Polynomials  are equivalent if and only if they have the same truth table.

This page titled 3.1: Boolean Polynomials is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example 3.1.5

0( , ,… , )x

1

x

2

x

m

= 0, 1( , ,… , )x

1

x

2

x

m

= 1.

 Example 3.1.6

p(x, y) = ∨ yx

′

q(x, y) = (x∧ y

′

)

′

x y x

′

p(x, y) y

′

x∧y

′

q(x, y)

1 1 0 1 0 0 1

1 0 0 0 1 1 0

0 1 1 1 0 0 1

0 0 1 1 1 0 1

p q

 Definition: Equivalent Polynomials

 Fact : Recognizing Equivalent Boolean Polynomials3.1.1

p, q
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3.2: Disjunctive Normal Form
It is often desired (e.g. in computer programming or logic circuit design) to reverse the process: starting with a desired truth table,
can we construct a Boolean polynomial with the same outputs?

Determine a Boolean polynomial  that has the truth table below.

Solution

We want a “true” output when the inputs match the first or fourth rows, and only then. The inputs match the first row precisely
when both  and  are true (i.e. when the conjunction  is true), and they match the fourth row precisely when both  is
not true and  is not true (i.e. when the conjunction  is true). So take the disjunction of these two conjunctions: 

In the solution to the above worked example, it might seem like we should take a conjunction of the two conjunctions instead
of a disjunction, since we see an output of \(1\) in the first row and in the fourth row. However, we cannot be in the input
“state” described by those two rows simultaneously, since neither \(x\) nor \(y\) can be both \(1\) and \(0\) simultaneously. So
you should think of it this way instead: if we see an output state of \(1\text{,}\) then we know we must be either in the input
state of the first row or of the fourth row.

a Boolean polynomial in variables  which is the disjunction of distinct terms of the form 
where each  is either  or 

The zero polynomial is also considered to be in disjunctive normal form.

Disjunctive normal form is usually not the “nicest” or “simplest” Boolean polynomial with a desired truth table, but there is a
relatively simple procedure to produce it.

Given a truth table with nonzero output, we may obtain a Boolean polynomial in disjunctive normal form with that truth table
as follows.

1. Identify rows the in truth table for which the desired output is 
2. For each such row, form the conjunction of all variables, but negate those variables that have input value  for that row.
3. Form a polynomial by taking the disjunction of all those conjunctions.

 Example 3.2.1

p(x, y)

x y p(x, y)

1 1 1

1 0 0

0 1 0

0 0 1

x y x∧ y x

y ∧x

′

y

′

p(x, y) = (x∧ y)∨ ( ∧ ).x

′

y

′

 Remark \(\PageIndex{1}\)

 Definition: Disjunctive Normal Form

, ,… ,x

1

x

2

x

n

∧ ∧⋯∧ ,a

1

a

2

a

n

a

i

x

i

.x

′

i

 Convention 3.2.1

 Note 3.2.1

 Procedure : To Produce the Disjunctive Normal Form Polynomial for a Given Boolean Truth Table3.2.1

1

0
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Determine a Boolean polynomial  that has the truth table below.

Solution

The fourth, fifth, seventh, and eigth rows have outcome  The corresponding conjunctions are 

fourth row

fifth row

seventh row

     and

eigth row

Therefore, the Boolean polynomial

is both in disjunctive normal form and will have the desired truth table.

Determine a Boolean polynomial  that has the truth table below.

 Example 3.2.2

p(x, y, z)

x y z p(x, y, z)

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

1.

x∧ ∧ ;y

′

z

′

∧ y∧ z;x

′

∧ ∧ z;x

′

y

′

∧ ∧ .x

′

y

′

z

′

p(x, y, z) = (x∧ ∧ )∨ ( ∧ y∧ z)∨ ( ∧ ∧ z)∨ ( ∧ ∧ )y

′

z

′

x

′

x

′

y

′

x

′

y

′

z

′

 Example 3.2.3

q(x, y, z)

x y z q(x, y, z)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 1

0 0 1 1
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Solution 1

Every row except the third has outcome  so we must form conjunctions for all rows except that one:

first row 
    

second row 
    

fourth row 
    

fifth row 
    

sixth row 
    

seventh row 
     and

eigth row 
    

Therefore, the Boolean polynomial

is both in disjunctive normal form and will have the desired truth table.

Solution. 2 Alternative solution

We can get a much simpler expression for  by not using the procedure (though of course the result will not be in
disjunctive normal form).

Notice that we want the third row to have output value  In logic terms, we want that combination (and only that combination)
of input values to result in an output that is “not true”. So the Boolean polynomial

will produce the desired truth table.

The polynomials in the solutions to the preceding examples are in disjunctive normal form, but the alternative solution to the
second example is not.

From Procedure , it is easy to see that any Boolean polynomial can be expressed in disjunctive normal form.

Rewrite the Boolean polynomial  in disjunctive normal form.

Solution

First, produce the truth table.

0 0 0 1

1,

x∧ y∧ z;

x∧ y∧ ;z

′

x∧ ∧ ;y

′

z

′

∧ y∧ z;x

′

∧ y∧ ;x

′

z

′

∧ ∧ z;x

′

y

′

∧ ∧ .x

′

y

′

z

′

q(x, y, z) = (x∧ y∧ z)∨ (x∧ y∧ )∨ (x∧ ∧ )∨ ( ∧ y∧ z)z

′

y

′

z

′

x

′

∨ ( ∧ y∧ )∨ ( ∧ ∧ z)∨ ( ∧ ∧ )x

′

z

′

x

′

y

′

x

′

y

′

z

′

q(x, y, z)

0.

q(x, y, z) = (x∧ ∧ z = ∨ y∨y

′

)

′

x

′

z

′

 Note \(\PageIndex{2}\)

 Fact 3.2.1

3.2.1

 Example : Converting a Polynomial into Disjunctive Normal Form3.2.4

p(x, y, z) = (x∧ z ∨ ( ∧ y))

′

x

′
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1 0

1 1

1 0

1 1

0 1

0 1

0 1

0 1

Then apply the disjunctive normal form procedure to obtain

Check your understanding

What do you think conjunctive normal form should mean? Can you come up with a procedure which takes a truth table and
determines a Boolean polynomial in conjunctive normal form with the desired truth table?

Hint

Extend the idea of the Alternative solution for Worked Example 

 

This page titled 3.2: Disjunctive Normal Form is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

x y z x∧z ∧yx

′

p(x, y, z)

1 1 1 0

1 0 0 0

0 1 1 0

0 0 0 0

1 1 0 1

1 0 0 1

0 1 0 0

0 0 0 0

p(x, y, z) = (x∧ y∧ )∨ (x∧ ∧ )∨ ( ∧ y∧ z)z

′

y

′

z

′

x

′

∨ ( ∧ y∧ )∨ ( ∧ ∧ z)∨ ( ∧ ∧ ).x

′

z

′

x

′

y

′

x

′

y

′

z

′

3.2.3
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3.3: Exercises

Creating truth tables.

In each of Exercises 1–2, write out the truth table for the given boolean polynomial.

Explain why the boolean polynomial  is not in disjunctive form.

Disjunctive normal form from a truth table.
In each of Exercises 4–6, write out a boolean polynomial in disjunctive normal form that has the given truth table.

 Exercise 3.3.1

p(x, y) = (x∧ y ∧ .)

′

x

′

 Exercise 3.3.2

q(x, y, z) = (x∨ y ∧ (z∨x)∧ y.)

′

 Exercise 3.3.3

p(x, y) = x∨ y∨ y

′

 Exercise 3.3.4

x y p(x, y)

1 1 1

1 0 1

0 1 1

0 0 0

 Exercise 3.3.5

x y p(x, y)

1 1 1

1 0 0

0 1 1

0 0 0

 Exercise 3.3.6

x y z p(x, y, z)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 1
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Disjunctive normal form from a boolean polynomial.

In each of Exercises 7–9, write out a boolean polynomial in disjunctive normal form that is equivalent to the given boolean
polynomial.

This page titled 3.3: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

0 1 0 0

0 0 1 0

0 0 0 0

 Exercise 3.3.6

p(x, y, z) = (x∨ y)∧ z.

 Exercise 3.3.7

q(x, y, z) = [(x∧ )∨ (x∧ z) ∨ .y

′

]

′

x

′

 Exercise 3.3.9

r(x, y, z) = (x∧ )∨ (x∧ z)∨ (x∧ y).y

′
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4.1: Predicates and Quantifers
We often let variables represent arbitrary mathematical objects. However, as we have seen, object variables or free variables (as
opposed to statement variables) lead to problems in logic. For example, the phrase “  is a differentiable function” can only be
determined to be true or false when  represents a specific function.

In this section, we deal with these problems by quantifying such free variables: restricting ourselves to discussing whether
“statements” involving one or more free variables are always/sometimes/never true for objects of the type represented by the free
variables.

a statement whose truth value depends on one or more free variables

a predicate statement  whose truth value depends on the free variable 

a predicate statement  whose truth value depends on the free variables  and 

1. Let  represent the phrase “  is differentiable”, a predicate statement in one free variable 
2. Let  represent the phrase “  is greater than ”, a predicate statement in two free variables  and 

A predicate is not a logical statement unless all of its variables represent specific objects.

the type of object that a variable in a predicate represents

In Example , the domain of the variable  could be “functions of a single real variable”, and the domains of the variables 
 and  could both be “natural numbers” (i.e. whole, nonnegative numbers).

Usually the domain of a variable in a predicate is implicit and can be determined from the context of the statement. However, if
we want to make the domain explicit we can prefix it to the variable. For example,

We can turn a predicate into a logical statement by being more specific about which objects in their domains the variables
represent. However, we often do not want to be too specific (or else we would usually not need variables).

f

f

 Definition: Predicate

 Definition: A(x)

A x

 Definition: A(x, y)

A x y

 Example 4.1.1

A(f) f f .

B(m,n) m n m n.

 Note 4.1.1

 Definition: Domain

 Example 4.1.2

4.1.1 f

m n

 Note 4.1.2

A(f) =  “function f  is differentiable”,

B(m,n) =  “integer m is greater than integer n”.
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The following sentences are logical statements, because their truth value can be determined.

“Every function  is differentiable.”
“There exists an integer  that  divides.”

The first statement is false; for example, the function  is not differentiable at  The second statement is true;
this statement basically says that even integers exist.

the sentence fragments “for every” and “there exists” quantify whether a predicate should apply to all or only some of the
objects in the domain of one of its variables.

the quantifier “for every”

symbol for the universal quantifier

the quantifier “there exists”

symbol for the existential quantifier

As before, let  represent the predicate “  is differentiable.” Then the statement  is false, because not every
function is differentiable. However, the statement  is true — for example, polynomials are differentiable.

For an existentially quantified statement to be true, it is not necessary for there to be one and only one object in the implied
domain that satisfies the conditions of the predicate — there could be many such objects. So, just as you should always read a
disjunction  as “p or q or both,” you should always read an existentially quantified statement  as “there exists at
least one  such that  is true.”

Mathematical statements often involve several quantified variables.

Let  represent “  divides ”, where  and  are positive whole numbers. Which of the following statements are
true?

1. 
2. 
3. 
4. 
5. 

 Example 4.1.3

f

m 2

f(x) = |x| x = 0.

 Definition: Quantifer

 Definition: Universal Quantifer

 Definition: ∀

 Definition: Existential Quantifer

 Definition: ∃

 Example 4.1.4

A(f) f (∀f)A(f)

(∃f)A(f)

 Warning 4.1.1

p∨ q (∃x)A(x)

x A(x)

 Example 4.1.5

B(m,n) m n m n

(∀m)(∀n)B(m,n)

(∃m)(∃n)B(m,n)

(∀m)(∃n)B(m,n)

(∃m)(∀n)B(m,n)

(∀n)(∃m)B(m,n)
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6. 

Solution

1. This statement says “for every  and for every   divides ” One example of values for  and  with  not dividing 
 (such as  and ) suffices to show that it is not always true that one number  divides another number 

2. This statement says “there exists  such that there exists  such that  divides ” To demonstrate that this statement is
true, we have to explicitly show that at least one pair of values for  and  exists by giving an example (such as 

).
3. This statement says “for every  there exists an  such that  divides ” To show that this statement is true, we have to

provide, for every possible value of  a value of  that works. When  we have example  When  we
have example  When  we have example  Similarly, for each value of  we can choose  to be the
same value as  as an example.

Note

If the domain for  and  included  then this third statement would actually be false, as demonstrated by the example 

4. This statement says “there exists  such that for every  we have  divides ” This is true, as the example  which
divides every number  demonstrates existence of this special  (though it is the only example possible).

5. This statement says “for every  there exists an  so that  divides ” Similarly to the justification for Statement 3, for
every possible value of  we need to provide an example  so that  divides  but this time it is the  that is arbitrary
and the  that is to be the example. But again, every positive number divides itself, so we could always take  to be the
same value as  as our example to demonstrate that such an  exists. (Or, actually we could always choose  as the
example for each different value of )

6. This statement says “there exists  such that for every  we have  divides ” However, there is no positive number that
is divisible by every other positive number.

While the order of two quantifiers of the same type does not matter (which is why we didn't consider the statements with
quantifiers in the order  and  in Worked Example  above), the order of a “mixed” pair of
quantifiers matters! This is demonstrated by Statement 3 and Statement 6 in Worked Example  — both of these
statements involve a  and a  but in opposite orders. Since one of these two statements is true and one is false, they
obviously cannot be the same statement.

Even more, the order of a “mixed” pair of quantifiers implies a dependence of the second quantified variable on the first.

1. If the statement  is true, it means that, corresponding to each and every object  in the appropriate domain,
there will exist at least one example of an object  in the appropriate domain so that  is true. But the corresponding
example  could be different for different examples of the object 

2. If the statement  is true, it means that there is at least one “special” example object  that enjoys the property
that  will be true for each and every object  in the appropriate domain.

Suppose  is a predicate statement, where  and  are variables that can only take on the values   or  Further
suppose that it is known that  is true in the specific instances

1. Statement  is true because for each value of  we can exhibit at least one value  for which  is
true:

when  we know  is true for at least one  (for example, );
when  we know  is true for at least one  (for example, ); and
when  we know  is true for at least one  (for example, ).

(∃n)(∀m)B(m,n)

m n,m n. m n m

n m = 3 n= 2 m n.

m n m n.

m n

m = n= 2

m n m n.

m, n m = 1, n= 1. m = 2,

n= 2. m = 3, n= 3. m, n

m

m n 0,

m = 0.

m n m n. m = 1,

n, m

n m m n.

n m m n, n

m m

n m m = 1

n.

n m m n.

 Warning 4.1.2

(∀n)(∀m) (∃n)(∃m) 4.1.5

4.1.5

∀m ∃n,

(∀x)(∃y)A(x, y) x

y A(x, y)

y x.

(∃y)(∀x)A(x, y) y

A(x, y) x

 Example 4.1.6

A(x, y) x y 0, 1, 2.

A(x, y)

A(0, 1),A(1, 0),A(1, 1),A(1, 2),A(2, 2).

(∀x)(∃y)A(x, y) x y A(x, y)

x = 0, A(0, y) y y = 1

x = 1, A(1, y) y y = 1

x = 2, A(2, y) y y = 2
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2. Statement  is true because we can exhibit at least one “special” value of  for which  is true for
each and every value of  In particular, we see that for  we have  true for each of 

Depending on grammar requirements or personal style, the quantifier “for every” might be expressed as “for all” or just
“every” or “all”. The quantifier “there exists” can also be expressed as “some” or “there is at least one”, but remember that the
reality of the situation could be “more than one.”

Mathematicians are fond of using “any” or “for any” in place of “every” or “for every”.

Prove that  is an odd number for any even number 

Solution. 1 (Incorrect)

It says to prove  is odd for any even number  so I will choose my favourite even number  Then  is
obviously odd.

Solution. 2 (Correct)

The problem statement is really asking to prove that every even number has the property that the subsequent number is odd. So
let  represent an arbitrary but unspecified even number. Then  is divisible by  so there is some number  such that 

 Now,  is not divisible by  since  is not a whole number. Therefore, 

must be odd.

 

We will practice proving statements involving universally quantified predicates in Chapter 6.

This page titled 4.1: Predicates and Quantifers is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

(∃x)(∀y)A(x, y) x A(x, y)

y. x = 1 A(1, y) y = 0, 1, 2.

Remark 4.1.7

 Warning 4.1.3

 Example 4.1.7

n+1 n.

n+1 n, n= 8. 8+1 = 9

n n 2, m

n= 2m. n+1 = 2m+1 2, (2m+1)/2 =m+

1

2

n+1

 Note 4.1.3
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4.2: Manipulating quantified statements

4.2.1 Negation of quantified statements

Negating quantified statements in English can be tricky, but we will establish rules that make it easy in symbolic logic.

The negation of the statement “all X are Y” is not “no X are Y” nor “all X are not Y”.

What is the negation of the statement “all cows eat grass”? To avoid making the mistake in the preceding warning, consider the
following question: what is the minimum number of cows that do not eat grass that can be used as evidence to demonstrate that
the statement “all cows eat grass” is false?

 Warning 4.2.1

 Example 4.2.1
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Figure : In this case, both “all cows eat grass” and “some cows eat grass”
are true.

Figure : In this case, both “some cows eat grass” and “some cows do not eat
grass” are true.

Figure : In this case, each of “no cows eat grass”, “all cows do not eat grass”, and “some cows do not eat
grass” are true.

4.2.1

4.2.2

4.2.3
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It takes just one lasagna-eating cow to make “all cows eat grass” false, so the negation of “all cows eat grass” is “some cows
do not eat grass” or “at least one cow does not eat grass”.

We have indicated that the statement “some cows eat grass” is technically true in the first diagram in Example , even
though it is more precise to say “all cows eat grass” in that situation. Similarly, we have indicated that the statement “some
cows do not eat grass” is technically true in the third diagram. Remember that truth and falsity are usually all that matter in
logic, not necessarily making the most precise statement possible.

Let  represent a predicate in the variable 

1. Universal negation.

The negation of  is 

2. Existential negation.

The negation of  is 

Check your understanding.

Use the “cows eat grass” diagrams in Example  to convince yourself that these negation rules are correct.

Determine and “simplify” the negation of

Solution

Using the rules of quantifier negation and known logical equivalences, we can perform the following manipulations:

 
with justifications

i. quantifier negation;
ii. known equivalence 

iii. DeMorgan, double negation;
iv. quantifier negation;
v. quantifier negation; and

vi. DeMorgan, double negation.

4.2.2 Distributing quantifiers

 Warning 4.2.2

4.2.1

 Proposition : Rules for negation of quantifiers4.2.1

A(x) x.

(∀x)A(x) (∃x)(¬A(x)).

(∃x)A(x) (∀x)(¬A(x)).

4.2.1

 Example : Negating a quantified statement4.2.2

(∀x) (A(x) → {(∃y)(∀z){B(y)∧¬C(z)}}) .

¬(∀x){A(x) → (∃y)(∀z){B(y)∧¬C(z)}}

⇔ (∃x)¬{A(x) → (∃y)(∀z){B(y)∧¬C(z)}}

⇔ (∃x)¬{¬A(x)∨ (∃y)(∀z){B(y)∧¬C(z)}}

⇔ (∃x){A(x)∧¬(∃y)(∀z){B(y)∧¬C(z)}}

⇔ (∃x){A(x)∧ (∀y)¬(∀z){B(y)∧¬C(z)}}

⇔ (∃x){A(x)∧ (∀y)(∃z)¬{B(y)∧¬C(z)}}

⇔ (∃x){A(x)∧ (∀y)(∃z){¬B(y)∨C(z)}}

(i)

(ii)

(iii)

(iv)

(v)

(vi)

p→ q⇔¬p∨ q;
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Let  represent predicates in the variable 

1. 
2. 

The statement “every vegetable is delicious and nutritious” is the same as saying “every vegetable is delicious and every
vegetable is nutritious”.
The statement “at least one vegetable in the garden is rotten or nibbled by squirrels” is the same as saying “at least one

vegetable in the garden is rotten or at least one vegetable in the garden is nibbled by squirrels”. 

The universal quantifier  does not distribute over disjunction 
The existential quantifier  does not distribute over conjunction 

Check your understanding.
1. Create an example of predicates  and  such that, of the statements

the first is true but the second is false.
2. Create an example of predicates  and  such that, of the statements

the first is false but the second is true.

This page titled 4.2: Manipulating quantified statements is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Proposition : Rules for distributing quantifiers4.2.2

A(x),B(x) x.

(∀x){A(x)∧B(x)} ⇔ (∀x)A(x)∧ (∀x)B(x)

(∃x){A(x)∨B(x)} ⇔ (∃x)A(x)∨ (∃x)B(x)

 Example 4.2.3

 Warning 4.2.3

∀ ∨.

∃ ∧.

A(x) B(x)

(∀x){A(x)∨B(x)}, (∀x)A(x) ∨ (∀x)B(x),

A(x) B(x)

(∃x){A(x)∧B(x)}, (∃x)A(x) ∧ (∃x)B(x),
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4.3: Vacuously true statements
We have to be careful with quantified predicates because it is (seemingly) possible to violate the Law of Contradiction (see Basic
Tautology 4 in Example 1.4.1).

Let  be a variable in the domain of all living humans. Define predicates

and consider the statement

which says “every three-hundred-year-old Augustana student is tall”. This statement is true, since a conditional  is true
when  is false, and  is false for each and every  there is no living human who is both three hundred years old
and is an Augustana student (issues concerning the existence of vampires notwithstanding). But by the same reasoning, the
statement “every three-hundred-year-old Augustana student is not tall” is true. This seems to be a contradiction: how can every
three-hundred-year-old Augustana student be both tall and not tall? The answer is that you can say anything you like about
things that do not exist and your statement will be true. So you should avoid altogether making claims about things that do not
exist.

a statement of the form  where  is false for every  in its domain

Check your understanding.

Determine the negation of  Is the negation of a vacuously true statement true or false?

This page titled 4.3: Vacuously true statements is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example 4.3.1

x

A(x)

B(x)

C(x)

=  “x is an Augustana student,”

=  “x is three hundred years old,”

=  “x is tall,”

(∀x){{A(x) ∧B(x)} →C(x)},

p → q

p A(x) ∧B(x) x:

 Definition: Vacuously True

(∀x){P (x) →Q(x)} P (x) x

(∀x){P (x) →Q(x)}.

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83416?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/04%3A_Predicate_logic/4.03%3A_Vacuously_true_statements
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/01%3A_Symbolic_language/1.04%3A_Tautologies_and_contradictions
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/04%3A_Predicate_logic/4.03%3A_Vacuously_true_statements
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 4.4.1 https://math.libretexts.org/@go/page/83417

4.4: Activities

a. Devise an example of predicates  and  such that, of the statements

 and

the first is true but the second is false.

b. Devise an example of predicates  and  such that, of the statements

 and

the first is false but the second is true.

Let  represent the predicate  where  and  are free variables in the domain of continuous functions in the real

variable 

For each of the following, determine whether the statement is true or false. Explain your reasoning.

a. 
b. 
c. 
d. 
e. 
f. 

Let  represent the predicate  and let  represent the predicate  where  and  are functions in the

real variable  Consider the statement

a. Translate the statement into English.
b. Determine whether the statement is true.
c. Working with the originally provided symbolic version above, negate the statement. Simplify the negated version to so that

any/all negation symbols appear directly to the left of one of the predicates  or 
d. Translate your simplified negated statement from Task c into English.

You've become an expert at predicate logic, and now make a (very meagre) living grading logic assignments for a large
university. Here is the question you've been assigned to mark two thousand times.

Let  represent a free variable from the domain of all living humans.

Translate the following two statements into properly quantified predicate statements in the variable 

i. All university students study diligently.
ii. Some university students study diligently.

You pick up the first assignment. Here is the student's answer.

Activity 4.4.1

A(x) B(x)

(∀x){A(x)∨B(x)},

(∀x)A(x)∨ (∀x)B(x),

A(x) B(x)

(∃x){A(x)∧B(x)},

(∃x)A(x)∧ (∃x)B(x),

 Activity 4.4.2

P (f , g) = g,

df

dx

f g

x.

(∃f)(∃g)P (f , g)

(∀f)(∀g)P (f , g)

(∀f)(∃g)P (f , g)

(∃f)(∀g)P (f , g)

(∀g)(∃f)P (f , g)

(∃g)(∀f)P (f , g)

 Activity 4.4.3

P (f , g) = g,

df

dx

E(f , g) g= f , f g

x.

(∀f)(∀g){(∃h){P (f ,h)∧P (g,h)} →E(f , g)}.

P E.

 Activity 4.4.3

x

x.
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Let  mean “  is a university student”. Let  mean “  studies diligently”.

i. 
ii. 

Are the student's answers correct? Justify your assessment.

Hint

Try translating the student's symbolic language statements back into English, explicitly using the stated domain of , and
see what you get. Is it possible for the student's version of the statement to be true in a way that goes against the idea
expressed by the original English version of the statement?

This page titled 4.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

U(x) x S(x) x

(∀x)[U(x) → S(x)].

(∃x)[U(x) → S(x)].

x
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4.5: Exercises
Interpreting symbolic language

Let  represent the predicate “  is a wonderful learning experience”, where  is a free variable in the domain of all university
courses.

Translate each of the following into an English sentence that is grammatically correct.

1. 
2. 
3. 
4. 
5. 

Translating into symbolic language.

Let  represent the predicate “  is excellent”, where  is a free variable in the domain of all Augustana professors.

Translate each of the following into symbolic language.

6. The instructor for this course is an excellent professor.
7. Every professor at your university is excellent.
8. Some professor at your university is excellent.
9. Some professors at your university are excellent.

10. There is at least one professor at your university who is excellent.
11. Some professor at your university is not excellent.
12. Some professors at your university are not excellent.
13. Any professor at your university is excellent.
14. No professor at your university is excellent.

Analyzing predicate statements about integers

Let  represent the predicate  where  and  are free variables in the domain of integers.

For each of the following, determine whether the statement is true or false. Explain your reasoning.

15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

Analyzing predicate statements about functions

(Requires calculus.) Let  represent the predicate  where  and  are free variables in the domain of continuous
functions in the real variable 

For each of the following, determine whether the statement is true or false. Explain your reasoning.

24. 
25. 
26. 
27. 
28. 
29. 

A(x) x x

A(AUMAT 250)

(∃x)A(x)

(∀x)A(x)

¬(∀x)A(x)

(∃x)¬A(x)

B(x) x x

P (m,n) 2m−45n > 101, m n

P (25, −1)

P (30, −1)

P (100, 2) ∨P (100, 3)

P (100, 2) ∧P (100, 3)

(∃m)(∃n)P (m,n)

(∀m)(∀n)P (m,n)

(∀m)(∃n)P (m,n)

(∃m)(∀n)P (m,n)

(∀m)(∃q)(∀n)(P (q,n) → P (m,n))

P (f , g) = g,

df

dx

f g

x.

(∃f)(∃g)P (f , g)

(∀f)(∀g)P (f , g)

(∀f)(∃g)P (f , g)

(∃f)(∀g)P (f , g)

(∀g)(∃f)P (f , g)

(∃g)(∀f)P (f , g)
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30. Consider the statement “every odd number is either  more or  more than a mulitple of ”

a. Assign appropriate predicates (with domains explictly stated), and then translate the statement into symbolic logic.
b. Negate the statement, and simplify the logical expression so that any/all negation symbols appear directly to the left of a

predicate.
c. Translate your simplified negated statement from Task b into English.

31. Let  represent the predicate  and let  represent the predicate  where  and  are free variables in

the domain of functions in the real variable  Consider the statement

a. Translate the statement into English.
b. Determine whether the statement is true.
c. Working with the originally provided symbolic version above, negate the statement. Simplify the negated version to so

that any/all negation symbols appear directly to the left of one of the predicates  or 
d. Translate your simplified negated statement from Part c into English.

32. You've become an expert at predicate logic, and now make a (very meagre) living grading logic assignments for a large
university. Here is the question you've been assigned to mark two thousand times.

Let  represent a free variable from the domain of all living humans.

Translate the following two statements into properly quantified predicate statements in the variable 

i. All university students study diligently.
ii. Some university students study diligently.

You pick up the first assignment. Here is the student's answer.

Let  mean “  is a university student”. Let  mean “  studies diligently”.

i. 
ii. 

Are the student's answers correct? Justify your assessment.

Hint

Try translating the student's symbolic language statements back into English, explicitly using the stated domain of , and see
what you get.

This page titled 4.5: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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P (f , g) = g,

df

dx

E(f , g) g= f , f g

x.

(∀f)(∀g){(∃h){P (f ,h)∧P (g,h)} →E(f , g)}.

P E.

x

x.

U(x) x S(x) x

(∀x)[U(x) → S(x)].

(∃x)[U(x) → S(x)].

x
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5.1: Basic
Studying the logic of individual statements is an important first step, but ultimately we will need to analyze how statements can be
combined into an argument (mathematical, philosophical, political, or otherwise) that tries to convince others that some particular
conclusion is true.

a finite collection of statements, called premises or hypotheses, along with a final statement, called the conclusion

 an argument with premises  and conclusion 

(premise) If the world is flat, it has an edge.

(premise) The world does not have an edge.

(conclusion) Therefore, the world is not flat.

(premise)
If the world is round, there exists a Titan named Atlas who holds
it aloft in the heavens.

(premise) The world is round.

(conclusion) Therefore, the Titan Atlas exists.

(premise) Rectangles are geometric objects that have four sides.

(premise) Parallelograms have four sides.

(premise) Tetrahedrons have four sides.

(conclusion) Therefore, parallelograms and tetrahedrons are rectangles.

When we analyse an argument, one component of the analysis should be to check whether or not its logical structure is valid,
regardless of the content and truth/falsity of the individual statements making up the argument.

Of the three provided English-language example arguments above, which are “true”? Which are “logically correct”? Is there a
difference?

 Definition: Argument

, , … , ∴ CA

1

A

2

A

m

, , … ,A

1

A

2

A

m

C

A

1

A

2

⋮

A

m

C

an argument with premises  , , … ,  and conclusion CA

1

A

2

A

m

 Example : Argument in English5.1.1

 Example : Another argument in English5.1.2

 Example : Yet another argument in English5.1.3

 Question 5.1.1
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whenever the premises are all true, the conclusion must be true as well

Whether the conclusion of an argument is actually true is irrelevant to the validity of the argument! It is the combination of
possibilities of truth and falsity of the premises and conclusion together that determine whether an argument is valid.

If there is no choice of truth values for the statement variables that simultaneously make the premises all true but the
conclusion false, then the argument is valid.

Test the validity of the following argument.

Solution 1

Let's write out the truth tables for the statements in the argument. However, we are only concerned with truth table rows where
every premise is true, so we won't bother completing any rows where a premise ends up being false.

   (pr) (pr) (c)

As every row that resulted in both premises true also resulted in the conclusion true (as indicated by ), the argument is valid.
(The  symbol indicates a truth value that we don't care about, since it is in a row with at least one premise false.)

Solution 2 Alternative solution

Rather than work out the whole truth table, let us consider the question: is there any possible way for the conclusion to be false
but all the premises true? Start with the following partial truth table row.

   (pr) (pr) (c)

   

 Definition: Valid Argument

 Warning 5.1.1

 Test : For validity of an argument in symbolic language5.1.1

 Example 5.1.4

p→ q

q→ r

p→ r

p q r p→ q q → r p→ r

T T T T T T ✓

T T F T F ∗

T F T F ∗ ∗

T F F F ∗ ∗

F T T T T T ✓

F T F T F ∗

F F T T T T ✓

F F F T T T ✓

✓

∗

p q r p→ q q → r p→ r

T T F
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The conclusion is only false when  and  fill these into the row. Now since  the first premise can only be
true if  fill this into the row.

   (pr) (pr) (c)

We have marked this row as “incorrect,” because  and  should make the second premise false! So the above truth
table row is inconsistent, and therefore there is no way for conclusion to be false and all the premises true. Conclude that the
argument is valid.

The reasoning in the Alternative solution above is an example of a proof by contradiction — see Section 6.9.

Demonstrate that the following argument is invalid.

If  is even, then  is divisible by 

If  is odd, then  is even.

If  is not divisible by  then  is not divisible by 

Therefore, if  is not divisible by  then  is even.

Solution

Introduce statement variables and write the argument in symbolic form.

Try to construct a truth table row in which all the premises are true but the conclusion is false.

       (pr) (pr) (pr) (c)

       

Start with the above partial truth table row. The conditional in the conclusion can only be false when  and  fill
these into the row, also entering  Now since  the second premise will only be true when  fill this and 

 into the row. Now since  the first premise will only be true when  fill this and  into the row.
Finally, check that our choices of truth values for  are consistent with the imposed truth value for the third premise.

       (pr) (pr) (pr) (c)

p = T r = F ; p = T ,

q = T ;

p q r p → q q → r p → r

T T F T T F ×

q = T r = F

Remark 5.1.1

 Example 5.1.5

n n 2.

n n+ 1

n 2, n 4.

n 4, n+ 1

p

q

r

s

=  “n is even”

=  “n+1 is even”

=  “n is divisble by 2”

=  “n is divisble by 4”

p → r

¬p → q

¬r → ¬s

¬s → q

p q r s ¬p ¬r ¬s p → r ¬p → q ¬r → ¬s ¬s → q

T T T F

¬s = T q = F ;

s = F . q = F , ¬p = F ;

p = T p = T , r = T ; ¬r = F

p, q, r, s

p q r s ¬p ¬r ¬s p → r ¬p → q ¬r → ¬s ¬s → q
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Since there exists a choice of truth values for the statement variables which makes all premises true but the conclusion false,
the argument is invalid.

1. If the conclusion is a tautology, the argument is automatically valid.
2. If the premises are all contradictions (i.e. logically false), the argument is automatically valid.
3. If the argument is valid and the premises are all tautologies, then the conclusion must also be a tautology.
4. If the argument is valid and the conclusion is a contradiction, then the premises can't all be true at the same time. (That is,

in this situation the conjunction of all the premises must be a contradiction.)

1. In the logical analysis of an argument, we don't care if the premises are actually true. We only care that the conclusion
follows from the premises.

2. The order of the premises is irrelevant to the validity of the argument. For arguments written in English language, there may
be a preferred order that best illuminates validity or invalidity, but this is essentially only aesthetic from a logical-analysis
point of view.

Check your understanding.

Verify that an argument  is valid if and only if 

This page titled 5.1: Basic is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy
Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

T F T F F F T T T T F

 Proposition 5.1.1

Remark 5.1.2

, ,… , ∴ CA

1

A

2

A

m

∧ ∧⋯∧ ⇒C.A

1

A

2

A

m
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5.2: Standard Arguments

5.2.1: Modus Ponens

 

standard argument with form

Verify the validity of the modus ponens standard argument.

Solution

Verify the validity by ensuring that each row in the truth table with premises all true also has the conclusion true.

(pr) (c) (pr)

 argument is valid

The argument in Example 5.1.2 has modus ponens form. So it is valid, even though the first premise and the conclusion are not
actually true.

5.2.2 Modus tollens

standard argument with form

 Definition: Modus Ponens

p→ q

q→ r

p→ r

p→ q

p

q

 Example 5.2.1

p q p→ q

T T T ✓

T F F

F T ∗

F F ∗

 Example 5.2.2

 Definition: Modus Tollens

p→ q

¬q

¬p
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Verify the validity of the modus tollens standard argument.

Solution

Verify the validity by ensuring that each row in the truth table with premises all true also has the conclusion true.

  (pr) (pr) (c)

 argument is valid

The argument in Example 5.1.1 has modus tollens form.

5.2.3 Law of Syllogism

standard argument with form

We already verified that the Law of Syllogism is valid in Worked Example 5.1.4.

The Law of Syllogism may be extended to chains of conditionals of arbitrary (finite) length.

standard argument with form

We will verify that the extended Law of Syllogism is a valid argument using mathematical induction in Section 7.2.

 Example 5.2.1

p q p→ q ¬q ¬p

T T T F ∗

T F F ∗ ∗

F T T F ∗

F F T T T ✓

 Example 5.2.4

 Definition: Law of Syllogism

p→ q

q→ r

p→ r

 Note 5.2.1

 Definition: Extended Law of Syllogism

→p

1

p

2

→p

2

p

3

⋮

→p

n−1

p

n

→p

1

p

n

 Note 5.2.2
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This page titled 5.2: Standard Arguments is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : A syllogistic argument in English5.2.5

If I don't study hard this term, I won't master the course material.

If I don't master the course material, I will fail the course.

If I fail the course, I will have to take it again next year.

If I take it again next year, I will have to study harder.

Therefore, if I don't study hard this term, I will have to study harder next year.
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5.3: Substituting into an argument
Substituting into an argument does not change its validity.

Suppose  is a valid argument involving statement variables  If we apply substitution 
 to each of  for some collections of statements  then the resulting argument is

also valid.

Since modus tollens is a valid argument, using the substitution rule with the equivalences

demonstrates that the following argument is also valid.

This page titled 5.3: Substituting into an argument is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Theorem : Substitution Rule5.3.1

, ,… , ∴ CA

1

A

2

A

m

, ,… , .p

1

p

2

p

ℓ

→p

i

B

i

, ,… , ,C,A

1

A

2

A

m

, ,… , ,B

1

B

2

B

ℓ

 Example 5.3.1

r∧ p⇔¬(¬r∨¬p) ⇔¬(r→¬p),

(p↔ q) → (r→¬p)

r∧ p

¬(p↔ q)
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5.4: Activities

Write an argument in English that has modus ponens form where at least one premise is false, and the conclusion is true.

a. Does your argument contradict the fact that every modus ponens argument is valid?
b. Write an argument in English that has modus tollens form where at least one premises is false and the conclusion is false.

Does your argument contradict the fact that every modus tollens argument is valid?
c. Write an argument in English that has syllogistic form where all the premises are true. Is your conclusion true or false?

Prove that modus tollens is valid without using a truth table. Instead, use the following facts:

modus ponens is valid; and
a conditional is equivalent to its contrapositive.

Discuss why an argument being valid is equivalent to its premises logically implying its conclusion.

The definition of valid argument is as follows.

Whenever the premises are all true, the conclusion is true as well.

Create an equivalent definition that is the contrapositive of the definition above.

Show that the following argument is valid without using a truth table. Instead, argue that the argument fulfills the equivalent
definition for valid argument that you created in Activity .

This page titled 5.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Activity 5.4.1

 Activity 5.4.2

 Activity 5.4.3

 Activity 5.4.4

 Activity 5.4.5

5.4.4

p→¬q

r→(p∧ q)

¬r
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6.1: Definitions
Definitions are used in mathematics to label objects that have special properties, and to group all such objects together. Be careful
with definitions: as stated by mathematicians, they often contain implicit conditions.

A number is called prime if its only divisors are  and itself.

This definition has some hidden parts: a more complete definition would be as follows.

A number is called prime if

i. it is an integer,
ii. it is strictly greater than  and

iii. there does not exist any other number greater than  which divides it.

You should view a definition as a technical test or collection of technical tests that an object must pass before it can be given a
specific label.

Demonstrate that, according to the technical definition of prime,  is prime but  is not.

Solution

Let us test 

i. Yes,  is an integer.
ii. Yes, 

iii. None of the numbers in the following list is an integer:

So  is prime since it passes the technical tests that define the concept of prime.

Now let us test 

i. Yes,  is an integer.
ii. Yes, 

iii. However, clearly  is an integer, so  divides 

So  is not prime, since it fails at least one of the technical tests that define the concept of prime.

Often, the first thing we do in mathematics is to look for ways to make testing our definition easier.

Suppose  is an integer with  Then  is prime if and only if  is not an integer for every integer  with 

The proof is left to you as Exercise 6.12.1.

See also

Exercise 6.12.2 for a refinement of the statement of Proposition 6.1.3.

 Example 6.1.1
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1

 Example 6.1.2
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21.
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21 > 1.

21/3 = 7 3 21.

21

 Proposition 6.1.1

n n≥ 2. n n/m m

2 ≤m < .

n
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Demonstrate that  is prime.

Solution(sketch)

By the proposition, to check that  is prime we now only need to note that none of the numbers in the following shorter list is
an integer:

This page titled 6.1: Definitions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example 6.1.1

17

17

, , ,… .

17

2

17

3

17

4

17

8

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83426?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/06%3A_Definitions_and_proof_methods/6.01%3A_Definitions
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 6.2.1 https://math.libretexts.org/@go/page/83427

6.2: Common mathematical statements
In mathematics, we often want to prove that some statement  logically implies some other statement  i.e. we want to prove that 

 or  Note that the universal form covers the common statement “all  are ”, since this can be
rephrased “for all  if  is  then  is ”.

Below are some common methods for proving  In the universal case  the domain of  may be
infinite, so we cannot prove  for each specific  one-by-one. Instead, we treat  as a fixed but arbitrary object in the
domain, and try to construct an argument proving  which does not depending on knowing the specific object  So
all of the methods below can also be used in the universal case.

Since a conditional  is true automatically when  is false, it will be a tautology as long as we cannot have the case of 
true and  false at the same time. (See Figure 1.3.1.) Therefore, we (almost always) begin a proof by assuming that  is true, and
proceed to demonstrate that  must then also be true, based on that assumption.

This page titled 6.2: Common mathematical statements is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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6.3: Direct Proof
Recall. The argument

is valid (Extended Law of Syllogism).

To prove  start by assuming that  is true. Then, through a sequence of (appropriately justified) intermediate
conclusions, arrive at  as a final conclusion.
To prove  start by assuming that  is an arbitrary but unspecified element in the domain such that 

 is true. The first sentence in your argument should be: “Suppose  is a such that ”, where the blank is filled in
by the definition of the domain of  Then, through a sequence of (appropriately justified) intermediate conclusions that do
not depend on knowing the specific object  in the domain, arrive at  as a conclusion.

Prove: If  is even, then  even.

Solution

Let  represent the predicate “  is even” and let  represent the predicate “  is even”, with domain the integers.

Suppose that  is an arbitrary (but unspecified) integer such that  is even. Then there exists an integer  such that 
and so  is even.

Check your understanding. Attempt Exercises 6.12.4–6.12.6.

This page titled 6.3: Direct Proof is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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 Procedure : Direct proof.6.3.1

P ⇒Q, P

Q

(∀x)(P (x) ⇒Q(x)), x

P (x) x P (x)

x.

x Q(x)
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6.4: Reduction to Cases

The following logical equivalence holds:

Proof idea

This is just an extended version of Example 2.2.3.

If

is a tautology, then

By substitution and Fact ,

A conjunction is only true if each “factor” in the conjunction is true, so the conjunction on the right above can only be a tautology
if each conditional  is a tautology. Therefore, when we have a collection of statements  so that

is a tautology, we can prove  by instead proving each of  one at a time. This is also valid for universal
statements, since  distributes over  (Proposition 4.2.2).

Now, having to prove many slightly more complicated statements  seems like a lot more work than just proving the
single simple statement  — why would we want to go to all this extra effort?

Each case statement  provides extra information that can be combined with the assumption that  is true to arrive at the
conclusion that  must also be true.

To prove  determine a set of cases  such that  is true, then provide a separate
proof of each logical implication 
To prove  determine a set of cases  such that

is true, then provide a separate proof of each universally quantified logical implication 

Show  is always even.

Solution

Let  represent the predicate “  is an integer” and let  represent the predicate “  is even”, each with domain the
integers. Note that  is actually true for each  in the domain, since our original statement makes no extra premise on 
besides its domain.

Suppose that  is an integer. Break into cases based on whether  is even or odd; in each case, proceed by direct proof.

 Fact 6.4.1

( ∨ ∨⋯∨ )→ t ⇔ ( → t)∧ ( → t)∧⋯∧( → t).s

1

s
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6.4.1

P →Q ⇔ (P ∧ →Q)∧⋯∧(P ∧ →Q).C
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m
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i
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 Idea 6.4.1
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 Procedure : Reduction to cases6.4.1
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Case  even. If  is even, then there exists an integer  such that  Then,

is also even.

Case  odd. If  is odd, then  is even, so there exists an integer  such that  or  Then,

is even.

Make sure your cases cover all possibilities! (Though it is not necessary that your cases by non-overlapping.)

Check your understanding. Attempt Exercise 6.12.7.

This page titled 6.4: Reduction to Cases is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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6.5: Statements Involving Disjunction
First, let's consider a conditional statement with a disjunction on the hypothesis side. To prove a statement of the form 

 we can use Fact 6.4.1 to decompose into two conditionals:

Appealing to the properties of conjunction, as in our discussion of reduction to cases, we see that we can prove  and 
 by separate proofs.

What about a conditional with a disjunction on the conclusion side? To prove a statement of the form  we can
again reduce to cases, but in a sort of tricky way. For any statement, there are only two possibilities — either the statement is true
or it is false. (See Basic Tautology 3 in Example 1.4.1. Apply this fact to one of the statements we are trying to prove.

To prove a statement of the form  start by assuming that  is true and  is false. Try to show that these
assumptions lead to  being true.

There are only two possibilities for  either it is true or it is false. If  is true, then  is already true, regardless of
the truth values of  and  so there is nothing to prove in this case. On the other hand, if  is false, the only way 
could be true is if  is true.

Also see Exercise 2.5.3.
Of course, you can swap the roles of  and  above: you could also start by assuming that  is true and  is false, then
try to show that this leads to  being true.
Another strategy is to attempt a proof by contradiction (discussed in Section 6.9 below). By DeMorgan, 

 so for this strategy, you should start by assuming that  is true and both  and  are
false. Then, try to arrive at a contradiction.

Prove: Every odd number is either  more or  more than a multiple of 

Solution

Let  represent the predicate “  is odd”, let  represent the predicate “  is  more than a multiple of ”, and let 
 represent the predicate “  is  more than a multiple of ”, each with domain the integers.

Start by assuming that  is an odd number that is not  more than a multiple of  We must now try to show that  is  more
than a multiple of  We know that  is odd, so there exists a number  such that  However, since  is not 
more than a multiple of   cannot be a multiple of  and so  cannot be a multiple of  Therefore,  is also odd, and so
there exists another number  such that  Then

which says that  is  more than a multiple of  as desired.

 

This page titled 6.5: Statements Involving Disjunction is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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 Procedure : Proof of conditional involving disjunction6.5.1
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6.6: Proving the contrapositive
Recall. Modus tollens: 

To prove  you can instead prove 

In Worked Example 6.3.1, we proved that the square of an even number is also even. Therefore, this also constitutes a proof of
the contrapositive statement: if the square of a number is odd, then that number is also odd.

Prove that every prime number larger than  is odd.

Solution

We want to prove the following universally quantified conditional (“for all ” omitted, domain is positive integers).

conditional if (  is prime and ) then  is odd.

contrapositive if  is not odd, then not (  is prime and )

DeMorgan Subsitution if  is not odd, then (  is not prime or )

These are all equivalent.

Let's prove the last statement: as in the procedure for proving conditionals with a disjunction, start by assuming that  is not
odd and  We must then show that  is not prime. Since  is not odd, it is divisible by  But since   is divisible
by a number other than  and  itself. Therefore,  is not prime.

Check your understanding. Attempt Exercise 6.12.8.

This page titled 6.6: Proving the contrapositive is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

P →Q⇔¬Q→¬P .

 Procedure : Proof by proving the contrapositive6.6.1

P ⇒Q, ¬Q⇒¬P .
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6.7: Proof by counterexample
Sometimes we want to prove that  i.e. that  is not a tautology.

Recall. The equivalence

holds for any set of cases  such that  is a tautology. (See Section 6.4.)

So if  is not a tautology for at least one  then  also cannot be a tautology. Again, this also works in the
universal case since  distributes over  (Proposition 4.2.1).

relative to the logical implication  a statement  such that  is false

In Exercise 6.12.8, you are asked to prove the following statement by proving the contrapositive.

If  prime, then  is prime.

Prove that the converse of this statement is false.

Solution

The converse statement is “If  is prime, then  is prime.” But the case  is a counterexample:

is not prime even though  is prime.

Check your understanding. Attempt Exercise 6.12.9.

This page titled 6.7: Proof by counterexample is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

P ⇏Q; P →Q

P →Q⇔(P ∧ →Q)∧⋯∧(P ∧ →Q)C

1

C

m

, ,… ,C

1

C

2

C

m

∨⋯∨C

1

C

m

P ∧ →QC

i

i, P →Q

∀ ∧

 Definition: Counterexample

P ⇒Q, C P ∧C →Q

 Example 6.7.1
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n

n
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6.8: Proving biconditionals
We also often want to prove that two statements  are equivalent; i.e. that 

The equivalence

holds; i.e. a biconditional is equivalent to the conjunction of the corresponding conditional  and its converse.

Proof

You are asked to prove this by truth table in Exercise 2.5.5.

To prove  prove  and  separately.

As usual, this also works in the universal case since  distributes over  (Proposition 4.2.2).

Prove: A number is even if and only if its square is even.

Solution

We want to prove that the following quantified biconditional (“for all ” omitted, domain is nonnegative, whole numbers).

biconditional  is even if and only if  is even.

conditional and converse (if  is even then  is even) and (if  is even then  is even)

contrapositive and converse (if  is odd then  is odd) and (if  is even then  is even)

conditional and inverse (if  is even then  is even) and (if  is odd then  is odd)

These are all equivalent, so we could prove any one pair.

Original conditional. This is proved as Worked Example 6.3.1.

Converse. If  is even, then there exists an integer  such that  so that  … ? We seem to be stuck.

Inverse. If  is odd, then there exists an integer  such that  Then,  is odd.

Attempt Exercise 6.12.10.

This page titled 6.8: Proving biconditionals is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
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P ,Q P ⇔Q.

 Fact 6.8.1

P ↔Q ⇔ (P →Q)∧ (Q→ P )

P →Q

 Procedure : Proving a biconditonal6.8.1

P ⇔Q, P ⇒Q Q⇒ P

∀ ∧

 Example 6.8.1
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√

n m n= 2m+1. = 4 +4m+1n

2

m

2

 Checkpoint 6.8.1
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6.9: Proof by Contradiction

For any logically false statement  we have

Proof

First,  is false precisely when  is true and  is false. On the other hand,  is false precisely when  is
true, and  is true precisely when  are both true, i.e. when  is true and  is false.

To prove  devise a false statement  such that 
To prove  devise a predicate  such that  is true (i.e.  is false for all  in the
domain), but 

Usually  is taken to be some variation of  for some statement  (See the Law of Contradiction, recorded as Basic
Tautology 4 in Example 1.4.1.)

Prove that  is irrational.

Solution

We want to prove the quantified conditional with domain the real numbers: for all  if  and  then  is not
rational.

Suppose that  is a real number such that  and  By contradiction, also assume that  is rational. We want this
extra assumption to lead to a false statement. Now,  rational means  for some integers  We may assume  are
both positive, since  We may also assume  have no common factors (i.e. fraction  is in lowest terms). Then,

But if both  are even, then  and  are both divisible by  We have arrived at our contradiction:  have no common
factor but  have a common factor of  That is, we have shown the following.

For all  if  then (there exist positive integers  such that  and 
have no common divisor and  have a common divisor).

Attempt Exercises 6.12.11–6.12.13.

 Fact 6.9.1

e,

s→ t ⇔ (s∧ ¬t) → e.

s→ t s t (s∧ ¬t) → e s∧ ¬t

s∧ ¬t s, ¬t s t

 Procedure : Proof by contradiction6.9.1

P ⇒Q, E (P ∧ ¬Q) ⇒E.

(∀x)(P (x) ⇒Q(x)), E(x) (∀x)(¬E(x)) E(x) x

(∀x)[(P (x) ∧ ¬Q(x)) ⇒E(x)].

 Note 6.9.1

E C ∧ ¬C, C.

 Example 6.9.1
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x > 0. a, b a/b

= 2x

2

⇒ = 2 ,a

2

b

2

⇒  even,a

2

⇒ a even,

⇒ a = 2m,  some m,

⇒ 2 = = 4 ,b

2

a

2

m

2

⇒ = 2 ,b

2

m

2

⇒  even,b

2

⇒ b even.

a, b a b 2. a, b

a, b 2.

x, (( = 2 and x > 0) and x not irrational)x

2

a, b x = a/b a, b

a, b
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6.10: Existence and Uniqueness
In mathematics we often want to know whether an object with specific desirable properties actually exists. In symbolic language,
this is just  Conceptually, this is easy to do: just find an example! (In practice, this can often be quite difficult.)

Prove that  is not prime.

Solution

We want to prove the quantified statement

with domain the positive, whole numbers. Testing each number, one by one, starting at  we find that using  fits
the bill.

Once we have found an example for an existential statement, we also often want to know whether there are more examples, or
whether the one we have found is unique. Suppose  is our concrete example proving  To show that  is unique, we
should prove the universal statement:  This translates as the following.

For all  if  is true, then 

That is, the only way object  can satisfy  is if  is actually our original example 

To prove that  is the unique instance of an object  such that  is true, assume that  is also an object such that 
 is true, and prove that 

Prove that  is the unique positive number that is both prime and even.

Solution

Suppose  is a positive number which is both prime and even. Since  is even, it is divisible by  But since  is prime, it is
divisble by only  and itself. Therefore,  and “itself” must be the same, i.e. 

This page titled 6.10: Existence and Uniqueness is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

(∃x)A(x).

 Example 6.10.1

851

(∃n)((n≠ 1)∧ (n≠ 851)∧ (n divides 851)),

n= 2, n= 23

x

0

(∃x)A(x). x

0

(∀y)(A(y) → (y = )).x

0

y, A(y) y = .x

0

y A(y) y .x

0

 Procedure : Proving uniqueness6.10.1

x = x

0

x A(x) y

A(y) y = .x

0

 Example 6.10.2
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n n 2. n

1 2 n= 2.
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6.11: Activities

a. Write a technical definition for the word car.
b. Using only your technical definition (i.e. ignoring your common sense notions of the word car), decide whether a transport

truck should be called a car. Then do the same for a train.

Note. Do not go back and modify your definition of car; test the objects transport truck and train against whatever definition
you initially came up with in Task a.

c. What is the point of this activity?

A square number is an integer which is equal to the square of some integer. An integer is square free if it is not divisible by
any square number other than 

a. Is  a square number? Is it square free?
b. Does there exist a negative square number?
c. Is every negative number square free?
d. Is every prime number square free?
e. Is every square free number prime?
f. Does there exist an integer which is both a square number and square free?

The following statement is a basic (and very useful) fact about real numbers.

Triangle Inequality: For every pair of real numbers  and  

Use the above statement to directly prove the following extended version of the inequality, without resorting to considering
cases of positive/negative for any of the variables.

For every triple of real numbers   and  

Remark. Using the two-number version of the inequality to prove the three-number version is an example of inductive
reasoning, something that we will soon investigate further.

Suppose you are analyzing the rules for a complicated table-top game, and you have come to the following realization.

Given any trio of distinct wizards where the first is zapping the second, at least one of the following must also occur: the first is
zapping the third or the third is zapping the second.

If you were to approach proving this statement using the advice you read on how to handle statements involving disjunction in
Procedure 6.5.1, the first sentence of your proof would be

Assume .

and the last sentence of your proof would be 
Therefore .

What is the difference between proving the contrapositive and proof by contradiction?

 Activities 6.11.1

 Activities 6.11.2

1.

0

 Activities 6.11.3

x y, |x+y| ≤ |x| + |y|.

x, y, z, |x+y+z| ≤ |x| + |y| + |z|.

 Activities 6.11.1

–

–

 Activities 6.11.5
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a. A positive integer that is greater than  and not prime is called composite.

Write a technical definition for the concept of composite number with a similar level of detail as in the “more complete”
definition of prime number given in Example 6.1.1.

Note. Don't just define it as “not prime.” And make sure that the equality  can't be used to justify the statement “  is
composite” by your definition (because prime  is most definitely not composite).

a. Prove by proving the contrapositive: If  is prime, then  is prime.

Hint

You may find the following “difference of powers” factorization formula useful:

a. Write down a technical definition of the term rational number.
b. Prove directly: The sum of two rational numbers is a rational number.
c. Prove by contradiction: The sum of a rational number and an irrational number is irrational.
d. Disprove by counterexample: The sum of two irrational numbers is irrational.

Refer to Activity .

a. Prove that a positive number  is square free if and only if for every factorization  the integers  and  do not share
a common factor other than 

b. Prove that a positive number is square free if and only if it is not divisible by the square of a prime number.

A pair of prime numbers  is called a twin prime pair if  A prime number is called an isolated prime if it is
not part of a twin prime pair.

a. Determine the first (i.e. smallest) four twin prime pairs.
b. Determine the first (i.e. smallest) two isolated primes.
c. Prove that if  is a twin prime pair with  then  is divisible by 
d. Prove that if  is a twin prime pair, then  and  cannot be twin prime pairs.
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 Activities 6.11.6
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 Activities 6.11.7

 Activities 6.11.8

6.11.2

n n= ab, a b

1.

 Activities 6.11.9
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p, p+2 p ≥ 5, p+1 6.

p, p+2 p−2, p p+2, p+4
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6.12: Exercises

Let  represent an integer with  Prove that  is prime if and only if  is not an integer for every integer  with 

Let  represent an integer with  Suppose  is a complete list of prime numbers which are less than or equal
to  Prove that  is prime if and only if none of the  divide  Careful: Is the statement actually true in the case  

 (Why should these cases be given special consideration?)

Call two people twins if they share the same mother and the same birthdate. Consider the statement: “if two people are twins,
then they share the same birthdate.”

a. Is the statement true?
b. What is the converse of this statement? Is it true?

Prove directly: The sum of two rational numbers is a rational number.

Prove directly: If  is even, then  is divisible by 

Recall that the triangle inequality states that  for all numbers  and 

Use the triangle inequality to prove directly:  for all numbers 

Prove by reduction to cases:  is always divisible by 

Hint

Use cases 

Prove by proving the contrapositive: if  is prime, then  is prime.

Hint

You may find the following “difference of powers” factorization formula useful:

 Exercise 6.12.1

n n≥ 2. n n/m m

2 ≤m < .

n

2

 Exercise 6.12.2

n n≥ 2. , ,… ,p

1

p

2

p

ℓ

n/2. n p

i

n. n= 2?

n= 3?

 Exercise 6.12.3

 Exercise 6.12.4

 Exercise 6.12.5

n n

2

4.

 Exercise 6.12.6

|x+y| ≤ |x| + |y| x y.

|x+y+z| ≤ |x| + |y| + |z| x, y, z.

 Exercise 6.12.7

−nn
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3.

n= 3m, 3m+1, 3m+2.

 Exercise 6.12.8
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Prove by counterexample that the following statement is false.

The sum of any two irrational numbers is irrational.

(See Exercise 6.12.4.)

Prove the biconditional:  is even if and only if  is divisible by 

(See Exercise 6.12.5.)

Prove by contradiction: If  and  are integers such that  is odd, then either  or  (or both) must be odd.

Prove by contradiction: For  

Prove by contradiction: The sum of a rational number and an irrational number is irrational.

(See Exercise 6.12.4 and Exercise 6.12.9.)

Prove that if   and  are integers such that  divides  and  divides  then  divides 

Prove that if   and  are integers such that  divides  then both  and  divide 

Suppose that  and  are integers, and  is a prime number. Prove that if  does not divide the product  then  cannot
divide either of  or 

Working with a definition. Exercises 17–19 concern the following definitions.

A square number is an integer which is equal to the square of some integer. An integer is square free if it is not divisible by any
square number other than 

For each of the following, provide a proof to justify your answer.

a. Is  a square number? Is it square free?
b. Does there exist a negative square number?
c. Is every negative number square free?
d. Is every prime number square free?
e. Is every square free number prime?
f. Does there exist an integer which is both a square number and square free?

 Exercise 6.12.9

 Exercise 6.12.10

n n

2

4.

 Exercise 6.12.11

m n 11m+19n m n

 Exercise 6.12.12

x, y > 0, ≠ + .x+y

− −−−−

√

x

−−

√

y

√

 Exercise 6.12.13

 Exercise 6.12.14

ℓ,m, n ℓ m ℓ n, ℓ mn.

 Exercise 6.12.15

ℓ,m, n mn ℓ, m n ℓ.

 Exercise 6.12.16

m n p p mn, p

m n.

1.

 Exercise 6.12.17

0
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Prove that a positive number  is square free if and only if for every factorization  the integers  and  do not share a
common factor other than 

Prove that a positive number is square free if and only if it is not divisible by the square of a prime number.

A pair of prime numbers  is called a twin prime pair if  A prime number is called an isolated prime if it is
not part of a twin prime pair.

a. Determine the first (i.e. smallest) four twin prime pairs.
b. Determine the first (i.e. smallest) two isolated primes.
c. Prove that if  is a twin prime pair with  then  is divisible by 
d. Prove that if  is a twin prime pair, then  and  cannot be twin prime pairs.

This page titled 6.12: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 6.12.18

n n= ab, a b

1.

 Exercise 6.12.19

 Exercise 6.12.20

,p

1

p

2

= +2.p

2

p

1

p, p+2 p ≥ 5, p+1 6.

p, p+2 p−2, p p+2, p+4
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7: Proof by mathematical induction
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7.1: Principle of Mathematical Induction

Suppose  is a predicate where the variable  has domain the positive, whole numbers. If

 is true, and

 is true,

then  is true.

It is usual to take the principle of mathematical induction as an axiom; that is, we assume that mathematical induction is valid
without proving it.

A look ahead.

We will discuss axioms a little more in Chapter 8.

Below is an outline of the idea behind why it is reasonable to assume that mathematical induction is valid. However, this outline
does not constitute a proof since it technically uses mathematical induction implicitly.

Suppose  is fixed. We have a sequence of valid arguments: 

Each is valid (modus ponens). So if we make the two assumptions stated in the principles (i.e. that  is true and that 
 is always true) we can trace the flow of truth from premises to conclusion in each argument in turn: 

Premises true so conclusion is true.

Premises true (using conclusion of the first argument) so conclusion is true.

…

Premises true (using conclusion of the \((n-2)^{th}\) argument) so conclusion is true.

The conclusion of  argument is  so  is true.

Now, here is some specific terminology associated to proofs by induction.

the statement  in a proof by mathematical induction

Axiom 7.1.1

P (n) n

P (1)

(∀k)(P (k) → P (k+1))

(∀n)P (n)

Idea

n

(1)→ P (2)

P (1)

P (2)

P (2)→ P (3)

P (2)

P (3)

⋯ P (n−1)→ P (n)

P (n−1)

P (n)

P (1)

P (k) → P (k+1)

Definition: First Argument

Definition: Second Argument

Definition: Third Argument

Definition:  argument(n− 1)

th

(n−1)

th

P (n), P (n)

Definition: Base case

P (1)
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the portion of a proof by mathematical induction that establishes the statement 

the assumption  made as the first step in the induction step of a proof by mathematical induction

To prove a universal statement indexed by whole numbers:

Base case. 
Start by proving the statement obtained from the universally quantified predicate for the base case 

Induction step. 
Next, assume that  is a fixed number such that  and that the statement obtained from the universally quantified
predicate is true for  Based on this assumption, try to prove that the next case,  is also true.

Prove that the sum of the first  positive integers is

Solution

We want to prove  where  is as follows.

We will prove this by induction.

Base case. 
 is obviously true.

Induction step. 
Assume the statement is true for  i.e. assume that

 
We want to show that this implies the statement is true for  i.e. show

 
We have

Definition: Induction Step

(∀k)(P (k) → P (k+1))

Definition: Induction Hypothesis

P (k)

Procedure : Proof by Induction7.1.1

n= 1.

k k≥ 1,

n= k. n= k+1,

Example 7.1.1

n

.

n(n+1)

2

(∀n)P (n), P (n)

P (1): 1 = , P (2): 1+2 = , P (3): 1+2+3 = ,

1 ⋅ 2

2

2 ⋅ 3

2

3 ⋅ 4

2

… , P (n): 1+2+⋯+n= , …

n(n+1)

2

1 = (1 ⋅ 2)/2

n= k;

1 +2+⋯+k= k(k+1)/2.

n= k+1;

1+2+⋯+k+(k+1) = (k+1)(k+2)/2.

1+2+⋯+k+(k+1) = (1+2+⋯+k)+(k+1)

= +(k+1)

k(k+1)

2

=

+3k+2k

2

2

= .

(k+1)(k+2)

2
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Prove that  is always divisible by  for every 

Solution

We want to prove  where  is as follows.

 
We will prove this by induction.

Base case. 
For  

Induction step. 
Assume  is divisible by  This means that there exists some whole number  so that

 
We want to show that  is also divisible by  To make the connection between this sum of
cubes and the “previous case” sum of cubes above, we can add in (and simultaneously subtract out) a  term:

 
Since we have factored our sum of cubes into a product involving  that sum of cubes is divisible by 

 
 

Prove that  is divisible by  whenever  is odd.

Solution

We do not want to use  as our induction index, since it jumps by twos. But  odd means that  for some 
so we want to prove  where  is as follows.

Example 7.1.2

+(n+1 +(n+2n

3

)

3

)

3

9 n≥ 1.

(∀n)P (n), P (n)

P (1)

P (2)

P (3)

P (n)

: + +  is divisible by 91

3

2

3

3

3

: + +  is divisible by 92

3

3

3

4

3

: + +  is divisible by 93

3

4

3

5

3

⋮

: +(n+1 +(n+2  is divisible by 9n

3

)

3

)

3

⋮

n= 1, +(n+1 +(n+2 = 36 = 9 ⋅ 4.n

3

)

3

)

3

+(k+1 +(k+2k

3

)

3

)

3

9. m

+(k+1 +(k+2 = 9m.k

3

)

3

)

3

(k+1 +(k+2 +(k+3)

3

)

3

)

3

9.

k

3

(k+1 +(k+2 +(k+3)

3

)

3

)

3

= ( +(k+1 +(k+2 ) +(k+3 −k

3

)

3

)

3

)

3

k

3

= 9m+(k+3 −)

3

k

3

= 9m+( +9 +27k+27) −k

3

k

2

k

3

= 9(m+ +3k+3).k

2

9, 9.

Example 7.1.1

+13

3n

7 n

n n n= 2m−1 m ≥ 1,

(∀m)P (m), P (m)

P (1)

P (2)

P (3)

P (m)

: +1 is divisible by 73

3

: +1 is divisible by 73

9

: +1 is divisible by 73

15

⋮

: +1 is divisible by 73

6m−3

⋮
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We will prove this by induction. 

Base case. 
For  

Induction step. 
Assume  is divisible by  This means that there exists some whole number  so that

 
We want to show  is divisible by  We have

 
Since we have our expression factored into a product involving  our expression is divisible by  as desired.

 

Indexing of statements does not have to start at 

Prove  whenever 

Note

This statement is actually false for  
 

Solution

Base case. 
For   and 

Induction step. 
Assume  for some  We want to show  We have

 

This page titled 7.1: Principle of Mathematical Induction is shared under a GNU Free Documentation License 1.3 license and was authored,
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m = 1, +1 = 28 = 7 ⋅ 4.3

3

+13

6k−3

7. ℓ

+1 = 7ℓ.3

6k−3

+13

6(k+1)−3

7.

+13

6(k+1)−3

= ( )( )+13

6k−3

3

6

= ( +1−1)( )+13

6k−3

3

6

= ( +1)( )− +13

6k−3

3

6

3

6

= (7ℓ)( )−7283

6

= 7( ℓ−104).3

6

7, 7

Remark 7.1.1

1.

Example 7.1.1

< n!2

n

n≥ 4.

n= 1, 2, 3.

n= 4, = 162

4

4! = 24.

< k!2

k

k≥ 4. < (k+1)!.2

k+1

= 2( ) < 2(k!) < (k+1)(k!) = (k+1)!.2

k+1

2

k
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7.2: An application to logic

The Extended Law of Syllogism is a valid argument.

Proof

By mathematical induction.

Base case .

This is just the ordinary Law of Syllogism.

Induction step.

Let  Consider the  version (below left) and the  version (below right) of the Extended Law of
Syllogism.

 

Assume the  version of the argument is valid. We want to show that the  version is also valid. So suppose
that premises of that latter version are all true. We need to show that the conclusion  must then also be true.

But each premise of the  version is also a premise of the  version, so we can say that we have assumed that
every premise of the  version is true. But we have also assumed that version to be valid, so we may take its
conclusion  to be true.

Consider the following syllogism.

Since this is valid (base case ) and its premises are all true, the conclusion is true.

 

This page titled 7.2: An application to logic is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Theorem : Validity of the Extended Law of Syllogism7.2.1

n= 3

k≥ 3. n= k n= k+1

→p

1

p

2

→p

2

p

3

⋮

→p

k−1

p

k

→p

1

p

k

→p

1

p

2

→p

2

p

3

⋮

→p

k−1

p

k

→p

k

p

k+1

→p

1

p

k+1

(7.2.1)

n= k n= k+1

→p

1

p

k+1

n= k n= k+1

n= k

→p

1

p

k

→p

1

p

k

→p

k

p

k+1

→p

1

p

k+1

n= 2
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7.3: Strong form of Mathematical Induction

Suppose  is a predicate where the variable  has domain the positive, whole numbers. If

 is true, and

 is true,

then  is true.

The idea here is the same as for regular mathematical induction. However, in the strong form, we allow ourselves more than
just the immediately preceding case to justify the current case.

If the first case  is true, and  then  must be true as well. Now, if  and we already
have  and  both true, then  must be true as well. Furthermore, if  and we already
have   and  all true, then  must be true as well. And so on, until we have reached  for  whatever value
we wish.

Base case. 
Start by proving the statement for the base case 

Induction step. 
Next, assume that  is a fixed number such that  and that the statement is true for all  Based on this assumption,
try to prove that the next case,  is also true.

Prove that each whole number greater than  can be factored into a product of (one or more) primes.

Solution

Base case. 
The first number greater than  is  and it is prime. So it can be considered a product of one prime.

Note

Our base case is at  because our original statement only concerns numbers greater than 

Induction step. 
Let  represent a whole number that is greater than  Assume that  can each be factored into primes. We want to
show  can also be factored into primes.

Break into cases.

Case  prime. 
In this case  is already a product of a single prime, itself.

Case  not prime. 
If  is not prime, then it has nontrivial divisors. So there exist integers  with  such that 

 By our induction hypothesis, each of  can be factored into a product of primes, so their product 
can as well.

 Axiom : Principle of Mathematical Induction (Strong Form).7.3.1

P (n) n

P (1)

(∀k)((P (1)∧P (2)∧⋯∧P (k)) → P (k+1))

(∀n)P (n)

 Idea

P (1) P (1)→ P (2), P (2) P (1)∧P (2)→ P (3),

P (1) P (2) P (3) P (1)∧P (2)∧P (3)→ P (4),

P (1), P (2), P (3) P (4) P (n), n

 Procedure : Proof by strong Induction7.3.1

n= 1.

k k≥ 1, n≤ k.

n= k+1,

 Example 7.3.1

1

1 n= 2,

n= 2 1.

k 1. 2, 3, 4,… , k

k+1

k+1

k+1

k+1

k+1 , ,m

1

m

2

2 ≤ , ≤ k,m

1

m

2

k+1 = .m

1

m

2

,m

1

m

2

k+1
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If your proof of the induction step requires knowing a very specific number of previous cases are true, you may need to use a
variant of the strong form of mathematical induction where several base cases are first proved. For example, if, in the induction
step, proving that  is true relies specifically on knowing that both  and  are true, then this argument
does not prove that  and so you must prove both base cases of  and  explicitly.

This page titled 7.3: Strong form of Mathematical Induction is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Warning 7.3.1

P (k+1) P (k−1) P (k)

P (1)→ P (2), P (1) P (2)

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83434?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/07%3A_Proof_by_mathematical_induction/7.03%3A_Strong_form_of_Mathematical_Induction
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 7.4.1 https://math.libretexts.org/@go/page/83435

7.4: Activities
Below is a more detailed version of Procedure 7.1.1. Follow the steps of Procedure  to create a proof by induction for each of
the requested proofs in this activity set. 

a. Write the statement with  replaced by 
b. Write the statement with  replaced by 
c. Identify the connection between the  statement and the  statement.
d. Complete the induction step by assuming that the  version of the statement is true, and using this assumption to

prove that the  version of the statement is true.
e. Complete the induction proof by proving the base case.

A binary string is a “word” in which each “letter” can only be  or 

Prove that there are  different binary strings of length 

Prove that for every positive integer  the binomial  can be factored as 

Prove that the following argument is valid for all positive integers  

Careful. 
Recall that in this context, the words valid and true do not have the same meaning.

Prove that a truth table involving  statement variables requires  rows.

Prove that a knight can be moved from any square to any other square on an  chess board by some sequence of allowed
moves, for every 

This page titled 7.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

7.4.1

Procedure : Mathematical induction, step-by-step7.4.1

n k.

n k+1.

k

th

(k+1)

th

n= k

n= k+1

Activity 7.4.1

0 1.

2

n

n.

Activity 7.4.2

n, 1 −x

n

(1−x)(1+x+ +⋯+ ).x

2

x

n−1

Activity 7.4.3

n.

( ∧ )p

1

q

1

( ∧ )p

2

q

2

( ∧ )p

n

q

n

∧ ∧p

1

p

2

( → )q

1

r

1

→ r

1

→ r

2

⋮

→ r

n

⋯∧ p

n

∧ ( → )∧⋯∧( → )q

2

r

2

q

n

r

n

Activity 7.4.4

n 2

n

Activity 7.4.5

n×n

n≥ 4.

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83435?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/07%3A_Proof_by_mathematical_induction/7.04%3A_Activities
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/07%3A_Proof_by_mathematical_induction/7.01%3A_Principle_of_Mathematical_Induction
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/07%3A_Proof_by_mathematical_induction/7.04%3A_Activities
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


1

CHAPTER OVERVIEW

8: Axiomatic systems
8.1: Basics and examples
8.2: Incompleteness of axiomatic systems
8.3: Exercises

This page titled 8: Axiomatic systems is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated
by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/08%3A_Axiomatic_systems/8.01%3A_Basics_and_examples
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/08%3A_Axiomatic_systems/8.02%3A_Incompleteness_of_axiomatic_systems
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/08%3A_Axiomatic_systems/8.03%3A_Exercises
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/08%3A_Axiomatic_systems
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 8.1.1 https://math.libretexts.org/@go/page/83439

8.1: Basics and examples
Any mathematical system must have a starting point; we cannot create something out of nothing. The starting point of a
mathematical system (or any logical system, for that matter) is a collection of basic terminology accompanied by a collection of
assumed facts about the things the terminology describes.

a label for an object or action that is left undefined

a statement (usually involving primitive terms or terms defined in terms of primitive terms) that is held to be true without proof

a collection of primitive terms and axioms

Primitive Terms

woozle (noun),
dorple (noun),
snarf (verb).

Axioms

1. There exist at least three distinct woozles.
2. A woozle snarfs a dorple if and only if the dorple snarfs the woozle.
3. Each pair of distinct woozles snarfs exactly one dorple in common.
4. There is at least one trio of distinct woozles that snarf no dorple in common.
5. Each dorple is snarfed by at least two distinct woozles.

In the axiomatic system of Axiom , Axiom 1 is redundant as we may infer from Axiom 4 that there exist three distinct
woozles. But there is no harm in including this axiom for clarity. As well, we will later investigate the effect of altering it.

The axiomatic system of Example  seems like nonsense, but we can actually prove things from it.

There exist at least three distinct dorples.

Proof

(In this proof, all references to axioms refer to the axioms of .)

By Axiom 4, there exists a trio  of distinct woozles that snarf no dorple in common. Breaking this trio into
various pairs and applying Axiom 3, we see that there exists a dorple  that  and  both snarf in common, there also
exists a dorple  that  and  both snarf in common, and there also exists a dorple  that  and  both snarf in
common. These snarfing relationships are illustrated in the diagram below.

 Definition: Primitive term

 Definition: Axiom

 Definition: Axiomatic System

 Example : An axiomatic system8.1.1

 Remark 8.1.1

8.1.1

8.1.1

 Theorem 8.1.1

8.1.1
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Figure : A diagram of woozles snarfing dorples.

Now, suppose  and  were actually the same dorple — then all three woozles would snarf it in common.

8.1.1
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Figure : A diagram of woozles snarfing dorples, assuming two of the dorples coincide.

As this would contradict our initial assumption, it must be the case that  and  are distinct. Similar arguments allow us
to also conclude that  and 

It is often useful to give names to important properties of objects.

a label for an object or action that is defined in terms of primitive terms, axioms, and/or other defined terms

an formal explanation of the meaning of a defined term

Here is a definition relative to the axiomatic system of Example .

Solution

snarf buddies

two distinct dorples that snarf a common woozle

8.1.2
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 Definition: Defined term

 Definition: Definition

 Example : Making a definition8.1.2

8.1.1
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A definition allows us to more succinctly communicate ideas and facts about the objects of an axiomatic system.

A pair of snarf buddies snarf a unique woozle in common.

Proof

Suppose  are snarf buddies. By contradiction, suppose they snarf more than one woozle in common: let  be
distinct woozles both snarfed by  and  By Axiom 2, each of  snarfs each of  But this contradicts Axiom
3, as two distinct woozles cannot snarf more than one dorple in common.

Suppose we replace Axiom 1 in the system of Example  with the following.

1. There exist exactly three distinct woozles.

In the new, modified axiomatic system, our previous two theorems (Theorem  and Theorem ) remain true, because it is
still true that there exist at least three distinct woozles. But we can now also prove the following.

In the axiomatic system of Example  with the above modified version of Axiom 1, there exist exactly three distinct
dorples.

Proof

You are asked to prove this in the exercises.

A nonsense system like the one in Example  is just that — nonsense — and not much use unless there are actual examples to
which the developed theory can be applied.

a system obtained by replacing the primitive terms in an axiomatic system with more “concrete” terms in such a way that all
the axioms are true statements about the new terms

If we agree that the axiom statements are still all true with the new terms, then any theorems proved under the abstract system are
still valid in the new model system.

Again consider the axiomatic system of Example , still using the modified version of Axiom 1. Let the three distinct
woozles be the points   and  in the Cartesian plane. Let dorple now mean line in the plane, and let snarf
now mean lies on. Convince yourself that the axioms of the system are all true with this interpretation of the primitive terms.

Theorem  now says that there exist exactly three distinct lines in the plane which fit into our axiomatic system; can you
find their equations?

 Theorem 8.1.2
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 Theorem 8.1.3

8.1.1

8.1.1

 Definition: Model

 Example : A model for the woozel-dorple system8.1.3

8.1.1

(0, 0), (1, 1), (2, 0)

8.1.3
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Figure : A diagram of woozles snarfing dorples.

Using nonsense terms like woozle, dorple, and snarf for the primitive terms in an axiomatic system is usually not a good idea,
as it takes all intuition out of the process of discovering statements that can be deduced from the axioms. It would have been
much better if we had used the words point instead of woozle, line instead of dorple, and lies on instead of snarfs as our
primitive terms, to be able to use our intuition about how such objects interact. In such a case, the axioms we choose should be
a reflection of our idea of the simplest possible properties about the primitive terms, properties that everyone could reasonably
agree are “true” without proof. However, for the theorems deduced from such an axiomatic system to have the widest possible
applicability, we should leave the words point and line as truly primitive, undefined terms — that is, point and line should not
be taken to mean point in the plane and line in the plane, as in the example above, but rather just left as some abstract,
intuitive idea of point and line.

This page titled 8.1: Basics and examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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8.2: Incompleteness of axiomatic systems
It turns out that if we want to create an axiomatic system on which to base mathematics, we will always run into problems, and
some things will remain out of our reach.

In any axiomatic system that is sufficiently complex for it to be possible to prove certain basic facts about the nonnegative
whole numbers, it is possible to devise a statement that is true but unprovable.

May you never attempt to prove a statement that is true but unprovable!

This page titled 8.2: Incompleteness of axiomatic systems is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Theorem : Gödel's First Incompleteness Theorem8.2.1
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8.3: Exercises

Reasoning in an abstract axiomatic system. 

Exercises 1–5 concern the axiomatic system described in Example 8.1.1.

Rewrite each axiom of the system and each subsequent theorem proved in Section 8.1, replacing the words woozle by point,
dorple by line, and snarfs by lies on. Come up with a replacement for the terminology snarf buddies that is consistent with
these replacement primitive terms. Do the statements make more sense now?

Rewrite Theorem 8.1.2 as an “if … then …” statement. Then form the converse of this conditional. Now prove the converse.

Prove each of the following statements. In your proofs, you may use as justification any combination of the five axioms in the
system, Theorem 8.1.1 and Theorem 8.1.2 already proved in this chapter, and/or any of the statements of this exercise that you
have already proved.

a. There is no dorple who snarfs all woozles.
b. Each woozle snarfs at least two distinct dorples.
c. Each dorple belongs to at least two distinct snarf buddy pairs.
d. There is no woolze who snarfs all dorples.
e. There is at least one trio of distinct dorples that snarf no woozle in common.
f. Each woozle belongs to a trio of woozles that snarf no dorple in common.
g. Every pair of woozles can be increased to a trio of woozles that snarf no dorple in common.

Note. Statement f and Statement g in Exercise  are indeed different statements and require separate proofs (and each of
these statements is different from Axiom 4).

Rewrite each statement in Exercise  using the replacement primitive terms point for woozle, line for dorple, and lies on
for snarfs. Also replace snarf buddies by whatever terminology you came up with in Exercise .

Now consider the system with the revised version of Axiom 1. Prove that there exist exactly three dorples.

Hint

Start with the first diagram in the proof of Theorem 8.1.1. Now argue by contradiction: what do the axioms say would
happen if you added a fourth dorple 

Consider the following axiomatic system.

Primitive terms.

wizard (noun),
zaps (verb).

Axioms.

 Exercise 8.3.1

 Exercise 8.3.2

 Exercise 8.3.3

8.3.3

 Exercise 8.3.4

8.3.3

8.3.1

 Exercise 8.3.5

?d

4

 Exercise 8.3.6
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1. There are at least three distinct wizards.
2. If   are distinct wizards, then  zaps  or  zaps 
3. No wizard zaps itself.
4. If    are wizards such that  zaps  and  zaps  then  zaps 

Notes
Recall that in mathematics and logic, we always interpret “or” as inclusive or: one or the other or possibly both.
In Axiom 2 and Axiom 4, you should treat  as variables or placeholders that can be “substituted into”. These
axioms are not stating facts about specific wizards; rather, they are stating facts about all wizards, and their relationships to
each other through zapping. In particular, Axiom 4 could (in principle) be applied to a collection  of wizards
where  and  are in fact the same wizard.

Prove the following statements based on this axiomatic system.

a. Principle of Non-Retaliation. If wizard  zaps wizard  then  does not zap 
b. Friends and Enemies Theorem. If   and  are distinct wizards such that  zaps  then  zaps  or  zaps 

Hint

You may wish to refer back to Activity 6.11.4.

c. Bully Theorem. Given four distinct wizards, exactly one of the four zaps all of the others.

Hint

First argue there cannot be more than one of the four that zaps the other three. Then show there is at least one. You may
need to consider several cases — draw diagrams to help.)

This page titled 8.3: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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9.1: Basics

any distinct entity

The number 
The real number line.
A monkey.
A basket of tennis balls.

a collection of objects

From our list of example objects above, we would intuitively consider

the number  to not be a set;
the real number line to be a set as it is a collection of points, each representing a different real number;
a monkey to not be a set; and
a basket of tennis balls to be a set as it is a collection of tennis balls (though the basket itself is not part of this set, just the
container for the objects making up the set).

However, the answers above may depend on your point of view. For example, a monkey could be considered a collection of
cells. Even the number  is sometimes defined to be a set! (See Example 11.4.2.)

Formally, we leave object and set as primitive terms in the axiomatic system of set theory. The reason for leaving these terms
undefined is because any attempt to define them would lead us down a never-ending rabbit-hole of definitions: what is an
“entity”? what is a “collection”?

We will not discuss any axiomatic basis for set theory, but instead rely on naive set theory.

whatever axioms for set theory the experts decide upon, we are safe (usually, see Warning 9.7.2) to assume that all the
mathematical objects that we would like to be sets, will be

We need one more primitive term to make set theory workable.

a property of sets relative to other objects: given object  and set  exactly one of the statements “  is a member of ” and “
is not a member of ” is true

 Definition: Object

 Example : Some objects9.1.1

2.

 Definition: Set

 Example : Some sets9.1.2

2

2

 Remark 9.1.1

 Definition: Naive Set Theory

 Definition: Membership

x S, x S x

S
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an object that is a member of a set

object  is an element of set 

This page titled 9.1: Basics is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy
Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Definition: Element

 Definition: x ∈ S

x S
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9.2: Defining sets
Remember that mathematical notation is about communicating mathematical information. Since a set is defined by its member
objects, to communicate the details of a set of objects one needs to provide a means to decide whether any given object is or is not
an element of the set.

9.2.1: Listing elements

One way to communicate the details of a set definition is to explicitly list or describe all elements of the set. Such a list should be
enclosed in braces to indicate that the objects in the list are being collected into a set.

If we write

then we intend for the letter  to become a label representing the set consisting of some specific monkey, some specific tennis
ball, and the number 

Here are some sets containing familiar collections of numbers. Notice how in the first two examples we “list” the elements by
providing a pattern and then using … to imply that the pattern continues as expected, and in the second two examples we merely
describe what the elements are in words.

the set  of natural numbers

the set  of integers

the set of all fractions, call the set of rational numbers

the set of all decimal numbers, called the set of real numbers

Keep the following in mind for a set defined by listing elements.

Order does not matter. For example,  and  are the same set because they consist of precisely the same member
elements.
Repetition does not matter. For example,  and  are the same set because they consist of precisely the same
member elements.

9.2.2: Candidate-condition notation
Another way to define a set is candidate-condition notation:

This notation provides a means to decide whether an object is a member of the set by first using an already-defined set as a pool of
“member candidates” as well a condition or a list of conditions each candidate must satisfy in order to actually be a member.

 Example : Listing the elements of a set9.2.1

A = {monkey, tennis ball, the number 2},

A

2.

 Definition: N

{0, 1, 2, …}

 Definition: Z

{… , −2, −1, 0, 1, 2, …}

 Definition: Q

 Definition: R

 Note 9.2.1

{a, b} {b, a}

{a, a, b} {a, b}

set = {candidate domain|condition(s) on candidates}.
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If we write  for the set being defined,  for the set of candidates, and  for the test those candidates must satisfy to be included in
 (that is,  is a predicate with domain ), then the candidate-condition notation takes the form

and can be read as

 is the set of those elements  in  for which  is true.

Consider the set

We could define this set in a more precise manner (i.e. without resorting to using dots) as follows.

The “ ” part to the left of the divider tells us that the pool of “member candidates” for  is the set of natural numbers,
and the test to the right of the divider tells us how to decide when a given candidate natural number  is actually a member of 

 In words, you should think of the above definition as saying the following.

Set  consists of those elements of  which are divisible by 

9.2.3: Form-parameter notation

Finally, sets can be defined by form-parameter notation:

This notation describes the members of a set by providing a “form” to which the members must conform. Usually the “form” is
based on parameter variables that can range over a set of possibilities.

Again consider the set

We could also define this set as

Here, the form of the elements of  is given to the left of the divider as “  times a number”, where the number is represented
by the parameter  Then the allowed range of the number parameter  is given to the right of the divider. In words, you
should think of the above definition as saying the following.

The elements of set  are precisely those objects that are  times a natural number.

We could define the set  of rational numbers in this way:

This says that the set  consists of all symbols of the form “number over number”, where the numbers can be any integers, as
long as the bottom number is not zero. However, we need to be a little bit careful here, since we allow different symbols of this
form to represent the same element. For example,

S C T

S T C

S = {x ∈ C|T (x)},

S x C T (x)

 Example : Using candidate-condition notation to define a set9.2.2

A= {0, 3, 6, 9, 12, …}.

A= {n ∈ N|n divisible by 3}

n ∈ N A

n

A.

A N 3.

set = {form involving parameter|parameter domain}.

 Example : Using form-parameter notation to define a set.9.2.3

A= {0, 3, 6, 9, 12, …}.

A= {3n|n ∈ N}.

A 3

n. n

A 3

 Example : Defining the set of fraction9.2.4

Q

Q= { |m,n ∈ Z, n≠ 0}.

m

n

Q

3

6

= ,

1

2

2

−9

= ,

−2

9

0

n

= (any n≠ 0).

0

1
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We really should make this element form duplication explicit in the definition of the set, but to do this would be really
cumbersome and would be expressing something that is learned in grade school, so it is usually omitted.

9.2.4: Empty set

There is one special set, the elements of which are very easy to list.

the set which has no elements

the empty set

The empty set is defined by requiring that the statement “  is an element of ” is always false, for every object 

Be careful not to inadvertently try to prove some property of members of the empty set! You will be proving a vacuously true
statement. (See Section 4.3.)

This page titled 9.2: Defining sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Definition: empty set

 Definition: ∅

 Remark 9.2.1

x ∅ x.

 Warning 9.2.1
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9.3: Subsets and equality of sets
Often we want to distinguish a collection of certain “special” elements within a larger set of elements.

a set whose elements are all members of another set

set  is a subset of or is contained in set 

Figure : A Venn diagram demonstrating a subset relationship

We also sometimes use the phrase “contained in” to mean an object is an element of a set.

To demonstrate  prove 

Every natural number is an integer, so  To emphasize this, we could write 
Every integer can be considered to be a rational number, since for every  we can write  with  and 

 Thus 
Every rational number can be considered to be a real number if we identify fractions with their decimal expansions via long
division. Thus 

When we define a set by Candidate-condition notation, we first specify a pool of candidate elements, and then a condition or
collection of conditions that those candidates must satisfy in order to actually be included in the set. But then every element in
the set we are defining must first be from the set of candidate elements, so our defined set must be a subset of the candidate set.

For example, in Example , we provided a definition for the set  in candidate-condition form where the pool of
candidates is the set  This definition makes it explicit that 

 Definition: Subset

 Definition: A⊆ B

A B

9.3.1

 Warning 9.3.1

 Test : Subset9.3.1

A⊆B, (∀x)(x ∈ A→ x ∈ B).

 Example : Basic examples involving familiar sets of numbers9.3.1

N ⊆Z. N = {m ∈ Z|m ≥ 0}.

m ∈ Z m =

a

b

a=m

b = 1. Z ⊆Q.

Q⊆R.

 Example : Candidate-condition notation always defines subsets9.3.2

9.3.1 N

Z. N ⊆Z.
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Prove that  for

Solution

There are an infinite number of elements of  so we cannot check that all elements of  are also elements of  one-by-one.
Instead, we let a variable  represent an arbitrary but unspecified element of  Since all elements of  have the form 
for some  we have  for some  Check the condition for being an element of  by calculating

Therefore,  Since the above calculation works for every  all elements of  are elements of 

1. Every set has an empty set as a subset. That is,  is always true for a set 
2. Every set is a subset of itself. That is,  is always true for a set 
3. The subset relation is transitive. That is, whenever  and  are true, then  is true as well.

A look ahead. We will study abstract notions of relation and the transitive property in Chapter 17.

write  if both sets consist of precisely the same elements

To demonstrate  check that both  and 

This requires two applications of the Subset Test:

i. begin with the assumption  and proceed to the conclusion 
ii. begin with the assumption  and proceed to the conclusion 

One could combine both applications of the Subset Test described in the Test for Set Equality above into one biconditional: 
 is true if

is true. If the logic of  is easily reversed, then it makes sense to argue  instead of separately
arguing  and  However, in most cases separate arguments of these logical implications is
preferred.

Let  and  be as in Worked Example . Prove that 

Solution

Show . See Worked Example .

 Example : Basic examples involving familiar sets of numbers9.3.3

A⊆B

A = {3m+1|m ∈ Z}, B ={x ∈ R sin( ) = 0} .

∣

∣

∣

π(x−1)

3

A, A B

x A. A 3m+1

m ∈ Z, x = 3m+1 m ∈ Z. B

sin( ) = sin( ) = sin(mπ) = 0.

π(x−1)

3

π((3m+1)−1)

3

x ∈ B. m ∈ Z, A B.

 Proposition : Basic properties of the subset relationship9.3.1

∅ ⊆ S S.

S ⊆ S S.

A⊆B B⊆C A⊆C

 Definition: Set equality

A=B

 Test : For set equality9.3.2

A=B, A⊆B B⊆A.

x ∈ A x ∈ B;

x ∈ B x ∈ A.

 Remark 9.3.1

A=B

(∀x)(x ∈ A⇔ x ∈ B)

x ∈ A→ x ∈ B x ∈ A⇔ x ∈ B

x ∈ A→ x ∈ B x ∈ B→ x ∈ A.

 Example 9.3.4

A B 9.3.3 A=B.

A⊆B 9.3.3
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Show . Let  represent an arbitrary element of  This means that

However, we know from trigonometry that  if and only if  is an integer multiple of  i.e.  for some 
If we set

and solve for  we get 

a set contained in but not equal to another set

set  is a proper subset of set 

Some people exclude  from the definition of proper subset.

To demonstrate  first test  as usual (Test , but also demonstrate that there exists some  such that 

We already know that  but we have

1.  since, for example,  but 

2.  since, for example,  but  and

3.  since, for example,  but 

To show the  part of  you only need to exhibit one example element of  which is not in  i.e. you need to
find a counterexample for the logical implication 

 

This page titled 9.3: Subsets and equality of sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

B⊆A x B.

sin( ) = 0.

π(x−1)

3

sinθ= 0 θ π; θ=mπ m ∈ Z.

=mπ

π(x−1)

3

x, x = 3m+1 ∈ A.

 Definition: Proper Subset

 Definition: A⫋ B

A B

 Note 9.3.1

∅

Test : For a proper subset9.3.3

A⫋B, A⊆B 9.3.1 x ∈ B

x ∉ A.

 Example : Proper subsets of number sets9.3.5

N ⊆Z ⊆Q⊆R,

N ⫋Z, −1 ∈ Z −1 ∉ N;

Z ⫋Q, ∈ Q

1

2

∉ Z;

1

2

Q⫋R, ∈ R2

–

√

∉ Q.2

–

√

 Remark 9.3.2

A≠B A⫋B, B A;

x ∈ B→ x ∈ A.
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9.4: Complement, union, and intersection
First, it is often convenient to restrict the scope of the discussion.

a set that contains all objects currently under consideration

We will consider all of the following set operations to be performed within a universal set  In particular, suppose 

9.4.1: Universal and relative complement

the set of elements of  which are not in 

the complement of  (in ), so that

if  the complement of  in  is the set of elements of  which are not in 

the complement of  in  so that

Figure : Venn diagrams of universal and relative set complements.

 

 

Another common notation for relative complement is  However, this conflicts with the notation for the algebraic
operation of subtraction in certain contexts, so we will prefer the notation 

 Definition: Universal set

U. A,B⊆U.

 Definition: Complement

U A

 Definition: AC

A U

= {x ∈ U|x ∉ A}A

C

 Definition: Relative complement

A,B⊆U, A B B A

 Definition: B ∖ A

A B,

B∖A= {x ∈ B|x ∉ A}

9.4.1

 Note 9.4.1

B−A.

B∖A.
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Suppose  and  Then 
The complement of the set of rational numbers  inside the set of real numbers  is called the set of irrational numbers,
and we write  for this set. If you are thinking of real numbers in terms of their decimal expanions, the irrational
numbers are precisely those that have nonterminating, nonrepeating decimal expansions.

9.4.2: Union, intersection, and disjoint sets

the combined collection of all elements in a pair of sets

the union of sets  and  so that

the collection of only those elements common to a pair of sets

the intersection of  and  so that

Figure : Venn diagrams of set union and intersection.

A union contains every element from both sets, so it contains both sets as subsets:

On the other hand, every element in an intersection is in both sets, so the intersection is a subset of both sets:

 Example : Some examples of relative complement involving number sets9.4.1

B= {1, 2, 3, 4, 5, 6} A= {1, 3, 5}. B∖A= {2, 4, 6}.

Q R

I=R ∖Q

 Definition: Union

 Definition: A ∪B

A B,

A∪B= {x ∈ U|x ∈ A or x ∈ B (or both)}

 Definition: Intersection

 Definition: A ∩B

A B,

A∩B= {x ∈ U|x ∈ A and x ∈ B}

9.4.1

 Note 9.4.2

A,B⊆A∪B.

A∩B⊆A,B.
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For subsets  and  of  we have

Consider the following subsets of 

 
Then,

sets that have no elements in common, i.e. sets  such that 

a union  where  and  are disjoint

the disjoint union of sets  and 

Figure : A Venn diagram of a disjoint set union.

Sets  from Example  are disjoint, and 

If  then we can express  as a disjoint union  Similarly, if  then we must have 

9.4.3: Rules for set operations

 Example 9.4.2

A= {1, 2, 3, 4} B= {3, 4, 5, 6} N,

A∪B = {1, 2, 3, 4, 5, 6}, A∩B = {3, 4}.

 Example 9.4.3

N.

E

O

= {n ∈ N|n even}

= {n ∈ N|n odd}

P

T

= {n ∈ N|n prime, nNe0}

= {3n|n ∈ N} = {0, 3, 6, 9, …}

E ∪O

E ∩O

=N,

= ∅,

E ∩P

O ∩P

= {2},

=P∖ {2},

E ∩T

O ∩T

= {6n|n ∈ N},

= {6n+3|n ∈ N}.

 Definition: Disjoint Sets

A,B A∩B= ∅

 Definition: Disjoint Union

A∪B A B

 Definition: A ⊔B

A B

9.4.2

 Example 9.4.4

E ,O 9.4.3 N = E ⊔O.

 Remark 9.4.1

A⊆U, U U =A⊔ .A

C

U =A⊔B, B= .A

C

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83448?pdf


GNU Free Documentation License 9.4.4 https://math.libretexts.org/@go/page/83448

Suppose  are subsets of a universal set  Then the following set equalities hold.

1. Properties of the universal set.
a. 
b. 

2. Properties of the empty set.
a. 
b. 

3. Duality of universal and empty sets.

a. 
b. 

4. 
5. Idempotence.

a. 
b. 

6. Commutativity.
a. 
b. 

7. Associativity.
a. 
b. 

8. Distributivity.
a. 
b. 
c. 
d. 

9. DeMorgan's Laws.

a. 
b. 

 

Proof of Rule 9.a.

Recall that to prove this set equality, we need to show both

Show . 
We need to show

If  then by definition of complement,  but  Then  must be true, since if  were in 
then it would also be in  Similarly,  must also be true. So  and  i.e. 

Show . We need to show

If  then by definition of intersection, both  and  are true.; i.e.  and  Since  is
all elements of  which are in one (or both) of  we must have  Thus 

 Proposition : Rules for Operations on Sets9.4.1

A,B,C U.

A∪U =U

A∩U =A

A∪∅ =A

A∩∅ = ∅

= ∅U

C

=U∅

C

( =AA

C

)

C

A∪A=A

A∩A=A

A∪B=B∪A

A∩B=B∩A

(A∪B)∪C =A∪ (B∪C)

(A∩B)∩C =A∩ (B∩C)

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C)

(A∪B)∩C = (A∩C)∪ (B∩C)

(A∩B)∪C = (A∪C)∩ (B∪C)

(A∪B = ∩)

C

A

C

B

C

(A∩B = ∪)

C

A

C

B

C

(A∪B)

C

⊆ ∩ ,A

C

B

C

∩A

C

B

C

⊆ (A∪B .)

C

(A∪B ⊆ ∩)

C

A

C

B

C

x ∈ (A∪B ⇒ x ∈ ∩ .)

C

A

C

B

C

x ∈ (A∪B)

C

x ∈ U x ∉ A∪B. x ∉ A x A

A∪B. x ∉ B x ∈ A

C

x ∈ ;B

C

x ∈ ∩ .A

C

B

C

∩ ⊆ (A∪BA

C

B

C

)

C

x ∈ ∩ ⇒ x ∈ (A∪B .A

C

B

C

)

C

x ∈ ∩A

C

B

C

x ∈ A

C

x ∈ B

C

x ∉ A x ∉ B. A∪B

U A,B, x ∉ A∪B. x ∈ (A∪B .)

C
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Proofs of the other rules.

These are left to you, the reader, in the Exercise 9.9.1.

 

Compare the set operation rules of the proposition above with the Rules of Propositional Calculus.

This page titled 9.4: Complement, union, and intersection is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Remark 9.4.2
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9.5: Cartesian Product

the set of all possible ordered pairs of elements from two given sets  and  where the first element in a pair is from  and
the second is from 

the Cartesian product of  and  

For “small” sets, we can list the elements of the Cartesian product by listing all ways of combining an element from the first with
an element from the second.

Suppose  and  Then

Let  represent the positive natural numbers:  Then we can describe the Cartesian product  as

 
Consider the subset

 
Does  resemble some more familiar set …?

Extend.

Define 

Suppose    Then, 

Technically, there is a difference between the elements of each of the sets

 
but it is rare that anyone actually observes this technicality. Usually, we consider these three sets to be the same set.

We use special notation for Cartesian products of a set with itself.

 Definition: Cartesian product

A B, A

B

 Definition: A× B

A B: A×B= {(a, b)|a ∈ A, b ∈ B}

 Example : A Cartesian product of “small” sets.9.5.1

A = {1, 2} B= {a, b, c}.

A×B= {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

 Example : A special subset of a certain Cartesian product.9.5.2

N

+

=N ∖ {0}.N

+

Z×N

+

Z× = {(m,n)|m,n ∈ Z, n > 0} ⊆Z×Z.N

+

A = {(m,n) ∈ Z× |n has no divisors in common with |m|} ⊆Z× .N

+

N

+

A

A×B×C = {(a, b, c)|a ∈ A, b ∈ B, c ∈ C}.

 Example 9.5.3

A = {1, 2}, B= {a, b, c}, C = {α, β}.

A×B×C = { (1, a,α), (1, a, β), (1, b,α), (1, b, β), (1, c,α), (1, c, β),

(2, a,α), (2, a, β), (2, b,α), (2, b, β), (2, c,α), (2, c, β) }

Remark 9.5.1

(A×B) ×C

A×(B×C)

A×B×C

= {((a, b), c)|a ∈ A, b ∈ B, c ∈ C},

= {(a, (b, c))|a ∈ A, b ∈ B, c ∈ C},

= {(a, b, c)|a ∈ A, b ∈ B, c ∈ C},
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notation to mean 

notation to mean 

notation to mean  involving  “factors” of 

And so on.

You have probably already encountered the notation

 
used to represent -, -, and higher-dimensional (real) vector spaces.

This page titled 9.5: Cartesian Product is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated
by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Definition: A2

A×A

 Definition: A3

A×A×A

 Definition: An

A×A×…×A n A

 Example : Cartesian products in linear algebra.9.5.4

R

2

R

3

R

n

= {(x, y)|x, y ∈ R},

= {(x, y, z)|x, y, z ∈ R},

⋮

= {( , ,… , )| ∈ R},x

1

x

2

x

n

x

j

⋮

2 3
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9.6: Alphabets and words

any set can be considered an alphabet

the elements of an alphabet set

a finite-length, ordered list of letters

the set of words using alphabet set 

Even if the alphabet set  is the usual English-language alphabet, we do not restrict ourselves to actual English-language
words — nonsense words are allowed.

Using  words

 
are examples of elements in  So, ignoring punctuation, hyphenation, and capitalization, the English language is a proper
subset of 

Using alphabet  then 

Why is  in Example ?

In computing science, a certain set of words is of particular importance.

a word using alphabet 

synonym for binary word

 Definition: Alphabet

 Definition: Letters

 Definition: Word

 Definition: Σ∗

Σ

 Remark 9.6.1

Σ

 Example : English is not a full set of words9.6.1

Σ =Σ = {a, b,… , y, z},

math, qwerty, aabbccddijzuuu

.Σ

∗

.Σ

∗

 Example : If digits are letters then numbers are words9.6.2

Σ = {0, 1, 2, … , 9}, N ⫋ .Σ

∗

 Checkpoint 9.6.1

N ≠Σ

∗

9.6.2

 Definition: binary word

{0, 1}

 Definition: binary string
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Order matters! For example, using the alphabet

the words  and  are different words in 

given  the length of  is the number of elements from  used to form  counting repetition

length of the word 

Using alphabet  we have

The concept of length allows us to identify some special subsets and a special element of 

for  the subset of  consisting of all words of length 

given an alphabet  we always consider  to contain a unique word of length 

the empty word

This page titled 9.6: Alphabets and words is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Warning 9.6.1

Σ = {a, b,… , y, z},

ab ba .Σ

∗

 Definition: length (of a word)

w ∈ ,Σ

∗

w Σ w,

 Definition: |w|

w ∈ Σ

∗

 Example 9.6.5

Σ =Σ = {a, b,… , y, z},

|qwerty| = 6, |aabab| = 5.

.Σ

∗

 Definition: Σ∗

n

n ∈ N, Σ n

 Definition: empty word

Σ, Σ

∗

0

 Definition: Ø
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9.7: Sets of sets

Sets can be made up of any kind of objects, even other sets! (But now we must be careful of the use of the phrase “contained
in”.)

Consider

Elements of  are numbers. Elements of  are subsets of  — that is,  is a set of subsets of  but is not itself a subset of 
 Elements of  are either from  or from  so some elements of  are numbers, and some elements of  are sets of

numbers.

given a set  the power set of  is the set  of all subsets of 

the power set of the set 

The elements of a power set are subsets of the set in question.

For every set  

Proof

Both  and  are subsets of  so both are elements of  Even if  we still have

For  we have

 
Note the use of curly braces here. In particular, note that  has not been placed in its own set of curly braces because it is
already a set itself.

For  as in Example , we have 

 Note 9.7.1

 Example 9.7.1

T = {3n|n ∈ N}, X = {A⊂N|A∩T =∅}, Y =X∪T .

T X N X N,

N. Y X T , Y Y

 Definition: power set

A, A {B⊆A} A

 Definition: P(A)

A

Warning 9.7.1

 Fact : A power set is never empty.9.7.1

A,P(A) ≠ ∅.

∅ A A, P(A). A= ∅,

P∅ = {∅} ≠ ∅.

 Example : Power set of a “small” set.9.7.2

A= {a, b, c},

P(A) = { ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } .

∅

 Example : A set of sets as a subset of a power set.9.7.3

X 9.7.1 X ⊆PN.
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We are not completely free to define sets any way we want.

Let

First note that there exist sets which satisfy the condition for membership in  for example, the empty set. So  should not be
not empty. If  is a set, then it is a “candidate” for membership in itself! Break into cases.

Case . 
Then  which contradicts the case assumption.

Case . 
Then  which contradicts the case assumption.

Since all cases lead to a contradiction,  is cannot be a set! This is called Russell's Paradox, and is one of the reasons we rely
upon “naive set theory” in this course.

One of the ways to avoid Russell's Paradox is by requiring every object, including sets, to have a type, similar to how variables
in a computer language can be declared to have a type. In such a scheme, a set is never just a set — it is always a set of a
certain kind of object. Then an operation such as  would not be allowed, as  is a set of numbers while  is a
set of sets of numbers, and we have a type mismatch. And, more importantly, asking a question like “Is ” becomes
nonsensical, as on the left of the  symbol  is required to be some type of object while on the right  is required to be a set
of that type of object, and again we have a type mismatch.

This page titled 9.7: Sets of sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Warning 9.7.2

 Example 9.7.4

R= {any set X|X is not an element of itself.}.

R; R

R

R ∈R

R ∉ R,

R ∉R

R ∈ R,

R

 Remark 9.7.1

N∪PN N P(N)

R ∈ R?

∈ R R
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9.8: Activities

For each member of your group, consider the set of all math and computing science courses you have taken so far at university.
What is the intersection of these sets for your group?

Is it possible to have two sets  and  with 

Fill in the blank with a concept from the reading.

Breaking the students in a class into groups is an example of .

a. Write a definition in Candidate-condition notation for the set of all points on the graph of the parabola 
b. Write a definition in Form-parameter notation for the set of all numbers that are one less than a power of two.     

Recall that  is the set of all  matrices. Let  be the subset of invertible  matrices, and  the set of scalar 
 matrices. Write  for the  zero matrix.

Recall.

Scalar matrix means a scalar multiple of the identity matrix.

Singular matrix means not invertible.

Express each of the following statements using the symbols of set theory:

a.  is a scalar matrix.
b.  is scalar and singular.
c.  is the only scalar, singular matrix.
d. Every scalar matrix besides  is invertible.
e. Every matrix is either invertible or singular.

Pick another group in the class and list the elements of the Cartesian product of your group with that other group. If that group
happened to also choose your group for this task, would their answer be the same as yours?

List the elements of the power set of your group. Make sure you have all the -pairs you need in all the right places.

 Activity 9.8.1

 Activity 9.8.2

A B A∪B=A∩B?

 Activity 9.8.3

– ––––

 Activity 9.8.4

f(x) = .x

2

 Activity 9.8.5

(R)M

n

n×n V n×n S

n×n 0 n×n

∈, ⊆, ∪, ∩, ∅, etc.

0

0

0

0

 Activity 9.8.6

 Activity 9.8.7

{ }
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For alphabet  describe the elements of  and 

Elements of  are .

Elements of  are .

Is the equality of sets  true?

The equality of sets

is true in general.

Write a formal proof of this equality, using the Test for Set Equality.

The equality of sets  is false in general.

Write down definitions for example sets  that form a counterexample.

Can you come up with some conditions on  that make this equality true?

Write a formal proof of the equality

using the Test for Set Equality.

Keep Warning 9.7.1 in mind as you do this!

Informally explain why the set equality  is not true in general.

 

This page titled 9.8: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Activity 9.8.8

Σ = {a, b, c}, Σ

∗

( :Σ

∗

)

∗

Σ

∗

(Σ

∗

)

∗

( =Σ

∗

)

∗

Σ

∗

 Activity 9.8.9

A×(B∖C) = (A×B) ∖ (A×C)

 Activity 9.8.10

(A×B)∪ (C×D) = (A∪C)×(B∪D)

A,B,C,D

A,B,C,D

 Activity 9.8.11

P(A∩B) =P(A)∩P(B)

 Activity 9.8.12

P(A∪B) =P(A)∪P(B)
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9.9: Exercises

Prove each of the set operation rules in Proposition 9.4.1. Use the provided proof of the first of DeMorgan's Laws as a model
for your proofs.

Expressing relationships using the symbols of set theory.

In each of Exercises 2–4, you are given a collection of sets (and possibly some elements of those sets), a collection of symbols, and
a collection of statements about those sets and their elements. Use the given symbols to express the given statements in symbolic
language.

Note that there may be more than one correct answer for each statement.

Sets:

Symbols:

Statements:

a. All Augustana students who attend class regularly and study diligently will pass all their courses.
b. Some Augustana students attend class regularly but do not study diligently.
c. Some Augustana students who study diligently will still fail a course.

Recall that a square number is an integer which is equal to the square of some integer. (See the introduction preceding Exercise
6.12.17 in Section 6.12.)

Sets:

Symbols:

Statements:

a.  is the only even, prime number.
b. There exist odd square numbers.
c. No prime number is square.
d. No square number is prime.
e. It is not true that every natural number is either even or prime.

 Exercise 9.9.1

 Exercise 9.9.2

A

R

S

P

=  the set of all Augustana students, 

=  the set of Augustana students who attend class regularly, 

=  the set of Augustana students who study diligently, 

=  the set of Augustana students who will pass all their courses. 

A, R, S, P , , , , ∩, ∪, =, ≠, ⊆, ⫋, ∅.R

c

S

c

P

c

 Exercise 9.9.3

P

E

S

=  the set of prime numbers, 

=  the set of even numbers, 

=  the set of square numbers. 

2, \N, P , E, S, , , , , ∈, ∩, ∪, =, ≠, ⊆, ⫋, ∅, { }.N

c

P

c

E

c

S

c

2
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Sets:

Elements:

Symbols:

Statements:

a. The function  is differentiable and nonnegative.
b. The function  is continuous and nonnegative, but not differentiable.
c. The function  is neither continuous nor nonnegative.
d. Every differentiable function is continuous.
e. Some continuous functions are not differentiable.
f. Not every function is continuous.

Testing set equality
For each of Exercises 5–8, either formally prove the given equivalence of sets (using the Test for Set Equality) or demonstrate that
it is false by providing a specific counterexample.

Suppose  is an alphabet. Prove that  is the disjoint union of the subsets

 Exercise 9.9.4

F

C

D

P

=  the set of all functions in a single real variable, 

=  the set of continuous functions, 

=  the set of differentiable functions, 

=  nonnegative functions 

= {f(x)|f(x) ≥ 0 for all x in the domain of f}.

(x)f

1

= x

2

(x)f

2

= |x| (x)f

3

= tanx

F , C , D, P, , , , , (x), (x), (x), ∈, ∩, ∪, =, ≠, ⊆, ⫋, ∅.F

c

C

c

D

c

P

c

f

1

f

2

f

3

(x)f

1

(x)f

2

(x)f

3

 Exercise 9.9.5

A = (A ∖B) ⊔ (A∩B)

 Exercise 9.9.6

A ∖ (A ∖B) =B

 Exercise 9.9.7

(A×B) ∪ (C ×D) = (A∪C) ×(B∪D)

 Exercise 9.9.8

A×(B∖C) = (A×B) ∖ (A×C)

 Exercise 9.9.9

Σ Σ

∗

, , , … , , … .Σ

∗

0

Σ

∗

1

Σ

∗

2

Σ

∗

n
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Write out the elements of each of the sets

Make sure you have all the pairs of braces  you should have.

Without computing it, make a conjecture about the number of elements in the set

Properties of power sets.
For each of Exercises 11–14, either formally prove the given statement about power sets or demonstrate that it is false by providing
a specific counterexample.

If  then 

If  then 

This page titled 9.9: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 9.9.10

P(∅), P(P(∅) ), P(P(P(∅) ) ), P(P(P(P(∅) ) ) ).

{ }

P(P(P(P(P(∅) ) ) ) ).

 Exercise 9.9.11

P(A∪B) =P(A)∪P(B)

 Exercise 9.9.12

P(A∩B) =P(A)∩P(B)

 Exercise 9.9.13

A⊆B, P(A) ⊆P(B).

 Exercise 9.9.14

A⊆B, P(B∖A) =P(B) ∖P(A).
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10.1: Basics

10.1.1: Terminology and basic concepts

a rule which assigns to each input element from a set  a single output element from a set 

the set of all possible input elements for a function

a set containing all possible output elements for a function

 is a function with domain  and codomain 

the process/algorithm/rule/formula that describes how each input element from the domain will be transformed into an output
element in the codomain

function  associates the codomain element  to the domain element 

alternative notation for 

when  we say that  is the image of  under  or that  maps  to 

 Definition: Function(working definition)

A B

 Definition: Domain

 Definition: Codomain

 Definition: f : A→ B

f A B

 Definition: Input-output Rule

 Definition: f(a) = b

f : A→B b ∈ B a ∈ A

 Definition: a↦ b

f(a) = b

 Definition: Image (of an domain element)

f(a) = b b a f , f a b
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Figure : A Venn diagram of a function transforming a domain element into a codomain element.

When we define a function, the domain should either be implicitly clear from the input-output rule, or explicitly stated so that
the precise collection of allowable input elements is known.

However, it would be too onerous to do the same for the precise collection of output elements — often when we create a
function we won't initially know exactly what outputs it will produce. The purpose of stating a codomain is so that it is at least
clear what type of output element is produced.

10.1.2: Defining functions
Defining a function is a two-step process, in which we need to specify three pieces of information:

i. the domain,
ii. the codomain, and

iii. the input-output rule.

The first two pieces of information are specified in one step, when we write

This notation indicates that  will be the domain and  will be the codomain for the function named  Of course, the name of the
function is an additional piece of information being specified with this notation, but naming a function is optional (though highly
recommended!).

Specifying the input-output rule may be done in many different ways, e.g. by a formula, table of values, a description of a step-by-
step process or algorithm to determine or compute an output given an arbitrary input, etc.

An input-output formula like  defines a function, but we here need to be careful about the domain. The domain and
codomain for this function could be specified as  where  represents the set of nonnegative real numbers.

10.1.1

 Warning : Domain elements are necessarily inputs, but codomain elements are not necessarily
outputs.

10.1.1

f : A→B.

A B f .

 Example : Defining a function by an input-output formula.10.1.1

f(x) = x

−−

√

f : →R,R

≥0

R

≥0
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In the function definition

 
the first line of the definition tells us the domain ( ), codomain (again ), and a name for the function ( ). The second line
tells us the input-output rule, so that

 
However, on closer inspection we discover that the domain has been incorrectly specified, as  is not a permissible input
for the input-output rule. Instead, we should write

 
Even though this function will only ever produce positive real numbers as outputs, the codomain is acceptable as stated. It
would be more precise to write

 
where  represents the set of positive real numbers, but it is not necessary to do so.

Consider the function  where outputs are computed according to the following algorithm.

Given an input element  (which, by definition, is a set of integers), carry out the following.

1. Compute the absolute value of each element in  (If  is empty, skip this step.)
2. Determine the minimum result of the absolute value computations in the previous step. (If  is empty, there will not be any

absolute value computation results to compare, so take  as the “mininum” instead.)
3. Multiply the minimum value found in the previous step by  and add  Output this final result.

However, with the right notation, an algorithm like the above can often be converted into an input-output formula — see
Example 10.4.4.

For  and  one way to define a function  is

In a first course in calculus a student typically studies only single-variable functions, i.e. functions with a single input variable
and a single output variable. In subsequent calculus courses a student may study multi-variable functions with multiple input
variables, such as

 
Technically, we should write

 Example : Correctly stating a domain and codomain.10.1.2

f :R

x

→R,

↦ ,

1

x

2

R R f

f(x) = .

1

x

2

x = 0

f : R ∖ {0} →R.

f : R ∖ {0} → ,R

>0

R

>0

 Example : Defining a function by an input-output algorithm.10.1.3

P(Z) →N

X ∈P(Z)

X. X

X

0

2 1.

 Example : Defining a function by listing input-ouput pairs.10.1.4

N = {1, 2, 3} A = {a, b, c, d}, f :N →A

f(1) = d, f(2) = a, f(3) = d.

 Example : Multi-variable functions.10.1.5

f(x, y) = + .x

2

y

2
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as the proper definition of  is  but the extra brackets convey no additional information and only clutter things up.

Functions with multiple real output variables are often called vector functions. For example,  defined by

 
can be considered as a vector parametrization of a parabola in the plane.

And of course we could consider multi-variable vector functions as well. A function  like

 
could be considered as a change of variables

A logical statement  involving statement variables  is essentially a multi-variable function

 
where  For example, the statement

 
is a function  where

10.1.3: Graph of a function

the set of all input-output pairs for the function

the graph of function  so that

To describe the graph of the function  defined in Example , we just need to collect the defined input-output
pairs into Cartesian product elements:

This graph can most simply be represented by a table:

f((x, y)) = + ,x

2

y

2

f f : →R,R

2

g : R→R

2

g(t) = (t, )t

2

φ : →R

2

R

2

φ(s, t) = (s− t, s+ t)

x = s− t, y = s+ t.

 Example : Logical statements as functions.10.1.6

S , ,… ,p

1

p

2

p

m

S : → Λ,Λ

m

Λ= {T , F}.

S( , ) = ( → )p

1

p

2

p

1

p

2

S : Λ×Λ→Λ,

S(T ,T ) = T , S(T ,F ) = F , S(F ,T ) = T , S(F ,F ) = T .

 Definition: Graph (of a function)

 Definition: Δ(f)

f : A→B,

Δ(f) = {(a, f(a))|a ∈ A} ⊆A×B

 Example : Graph of a function defined by a list.10.1.7

f :N →A 10.1.4

Δ(f) = {(1, d), (2, a), (3, d)}.

x 1 2 3

f(x) d a d
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The graph of a function  is a subset of  We usually represent  visually as the -plane and the graph
 as a curve in the plane.

Figure : The graph  represented as a curve in the Cartesian plane.

In the graph of  above, each point on the curve represents an element of  which is in the subset  For
example,  but 

The graph of a function  is technically a subset of  but usually we just think of this as  or -space.
Instead of a curve, such a graph defines a surface in  For example, the graph of the function  from
Example  is a parabolic cone, i.e. a (non-solid) cone-like surface with parabolic sides.

We've already encountered the graph of a logical statement: it is usually represented as a truth table. For example, the graph 
 of the logical statement

where  as usual, can be represented as below.

 Example : Graph of a single-variable, real-valued function.10.1.8

f : R→R R×R = .R

2

R

2

xy

Δ(f) ⊆R

2

10.1.2 Δ(x↦ )x

2

f(x) = x

2

R

2

Δ(f).

(−1, 1) ∈ Δ(f) (−1, π) ∉ Δ(f).

 Example : Graph of a multi-variable, real-valued function.10.1.9

f : →RR

2

×R,R

2

,R

3

3

.R

3

f(x, y) = +x

2

y

2

10.1.5

 Example : Graph of a logical statement.10.1.10

Δ(S)

S: Λ×Λ →Λ, S( , )p

1

p

2

= → ,p

1

p

2

Λ= {T ,F}
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Figure : The graph  of the logical statement 

Unfortunately, our working definition for function is lacking: what is a “rule”? Rather than chasing some circle of definitions, we
can come up with a better definition by noticing that the graph of a function contains all the necessary information about the
function.

a subset  such that for every  there is exactly one element  with 

In this formal definition, we are defining a function to be what we previously would have called its graph.

10.1.3 Δ(S) S( , ) = → .p

1

p

2

p

1

p

2

 Definition: Function (formal definition)

F ⊆A×B x ∈ A (a, b) ∈ F a= x
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We are now defining a function  to be the subset of the Cartesian plane  consisting of the graph of the function.
In this case, you can think of the “exactly one” requirement as equivalent to the vertical line test: an input value may not
produce more than one output value. (Though the “one” part of “exactly one” captures our requirement that a function be
defined on every domain element.)

10.1.4: Undefined and well-defined

We have to be careful defining functions; sometimes what we think is a function turns out to not be a function.

Again write  and  and consider

 
Does this subset define a function with domain  and codomain  That is, does there exist a function  such
that  The answer is no, because there is no input-output pair in  with domain element  If we attempt to consider
a function  with graph  we have no way to tell what result  should return. In other words, such an  will have
been left undefined on element  which is supposed to be part of the domain.

The set  does define a function, just not one with domain  If we consider the smaller set  then there is a
function  with 

Again write  and  and consider

 
Does this subset define a function with domain  and codomain  That is, does there exist a function  such
that  The answer is no, because there are more than one input-output pairs with domain element  In other words,
a function  with graph  is not well-defined, because we have no way to tell whether  should be  or 

Recall that

 
Suppose we attempt to define  by  This seems like a valid way to define a function, until we

realize that, for example,

 

This is nonsense, because  and  represent the same element of  Thus, rule  is not well-defined as a function, since to

each element of the domain  it associates more than one element of the codomain 

 Example : Formal definition for a single-variable, real-valued function.10.1.11

f : R→R R

2

 Example : A function must be defined on the whole domain.10.1.12

N = {1, 2, 3} A = {a, b, c, d},

F = {(1, a), (3, d)} ⊆N ×A .

N A ? f :N →A

F =Δ(f)? F 2.

f Δ(f) = F , f(2) f

2,

F N . = {1, 3},N

′

f : →AN

′

F =Δ(f).

 Example : A function must be well-defined.10.1.13

N = {1, 2, 3} A = {a, b, c, d},

F = {(1, a), (3, a), (3, d)} ⊆N ×A .

N A ? f :N →A

F =Δ(f)? 3.

f Δ(f) = F f(3) a d.

 Example : An input-output rule does not necessarily define a function.10.1.14

Q= { |m,n ∈ Z, n≠ 0}.

m

n

f : Q→ Z f( ) =m+n.

m

n

f ( )

1

2

= 1+2 = 3, f ( )

2

4

= 2+4 = 6.

1

2

2

4

Q. f

Q Z.
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10.1.5: Equality of functions

for  and  write  if  for all 

The functions   and   are equal.

10.1.6: Image of a function

the set of all possible outputs of the function

the image of function  so that

Figure : A Venn diagram of the image of a function.

We have stated before that a codomain in a function definition may be “larger” than necessary because we do not always know
precisely what output elements a given input-output rule will produce. Our idea of codomain is that it should at least tell us
what “type” of outputs will be produced, but not necessarily exactly what outputs will be produced.

With our new concept of function image, we can now repeat this more technically: a function image is always a subset of
the codomain, but it might be a proper subset.

 Definition: Equality of Functions

f : A→B g : A→B, f = g f(a) = g(a) a ∈ A

 Example : Seemingly different input-output rules can define the same function.10.1.15

f : R→R, f(x) = |x|, g : R→R, g(x) = ,x

2

−−

√

 Definition: Image of a Function

 Definition: f(A)

f : A→B,

f(A) = {f(a)|a ∈ A} ⊆B

10.1.4

 Warning : Codomain elements are not necessarily image elements.10.1.1
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How do we know if a codomain element is an image element?
For function  and codomain element  we have  if and only if there exists  such that 

Consider   Prove  where  is the set of nonnegative real numbers.

Solution

Following the Test for Set Equality, we need to show both

 
To be more explicit about the second set  we can write

Show .
Let  represent an arbitrary element of  As an element of the image of   is an output corresponding to some input.
That is, there exists some  such that

Therefore, since square numbers are always positive, we have  and hence 

Show .
Let  represent an arbitrary element of  To show  we need to find  such that  Let 
which is defined since  implies  Then

as desired.

the set of all outputs of a function when only fed inputs from a given subset

the image of the subset  under a function  so that

We saw in Worked Example  that for   we have  Now, the set of integers  is a
subset of the domain  so we can compute

This page titled 10.1: Basics is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

f : A→B b ∈ B, b ∈ f(A) a ∈ A b = f(a).

 Example : Verifying a function image description.10.1.16

f : R→R, f(x) = .x

2

f(R) = ,R

≥0

R

≥0

f(R) ⊆ ,R

≥0

f(R) ⊇ .R

≥0

,R

≥0

= {x ∈ R|x ≥ 0}.R

≥0

f(R) ⊆R

≥0

y f(R). f , y

x ∈ R

y = f(x) = .x

2

y ≥ 0, y ∈ .R

≥0

f(R) ⊇R

≥0

y .R

≥0

y ∈ f(R), x ∈ R f(x) = y. x = ,y

√

y ∈ R

≥0

y ≥ 0.

f(x) = = ( = y,x

2

y

√

)

2

 Definition: Image of a Function on a Subset

 Definition: f( )A

′

⊆AA

′

f : A→B,

f( ) = {f(a)|a ∈ } ⊆BA

′

A

′

 Example 10.1.17

10.1.16 f : R→R, f(x) = ,x

2

f(R) = .R

≥0

Z

R,

f(Z) = {0, 1, 4, 9, 16,… , ,…} ⊆ .n

2

R

≥0
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10.2: Properties of Functions

a function whose image is all of its codomain — that is, every element of the codomain is an output for the function;

a surjective function

synonym for surjective

function  is surjective

A function  is surjective if  Since we have  by definition of image, to show that a function is
surjective we only need to show 

Function  is surjective if  That is,  is surjective if for every element  there exists at least
one element  such that 
Function  is not surjective if there exists at least one element  for which there is no element 
satisfying  (Equivalently, there exists  for which every  satisifes )

      

Show that, of the following functions,  is surjective and  is not.

Solution

Show that  is surjective.

Consider an arbitrary element  of the codomain  Since   is also an element of the domain. In particular, 
since  Therefore, as an element of the codomain, we have 

Show that  is not surjective.
We need to find a specific example of a rational number that is not an output for  For this, we could use  since there is no
integer such that 

a function for which two different inputs never produce the same output

 Definition: Surjective Function

 Definition: Surjective Function

 Definition: Onto

 Definition: f : A↠ B

f

f : A→B f(A) =B. f(A) ⊆B

f(A) ⊇B.

 Test : Surjective function.10.2.1

f : A→B B⊆ f(A). f b ∈ B,

a ∈ A f(a) = b.

f : A→B b ∈ B a ∈ A

f(a) = b. b ∈ B a ∈ A f(a) ≠ b.

 Example 10.2.1

f g

f :Z

m

→N

↦ |m|

g:Z

m

→Q

↦m/2

f

n N. N ⊆Z, n f(n) = n,

n≥ 0. n ∈ f(Z).

g

g. 1/3,

m/2 = 1/3.

 Definition: Injective Function
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an injective function

synonym for injection

synonym for injective

function  is injective

Function  is injective if the following conditional always holds for elements 

if  then 

Alternatively, one can establish that the contrapositive of the above conditional always holds for elements 

if  then 

Function  is not injective if there exists at least one pair of elements  with  but 

The function   is not injective, since  has repeated outputs. For example,  And in fact, 
 for every 

Verify that the function   is injective.

Solution

Using the contrapositive version of the Injective Function Test, suppose domain elements  satisfy 
Then using the formula defining the input-output rule for  we have

 
which reduces to 

An injection  gives us a way of thinking of  as a subset of  by considering 

Let  and define  by the following table.

Then  embeds  into  in a familiar way, and lets us think of letters as numbers.

 Definition: Injection

 Definition: Embedding

 Definition: One-to-one

 Definition: f : A↪B

f

 Test : Injective Function10.2.2

f : A→B , ∈ A:a

1

a

2

≠a

1

a

2

f( ) ≠ f( ).a

1

a

2

, ∈ A:a

1

a

2

f( ) = f( )a

1

a

2

= .a

1

a

2

f : A→B , ∈ Aa

1

a

2

≠a

1

a

2

f( ) = f( ).a

1

a

2

 Example : Demonstrating that a function is not injective.10.2.2

f : R→R, f(x) = ,x

2

f f(−1) = f(1).

f(−x) = f(x) x ∈ R.

 Example : Demonstrating that a function is injective.10.2.3

f : N→N, f(n) = 2n+1,

, ∈ Nn

1

n

2

f( ) = f( ).n

1

n

2

f ,

2 +1 = 2 +1,n

1

n

2

= .n

1

n

2

f : A↪B A B, f(A) ⊆B.

 Example : Turning letters into numbers.10.2.4

Σ = {a, b,… , z}, φ : Σ →N

σ a b c ⋯ z

φ(σ) 1 2 3 ⋯ 26

f Σ N
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a function that is both injective and surjective

an bijective function

synonym for bijection

Function   is bijective.

A bijection  allows us to think of  and  as essentially the same sets.

Consider again  from Example . If we write  then really we could think of the
function as being defined  This version of  is bijective, and allows us to identify each letter with a corresponding
number:

 
In this way, we can think of  and  as essentially the same set.

Which of the following functions are bijections?

Solution.

Is  bijective?.
No,  is not bijective because it is not surjective. For example, there is no  such that 

Is  bijective?.

No,  is not bijective because it is not injective. For example, 

Is  bijective?.
Yes,  is bijective. It is injective because if  then  And it is surjective because for  we can
realize  as an output  by setting 

For  write

 
Prove that there exists a bijection  if and only if 

 Definition: Bijective Function

 Definition: Bijection

 Definition: One-to-one Correspondence

 Example 10.2.5

f : R→R, f(x) = x

3

f : A→B A B

 Example : Identifying letters with numbers.10.2.6

f : Σ →N 10.2.4 B= f(Σ) = {1, 2, 3,… , 26},

f : Σ →B. f

a↔1, b ↔2, c ↔3, … , z↔26.

Σ B

 Example : Recognizing bijections.10.2.7

f :Z

m

→ Z,

↦ 2m,

g:Z

m

→N,

↦ |m|,

h:Z

m

→ Z,

↦−m.

f

f m ∈ Z f(m) = 1.

g

g g(−1) = g(1).

h

h ≠m

1

m

2

− ≠− .m

1

m

2

n ∈ Z,

n n= h(m) m =−n.

Checkpoint : Bijections of counting sets.10.2.1

m ∈ N

= {n ∈ N→ n<m = {0, 1, … , m−1}.N

<m

→N

<l

N

<m

ℓ =m.
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10.3: Important Examples

the function  defined by 

the identity function on on set 

An identity function is always a bijection.

the function  defined by 

Check your understanding.

Do you understand the difference between the definitions of identity function and inclusion function?

the inclusion function on subset 

An inclusion function is always an injection.

the functions  and  defined by  and 

the projection function onto the first factor  in the Cartesian product 

the projection function onto the second factor  in the Cartesian product 

Consider  Then

Extend.
We may of course similarly define a projection function on a Cartesian product with any number of factors. Write

 Definition: identity function (on a set )A

A→A a↦ a

 Definition: i : A→ Ad

A

A

 Note 10.3.1

 Definition: inclusion function (on subset )A⊆ X

A→X a↦ a

 Definition: : A→ Xι

X

A

A⊆X

 Note 10.3.2

 Definition: Projection Functions (on a Cartesian product )A× B

A×B→A A×B→B (a, b) ↦ a (a, b) ↦ b

 Definition: : A× B→ Aρ

A

A A×B

 Definition: : A× B→ Bρ

B

B A×B

 Example 10.3.1

( , π) ∈ Q×R.

1

2

( , π)p

Q

1

2

= ,

1

2

( , π)p

R

1

2

= π.

: × ×⋯× →ρ

i

A

1

A

2

A

n

A

i
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to mean the projection function onto the  factor  in the Cartesian product

Alternatively, we may write

for this function.

A projection is always surjective (except possibly when one or more of the factors in the Cartesian product is the empty set).

the “induced” function  created from function  and subset  by “forgetting” about all elements of 
that do not lie in 

restriction of function  to subset 

alternative domain restriction notation

alternative domain restriction notation

Figure : A Venn diagram of restricting the domain of a function.

For   we have 

i

th

A

i

× ×⋯× .A

1

A

2

A

n

: × ×⋯× →proj

i

A

1

A

2

A

n

A

i

 Note 10.3.3

 Definition: Restricting the domain

A→ Y f :X→ Y A⊆X X

A

 Definition: f |
A

f :X→ Y A⊆X

 Definition: f |A

 Definition: fres

X

A

10.3.1

 Example : Domain restriction.10.3.2

f : Z→N, f(m) = |m|, f = .|

N

id

N
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Consider function  and subset 

1. If  is injective, is  injective?
2. If  is injective, must  be injective?
3. Answer the previous two questions replacing “injective” with “surjective”.

The concept of restricting the domain makes our previously defined concept image of a function on a subset unnecessary: for
function  and subset  the image of  on  is the same as the image of the restriction 

the “induced” function  created from function  and subset  by “forgetting” about all elements of 
that do not lie in  where  must contain the image of 

Figure : A Venn diagram of restricting the codomain of a function.

 

Consider   It would be more precise to write  since  for all 

If we restrict the codomain all the way down to the image set  the resulting map  is always surjective. In

particular, if  is injective, then by restricting the codomain we can obtain a bijection 

relative to function  and superset  a function  so that  for all 

 Checkpoint :Properties of restrictions.10.3.1

f :X→ Y A⊆X.

f f |

A

f |

A

f

 Remark 10.3.1

f :X→ Y A⊆X, f A f .|

A

 Definition: Restricting the codomain

X→B f :X→ Y B⊆ Y Y

B, B f

10.3.2

 Example : Codomain restriction10.3.3

f : R→R, f(x) = .x

2

f : R→R

≥0

text,

≥ 0x

2

x ∈ R.

 Note 10.3.4

f(X), f :X→ f(X)

f :X−→

Y

f :X→ f(X).

 Definition: Extension of a function

f : A→B X ⊇A, g :X→B g(a) = f(a) a ∈ A
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Figure : A Venn diagram of a function extension.

The condition defining the concept extension function can be more succinctly stated as requiring function  with 
 satisfy 

Write  to mean the floor function: for real input  the output  is defined to be the greatest integer that is less
than or equal to  Usually we write

 
As every integer is less than or equal to itself, we have  for every  This says that the floor function is an
extension of the identity function 

One of the most common ways to extend a function to a larger domain is to pick an appropriate constant value in the codomain to
assign to all “new” inputs in the enlarged domain.

relative to function  and superset  where  is a set of “numbers” containing a zero element, the extension
function  defined by

Define  by

 
Then  is the extension by zero of the identity function 

Compare.

Example  also involved an extension of the identity function  — was it an extension by zero?

10.3.3

 Note 10.3.5

g :X→B

A⊆X g = f .|

A

 Example : Floor function.10.3.4

flr : R→ Z x, flr(x)

x.

flr(x) = ⌊x⌋.

flr(z) = z z ∈ Z.

.id

Z

 Definition: Extenstion by zero

f : A→Z X ⊇A, Z

g :X→Z

g(x) ={

f(x),

0,

x ∈X,

otherwise.

 Example : Extending the identity function by zero.10.3.5

: R→ Zid

˜

Z

(x) ={id

˜

Z

x,

0,

x ∈ Z,

otherwise.

id

˜

Z

.id

Z

10.3.4 id

Z
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10.4: Composition of functions

a function  created from given functions  and  by 

the composition of functions  and  so that  by 

Figure : A Venn diagram of a function composition.

Consider the functions

 
Then we have

The notation for the composition of functions  and  involves a reversal of order, so that we write  This is so that when
we use this notation with input-output notation  the notation reminds us that  must first be applied to the input 
and then  is applied to the result 

In general,  Usually, one of the two is not even defined, because domains and codomains of  and  will not
necessarily match up in both orders. And when both are defined, the two different orders of composition usually have different
domains and codomains.

 Definition: Composite Function

A→C f : A→B g : B→C a↦ g(f(a))

 Definition: g ∘ f

f : A→B g : B→C, g∘ f : A→C (g∘ f)(a) = g(f(a))

10.4.1

 Example : A composition of two functions.10.4.1

f :R

x

→ ,R

≥0

↦ ,x

2

g:R

≥0

x

→ ,R

≥0

↦ ,x

−−

√

g∘ f :R

x

→ ,R

≥0

↦ = |x|.x

2

−−

√

 Warning: Composition order matters.

f g g∘ f .

(g∘ f)(a), f a,

g f(a).

f ∘ g≠ g∘ f . f g
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Consider functions

 
Then, both  and  are defined. But they are not equal, as

Consider functions

 
(See Example 10.3.4 for a description of the  function.)

Then,  is defined, with

 
But  is not defined, as the codomain of  does not match the domain of  In particular,  will sometimes return
a negative output, and we cannot use such an output as an input in 

Consider functions  and 

If  is injective, are either or both of  necessarily injective?

Answer the same question as above with “injective” replaced by “surjective”.

Demonstrate that if both  and  are bijective, then the composition  is also bijective.

Of course, we can compose any number of functions.

Let us reconsider the function defined by algorithm in Example 10.1.3. As the function description involved a multi-step
algorithm, we should be able to break the steps involved into their own functions, then recreate the original functions as a
composition.

First, define  by

 
Next, define  so that  outputs the minimum number in input set  and outputs  in case 

Finally, define  by 

Each of these functions represents one step in the algorithm defining the function in Example 10.1.3, but to recreate that
function we need to compose the functions in the correct order: write  so that

 Example : Comparing composition order.10.4.2

f :N

n

→N,

↦ ,n

2

g:N

n

→N,

↦ n+1.

f ∘ g : N→N g∘ f : N→N

(f ∘ g)(n) = (n+1 = +2n+1,)

2

n

2

(g∘ f)(n) = +1.n

2

 Example : An undefined composition.10.4.3

sqrt:N

n

→R,

↦ ,n

−−

√

flr:R

x

→ Z,

↦ ⌊x⌋.

flr

flr ∘ sqrt : N→ Z

(flr ∘ sqrt)(n) = ⌊ ⌋.n

−−

√

sqrt∘ flr flr sqrt. flr

sqrt.

 Checkpoint: Properties of compositions.

f : A→B g : B→C.

g∘ f f , g

f g g∘ f

 Example : A composition of three functions.10.4.4

abs :P(Z) →P(N)

abs(X) = {|x| |x ∈X}.

min :P(N) →N min(X) X, 0 X = ∅.

f : N→N f(n) = 2n+1.

φ = f ∘min∘ abs,

φ(X) = 2min(abs(X))+1
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computes the same result for an input set  as the algorithm described in Example 10.1.3.

This page titled 10.4: Composition of functions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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10.5: Inverses
Suppose  is a function. By definition,  associates an element of  to each element of  Sometimes we want to
reverse this process: given an element  can we determine an element  such that  We'll begin to answer this
question by first finding all possible “reverse results” from elements in subsets of 

the set of all domain elements  for function  for which the corresponding output element  lies in the
subset  of the codomain

the inverse image of the subset  under the function  so that

Figure : A Venn diagram of a function inverse image.

As in the figure above,  collects together all those elements of  whose images under  land inside 

Consider  

Then

 
because

 
will equal  when  is even and will equal  or  when  is odd, and no other input values will produce outputs of   or 

However,

f : A→B f B A.

b ∈ B, a ∈ A f(a) = b?

B.

 Definition: inverse image (of a subset  of the codomain )C B

a ∈ A f : A→B f(a)

C

 Definition: (C)f

−1

C ⊆B f : A→B,

(C) = {a ∈ A|f(a) ∈ C}f

−1

10.5.1

 Idea 10.5.1

(C)f

−1

A f C.

 Example : Some inverse images under sine.10.5.1

f : R→R, f(x) = sinx.

({−1, 0, 1}) ={ |m ∈ Z}f

−1

mπ

2

sin( )

mπ

2

0 m 1 −1 m 0, 1,

−1.

({y ∈ R→ y > 1}) = ∅f

−1
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because there are no input values for sine that will produce an output value greater than 

Now let's return to the question of trying to reverse an input-output relationship  the set  collects together
all possible candidates for the inverse image of 

the inverse image  which consists of all domain elements  for which 

simplified notation to mean the inverse image of element 

This gives us a way to associate to an element  a set  of elements of 

When does this association  give us a function 

There are two possible ways that this will fail to give us a function.

1. Suppose there is an element  such that the set  contains (at least) two distinct elements  Then in general
there is no way to choose between  and  Therefore, if  is not injective, the function  is
not well-defined.

2. Suppose there is an element  such that  Then there is no element of  which we can assign to 
Therefore, if  is not surjective, the function  is undefined on some elements of 

So it seems we will need a function to be bijective in order to be able to reverse the input-output rule to obtain an inverse function.

for a bijective function  the inverse function associates to each codomain element of  the corresponding unique domain
element that produces it through 

the inverse function  for bijective function  so that for  we have  defined to be the
unique element  such that 

The function   is bijective and has inverse 

Returning again to the bijection  encountered in Example 10.2.4 and Example 10.2.6, where

 
the inverse function  associates to each number  the corresponding letter at that position of the
alphabet. For example, 

1.

f(a) = b: \bbrac{b}f

−1

b.

 Definition: inverse image (of an element  of the codomain )b B

({b}),f

−1

a ∈ A f(a) = b

 Definition: (b)f

−1

b

b ∈ B (b)f

−1

A.

 Question 10.5.1

b↦ (b)f

−1

: B→A?f

−1

b ∈ B (b)f

−1

, .a

1

a

2

(b) =f

−1

a

1

(b) = .f

−1

a

2

f : B→Af

−1

b ∈ B (b) = ∅.f

−1

A (b).f

−1

f : B→Af

−1

B.

 Definition: inverse function

f , f

f

 Definition: f−1

: B→Af

−1

f : A→B, b ∈ B (b)f

−1

a ∈ A f(a) = b

 Example : An invertible single-variable, real-valued function10.5.2

f : R→R, f(x) = ,x

3

(x) = .f

−1

x

1

3

 Example : Inverting a numerical encoding of the alphabet10.5.3

φ : Σ →B

Σ = {a, b,… , z}, B = {1, 2,… , 26},

: B→Σφ

−1

1 ≤ b ≤ 26

(11) = k.φ

−1
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The function   does not have an inverse since it is not bijective. However, the function  
 so that  but with codomain also restricted down to the image of  has inverse 

If  is bijective, then so is  and  is the unique function  such that both

Prove that if  is bijective then so is  and 

This page titled 10.5: Inverses is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : A non-invertible function10.5.4

g : R→R, g(x) = ,x

2

h : : ,R

≥0

R

≥0

h(x) = ,x

2

h = g|

R

≥0

g, (x) = .h

−1

x

−−

√

 Note

f ,f

−1

f

−1

B→A

∘ ff

−1

= ,id

A

f ∘ f

−1

= .id

B

 Checkpoint

f ,f

−1

( = f .f

−1

)

−1
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10.6: Activities

Suppose  is a fixed but unknown positive integer, and let  represent the function defined by 

Write a set definition in Candidate-condition notation for the image set  Then do the same for the graph 

a. Devise an example of a function  that is bijective.
b. Devise an example of a function  that is injective but not surjective.
c. Devise an example of a function  that is surjective but not injective.

Note that when you define a function, you don't necessarily have to give an input-output formula — you can also use a table of
input-output values or just a description in words (i.e. an algorithm) of how an output is to be produced from an input.

For each function  defined below, carry out the following.

i. Decide whether the function is injective. Use the Injective Function Test to verify your answer.
ii. Determine some pattern that all elements of the image  have in common. That is, if you were handed an arbitrary

element of the codomain  describe what property or properties you would use to determine whether it was in the subset 

iii. Decide whether the function is surjective. Use the Surjective Function Test to verify your answer.

a.   is the bitwise complement function: for input word  the output word  is the word of the
same length as  but with a  at every position that  has a  and a  at every position that  has a 

b.  
c.    the smallest number in 

Consider  and recall that for   is the subset of  consisting of all words from the alphabet  with length
 Suppose  is a set with  distinct elements. Construct a bijection 

When attempting this activity, remember that when you define a function you don't necessarily have to give an input-output
formula — you can also use a description in words (i.e. an algorithm) of how an output is to be produced from an input.

Suppose  is a set that definitely does not contain any cats, and let

represent the function defined by

a. Verify that  is injective.
b. Verify that  is not surjective.
c. Describe specifically how to make  bijective by restricting the codomain.
d. As all bijective functions are invertible, the bijective version of  from Task c has an inverse  Describe this inverse

by specifying its
i. domain,

 Activity 10.6.1

n D : R →R

n

D(x) = (x, x, … , x).

D(R). Δ(D).

 Activity 10.6.2

N →N

N →N

N →N

 Activity 10.6.3

f : A→B

f(B)

B,

f(A) ⊆B.

Σ = {0, 1}, c : →Σ

∗

Σ

∗

w, c(w)

w 0 w 1, 1 w 0.

f : R →R×R, f(x) = (x+1, x−1).

A=PN ∖ {∅}, m : A→N, m(X) = X.

 Activity 10.6.4

Σ = {0, 1}, n ∈ N, Σ

∗

n

Σ

∗

Σ

n. A= { , , … , }a

1

a

2

a

n

n P(A) → .Σ

∗

n

 Activity 10.6.5

A

f :P(A) →P(A∪ {Grumpy Cat})

f(X) =X∪ {Grumpy Cat}.

f

f

f

f \invf .
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ii. codomain, and
iii. input-output rule.

Let  represent the length function, using alphabet is 

a. Compute  for 
b. How many elements are there in  for 

Suppose  is a function, and  are subsets of 

a. Draw a Venn diagram illustrating that

 
Include all of the sets

in your diagram.

b. Formally prove that  using the Test for Set Equality.

(Note: The parts of this question are independent of one another.)

Suppose  and  are functions.

a. Argue that if  and  are both surjective, then so is 
b. If  is surjective, must  be? Must  be?
c. Argue that if  and  are both injective, then so is 
d. If  is injective, must  be? Must  be?

This page titled 10.6: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Activity 10.6.6

ℓ : →NΣ

∗

Σ = {α,ω}.

ℓ( (B))ℓ

−1

B= {1, 10, 100}.

(ℓ(A))ℓ

−1

A= {αα,αω,ωωαω}?

 Activity 10.6.7

f : A→B ,B

1

B

2

B.

( ∩ ) = ( )∩ ( ).f

−1

B

1

B

2

f

−1

B

1

f

−1

B

2

A, B, , , ∩ , ( ), ( ),B

1

B

2

B

1

B

2

f

−1

B

1

f

−1

B

2

( )∩ ( ),  and  ( ∩ )f

−1

B

1

f

−1

B

2

f

−1

B

1

B

2

( ∩ ) = ( )∩ ( ),f

−1

B

1

B

2

f

−1

B

1

f

−1

B

2

 Activity 10.6.8

f : A→B g : B→C

f g g∘ f .

g∘ f g f

f g g∘ f .

g∘ f g f
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10.7: Exercises

Use predicate logic to write formal definitions of surjective function, injective function, and bijective function. Be sure to
state the domains of your free variables.

Let  represent the set of all university students and let  be the set of all university courses. Does the rule  given
by

 
define a function? Justify your answer.

Testing bijectivity and determining inverses.
In each of Exercises 3–7, determine whether or not the described function is a bijection. For those functions that are bijective,
describe the inverse function; that is, specify the inverse function's

i. domain,
ii. codomain, and

iii. input-output rule.

  is the logical negation function 

 represents the set of all possible logical statements,  is the logical negation function  for  a
logical statement.

(Note: You may treat equivalent statements as being the same statement.)

 is the numerical negation function 

  represents the set of all binary words,  is the bitwise complement function defined by: if  is a
binary word, let  be a binary word of the same length but with a  at every position that  has a  and a  at every
position that  has a  For example,  and 

 represents a universal set,  is the complement function  for 

Let  represent the set of even integers, and consider the function  

a. Prove that  is a bijection.
b. Describe the inverse function  That is, describe the rule to determine  given even number 

 Exercise 10.7.1

 Exercise 10.7.2

A C f : A →C

f(a) = c if student is registered in course 

 Exercise 10.7.3

Λ = {T , F}, n : Λ → Λ n(p) = ¬p.

 Exercise 10.7.4

L n :L →L N(A) = ¬A A

 Exercise 10.7.5

N : Z → Z N (n) = −n.

 Exercise 10.7.6

Σ = {0, 1}, Σ

∗

c : →Σ

∗

Σ

∗

w

c(w) 0 w 1, 1

w 0. c(010) = 101 c(0000) = 1111.

 Exercise 10.7.7

U c :P(U) →P(U) C(A) = ,A

c

A ⊆U.

 Exercise 10.7.8

E ⊆Z f : ZE, f(n) = 2n.

f

: E → Z.f

−1

(n),f

−1

n.
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As usual,  represents the Cartesian product of  copies of  where  is a positive integer. Consider
the function  defined by 

Terminology.

The function  in this exercise is called a diagonal embedding. We can define a similar diagonal embedding 
for every nonempty set 

a. Prove that  embeds  into 
b. Fill in the right-hand side of the set definition in Candidate-condition notation for the image of  below.

c. Provide a set definition for the graph  in Form-parameter notation. Of what set is  a subset?
d. Can you come up with other “natural” embeddings 

Let  and let  represent the set of all subsets of  which contain an odd number of
elements. Define  by setting  to be the “middle” element of  when the elements of  are listed in order by
size. For example, 

Is  injective? Surjective? Bijective?

Let  Recall that for   is the subset of  consisting of all binary words of length 

Suppose  is a set with  (distinct) elements. Construct a bijection 

Call a function with domain  an empty function.

a. Verify that every empty function is injective.

Hint

Use your formal expression of injective from Exercise 10.7.1, along with what you learned in Section 4.3.

b. Verify that an empty function with empty codomain is bijective.

Hint

You have already verified injectivity of an empty function more generally in Task a. For surjectivity in this more specific
setting, use your formal expression of surjective from Exercise 10.7.1, along with what you learned in Section 4.3.

Let  and  be functions.

Let  be a function. Suppose there exists a function  such that  and 

 Exercise 10.7.9

=R×R×⋯×RR

m

m R, m

D : R→R

m

D(x) = (x, x,… , x).

D D : A↪ A

m

A.

D R .R

m

D

D(R) = {( , ,… , ) ∈ | }x

1

x

2

x

m

R

m

– ––––––––

Δ(D) Δ(D)

R↪ ?R

m

 Exercise 10.7.10

A= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} P ⊆P(A) A

ν : P →A ν(X) X X

ν({0, 8, 9}) = 8.

ν

 Exercise 10.7.11

Σ = {0, 1}. n ∈ \N, Σ

∗

n

Σ

∗

n.

A= { , ,… , }a

1

a

2

a

n

n P(A) → .Σ

∗

n

 Exercise 10.7.12

∅

 Exercise 10.7.13

f : A→B g : B→C

 Exercise 10.7.14

f : AB g : B→A g∘ f = id

A

f ∘ g= .id

B
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Function image sets and inverse image sets
In each of Exercises 15–18, consider abstract function  and subsets  

a. Draw a Venn diagram illustrating that 

Include all of the sets

 
in your diagram.

b. Formally prove that  using the Subset Test.
c. Devise an explicit example where 

a. Draw a diagram illustrating that 

Include all of the sets

 
in your diagram.

b. Formally prove that  using the Subset Test.
c. Devise an explicit example where 

a. Draw a diagram illustrating that 

Include all of the sets

 
in your diagram.

b. Formally prove that  using the Subset Test.
c. Devise an explicit example where 

a. Draw a diagram illustrating that

 
Include all of the sets

 
in your diagram.

b. Formally prove that  using the Test for Set Equality.

f : AB , ⊆A,A

1

A

2

, ⊆B.B

1

B

2

 Exercise 10.7.15

⊆ (f( )).A

1

f

−1

A

1

A, B, , f( ),  and  (f( ))A

1

A

1

f

−1

A

1

⊆ (f( )),A

1

f

−1

A

1

⫋ (f( )).A

1

f

−1

A

1

 Exercise 10.7.16

f( ( )) ⊆ .f

−1

B

1

B

1

A, B, , ( ),  and  f( ( ))B

1

f

−1

B

1

f

−1

B

1

f( ( )) ⊆ ,f

−1

B

1

B

1

f( ( ))⫋ .f

−1

B

1

B

1

 Exercise 10.7.17

f( ∩ ) ⊆ f( )∩ f( ).A

1

A

2

A

1

A

2

A, B, , , ∩ , f( ), f( ),A

1

A

2

A

1

A

2

A

1

A

2

f( )∩ f( ),  and  f( ∩ )A

1

A

2

A

1

A

2

f( ∩ ) ⊆ f( )∩ f( ),A

1

A

2

A

1

A

2

f( ∩ )⫋ f( )∩ f( ).A

1

A

2

A

1

A

2

 Exercise 10.7.18

( ∩ ) = ( )∩ ( ).f

−1

B

1

B

2

f

−1

B

1

f

−1

B

2

A, B, , , ∩ , ( ), ( ),B

1

B

2

B

1

B

2

f

−1

B

1

f

−1

B

2

( )∩ ( ),  and  ( ∩ )f

−1

B

1

f

−1

B

2

f

−1

B

1

B

2

( ∩ ) = ( )∩ ( ),f

−1

B

1

B

2

f

−1

B

1

f

−1

B

2
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Suppose  is an injection. Use  to devise an injection  Be sure to verify that your proposed
function  is injective. If  is bijective, will  also be bijective?

This page titled 10.7: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 10.7.19

f : A→B f F :P(A)↪P(B).

F f F

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/91923?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/10%3A_Functions/10.07%3A_Exercises
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


1

CHAPTER OVERVIEW

11: Recurrence and induction
11.1: Sequences
11.2: Recurrence Relations
11.3: Solving through Iteration
11.4: Inductive definitions
11.5: Activities
11.6: Exercises

This page titled 11: Recurrence and induction is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.01%3A_Sequences
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.02%3A_Recurrence_Relations
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.03%3A_Solving_through_Iteration
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.04%3A_Inductive_definitions
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.05%3A_Activities
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction/11.06%3A_Exercises
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/11%3A_Recurrence_and_induction
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 11.1.1 https://math.libretexts.org/@go/page/83457

11.1: Sequences

the set

The set  has exactly  elements in it. In Chapter 12 we will use these counting sets to, well, count the elements in other sets.
For now, we will use them to index the objects in an ordered list.

a function 

a function 

one of the image elements of the function defining the sequence

the  term in a sequence, so that if  or  is a sequence then 

the collection of all terms in a sequence

the collection of the terms in a sequence up to (and including) the  term (if the sequence is finite, this could represent all
terms in the sequence for the appropriate  value)

the collection of all terms in a sequence, where we are explicit that it is an infinite sequence

Of course, we do not restrict ourselves to the letter  to represent the terms of a sequence. We might write  or  etc..
While we use set-like notation  to represent the collection of all terms in a sequence, this collection is not a set, since
order and repetition matter.

The sequence  has terms 

 Definition: counting set

= {n ∈ N|n<m} = {0, 1, … , m−1}N

<m

N

<m

m

 Definition: Finite sequence(from a set )A

→AN

<m

 Definition: infinite sequence (from a set )A

N→A

 Definition: term in a sequence

 Definition: a
k

k

th

f : →AN

<m

f : N→A = f(k)a

k

 Definition: { }a

k

 Definition: {a
k

}

m

0

m

th

m

 Definition: {a
k

}

∞

0

 Remark

a ,b

k

,s

k

{}

 Example : Sequence of squares.11.1.1

{ }k

2

0, 1, 4, 9, 16, 25, … , , … .k

2
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The sequence

 
has terms 

This page titled 11.1: Sequences is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Sequence of definite integral values.11.1.2

{(−1 })

k

∫

k+1

1

dx

x

0, −ln2, ln3, −ln4, … , (−1 ln(k+1), … .)

k
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11.2: Recurrence Relations

a sequence  from a set  where  are defined explicitly, and for  the term  is defined in terms
of some (or all) of the previous terms in the sequence 

for a recursively-defined sequence, the formula that defines the general term  recursively in the previous terms 

A ball is dropped from a height of 100 cm. On each bounce, it returns to  of its previous height.

Let  be the height in centimetres after the  bounce. Then  and the recurrence relation is

 
The terms of the sequence are

Set  and let  for  Then the terms of the sequence are

The sequence

 
can be defined recursively by   and

Define a sequence  from  recursively as follows. Let  and take the recurrence relation to be

 
Then the terms of the sequence are

This page titled 11.2: Recurrence Relations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Definition: Recursively-defined sequence

{ }a

k

A, , ,… ,a

0

a

1

a

K−1

k≥K, a

k

, , … ,a

0

a

1

a

k−1

 Definition: recurrence relation

a

k

, , … ,a

0

a

1

a

k−1

 Example : A bouncing ball.11.2.1

75%

h

k

k

th

= 100h

0

h

k

= ,

3h

k−1

4

k ≥ 1.

100, 75, 56.25, 42.1875, … .

 Example : Factorial.11.2.2

= 1,a

0

= ka

k

a

k−1

k≥ 1.

1, 1, 2, 6, 24, 120, … .

 Example : Fibonacci sequence.11.2.3

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,…

= 0,a

0

= 1,a

1

a

k

= + ,a

k−1

a

k−2

k ≥ 2.

 Example : A sequence of sets.11.2.4

{ }A

k

P(N) = ∅,A

0

A

k

= ∪{k},A

k−1

k ≥ 1.

∅, {1}, {1, 2}, {1, 2, 3}, … , {1, 2,… , k}, … .
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11.3: Solving through Iteration
Given a recursively defined sequence  we can “unravel” the recursive definition to determine an explicit formula for the
general term  which involves only the index 

Solve the recurrence relation from Example 11.2.1.

Solution

The sequence in the example was defined recursively by  and

 
We can apply this formula to every term in the sequence, except for the first, using the pattern “each term is three-quarters of
the previous term.” That is,

 
Therefore, for  we can calculate

 
(Note that this formula is also valid for )

We can verify our formula by substituting it into the original recurrence relation:

 
We could also prove our formula is correct by induction.

Solve the recurrence relation  for  where  is a constant and the first term  is arbitrarily chosen.

Compare.

This example generalizes the previous example.

Solution

Through iteration, we obtain
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Solve the recurrence relation from Example 11.2.2.

Solution

The sequence in the example was defined recursively by  and

 
Therefore, for  we have

Simplifying this last expression leads to

 
Note that the formula  is also valid for  when we adopt the convention 

Verify that the formula in the solution to the above worked example satisfies the recurrence relation.

Solve the recurrence relation   and

Solution

Iterating, we obtain

 
Simplifying this last expression, we obtain
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11.4: Inductive definitions
We can use the idea of recursive definitions in a more general manner.

a method of defining a collection of objects, where each object in the collection can be constructed from objects assumed or
already known to exist in the collection

a statement specifying some specific initial objects that belong to the inductively-defined set

a statement describing a means to determine new objects in the inductively-defined set from those already known to belong

a declaration that no objects belong to the inductively-defined set unless obtained from a finite number of applications of the
base and inductive clauses

Let us define a set  with the following inductive definition.

Base clause.
For every  the statement variable  belongs to 

Inductive clause.

Given statements  the statements

 
are also elements of 

Limiting clause.
The set  does not contain any elements except those that can be obtained from a finite number of applications of the base
and inductive clauses.

For example, the logical statement  is in  by the following construction.

We assume that an empty set  exists. Let us define a set  inductively.

Base clause.

The empty set  is an element of 

 Definition: Inductive Definition

 Definition: Base Clause

 Definition: Indutive Clause

 Definition: Limiting Clause

 Example : Set of all possible logical statements11.4.1
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 Example : Set-theoretic construction of the natural numbers.11.4.2
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Inductive clause.
If  is an element of  and  itself is a set, then the set  is also an element of 

Limiting clause.

The set  does not contain any other elements except those that can be obtained from a finite number of applications of the
base and inductive clauses.

Note that the three clauses together imply that every element of  must be a set, so the “and  itself is a set” part of the
inductive clause is superfluous.

Since the base clause involves a single initial element of  and the inductive clause produces one new element of  from a
single old element of  we can explicitly carry out the construction step-by-step. We now define the natural numbers to be
the elements in this construction:

 
We usually write  for this set instead of 

Note that the number of elements in each natural number (as a set) is equal to the number defined by that set, and that each
natural number  is defined to be the set that we have previously called 

Bonus

In Example  above, we constructed the set  inductively using only the axioms of set theory. But how do we do arithmetic
with this definition? We can define addition as an infinite collection of inductively-defined functions: for each  define a
“sum with ” function  as follows.

Base clause.

Set 

Inductive clause.

For  such that  is already defined, set

That is, if  is defined and  is the next natural number after  in the inductive definition of  then define  to be
the next natural number after 

We then use the symbols  to mean  In this notation, you can think of the inductive clause above as saying that once 
 is defined, we can define  as 

If you are bored on a Friday or Saturday night, you can try the following using the above definition of addition in 

1. Prove that addition in  is:

 

a. commutative:  i.e.  for all  and
b. associative:  i.e.  for all 
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2. Use the idea that every positive integer should have a negative to define  as a subset of the Cartesian product 
Then define addition and subtraction in 

Hint.

To define  first choose an appropriate one-to-one function embedding  into  in such a way that will then allow
you to attach an additional second piece of information to each natural number (namely, a designator of the sign of the
number).

This page titled 11.4: Inductive definitions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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11.5: Activities

Develop an inductive definition of the set of words  from the alphabet 

Then verify that the word  is in the set by tracing it back to the base clause.

Hint.

Steps:

i. Think of a simple way to form new words from old (inductive clause).
ii. Then think about the basic words you need to get the process started (base clause).

iii. Finally, decide whether you are certain you can form every possible word in a finite number steps starting at some base
word.

Let  Write an inductive definition for the set of words in  that have the same number of  letters as  letters.

This page titled 11.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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11.6: Exercises

Compute each of the terms  for the sequence defined recursively by

 
with initial terms  and 

Solving by iteration. 

In each of Exercises 2–8, use iteration to determine an expression for the  term of the sequence as a formula in  (and the initial
term(s) of the sequence, if necessary).

In some of these, you may find the following formulas useful.

 

 

 

 

 

 where  is the linear function  for some fixed constants  and with arbitrary initial term

   

Hint.

Treat the cases  even and  odd separately.
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Fibonacci numbers are those that appear in the sequence defined recursively by

 
for some choice of initial terms 

See.

Example 11.2.3.

Using initial terms  use mathematical induction to prove that every Fibonacci number  satisfies 
(except, of course, for 

You are attempting to predict population dynamics on a yearly basis.

Suppose a population increases by a factor of  each year. That is, if we set  then the population increases by 
percent. (Careful: This is a description of the increase in population, not the total population. For example,  means that
the population doubles.)

a. Write down a recurrence relation that expresses the population  in the  year relative to the previous year.
b. Use iteration to determine an expression for the population in the  year as a formula in   and the initial population 

c. Suppose that on top of the natural population increase of  percent per year, immigration increases the population by fixed
amount  people annually. Design a new recurrence relation for  and use iteration to determine an expression for the
population in the  year as a formula in    and the initial population 

Explicitly describe how to construct the following logical statement in a finite number of steps using the inductive definition
for  the set of all possible logical statements, given in Example 11.4.1.

The set  of constructible numbers can be defined inductively as follows.

Base clause.

Assume 

Inductive clauses.
Whenever  then so are

Whenever  with  then  is also in 

Limiting clause.
The set  contains no elements other than those that can be obtained through a finite number of applications of the base and/or
inductive clauses.

 Exercise 11.6.9
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Explicitly verify, by listing each application of the relevant clauses, that the roots of the polynomial  are both
constructible numbers.

Consider the following inductively defined set 

Base clause. 
Assume 

Inductive clauses. 
When  is an element of  then each of the prime factors of  is also an element of 

Whenever prime  is an element of  then  is also an element of 

Limiting clause. 
The set  contains no elements other than those that can be obtained through a finite number of applications of the base and/or
inductive clauses.

Determine all elements of 

Hint.

To help with this question, you may wish to search for “list of small primes” on the internet.

Devise an algorithm that will produce an answer to the following question in a finite number of applications of the inductive
clause that we used to define the natural numbers in Example 11.4.2.

Given  with  is  or is  ?

This page titled 11.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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 Example 11.6.13
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32879 ∈ A.

a A, a A.
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 Example 11.6.14

m,n ∈ N m ≠ n, m > n n>m
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12.1: Finite Sets
Recall.

For  we have defined the counting set

Clearly,  contains exactly  elements. In fact, we have defined the number  to be the set  (See Example 11.4.2.)

As the terminology implies, we will use these sets to count the elements of other sets. In particular, given a set  if we can match
up the elements of  with the elements of  one for one, then  must also contain exactly  elements.

a set  for which there exists a bijection  for some  

For finite set  there exists one unique natural number  for which a bijection  exists.

Suppose  is finite. While there is only one number  for which a bijection  exists, there can be many such
bijections, and the number of bijections increases as  increases.

Prove Fact .

the unique natural number  for with a bijection  exists

the cardinality of the finite set 

alternative notation for the cardinality of the finite set 

alternative notation for the cardinality of the set defined by 

For  we have  Below are two example bijections  that verify this cardinality
number.

Bijections  defined by a table of values.

m ∈ N

= {n ∈ N|n<m} = {0, 1, … , m−1}.N

<m

N

<m

m m .N

<m

A,

A ,N

<m

A m

 Definition: Finite Set

A →AN

<m

m ∈ N, m > 0

 Fact : Uniqueness of counting number12.1.1

A m →AN

<m

 Remark 12.1.1

A m →AN

<m

m

 Checkpoint 12.1.1

12.1.1

 Definition: Cardinality (of a finite set )A

m →AN

<m

 Definition: |A|

A

 Definition: cardA

A

 Definition: #{…}

{…}

 Example 12.1.1

Σ = {a, b,… , z}, |Σ| = 26. φ,ψ : →ΣN

<26

φ,ψ : → ΣN

<26

σ 0 1 2 3 ⋯ 24 25

φ(σ) a b c d ⋯ y z

ψ(σ) a z b y ⋯ m n
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Cardinality of an empty set.
What about the empty set? Clearly we should have  But is this consistent with our definition of cardinality?

a function with domain 

If we accept the existence of empty functions  for every set  then the properties of such functions that we need in order to
establish  will be vacuously true.

1. For every set  an empty function  is injective.
2. An empty function  is a bijection.

Proof

You were asked to verify these statements in Exercise 10.7.12.

The cardinality of the empty set is 

Proof.

We are required to demonstrate an example of a bijection  But

 
so Statement 2 of Proposition  tells that the empty function  is indeed a bijection.

 

This page titled 12.1: Finite Sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

|∅| = 0.

 Definition: Empty Function

∅

∅→X X,

|∅| = 0

 Proposition : Properties of empty functions.12.1.1

X, ∅→X

∅→∅

 Corollary 12.1.1

0.

→∅.N

<0

= {n ∈ N|n< 0} =∅,N

<0

12.1.1 →∅N

<0
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12.2: Properties of finite sets and their cardinality

Finite sets versus finite sequences

Recall that a function  defines a finite sequence of elements from the set  by setting

If  is finite, then there exists such a function  that is bijective, which leads to the following.

A set  is finite if and only if there exists a finite sequence from  in which each element of  appears exactly once.

1. The above fact makes an important connection between functions and counting. If  is a finite set,  is a
corresponding bijection, and we create sequence  with  as above, then we are able to list the elements of 

 in sequence:

 
In turn, writing the elements of  in sequence is really just a way of counting them, in a manner that is roughly equivalent to
counting on your fingers (if you had a lot of fingers). In fact, counting the elements of  totally orders the elements of  (a
concept we will meet in a future chapter). In Chapter 13, we will adapt this connection between functions and counting to
determine whether it is possible to “count” infinite sets.

2. We should note, however, that the above fact is essentially trivial once we “unravel” the definitions of finite set and finite
sequence, as both involve a function with domain  for some  and codomain 

A set  is finite if and only if there exists a finite sequence from  which contains each element of  at least once.

Proof Idea

If we have a sequence that contains each element of  at least once, we could turn it into a sequence that contains each
element of  exactly once by removing repeated terms.

Finite sets versus bijections, subsets, and unions

Bijections compose to create bijections (see Exercise 10.7.13). This fact lets us relate finite sets to each other.

If one of  is finite and there exists a bijection  then both are finite and 

Proof Idea.

Reconsider “one of  finite” as a disjunction: “  is finite or  is finite”. Then break into cases.

Assume  is finite.
Suppose  so that there exists a bijection  Then  is also a bijection, so 

Assume  is finite.
Suppose  Repeat the argument from the previous case, swapping roles of  and  and using the bijection 

 in place of 

f : →AN

<n

A,

a

0

= f(0), a

1

= f(1), a

2

= f(2), … , a

n−1

= f(n−1).

A f

 Fact : Characterization of finiteness using sequences12.2.1

A A A

 Remark 12.2.1

A f : →AN

<n

{a

k

}

m

k=0

= f(k)a

k

A

A= { , ,… , }.a

0

a

1

a

n−1

A

A A

N

<m

m A.

 Corollary 12.2.1

A A A

A

A

 Fact : Bijection implies same cardinality.12.2.2

A,B f : A→B, |A| = |B|.

A,B A B

A

|A| = n, g : →A.N

<n

f ∘ g : →BN

<n

|B| = n.

B

|B| = n. A B

: B→Af

−1

f .
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Assume  is a finite set.

1. Every subset  is finite, with 
2. If  is an injection, then  is finite with 

Proof Idea.
1. This is left to you as Exercise 12.6.1.
2. Let  represent the image  Then  so we can apply Statement 1 and Fact .

     We may also relate cardinality of finite sets to the union operation.

Suppose  and  are finite subsets of a universal set 

If  and  are disjoint, then 

Proof Idea.

The idea behind these formulas should be obvious once you draw appropriate Venn diagrams, but formal proofs are left to
you in Exercise 12.6.2.

Cardinality of power sets of finite sets

What is the cardinality of 

Solution

We can solve this using recursion! In Example 11.2.4, we defined the following sequence of subsets of 

 
recursively. We can also express the sequence  recursively. First,  Then, since

 
we can consider  (See Exercise 9.9.13.) In doing so, we can break  into the disjoint union

 
Notice that the elements of  are precisely those subsets of  that do not contain the element  and therefore the
elements of  are precisely those subsets of  that do contain the element  So

 
This correspondence actually gives us a bijection

 Fact : Subset of finite is finite12.2.3

B

A⊆B |A| ≤ |B|.

f : C →B C |C| ≤ |B|.

A f(C). A⊆B, 12.2.2

 Fact : Cardinality of Unions12.2.4

A B U.

A B |A⊔B| = |A| + |B|.

|A∪B| = |A| + |B| − |A∩B|.

 Example 12.2.1

P({1, 2, 3,… , k})?

N,

=∅, = {1}, = {1, 2}, = {1, 2, 3},A

0

A

1

A

2

A

3

…, = {1, 2,… , k}, … ,A

k

= |P( )|N

k

A

k

= 1.N

0

= {1, 2,… , k−1} ⫋ {1, 2,… , k−1, k} = ,A

k−1

A

k

P( ) ⊆P( ).A

k−1

A

k

P( )A

k

P( ) =P( )⊔P( .A

k

A

k−1

A

k−1

)

c

P( )A

k−1

A

k

k,

P(A

k−1

)

c

A

k

k.

B ∈P( ) ⇒ B∪{k} ∈P( .A

k−1

A

k−1

)

c

P( )A

k−1

B

→P( ,A

k−1

)

c

↦B∪{k}.
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(Check!)

Now we have

 
Since

 
we then have

 
a recursively defined sequence. Solving this recurrence relation by iteration yields

Verify that the map

 
in the solution to the preceding Worked Example is a bijection.

We can use the idea of Worked Example  to prove a similar but more general fact.

If  then 

Proof Idea.

Since  has the same cardinality as the set  there exists a bijection between the two sets. In Exercise
12.6.8, you are asked to prove that two sets of the same cardinality also have power sets of the same cardinality. Using this
fact and the result of Worked Example , we have

Infinite sets
 

a set that is not finite

set  is infinite

= |P( )| = |P( |.N

k−1

A

k−1

A

k−1

)

c

P( ) =P( )⊔P( ,A

k

A

k−1

A

k−1

)

c

= + = 2 ,N

k

N

k−1

N

k−1

N

k−1

= .N

k

2

k

 Checkpoint 12.2.1

P( )A

k−1

B

→P( ,A

k−1

)

c

↦B∪{k}.

12.2.1

 Theorem : Cardinality of a power set.12.2.1

|A| = n, |P(A)| = .2

n

A {1, 2, 3,… ,n},

12.2.1

|P(A)| = |P({1, 2, 3,… ,n})| = .2

n

 Definition: Infinite Set

 Definition: |A| = ∞

A

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83463?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/12%3A_Cardinality/12.06%3A_Exercises


GNU Free Documentation License 12.2.4 https://math.libretexts.org/@go/page/83463

set  is finite

To demonstrate that a set  is infinite using the technical definition, we must demonstrate that no bijection  can exist,
for every cardinality value  But if  is infinite, there will be many injective functions  for each  Therefore, one
must demonstrate that no surjection  can exist, for every 

Suppose we have an alphabet consisting of a single letter  Then the set of words

 
is infinite.

To verify this, we will argue that no function  can be surjective, no matter the cardinality value  So suppose 
 is fixed but arbitrary, and  is an arbitrary function. Following the Test for Surjectivity (which also

describes how to demonstrate that a function is not surjective), we must exhibit an example element in  that is not the image
under  of any domain element in 

Function  defines a finite sequence of words from 

 
where each  is the image  We have two cases.

Each  is the empty word.

In this case, clearly  cannot be surjective since the word consisting of the single letter  is not in the sequence of outputs for 

Otherwise.

In this case, consider the word we get by concatenating the words  together twice over:

 
(Note that this is not multiplication, we are just writing the words one after the other to create one big word.) Then this word is
certainly longer than any of the individual words  and so cannot be equal to one of those words. (The reason we have
concatenated all the  twice over is so that we don't have to separately consider the case that all but one of the  is empty,
since in that case concatenating all the  just once over wouldn't actually produce a result that is longer than that one non-
empty ) Since this long word is not in the sequence of image elements for  the function  cannot be surjective.

While we have no hope of demonstrating that a set  is infinite by demonstrating that functions  cannot be
injective, if we wish we can argue using injectivity by just turning things around. If a bijection  were possible, its
inverse  would also be a bijection. So another way to demonstrate that a set  is infinite is to demonstrate that no
injection  is possible, for every cardinality number 

We can also demonstrate that a set is infinite by relating it to known infinite sets.

 Definition: |A| < ∞

A

A →AN

<m

m. A ↪ AN

<m

m.

↠AN

<m

m.

 Example : Demonstrating that a set is infinite from the definition.12.2.2

Σ = {x}.

= {x, xx, xxx, …}Σ

∗

→N

<m

Σ

∗

m.

m ∈ N f : →N

<m

Σ

∗

Σ

∗

f .N

<m

f :Σ

∗

, , ,… , ,w

0

w

1

w

2

w

m−1

w

j

f(j).

w

j

f x

f .

, ,… ,w

0

w

1

w

m−1

w = ⋯ ⋯ .w

0

w

1

w

2

w

m−1

w

0

w

1

w

2

w

m−1

,w

j

w

j

w

j

w

j

.w

j

f , f

 Remark 12.2.2

A →AN

<m

→AN

<m

A→N

<m

A

A→N

<m

m.
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Assume  is an infinite set.

1. Every set  that contains  as a subset (i.e. ) is infinite.
2. If  is an injection, then  is also infinite.

Proof.
1. This is left to you as Exercise 12.6.4.
2. This is just the contrapositive of Statement 2 of Fact .

Show that if  then  regardless of whether  or 

Solution

If  then there exists some  Consider the restricted alphabet  In Example , we demonstrated that 
 was infinite. Clearly  implies  so applying Statement 1 of Fact  we may conclude that  is also

infinite.

This page titled 12.2: Properties of finite sets and their cardinality is shared under a GNU Free Documentation License 1.3 license and was
authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Fact : Contains infinite subset implies infinite.12.2.5

A

B A B⊇A

f : A→B B

12.2.3

 Example 12.2.3

Σ ≠∅, | | =∞,Σ

∗

|Σ| <∞ |Σ| =∞.

Σ ≠∅, x ∈ Σ. Ξ = {x}. 12.2.2

Ξ

∗

Ξ ⊆Σ ⊆ ,Ξ

∗

Σ

∗

12.2.5 Σ

∗
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12.3: Relative Sizes of Sets
We have defined a set  to be finite when we can count its elements by matching them bijectively with the elements of some
counting set  And in this case, by defining  we are declaring that  has the same “size” as 

Expanding on this idea, we can think of every bijection as using the elements of one set to “count” the elements of another.

sets  and  for which there exists a bijection 

If  has the same size as  then  has the same size as 

Proof.

If  is a bijection, then so is 

If  has the same size as  and  has the same size as  then  has the same size as 

Proof.

This is left to you as Exercise 12.6.5.

We expect our general notion of same size to match with just counting elements of finite sets and getting the same result.

Assume  and  are finite sets. Then  if and only if  and  have the same size.

Proof.

Assume equal cardinality, show same size.

Assume  Then by definition there exist bijections  and  Now  is a
bijection  so  and  have the same size according to the technical definition.

Assume same size, show equal cardinality.

Assume  and  have the same size. Then by definition there exists a bijection  Now, we have also assumed
that  is finite, so there exists a bijection  where  Then  is a bijection that
demonstrates  as well.

Your intuition may fail you when considering “sizes” of infinite sets. In particular, it is possible to have \(\vert A \vert = \vert B
\vert = \infty\text{,}\) where \(A\) and \(B\) do not have the same size.

 

Even though   and  have the same size! The following defines a bijection 

A

.N

<m

|A| =m, A .N

<m

 Definition: Same Size

A B A→B

 Fact : Symmetry of size.12.3.1

B A, A B.

f : A→B : B→A.f

−1

 Fact : Transitivity of size.12.3.2

A B B C, A C.

 Fact : Finite sets with equal cardinality have the same size.12.3.3

A B |A| = |B| A B

|A| = |B| =m. f : →AN

<m

g : →B.N

<m

g∘ f

−1

A→B, A B

A B f : A→B.

A g : →A,N

<m

m = |A|. f ∘ g : →BN

<m

|B| =m

 Warning

 Example : Sets of integers and natural numbers have the same size.12.3.1

N ⫋Z, N Z f : N→ Z.

n 0 1 2 3 4 ⋯
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This bijection can be expressed by the formula

In Chapter 13, we will see that even though  the sets  and  do not have the same size!

Recall from first-year calculus that for  with  we define the open interval from  to  to be the set of all real
numbers strictly between  and 

Figure : An interval on the real number line.

It turns out that, even though they may have different lengths, the interval  and the unit interval  have the same size!
(That is, they somehow contain the same “number” of numbers.)

Construct a bijection  in two steps.

1. The map

is a bijection. (Check!)
2. The map

is a bijection. (Check!)

Then  is a bijection.

Figure : Scaling and translating the unit interval onto another interval.

Define

f(n) 0 −1 1 −2 2 ⋯

f(n) =

⎧

⎩

⎨

⎪

⎪

,

m

2

− ,

m+1

2

m even,

m odd.

 Example : Sets of real numbers and natural numbers do not have the same size.12.3.2

|N| = |R| =∞, N R

 Example : Intervals of real numbers of different lengths have the same size.12.3.3

a, b ∈ R a< b, a b

a b:

(a, b) = {x ∈ R|a< x < b}.

12.3.1

(a, b) (0, 1)

(0, 1) → (a, b)

f : (0, 1)

x

→(0, b−a),

↦ (b−a)x,

g: (0, b−a)

x

→(a, b),

↦ x+a,

g∘ f : (0, 1) → (a, b)

12.3.2

 Example : A punctured circle has the same size as .12.3.4 R

S = {(x, y) ∈ | +(y− = },R

2

x

2

1

2

)

2

1

4

S

^

= S ∖ {(0, 1)}.
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Here,  is a circle in the plane with radius  and centre  and  is the circle  “punctured” at the “north pole”.

We claim that  has the same size as  Construct a bijection  in two steps.

1. Let  represent the -axis in the plane, i.e.

 
Let  be defined as follows: for  let  be the -intercept of the line through points 

Figure : Projecting the punctured circle onto the real number line.

Then  is a bijection. (Check!)

2. We also have a bijection  by 

Therefore, the composition  is a bijection.

Example  and Example  can be combined to demonstrate that every finite-length interval  of real numbers
has the same size as the entire set  of real numbers. See Exercise 12.6.6.

This page titled 12.3: Relative Sizes of Sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

S

1

2

(0, ),

1

2

S

^

S

S

^

R. →RS

^

X x

X = {(x, 0)|x ∈ R} ⊆ .R

2

f : →XS

^

(x, y) ∈ ,S

^

f(x, y) x (0, 1), (x, y).

12.3.3

f

g :X→R g(x, 0) = x.

g∘ f : →RS

^

 Example : Every interval of real numbers has the same size as the entire set of real numbers.12.3.5

12.3.3 12.3.4 (a, b)

R
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12.4: Counting elements of finite sets with bijections
In a future chapter, we will begin learning how to count complicated collections by counting the “choices” needed to determine an
arbitrary element in the collection. In this section, we look at how to count collections by finding a collection of the same size
which is easier to count.

Consider paths in the  grid below that start at the bottom left and end at the top right, and only move up or right at each
step. (One such path is drawn in.) How many such paths are there?

Figure 

Let  represent the set of all such paths. We can distinguish each element of  by the sequence of directions it takes at each
step. Let  where  and  stand for the directions “right” and “up”, respectively. Then for each path  we
can build a word  by setting the letters of  to correspond to the steps in the path. For example, the path in the
diagram above would correspond to the word 

This assignment of words in  to paths in  is a function! Let's call it  and set  the image of  in 
 This function is clearly one-to-one, as different paths must produce different words of direction indicators. And since every

function maps its domain surjectively onto its image, we obtain a bijection  by restricting the codomain. Therefore,
we can count the paths in  by instead counting the words in 

Since each path in  takes exactly  steps, exactly  of which must be upwards and exactly  of which must be to the right,
we see that  consists precisely of those words in  that have length  and contain exactly  s and  s. Once we learn
some basic counting techniques later in the course, you will be able to come back to this example to verify that

This page titled 12.4: Counting elements of finite sets with bijections is shared under a GNU Free Documentation License 1.3 license and was
authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Counting paths with words.12.4.1

5×10

12.4.1

P P

Σ = {R,U}, R U p ∈ P

∈w

p

Σ

∗

w

p

RRURUURRRRURR.

Σ

∗

P f : P → ,Σ

∗

W = f(P ), f

.Σ

∗

f : P →W

P W !

P 13 4 9

W Σ

∗

13 4 U 9 R

|P | = |W | = 715.
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12.5: Activities

Use the definition of cardinality to verify that  for

The steps below will guide you through a proof of the following statement.

If  is finite and  then  is also finite.

a. Start by assuming that  is finite. Write out what this means. (You may do this using the technical definition of finite set, or
you may do this using the sequence characterization of finiteness in Fact 12.2.1.)

b. Now add the assumption that  Try to use your technical expression of the assumption “  is finite” from Task a to
determine a similar technical expression of the desired conclusion “  is finite.”

Use the sequence characterization of finiteness in Fact 12.2.1 to prove the following statement.

If  and  are finite and do not intersect, then 

Hint

Use separate finite sequences to “count” the elements of  and  Then use these two sequences to build a sequence that
“counts” the elements of 

In each of the following, demonstrate that the two sets satisfy the technical definition of same size by explicitly describing a
bijection between them.

a. The set of natural numbers and the set of positive natural numbers.
b. The set of natural numbers and the set of natural numbers that are greater than 
c. The set of even natural numbers and the set of odd natural numbers.
d. The set of even natural numbers and the set of natural numbers.
e. The set of natural numbers and the set of integer powers of 

Set

a. Demonstrate that  and  have the same size. (Recall that  means the set of words in  of length exactly ) Do
this not by determining the cardinality of each of the two sets, but by showing that the sets satisfy the technical definition of
same size. As in Activity , this will require that you explicitly describe a bijection between the two sets.

Hint

Think of a -letter word in the alphabet  as the answers to five yes-or-no questions. How does such a string of answers
correspond to some subset of 

b. Describe how you could use the bijection you set up in Task a to turn the problem of counting the number of subsets of 
that have exactly  elements into a problem of counting a related collection of words in the alphabet 

 Activity 12.5.1

|A| = 8

A= {1, 2, 4, 8, 16, 32, 64, 128}.

 Activity 12.5.2

B A⊆B, A

B

A⊆B. B

A

 Activity 12.5.3

A B |A⊔B| = |A| + |B|.

A B.

A⊔B.

 Activity 12.5.4

9, 999, 999.

2.

 Activity 12.5.1

A = {a, b, c, d, e}, Σ = {Y,N}.

P(A) Σ

∗

5

Σ

∗

5

Σ

∗

5.

12.5.4

5 Σ

A?

A

3 Σ.
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(Note: You are not asked to actually determine the number of such subsets. You are only asked to describe how the result of
Task a can be adapted to this counting problem.)

 

This page titled 12.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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12.6: Exercises

Prove: If  is finite and  then  is finite and 

Suppose that   and  are finite subsets of a universal set 

a. Prove: If  and  are disjoint, then 
b. Prove: 

Hint.

See Exercise 9.9.5, and use the equality from Task a.

c. Determine a similar formula for 

Hint.

Draw a Venn diagram first.

Use induction to prove directly that if  then  Use Worked Example 12.2.1 as a model for your proof of
the induction step.

Prove: If  and  then 

Prove Fact 12.3.2.

Combine Example 12.3.3 and Example 12.3.10 to verify that the unit interval  and  have the same size.

Hint.

First map the punctured circle  onto some open interval in the -axis by “unrolling” 

Use Example 12.3.3 and the function  to prove that the interval  and  have the same size.

Hint.

The function  is not one-to-one, but it becomes one-to-one if you restrict its domain to an appropriate interval

 Exercise 12.6.1

B A⊆B, A |A| ≤ |B|.

 Exercise 12.6.2

A, B, C U.

A B |A⊔B| = |A| + |B|.

|A∪B| = |A| + |B| − |A∩B|.

|A∪B∪C.

 Exercise 12.6.3

|A| = n |P(A)| = .2

n

 Exercise 12.6.4

|A| =∞ A⊆B, |B| =∞.

 Exercise 12.6.5

 Exercise 12.6.6

(0, 1) R

S

^

x .S

^

 Exercise 12.6.7

f(x) = tanx (−π/2, π/2) R

f(x) = tanx
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Prove that if  and  have the same size, then so do  and 

Hint.

See Exercise 10.7.19.

Suppose  is a set with  Then we can enumerate its elements as 

a. Construct a bijection from the power set of  to the set of words in the alphabet  of length 

Note that there are two tasks required here.

i. Explicitly describe a function  by describing the input-output rule: give a detailed description of
how, given a subset  the word  should be produced.

ii. Prove that your function  is a bijection.

Hint.

When determining the input-output rule for your function  think of how one might construct an arbitrary
subset of  and then relate that process to a sequence of answers to  true/false questions.

b. Use Task a to determine the cardinality of  Explain.

Hint

See Note 1.3.1.

c. Suppose  is some fixed (but unknown) integer, with  Let  represent the subset of  consisting of
all subsets of  that have exactly  elements. Describe how your bijection from Task a, could be used to count the elements
of 

Hint.

Consider how restricting the domain might help.

This page titled 12.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 12.6.8

A B P(A) P(B).

 Exercise 12.6.9

A |A| = n. A= { , ,… , }.a

1

a

2

a

n

A Σ = {T ,F} n.

f :P(A) →Σ

∗

n

B⊆A, f(B)

f

f :P(A) → ,Σ

∗

n

A, n

P(A).

k 0 ≤ k≤ n. P(A)

k

P(A)

A k

P(A .)

k
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13.1: Basics and Examples
If  is a set that has the same size as  then we can think of a bijection  as “counting” the elements of  (even though
there are an infinite number of elements to count), in exactly the same way that we use our counting sets  to count finite sets.

a set that is finite or has the same size as 

a countable set which has the same size as 

a set that is not countable

1. An uncountable set is necessarily infinite.
2. Two sets which have the same size (i.e. there exists a bijection between them) are either both countable or both

uncountable.

A nonempty set  is countable if and only if there exists a sequence of elements from  in which each element of  appears
exactly once.

Proof Idea.

In case  is finite, the statement is precisely that of Fact 12.2.1. So assume  is infinite, in which case a sequence of the
type described in the statement must also be infinite. Technically, an infinite sequence from  is a function  The
“each element of ” property is the same as saying the function is surjective, and the “exactly once” property is the same
as saying the function is injective. So a sequence of the described kind is exactly the same as bijection  which is
what is required for  to be the same size as  (i.e. countably infinite)

Compare this fact with Fact 12.2.1.

Sets  and  are both countable.

Proof

We have already constructed a bijection  in Example 12.3.1, which shows that  is countable.

To show that  is countable, we will use Fact  and construct an infinite sequence which contains each element of 
exactly once. First, construct an infinite grid which contains all positive rational numbers. By zig-zagging through the grid,
we obtain an infinite sequence which contains each positive element of  at least once, though there are duplicates because
an element of  can have many different representations as a fraction.

A N, N→A A

N

<m

 Definition: Countable

N

 Definition: Countably Infinite

N

 Definition: Uncountable

 Note 13.1.1

 Fact : Characterization of countable sets using sequences.13.1.1

A A A

A A

A N→A.

A

N→A,

A N

 Remark 13.1.1

 Theorem : Countability of Integers and Rationals13.1.1

Z Q

N→ Z Z

Q 13.1.1 Q

Q

Q
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Figure : A grid containing all positive rational numbers.13.1.1
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Figure : A path through the positive rational numbers.

The path through the grid creates the following sequence of positive rational numbers. By crossing out duplicates, we
obtain an infinite sequence which contains each positive rational number exactly once.

\begin{gather*} 1, \;\;\; \dfrac{1}{2}, \;\;\; 2, \;\;\; 3, \;\;\; \xcancel{1,} \;\;\; \dfrac{1}{3}, \;\;\; \dfrac{1}{4}, \;\;\; \dfrac{2}
{3}, \;\;\; \dfrac{3}{2}, \;\;\; 4, \;\;\; 5,\\ \xcancel{2,} \;\;\; \xcancel{1,} \;\;\; \xcancel{\dfrac{1}{2},} \;\;\; \dfrac{1}{5},
\;\;\; \dfrac{1}{6}, \;\;\; \dfrac{2}{5}, \;\;\; \dfrac{3}{4}, \;\;\; \dfrac{4}{3}, \;\;\; \dfrac{5}{2}, \;\;\; \dotsc \end{gather*}

Finally, interleave the negative rational numbers into the above sequence, and insert \(0\) at the beginning.

\begin{gather*} 0, \;\;\; 1, \;\;\; -1, \;\;\; \dfrac{1}{2}, \;\;\; -\dfrac{1}{2}, \;\;\; 2, \;\;\; -2, \;\;\; 3, \;\;\; -3, \;\;\; \dfrac{1}{3},
\;\;\; -\dfrac{1}{3}, \;\;\;\\ \dfrac{1}{4}, \;\;\; -\dfrac{1}{4}, \;\;\; \dfrac{2}{3}, \;\;\; -\dfrac{2}{3}, \;\;\; \dfrac{3}{2}, \;\;\;
-\dfrac{3}{2}, \;\;\; 4, \;\;\; -4, \;\;\; 5, \;\;\; -5, \;\;\; \dotsc \end{gather*}

Here is an example of an uncountable set. The argument to prove the set is uncountable is a famous one, so we encapsulate it as the
proof of a Lemma, rather than just a plain Example.

Let \(\scr{C}\) represent the set of all real numbers between \(0\) and \(0.2\) (including \(0\)) whose decimal expansions
involve only the digits \(0\) and \(1\text{.}\)

13.1.2

 Lemma \(\PageIndex{1}\): An uncountable set of real numbers
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Set \(\scr{C}\) is uncountable.

Proof

The argument in this proof is called Cantor's diagonal argument.

We will show that no sequence of numbers from \(\scr{C}\) can contain every element of \(\scr{C}\text{.}\)

Suppose \(\{a_k\}\) is an infinite sequence of elements of \(\scr{C}\text{.}\) We can create an element \(r \in \scr{C}\)
which is not in the sequence as follows. Set

\begin{equation*} r = 0.r_1 r_2 r_3 r_4 \cdots \text{,} \end{equation*} 
where \(r_k\) is the digit in the \(k^{th}\) decimal place of \(r\text{,}\) according to the following rules.

If the \(k^{th}\) decimal place of \(a_{k-1}\) is \(0\text{,}\) set \(r_k = 1\text{.}\)

If the \(k^{th}\) decimal place of \(a_{k-1}\) is \(1\text{,}\) set \(r_k = 0\text{.}\)

Clearly every digit of \(r\) will be either a \(0\) or \(1\text{,}\) and \(0 \le r \lt 0.2\text{,}\) so \(r \in \scr{C}\text{.}\) (The
reason we use \(a_{k-1}\) instead of \(a_k\) in the rules to create \(r\) is to make sure we consider sequence element \(a_0\)
somewhere in there.)

Now we have \(a_k \ne r\) for every \(k \in \mathbb{N}\text{,}\) since \(r\) and \(a_k\) differ in the \((k+1)^{th}\) decimal
place. Furthermore, \(r \in \scr{C}\) because it is between \(0\) and \(0.2\) and its decimal expansion involves only digits \
(0\) and \(1\text{.}\) Therefore, sequence \(\{a_k\}\) does not contain every element of \(\scr{C}\) because it does not
contain \(r\text{.}\)

1. The “diagonal” part of the name Cantor's diagonal argument refers to the following. If the decimal expansions of the real
numbers in the sequence \(\{a_k\}\) are written out in a grid so that each row is one of the numbers \(a_k\) and each column
represents a specific decimal place in the sequence numbers, then the rules to create \(r\) can be thought of as “flipping” the
digits that occur in the diagonal positions of this grid. (Draw the grid for yourself to see the pattern!)

2. Later in this chapter we will use Lemma \(\PageIndex{1}\) to prove that \(\mathbb{R}\) itself is uncountable. (See
Theorem 13.2.1.)

    

This page titled 13.1: Basics and Examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Remark \(\PageIndex{2}\)
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13.2: Properties
The following facts outline some relationships countability and the set operations. They can be used to more easily prove that a set
is countable or uncountable using the already-known countability or uncountability of a related set.

1. Every subset of  is countable.
2. If there exists an injection  then the set  is countable.
3. Suppose  If  is countable, then so is 
4. Suppose  If  is uncountable, then so is 
5. If  and  are countable, then  and  are both countable.

Proof outline.
1. Assume  If  is finite, then it is countable by definition. So assume that  We can construct a sequence 

 that contains each element of  exactly once as follows.

 
Therefore,  is countable.

2. If  is injective, then  is a bijection, so that  and its image  have the same size. But  is
countable by Statement 1, so using the definition of countable along with Fact 12.3.2, conclude that  is countable.

3. If  is countable, then by definition there exists a bijection  Then  is an injection. Apply Statement
2.

4. This is the contrapositive of Statement 3, under the common assumption 
5. For  consider  and apply Statement 3.

Now consider  For simplicity, we will assume  so that  Since  and  are countable, we
can write their elements as sequences:

 
We can then write the elements of  in a sequence by interleaving these two sequences:

Prove  is countable even in the case 

Hint.

Consider the sets

 
Then  is the disjoint union of  and 

 Proposition 13.2.1

N

A ↪ N, A

A ⊆B. B A.

A ⊆B. A B.

A B A∪B A∩B

A ⊆N. A |A| = ∞.

{ }a

k

A

a

0

a

1

a

2

=  smallest number in A,

=  next smallest number in A,

=  next smallest number in A,

⋮

A

f : A ↪ N f : A → f(A) A f(A) f(A)

A

B f : B →N. f : A →N|

A

A ⊆B.

A∩B, A∩B ⊆A

A∪B. A∩B = ∅, A∪B =A⊔B. A B

A = { , , , … },a

0

a

1

a

2

B = { , , , … }.b

0

b

1

b

2

A⊔B

A⊔B = { , , , , , , … }.a

0

b

0

a

1

b

1

a

2

b

2

Checkpoint 13.2.1

A∪B A∩B ≠ ∅.

A

′

=A∖ (A∩B), B

′

=B∖ (A∩B), C = ⊔ .A

′

B

′

A∪B C A∩B.
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The set of prime numbers is countable, since it is a subset of 

The unit interval  on the real number line is uncountable because it contains the uncountable subset  from Lemma
13.1.1.

Set  is uncountable.

Proof

This follows from Lemma 13.1.1 and Statement 4 of Proposition .

The Cartesian product set  is uncountable because it has an uncountable subset: the -axis has the same size as 

This page titled 13.2: Properties is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Primes are countable.13.2.1

N.

 Example : Unit interval is uncountable.13.2.2

(0, 1) C

 Theorem 13.2.1

R

13.2.1

 Example 13.2.3

=R×RR

2

x R.
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13.3: More about relative sizes of sets

What is the “size” of 

We know   and  all have the same size (countably infinite). But  is so large that it is uncountable, so it seems like  should
be “larger” than   and 

set  is larger than set  if

i.  has a subset the same size as  and
ii. every subset of  which is the same size as  is proper

if  is larger than  then  is smaller than 

1. Show there exists an injection 
2. Show that every injection  cannot also be a surjection.

However, if one or both of  are finite, one can instead just verify that 

1. Matching up the parts of the Test with the parts of the definition of larger set:

i. The existence of an injection  demonstrates that  has a subset that is the same size as  as restricting the
codomain to  creates a bijection.

ii. By definition, a subset  has the same size as  when there exists a bijection  Enlarging the codomain,
such a bijection can be thought of as an injection  whose image is  If no such injection can also be
surjective, then  i.e.  is a proper subset of 

2. In the second part of the test, one can simply show that every function  cannot be a surjection, in which case surely
every injection  cannot be a surjection. It may seem like it should be more difficult to prove this more general
statement, but if you will find that your argument that every injection cannot be a surjection does not actually rely on the
injective assumption, then there is no need for that assumption.

Set  is larger than each of the sets   and 

Here follows an important comparison of set sizes.

Every set is smaller than its own power set.

Proof

Let  represent an arbitrary set. We will apply the Larger Set Test to demonstrate that  is larger than 

i. There exists a natural injection

 Question

R?

N, Z, Q R R

N, Z, Q.

 Definition: Larger Set

B A

B A,

B A

 Definition: Smaller Set

B A, A B

 Test: To show set  is larger than set .B A

A↪B.

A↪B

A,B |B| > |A|.

 Remark 13.3.1

f : A↪B B A,

f : A→ f(A)

C ⊆B A A→C.

A↪B C ⊆B.

C ⫋B, C B.

A→B

A↪B

 Example 13.3.1

R N, Z, Q.

 Theorem : Cantor13.3.1

A P(A ) A.
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(If  is empty, then this is just the empty function, which is always injective by Statement 1 of Proposition 12.1.1.)

ii. Suppose  is an arbitrary function. Using the Surjective Function Test, we will demonstrate that it cannot
be surjective by exhibiting an element  for which no element  satisfies  (We will not need
to make the assumption that  is injective — see Statement 2 of Remark .)

Note that for each  the image element  being a power set element, is a subset of  So for each 
 we can ask whether  is contained in the subset  or not. Collecting together the “or not” answers, set

 
Note that  is a subset of  so again this means that it is also an element of 

Could  be possible for some  Since  for each  we have either  or 

Case . 
Then by definition of  above, we have  Since  contains element  but  does not, sets  and  cannot
be equal.

Case . 
Then by definition of  above, we must have  since otherwise  would satisfy the condition to be in  But now 

 contains element  but  does not, so again sets  and  cannot be equal.

Since  is not possible in all cases, we have found an element in  that is not in the image  as required
to demonstrate that  is not surjective.

Cantor's Theorem implies that there are an infinite number of “levels” of infinity! For, if  is an infinite set, then  is a
larger infinite set, and  is a still larger infinite set, and  is a still larger infinite set, ….

     The size of the set of natural numbers  seems like the lowest possible level of infinity, since every subset of  is either finite or
has the same size as  (See Statement 1 of Proposition 13.2.1.) The set of real numbers  is larger than  since it contains  as a
proper subset but is not itself the same size as  So writing  is not the same as writing  as they are evidently
different levels of infinity. Is there any level of infinity between these two?

There does not exist a set larger than  but smaller than 

It is not known whether the Continuum Hypothesis is true! In fact, it has been proved that the Continuum Hypothesis can be
neither proved nor disproved in certain common axiomatic systems for set theory!

We have seen that funny things can happen with sizes of infinite sets — for example,  is an proper subset of  but the two have
the same size! This is not a defect in our definitions, it just demonstrates that for infinite sets, the subset relation is not a good
measure of size. But it also demonstrates that we should be vigilant about other possible unintuitive consequences of our
definitions, because they might reveal defects in our definitions. For example, from our definitions of smaller and larger sets, there
is no obvious reason why there could not be some weird example of a pair of sets  and  with both  larger than  and  larger
than  Luckily, that cannot happen thanks to the following theorem.

A

x

↪P(A),

↦ {x}.

A

f : A→P(A )

X ∈P(A ) a ∈ A f(a) =X.

f 13.3.1

a ∈ A, f(a) ∈P(A ), A.

a ∈ A a f(a)

X = {a ∈ A : a ∉ f(a)}.

X A, P(A ).

f(a) =X a ∈ A? X ⊆A, a ∈ A a ∈X a ∉X.

a ∈X

X a ∉ f(a). X a f(a) X f(a)

a ∉X

X a ∈ f(a), a X.

f(a) a X X f(a)

f(a) =X P(A ) f(A),

f

 Remark 13.3.2

A P(A )

P(P(A )) P(P(P(A )))

N N

N. R N, N

N. |N| =∞ |R| =∞,

 Conjecture: Continuum Hypothesis.
N R.

 Remark 13.3.3

N Z,

A B B A A

B.
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Suppose  and  are infinite sets. If there exists both an injection  and an injection  then  and  have the
same size.

Proof

Suppose  and  are injections. We need to exhibit a bijection from  to  (or vice versa, but we will
construct one from  to ).

For every element  we can construct a chain of alternating elements from  and  as follows. Working forwards
from  the injection  maps  to some element of  and the injection  maps that element of  to some element of 
which is mapped by  to some element of  and so on.

 
The chain will go on infinitely because the functions  and  always provide a next element.

We can also try to trace the chain backwards: starting at our original element  we can look for some element of 
that  maps to  though at first consideration it's possible that none exists. If we do find such an element of  we can then
look for some element of  that  maps to it, and so on. While the chain extends infinitely in the forward direction, we
cannot be sure at this point that it will extend infinitely in the backward direction.

Now, every element of  can be placed into such a chain, and because  and  are injective the chain in which we find an
element  is always the same: the next element in the chain is always  and the element before  is always the unique 
in  so that  (if such an element exists). And the elements after  and before  are also uniquely determined by
the injectiveness of  and  And so on.

So we end up finding every element of  in a unique alternating chain, and each chain has one of four patterns:

a chain with some element repeated, in which case we could force the chain to loop back on itself at the repetition to
form a finite, circular chain;
a chain with no repetition and no end or start;
a chain with no repetition and no end, but the process to trace it backward failed at some point, and the last element in
the “backward” direction (which we could view as the first element in the whole chain) is an element of  and
a chain with no repetition and no end, but starts with an element of 

Now that we have cut out possible repetition by creating circular chains, every element of  appears exactly once in a
unique chain, and by symmetry the same can be said about  We can then create a bijection from  to  by mapping
every element of  to the element of  that follows it in the chain it appears in. Except for elements of  that appear in a
chain that has a beginning with a starting element from  — instead each of those elements of  should be mapped to the
element of  that precedes it in its chain. This will create a bijective correspondence between the elements of  and 

This page titled 13.3: More about relative sizes of sets is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Theorem : Cantor, Bernstein13.3.1

A B A↪B B↪ A, A B

f : A↪B g : B↪ A A B

A B

a ∈ A, A B

a, f a B, g B A,

f B,

a

0

b

0

a

1

b

1

a

2

= a,

= f( ),a

0

= g( ),b

0

= f( ),a

1

= g( ),b

1

⋮

f g

a ∈ A, B

g a, B,

A f

A f g

a f(a), a b

B g(b) = a f(a) b

f g.

A

A;

B.

A

B. A B

A B A

B A

B A B.
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13.4: Activities

In each of the following, prove that the given set is countable by exhibiting an explicitly defined bijective correspondence
between it and 

a. The set of natural numbers excluding 0.
b. The set of natural numbers that are greater than 
c. The set of odd natural numbers.
d. The set of integer powers of  (including both positive and negative exponents).

Without cheating and looking at the proofs in this chapter, prove each of the following statements. You may wish to make use
of the characterization of countability in Fact 13.1.2 instead of the technical definition of countable set.

Note: Each statement except the first two can be proved directly from the preceding statements.

a. Every subset of  is countable.
b. If two sets have the same size and one of them is countable, then so is the other.
c. Every set that is the same size as a subset of  is countable.
d. Every subset of a countable set is countable.
e. Every set that is the same size as a subset of a countable set is countable.
f. A set that contains an uncountable subset is uncountable

a. Prove that  is countable.

Hint.

Use a zig-zag-through-a-grid method similar to the proof of the countability of the rational numbers. (See Theorem 13.1.1
and its proof.)

b. Prove that if  and  are both countable, then so is 

Hint.

You could do more zig-zagging, or you could use the statement of Task a.

c. Prove that if   and  are each countable, then so is 

Hint.

Use the statement of Task b twice.

d. What proof method do you think you would use to prove the following statement?

If  are all countable, then so is

You own a magical apple orchard that contains an infinite number of trees, each of which bears an infinite number of apples.
Describe a method to pick all of the apples in the orchard, one apple at a time. (No shaking the trees, please! However, you
may assume an infinite amount of time.)

 Activity 13.4.1

N.

9, 999, 999.

2

 Activity 13.4.2

N

N

 Activity 13.4.3

N×N

A B A×B.

X, Y , Z X×Y ×Z.

, ,… ,A

1

A

2

A

n

× ×⋯× .A

1

A

2

A

n

 Activity : The Infinite Orchard Problem.13.4.4
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Prove that if  is an infinite collection of sets, each of which is countably infinite, then the union

 
is also countably infinite.

Hint.

What if each set was an apple tree?

Let  represent the set of all functions with domain  and codomain 

a. Determine a bijective correspondence between  and 
b. Explain why Task a proves that  is countable.

Hint.

See Activity  and Activity .

Let  represent the set of all functions with domain  and codomain 

Note that each element of  defines an infinite sequence of s and s.

a. Suppose  is a countable subset of  (So  is an infinite list of infinite sequences of s and s.)

Describe how to construct an element of  that is definitely not in  That is, build an infinite sequence of s and s that is
definitely not the same as any of the infinite sequences in the infinite list of 

Hint.

Use Cantor's diagonal argument from the proof of Lemma 13.1.1.

b. Explain why Task a proves that  is uncountable.

Hint.
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 Activity 13.4.5
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 Activity 13.4.6

F {0, 1} N.

F N×N.

F

13.4.2 13.4.3

 Activity 13.4.1
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0 1
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A 0 1
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14.1: Basics and Examples

a diagram consisting of a finite collection of points connected by line segments or arcs

Suppose we have jugs  with capacities  litres, respectively. Jug  is full of water and jugs  are empty. Can
we divide the water into two exactly equal parts? If so, find the most efficient pouring sequence.

Solution

Construct a graph with points labelled by elements  where  are the volumes of water in jugs 
 respectively. Join two points with a line segment if we can obtain one set of volumes from the other in a single pour.

We will ignore pours that return us to a configuration previously achievable by fewer pours.

Figure : Graph to track possible jug fill states.

Following the left leg of the graph gets us to the desired configuration in  pours.

 Definition: graph (working definition)

 Example 14.1.1

A,B,C 8, 5, 3 A B,C

(a, b, c) ∈ N×N×N, a, b, c

A,B,C,

14.1.1

7

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83468?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/14%3A_Graphs/14.01%3A_Basics_and_Examples


GNU Free Documentation License 14.1.2 https://math.libretexts.org/@go/page/83468

an ordered pair  where  is a finite set and  is a finite, unordered list of subsets of  each of which has exactly  or 
 elements

a point in a graph (i.e. an element of )

synonym for vertex

a connecting line or arc between two vertices (i.e. an element of )

the graph  with no vertices and no edges

The list  is not a set, since duplicate entries in this list have a graphical meaning; see below.

An element  represents an edge as follows. If  consists of exactly two elements of  draw a line between these two
vertices. If  consists of exactly one element of  draw a line from this vertex to itself.

The graph  where

 
has three vertices and three edges.

 Definition: graph (formal definition)

(V ,E), V E V , 1

2

 Definition: Vertex

V

 Definition: Node

 Definition: Edge

E

 Definition: Empty Graph

(∅, ∅),

Warning 14.1.1

E

e ∈ E e V ,

e V ,

 Example : A very basic graph.14.1.2

G= (V ,E),

V = { , , },v

1

v

2

v

3

E = {{ , }, { , }, { , }},v

1

v

2

v

1

v

3

v

2

v

3
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Figure : Diagram of the graph 

The graph  where

 
has four vertices and five edges.

14.1.2 G= (V ,E).

 Example : A slightly more complicated example graph.14.1.3

G= (V ,E),

V = { , , , },v

1

v

2

v

3

v

4

E = {{ , }, { , }, { , }, { }, { }},v

1

v

2

v

1

v

2

v

1

v

2

v

3

v

3
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Figure : Diagram of the graph 

This page titled 14.1: Basics and Examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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14.2: Properties of Graphs

Properties of vertices and edges

an edge which connects a vertex to itself

edges which connect the same vertices

no loops or parallel edges

connected by an edge

share a common vertex

a pair of a vertex and edge where the edge connects the vertex either to itself or another vertex of the graph

a vertex that is incident with no edges

the number of times that the vertex is incident with an edge of the graph

degree of vertex 

In a simple graph, the degree of each vertex is equal to the number of incident edges. However, in a non-simple graph, a loop is
incident to its vertex twice, and we count that in the degree:

The graph of Example 14.1.2 has the following properties.

It is a simple graph.
Each pair of vertices is adjacent.
Each pair of edges is adjacent but not parallel.

 Definition: Loop

 Definition: Parallel Edges

 Definition: Simple Graph

 Definition: Adjacent Vertices

 Definition: Adjacent Edges

 Definition: Incident

 Definition: Isolated Vertex

 Definition: Degree(of a vertex)

 Definition: deg v

v

 Note 14.2.1

degv = #{ edges that are incident to v but not loops at v} +2 ⋅ #{ loops at v}.

 Example : Properties of our very basic example graph.14.2.1
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There are no loops.
Each vertex is incident to two non-loop edges, so each vertex has degree 

The graph of Example 14.1.3 has the following properties.

It is not a simple graph.
There are three parallel edges connecting  and 
There are two loops at vertex  (and these are also parallel edges).
The parallel edges between  and  are adjacent, as are the two loops at 
Vertices  and  are adjacent, and vertex  is adjacent to itself.
Vertices  and  are incident to the three edges running between them, and vertex  is incident to its two loops.
Vertex  is isolated
For degrees we have

The number of edges in a graph is an important measure both of how “connected” the graph is, as well as how much “redundancy”
the graph contains.

the number of edges in the graph 

Suppose  is a graph with vertex set  Then,

Proof Idea.

If an edge  is a loop at vertex  then it contributes  to  Otherwise, if edge  connects vertices  and  ( ),
then it contributes  to each of  and  In every case, each edge contributes exactly  to the sum of the vertex
degrees.

In every graph, the number of vertices of odd degree is even.

Proof Idea.

Otherwise, the sum of the degrees of all vertices would be odd, which contradicts the theorem above.

An odd fellow throws an odd party and invites an even number of other equally-odd people. Each odd person at the party is
friends with an odd number of other odd people at the party. Is this odd party even possible?

Solution

Create a simple graph with the people at the party as vertices, where two vertices are connected by a single edge if and only if
the two people are friends. As each person has an odd number of friends at the party, the degree of each vertex is odd. But the
number of party attendees is also odd, since there are an even number of invitees, plus the host himself. So we have an odd
number of vertices each with odd degree, which the corollary above says is not possible.

2.

 Example : Properties of our slightly more complicated example graph.14.2.2

v

1

.v

2

v

3

v

1

v

2

.v

3

v

1

v

2

v

3

v

1

v

2

v

3

v

4

degv

1

=deg = 3,v

2

degv

3

= 4, degv

4

= 0.

 Definition: |E|

G= (V ,E)

 Theorem : Sum of degrees is twice the number of edges.14.2.1

G= (V ,E) V = { , ,… , }.v

1

v

2

v

n

deg +deg +…deg = 2|E|.v

1

v

2

v

n

e ,v

i

2 deg .v

i

e v

i

v

j

≠v

i

v

j

1 degv

i

deg .v

j

2

 Corollary : Odd degrees are even.14.2.1

 Example 14.2.3
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Subgraphs

a graph that is a part of a larger graph

graph  is a subgraph of graph 

Without a diagram, how can we tell if a graph  is a subgraph of another graph  First, each vertex
of  should also be a vertex of  so that  And also, each edge of  should also appear as an edge in  (Though
we shouldn't just write  and not only because  and  are actually sets — see Activity 14.5.2.)

Just as  and  for every set  we consider  and  for every graph 

Determine all possible subgraphs of the graph in Example 14.1.2.

Solution

First, every graph contains the empty graph as a subgraph. Next, a nonempty subgraph of this particular graph can contain one,
two, or all three vertices. We can write out all nonempty possibilities in a general way based on the number of vertices in the
subgraph. In each graph below we require the vertex indices  to all be distinct and to satisfy 

Figure : All possible subgraphs of our basic example graph from Example 14.1.2.

There are  subgraphs of each of the first three types in Figure . There are also  subgraphs of the fourth and fifth types.
Therefore, including the empty graph, there are  subgraphs of this example graph.

Complete graphs

a graph in which every pair of distinct vertices is connected by exactly one edge

1. Complete graphs are simple.
2. For each  there is a unique complete graph  with 
3. If  then every vertex in  has degree 
4. Every simple graph with  or fewer vertices is a subgraph of 

 Definition: Subgraph

 Definition: ⪯ GG

′

G

′

G

 Remark

= ( , )G

′

V

′

E

′

G= (V ,E)?

G

′

G, ⊆ V .V

′

G

′

G.

⊆E,E

′

E

′

E

 Note 14.2.2

∅ ⊆A A⊆A A, (∅, ∅)⪯G G⪯G G.

 Example 14.2.4

i, j, k 1 ≤ i, j, k≤ 3.

14.2.1

3 14.2.1 3

18

 Definition: Complete Graph

 Proposition : Properties of complete graphs.14.2.1

n≥ 0, = (V ,E)K

n

|V | = n.

n≥ 1, K

n

n−1.

n .K

n
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Figure : Complete graphs with    and  vertices.14.2.1 1, 2, 3, 6
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Draw the complete graphs  and 

Is there a complete graph 

This page titled 14.2: Properties of Graphs is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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14.3: Adding Information to Graphs

a graph in which each edge is assigned a weight or cost, usually a numerical value

an ordered triple  where  is an ordinary graph and  is a function with some set  as codomain

elements of the image 

We usually label each edge with its weight on diagrams for the graph.

A road map with distances as weights is a weighted graph. Below is a simplified road map of the area around Camrose,
Alberta. The vertex set is the set of cities, and the edge set is the set of highways. For example, the two-city set {Camrose,
Edmonton} represents the edge on the graph between Camrose and Edmonton, and corresponds to Highway 21.

Figure : Road map of the area around Camrose, Alberta.
Table : Table of values for distance weight function.

 Definition: Weighted Graph(Working Definition)

 Definition: Weighted Graph(Formal Definition)

(V ,E,w), (V ,E) w : E→W W

 Definition: Weights

w(E) ⊆W

 Example : A road map weighted by distances14.3.1

14.3.1

14.3.1

e w(e)

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83470?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/14%3A_Graphs/14.03%3A_Adding_Information_to_Graphs


GNU Free Documentation License 14.3.2 https://math.libretexts.org/@go/page/83470

{Camrose, Edmonton}

{Edmonton, Leduc}

{Leduc, Wetaskiwin}

{Wetaskiwin, Camrose}

The edges in the graph are weighted by the (rounded) highway distances between cities. Formally, this is a function  from the
edge set to the natural numbers. The input-output relationship defining this function is tabulated above right.

Variations on Example  include any kind of transportation or communication network with
transportation/communication lines as edges. Possible weights assigned to an edge include: length of the line; amount of time it
takes a vehicle/message to travel along the line from one node to the next; capacity of the line in
vehicles/passengers/messages/data per unit time; etc..

a graph in which each edge can be given a direction, “pointing” to one of its incident vertices

an ordered pair  where  is a finite set and  is an unordered, possibly empty list of elements of 

Again, elements of  are the vertices and elements of  are the edges of the graph. For an ordinary graph, edges were represented
by subsets of  because when specifying an edge, the order of the vertices which are to be incident to the edge is irrelevant. For a
directed graph, the order of the vertices incident to an edge now matters, so we use ordered pairs of vertices to specify an edge. If 

 for some  consider the direction of  to be 

Consider

We draw the graph  with arrows to indicate the direction of edges.

Figure : Diagram of the directed graph 

Invent a formal definition for directed, weighted graph.

This page titled 14.3: Adding Information to Graphs is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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 Example 14.3.2

14.3.1

 Definition: Directed graph (working definition)

 Definition: Directed graph (formal definition)

(V ,E), V E V ×V

V E

V

e= (v, ) ∈ Ev

′

v, ∈ V ,v

′

e v→ .v

′

 Example : A basic directed graph.14.3.1

V = { , , , },v

1

v

2

v

3

v

4

E = {( , ), ( , ), ( , ), ( , ), ( , ), ( , )}.v

1

v

2

v

1

v

2

v

2

v

3

v

3

v

2

v

4

v

3

v

4

v

4

G= (V ,E)

14.3.1 G= (V ,E).

 Checkpoint 14.3.1
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14.4: Important Examples

We can use a graph to visualize the power set of a finite set  let  be the directed graph where, for vertices 
 (that is, subsets ), the ordered pair  is an edge in  if the following two conditions are

satisfied:

 and

there does not exist a subset  such that 

Note: The second condition is to avoid cluttering the graph with extra edges that do not add any extra information.

For example, consider  and

 
So we can draw a graph to represent the subset relationships of  with arrows to point from subset to superset.

Figure : Directed graph to represent the subset relationships between elements of 

It is somewhat natural to draw the graph with the largest subsets of  at the top (or at the bottom). If we decide that arrows will
always point upwards, we can unclutter our graph by just drawing lines instead of arrows for edges.

We can use graphs to visualize other kinds of mathematical relationships.

For integers  write  if  divides  that is, if  is also an integer. In this case, we say that  divides 

Set

 
Let  be the directed graph where, for integers  with  the ordered pair  is an edge in  if
the following two conditions are satisfied:

 Example : A power set graph.14.4.1

A: (P(A),E)

B,C ∈P(A) B,C ⊆A (B,C) E

B⫋C;

D⊆A B⫋D⫋C.

A= {a, b, c}

P(A) = { ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } .

P(A),

14.4.1 P(A).

A

 Example : A division graph.14.4.2

m,n, m ∣ n m n; n/m m n.

V = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

G= (V ,E) m,n ∈ V m < n, (m,n) E

m ∣ n;
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there does not exist an integer  such that  and  but 

We can use this directed graph to visualize the set  with respect to the divides relationship. Again, we agree that arrows will
always point up, but do not actually draw them. Note that the prime numbers all appear at the bottom.

Figure : Directed graph to represent the relationship of division between elements of 

You get a summer job with the Prospective Student Office at the University of Alberta's Augustana Campus in Camrose,
Alberta. In May and June, your job is to visit Alberta high schools and meet with students who are thinking of applying to
Augustana. Below is a map of the cities and towns you must visit, given as a weighted graph with distances in kilometres as
weights. To save on gas, you would like to visit each city and town exactly once, and do so while travelling the shortest
distance possible.

P ∈ V m ∣P P ∣ n, P≠m,n.

V

14.4.2 V .

 Example : Travelling salesman problem.14.4.3
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Figure : Road map of major centres in Alberta as a weighted graph.

This is a difficult problem, and gets more difficult as the number of cities and roads increases.

This page titled 14.4: Important Examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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14.5: Activities

Draw all possible simple graphs with  vertices.

Hint.

See Statement 4 of Proposition 14.2.1.

Suppose  is a graph. Decide the truth of the following statement.

Every pair of a subset  and a subcollection  defines a subgraph  of 

Draw a graph where the nodes are students present in today's class. Draw edges between pairs of students that are in the same
group today. Additionally, draw an edge between a member of your group and another student if that pair was in a group
together last class.

For each of the following graphs, write out its formal definition as either a (regular) graph, a weigthed graph, or a directed
graph, as appropriate.

a. 
Figure 

 Activity 14.5.1

4

 Activity 14.5.2

G= (V ,E)

⊆ VV

′

⊆EE

′

= ( , )G

′

V

′

E

′

G.

 Activity 14.5.3

 Activity 14.5.4

14.5.1

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/93223?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/14%3A_Graphs/14.05%3A_Activities
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/14%3A_Graphs/14.02%3A_Properties_of_Graphs


GNU Free Documentation License 14.5.2 https://math.libretexts.org/@go/page/93223

b. 
Figure 

c. 
Figure 

14.5.2

14.5.3
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Consider the website Facebook as a graph where vertices are profiles and edges represent “friendship”.

a. Should this graph be a directed graph? Why or why not?
b. Is this graph simple? complete? Justify your answers.
c. What does the degree of a vertex represent?
d. Could this graph have isolated vertices?
e. Suppose the following graph is a subgraph of the Facebook graph.

Figure 

i. What is the largest party one of these people could throw where each party-goer is Facebook friends with every other
party-goer? Justify your answer.

ii. Assume all of the people in this graph live in the same geographic area. Which pair of non-friends are most likely to
become friends in the future? Which pair of non-friends are least likely to become friends in the future? Justify your
answers.

This page titled 14.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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14.6: Exercises

Consider the graph in Figure 14.6.1.

Figure : An example graph.

a. Are vertices 1 and 2 incident?
b. Are any vertices adjacent to themselves?
c. Is vertex 3 adjacent to vertex 6?
d. Is this a simple graph?
e. Compute the degree of each vertex in the graph. Then verify that the sum of the degrees is equal to twice the number of

edges. (See Theorem 14.2.1.)

a. How many edges does the complete graph with ten vertices have?

Hint.

See Theorem 14.2.1.

b. Generalize your result to a formula for the number of edges in the complete graph with  vertices.

a. Draw an example of a simple graph that has no vertices of odd degree.
b. Draw an example of a simple graph that has no vertices of even degree.

 Exercise 14.6.1

14.6.1

 Exercise 14.6.2

n

 Exercise 14.6.3
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Given a collection of sets  the intersection graph of the collection is the simple graph that has a vertex for each
of the sets in the collection, with two vertices joined by an edge if and only if the two corresponding sets have nonempty
intersection. Draw the intersection graph of the following collection of sets.

Complement of a graph.
Exercises 5–7 concern the following definition.

the simple graph that has the same vertex set as  but in which two vertices are joined by an edge if and only if those same
two vertices are not joined by an edge in 

Draw the complement of the simple graph in Figure .

 Exercise 14.6.4

, ,… , ,A

1

A

2

A

n

= {1, 2, 3, 4, 5},A

1

= {2, 4, 6, 8},A

2

= {3, 5, 12},A

3

= {5, 8, 10}.A

4

 Definition: Complement(of a simple graph )G

G,

G

 Exercise 14.6.5

14.6.2
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Figure : A simple graph.

What is the complement of a complete graph?

Suppose  is a simple graph with  vertices. Determine a relationship between the number of edges in  the number of edges
in the complement of  and the number of edges in the complete graph  with  vertices.

Hint.

Recall that every simple graph with  vertices is a subgraph of 

14.6.2

 Exercise 14.6.6

 Exercise 14.6.7

G n G,

G, K

n

n

n .K

n
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15.1: Motivation

Looking at a map of Alberta, you might decide that there are three reasonable driving routes from Camrose to Red Deer and
three reasonable driving routes from Red Deer to Drumheller. Define a graph  with cities as vertices and routes as
edges. If we travel between Camrose, Red Deer, and Drumheller on these routes, we find that any multi-city trip is a finite
sequence from  which starts and ends at a vertex and alternates between vertices and edges.

Figure : Driving routes between Camrose, Red Deer, and Drumheller.

For example,

 
is a trip that travels back and forth between Camrose and Drumheller, via Red Deer each time, and that never uses the same
route twice. Notice that we cannot extend this trip without repeating a route.

This page titled 15.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Driving routes on a graph.15.1.1

G= (V ,E)
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15.2: Walks, trails, and paths
Suppose  is a graph.

a finite sequence  of elements from  with each  and each  such that edge 
 connects vertices  and 

a walk that ends at the same vertex at which it started (that is, )

a walk that isn't closed (that is, )

a walk that traverses no edge more than once

a walk that passes through no vertex more than once, except possibly the endpoints 

We may also apply the adjectives open and closed to trails and paths.

Consider the graph in Example 15.1.1.

1. The “trip” we found in the example is a trail of maximal length starting at vertex 
2. The walks  and  are both paths, the first open and the second closed.
3. The walk  is neither a path nor a trail.

Consider the following graph.

G= (V ,E)

 Definition: Walk
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 Definition: Closed Walk
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 Definition: Open Walk
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 Definition: Trail

 Definition: Path
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 Note 15.2.1

 Example 15.2.1
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 Example : Paths and Trails15.2.2
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Figure : A example graph to illustrate paths and trails.

This graph has the following properties.

1. Every path or trail passing through  must start or end there but cannot be closed, except for the closed paths:

2. Walk  is both a trail and a path.
3. Walk  is a trail but not a path.

Consider again the graph in Figure  from Example . How many trails from  to  exist? How many of those
trails are paths? Are there any paths from  to  that are not trails?

Solution

We can solve this using a graph! The graph in Figure  was created by mapping out all possible trails starting at  and
ending at  moving across one edge at a time. Each node in this new (directed) graph is labelled with a partial walk that is a
continuation of the walk assigned to the node above it. Each leg in the graph stops when the associated walk being followed
reaches  and cannot be continued without repeating another edge. To save space in the node labels, we have used “…” to
mean the walk from the previous node.
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 Example 15.2.3

15.2.1 15.2.2 v

3

v

4

v

3

v

4

15.2.1 v

3

,v

4

v

4

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83479?pdf


GNU Free Documentation License 15.2.3 https://math.libretexts.org/@go/page/83479

Figure : Mapping the trails from  to  in the graph of Figure .

Counting all the nodes in the graph of Figure  that are labelled with a walk that ends in  we see that there are ten trails
from  to  Also, we can easily see that only three of the trails are paths.

We can use the same technique to map out all paths from  to  but this time we terminate a leg when we cannot move off a
vertex without repeating a vertex that is already visited in that walk. (Note that the walk  is a path, but if we extend
this walk in any way it will no longer be a path.)

Figure : Mapping the paths from  to  in the graph of Figure .

So there are only three paths from  to  and each of them is a trail.
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Every open path is a trail.

Proof

We will prove the contrapositive: a walk that is not a trail cannot be an open path. So suppose  is a walk in a graph, and
that  traverses edge  twice.

Case  is a loop. 
Then  passes through the vertex incident to  at least three times, hence is not a path.

Case  is not a loop. 
Write  Initially, there are two possibilities to consider. If each of the two assumed traversals of  moves from 
to  then  passes through each of  at least twice, and hence is not a path. If the two assumed traversals of  move 
to  and  to  respectively, then  passes through  at least twice. If  traverses  twice because it both starts and ends
there, then  is not open. If  is open and traverses  twice, then  is not a path. So in any case,  is not an open path.

In Activity 15.1, you are asked to create counterexamples of some statements related to the above proposition.

This page titled 15.2: Walks, trails, and paths is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Proposition 15.2.1
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 Note 15.2.2
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15.3: Connected Vertices, Graphs, and Components

a pair of vertices  such that there exists a walk beginning at  and ending at 

every pair of vertices is connected

Figure 

Figure 

Being connected is a symmetric relationship between vertices, and walks connecting vertices can be shortened to paths.

 Definition: Connected Vertices

v, v

′

v v

′

 Definition: Connected Graph

 Example : A Connected Graph15.3.1

15.3.1

 Example : A Nonconnected Graph15.3.2

15.3.2
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Assume  are vertices in a graph. Then the following are equivalent.

1. Vertices  are connected.
2. There exists a walk beginning at  and ending at 
3. There exists a path beginning at  and ending at 
4. There exists a walk beginning at  and ending at 
5. There exists a path beginning at  and ending at 

Proof Idea.

As usual, we prove the equivalence of multiple statements using a cycle of logical implications.

Statement 1 implies Statement 2. 
This is the definition of connected vertices.

Statement 2 implies Statement 3. 
Suppose  is a walk with  and  If this walk is not a path, then there is a repeated
vertex. Suppose  with  Then

 
is also a walk from  to  Keep removing repeated vertices in this way until a path is obtained.

Statement 3 implies Statement 4. 
Just reverse the order of the vertices and edges in the path from  to  to obtain a walk in the other direction.

Statement 4 implies Statement 5. 
As before, if the walk from  to  is not a path, each pair of repeated vertices can be eliminated by “snipping out” the
portion of the walk between them.

Statement 5 implies Statement 1. 
Reverse the path from  to  to obtain a walk from  to  thereby satisfying the definition of connected vertices.

A nonconnected graph can be considered to simply be a collection of connected subgraphs.

a connected subgraph of a graph which is not contained in any larger connected subgraph of that graph

a subgraph  of a graph  that satisfies the following:

i.  is connected;
ii. if  is a subgraph of  such that  is connected and  then 

Considering Figure  below as a single graph, we have placed the connected components (of which there are three) into
boxes.

 Proposition : Characterizations of connected vertices.15.3.1
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 Definition: Connected Component(Working Definition)

 Definition: Connected Component(Formal Definition)
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 Example : Breaking a nonconnected graph into connected components.15.3.3

15.3.3
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Figure : A nonconnected graph as a collection of connected subgraphs.

This nonconnected graph has other connected subgraphs. For example, the subgraph that contains only the left-most two
vertices joined by a single edge is a connected subgraph. But that connected graph is not a connected component because it is a
subgraph of a larger connected subgraph.

15.3.3

 Example : Connected components do not depend on how the graph is represented diagrammatically.15.3.4
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(a) Overlapping connected components.
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(b) Non-overlapping connected components.

Figure : Two different representations of the same nonconnected graph.

The two graphs in Figure  are in fact the same graph, just with different diagrammatic representations. In the second
version of the graph, we have again identified connected components by placing each of them in a box.

If a graph is connected, then the entire graph is a largest connected subgraph possible.

Figure : A connected graph with one connected component

As in our working definition, informally the connected components of a graph  are the “largest” subgraphs of  that are
connected. The second condition in the formal definition is just a positive way of stating the working definition. We will make
the general notion of “largest” more precise in a similar way in Chapter 19 (see the definition of maximal element, the Test for
Maximal/Minimal Elements, as well as Example 19.5.3).

If  is connected and  then 

Proof

By (strong) induction.

Base case . 
Every graph with only one vertex is connected and satisfies 

Induction step. 
Assume  and the statement is true for all  Let  be a connected graph with  vertices. We must
show 

Arbitrarily choose some vertex  and let  be the graph obtained from  by removing  and all edges
incident to it. Unfortunately,  might not be connected. Let  be its connected components. Write 

 and let  Then each  is connected and has at most  vertices, so the induction hypothesis
applies. Also note that  since every vertex of  except  is part of exactly one subgraph 

15.3.4

15.3.4

 Example : A connected graph has one component.15.3.5

15.3.5

 Note

G G

 Theorem : A lower bound for the number of edges in a connected graph.15.3.1
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(a) “Extra” vertex  and the remaining subgraph 

(b)
Subgraph

 split into connected components.

Figure : Removing “extra” vertex  splitting remaining subgraph into connected components.

Therefore, using our induction hypothesis we may calculate
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However, since  is connected,  must be the glue keeping the subgraphs  together. That is, for each  there must be
at least one edge between  and some vertex of  Therefore,

This page titled 15.3: Connected Vertices, Graphs, and Components is shared under a GNU Free Documentation License 1.3 license and was
authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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15.4: Articulation vertices, bridges, and edge connectivity

a vertex of a graph such that, if it were to be removed (along with any edges incident to it), the resulting subgraph would have
more connected components than the original

an edge of a graph such that, if it were to be removed, the resulting subgraph would have more connected components than the
original

In the graph of Figure , the central vertex that is common to both diamond-shaped subgraphs is an articulation vertex, as
removing it and all edges incident to it would leave two unconnected “ears” on the outside of the two diamond shapes.

Figure : A graph featuring a single, central articulation vertex.

In the graph of Figure , edge  is a bridge, and each of  and  are articulation vertices.

 Definition: Articulation Vertex

 Definition: Bridge

 Example : An articulation vertex.15.4.1

15.4.1

15.4.1

 Example : A bridge between two articulation vertices.15.4.2

15.4.2 e v v

′
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Figure : A graph featuring a bridge between two articulation vertices.

In the proof of Theorem 15.3.1, our conception was that “extra” vertex  was an articulation vertex, where removing it would
create a subgraph  that would be split into connected components  (Though it is possible  is not an
articulation vertex, if subgraph  is connected.)

the minimum number of edges that must be removed from a connected graph to obtain a nonconnected subgraph

Edge connectivity measures redundancy in the graph, as each edge that can be removed without breaking the graph into
nonconnected subgraphs must be incident to a pair of vertices that remain connected via some other walk through the graph.

The edge connectivity of the graph in Figure  is 

A bridge represents a “single point of failure,” and every graph that contains a bridge has edge connectivity  For example,
removing the single edge  in the graph of Figure  breaks the graph into two nonconnected subgraphs.

Suppose  is a connected graph. Let   and let  be the smallest degree of any of the vertices of 
Then the edge connectivity of  cannot be greater than either of the integers  or 

Proof.

First, if  is a vertex of  with  then removing all of the edges incident to  will cause  to become isolated and 
 to become nonconnected. So the edge connectivity of  cannot be greater than 

Next, recall that the sum of the degrees of the vertices of  is equal to  (Theorem 14.2.1). Using this, we have

15.4.2

 Remark 15.4.1
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 Definition: Edge Connectivity

 Remark 15.4.2

 Example 15.4.3

15.4.1 2.

 Example : Edge connectivity in a graph with a bridge.15.4.4

1.

e 15.4.2

 Proposition : Two upper bounds for edge connectivity.15.4.1

G= (V ,E) n= |V |, e= |E|, d G.

G d ⌊2e/n⌋.
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So  The number  is rational, but may not be an integer. However,  is definitely an integer, so we must have

 Since we have already concluded that the edge connectivity of  is no greater than  it also can be no
greater than 

With  and  as in the statement of the theorem,  is equal to the sum of the degrees of the vertices (Theorem 14.2.1), so 
 is equal to the average degree of vertices in the graph.

Your tree fort rivals have set up a communication system of tin cans and strings. You have mapped out their network as in
Figure . To minimize the risk of crab apple welts, what is the minimum number of strings you must cut to disrupt their
communications?

Figure : TreeFort CommNet.

Solution

There are  nodes and  edges, so Proposition  tells that the edge connectivity must be no greater than  By
inspection, the edge connectivity is not  as there are no bridges. However, we may isolate either fort ALPHA or ECHO with
two snips.

This page titled 15.4: Articulation vertices, bridges, and edge connectivity is shared under a GNU Free Documentation License 1.3 license and
was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts
platform.

d ≤ 2e/n. 2e/n d

d ≤ ⌊2e/n⌋. G d,

⌊2e/n⌋.

 Remark 15.4.3

n e 2e

2e/n

 Example 15.4.5

15.4.3

15.4.3

6 10 15.4.1 ⌊20/6⌋= 3.
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15.5: Activities

In each of the following, devise a graph that contains the requested type of walk. (You do not need to create one graph that
contains all three types of walks; you may draw three separate graphs.)

a. A closed path that is not a trail.
b. An open trail that is not a path.
c. A closed trail that is not a path.

Devise a graph with exactly four vertices, each of which has degree  so that the graph is

a. nonconnected.
b. connected.

In each of the following, devise a connected graph with at least five vertices that has the requested properties. Do so without
looking at the example graphs in this chapter. (You do not need to create one graph that contains all of the properties; you may
draw a separate graph for each task below.)

a. Contains a bridge.
b. Every edge is a bridge.
c. Contains an articulation vertex.
d. Every vertex of degree at least  is an articulation vertex.

Does increasing the number of edges in a graph increase its edge connectivity?

Figure : A nonconnected graph.

In the graph of Figure , explain why the subgraph formed by vertices   and  along with all edges incident to these
vertices, fails the formal definition of connected component. Identify which of the two conditions of this formal definition the
subgraph fails, and explicitly describe how the subgraph fails to meet that condition.

 Activity 15.5.1

 Activity 15.5.2

5,

 Activity 15.5.3

2

 Activity 15.5.4

 Activity 15.5.5

15.5.1

15.5.1 2, 3, 4,
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Suppose  is a simple, nonconnected graph with  vertices that is maximal with respect to these properties. That is, if you
tried to make a larger graph in which  is a subgraph, this larger graph will lose at least one of the properties (a) simple, (b)
nonconnected, or (c) has  vertices.

What does being maximal with respect to these properties imply about  That is, what further properties must  possess
because of this assumption?

An Euler circuit is a closed trail in a connected graph G that traverses every edge of G. Since it must be a trail, you could say
that an Euler circuit traverses each edge of G exactly once (as well as ending at the same node at which it begins).

Prove that if a connected graph contains an Euler circuit, then every vertex in that graph must have even degree.

This page titled 15.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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15.6: Exercises

Recognizing paths and trails.

In each of Exercises 1–4, you are given a walk through a graph. Determine whether the walk is a path, a trail, or neither. Also
determine whether the walk is open or closed.

Consider the graph in Figure .

Figure : An example graph.

a. Determine four different paths from vertex  to vertex 
b. Determine four different trails from vertex  to vertex  none of which are paths.
c. Determine four different walks from vertex  to vertex  none of which are trails.

 Example 15.6.1
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 Example 15.6.2
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 Example 15.6.3
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 Example 15.6.4
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 Example 15.6.5
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Consider the graph in Figure .

Figure : An example graph.

a. How many different trails are there from vertex  to vertex 
b. How many different paths are there from vertex  to vertex  (Hint: See Proposition 15.2.1.)
c. How many different walks are there from vertex  to vertex 

Recognizing bridges.

In each of Exercises 7–10, identify each edge that is a bridge.

 Example 15.6.6

15.6.2

15.6.2

1 5?

1 5?

1 5?

 Exercise 15.6.7
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Figure 15.6.3

 Exercise 15.6.8
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Figure 15.6.4

 Exercise 15.6.9
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Figure 

The complete graph with  vertices.

Among all possible nonconnected graphs with  vertices, let  be one with the maximum number of edges. Prove that  has
exactly two connected components.

Hint.

Argue by contradiction.

Suppose  is a connected graph that contains a closed path that is also a trail. Prove that it is possible to remove any single
edge from this path and be left with a connected subgraph of  That is, prove that no edge in this path could be a bridge.

15.6.5

 Exercise 15.6.10

n

 Exercise 15.6.11

n H H

 Exercise 15.6.12
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Prove that a graph in which every edge is a bridge cannot have a closed path that is also a trail.

This page titled 15.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 15.6.13
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16.1: Motivation

You have set up your own tree-fort communication system out of tin cans and strings. (See Worked Example 15.4.5.) However,
peace has broken out and your communication system is underused. To address the crippling tin-can-and-string stilts shortage,
you want to dismantle as much of your network as possible without disrupting communications.

Figure : TreeFort CommNet.

Closed paths are redundant, as communication could be routed around such a path in two directions. So try to eliminate closed
all paths; two possible solutions appear in Figure .

 Example : Reducing redundancy.16.1.1

16.1.1

16.1.2
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(a) One possible result of removing redundancy.

(b) Another possible result of removing redundancy.

Figure : TreeFort CommNet (after removing redundant communication paths).16.1.2
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A more difficult modification of the above example would be to include the length of string in each communication link as a
weight for that edge in the graph, and then try to determine a configuration that removes the most string from the network
without disrupting communications.

This page titled 16.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Remark 16.1.1
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16.2: Basics

a path that consists of a single vertex

a closed path

a nontrivial cycle that is also a trail

If  contains vertices  and edge  then  is a nontrivial cycle which is not proper.

contains no proper cycles

synonym for acyclic graph

a connected, acyclic graph

The graph in Figure  is acyclic. Each of its connected components is a tree.

 Definition: Trivial Path

 Definition: Cycle

 Definition: Proper Cycle

 Note 16.2.1

G v, v

′

e= {v, },v

′

v, e, , e, vv

′

 Definition: Acyclic Graph

 Definition: Forest

 Definition: Tree

 Example : A forest of trees.16.2.1

16.2.1
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Figure : A nonconnected acyclic graph.

In Worked Example 15.2.3, we attempted to determine all possible trails from one node to another in a given graph. The graph
in Figure 15.2.2 that we used to explore possible trails in the given graph is an example of a decision tree — at each node we
“branched out” to new possibilities in continuing the trail. As the name suggested, the connected graph we ended up with is a
tree.

1. Every subgraph of an acyclic graph is acyclic.
2. Every connected subgraph of an acyclic graph is a tree. In particular, each connected component of an acyclic graph is a

tree.

This page titled 16.2: Basics is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

16.2.1

 Example : Decision trees are trees.16.2.2

 Proposition : Subgraphs of forests.16.2.1
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16.3: Identifying Trees

The following are equivalent for a graph  with  vertices.

1. Graph  is a tree.
2. Graph  is acyclic but the addition of any new edge would create a cycle.
3. Graph  contains no loops and contains exactly one path between each pair of distinct vertices.
4. Graph  is connected but every edge of  is a bridge.
5. Graph  is connected and has exactly  edges.
6. Graph  is acyclic and has exactly  edges.

Proof of the equivalence of Statements 1–4.

Statement 1 implies Statement 2.

Suppose  is a tree. By definition, it is acyclic. Furthermore, suppose we add an edge between vertices  Since trees
are connected, there was already a path from  to  in  Traversing the new edge from  back to  closes that path to a
cycle.

Statement 2 implies Statement 3.

Considering the contrapositive, we will assume that Statement 3 is false, and prove that this implies that Statement 2 must
also be false.

For Statement 3 to be false, one of the following must be true.

i. Loops exist in 
ii. Some pair of distinct vertices in  is not connected.

iii. Some pair of distinct vertices in  is connected by more than one path.

In the first case,  would not be acyclic, as a loop is the most basic form of cycle. In the second case, adding an edge
between these two vertices that were previously unconnected by a path would not create a cycle, as the rest of that cycle
other than the new edge would have been a path between the two vertices. And in the third case, if a pair of vertices is
connected by more than one path then the parts of two such paths that are different could be concatenated (one forward, one
reversed) to create a cycle, so that  must be not be acyclic.

Thus, in all cases that make Statement 3 false, Statement 2 is also false.

Statement 3 implies Statement 4.

Again, we will consider the contrapositive, assuming that Statement 4 is false and proving that Statement 3 is also false.

For Statement 4 to be false, one of the following is true.

i. Graph  is not connected.
ii. Some edge in  is not a bridge.

In the first case,  must contain at least one pair of vertices that is not connected by any path. For the second case, suppose
edge  in  is a loop. If  is a loop, then  contains loops. If  is not a loop, then it is an edge between a pair of distinct
vertices, say  and  But then removing  from  would leave a subgraph  that still contains both  and  and which
is still connected. So this subgraph (and hence ) must contain a path between  and  that does not involve  On the
other hand,  is also a path between  and  So  is a pair of distinct vertices in  for which there is more than
one path between them.

Thus, in all cases that make Statement 4 false, Statement 3 is also false.

Statement 4 implies Statement 1.

Again, we consider the contrapositive of this logical implication, assuming that Statement 1 is false and proving that
Statement 4 is also false. However, since both statements contain the substatement that  is connected, we will not negate
that part.

 Theorem : Characterizations of trees.16.3.1
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So assume that  is connected but contains a proper cycle. We aim to prove that at least one edge in  is not a bridge. In
Activity 16.7.4, you are asked to prove that none of the edges in the proper cycle that  contains is a bridge, which will
complete the proof.

Proof of the equivalence of Statement 1, Statement 5, and Statement 6.

Statement 1 implies Statement 5. 
Assume that  is a tree. Then it is connected. To prove that the number of edges is  we proceed by (strong)
induction on  the number of vertices in 

For the base base case of   is the only possibility, as loops are not allowed in a tree.

Now the induction step. Assume that every tree with  vertices has  edges. Choose some edge in  By
Statement 4, removing that edge creates two connected components,  and  As  is acyclic, these connected
components are both trees (Statement 2 of Proposition 16.2.1). Let  represent the number of vertices in 
respectively, so that  Since each of  and  must be strictly less than  we may apply our indution
hypothesis to each of  and  so that  has exactly  edges and  has exactly  edges.

Figure : Tree  splits into subtrees  after removal of an edge.

Adding up the number of edges in  and  along with the single edge in  that was removed to create these two
connected components, we obtain  as desired.

Statement 5 implies Statement 6. 
Consider the contrapositive of this logical implication, assuming that Statement 6 is false and proving that Statement 5 is
also false. However, since both statements contain the substatement that  we will not negate that part.

So assume that  has  edges, but contains a proper cycle. We must prove that  cannot be connected in this case.
Choose an edge  in the proper cycle and create a subgraph  by removing  Subgraph  now has  vertices but 
edges, and so by the contrapositive of Theorem 15.3.1  cannot be connected. That means that  contains a pair of
vertices  between which no walk exists. If there is a walk between  in  but not in  then that walk must
involve the chosen  But then there would be another walk between  in  avoiding  via the rest of the proper cycle
containing  And this other walk would be in  since it does not involve  Except that we assumed there was no walk
between  in  hence there also can be no walk between them in  Thus,  is not connected.

Statement 6 implies Statement 1. 
Again, consider the contrapositive of this logical implication, assuming that Statement 1 is false and proving that Statement
6 is also false. However, since both statements contain the substatement that  is acyclic (part of the definition of tree), we
will not negate that part.
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So assume that  is acyclic but not a tree, i.e. that  is not connected. We must prove that the number of edges in  is
different from  where  is the number of vertices in  Let  be the connected components of 
Now, since  is assumed acyclic, each of these connected components is a tree (Statement 2 of Proposition 16.2.1). We
have already proved above that Statement 1 implies Statement 5, so if we write  for the number of vertices in component 

 then we may conclude that the number of edges in component  is  As the components make up the entire
graph  we may add up the vertices and edges in each component to get the totals in the full graph:

 

 
Since we assume  is not connected, we have  and so  as desired.

 

This page titled 16.3: Identifying Trees is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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16.4: Depth-first and breadth-first searches
Let  be a graph. Given vertices  of  we might wish to find a path from  to  if one exists. We can do this by constructing
a tree 

To create a tree  that is a subgraph of a graph  wherein a path (in ) from  to  is evident, begin with  containing the
single vertex  and no edges. Set 

1. Look for a vertex  of  which is adjacent to  but not already in  If such a  is found, go to Step 2. Otherwise, go to
Step 3.

2. Adjoin  and a single edge between  and  to  If  stop — a path from  to  exists and is now contained in 
Otherwise, set  and return to Step 1.

3. If you have arrived here immediately after beginning the algorithm (i.e. with  still set to be ), stop — there is no path
from  to  Otherwise, return to the vertex  adjoined before  Set  and return to Step 1.

In Step 1 of the algorithm, there is no specification on how to choose a single  satisfying the search criteria from multiple
possibilities. In other words, there is flexibility in the implementation of the algorithm here, and for the problem at hand there
may be implementation choices that are more expedient then others.

We perform a Depth-first search on the graph in Figure , attempting to find a path from vertex  to vertex 

Figure : An example graph to illustrate depth-first search.

In carrying out the algorithm, if we always choose the vertex with the smallest label in Step 1, we obtain the graph in Figure 
 (a). The graph in Figure  (b) is the result of always choosing the vertex with the largest label.

G v, v
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G, v ,v
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T ⪯G.

 Algorithm : Depth-first search.16.4.1
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 Note 16.4.1

y

 Example : Carrying out a depth-first search.16.4.1

16.4.1 1 9.

16.4.1

16.4.2 16.4.2
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(a) Result of always choosing to move to the next adjacent vertex of smallest index.

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83486?pdf


GNU Free Documentation License 16.4.3 https://math.libretexts.org/@go/page/83486

(b) Result of always choosing to move to the next adjacent vertex of largest index.

Figure : Results of two different implementation choices in a depth-first search.

The depth-first search will not necessarily yield the shortest path from  to  The following algorithm will.

To create a tree  that is a subgraph of a graph  wherein the shortest path in  from  to  is evident, begin with 
containing the single vertex  and no edges.

1. For each vertex  in  added in the last application of this step (or, in the case of the first application of this step, for 
), adjoin all vertices of  that are adjacent to  and not already in  along with a single edge between each such

vertex and  If at least one vertex has been adjoined to  in this step, proceed to Step 2. Otherwise, stop — there is no
path from  to  in 

2. If  was one of the vertices adjoined in Step 1, stop — a path from  to  exists and is now contained in  Otherwise,
return to Step 1.

Below is the result of the breadth-first algorithm, carried out to find a path from  to  in the graph in Figure  from
Example .

Figure : The result of a breadth-first search.

This page titled 16.4: Depth-first and breadth-first searches is shared under a GNU Free Documentation License 1.3 license and was authored,
remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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 Algorithm : Breadth-first search.16.4.2
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 Example : Carrying out a breadth-first search.16.4.2

1 9 16.4.1
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16.5: Spanning Trees

a subgraph that contains all the vertices of the parent graph

a spanning subgraph that is a tree

Here is the complete graph with four vertices.

Figure 

And here are ten different spanning trees for 

Figure 

If we carry out either of the depth-first or breadth-first search algorithms, but aren't looking for a path between specific vertices, the
end result will be a spanning tree for the original graph.

the result of performing the depth-first search algorithm on a graph, continuing until all vertices in the original graph appear in
the search tree

the result of performing the breadth-first search algorithm on a graph, continuing until all vertices in the original graph appear
in the search tree

 Definition: Spanning Subgraph

 Definition: Spanning Tree

 Example : Spanning trees for the complete graph .16.5.1 K

4

16.5.1

.K

4

16.5.2

 Definition: Depth-first Spanning Tree

 Definition: Breadth-first Spanning Tree
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Figure  contains depth-first and breadth-first spanning trees for the graph in Figure 16.4.2, our source of examples for
depth-first search (Example 16.4.1) and breadth-first search (Example 16.4.2).

(a) Depth-first spanning tree for the graph in Figure 16.4.1.

(b) Breadth-first spanning tree for the graph in Figure 16.4.1.

Figure : Examples of depth- and breadth-first spanning trees.

This page titled 16.5: Spanning Trees is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated
by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Depth-first and breadth-first spanning trees.16.5.2

16.5.3

16.5.3
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16.6: Binary Searches

a tree in which every node has degree  or  except for a single node of degree 

the unique node of degree  in a binary search tree

a node of degree  in a binary search tree

the construction of a binary search tree through a series of “either-or” decisions

Estimate the root of  that lies in  to  decimal places.

Solution

The Intermediate Value Theorem from first-year calculus says that if  is continuous on the closed interval  and 
 are nonzero and opposite signs, then  has a root in the open interval  We have  and 

 so there is indeed a root in  The graph in Figure  was obtained by performing a binary search by
splitting into subintervals.

Figure : A binary search tree search for the root of a polynomial.

 Definition: Binary Search Tree

1 3, 2

 Definition: Initial Node

2

 Definition: Terminal Node

1

 Definition: Binary Search

 Example 16.6.1

f(x) = 4 +6 +3x−1x

3

x

2

(0, 1) 2

f [a, b]

f(a), f(b) f (a, b). f(0) =−1 < 0

f(1) = 12 > 0, (0, 1). 16.6.1

16.6.1
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Since  the root must be in the subinterval  This tells us to round down to  instead of rounding
up to  so we conclude that the root is approximately 

This page titled 16.6: Binary Searches is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated
by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

f(0.225) > 0, (0.22, 0.225). 0.22

0.23, 0.22.
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16.7: Activities

a. Draw two different connected graphs with five vertices each in which every edge is a bridge.
b. How many edges are in each of the examples that you drew in Task a?
c. Would it be possible to add an edge to either of the examples that you drew in Task a without creating a cycle?

a. Draw two different simple graphs with  vertices in which every pair of vertices has a single path between them.
b. How many edges are in each of the examples that you drew in Task a?
c. Would it be possible to add an edge to either of the examples that you drew in Task a without creating a cycle?

Suppose that  is a connected graph that consists entirely of a proper cycle. (See Figure .)

Figure : A graph that consists entirely of a proper cycle.

Let  represent the subgraph of  that results by removing a single edge. Argue that  remains connected.

Suppose that  is a connected graph that contains a proper cycle. Let  represent the subgraph of  that results by removing
a single edge from  where the edge removed is part of the proper cycle that contains. Argue that  remains connected.

Notes.
Your argument here needs to be (slightly) different from your argument in Activity 16.7.3.
Make sure you are using the technical definition of connected graph in your argument. What are you assuming about 
and what do you need to verify about 

 Activity 16.7.1

 Activity 16.7.2

5

 Activity 16.7.3

G 16.7.1

16.7.1

G

′

G G

′

 Activity 16.7.4

H H

′

H

H, H H

′

H,

?H

′
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16.8: Exercises

Prove that if a graph contains a closed trail then it also contains a proper cycle.

Spanning trees.
For each of the graphs in Exercises 2–3, draw a spanning tree by inspection.

Figure 

Figure 

Reducing to a spanning tree.

For each of the graphs in Exercises 4–5, use the following algorithm to obtain a spanning tree.

If the graph contains a proper cycle, remove one edge of that cycle.
If the resulting subgraph contains a proper cycle, remove one edge of that cycle.
If the resulting subgraph contains a proper cycle, remove one edge of that cycle.
etc..
Continue until there are no proper cycles left.

 Exercise 16.8.1

 Exercise 16.8.2

16.8.1

 Exercise 16.8.3

16.8.2

 Exercise 16.8.4
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Figure 

Figure 

Depth-first and breadth-first spanning trees.

For each of the graphs in Exercises 6–8, determine both a depth-first and breadth-first spanning tree. Use any vertex you like as the
starting node.

16.8.3

 Exercise 16.8.5

16.8.4

 Exercise 16.8.6
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Figure 

Figure 

16.8.5

 Exercise 16.8.7

16.8.6

 Exercise 16.8.8
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Figure 

This page titled 16.8: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

16.8.7

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/93277?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/16%3A_Trees_and_searches/16.08%3A_Exercises
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


1

CHAPTER OVERVIEW

17: Relations
17.1: Basics
17.2: Operations on Relations
17.3: Properties of Relations
17.4: Graphing Relations
17.5: Activities
17.6: Exercises

This page titled 17: Relations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.01%3A_Basics
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.02%3A_Operations_on_Relations
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.03%3A_Properties_of_Relations
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.04%3A_Graphing_Relations
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.05%3A_Activities
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations/17.06%3A_Exercises
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/17%3A_Relations
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 17.1.1 https://math.libretexts.org/@go/page/83489

17.1: Basics

a rule which assigns to some elements of a set  several elements from a set 

element  is related to element  by relation 

a relation between elements of the same set

Compare this working definition of relation with our working definition of function in Section 10.1.

As the name implies, a relation describes some relationship of elements of a set  to elements of a set 

Let  represent the set of living cats, and let  represent the set of living humans. Then one relationship between elements of
these two sets can be expressed by writing  to mean that cat  is the pet of human 

Let  represent the set of living humans. Then one type of relationship between elements of this set can be expressed by
writing  to mean that human  is the parent of human 

One type of relationship between elements of  can be expressed by writing  to mean that nonzero natural number 
divides nonzero natural number 

Just as with functions, we want to avoid the use of the undefinable word “rule”. Notice that a relation just pairs elements of a set 
with elements of a set  we have seen this before.

a subset of a Cartesian product

With this formal definition, writing  becomes the same as saying “  is a relation between elements of  and ” and
writing  becomes the same as writing 

With this formal definition, a relation on a set  means a subset of 

 Definition: Relation (working definition)

A B

 Definition: a R b

a ∈ A b ∈ B R

 Definition: Relation on a Set

 Remark 17.1.1

A B.

 Example : Pet relation17.1.1

C H

c R h c h.

 Example : Parent relation17.1.2

H

Rh

1

h

2

h

1

.h

2

 Example : Division relation17.1.3

N

<0

m ∣ n m

n.

A

B;

 Definition: Relation (formal definition)

R⊆A×B R A B,

(a, b) ∈ R a R b.

 Note 17.1.1

A A×A.
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Recall that our formal definition of function states that a function  is a special kind of subset of  But every
subset of  can be considered as a relation, so a function is a special kind of relation.

The difference is that a function  must assign exactly one element of  to each element of  whereas a relation from 
 to  can assign any number of elements of  (even zero) to each element of  That is, a relation does not have to be well-

defined, and can be left undefined on some elements of 

See.

Example 10.1.12 and Example 10.1.13.

Consider

 
Then  means  This relation is the same as the identity function 

Consider

 
Then  means  This relation is in general not a function, since it is not well-defined: an element of  can be
contained in several subsets of 

A relation between pairs of objects, such as the ones we have considered so far, is sometimes called a binary relation. But we can
consider relationships between collections of more than two objects.

a subset of  for sets 

Let  represent the set of all living humans. Then we can define a ternary relation  by taking  to
mean that humans  are the parents of human 

This page titled 17.1: Basics is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Remark 17.1.2

A→B A×B.

A×B

A→B B A,

A B B A.

A.

 Example : Identity relation17.1.4

R= {(a, a) : a ∈ A} ⊆A×A.

Ra

1

a

2

= .a

1

a

2

: A→A.id

A

 Example : Element relation17.1.5

R= {(a,C) : a ∈ C} ⊆A×P(A).

a R C a ∈ C. A

A.

 Definition: Ternary Relation

A×B×C A,B,C

 Example : A human (usually) has two biological parents17.1.6

H R⊆H

3

( , , ) ∈ Rh

1

h

2

h

3

,h

1

h

2

.h

3
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17.2: Operations on Relations
Viewing relations as subsets of Cartesian products suggests ways to build new relations from old.

the relation where  means that at least one of  or  is true

the relation where  means that both  and  are true

the relation where  means that  is not true

alternative notation for 

Considering relations as subsets of Cartesian products, the above relation operations mean precisely the same thing as the
corresponding set operations.

Consider the relations  and  on  and let  be the union  Then  means that at least one of  or  is
true. That is,  is the same as the relation 

Let  represent the set of all living humans. Let relations  be defined by

 if  have the same father; and
 if  have the same mother.

Set  Then  means that  have the same parents.

Let  be a universal set and consider the relation  on  Then  means that  is not a subset of  which can
only happen if some elements of  are not in  In other words,  means that 

Careful.

Relation  does not (necessarily) mean  Draw a representative Venn diagram to see why.

Unlike functions, which can only be reversed if bijective, every relation can be reversed by simply stating the relationship in the
reverse order.

the relation where  means that  is true

 Definition: Union (of relations ),R

1

R

2

a ( ∪ ) bR

1

R

2

a bR

1

a bR

2

 Definition: Intersection (of relations ),R

1

R

2

a ( ∩ ) bR

1

R

2

a bR

1

a bR

2

 Definition: Complement (of relation )R

a bR

C

a R b

 Definition: a R̸ b

a bR

C

 Note 17.2.1

 Example : Union of “less than” and “equal to” relations.17.2.1

< = R, R <∪=. x R y x < y x = y

R ≤.

 Example : Sibling relations.17.2.2

H , ⊆H×HR

F

R

M

a bR

F

a, b

a bR

M

a, b

= ∩ .R

P

R

F

R

M

a bR

P

a, b

 Example : Complement of the subset relation.17.2.3

U ⊆ P(U). A B⊆

C

A B,

A B. A B⊆

C

A∩ ≠∅.B

C

A B⊆

C

A⊆ .B

C

 Definition: Inverse (of a relation )R

b aR

−1

a R b
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As subsets of Cartesian products, if  then  and  if and only if 
A relation  and its inverse  express the same relationship between elements of two sets  and  just phrased in the
opposite order. In logical terms, 

Let  represent the set of all living humans, and let  represent the relation on  where  means human  is the
parent of human  Then  means human  is the child of human  Both relations express the same information,
but in a different order.

Recall that  is a relation on  where  means that  divides  Then for the inverse relation,  means  is a
multiple of  Both relations express the same information, but in a different order.

Let  represent the set of all possible logical statements. We have a relation  on  where  means that logical
statement  involves the same statement variables and has the same truth table as logical statement  Since  if and
only if  we conclude that the logical equivalence relation on  is its own inverse.

There are two more set-theoretic ideas we can reinterpret as relations.

the relation between sets  and  corresponding to the empty subset  so that  is always false

the relation between sets  and  corresponding to the full subset  so that  is always true.

This page titled 17.2: Operations on Relations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
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 Note 17.2.2

R⊆A×B, ⊆B×A,R

−1

(a, b) ∈ R (b, a) ∈ .R

−1

R R

−1

A B,

b a⇒ a R b.R

−1

 Example : Parent/child relations.17.2.4

H R H Rh

1

h

2

h

1

.h

2

h

2

R

−1

h

1

h

2

.h

1

 Example : Inverse of Division Relation.17.2.5

∣ N

>0

m ∣ n m n. n m∣

−1

n

m.

 Example : Inverse of Logical Equivalence17.2.6

L ≡ L , A≡B

A B. A≡B

B≡A, L

 Definition: Empty Relation

A B ∅ ⊆A×B, a ∅ b

 Definition: Universal Relation

A B U =A×B⊆A×B, a U b
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17.3: Properties of Relations
Here we list some important properties a relation  on a set  can have.

Reflexivity

 is true for all 

The relation  on  is reflexive, but the relation  is not.

To verify that relation  on set  is reflexive, prove that 

Symmetry and antisymmetry

for every pair of elements  for which  is true,  is also true.

On the set of all living humans, the relation “  is the sibling of ” is symmetric, but neither the relation “  is the brother of ”
nor the relation “  is the sister of ” is symmetric.

To verify that relation  on set  is symmetric, prove that

for every pair of distinct elements  either  or  (or both)

The distinct part of the definition is important, since if  are not distinct (i.e. ), then obviously both 
and  can be simultaneously true because they are the same statement.

The relation  on  is antisymmetric.

On  the relation

R A

 Definition: Reflexive

a R a a ∈ A

 Example : A reflexive and a non-reflexive relation on the set of real numbers.17.3.1

≤ R <

 Test : Reflexive Relation.17.3.1

R A (∀a ∈ A)(a R a).

 Definition: Symmetric

, ∈ Aa

1

a

2

Ra

1

a

2

Ra

2

a

1

 Example : Sibling relation is symmetric, brother/sister relation is not.
17.3.2

a b a b

a b

 Test : Symmetric Relation17.3.2

R A

(∀ ∈ A)(∀ ∈ A)( R ⇒ R ).a
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a

1

a

2

a

2

a

1

 Definition: Antisymmetric

, ∈ A,a

1

a

2

 R̸ a

1

a

2

 R̸ a

2

a

1

 Remark 17.3.1

, ∈ Aa

1

a

2

=a

2

a

1

Ra

1

a

2

Ra

2

a

1

 Example : An antisymmetric relation on real numbers.17.3.3

≤ R

 Example : A relation can be neither antisymmetric nor symmetric.17.3.4

A= {a, b, c},

R= {(a, b), (b, a), (a, c)} ⊆A×A
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is neither antisymmetric nor symmetric.

The identity relation on any set, where each element is related to itself and only to itself, is both antisymmetric and symmetric.

As Example  and Example  demonstrate, antisymmetry is not the opposite of symmetry. However, for a relation 
on set  we may think of symmetry and antisymmetry as being at opposite ends of a spectrum, measuring how often we have
both  and  for 

By definition, antisymmetry is when we never have both. On the other hand, symmetry is when we always have both or
neither; that is, for every distinct pair  we either have both  and  or we have both  and 

 However, a relation can fall between symmetry and antisymmetry on the spectrum, such as in Example , where
we sometimes have both (e.g. both  and  for that example relation) and we also sometimes have only one (e.g. 

 but  for that example relation).

The equality relation on a set is a special case that is both symmetric and antisymmetric. In fact, equality is essentially the only
relation that is both symmetric and antisymmetric — see Exercise 17.6.22.

In symbolic language, the definition of antisymmetric relation is

 
However, in practise we usually prove antisymmetry using one of two logically equivalent formulations.

To verify that relation  on set  is antisymmetric, prove either one of the following logical statements.

The first formulation for proving antisymmetry provided above can be thought of as just a different way to say that it is not
possible to have both  and  for distinct elements  The second formulation essentially says that the only
possible way to have both  and  is if 

In Exercise 17.6.21 you are asked to prove that each of the two different ways of verifying that a relation is antisymmetric
provided in the test above are equivalent.

Transitivity

for every triple of elements  for which both  and  are true,  must also be true.

 Example : A relation can be both antisymmetric and symmetric.17.3.5

 Remark 17.3.2

17.3.4 17.3.5 R
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17.3.4

a R b b R a

a R c c R̸ a

(∀ ∈ A)(∀ ∈ A)( ≠ ⇒  R̸  ∨  R̸  ).a
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 Test : Antiymmetric relation.17.3.3

R A
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 Remark 17.3.3

Ra

1

a

2

Ra

2

a

1

, .a

1

a

2

Ra

1

a

2

Ra

2

a

1

= .a

2

a

1

 Note 17.3.1

 Definition: Transitive
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The relation on the set of all humans who ever lived defined by “  is the ancestor of ” is transitive.

To verify that relation  on set  is transitive, prove that

This page titled 17.3: Properties of Relations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Ancestry is transitive.17.3.6

a b

 Test : Transitive relation.17.3.4

R A

(∀ ∈ A)(∀ ∈ A)(∀ ∈ A)( R ∧ R ⇒ R ).a
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17.4: Graphing Relations
Recall that if  is a relation on a set  then formally  is a subset  In other words,  is a collection of ordered pairs of
elements from 

Also recall that in a directed graph, the edge collection is formally defined to be a collection of ordered pairs of vertices. So when
the set  is finite, we may regard  as a set of vertices and  as a collection of (directed) edges in a graph!

To summarize, we may represent a relation  by the directed graph  The vertices of the graph are the elements of
 and for elements  we draw an arrow from  to  if  is true.

Recall that for natural numbers  and   means “  divides ”. Consider this relation on the finite set 
 The graph of this relation appears in Figure .

Figure : Graph of the division relation on a small set of natural numbers.

Note that each vertex has a loop since every number divides itself.

Using the same division relation on the same set  as in Example  above, we may obtain the graph for the inverse
relation by just reversing the direction of all the arrows in the graph in Figure .

How are the properties of a relation reflected in its graph?

Reflexive relations.
In this case,  is true for every element  so every vertex has a loop. For example, the relation in Example  is
reflexive, and we see this mirrored in the graph in Figure  by the placement of a loop at every node.

When a relation is understood to be reflexive, we often omit the loops from its graph to reduce visual clutter.

Symmetric relations.

In this case, the conditional  is always true. Therefore, in the graph for  whenever we have an arrow from 
to  we must also have an arrow from  to 

R A, R A×A. R

A.

A A R

R⊆A×A (A,R).

A, , ∈ A,a

1

a

2

a

1

a

2

Ra

1

a

2

 Example : Graph of the division relation on a finite set of natural numbers.17.4.1

m n, m ∣ n m n

A= {2, 3, 4, 5, 6, 7, 8, 9, 10}. 17.4.1

17.4.1

 Example : Graph of an inverse relation.17.4.2

A 17.4.1

17.4.1

 Question 17.4.1

a R a a ∈ A, 17.4.1

17.4.1

 Remark 17.4.1

R ⇒ Ra
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2
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On the set  the relation

 
is symmetric, and we see this property reflected in the graph in Figure , as each pair of related (distinct) nodes has an
arrow in each direction between them.

Figure \(\
PageIndex

{2}\):
The graph of a basic symmetric relation.

When  is symmetric, arrows are essentially meaningless since between every pair of vertices we will have either no arrows or
one arrow in each direction. So we may as well draw the graph for  as an ordinary (undirected) graph instead of a directed
graph, replacing each pair of arrows with a single edge.

The relation in the previous example is more concisely depicted graphically as in Figure  below.

Figure : The simplified graph of a basic symmetric relation.

Antisymmetric relations.
In this case, we never have both  and  for  so in the graph for  no pair of vertices can have two
oppositely-directed arrows between them.

On the set  the relation

 
is antisymmetric, and we see this property reflected in the graph in Figure , as each pair of distinct nodes has at most one
arrow between them.

 Example : Graph of a symmetric relation.17.4.3

A= {a, b, c, d},

R= {(a, b), (b, a), (b, c), (c, b)}

17.4.2

 Remark 17.4.2

R

R

 Example : Simplified graph of a symmetric relation.17.4.4

17.4.3

17.4.3

Ra

1

a

2

Ra

2

a

1

≠ ,a

1

a

2

R,

 Example : Graph of an antisymmetric relation.17.4.5

A= {a, b, c, d},

R= {(a, a), (a, b), (c, b)}

17.4.4
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Figure : The graph of a basic antisymmetric relation.

Transitive relations.
In this case, the conditional  is always true. Therefore, in the graph for  every “chain” of two
arrows has a corresponding “composite” arrow.

On the set  the relation

 
is transitive, and we see this property reflected in the graph in Figure , as each pair of arrows forming a “chain” between
three nodes has a corresponding “composite” arrow from the first node in the chain to the third.

Figure : The graph of a basic antisymmetric relation.

In the graph of a transitive relation, we often omit the “composite” arrows to reduce visual clutter, as we can infer from
“chains” of arrows where the “composite” arrows would go. For example, we did this in both the power set graph in Example
14.4.1 (see Figure 14.4.1) and in the division graph in Example 14.4.2 (see Figure 14.4.2). It should be obvious that the
relations “is a subset of” and “divides” are transitive, so there was no need to clutter up the graphs of those relations with extra
“composite” arrows — we could trace the fact that one set was a subset of another or the fact that one number divides another
by following a chain of arrows through intermediate nodes, as necessary.

This page titled 17.4: Graphing Relations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

17.4.4

R ∧ R ⇒ Ra
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a

2

a

3

a

1

a

3

R,

 Example : Graph of an transitive relation.17.4.6

A= {a, b, c, d, e},

R= {(a, b), (b, c), (a, c), (d, e), (e, d), (d, d), (e, e)}

17.4.5

17.4.5

 Remark 17.4.3
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17.5: Activities

In each of the following, describe the requested combination of relations in words (i.e. in the form “a is related to b if …”). Try
to “simplify” your description, if possible.

In Task h and Task i, the symbol  represents a relation on  where  means that  and  have the same remainder
when divided by  (It may help to know that this is equivalent to  dividing the difference )

a.  on 
b. Union of “longer than” and “shorter than” on  for some alphabet 
c. Union of “longer than”, “shorter than”, and “same length as” on  for some alphabet 
d. Intersection of “longer than” and “shorter than” on  for some alphabet 
e. The complement of  on 
f. The inverse of  on 
g. The inverse of “  if ” on 
h. The intersection of  and  on 
i. The intersection of  and  on 

In each of the following, you are given a set  and a relation  on  Determine which of the properties reflexive, symmetric,
antisymmetric, and transitive  possesses.

a.   is 
b.  is the set of all straight lines in the plane,  means “is parallel to.”
c.  is the set of all straight lines in the plane,  means “is perpendicular to.”
d.  for some alphabet   means “is the same length as.”
e.  for some alphabet   means “is shorter than.”
f.  for some alphabet   is some fixed choice of letter in   means “contains the same number of occurrences of 

 as.”
g.  is an arbitrary set,  is the empty relation.
h.  is an arbitrary set,  is the universal relation.

a. Suppose  is a relation on a set  Convince yourself that  is symmetric. (See the Symmetric Relation Test.)
b. Recall that  represents the relation “divides” on sets of integers. Draw the directed graph for  on the set 

 Then describe how to obtain the graph for the symmetric relation  as an undirected
graph from the graph of  using only an eraser.

For each of the properties reflexive, symmetric, antisymmetric, and transitive, carry out the following.

Assume that  and  are nonempty relations on a set  that both have the property. For each of    and 
determine whether the new relation

i. must also have that property;
ii. might have that property, but might not; or

iii. cannot have that property.

Any time you answer Statement i or Statement iii, outline a proof. Any time you answer Statement ii, provide two examples:
one where the new relation has the property, and one where the new relation does not. (You may use graphs to describe your
examples.)

 Activity 17.5.1

≡

k

Z, m n≡

k

m n
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Σ.
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Σ.

≤ Z.

≤ Z.

xRy 2x+3y = 0 Z.

≡

5

≡

7
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≡

2
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4
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 Activity 17.5.2

A R A.

R
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A R

A R

A=Σ

∗

Σ,R

A=Σ

∗

Σ,R
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 Activity 17.5.3

R A. R∪R

−1

| |

A= {2, 4, 6, 8, 10, 12, 14, 16}. | ∪ |

−1

R

 Activity 17.5.4

R S A ,R

C

R∪S, R∩S, ,R
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17.6: Exercises

Directed graph for a relation. 

In each of Exercises 1–4, you are given a relation on a specific set. Draw a directed graph that represents the relation.

Relation  on 

Relation  on 

Relation  on 

Relation “has the same number of occurrences of the letter  as” on  for alphabet 

Recall that a relation on a set  is just a subset of the Cartesian product  Write out all relations on the set 
as subsets of  Which of these relations are reflexive? Symmetric? Antisymmetric? Transitive?

Testing reflexivity/symmetry/antisymmetry/transitivity.
In each of Exercises 6–17, you are given a relation on a specific set. Determine which of the properties reflexive, symmetric,
antisymmetric, and transitive the given relation possesses.

Relation  on 

Relation  on 

Relation  on 

Relation  on  where  is an arbitrary, unspecified set.

Relation “is taller than” on the set of all living humans.

 Exercise 17.6.1

⫋ P({a, b, c}).

 Exercise 17.6.2

< {1, 2, 3, 4}.

 Exercise 17.6.3

≡

3

.N

<13

 Exercise 17.6.4

a Σ

∗

4

Σ = {a, z}.

 Exercise 17.6.5

A A×A. A= {a, b}

A×A.

 Exercise 17.6.6

< R.

 Exercise 17.6.7

≥ R.

 Exercise 17.6.8

| Z.

 Exercise 17.6.9

⊆ PX, X

 Exercise 17.6.10
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Relation “is parallel to” on the set of all straight lines in the plane.

Relation “is perpendicular to” on the set of all straight lines in the plane.

Relation “has the same length as” on  where  is an arbitrary, unspecified alphabet set.

Relation “is shorter than” on  where  is an arbitrary, unspecified alphabet set.

Relation “contains the same number of occurrences of the letter  as” on  where  is an arbitrary, unspecified alphabet set
and  is some fixed choice of letter in 

Relation  on the set of all logical statements involving the statement variables 

Relation  defined by “  if ” on a set  where  is an arbitrary, unspecified function.

Properties of relations reflected in their graphs.
In each of Exercises 18–19, you are given a list of properties. Draw the directed graph of a relation on the set  that
possesses the given properties.

Symmetric and transitive, but neither reflexive nor antisymmetric.

Reflexive, antisymmetric, and transitive, but not symmetric.

Prove that a relation is symmetric if and only if it is equivalent to its own inverse relation.

As described in Section 17.3, the definition of antisymmetric relation can be formulated in symbolic language as

 
Prove that each of the two conditionals provided in the Antisymmetric Relation Test are equivalent to the symbolic formulation
of the definition of antisymmetric given above.

 Exercise 17.6.11

 Exercise 17.6.12

 Exercise 17.6.13
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 Exercise 17.6.14
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Σ

 Exercise 17.6.15

x ,Σ

∗

Σ

x Σ.

 Exercise 17.6.16
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 Exercise 17.6.17

R Ra
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A, f : A→B

{a, b, c, d}

 Exercise 17.6.18

 Exercise 17.6.19

 Exercise 17.6.20

 Exercise 17.6.21
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Suppose  is a relation on a set  that is both symmetric and antisymmetric. Prove that  is a subset of the identity relation 

This page titled 17.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 17.6.22

R A R

{(x, x)|x ∈ A}.
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18.1: Motivation
There are often situations where we want to group certain elements of a set together as being “the same.”

At the end of this course, your instructor will assign each student a grade. In this system, every student who receives a “B” had
roughly the same performance in the course (in principle, anyways). That is, consider the set of all students in this course —
from the point of view of the grading system, the students in the subset of “B” students are all equivalent in performance.

This page titled 18.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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18.2: Basics and Examples
What properties should a relation on a set have to be useful as a notion of “equivalence”?

Each object in the set should be equivalent to itself. So the relation should be reflexive.
Equivalence should be bidirectional. That is, a pair of equivalent objects should be equivalent to each other. So the relation
should be symmetric.
We should be able to infer equivalence from chains of equivalence. So the relation should be transitive.

a relation on a set that is reflexive, symmetric, and transitive

symbol for an abstract equivalence relation (instead of the letter  that we've been using for abstract relations up until now)

Let  be the set of all possible logical statements built out of the statement variables  Show that logical
equivalence of statements is an equivalence relation on 

Solution

Reflexive. We have  for every statement  since  has the same truth table as itself.

Symmetric. If  then  have the same truth table, so 

Transitive. If  and  then  has the same truth table as  which has the same truth table as  So  has the
same truth table as  i.e. 

Here is an important equivalence relation on \(\mathbb{N}\) or on \(\mathbb{Z}\text{.}\)

an equivalence of integers, where two integers are equivalent if they have the same remainder when divided by 

integers  are equivalent modulo 

Verify that equivalence modulo  is an equivalence relation.

This page titled 18.2: Basics and Examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Definition: Equivalence Relation

Definition: ≡

R

Example 18.2.1

L , , ,… .p

1

p

2

p

3

L .

A⇔A A, A

A⇔B, A,B B⇔A.

A⇔B B⇔C, A B, C. A

C, A⇔C.

Definition: Equivalence Modulo n

n

Definition: m
1

≡

n

m

2

,m

1

m

2

n

 Checkpoint 18.2.1

n
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18.3: Classes, partitions, and quotients
As desired (see Section 18.1), an equivalence relation can be used to group equivalent objects together.

Consider  on  Notice that the elements in each of the following sets are all equivalent to each other with respect to 

 
Also notice that  is the disjoint union of the above sets.

In fact, we could do the same for every divisor  not just for  as  is also the disjoint union of the sets

 
and again elements in each of the above sets are all equivalent to each other with respect to 

the subset of  consisting of all elements that are equivalent to the given element  relative to a specific equivalence
relation  on  i.e. the set

the equivalence class of the element  relative to some specific equivalence relation on 

If we divide  by  we get  with  remainder. So the equivalence class of  relative to  consists of all natural numbers that
have remainder  when divided by 

 
Now,  is in this class because when we divide  by  we get  with  remainder. But if we had started with  instead of  we
would have also said that the equivalence class of  relative to  consists of all natural numbers that have remainder  when
divided by 

Example 18.3.1

≡

5

N. .≡

5

{0, 5, 10, 15,…}

{1, 6, 11, 16,…}

{2, 7, 12, 17,…}

{3, 8, 13, 18,…}

{4, 9, 14, 19,…}

N

n, n= 5, N

{ 0, n, 2n, 3n, … },

{ 1, n+1, 2n+1, 3n+1, …},

{ 2, n+2, 2n+2, 3n+2, …},

⋮

{ n−1, n+(n−1), 2n+(n−1), 3n+(n−1), … },

.≡

n

Definition: equivalence class (of an element )a

A a ∈ A,

≡ A;

{x ∈ A|x ≡ a}

Definition: [a]

a ∈ A A

Example : Equivalence classes of natural numbers modulo .18.3.2 5

8 5, 1 3 8 ≡

5

3 5:

[8] = {3, 8, 13, 18,…}.

3 3 5 0 3 3 8,

3 ≡

5

3

5:

[3] = {3, 8, 13, 18,…}.
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Suppose  is an equivalence relation on a nonempty set 

1. For every  we have 
2. For  with  we have 
3. For each pair  we have  if and only if 
4. For each pair  we have  if and only if 

Proof

Proof of Statement 1. 
This is just the reflexive property, 

Proof of Statement 2. 
If  then by definition we have both  and  Applying symmetry to the latter equivalence, we may
write  to which we may apply transitivity to obtain  as desired.

Proof of Statement 3. 
(⇒) 
Suppose  To verify  we follow the Test for Set Equality. First, assume  is an arbitrary element in 
Then  so  by the transitive property. Therefore,  as required. This shows that  the
argument to show  is almost exactly the same, just using the symmetric property to first obtain 

(⇐) 
By Statement 1 of this proposition, we have  If we assume  then we also have  which
means that  as required.

Proof of Statement 4. 
Let us prove the equivalent “double contrapositive” biconditional  (See Worked Example
2.1.2.)

(⇒) 
Suppose  Then  by Statement 3, so

 
But  is nonempty by Statement 1.

(⇐) 
Suppose  Then there exists some element  that is in both  and  so that both  and 

 By the symmetric property, we have  and combining this with  in the transitive property gives 

Statement 3 of Proposition  tells us that any member of an equivalence class may be used to define the class.

an element  used to define the equivalence class

a subset  so that for each  there exists exactly one  so that 

Remember that elements that are equivalent to one another relative to some equivalence relation are viewed to be “essentially the
same” from the point of view of the property used to define the equivalence relation. So different but equivalent elements become

Proposition : Properties of equivalence classes.18.3.1

≡ A.

a ∈ A, a ∈ [a].

a, , ∈ Aa

1

a

2

, ∈ [a],a

1

a

2

≡ .a

1

a

2

, ∈ A,a

1

a

2

≡a

1

a

2

[ ] = [ ].a

1

a

2

, ∈ A,a

1

a

2

≢a

1

a

2

[ ] ∩ [ ] = ∅.a

1

a

2

a≡ a.

, ∈ [a],a

1

a

2

≡ aa

1

≡ a.a

2

≡ a≡ ,a

1

a

2

≡ ,a

1

a

2

≡ .a

1

a

2

[ ] = [ ],a

1

a

2

x [ ].a

1

x ≡ ≡ ,a

1

a

2

x ≡ a

2

x ∈ [ ],a

2

[ ] ⊆ [ ];a

1

a

2

[ ] ⊆ [ ]a

2

a

1

≡ .a

2

a

1

∈ [ ].a

1

a

1

[ ] = [ ],a

1

a

2

∈ [ ],a

1

a

2

≡ ,a

1

a

2

≡ ⇔ [ ] ∩ [ ] ≠ ∅.a

1

a

2

a

1

a

2

≡ .a

1

a

2

[ ] = [ ]a

1

a

2

[ ] ∩ [ ] = [ ] ∩ [ ] = [ ].a

1

a

2

a

1

a

1

a

1

[ ]a

1

[ ] ∩ [ ] ≠ ∅.a

1

a

2

x ∈ A [ ]a

1

[ ],a

2

x ≡ a

1

x ≡ .a

2

≡ x,a

1

x ≡ a

2

≡ .a

1

a

2

18.3.1

Definition: equivalence class representative

a ∈ A

[a] = {x ∈ A|x ≡ a}

Definition: complete set of equivalence class representatives

C ⊆A x ∈ A a ∈ C x ∈ [a]
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interchangeable (see Section 18.1). When we have a complete set of representatives for the equivalence classes, we are deciding to
always interchange an element for the chosen representative of the class containing that element.

Continuing Example , we could represent the class of numbers that have remainder  by the number 

 
But it seems more “natural” to represent this class by the number 

 
Notice that each of the numbers  has a different remainder when divided by  so no two of them are equivalent.
That also means that each is in a different class (Statement 4 of Proposition ). But when we go past  the remainders
when divided by  start repeating: each of the numbers in the list  has the same remainder as the number in the
corresponding position in the list  And then the remainders repeat again when we go past  And so on. So it seems
“natural” to use  as a complete set of representatives of the equivalence classes for  modulo 

The definition of complete set of equivalence class representatives implicitly assumes that the equivalence classes “fill up” the
whole set  But that is always precisely the case.

a collection of subsets of a set  that are pairwise disjoint and whose union is 

one of the subsets that make up a partition of a set

Example : A complete set of equivalence class representatives for natural numbers modulo .18.3.3 5

18.3.2 3 8:

[8] = {3, 8, 13, 18,…}.

3:

[3] = {3, 8, 13, 18,…}.

0, 1, 2, 3, 4 5,

18.3.1 4,

5 5, 6, 7, 8, 9

0, 1, 2, 3, 4. 9.

0, 1, 2, 3, 4 N 5:

[0]

[1]

[2]

[3]

[4]

= {0, 5, 10, 15,…},

= {1, 6, 11, 16,…},

= {2, 7, 12, 17,…},

= {3, 8, 13, 18,…},

= {4, 9, 14, 19,…}.

A.

Definition: Partition

A A

Definition: Partition Cell
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Figure : A diagram illustrating a partition of a set, so that 

In essence, partition is just a synonym for disjoint union. So a collection of subsets form a partition when each element of the
set is in exactly one partition cell.

It is not necessary for a partition of a set to be made up of a finite (or even countable) number of cells; see the examples below.

If  is an equivalence relation on a set  then the equivalence classes with respect to  are a partition of 

Proof Idea

This theorem claims that every element of  is in exactly one equivalence class. But this follows from the statements of
Proposition .

Generalizing Example , each of the numbers  is its own remainder when divided by  And then the
pattern of remainders repeats, starting over at remainder  when we continue on to the numbers  So 

 is a complete set of equivalence class representatives, and the classes modulo  partition  into the
disjoint subsets

18.3.1 A = ⊔ ⊔ ⊔…⊔ .A

1

A

2

A

3

A

n

 Remark 18.3.1

 Note 18.3.1

Theorem : Equivalence classes form a partition.18.3.1

≡ A, ≡ A.

A

18.3.1

Example : Equivalence classes modulo .18.3.4 n

18.3.3 0, 1, 2, 3,… ,n−1 n.

0, n,n+1,… .

0, 1, 2, 3,… ,n−1 n N

[0]

[1]

[2]

[n−1]

= { 0, n, 2n, 3n, … },

= { 1, n+1, 2n+1, 3n+1, …},

= { 2, n+2, 2n+2, 3n+2, …},

⋮

= { n−1, 2n−1, 3n−1, 4n−1, …}.
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Let  be the set of all lines in the plane, and consider  if  are parallel. Then  partitions  into sets of parallel
lines.

Recall that for alphabet   is the subset of  consisting of all words whose length is exactly  Then

 
is a partition of  (See Exercise 9.9.9.)

Recall that a relation on  can be defined as a subset of  So consider the relation  on  defined by

 
Then  is the equivalence relation on  where  if  and its equivalence classes are precisely the sets  

Given a partition of a set  there exists an equivalence relation  on  whose equivalence classes are precisely the cells of
the partition.

Proof Idea.

Given a partition of  for each  there exists exactly one partition cell containing  So define  to mean
“elements  are contained in the same partition cell of ”

Theorem  and Theorem  combine to provide, for each set  a bijective correspondence

Determine an explicit equivalence relation  on  for which the equivalence classes give the following partition.

Solution

Notice that each cell in the partition contains a multiple of  along with the next two consecutive integers. So one way to
explicitly define the corresponding equivalence relation is: for  define  to be true if there exists  such that 

 (Note: Details showing that this is an equivalence relation are omitted.)

the subset of  whose elements are the equivalence classes of 

the quotient of  relative to equivalence relation  so that

Example 18.3.5

L ≡ℓ

1

ℓ

2

,ℓ

1

ℓ

2

≡ L

Example 18.3.6

Σ, Σ

∗

n

Σ

∗

n.

, , , …Σ

∗

0

Σ

∗

1

Σ

∗

2

.Σ

∗

Σ

∗

× .Σ

∗

Σ

∗

R Σ

∗

R = ( × ) ⊔ ( × ) ⊔ ( × ) ⊔ …Σ

∗

0

Σ

∗

0

Σ

∗

1

Σ

∗

1

Σ

∗

2

Σ

∗

2

R Σ

∗

w R y |w| = |y|, ,Σ

∗

n

n ≥ 0.

Theorem : Partitions arise from equivalence relations.18.3.2

A, ≡ A

A, a ∈ A a. ≡a

1

a

2

,a

1

a

2

A.

 Remark 18.3.2

18.3.1 18.3.2 A,

{equivalence relations on A} ⟷ {partitions of A}.

Example : Determining an equivalence relation from a partition.18.3.7

≡ Z

Z = … ⊔ {−3, −2, −1} ⊔ {0, 1, 2} ⊔ {3, 4, 5} ⊔ …

3

a, b ∈ Z, a ≡ b n ∈ Z

3n ≤ a, b ≤ 3n+2.

Definition: Quotient (of a set  relative to an equivalence relation )A ≡

P(A) ≡

Definition: A/≡

A ≡,

(A/≡) = {[a]|a ∈ A}
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Consider the partition of  from Worked Example , and the corresponding equivalence relation  To describe 
we just need to pick a representative of each class. The most obvious way in this case is

Let  represent the equivalence relation on  defined by

 and

for non-zero 

 
Determine the corresponding partition and quotient of 

Solution

First notice that  will be in an equivalence class all by itself. Next, consider the values that  can possibly take.

If  then  so 

If  then  so 

So this equivalence relation is just a fancy way of saying that  have the same sign. Therefore, all positive numbers will be
in the same equivalence class, and all negative numbers will be in the same equivalence class. It now makes sense that  is in a
class by itself, since  is neither positive nor negative. The partition of  corresponding to  is then

 
To describe  we just need to pick a representative of each equivalence class. One possibility is

 
so that

the function  defined by 

The natural projection  is always surjective, but it is almost never injective.

Recall that  represents the modulo-  equivalence relation on  In Example  we determined that there are five
equivalence classes, represented by elements  so that

 
Below are some examples of images of elements under the natural projection.

Example : A quotient described by class representatives.18.3.8

Z 18.3.7 ≡ . Z/ ≡ ,

(Z/≡) = {… , [−3], [0], [3], [6],…}.

Example : Determining a quotient.18.3.9

≡ Z

0 ≡ 0,

m,n ∈ Z,

m ≡ n if

m

|m|

= .

n

|n|

Z.

0 m/|m|

m > 0, |m| =m m/|m| = 1.

m < 0, |m| = −m m/|m| = −1.

m,n

0

0 Z ≡

Z = {… ,−3,−2,−1} ⊔ {0} ⊔ {1, 2, 3,…}.

Z/≡,

Z = [−1] ⊔ [0] ⊔ [1],

(Z/≡) = {[−1], [0], [1]}.

Definition: natural projection (on a set  relative to an equivalence relation )A ≡

A→(A/≡) a↦ [a]

 Note 18.3.2

A→(A/≡)

Example : Natural projection modulo- .18.3.10 5

≡

5

5 N. 18.3.3

0, 1, 2, 3, 4,

(N/ ) = {[0], [1], [2], [3], [4]}.≡

5
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18.4: Important examples

The “strongest” equivalence relation on a set  is the identity relation, where  if and only if  In this case, each
equivalence class is a singleton:  for each  This equivalence relation yields the “finest” or most “granular”
partition of  into the union of all the singleton sets in  Here, the quotient  is essentially the same as  the
natural projection  is a bijection.

We can partition  into the subsets of even and odd numbers. This is the same partition obtained from the modulo-
equivalance relation  and we have quotient

 
This quotient is how we construct boolean algebra (see Chapter 3). The convention  in boolean algebra comes from
defining addition in the quotient so that

Similarly to Example 18.4.2, if we consider the modulo-  equivalence relation  on  we have

 
We can transfer the arithmetic of  to  by defining

 
For example, in modulo-  arithmetic,

 
and

There are a few things to check about this new modulo-  arithmetic.

Check that modulo-  addition and multiplication are well-defined; that is, make sure the result of each of these operations
never depends on the choices of representatives of the equivalence classes involved.

Check that modulo-  addition and multiplication satisfy all the usual rules of arithmetic. That is, check that modulo-  addition
and multiplication are both associative and commutative, and that multiplication distributes over addition.

The natural numbers  and  play special roles in  with respect to ordinary addition and multiplication, respectively. Do their
equivalence classes  and  play the same special roles in  with respect to modulo-  addition and multiplication,
respectively?

Example : Equality is the strongest form of equivalence.18.4.1

A a≡ b a= b.

[a] = {a} a ∈ A.

A, P(A). A/ ≡ A:

A→(A/ ≡)

Example : Even and odd.18.4.2

N 2

,≡

2

(N/ ) = {[0], [1]}.≡

2

1+1 = 0

[1] +[1] = [1+1] = [2] = [0].

Example : Modulo-  arithmetic.18.4.3 n

n ≡

n

N,

(N/ ) = {[0], [1], [2],… , [n−1]}.≡

n

N N/≡

n

[m] + [n] = [m+n], [m] ⋅ [n] = [mn.

5

[2] +[4] = [6] = [1]

[2] ⋅ [4] = [8] = [3].

 Checkpoint  (Bonus content) Properties of modulo-  arithmetic.18.4.1 n

n

n

n n

0 1 N

[0] [1] N/ ≡

n

n
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For a function  we may consider elements of the domain equivalent if they produce the same output under  That
is, the relation  on  defined by “  means ” is an equivalence relation.

Suppose  is a function, and consider the equivalence relation  on  described in Example 18.4.5. How could one
tell whether or not  is injective by looking at the equivalence classes in  under 

Equivalence relations allow us to take another point of view of the concept of inverse image of an element from Section 10.5.

Suppose  and consider the equivalence relation  on  described in Example 18.4.5. Then we may create a new,
“induced” function

Figure 18.4.8. Diagram illustrating the induced map  
In this function definition, an entire equivalence class is being mapped to the output image of one of the elements of that class
under the original function  But under this equivalence relation, each element in a specific equivalence class shares the same
output image in the codomain as all the other elements in that class. For this reason, allowing our input-output rule definition 

 to depend on the choice of class representative  is well-defined, and hence is a function.

See.

Example 10.1.13.

Moreover, the induced function  is always injective, even if  is not. If we assume that  is surjective (or, if  is not
surjective we could replace our codomain  with the image set  so that  is surjective — see restricting the domain), then

 will also be surjective, hence bijective. This means that  is invertible, with inverse

 

In some sense  is an inverse of  except that it is a function  instead of 

This page titled 18.4: Important examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Example : Same image under a function.18.4.4

f : A→B, f .

≡

f

A a

1

≡

f

a

2

f( ) = f( )a

1

a

2

 Checkpoint : Classes of the “same image” relation for an injective function.18.4.2

f : A→B ≡

f

A

f A ?≡

f

Example : Inverting a non-injective function.18.4.1

f : A→B, ≡ A

: (A/ ≡)f

~

[a]

→B,

↦ f(a).

.f

~

f .

([a]) = f(a)f

~

a

f

~

f f f

B f(A) f

f

~

f

~

:Bf

~

−1

b

→(A/ ),≡

f

↦{a ∈ A|f(a) = b} = ({b}).f

−1

f

~

−1

f , B→(A/ )≡

f

B→A.

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83497?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/18%3A_Equivalence_relations/18.04%3A_Important_examples
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 18.5.1 https://math.libretexts.org/@go/page/93869

18.5: Graph for an equivalence relation
Given an equivalence relation on a finite set  what will we observe if we draw the relation's graph?

Since an equivalence relation is reflexive, we might as well omit the loops at each node.

Since an equivalence relation is symmetric, we might as well replace the pairs of arrows between each related pair of nodes
with a single edge, turning the directed graph into an ordinary graph.

Since an equivalence relation partitions a set into a disjoint union of equivalence classes (Theorem 18.3.1), the graph of an
equivalence relation will be disconnected, with each connected component representing a specific equivalence class.

Since each element in an equivalence class is equivalent to every other element in the class (Statement 2 of Proposition 18.3.1),
each connected component in the graph will be complete.

Let  and let  be the equivalence relation on  defined by  if  That is, two subsets of 
 will be considered equivalent if they contain the same number of elements. Figure  contains the graph for  with

reflexive loops and symmetric bidirectional arrows omitted.

A,

Example : Graph of the “same cardinality” equivalence relation.18.5.1

A= {a, b, c, d}, ≡ P(A) B≡B

′

|B| = | |.B

′

A 18.5.1 ≡,
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Figure : Graph for equivalence of cardinality on a power set.18.5.1
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18.6: Activities

For each of the relations provided, carry out the following steps.

i. Verify that the relation is an equivalence relation on the set 
ii. Consider a few example equivalence classes, for the specific example representative elements provided (if applicable).

What other elements are in that class?
iii. Devise a general way to describe every equivalence class, using your experience from the example classes already

considered (if applicable). Make your class descriptions more meaningful than just “all elements equivalent to a specific
representative element.”

iv. List/describe all elements in the quotient 

 

a. Relation  on  where  means  Example equivalence classes for 
b. Relation  on  where  means  Example equivalence classes for 

c. Relation  on  where  means  Example equivalence classes for 

d. Relation  on  where  means  Example equivalence classes for 

e. Relation  on the vertex set  of a graph  where  means there exists a path in  from  to 
f. Given function  the relation  on the domain  where  means 

A sequence from a set  could also be called an ordered list. For example, given distinct  the finite sequences 
 and  are different sequences, because order matters in a sequence. However, as an unordered list, 

is the same as 

Write  for the set of all finite sequences from  Devise an equivalence relation  on  such that the quotient set 
represents the set of all finite unordered lists from 

Hint.

When should two different finite sequences be considered equivalent as unordered lists?

Suppose  and  are equivalence relations on a set  Determine which of the following are also equivalence relations.

a. 
b. 
c. 

See Activity 17.5.4.
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Activity 18.6.1

A.

A/ ≡ .

≡ A=Z, m ≡ n = .m

2

n

2

1, 10,−2, 0.

≡ A=R×R, ( , ) ≡ ( , )x

1

y

1

x

2

y

2

+ = + .x

2

1

y

2

1

x

2

2

y

2

2

(1, 1), (3, 4), ( /2, − /2), (0, 0).2

–

√

2

–

√

≡ A=R×R, ( , ) ≡ ( , )x

1

y

1

x

2

y

2

− = − .y

2

1

x

1

y

2

2

x

2

(0, 0), (0, 1), (1, −1).

≡ A=P({a, b, c, d}), X ≡ Y | | = | |.X

C

Y

C

∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}.

≡ A= V G, v≡ v

′

G v .v

′

f : A→B, ≡ A, ≡a

1

a

2

f( ) = f( ).a

1

a

2

Activity 18.6.1

A , ∈ A,a

1

a

2

, ,a

1

a

1

a

2

, ,a

1

a

2

a

1

, ,a

1

a

1

a

2

, , .a

1

a

2

a

1

S

A

A. ≡ S

A

/≡S

A

A.

Activity 18.6.1

≡ ≡

′

A.

≡

C

≡∪≡

′

≡∩≡

′
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18.7: Exercises

Let  represent the relation on  where  means 

a. Verify that  is an equivalence relation.
b. Describe the equivalence classes   and  geometrically as sets of points in the plane.

Given a connected (undirected) graph  we can define a relation on the set  of vertices in  as follows: let  mean that
there exists a trail within  beginning at vertex  and ending at vertex  that traverses an even number of edges.

a. Prove that  is an equivalence relation on 
b. Determine the equivalence classes for this relation when  is the graph below.

Figure 

Equivalence relations and classes.
In each of Exercises 3–12, you are given a set  and a relation  on  Determine whether  is an equivalence relation, and, if it
is, describe its equivalence classes. Try to be more descriptive than just “  is the set of all elements that are equivalent to ”

 

 

Exercise 18.7.1

≡ R×R ( , ) ≡ ( , )x

1

y

1

x

2

y

2

− = − .y

1

x

2

1

y

2

x

2

2

≡

[(0, 0)], [(0, 1)], [(1, 0)]

Exercise 18.7.2

G, V G Rv

1

v

2

G v

1

v

2

R V .

G

18.7.1

A R A. R

[a] a.

Exercise 18.7.3

A= {a, b, c}; R= {(a, a), (b, b), (c, c), (a, b), (b, a)}.
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 is the power set of some set;  is the subset relation.

  means  where  is the function 

 is some abstract set;  means  where  is an arbitrary function with domain 

 is the set of all “formal” expressions  where  are integers and  is nonzero;  means 

Note: Do not think of  as a fraction in the usual way; instead think of it as a collection of symbols consisting of two
integers in a specific order with a forward slash between them.

 is the power set of some finite set;  means 

 is the set of all straight lines in the plane;  means  is parallel to 

 is the set of all straight lines in the plane;  means  is perpendicular to 

  means 

Hint.

Does the expression  remind you of anything from geometry?

This page titled 18.7: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Exercise 18.7.4

A= {−1, 0, 1};R= {(x, y)| = }.x

2

y

2

Exercise 18.7.5

A R

Exercise 18.7.6

A=R; Rx

1

x

2

f( ) = f( ),x

1

x

2

f : R→R f(x) = .x

2

Exercise 18.7.7

A Ra

1

a

2

f( ) = f( ),a

1

a

2

f : A→B A.

Exercise 18.7.8

A a/b, a, b b (a/b)R (c/d) ad = bc.

a/b

Exercise 18.7.9

A X R Y |X| = |Y |.

Exercise 18.7.10

A RL

1

L

2

L

1

.L

2

Exercise 18.7.11

A RL

1

L

2

L

1

.L

2

Exercise 18.7.12

A=R×R; ( , )R ( , )x

1

y

1

x

2

y

2

+ = + .x

2

1

y

2

1

x

2

2

y

2

2

+x

2

y

2
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19.1: Motivation
In many of the sets we encounter, there is some notion of elements being “less than or equal to” other elements in the set.

In    or  we use the usual  to describe when one number is (literally) less than or equal to another.

If  are subsets of a universal set  such that  is a subset of  we might think of  as being “less than or equal to” 
The relation  on  acts very similarly to how  acts on a set of numbers.

The idea of  expressing a “less than or equal to”-like relationship between  and  is very different from cardinality-
based ideas of smaller/larger for sets. See also Example 19.2.4.

Similar to Example , if  and  are subgraphs of a graph  such that  is a subgraph of  we might think of  as
being “less than or equal to”  That is, if we write  to mean the set of all subgraphs of  then we can use the subgraph
relation  to describe when one subgraph of  is “smaller than or equal to” another.

This page titled 19.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Example : Comparing numbers.19.1.1

N, Z,Q, R, ≤

Example : Subset relationship as a measure of relative size.19.1.2

A,B U A B, A B.

⊆ P(U) ≤

Warning

A⊆B A B

Example : Subgraph relationship as a measure of relative size.19.1.3

19.1.1 H H

′

G H

′

H, H

′

H. S(G) G,

⪯ G
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19.2: Definition and properties
Notice that in each of the examples in Section 19.1, the notion of “is smaller than” is defined via a relation. We will use  on  as
our model for a relation on a set that can be thought of as expressing “is smaller than or equal in size to.”

Every element in the set should be “smaller than or equal to” itself, so the relation should be reflexive.
Relative size should never be bidirectional for distinct elements in the set, so the relation should be antisymmetric.
We should be able to infer size relationships from chains of them, so the relation should be transitive.

Notice that these are the same properties as for an equivalence relation, except that we have flipped symmetric to antisymmetric.
Make sure to keep this straight!

a relation that is reflexive, antisymmetric, and transitive

a set equipped with a particular partial order

symbol for an abstract partial order

 and 

 is strictly less/smaller than 

We previously used the symbol  to mean exclusively “is a subgraph of,” but that was in anticipation of the introduction of
this symbol to now mean a general partial order.

The usual notion of  is a partial order on  (or  or  or ), but  is not.

For every set  the relation  is a partial order on  but  is not.

For every graph  the subgraph relation  is a partial order on  the set of subgraphs of 

Suppose  is a universal set, and consider the collection of finite subsets of  Then we have a natural way to compare sizes
of these subsets: write  to mean  However, this relation is not a partial order as it is not antisymmetric. This
is because it is possible to have both  and  with  in the case that  Changing the relation to
mean  doesn't help, since then it wouldn't be reflexive.

≤ N

Definition: Partial Order

Definition: Partially Ordered Set

Definition: ⪯

Definition: strictly less/smaller than

a⪯ b a≠ b

Definition: a≺ b

a b

Warning 19.2.1

⪯

Example : “Less than or equal to” versus “less than” on sets of numbers.19.2.1

≤ N Z Q R <

Example : Subset relation.19.2.2

U, ⊆ P(U), ⫋

Example : Subgraph relation.19.2.3

G, ⪯ S(G), G.

Example : Comparing cardinalities.19.2.4

U U.

A RB |A| ≤ |B|.

A RB BRA A≠B, |A| = |B|.

|A| ≨ |B|
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Now suppose the universal set  is infinite and consider all (hence possibly infinite) subsets of  In this case we have a more
general idea of smaller and larger, where  is smaller than  if there exists an injection  but no bijection  This
more general notion of size comparison via cardinality suffers the same flaws as in the finite set case, as it is not reflexive, and
if we try to fix that by adding “or same size as” then it will not be antisymmetric.

However, in both finite and (possibly) infinite cases, we can turn cardinality comparison into a partial order using “smaller than
or equal to”, where “smaller” must mean strictly smaller in terms of cardinality, but “equal” means equality of sets rather than
equality of cardinality.

Let  and consider alphabetic order on the set of words  e.g.

 
Alphabetic ordering is a partial order on 

We can generalize the previous example: if  is a partially ordered alphabet set equipped with partial order  then we may
inductively define a partial order  on  by:

 for every  where  is the empty word;
for  considering these letters as words of length  in  take  to mean  in 
for letters  and words  take  to mean that either

i.  and  or
ii.  and 

This is called lexicographic or dictionary order on 

We can employ a similar tactic for Cartesian products. If  are partial orders on sets  respectively, we can define a
partial order  on  by allowing  to mean that either

 and  or

 and 

This is also called lexicographic order.

We can flip “smaller/less than or equal to” around to “larger/greater than or equal to.” For example, for elements 
write  to mean  Then  is a partial order on 

This is an instance of a more general pattern. Given a partial order  on a set  the inverse relation  where 
means  is also a partial order on  called the dual order.

Let  and let us “encode” each element of  by the following algorithm.

Given input element  (that is, given input  that is a subset of ):

i. Initialize encoded value 
ii. If  contains  add  to 

iii. If  contains  add  to 
iv. If  contains  add  to 

U U.

A B A↪B A→B.

Example : English alphabetic order.19.2.5

Σ = {a, b, c,… , y, z}, ;Σ

∗

gqtiu ⪯ ppb, aaay ⪯ aaaz, aaa ⪯ aaaa.

.Σ

∗

Example : Lexicographic order.19.2.6

Σ ⪯,

⪯

∗

Σ

∗

∅ w⪯

∗

w ∈ ,Σ

∗

∅

a, b ∈ Σ, 1 Σ

∗

a b⪯

∗

a⪯ b Σ;

, ∈ Σa

1

a

2

, ∈ ,w

1

w

2

Σ

∗

a

1

w

1

⪯

∗

a

2

w

2

≠a

1

a

2

⪯ ,a

1

a

2

=a

1

a

2

.w

1

⪯

∗

w

2

.Σ

∗

Example : Ordering Cartesian products.19.2.7

,⪯

A

⪯

B

A,B,

⪯ A×B ( , )⪯ ( , )a

1

b

1

a

2

b

2

≠a

1

a

2

,a

1

⪯

A

a

2

=a

1

a

2

.b

1

⪯

B

b

2

Example : Larger/greater than is a partial order.19.2.8

m,n ∈ N,

m ⪯ n m ≥ n. ⪯ N.

⪯ A, | ⪯ |, | ⪯ |a

1

a

2

⪯ ,a

2

a

1

A,

Example : Transferring  on  to a power set.19.2.9 ≤ N

A= {a, b, c, d}, P(A)

X ∈P(A) X A

r= 0.

X a, 1 r.

X b, 2 r.

X c, 4 r.
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v. If  contains  add  to 
vi. Set  to be the final value of 

For example,

 
This encoding process is one-to-one; that is, no two subsets of  will output the same encoded value.

Now define  on  by taking  to mean  For example,

 
and both

 
are true for every subset 

The facts that  is a partial order on  and that this encoding process is one-to-one will combine to make  a partial order.

Generalizing Example , suppose  is an injection where  is partially ordered by  Then we can “pull
back” the partial order on  to create a partial order on  as follows: define  to mean that  is true.
Note that the assumption that  is injective is essential to guarantee that  will be antisymmetric.

 

This page titled 19.2: Definition and properties is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

X d, 8 r.

encode(X) r.

encode({b})

encode({a, c})

= 2,

= 1+4 = 5,

encode(∅)

encode(A)

= 0,

= 1+2+4+8 = 15.

A

⪯ P(A) X ⪯ Y encode(X) ≤ encode(Y ).

{a, b, c} ⪯ {d}, {a, d} ⪯ {b, d},

∅ ⪯X, X ⪯A

X ⊆A.

≤ N ⪯

Example : Pulling a partial order back through an injection.19.2.10

19.2.9 f : A↪B B .⪯

B

B A a

1

⪯

A

a

2

f( ) f( )a

1

⪯

B

a

2

f ⪯

A

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83500?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/19%3A_Partially_ordered_sets/19.02%3A_Definition_and_properties
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 19.3.1 https://math.libretexts.org/@go/page/83501

19.3: Graph for a partial order

a diagram for the graph for a partial order on a finite set  omitting reflexive loops and transitive “composite” edges, and
placing “smaller” elements lower on the diagram instead of using arrows

Let  The Hasse diagram of the partial order  (i.e. “divides”) on  appears in Figure . Notice
that  is not joined directly to either  or  since we can use transitivity and the facts that  and  to infer  and 

 respectively, from the diagram.

Figure : The Hasse diagram for the “divides” partial order on a finite set of integers.

See Example 14.4.2 for another example of a graph for the “divides” relation.

Definition: Hasse diagram

A,

Example : Hasse diagram for division of integers.19.3.1

A= {2, 4, 6, 8, 10, 12}. ∣ A 19.3.1

2 8 12, 2 ∣ 4 2 ∣ 6 2 ∣ 8

2 ∣ 12,

19.3.1

 Remark 19.3.1
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The graph from Example 14.4.1 has been reproduced in Figure  as a Hasse diagram, and represents the partial order 
on 

Figure :  The Hasse diagram for the subset partial order on the power set of a finite set.

This page titled 19.3: Graph for a partial order is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Example : Hasse diagram for subset order.19.3.2

19.3.2 ⊆

P({a, b, c}).

19.3.2
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19.4: Total Orders

elements  in a partially ordered set such that either  or 

elements that are not comparable

Let  represent some universal set containing at least two elements, and consider  partially ordered by 

Both the empty set  and the universal set  are comparable to every element of 
For  with  then  are incomparable.
In fact, for every non-empty, proper subset  there exists a subset  which is incomparable to  take 

However, do not let the second two points above lead you astray: it is not necessary for subsets to be disjoint in order to be
incomparable. As long as each of a pair of subsets contains an element that the other doesn't, then the two will be incomparable
by 

a partial order on a set such that every pair of elements is comparable

a set equipped with a total order

For universal set  order  on  is not total except when 

Our usual order for numbers,  is a total order on  on  on  or on 

If  is a total order on an alphabet  then the lexicographic order  described in Example 19.2.6 is a total order on the set of
words 

If  is totally ordered and we use an injection  to “pull back” the order on  to an order on  (see Example
19.2.10), then the newly created order on  will also be total.

If  is a countably infinite set, then there exists a bijection  We can use the inverse  to “pull back”
the usual total order  on  to a total order on  (see Example ).

Another point of view on this is that our bijection  creates an infinite sequence

Definition: Comparable Elements

a, b a⪯ b b ⪯ a

Definition: Incomparable Elements

Example : Comparable and incomparable subsets.19.4.1

U P(U) ⊆.

∅ U P(U).

x, y ∈ U x ≠ y, {x}, {y}

A⫋U B⊆U A: B= .A

C

⊆.

Definition: Total Order

Definition: Totally Ordered Set

Example : Subset order is not total.19.4.2

U, ⊆ P(U) |U| ≤ 1.

Example : Usual order of numbers is total.19.4.3

≤, N, Z, Q, R.

Example : Total order on alphabet induces total order on words.19.4.4

⪯ Σ, ⪯

∗

.Σ

∗

Example : Pulling back a total order through an injection.19.4.5

B f : A↪B B A

A

Example : Countable can be totally ordered.19.4.6

A f : N→A. : A→Nf

−1

≤ N A 19.4.5

f

, , ,… ,a

0

a

1

a

2
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where each element of  appears exactly once. This sequence can be turned into a specification of the total order on  by just
turning the commas into  symbols:

The pattern of Example  becomes even simpler when we apply it to a finite set: a total order on a finite set is no different
than an ordering of the set elements into a list, as

 
can simply be turned into

 
and vice versa.

If  is a finite, totally ordered set, what does the corresponding Hasse diagram look like?

The answer to this question is contained in Remark .

A partial order on a finite set is total if and only if its Hasse diagram forms a single vertical line.

Figure  exhibits the Hasse diagram for the total order  on the set  though we have drawn the diagram on
a slant from the vertical to be make it easier to see the entire diagram at a glance.

Figure : A Hasse diagram of a totally ordered set.

A A

≤

≤ ≤ ≤⋯.a

0

a

1

a

2

 Remark 19.4.1

19.4.6

, , ,… ,a

0

a

1

a

2

a

n

≤ ≤ ≤⋯≤ ,a

0

a

1

a

2

a

n

 Question 19.4.1

A

19.4.1

 Fact 19.4.1

Example : A totally ordered finite set.19.4.7

19.4.1 ∣ {2, 4, 8, 16, 32},

19.4.1
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19.5: Maximal/minimal Elements
Each of the following definitions are for a subset  of a partially ordered set 

an element  such that  for all 

an upper bound for  that is less than every other upper bound

an upper bound for  that is contained in 

an element  such that  for all 

a lower bound for  that is greater than every other lower bound

a lower bound for  that is contained in 

1. An upper or lower bound does not need to belong to the subset for which it is a bound.
2. A set (or subset) does not necessarily have either a maximum or minimum element.

If a subset of a partially ordered set contains a maximum element, then that maximum element is unique. And similarly for a
minimum element.

Proof.

You are asked to prove this in Activity 19.7.5.

Consider the usual (total) order  on 

The full set  has neither a maximum nor minimum element.
The subset  has many upper bounds (anything ) and many lower bounds (anything ). However, we would refer
to  as the least upper bound and to  as the greatest lower bound of 
The subset  has no maximum or minimum element. However, the subset  has maximum  and minimum 

Suppose  is a universal set, and consider  partially ordered by  as usual. In the full set  the unique maximum
element is  which is just another way of saying that every element of  is a subset of  And the unique minimum
element is  which is just another way of saying that the empty set is a subset of every subset of 

B A.

Definition: Upper bound

u ∈ A b ⪯ u b ∈ B

Definition: Least upper bound

B⊆A

Definition: Maximum element

B B

Definition: Lower bound

ℓ ∈ A ℓ ⪯ b b ∈ B

Definition: Greatest lower bound

B⊆A

Definition: Minimum element

B B

Warning 19.5.1

 Fact 19.5.1

Example : Maximums, minimums, and bounds in .19.5.1 R

≤ R.

R

(0, 1) ≥ 1 ≤ 0

1 0 (0, 1).

(0, 1) [0, 1] 1 0.

 Example : Maximums, minimums, and bounds in a power set.19.5.2

U P(U) ⊆ P(U),

U, P(U) U.

∅, U.
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Now consider a subset  so that  is a collection of subsets of  Because of the existence of maximum and
minimum elements, these elements also serve as an upper and lower bound, respectively, for  However, one can also find a
least upper bound for  by taking the union of all the subsets of  contained in  and one can find a greatest lower bound
by taking the intersection of all the subsets of  contained in 

The next two definitions are stated for elements in a partially ordered set, but could also be understood for elements in a subset of a
partially ordered set, as every subset of a partially ordered set is also a partially ordered set.

an element for which no other element is larger

an element for which no other element is smaller

The difference between maximum and maximal is subtle. A maximum element must be larger than (and hence comparable to)
every other element of  while a maximal element must only be larger than every other element of  to which it is
comparable. The distinction between minimum and minimal is similar.

1. To verify that  is maximal, prove either the original definition

 
or prove the equivalent contrapositive formulation 

 

2. To verify that  is minimal, prove either the original definition

 
or prove the equivalent contrapositive formulation 

 
 

Consider the graph  in Figure .

A ⊆P(U), A U.

A .

A U A ,

U A .

Definition: Maximal Element

Definition: Minimal Element

 Remark 19.5.1

A, A

 Test : Maximal/minimal elements.19.5.1

∈ Am

¯ ¯¯̄¯

(∀x ∈ A)(x ≠ ⇒ ⋠ x),m

¯ ¯¯̄¯

m

¯ ¯¯̄¯

(∀x ∈ A)( ⪯ x⇒ x = ).m

¯ ¯¯̄¯

m

¯ ¯¯̄¯

∈ Am

––

(∀x ∈ A)(x ≠ ⇒ x ⋠ ),m

––

m

––

(∀x ∈ A)(x ⪯ ⇒ x = ).m

––

m

––

Example : Connected components are maximal.19.5.3

G 19.5.1
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Figure : An example non-connected graph.

Let  represent the collection of subgraphs of  partially ordered by the subgraph relation. (By my count, )
Let  represent the collection of connected subgraphs of  (By my count, ) A maximal elements of 
would have to be a connected subgraph of  that is contained in no larger connected subgraph of  — but this is precisely the
definition of connected component. Hence  has three maximal elements, the three connected components you see in
Figure . However, a maximum element of  would be a connected subgraph of  which contains every other
connected subgraph of  and the existence of multiple connected components in this example non-connected graph makes
such a subgraph impossible.

If you compare both our informal definition and formal definition of connected component with our definition of maximal
element and our Test for Maximal/Minimal Elements, you should find that the definition of connected component means
precisely a maximal subgraph with respect to the property of being connected.

Let  Given the Hasse diagram for  on  in Figure , determine all
maximal/maximum/minimal/minimum elements, if they exist.

19.5.1

S(G) G, |S(G)| = 110.

C(G) G. |C(G)| = 15. C(G)

G G

C(G)

19.5.1 C(G) G

G,

 Remark 19.5.2

Example 19.5.4

A= {a, b, c}. ⊆ P =P(A) ∖ {A} 19.5.2
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Figure : The Hasse Diagram for  on an "uncapped" power set

Solution

The element  is maximal, since each node in the Hasse diagram that is adjacent to  is below it. The same reasoning
confirms that  and  of are also maximal. However, none of them is a maximum, since none of them is larger than
the other two.

The element  of  is a minimal element, since each node that is adjacent to it is above it. And it is the only minimal element.
Furthermore,  is the minimum element, since for every other node there is a walk upwards from  to that node.

Just drawing a node higher or lower in a Hasse diagram does not necessarily make it larger or smaller, respectively, when
compared to other elements via the partial order. For example, in the Hasse diagram of Figure , we could have drawn the
node for  at a higher location, but that would not make it larger than  and  since there still would not have
been any edges or chains of edges from  downward to those other two nodes.

If the partially ordered set  has a maximum element, then that element is also the only maximal element of  Similarly, the
minimum element, if it exists, is the only minimal element of 

Proof Idea.

Assume  has a maximum element. Then every element of  is both comparable to and smaller than that maximum
element, so no element is larger than it. Therefore, this maximum must be maximal. And no other element could be
maximal, because to be maximal means there are no elements which are larger. But our maximum element is always larger.

19.5.2 ⊆

{a, b} {a, b}

{a, c}, {b, c}

∅ P

∅ ∅

Warning 19.5.2

19.5.2

{a, c} {a, b} {b, c},

{a, c}

 Fact 19.5.2

A A.

A.

A A
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A maximum element must be maximal and must be the only maximal. But a maximal element, even if it is the only one, need
not be the maximum.

Consider

 
partially ordered by  the “divides” relation. There is no element of  that is divisible by  (except  itself), so there is no
element of  that is larger than  Therefore,  is maximal. Moreover,  is the only maximal element in  since every power
of  divides the next power of  However, there is no maximum element in  since there is no element of  which is
divisible by every other element of 

Consider  where

 
So  is the set of all nonempty, proper subsets of  Under the partial order   has neither a maximum nor a minimum
element, but for every   is a minimal element and  is a maximal element of 

This page titled 19.5: Maximal/minimal Elements is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Warning 19.5.3

Example : A partially ordered set with exactly one maximal element but no maximum element19.5.5

A= {3}∪{2, 4, 8, 16, 32, 64,… , ,…},2

n

∣, A 3 3

A 3. 3 3 A,

2 2. A, A

A.

Example : A partially ordered set with infinitely many maximal/minimal elements but no
maximum/minimum element.

19.5.6

A ⫋P(N),

A =P(N) ∖ {∅,N}.

A N. ⊆, A

n ∈ N, {n} N ∖ {n} A .
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19.6: Topological Sorting
Sometimes we want to turn a partial order into a total order. What makes an order partial instead of total is the presence of pairs of
incomparable elements. So to convert our partial order into a total order we just need to impose an order relation on those
previously incomparable element pairs. However, for each pair of incomparable elements there is a choice to be made of which will
become the smaller and which the larger in the new total order. And we cannot carry out these choices completely arbitrarily,
because we risk contradicting the required properties of a partial order (see Example ).

The following definitions apply to a partial order  on a set 

a total order  on  such that if  then 

a process for determining a compatible total order

The relation  on  is a partial order but not a total order. Consider what happens when we begin trying to build a total
order on  out of  by choosing relations between previously incomparable elements arbitrarily.

Elements  are -incomparable; choose 
Elements  are -incomparable; choose 
…

Now,  is already true, so to be compatible we must set  in the new total order. But now 
 would dictate  to satisfy the transitive property, but this contradicts our first arbitrary choice

above.

If  is countable, whether finite or countably infinite, then specifying a total order on  amounts to writing the elements of 
in an ordered list. (See Example 19.4.6 and Remark 19.4.7.) In that case, topological sorting amounts to creating such an
ordered list so that if  then  appears before  in the list.

If  is a finite partially ordered set with respect to  we can specify a compatible total order  on  by writing the elements
of  in a list

 
as follows, where 

1. Initialize  and 
2. Choose a minimal element of  let  represent the chosen element.
3. Set  (i.e. create a smaller partially ordered set by discarding ).
4. Increment  by  If  then go back to Step 2. Otherwise, if  then  should now be empty, so stop — the desired

compatible order has now been specified.

In Step 2 of the algorithm, if  contains a minimum element, then you must choose that element, since in that case no other
minimal element can exist (see the Fact 19.5.2).

19.6.1

⪯ A.

Definition: Compatible Total Order

≤ A ⪯a

1

a

2

≤a

1

a

2

Definition: Topological Sorting

Example : A failed attempt at topological sorting.19.6.1

⊆ P(N)

P(N) ⊆

{1}, {2, 3} ⊆ {2, 3} ≤ {1}.

{1}, {2} ⊆ {1} ≤ {2}.

{2} ⊆ {2, 3} {2} ≤ {2, 3}

{1} ≤ {2} ≤ {2, 3} {1} ≤ {2, 3}

 Note 19.6.1

A A A

a⪯ b a b

 Algorithm : Topological sorting.19.6.1

A ⪯, ≤ A

A

≤ ≤⋯≤a

0

a

1

a

n−1

n= |A|.

i = 0 =A.A

0

;A

i

a

i

= ∖ { }A

i+1

A

i

a

i

a

i

i 1. i < n i = n A

i

 Note 19.6.1

A

i
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Consider

 
Apply Algorithm  to determine a total order  on  that is compatible with 

Solution. 1 Algorithm solution 
In  we must choose  since it is the minimum. Now remove  so that

 
Choose a minimal element from  let  Now remove  set

 
Choose a minimal element from  let  Now remove  set

 
Choose a minimal element from  let  Now remove  set

 
We must choose  since it is the minimum in  Now remove  set

 
Choose a minimal element from  let  Now remove  set  We must choose 

 since it is the minimum in  There is only one element left; set  and choose 
So we have

 
Notice that the maximum element of  ended up at the “top” of the total order and the minimum element was forced to the
“bottom.”

Solution. 2 Graphical solution 
We can perform the algorithm of topological sorting graphically; at each step, choose a vertex that has no adjacent vertices
below it in the graph, then cross that vertex and any adjacent edges out of the graph. 

Example 19.6.1

A=P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.

19.6.1 ≤ A ⊆.

=A,A

0

= ∅,a

0

a

0

= {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.A

1

:A

1

= {2}.a

1

;a

1

= {{0}, {1}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.A

2

:A

2

= {0}.a

2

;a

2

= {{1}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.A

3

:A

3

= {0, 2}.a

3

;a

3

= {{1}, {0, 1}, {1, 2}, {0, 1, 2}}.A

4

= {1},a

4

.A

4

;a

4

= {{0, 1}, {1, 2}, {0, 1, 2}}.A

5

:A

5

= {1, 2}.a

5

;a

5

= {{0, 1}, {0, 1, 2}}.A

6

= {0, 1},a

6

.A

6

= {{0, 1, 2}}A

7

= {0, 1, 2}.a

7

∅ ≤ {2} ≤ {0} ≤ {0, 2} ≤ {1} ≤ {1, 2} ≤ {0, 1} ≤ {0, 1, 2}.

A
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(a) Choose = ∅.a
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(b) Choose = {2}.a

1
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(c) Choose 

(d) Choose 

= {0}.a

2

= {0, 2}.a

3
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(e) Choose 

(f) Choose 

= {1}.a

4

= {1, 2}.a

5
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(g) Choose = {0, 1}.a

6
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(h) Choose 

Figure : Paste Caption Here

Our end result is a list of our choices, in order:

Notice that the maximum element of  ended up at the “top” of the total order and the minimum element was forced to the
“bottom”.

Compatible total orders are not unique: in the previous worked example, the order in which the elements of  were originally
written represents another compatible total order:

This page titled 19.6: Topological Sorting is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

= {0, 1, 2}.a

7

19.6.1

∅ ≤ {2} ≤ {0} ≤ {0, 2} ≤ {1} ≤ {1, 2} ≤ {0, 1} ≤ {0, 1, 2}.

A

 Note 19.6.3

A

∅ ≤ {0} ≤ {1} ≤ {2} ≤ {0, 1} ≤ {0, 2} ≤ {1, 2} ≤ {0, 1, 2}.
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19.7: Activities

Let  represent the set of all divisors of  Let 

Note: In Task c you will compare your work from Task a and Task a, so keep your work!

a. Draw the Hasse diagram for the subset partial order  on 
b. Draw the Hasse diagram for the “divides” partial order  on 
c. Compare your two Hasse diagrams. Can you devise a function  that would deserve to be called an order-

preserving correspondence between  and 

Suppose  is a partial order on a set  Verify that the inverse relation  is also a partial order on  by verifying that it is
reflexive, antisymmetric, and transitive.

Let  Carry out the following steps for each of the scenarios below.

i. Draw the Hasse diagram for a partial order on  with the requested features.
ii. In your diagram, identify all maximal/minimal elements.

iii. Identify all pairs of incomparable elements.

 

a.  has both a maximum and a minimum.
b.  has a maximum but no minimum.
c.  has a minimum but no maximum.
d.  has neither a maximum nor a minimum.

Suppose  is a partial order on the set  such that  is a maximal element. What are the possibilities for the Hasse
diagram of 

Using the proper strategy for proving uniqueness (see Procedure 6.10.1), prove that if a partially ordered set  has a maximum
element, then that element is the unique maximum element.

How can your proof be modified to show that a minimum element is also unique?

Recall that  means an open interval on the real number line:

 
Let  be the usual “less than or equal to” total order on the set

 
Consider the subset

Activity 19.7.1

F ⊆N 30. A= {a, b, c}.

⊆ P(A).

∣ F .

f : F →P(A)

F P(A)?

Activity 19.7.2

⪯ A. ⪯

−1

A

Activity 19.7.3

A= {a, b, c, d, e}.

A

A

A

A

A

Activity 19.7.4

⪯ A= {0, 1, 2} 1

⪯?

Activity 19.7.5

A

Activity 19.7.6

(a, b) ⊆R

(a, b) = {x ∈ R|a< x < b}.

≤

A= (−2, 0)∪ (0, 2).
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Determine an upper bound for  in  Then formally prove that  has no least upper bound in  by arguing that every
element of  fails the criteria in the definition of least upper bound.

This page titled 19.7: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

B= {− |n ∈ N, n≥ 1} ⊆A.

1

n

B A. B A

A
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19.8: Exercises

Recognizing a partial order from its graph.
In each of Exercises 1–2, you are given a directed graph for a relation on the set  Determine whether the relation is
a partial order. Justify your answers.

Figure 

A= {a, b, c, d}.

Exercise 19.8.1

19.8.1

Exercise 19.8.2
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Figure 

Testing partial orders.
In each of Exercises 3–6, you are given a set  and a relation  on  Determine whether the relation is a partial order. Justify
your answers.

 is the set of all Augustana students;  means that student  has a higher GPA than student 

 is the power set of some finite set;  means 

 is the set of words on some alphabet;  means  where  means the length of word 

19.8.2

A R A.

Exercise 19.8.3

A a R b a b.

Exercise 19.8.4

A S R T |S| ≤ |T |.

Exercise 19.8.5

A w Rw

′

|w| ≤ | |,w

′

|w| w.
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  means  and 

Drawing Hasse diagrams.
In each of Exercises 7–8, you are given a finite, partially ordered set  Draw the Hasse diagram.

 under the subset relation.

 the set of words of length  in the alphabet  under dictionary order.

Draw all possible valid Hasse diagrams for each of the sets  and  (Thus, you will have determined all
possible partial orders on those sets.)

Consider the “divides” relation  on  Provide an example of a set 

a. that is finite, and on which  is a total order.
b. that is infinite, and on which  is a total order.
c. on which  is a partial order but not a total order.

Let  and consider the partial order  on the power set  List all pairs of incomparable elements in 

Determining maximal/maximum/minimal/minimum elements.
In each of Exercises 12–16, you are given a partially ordered set  Determine any and all maximal, maximum, minimal, and
minimum elements.

 under the usual 

 under the usual 

 under the “divides” relation 

 under the “divides” relation 

Exercise 19.8.6

A=R×R; ( , )R ( , )x

1

y

1

x

2

y

2

≤x

1

x

2

≤ .y

1

y

2

A.

Exercise 19.8.7

A=P({1, 2, 3, 4})

Exercise 19.8.8

A= ,Σ

∗

4

4 Σ = {0, 1},

Exercise 19.8.9

A= {a, b} B= {a, b, c}.

Exercise 19.8.10

∣ .N

>0

A⊆N

>0

∣

∣

∣

Exercise 19.8.11

A= {0, 1, 2}, ⊆ P(A). P(A).

A.

Exercise 19.8.12

A=N

>0

≤.

Exercise 19.8.13

A=Q

>0

≤.

Exercise 19.8.14

A=N ∖ {0, 1} ∣.

Exercise 19.8.15

A= {2, 5, 11, 13, 22, 65, 110, 143, 496} ∣.
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 is the set of the first ten prime numbers under the “divides” relation 

Suppose  is a partial order on the set  such that  is a maximal element. What are the possibilities for the Hasse
diagram of 

Topological sorting.
In each of Exercises 18–19, you are given the Hasse diagram for a partially ordered set  Use the Topological sorting algorithm to
determine a compatible total order on 

Figure 

Exercise 19.8.16

A ∣.

Exercise 19.8.17

⪯ A= {0, 1, 2} 1

⪯?

A.

A.

Exercise 19.8.18

19.8.3
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Figure 

This page titled 19.8: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Exercise 19.8.19

19.8.4
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20.1: Motivation
You probably learned to count before you even started kindergarten. But efficiently counting large collections can be difficult!

How many different ways can you choose your winning numbers for the lottery?
How many different possible seating charts could be made for the students in this course in the assigned classroom?
How many different ways are there for you to choose courses to satisfy your degree requirements?
How many bijections between the sets  and  exist?
How many total orders on the set  exist?
How many partial orders on the set  exist?

This page titled 20.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Examples of counting large collections.20.1.1

{0, 1, 2, 3, 4, 5} {a, b, c, d, e, f}

{0, 1, 2, 3, 4, 5}

{0, 1, 2, 3, 4, 5}
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20.2: Addition and subtraction rules
As usual in mathematics, breaking a big problem into smaller parts is a useful strategy.

Assume  is a finite set.

1. If  then 
2. If  then 

Proof Idea.

After recalling the definition of disjoint union, Statement 1 should be obvious. To prove Statement 2, apply Statement 1 to
the following disjoint unions:

 
Then combine the resulting equalities of cardinalities.

Statement 1 of Theorem  can be extended to a disjoint union of any number of subsets.

How many words of length  or less are there using alphabet 

Solution

Write  to mean the set of words in alphabet  of length  or less. Then

 
so we can break into cases based on length and then apply the Addition Rule.

Count . 
There is only one word of length  the empty word. So 

Count . 
There are only two words of length  the single-letter words  and  So 

Count . 
We can count be simply listing the elements:

 
So 

Count . 
This time we will just use inductive reasoning. Each word in  may be extended to a word in  by appending either an  or
an  onto the end. So there must be twice as many words in  as in  i.e. 

Total count. 
Using the Addition Rule, we obtain the total by adding up our preliminary results:

 Theorem : Addition Rule20.2.1

U

U = ⊔ ,A

1

A

2

|U| = | | +| |.A

1

A

2

U = ∪ ,A

1

A

2

|U| = | | +| | −| ∩ |.A

1

A

2

A

1

A

2

U = ⊔( ∖ ),A

1

A

2

A

1

A

2

= ( ∖ )⊔ ( ∩ ).A

2

A

1

A

1

A

2

 Remark 20.2.1

20.2.1

 Example : Counting by breaking into cases.20.2.1

3 Σ = {α,ω}?

Σ

∗

≤3

Σ 3

= ⊔ ⊔ ⊔ ,Σ

∗

≤3

Σ

∗

0

Σ

∗

1

Σ

∗

2

Σ

∗

3

Σ

∗

0

0: | | = 1.Σ

∗

0

Σ

∗

1

1: = αw

α

= ω.w

ω

| | = 2.Σ

∗

1

Σ

∗

2

= {αα,αω,ωα,ωω}.Σ

∗

2

| | = 4.Σ

∗

2

Σ

∗

3

Σ

∗

2

Σ

∗

3

α

ω Σ

∗

3

,Σ

∗

2

| | = 8.Σ

∗

3

| | = 1+2+4+8 = 15.Σ

∗

≤3
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Another common strategy in mathematics is to consider the opposite.

Assume  is a finite set. For every subset  we have 

Proof Idea.

Since  is always true, simply apply Statement 1 of Theorem 20.2.1 to this disjoint union and rearrange to
isolate 

For alphabet  how many words in  do not begin with the letter  It's much easier to count the
number of words in  that do begin with  as there are only  possibilities for the second letter.

Later in this chapter we will learn a rule that will allow us to easily calculate the total number of words in  to be  (see
Worked Example 20.3.6). Accepting this fact for the moment, we can then use the Subtraction Rule to compute

This page titled 20.2: Addition and subtraction rules is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Theorem : Subtraction Rule.20.2.2

U A ⊆U, |A| = |U| − | |.A

C

U =A⊔A

C

|A|.

 Example : Counting by counting the complement.20.2.2

Σ = {a, b, c, … , y, z}, Σ

∗

2

a?

Σ

∗

2

a, 26

Σ

∗

2

26

2

#{2-letter words not beginning with a} = | | −#{2-letter words beginning with a}Σ

∗

2

= −2626

2

= 26(26 −1)

= 26 ⋅ 25.
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20.3: Multiplication Rule

What is  for  and 

Solution

We can solve this by just writing out the elements of  and counting them.

 
So 

What is  for  and 

Solution

Writing out all the elements of  and then counting them all seems like a lot of work. Instead, using our experience from
Worked Example , notice that we usually perform the task of writing the elements of a Cartesian product in a pattern to
make sure we get them all. One-by-one we pick a single element of the first set  and pair it up with every element of the
second set  From this pattern we see that for each  there are  elements of  with  as the first coordinate, and
there are  such groupings of elements from  So we arrive at

For sets  and  define an equivalence relation on  whose equivalence classes partition  in the manner
described in the provided solution to Worked Example . Then describe how the number of classes and the number of
objects in each class correspond to  and 

If there are  ways to perform task  and  ways to perform task  then there are  ways to perform task  followed by
task 

The Multiplication Rule only applies to consecutive tasks  such that the number of ways of performing task  is
independent of the choice made in performing task 

To create a specific example of an element from  we must first choose an element of  to be the first coordinate (task 
), then choose an element of  to be the second coordinate (task ). There are  ways to perform task  and 

ways to perform task  Therefore, the Multiplication Rule says there are  ways to construct an element of  which
means 

 Example : Counting a small Cartesian product.20.3.1

|A×B| A= {0, 1, 2, 3} B= {−1, 0, 1}?

A×B

A×B = {(0,−1), (0, 0), (0, 1), (1, −1), (1, 0), (1, 1),

(2, −1), (2, 0), (2, 1), (3, −1), (3, 0), (3, 1)}

|A×B| = 12.

 Example : Counting a large Cartesian product.20.3.2

|C×D| C = {a, b, c,… , z} D= {0, 1, 2,⋯ , 99}?

C×D

20.3.1

C,

D. c ∈ C, |D| C×D c

|C| C×D.

|C×D| = |C| ⋅ |D| = 26 ⋅ 100 = 2600.

 Checkpoint 20.3.1

X Y , X×Y X×Y

20.3.2

|X| |Y |.

 Theorem : Multiplication Rule.20.3.1

m S n T , mn S

T .

Warning 20.3.1

S,T T

S.

 Example : Counting Cartesian product elements by constructing an arbitrary element.20.3.3

A×B, A

S B T m = |A| S n= |B|

T . mn A×B,

|A×B| =mn.
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Suppose you are a casting director and need to select both a primary actor and an understudy for the lead role in a play. If 
actors audition for the role, then there are  different ways to select the primary actor. Once this choice is made, there remain 

 different ways to the select the understudy. Hence there are  ways to cast the role.

Now, the actual pool of candidates for understudy will differ based on which actor is offered the lead role. However, no matter
who is chosen for the lead, the number of remaining candidates for understudy is the same.

We may extend the Multiplication Rule to any (finite) number of consecutive tasks.

If  are finite sets with  then

Recall that, given alphabet  and number   is the set of words of length  If  what is 

Solution

To construct a specific example word  there are:

 ways to choose the first letter,
 ways to choose the second letter,

…,
 ways to choose the  letter.

So there are

 
ways to construct  We conclude 

Suppose  How many words in  have no repeated letters? (That is, in which no two letters are the same?)

Solution

To construct a specific example word  in which no two letters are the same, there are

 ways to choose the first letter,
 remaining ways to choose the second letter,
 remaining ways to choose the third letter,
 remaining ways to choose the fourth letter, and

only  remaining way to choose the last letter.

So there are

 
ways to construct 

 Example : Choosing candidates.20.3.4

n

n

n−1 n(n−1)

 Note 20.3.1

 Example : Cardinality of Cartesian product of many sets.20.3.5

, ,… ,A

1

A

2

A

m

| | = ,A

j

m

j

| × ×⋯× | = ⋯ .A

1

A

2

A

ℓ

m

1

m

2

m

ℓ

 Example : Words of a given length.20.3.6

Σ n ∈ N, Σ

∗

n

n. |Σ| =m, | |?Σ

∗

n

w ∈ ,Σ

∗

n

m

m

m n

th

=m ⋅m ⋅m ⋅⋯ ⋅m

  

n factors

m

n

w. | | = .Σ

∗

n

m

n

 Example : Words with no repeated letters.20.3.7

|Σ| = 5. | |Σ

∗

5

w ∈ Σ

∗

5

5

4

3

2

1

5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120

w.
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Similar to Example , while the actual pool of candidates for the next letter at each step will differ based on which letters
have been chosen already, the number of remaining letters is always independent of which letters have actually been chosen so
far. So the Multiplication Rule can be applied to this problem exactly as we have applied it.

Let  How many palindromes  with  are there in 

Solution

Break into cases based on the length of 

Case . 
Once we choose the first letter, the last is chosen for us, but we are still free to choose the middle letter. So there are 
palindromes of length 

Case . 
Once we choose the first two letters, the last two are chosen for us. So there are also  palindromes of length 

Case . 
Once we choose the first two letters, the last two are chosen for us, but we are still free to choose the middle letter. So there are 

 palindromes of length 

Case . 
Once we choose the first three letters, the last three are chosen for us. So there are also  palindromes of length 

Total. 
Applying the Addition Rule to these non-overlapping cases, we obtain

 
as the number of palindromes length  to 

Set  and  How many functions  exist? How many of these are injections? How many
are surjections?

Solution

Number of functions. 
A function  can be constructed in three steps: choose  then choose  then choose  Each of the steps
can be carried out in  ways. So the number of functions is 

Number of injections. 
An injection  can be constructed in three steps: choose  then choose  to be different from  then
choose  to be different from both  and  First step has  choices. Second step has 
choices. Third step has  choices. So the number of injections is 

A look ahead.

Notice that the number of injections has turned out to be

 
We will understand better how this formula arises in Section 21.4.

20.3.4

 Example : Palindromes.20.3.8

Σ = {a, b, c,… , y, z}. w 3 ≤ |w| ≤ 6 ?Σ

∗

w.

|w| = 3

26

2

3.

|w| = 4

26

2

4.

|w| = 5

26

3

5.

|w| = 6

26

3

6.

+ + +26

2

26

2

26

3

26

3

= (1+1+26+26)26

2

= 54 ⋅ 26

2

= 36, 504

3 6.

 Example 20.3.9

A= {a, b, c} B= {0, 1, 2, 3, 4}. A→B

f : A→B f(a), f(b), f(c).

|B| = 5 = 125.5

3

f : A↪B f(a), f(b) f(a),

f(c) f(a) f(b). |B| = 5 |B∖ {f(a)}| = 4

|B∖ {f(a), f(b)}| = 3 5 ⋅ 4 ⋅ 3 = 60.

.

|B|!

(|B| − |A|)!
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Number of surjections. 
Suppose  Since  the largest that  can be is  which occurs when  is injective. However, even in
such a largest case it is still smaller then  so no surjections exist. That is, the number of surjections is 

 
 

This page titled 20.3: Multiplication Rule is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

f : A→B. |A| = 3, |f(A)| 3, f

|B|, 0.
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20.4: Division Rule
Sometimes it is easier to count a related but more structured collection, where the collection we actually want to count corresponds
to equivalence classes of the more structured collection.

Suppose  is an equivalence relation on a finite set  so that the equivalence classes all have the same number of elements.
Then

 
That is,

 
where  is an arbitrary element of 

Proof.

Write  for the number of equivalence classes, and write  for the common cardinality of the classes. We know that the
equivalence classes partition the set  so using the Addition Rule we have

 
where  are a complete set of equivalence class representatives. But we have assumed that these class
cardinalities are all equal to each other, with each class satisfying  So

 
which leads to

 
as desired.

Let  How many words in  contain exactly two s, one  and one 

Solution

Write  for the collection of words in  of the type described. Instead of trying to count  directly, consider the following
more structured collection.

Write  and let  be the set of words in  that have no repeated letters. Similar to Worked Example
20.3.7, we have

For each pair of these words, write  if the following two conditions hold.

 Theorem : Division Rule20.4.1

≡ A

#{equivalence classes} = .

|A|

common size of classes

|A/≡| = ,

|A|

|[a]|

a A.

N C

A,

|A| = |[ ]| + |[ ]| +⋯ +|[ ]|,a

1

a

2

a

N

, , … ,a

1

a

2

a

N

|[ ]| =C.a

j

|A| = =NC,C +C +⋯ +C

  

N  terms

N = ,

|A|

C

 Example : Equivalent Words.20.4.1

Σ = {α, β, γ}. Σ

∗

4

α β γ?

Λ Σ

∗

4

Λ

= { , , β, γ},Σ

′

α

1

α

2

Λ

′

Σ

′∗

4

| | = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24.Λ

′

≡w

1

w

2
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At whatever position  contains   contains either  or  at that same position. 
At whatever position  contains   contains either  or  at that same position. 
You may check that  defines an equivalence relation on  Each class consists of exactly two words  where 
has an  where  has an  and an  where  has an  For example, one class of  is

 
Effectively, the classes remove the distinction between  and  so that they might as well be the same letter, say,  In other
words, there is a bijective correspondence between the classes in  and the words in  Using the Division Rule, we have

This page titled 20.4: Division Rule is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

w

1

,α

1

w

2

α

1

α

2

w

1

,α

2

w

2

α

1

α

2

≡ .Λ

′

{ , },w

1

w

2

w

2

α

2

w

1

α

1

α

1

w

1

.α

2

/≡Λ

′

[ β γ] = { β γ, β γ}.α

1

α

2

α

1

α

2

α

2

α

1

α

1

,α

2

α.

/≡Λ

′

Λ.

|Λ| = | /≡| = = = 12.Λ

′

| |Λ

′

2

24

2
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20.5: Pigeonhole Principle

If  are finite sets with  then no function  can be an injection.

Proof.

This principle is just the contrapositive of Statement 2 of Fact 12.2.3.

If  objects are placed in  containers, where  then at least one container must contain more than one object.

Proof.

Let  be the set of objects and  the set of containers, so that

 
Also let  represent the function where  means that object  has been placed in container  Then the
Theorem  tells us that  cannot be an injection, which means that there is at least one pair of distinct objects 
with 

Your car has five seats, but you also have five friends who need a ride home. How will everyone fit?

Solution

Using the people who need to get home (i.e. your friends and you) as objects and car seats as containers, Pigeonhole Principle
says that someone will have to sit on someone else's lap.

The cafeteria puts out  chocolate puddings and  tapioca puddings. If  students each grab a bowl of pudding, what is
the minimum number of tapioca puddings that have been taken?

Solution

Since  there is no injection

 
(Or: use students as objects, bowls of chocolate pudding as containers.)

But we can't actually have two students take the same bowl of pudding, so at least one student must eat tapioca.

Suppose  How big must  be to ensure that there exist two elements of  whose sum is 

Solution

Collect together the (unordered) pairs of numbers that add to 

 Theorem : Pigeonhole Principle (formal version).20.5.1

A,B |B| < |A|, A →B

 Corollary : Pigeonhole Principle.20.5.1

m n m > n,

A B

|B| = n <m = |A|.

f : A →B f(a) = b a b.

20.5.1 f ,a

1

a

2

f( ) = f( ).a

1

a

2

 Example : Too few seats.20.5.1

 Example : Dessert logistics.20.5.2

200 200 201

201 > 200,

{students who took a pudding} ↪ {bowls of chocolate pudding}.

 Example : Matching pairs.20.5.3

A ⊆ {1, 2, ⋯ , 20}. |A| A 21?

21:

B= {{1, 20}, {2, 19}, ⋯ , {10, 11}} ⊆P({1, 2, ⋯ , 20}).
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Notice that  Thinking of the elements of  as containers and elements of  as objects, place object  into container 
 if  We need one more object than container to ensure some container receives two objects, so the answer is 

Suppose  and  such that  Show that there exist distinct  that have the same
remainder when divided by 

Solution

The set of possible remainders is  Computing remainder after division by  defines a function 
 Since  this function cannot be an injection.

(Or: use elements of  as objects, possible remainders when dividing a number by  as containers.)

Strong version
Recall that given a function  we can define an equivalence relation  on  by taking  to mean 
(see Example 18.4.4). In this way, we can regard  as placing objects (elements of ) into containers (elements of ), so that
object  is “placed” in container  when 

Suppose  with  finite, and let  be the equivalence relation on  where  means 

If  for some  then at least one of the equivalence classes of  with respect to  has more than  elements.

Proof.

Consider the contrapositive:

if every equivalence class of  has no more than  elements, then 

Since  is finite and  then also  is finite and we can enumerate its elements. Write 
 Each element of  corresponds to an equivalence class of 

|B| = 10. B A a

b a ∈ b. |A| ≥ 11.

 Example : Matching modulo .20.5.4 m

m ∈ N A⊆N 0 <m < |A| <∞. , ∈ Aa

1

a

2

m.

= {0, 1, 2,⋯ ,m−1}.N

<m

m

A→ .N

<m

| | =m < |A|,N

<m

A m

f : A→B, ≡ A ≡a

1

a

2

f( ) = f( )a

1

a

2

f A B

a ∈ A b ∈ B f(a) = b.

 Theorem : Pigeonhole Principle (strong form, formal version).20.5.3

f : A→B, A,B ≡ A ≡a

1

a

2

f( ) = f( ).a

1

a

2

|A| > ℓ ⋅ |B| ℓ ∈ N, A ≡ ℓ

A ℓ |A| ≤ ℓ ⋅ |B|.

B f(A) ⊆B, f(A)

f(A) = { , ,⋯ , }.b

1

b

2

b

n

f(A) A.
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Figure : Diagram of equivalence classes under the “have same image” equivalence.

In this diagram, the  are representative elements of the class of elements of  that are mapped to  by  In particular,
we must have  for each index 

We are assuming that each class  contains no more than  elements; i.e.  Since an equivalence relation always
partitions a set  into the disjoint union of its equivalence classes, we have

 
But  is a subset of the finite set  and so  Combining this with the calculation above gives

If  objects are placed in  containers, with  for some  then at least one container contains more than  objects.

Proof Idea.

Again, let  be the set of objects and  the set of containers, so that

 
Then apply the Pigeonhole Principle (strong form, formal version).

20.5.1

a

i

A b

i

f .

f( ) =a

i

b

i

i.

[ ]a

i

ℓ |[ ]| ≤ ℓ.a

i

A

|A| = |[ ]| + |[ ]| +⋯+|[ ]|a

1

a

2

a

n

≤ ℓ+ℓ+⋯+ℓ

  

r terms

= ℓn

= ℓ ⋅ |f(A)|.

f(A) B, |f(A)| ≤ |B|.

|A| ≤ ℓ ⋅ |f(A)| ≤ ℓ ⋅ |B|.

 Corollary : Pigeonhole Principle (strong form, informal version).20.5.2

m n m > ℓn ℓ ∈ N, ℓ

A B

|A| =m > ℓn= ℓ ⋅ |B|.
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The Pigeonhole Principle (strong form, formal version) is a generalization of the Pigeonhole Principle (formal version). A
function is an injection precisely when no two distinct elements of the domain produce the same output image, so using 
in the strong form gives back the original form.

Show that if thirteen coins are distributed to six children, then at least one child will receive at least three coins.

Solution

Using coins as objects and children as containers, the given statement is just the Pigeonhole Principle (strong form, formal
version) with  we have  objects and  containers, and  (Note: Since coins are discrete objects, “more than
two” and “at least three” are the same thing.)

It is worthwhile to think about how the strong form of the Pigeonhole Principle could be proved directly. Consider the diagram
in Figure : the “tipping point” between  and  is when  is surjective and each of the
equivalence classes has exactly  elements. When  is surjective, there are  equivalence classes in  Since  is the
disjoint union of its equivalence classes under  we have  If we add one more element to  it will have to be
included in one of the equivalence classes, and that class will now have size greater than 

The cafeteria puts out  chocolate,  tapioca, and  butterscotch puddings. How many students must grab a pudding
before we can be certain that at least one of the flavours has at least half of the bowls taken?

Solution. 1 Using “tipping point” thinking 
The “tipping point” is exactly  bowls of each flavour taken, which requires  students. After the  student,
we will definitely have  bowls of one of the flavours taken.

Solution. 2 Direct use of the Pigeonhole Principle 
Consider students as objects (  of them — this is the unknown to be determined) and flavours as containers (  of them). To
determine the appropriate value of  to use, consider that “at least half” in this problem means “at least ”, which is the same
as “more than ”. So choose  In that case, we need  bringing us to the answer of 

 students. 
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 Note 20.5.1

ℓ = 1

 Example : Handing out coins.20.5.5

ℓ = 2: 13 6 13 > 2 ⋅ 6.

 Remark 20.5.1

20.5.1 |A| ≤ ℓ ⋅ |B| |A| > ℓ ⋅ |B| f

ℓ f |B| A. A

≡ , |A| = ℓ ⋅ |B|. A,

ℓ.

 Example : Handing out pudding.20.5.6

100 100 100

49 3 ⋅ 49 = 147 148

th

50

m 3

ℓ 50

49 ℓ = 49. m > 49 ⋅ 3 = 147,

m = 147+1 = 148
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20.6: Activities

A standard Alberta license plate has three letters followed by three or four digits.

a. How many different vehicles can the province license with this scheme?
b. Do you think the province was right to expand license plates by adding another digit, or do you think it should have added

another letter instead? (Or, as a third possibility, is it irrelevant in practical terms?)

Hint.

The figure  may help you decide.

a. You roll a six-sided die ten times. How many different sequences of rolls are possible?
b. Describe how Task a relates to the problem of determining  for a suitable alphabet 

Let  How many words in  end in the letter  How many do not?

You and your five housemates pick names out of a hat each week to determine who is going to clean the toilet. Over a three-
week period, how many different sequences of toilet bowl cleaners could be determined in this fashion

i. if names are placed back in the hat after each draw?
ii. if names are not placed back in the hat after each draw?

How many natural numbers between  and  (inclusive) contain the digit 

Hint.

You might instead count how many numbers don't contain the digit 

How many natural numbers between  and  (inclusive) have no repeated digits? Of these, how many are odd?

Hint.

There's no rule that when you “construct” an arbitrary object of this type that you have to choose the first digit first.

Use the Pigeonhole Principle to prove that in every set of three integers there exists a pair whose difference is even.

Hint.

What kinds of numbers add up to an even sum?

 Activity 20.6.1

= 1757626

3

 Activity 20.6.2

| |Σ

∗

10

Σ.

 Activity 20.6.3

Σ = {a, b, c,… , y, z}. Σ

∗

5

z?

 Activity 20.6.4

 Activity 20.6.5

1 1, 000, 000 5?

5.

 Activity 20.6.6

100 999

 Activity 20.6.7
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You have a list of the names of twenty students. Ten of the students are domestic students and the other ten are out-of-province
students. How many students must you select from the list to be certain to form a group that contains at least one domestic
student and at least one out-of-province student?

Let  be a fixed natural number. Determine the smallest number  for which the following statement is true: every subset of

 
of size  contains at least one odd number.

You're cleaning up your little nephew's toy room. There are  toys on the floor and  empty toy storage boxes. You randomly
throw toys into boxes, and when you're done the box with the most toys contains  toys.

a. What is the smallest that  could be when 
b. What is the smallest that  could be when 
c. Now suppose that the number of toys  satisfies

 
Prove that when you are done cleaning up, there will be (at least) one pair of boxes that contain the same number of toys.

Hint.

Argue the contrapositive by assuming that every box ends up a different number of toys. What is the fewest number of toys
you could have started with?
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 Activity 20.6.8

 Activity 20.6.9

n M

= {0, 1, 2, 3,… , 2n}N

<2n+1

M

 Activity 20.6.10

T n

N

N T = 2n+1?

N T = kn+1?

T

T < .

n(n−1)

2
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20.7: Exercises

You are trying to decide how to top your ice-cream sundae. You have five choices of sprinkles, four choices of cookie crumbs,
five choices of fruit, and three choices of chocolate chunks. For each category of topping, you may choose only one of the
available options, or you may choose to skip that category altogether. How many different sundaes could you create out of
these choices?

You turn eighteen and your trust fund finally starts paying out. You decide to buy a vehicle, and eventually narrow things down
to a choice between five SUVs, four sports cars, and two motorcycles. How many ways are there to choose a vehicle? How
many ways are there to choose one vehicle of each type?

a. Use the Multiplication Rule to demonstrate that the truth table of a logical statement with  statement variables requires 
rows. That is, demonstrate that there are  different possible combinations of input truth values for  statement variables.

b. How many different truth tables involving  statement variables exist?

Recall that if  is a finite set with  then  Use the Multiplication Rule to verify this formula by
considering the construction of an arbitrary subset of  as a process of making  “either-or” decisions.

It is the year 2030, and Alberta has succeeded in seceding from Canada and has become the landlocked Kingdom of
Albertania. The King decrees that the kingdom's citizens will all be assigned a hexadecimal ID. That is, using alphabet

 
IDs will be words from  However, the king is vain and doesn't want any such ID to contain his initials, 

For each  let  represent number of allowable IDs of length 

a. Compute   and 
b. Determine a recurrence relation for  which is valid (at least) for 

Hint.

For each allowable word of length  you can create a word of length  by adding a new letter onto the end. But you
want your new word to also be allowable, so be careful about what you add onto the end!
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 Exercise 20.7.1

 Exercise 20.7.2

 Exercise 20.7.3

n 2

n

2

n

n

n

 Exercise 20.7.4

A |A| = n, |P(A)| = .2

n

A n

 Exercise 20.7.5

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f},

.Σ

∗

jk.

n≥ 1, s

n

n.

,s

1

,s

2

.s

3

s

n

n≥ 3.

n−1 n
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21.1: Factorials
In counting, factorials come up a lot.

notation for the computation formula

 
for natural number 

A factorial contains every smaller factorial as a factor. For example,

To avoid division by zero in certain formulas, define  This choice is also made to be consistent with the methods for
counting permutations we will explore in this chapter.
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 Definition: n!

n(n−1)(n−2)⋯2 ⋅ 1,

n

 Example : Two factorial calculations.21.1.1

3! = 3 ⋅ 2 ⋅ 1 = 6, 7! = 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5, 040.

 Example : Factorial factors.21.1.2

= = 7 ⋅ 6 ⋅ 5 ⋅ 4 = 840.

7!

3!

7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ (3!)

3!

 Convention 21.1.1

0! = 1.
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21.2: Definition
We often want to count how many ways we can “mix up” the objects in a collection.

a bijection from a finite set to itself

Once you have written the elements of a finite set in some order, think of a permutation as a way of re-ordering them.

Figure  contains tables of values for all six possible permutations of the set  We have grouped them
according to: all elements fixed; one element fixed and two mixed; all elements mixed.

Figure : All possible permutations on three objects.

This page titled 21.2: Definition is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
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 Definition: Permutation

 Remark 21.2.1

 Example : Permutations of three objects.21.2.1

21.2.1 A= {a, b, c}.

21.2.1
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21.3: Counting Permutations

For  there are  permutations on 

Proof

Informal proof. 
We want to count the number of ways of constructing an ordered list of the  elements of  There are  ways to choose
the first element in the list,  ways to choose the second,  ways to choose the third, and so on, ending at a single
way to choose the  By the Multiplication Rule, there are

 
ways to construct such a list.

Formal proof. 
By induction.

Base case . 
If  then  consists of a single element, say  There is only one possible permutation of  and that is the
identity function  defined by  Thus, we have verified that there is  permutation of 

Induction step. 
Let  be a fixed integer. Our induction hypothesis is to assume that if  is any set with  elements, then there
are  permutations on  We want to use this hypothesis to prove that if  is a set with  elements, then there
are  permutations on 

Write  and  Then  is a subset of  that contains  elements, and so by our
induction hypothesis there are  permutations on  For every such permutation of  we can construct 
permutations of  by “inserting”  at different positions in the output list. For example, consider how the identity
permutation on  can be turned into  different permutations on  — see Figure .

 Theorem 21.3.1

|A| = n, n! A.

n A. n

n−1 n−2

.n

th

n ⋅ (n−1) ⋅ (n−2) ⋅⋯ ⋅ 1 = n!

n= 1

|A| = 1, A A= {a}. A,

: A→Aid

A

(a) = a.id

A

1! = 1 A.

k≥ 1 B |B| = k

k! B. A |A| = k+1

(k+1)! A.

A= { , ,… , }a

0

a

1

a

k

B= { , ,… , }.a

1

a

2

a

k

B A k

k! B. B, k+1

A a

0

B k+1 A 21.3.1
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Figure : Inserting an extra element at various positions of a permutation to create new, longer permutations.

Each of the  permutations of  can be used to construct  permutations of  in the same fashion as we have above
for the identity permutation of  So we have in total  permutations of  as required.

When applying the method of mathematical induction in the formal proof, we began our base case at  But the formula 
 is still valid for the number of permutations of the empty set. In this case,  and so  by Convention 21.1.1.

And there is indeed exactly one permutation of the empty set — the empty function. (See Statement 2 of Proposition 12.1.1.)

Each of the provided proofs for Theorem  above contains an idea that is of practical use in counting collections.

21.3.1

k! B k+1 A,

B. (k+1) ⋅ k! = (k+1)! A,

 Remark 21.3.1

n= 1.

n! n= 0 n! = 0! = 1

21.3.1
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In the informal proof, we used the Multiplication Rule to count the number of ways to construct an ordered list, where the tasks
in the construction are choosing the elements in the list one at a time. (We used this similar thinking often in Chapter 20, though
we didn't explicitly connect the Multiplication Rule to ordered lists.)
In the formal proof, we used the idea of “inserting” an object into an existing ordered list to create a new ordered list.

For a class of twenty students, in how many different orders can a professor hand back marked tests:

1. In total?
2. If Karishma's test must be handed back first?
3. If Elizabeth's and Ruijing's tests cannot immediately follow one another?

Solution

1. A test distribution order is the same thing as a permutation of the students in the class, so there are  different handback
orders (approximately  quintillion).

2. This is just the number of ways of ordering the remaining nineteen students' papers, which is  (approximately 
quadrillion).

3. It is easier to count the ways that they do follow each other. One way to do this is as follows. Remove Elizabeth's test from
the pile. There are now  ways to order the remaining nineteen papers. There are two ways to insert Elizabeth's test back
into any such ordering — either immediately before or after Ruijing's paper. So there are  orderings we do not want.
Therefore, applying the Subtraction Rule yields answer

For an alphabet  with  how many words in  contain each element of the alphabet exactly once?

Solution

Here we just want to order all the elements of  into a word, so the answer is 

Compare.

See Worked Example 20.3.11.

Worked Example  justifies the convention  since if  then  contains exactly one word: the empty word 
 And in this case it is vacuously true that  contains each element of  exactly once.

If  how many different total orders on  exist?

Solution

Specifying a total order on  really just means ordering the elements of 

 
So there are  possible total orders.

 Example : Distributing items.21.3.1

20!

2.4

19! 122

19!

2 ⋅ 19!

20! −2 ⋅ 19! = 20 ⋅ 19!−2 ⋅ 19! = 18 ⋅ 19!.

 Example : Words using the entire alphabet.21.3.2

Σ |Σ| = n, Σ

∗

Σ n!.

 Remark 21.3.2

21.3.2 0! = 1, |Σ| = 0, Σ

∗

∅. ∅ Σ

 Example : Counting total orders.21.3.3

|A| = n, A

A A:

≤ ≤ ≤⋯≤ .a

1

a

2

a

3

a

n

n!
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How many different colour patterns can we obtain by placing three red bottles and five blue bottles on a shelf? (Assume the
bottles are indistinguishable except by colour.)

Solution

Let's use the Division Rule, where first we will count a more structured collection. If the bottles of the same colour were
distinguishable from each other, we would have  ways of lining them up on the shelf. Assuming indistinguishability, we now
consider two orderings with the same colour pattern but mixed up red and/or blue bottles to be equivalent. For example, the
two orderings

 
of distinguishable bottles create the same colour pattern, and so are equivalent. Once red and blue bottle positions are
determined, we can permute the reds (  ways) and blues (  ways) independently, so each equivalence class inside the
collection of orderings of distinguishable bottles contains  equivalent orderings. Applying the Division Rule, we arrive at

 
possible colour patterns.

How many different seating arrangements of ten people around a round table are possible, if no one is considered to be at the
“head” or “foot” of the table?

Solution

Solution. 1 
Let's use the Division Rule, where first we will count a more structured collection. There are  ways to line the  people up.
Wrapping the end of the line around to meet the beginning forms a circular seating arrangement. But “rotating” around the line
(  possible rotations) yields an equivalent circular seating arrangement. So the answer is

Solution. 2 
Force one particular person to always be the “start” of the seating arrangement, no matter what physical seat they are sitting in,
and ignoring the fact that a circular arrangement really has no “start.” Then there are  ways to arrange the remaining  people
around the table starting from the seat to the left of the “start” person.

This page titled 21.3: Counting Permutations is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Counting colour patterns.21.3.4

8!

,R

1

B

1

B

2

R

2

R

3

B

3

B

4

B

5

,R

2

B

5

B

3

R

1

R

3

B

1

B

4

B

2

3! 5!

3! ⋅ 5!

= = 56

8!

3! ⋅ 5!

8 ⋅ 7 ⋅ 6

3 ⋅ 2

 Example : Circular orderings.21.3.5

10! 10

10

= 9!.

10!

10

9! 9
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21.4: Permutations of Subsets
Sometimes we want to create an ordered list of a certain length from a larger pool of candidates.

an ordered list of  elements from a given set  with 

the number of permutations of size  taken from a set of size 

alternative notation choices for 

Consider  so that  There are  permutations of 

Figure : Permutations of a set of size 

 Definition: Permutation of size k

k A, |A| ≥ k

 Definition: P (n, k)

k n

 Definition:  ,P

n

k

n

P

k

P (n, k)

 Example : Visualizing .21.4.1 P (4, 2)

A= {1, 2, 3, 4}, n= |A| = 4. 4! = 24 A.

21.4.1 4.
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Notice that the permutations above have been grouped into pairs, where the two permutations in a given pair have the same
two first elements in the same order. From this, we can conclude that there are only  permutations of size 
from 

We have

Proof.

One way to construct an ordered list of  elements from a set  where  is as in Example . Form an ordered
list of all the elements of  (  ways), and then take the first  elements from that list. But we get the same ordered list of
length  no matter how the last  elements are ordered. That is, we consider any two orderings of all  elements to be
equivalent if the first  elements in the list are the same between the two. As there are  different ways the last 

 elements could be ordered while keeping the first  elements the same, each equivalence class has size 
Applying the Division Rule, we obtain the desired formula

The number  represents the number of ways to construct an ordered list of  elements chosen from a set of  elements,
so  The convention  ensures that our formula for  expressed in Theorem  remains valid in
the case 

A class of twenty discrete mathematics students decides to elect a class president and vice-president. How many possible
outcomes to the election process are there?

Solution

An arbitrary way to elect students to these offices would be to line all the students up and choose the first two students in line
to be the president and vice-president, respectively. Therefore, there are

 
possible outcomes to the election.

You go to the horsetrack to bet on a race. From a field of nine horses, how many ways are there to make a “Trifecta” bet (i.e.
specify the first three finishers in order)?

Solution

There are

24/2 = 12 k = 2

A.

 Theorem : Computing .21.4.1 P (n, k)

P (n, k) = = n(n−1)(n−2) ⋯ (n−k+1).

n!

(n−k)!

k A, |A| = n, 21.4.1

A n! k

k n−k n

k (n−k)!

n−k k (n−k)!.

P (n, k) = = .

#{orderings of all n elements}

#{reorderings of the last n−k elements}

n!

(n−k)!

 Remark 21.4.1

P (n,n) n n

P (n,n) = n!. 0! = 1 P (n, k) 21.4.1

k = n.

 Example : Elections.21.4.2

P (20, 2) = = 20 ⋅ 19 = 380

20!

(20 −2)!

 Example : Ranking choices.21.4.3

P (9, 3) = = 9 ⋅ 8 ⋅ 7 = 504

9!

(9 −3)!
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possible such bets.

For alphabet  how many four-letter words made up of distinct letters are there in 

Compare.

See Worked Example 20.3.6.

Solution

A four-letter word with no repeated letters is the same as a permutation of size  so the number of such words is

If  and  with  how many injective functions  exist?

Compare.

See Worked Example 20.3.9.

Solution

Fix an ordering  of the elements of  Then from any ordering  of size  from  we get an
injective function  by the following table of values.

Figure 

That is, every permutation of  of size  corresponds to an injection  and so the number of such injections is 

This page titled 21.4: Permutations of Subsets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Words with no repeated letters.21.4.4

Σ = {a, b, c,… , y, z}, ?Σ

∗

4,

P (26, 4) = = 26 ⋅ 25 ⋅ 24 ⋅ 23 = 358, 800.

26!

(26−4)!

 Example 21.4.5

|A| = k |B| = n, k≤ n, f : A→B

, ,… ,a

1

a

2

a

k

A. , ,… ,b

1

b

2

b

k

k B,

f : A↪B

21.4.2

B k f : A↪B,

P (n, k).
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21.5: Activities
If you know what the choose function is, for this activity set pretend that you don't.

Write down all permutations of the set  Express your permutations as functions from  to itself.

Write down some example permutations of size  from the set 

Verify the equality

A child has the following set of refrigerator magnets: 

a. How many four-letter words can the child form? (Nonsense words allowed.)
b. How many five-letter words can the child form if the middle letter must always be a vowel?
c. If the child were able to form one word per second, and never stopped to eat or sleep, how many days would it take to form

every possible word that uses all of the magnets?

a. How many ways could student groups have been formed today if both group membership and group station location
matter? (But assume that each station always has the number of students it has now.)

b. How many ways could student groups have been formed today if only group membership matters? (Again assume that each
group station always has the number of students it has now.)

a. How many binary words of length  contain at least two zeros?
b. How many binary words of length  contain at least at least three ones?

Consider the letters in the word 

a. How many six-letter words can be formed using these letters? (Each letter can only appear once.)
b. How about if the vowels must be at the beginning?
c. How about if no consonant may be isolated between two vowels?

You're cleaning up your shop and it's time to hang all your screwdrivers in a row on your pegboard. You have two slot-head
screwdrivers, three Phillips-head screwdrivers, and four Robertson-head screwdrivers. (Assume that screwdrivers of the same
type are of different sizes.)

a. In how many different orders can you arrange your screwdrivers?

 Activity 21.5.1

A= {c, a, t}. A

 Activity 21.5.2

3 A= {t, r, u, c, k}.

 Activity 21.5.3

= + .

(n+1)!

(k+1)!(n−k)!

n!

k!(n−k)!

n!

(k+1)!(n−k−1)!

 Activity 21.5.4

{A,B,C,D,E,F ,G,H, I, J}.

 Activity 21.5.5

 Activity 21.5.6

10

10

 Activity 21.5.7

PEANUT .

 Activity 21.5.8
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b. How about if all the slot-heads are arranged on the left, all the Phillips-heads in the middle, and all the Robertson-heads are
arranged on the right?

c. How about if all screwdrivers of a particular type are arranged together, but the types are arranged in no particular order?

You're cleaning up your shop and it's time to hang all your screwdrivers in a row on your pegboard. You have five screwdrivers
of each type: slot-head, Phillips-head, and Robertson-head. (Assume that screwdrivers of the same type are all of different
sizes.)

a. In how many different orders can you arrange your screwdrivers if the types must alternate: first slot-head, then Phillips-
head, then Robertson-head, then slot-head, then Phillips-head, then ….

b. How about if the types must alternate, but with no restriction on the order of the types?

a. How many ways are there to arrange six people in a circle?
b. How about if there are two people who cannot sit beside each other?
c. How about if there is one person who cannot sit directly to the right of some other person?

a. How many ways are there to arrange three professors and three students in a circle so that professors and students alternate?
b. Answer the same question for  professors and  students.

How many ways could you choose numbers  from the set  allowing repetition, so that the sum  is at least
5?

 

This page titled 21.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Activity 21.5.9

 Activity 21.5.10

 Activity 21.5.11

n n

 Activity 21.5.12

a, b, c ,N

<11

a+b+c
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22.1: Motivation

How many different four-member study groups could be formed from a class of twenty students?

Solution

We will use the Division Rule, first imposing additional structure on each possible study group. Within a study group, create
positions of President, Vice-President, Secretary, and Janitor (cards, anyone?). Then there are  such structured groups.

But a real study group doesn't have this structure, so we'll consider two structured groups to be equivalent when they have the
same membership, regardless of positions. How many equivalent structured groups with a given membership are there? Within
a group of four, the additional structure is just an ordering, and the number of orderings of a given group is  So

What we have counted in Worked Example  is the number of subsets of size  in the set of students enrolled in the
hypothetical class.

 

This page titled 22.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example 22.1.1

P (20, 4)

4!

#{study groups} =

#{structured groups}

#{equivalent groups with a given membership}

=

P (20, 4)

4!

= .

20

4!(20 −4)1

 Note

22.1.1 4
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22.2: Basics

a finite subset of a given set

the number of combinations of size  taken from a set of size 

alternative notation choices for 

the function 

What are the domain and codomain of the choose function?

Permutations and combinations are different. A permutation is a bijection from a set to itself. Given a fixed chosen ordering
of the set elements in a list (considered as inputs), a permutation is essentially an re-ordering of the set elements into a second
list, to line up outputs with inputs. So order matters in a permutation. On the other hand, a combination is just a set, and
order does not matter in a set, only membership matters. That is, two listings of some of the elements from a set are the same
combination if all the same elements are listed, regardless of the order of the elements in the two lists. So order does not
matter in a combination.

We have

Proof.

Suppose  Using the solution to Worked Example 22.1.1 as a model for our proof, we note that each ordered list of 
 elements taken from  defines a combination from  but different orderings of the same  elements yield the same

combination. Define two permutations to be “equivalent” if they are orderings of the same elements, so that equivalent
permutations are associated to the same combination. Since there are  elements in each equivalence class of permutations,
we may apply the Division Rule to obtain

 
Finally, to obtain the rightmost formula in the statement of the theorem, we just need to combine the above formula relating

 Definition: combination

 Definition: C(n, k)

k n

 Definition:  ,C

n

k

n

P

k

C(n, k)

 Definition: Choose Function

(n, k) ↦C(n, k)

 Checkpoint 22.2.1

 Warning 22.2.1

 Theorem : Computing .22.2.1 C(n, k)

C(n, k) = = .

P (n, k)

k!

n!

k!(n−k)!

|A| = n.

k A A, k

k!

C(n, k) = #{combinations}

=

#{permutations}

#{equivalent permutations in each class}

= .

P (n, k)

k!
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 and  with the formula for  from Theorem 21.4.1.

We also have 

Proof.

Calculate

Interpret this last corollary as follows: from a set of  objects, choosing to include  elements in a combination is equivalent to
choosing  objects to reject.

How many double-scoop ice cream combinations are possible if the local ice cream shop features thirty-one different flavours?
(Note: Only flavour combinations are relevant, not which flavour goes on the cone first.)

Solution

From thirty-one flavours, there are

 
possibilities for double-scoop cones with two distinct flavours. However, there are an additional  possibilities for double-
scoop cones with two scoops the same flavour. So the answer is

How many different colour patterns can we achieve by placing three red bottles and five blue bottles on a shelf? (Assume the
bottles are indistinguishable except by colour.)

Solution

There are  possible positions in which to place a bottle. To create an arbitrary colour pattern, we can choose  of the positions
to be filled by red bottles, then place blue in the remaining positions. So the answer is

Compare the above solution for Worked Example  with the solution for the identical problem in Worked Example
21.3.4.

C(n, k) P (n, k) P (n, k)

 Corollary 22.2.1

C(n,n−k) =C(n, k).

C(n,n−k) = = =C(n, k).

n!

(n−k)!(n−(n−k))!

n!

(n−k)!k!

 Remark : Choosing is equivalent to rejecting.22.2.1

n k

n−k

 Example : Choosing ice cream.22.2.1

C(31, 2) = = = 31 ⋅ 15 = 465

31!

2!29!

31 ⋅ 30

2

31

465+31 = 496.

 Example : Counting colour patterns (revisited).22.2.2

8 3

C(8, 3) = = 56.

8!

3!5!

 Remark 22.2.2

22.2.2
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How many ways are there to choose a team of five people from a pool of six first-year students and four senior students if the
team must have three first-years and two seniors?

Solution

Choose the seniors for team, then the first-years (or vice-versa). Applying the Multiplication Rule to these independent,
consecutive tasks yields answer

How many ways are there to choose three teams of four members each from a pool of twenty people, where no person can be
on more than one team?

Solution

Solution. 1 
Choose the first team (  ways), then the second team (  ways), then the third team (  ways). Applying
the Multiplication Rule yields a total of

 
possible teams. However, the way in which we have constructed our teams has imposed an order on the collection of teams
(first, second, and third team), when there is no reason to assume such structure. Given a collection of teams, re-ordering the
teams themselves (not the people within each team) produces an equivalent collection of teams by membership. As there are 
ways to reorder the three teams, applying the Division Rule gives us a final answer of

Solution. 2 
Initially choose the twelve people who will make up the three teams, but without yet assigning anyone to a particular team (

 ways). Then, from this reduced pool of candidates, choose the first team (  ways) and the second team (
 ways). The third team will now consist of the remaining four people from the twelve initially chosen. The

Multiplication Rule gives a preliminary total of

 
But as in the first solution above, we need to account for the fact that we have artificially ranked teams as first, second, and
third. Applying the Division Rule gives us a final answer of

This page titled 22.2: Basics is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Choosing with constraints.22.2.3

C(4, 2) ⋅C(6, 3) =( )( ) = 120.

4!

2!2!

6!

3!3!

 Example : Creating several non-overlapping combinations.22.2.4

C(20, 4) C(16, 4) C(12, 4)

C(20, 4) ⋅C(16, 4) ⋅C(12, 4) =( )( )( ) = .

20!

4! 16!

16!

4! 12!

12!

4! 8!

20!

8! (4!)

3

3!

.

20!

3! 8! (4!)

3

C(20, 12) C(12, 4)

C(8, 4)

C(20, 12) ⋅C(12, 4) ⋅C(8, 4) =( )( )( ) = .

20!

8!12!

12!

4! 8!

8!

4! 4!

20!

8! (4!)

3

.

20!

3! 8! (4!)

3

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/83523?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/22%3A_Combinations/22.02%3A_Basics
https://www.gnu.org/licenses/fdl-1.3.en.html
https://sites.ualberta.ca/~jsylvest/books/EF/frontmatter-1.html
https://sites.ualberta.ca/~jsylvest/books/EF/book-elementary-foundations.html


GNU Free Documentation License 22.3.1 https://math.libretexts.org/@go/page/83524

22.3: Applications

Distributing/choosing indistinguishable objects

How many ways are there to distribute seven coins amongst three children? (Assume the coins are indistinguishable. But
children are obviously distinguishable.)

Solution

Here is one scheme by which we can decide how many coins each child will get. Line the children up in some order. (There is
no need to count the number of ways to do this — see the end of the solution.) Also lay out the coins in a line:

 
Now grab two Hickory Sticks™ from the snack table to act as dividers to split the coins up into three groups. For example,

 
means that the first child will receive one coin, the second will receive four, and the third child will receive two, whereas

 
means that the first child gets all seven coins.

We are now back to the red bottle, blue bottle problem (see Worked Example 21.3.4 and Worked Example 22.2.2): how many
different symbol patterns can we obtain by arranging two indistinguishable  symbols and seven indistinguishable  symbols?
Just choose two of the nine available positions in the pattern to place the  symbols. And so we have arrived at the answer 

Now, why do we not have to take into account the ordering of the children at the beginning? Let  represent the three
children. Relative to that ordering of children, the symbol pattern

 
means that the child  gets all seven coins, as above. But relative to the ordering  the different symbol pattern

 
also means that child  gets all seven coins, which is the same result. So if we allow both symbol patterns and orderings of
children to vary, we will end up over-counting.

There are  ways to distribute  indistinguishable objects amongst  distinguishable containers.

Proof.

Just as in the last example, use   symbols to represent the indistinguishable objects and  indistinguishable 
symbols to represent the division into  containers. So each word from the alphabet  that contains exactly  
symbols and   symbols represents a unique way to divide the objects into the containers. The length of such a word is

 and every such word can be constructed by choosing  positions for the  symbols from the 
available letter positions.

 Example 22.3.1

∘∘∘∘∘∘∘.

∘∣∘∘∘∘∣∘∘

∘∘∘∘∘∘∘∣∣

∣ ∘

∣

C(9, 2) = 36.

, ,c

1

c

2

c

3

∘∘∘∘∘∘∘∣∣

c

1

, , ,c

3

c

2

c

1

∣∣∘∘∘∘∘∘∘

c

1

 Theorem 22.3.1

C(n+k−1, k−1) n k

n ∘ k−1 ∣

k Σ = {∘, ∣} n ∘

k−1 ∣

n+k−1, k−1 ∣ n+k−1
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Your professor throws a discrete math party, but only nine students show up (sad face). The professor sends one of the students
to the corner store to get cans of soda pop for everyone. The student decides to get a mix of four different varieties. How many
possible mixes of soda varieties can the student come back with? (Assume that the cans are indistinguishable except by variety,
and that the store has more than ten cans of each variety available.)

Solution

Here is one scheme by which the student can decide how to choose ten cans in some combination of soda varieties. Make four
boxes labelled by soda variety. Have the student choose the soda cans while blindfolded, but has the store clerk place each can
in the appropriate box as the cans are chosen (a permissible assumption, since it has no bearing on the outcome). In this way,
we may assume that the cans are initially indistinguishable and remain so until they are placed in the appropriate box, at which
time they magically become the variety specified by the box's label. The previous theorem now tells us that there are

 
ways to do this.

There are  ways to choose  objects from amongst  types of object, where objects are indistinguishable
except by type, and there are at least  objects of each type available.

Proof Idea.

Appeal to Theorem  exactly as in Worked Example .

Counting edges in connected graphs

For  the complete graph with  vertices has  edges.

Proof.

A complete graph has no loops and exactly one edge between each pair of vertices. So to count the edges we can just count
the number of pairs of vertices, which is  for 

Let's summarize what we know about the number of edges in an arbitrary connected graph.

1. A connected graph with  vertices has at least  edges (Theorem 15.3.1).
2. A connected graph with  vertices is a tree if and only if it has exactly  edges (Theorem 16.3.1).
3. A simple graph with  vertices is complete if and only if it has exactly  edges (Proposition  in the forward

direction, Statement 4 of Proposition 14.2.1 in the reverse direction).

The first fact tells us the minimum number of edges a connected graph must have, but it does not guarantee that a graph with that
many edges must be connected, even if the graph is simple. The following is something of a converse to this fact, as it does provide
such a guarantee: it tells use how many edges a (simple) graph must have before we can be certain that it is connected.

If  is a simple graph such that  and  then  is connected.

Proof Idea.

Considering the contrapositive, assume that  is simple but not connected. In Activity 15.5.6, we discovered that such a 
will be maximal when it has exactly two connected components, each of which is a complete graph. Among graphs with

 Example 22.3.2

C(10+4−1, 4−1) =C(13, 3) = 286

 Corollary 22.3.1

C(n+k−1, k−1) n k

n

22.3.1 22.3.2

 Proposition : Edges in a complete graph.22.3.1

n≥ 2, n C(n, 2)

C(n, 2) n≥ 2.

n n−1

n n−1

n≥ 2 C(n, 2) 22.3.1

 Theorem 22.3.1

G= (V ,E) |V | = n |E| >C(n−1, 2), G

G G
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those two characteristics (and still  vertices), the largest possible value for  occurs when the connected components of 
 are an isolated vertex  and the complete graph  in which case the number of edges is  (Proposition 

 for ). All other nonconnected, simple graphs will then have  as required to complete the
proof by contrapositive.

This page titled 22.3: Applications is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

n |E|

G v ,K

n−1

C(n−1, 2)

22.3.1 K

n−1

|E| ≤C(n−1, 2),
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22.4: Properties
Note: In this section we will use the alternative notation  in place of 

The combination values  as we vary  and  exhibit some patterns — see Figure  below.

Figure : Pascal's triangle.

Studying the version of Pascal's triangle involving the actual combination values, here are some of the patterns we observe.

The values are symmetric about a vertical line through the centre of the triangle.
It appears that every entry is the sum of the two entries immediately above.
It appears that each row sums to a power of 

We have already observed the first pattern as arising from the equivalence of choosing versus rejecting elements to form a subset
(see Corollary 22.2.1 and Remark 22.2.1).

The next two propositions confirm that the other two observed patterns continue throughout the triangle.

For  and  we have 

Answer

We could prove this equality just by comparing the factorial formulas involved on the left-hand and right-hand sides. But
instead we will consider each of these combination values as representing the number of subsets of a certain size.

Write

 
so that  Then the left-hand side of the equality in the statement of the proposition represents the number of subsets
of  of size  Let's break that collection of subsets into two subcollections.

Subsets of  of size  that contain . 
Each of these subsets will consist of  along with  nonzero elements. As  contains  nonzero elements from
which to choose, there are  ways to select those additional subset elements from 

Subsets of  of size  that do not contain . 
Each of these subsets must consist of  nonzero elements. As  contains  nonzero elements from which to choose,
there are  ways to select those subset elements from 

Adding these two disjoint cases together using the Addition Rule yields the right-hand side of the equality.

C

n

k

C(n, k).

C

n

k

n k 22.4.1

22.4.1

2.

 Proposition 22.4.1

n≥ 2 1 ≤ k≤ n−1, = + .C

n

k

C

n−1

k−1

C

n−1

k

A= = {0, 1, 2,… ,n−1}N

<n

|A| = n.

A k.

A k 0

0 k−1 A n−1

C

n−1

k−1

A.

A k 0

k A n−1

C

n−1

k

A.
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For  we have 

Proof.

First, recall that the notation on the left-hand side is summation notation:

 
Let  so that  Then  (Theorem 12.2.9). So the right-hand side of the equality represents the
number of possible subsets of 

On the other hand, for each index  in the sum on the left-hand side, the term  is the number of subsets of  of size 
Using the Addition Rule, the sum of these terms must also be the total number of possible subsets of 

Here is one further property of the choose function.

For  we have

Proof.

Suppose  is a finite set with  (For example, we could use  but that might get confusing between
numbers as elements of  and numbers as cardinalities of subsets of ) Then the left-hand side of the equality is the
number of subsets of  of size  Here is a systematic way we could create that those subsets.

Choose an ordering of the elements of  so that

 
though we will not count this choice of ordering. Then, proceed as follows.

1. Write

 
so that  with  Then there is exactly  subset of  of size  which is  itself. And
this subset of  is also a subset of 

2. Write

 
so that  with  Using only the elements of  to create a new subset  of size 
that we have not already counted we must include the new element  with the remaining  elements to make up 
chosen from  So we get  new subsets of  of size  from 

3. Write

 Proposition 22.4.2

n≥ 0, = .∑

k=0

n

C

n

k

2

n

= + +⋯+ .∑

k=0

n

C

n

k

C

n

0

C

n

1

C

n

n

A= ,N

<n

|A| = n. |P(A)| = 2

n

A.

k C

n

k

A k.

A.

 Proposition 22.4.3

0 ≤m ≤ n,

= .C

n+1

m+1

∑

k=m

n

C

k

m

A |A| = n+1. A= ,N

<n+1

A A.

A m+1.

A,

A= { , ,… , },a

1

a

2

a

n+1

= { , ,… , },B

1

a

1

a

2

a

m+1

⊆AB

1

| | =m+1.B

1

1 =C

m+1

m+1

B

1

m+1, B

1

B

1

A.

= { , ,… , , },B

2

a

1

a

2

a

m+1

a

m+2

⊆ ⊆AB

1

B

2

| | =m+2.B

2

,B

2

X ⊆A m+1

,a

m+2

m X

.B

1

C

m+1

m

A m+1 .B

2

= { , ,… , , , },B

3

a

1

a

2

a

m+1

a

m+2

a

m+3
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so that  with  Using only the elements of  to create a new subset of  of size 
that we have not already counted we must include the new element  with the remaining  elements to make up 
chosen from  So we get  new subsets of  of size  from 

And so on. The last step in this process is when we create new subsets of size  by first choosing to include  and
then choosing the remaining  elements from  giving us  new subsets.

Every subset  of size  is accounted for in the above process, since every such subset must contain at least one
element with index  or larger. If  is the element in  with the largest index, then  is one of the subsets
considered in step  where 

So adding up each of these disjoint cases using the Addition Rule must yield the total number of subsets of  of size 
 Replacing the  total from the first step with  (since both are equal to ) to match the pattern of the

subsequent steps, we obtain

 
as desired.

This page titled 22.4: Properties is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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22.5: Activities

From a pool of eleven students (five first-year, six senior), how many ways are there to form:

a. A committee of three students?
b. A committee consisting of three first-year students and four senior students?
c. A committee of six students if two of the senior students refuse to be together on the committee?
d. A committee consisting of four first-year students and three senior students if two of the first-year students refuse to be

together on the team?

From the alphabet 

a. How many words of length  contain exactly six s?
b. How many contain at least three s?

From the alphabet 

a. How many words of length  contain exactly four s?
b. How many contain at most seven s?

Figure  contains a diagram in a pyramid shape. The unfilled circles represent “positions” in the pyramid, and the smaller
dots represent “dividers” between positions. Consider “paths” through this pyramid that begin at the peak position and end on
the lowest level. The filled circles joined by line segments represent one such path.

Figure : CA Plinko™-style pyramid.

a. How many such paths are there?
b. How many paths are there that change direction exactly once? Exactly twice? At every step?

 Activity 22.5.1

 Activity 22.5.2

Σ = {0, 1}:

10 0

1

 Activity 22.5.3

Σ = {0, 1, 2}:

10 2

0

 Activity 22.5.4

22.5.1

22.5.1

https://libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/95600?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Elementary_Foundations%3A_An_Introduction_to_Topics_in_Discrete_Mathematics_(Sylvestre)/22%3A_Combinations/22.05%3A_Activities


GNU Free Documentation License 22.5.2 https://math.libretexts.org/@go/page/95600

(For each case described in this task, you should be able to arrive at an answer without explicitly determining all such paths.)

You get to the final exam of one your courses and are faced with twelve questions. In how many ways can you fulfill the
requirements exam if the instructions ask you to:

a. Answer any ten of the questions?
b. Answer any seven of the first eight questions and any three of the last four questions?
c. Answer ten of the questions, at least five of which must be from the first eight questions and at least three of which must be

from the last four questions?

A course instructor for a class of twenty is feeling particularly lazy and doesn't bother to mark the final exams. Instead, she
decides that for each of the letter grades A, B, C, she will randomly assign that grade to exactly six students, and the last two
unlucky students will be assigned a grade of D. How many different course outcomes are there?

How many ways are there to split  people into  groups of equal size?

Suppose you have  teddy bears that are identical except for a number stitched into the paw of the right foot. Of these bears, 
 have the number  on their foot, and the remaining  bears have a unique number from  How many ways can

you choose  of the bears, with the understanding that any of the bears labelled  are interchangeable?

Hint.

Break into cases based on how many bears labelled  will be in your collection.

Consider the set  How many subsets of size  are there such that the two elements therein have an even sum?

Consider the set  How many subsets of size  are there such that no two of the three elements therein are
consecutive?

Hint.

It might be easier to count the subsets of size  that do contain (at least) two consecutive numbers.

 

This page titled 22.5: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Activity 22.5.5

 Activity 22.5.6

 Activity 22.5.7

mn m

 Activity 22.5.8

2n

n 0 n 1, 2, 3,… ,n.

n 0

0

 Activity 22.5.9

{1, 2, 3,… , 2n}. 2

 Activity 22.5.1

{1, 2, 3,… ,n}. 3

3
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22.6: Exercises

Evaluating the combination formula

In each of Exercises 1–6, compute the value of the combination or formula of combinations. To obtain exact answers, you should
simplify the factorial expressions before computing.

Combination formula identities
In each of Exercises 7–10, verify the equality of combination formulas. Remember to consider the left-hand and right-hand sides of
each equality separately, manipulating/simplifying one or the other or both sides until they are the same expression.

 Exercise 22.6.1

C(4, 4)

 Exercise 22.6.2

C(13, 5)

 Exercise 22.6.3

C(1000000, 999998)

 Exercise 22.6.4

C(7, 0)

 Exercise 22.6.5

C(10, 6) ⋅C(6, 3)

 Exercise 22.6.6

C(10, 9)/C(5, 2)

 Exercise 22.6.7

C(n, k) = ⋅C(n−1, k−1)

n

k

 Exercise 22.6.8

C(n, k) = ⋅C(n−1, k)

n

n−k

 Exercise 22.6.9

C(n, k) = ⋅C(n, k−1)

n−k+1

k

 Exercise 22.6.10

C(n+k,n) =C(n+k, k)
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Choose a value for  so that the equality in Proposition 22.4.3 becomes a formula for the sum 

This page titled 22.6: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by
Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Exercise 22.6.11

m 1+2+3+⋯+n.
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23.1: Bionomial Coefficients

an expression of the form  where  and  are real numbers (or elements of any commutative ring with
identity)

Expanding binomials gets more complicated as  increases.

 
The symmetry in each of these expansions should be expected: we would get the same expression in the summation opposite
order if we swapped  and  since 

a number appearing as a coefficient in the expansion of 

the  coefficient in the expansion of  ( )

To better understand the complexity of binomial expansions, we should look for and exploit patterns. We have already expanded
some binomial expressions for small exponents in Example  — let's extract the binomial coefficients from those expressions.

Figure : Pascal's triangle.

 Definition: Binomial

(x+y ,)

n

n ∈ N x, y

 Example : Expanding binomials.23.1.1

n

(x+y)

2

(x+y)

3

(x+y)

4

(x+y)

5

= +2xy+x

2

y

2

= (x+y)( +2xy+ ) = +3 y+3x +x

2

y

2

x

3

x

2

y

2

y

3

= (x+y)( +3 y+3x + ) = +4 y+6 +4x +x

3

x

2

y

2

y

3

x

4

x

3

x

2

y

2

y

3

y

4

= (x+y)( +4 y+6 +4x + )x

4

x

3

x

2

y

2

y

3

y

4

= +5 y+10 +10 +5x +x

5

x

4

x

3

y

2

x

2

y

3

y

4

y

5

⋮

x y, (x+y = (y+x .)

n

)

n

 Definition: Bionomial Coefficient

(x+y)

n

 Definition: ( )

n

k

k

th

(x+y)

n

0 ≤ k≤ n

23.1.1

23.1.1
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Figure  above sure looks a lot like Figure 22.4.1.

For every  and every  we have

 
where

Informal direct proof outline.

Write  with  factors. To expand this out, we generalize the FOIL method: from
each factor, choose either  or  then multiply all your choices together. Then add the results of all possible such products.
For example,

 
When forming a specific product, if you chose  for  out of  choices, you must have chosen  for the remaining 
of the  choices. The result will be  So to figure out the coefficient on  just count how many ways there
are to choose  for  of the  choices. This is just  where we choose  factors of  to give us a  and the rest to
give us an 

Induction proof outline.

Base case. 
The cases of  are trivially true.

Induction step. 
Use the binomial formula for  to obtain the binomial formula for  by manipulating

Expand 

Solution

We saw that the  row of Pascal's triangle is 

 Remark 23.1.1

23.1.1

 Theorem : Binomial Theorem.23.1.1

x, y ∈ R n ∈ N,

(x+y = ( ) =( ) +( ) y+( ) +⋯+( ) x +( ) ,)

n

∑

k=0

n

n

k

x

n−k

y

k

n

0

x

n

n

1

x

n−1

n

2

x

n−2

y

2

n

n−1

y

n−1

n

n

y

n

( ) = = .

n

k

C

n

k

n!

k!(n−k)!

(x+y = (x+y)(x+y)⋯ (x+y),)

n

n

x y,

(x+y)

2

(x+y)

3

= xx+xy+yx+yy = +2xy+ ,x

2

y

2

= xxx+xxy+xyx+xyy+yxx+yxy+yyx+yyy = +3 y+3x + .x

3

x

2

y

2

y

3

y k n x n−k

n .x

n−k

y

k

,x

n−k

y

k

y k n ,C

n

k

k (x+y) y,

x.

n= 0, 1

(x+y)

n−1

(x+y ,)

n

(x+y)

n

= (x+y)(x+y)

n−1

= (x+y)( + y+⋯+ ).C

n−1

0

x

n−1

C

n−1

1

x

n−2

C

n−1

n−1

y

n−1

 Example : Expanding a binomial.23.1.2

(x−2 .)

5

n= 5 1, 5, 10, 10, 5, 1.

(x−2)

5

(x+(−2))

5

=( ) +( ) (−2)+( ) (−2 +( ) (−2 +( )x(−2 +( )(−2

5

0

x

5

5

1

x

4

5

2

x

3

)

2

5

3

x

2

)

3

5

4

)

4

5

5

)

5

= −10 +40 −80 +80x−32.x

5

x

4

x

3

x

2
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What is the coefficient on the  term in the expansion of 

Solution

Considering

 
the  term is

 
So the desired coefficient is 

This page titled 23.1: Bionomial Coefficients is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or
curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

 Example : Determining a specific coefficient in a binomial expansion.23.1.3

x

4

y

9

(3x+y ?)

13

(3x+y = ((3x)+y ,)

13

)

13

x

4

y

9

( )(3x

13

9

)

4

y

9

= ⋅

13!

9!4!

3

4

x

4

y

9

=

13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 27 ⋅ 3

4 ⋅ 3 ⋅ 2

x

4

y

9

= (13 ⋅ 3 ⋅ 11 ⋅ 5 ⋅ 27) .x

4

y

9

57, 915.
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23.2: Multinomial Coefficients

The expansion of the trinomial  is the sum of all possible products

 
where  such that 

Proof Idea.

Similarly to the proof of the Binomial Theorem, write

 
with  factors. To expand this out, we generalize the FOIL method: from each factor, choose either   or  then
multiply all your choices together. For any such product, the powers on   and  must sum to  To get the final
expansion, add the results of all possible such products.

But we can collect terms that have the same exponent on each of   and  How many ways can we form a specific term 
 for  such that  We have  ways to choose  factors from the right-hand side of ( )

from which to take  then  ways to choose  factors from which to take  But now from all remaining factors we
must choose  and there is only  way to do this. So the coefficient on  is

Alternative proof idea.

Use the Binomial Theorem on  then again on  for each term  (This would be
very tedious!)

Determine the terms in the expansion of 

Solution

First, rewrite

 
So the terms in the expansion involve products

 
We need to account for all triples of exponents  that sum to 

term simplified

 Theorem : Trinomial Theorem.23.2.1

(x+y+z)

n

,

n!

i! j! k!

x

i

y

j

z

k

0 ≤ i, j, k≤ n i+j+k= n.

(x+y+z = (x+y+z)(x+y+z)⋯ (x+y+z),)

n

(⋆)

n x, y, z,

x, y, z n.

x, y, z.

,x

i

y

j

z

k

0 ≤ i, j, k≤ n i+j+k= n? C

n

i

i ⋆

x, C

n−i

j

j y.

z, 1 x

i

y

j

z

k

( )( ) =( ) ( ) = .

n

i

n− i

j

n!

i!(n− i)!

(n− i)!

j!(n− i−j)!

n!

i! j! k!

(x+(y+z) ,)

n

(y+z)

k

(y+z .C

n

k

x

n−k

)

k

 Example : Expanding a trinomial.23.2.1

(2x+y−3z .)

3

(2x+y−3z = ((2x)+y+(−3z) .)

3

)

3

(2x (−3z .)

i

y

j

)

k

i, j, k 3.

i j k

n!

i! j! k!

3 0 0 1 (2x)

3

8x

3

0 3 0 1 y

3
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0 0 3 1 (−3x)
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−27z
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Collecting this together, we have

Determine the coefficient on  in the expansion of 

Solution

Here we don't have any extra contributions to the coefficient from constants inside the trinomial, so using   
  the coefficient is simply

The pattern of the Binomial Theorem and Trinomial Theorem continues.

The expansion of  is the sum of all possible products

 
where the exponents  sum to 

Proof Idea.

Use the same generalized FOIL method argument as in the Binomial and Trinomial Theorem proofs, and simplify the
product of combination formulas obtained.

Determine the coefficient on  in the expansion of 

Solution

Rewriting

 
we see that the four terms in this multinomial are

2 1 0 3 3(2x y)

2

12 yx

2

2 0 1 3 3(2x (−3z))

2

−36 zx

2

1 2 0 3 3(2x)y

2

6xy

2

0 2 1 3 3 (−3z)y

2

−9 zy

2

1 0 2 3 3(2x)(−3z)

2

−54xz

2

0 1 2 3 3y(−3z)

2

−9yz

2

1 1 1 3! 6(2x)y(−3z) −36xyz

(2x+y−3z)

3

= 8 + −27 +12 y−36 zx

3

y

3

z

3

x

2

x

2

+6x −9 z−54x −36xyz.y

2

y

2

z

2

 Example : Determining a specific coefficient in a trinomial expansion.23.2.2

x

5

y

2

z

7

(x+y+z .)

14

n= 14, i = 5,

j= 2, k= 7,

= = 14 ⋅ 13 ⋅ 11 ⋅ 9 ⋅ 4 = 72, 072.

14!

5! 2! 7!

14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8

5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 2

 Theorem : Multinomial Theorem.23.2.2
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 Example : Determining a specific coefficient in a multinomial expansion.23.2.3

yx

2

z
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So what we really want to know is the total coefficient on the term involving

 
The Multinomial Theorem tells us that there will be

 
such terms in the expansion of the multinomial. Therefore, we obtain the term

 
with a total coefficient of 

a number appearing as a coefficient in the expansion of 

the coefficient on the term  in the expansion of  where the exponents  must
sum to 

The Multinomial Theorem tells us 

In the case of a binomial expansion  the term  must have  or  The Multinomial
Theorem tells us that the coefficient on this term is

 
Therefore, in the case  the Multinomial Theorem reduces to the Binomial Theorem.

This page titled 23.2: Multinomial Coefficients is shared under a GNU Free Documentation License 1.3 license and was authored, remixed,
and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.
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 Definition: Multinomial Coefficient
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23.3: Applications

If  then the number of ways to partition  into  disjoint subsets  with each subset of
predetermined size  is

Proof Idea.

There are  possibilities for  After choosing  there are  possibilities for  After choosing  there are 
 possibilities for  Continue in this fashion, all the way to  then multiply all the combination formula

expressions together.

Alternative Proof Idea.

Going back to basic counting principles, we can approach this in the same way that we came up with the factorial formula
for the choose function. Choosing a permutation of  (  ways) gives us an instance of the desired partition of  by setting

 to be the subset consisting of the first  objects in the permutation, then setting  to be the subset consisting of the
next  objects in the permutation, and so on. However, the ordering of the elements inside any such subset  does not
matter, and we would get the same partition if we took our permutation of  and again permuted the “clusters”
corresponding to each subset  Since there are  ways to permute subset  we should divide  by each of the
factorials 

In the above theorem, the order  matters!

Suppose  are distinct letters in the alphabet  For  the number of words in  of
length  which consist of exactly  's,  's,  and  's is the multinomial coefficient

Proof Idea.

If we view each letter  as a variable and each word made up of the letters  as a product of these variables, then
each of the words we want to count gives us one way to achieve a term of  in the expansion of 

 The number of such ways is the multinomial coefficient.

How many different -digit integers can we form from three s, four s and two s?

Solution

The number of integers of the desired digit composition is the multinomial coefficient

 Proposition : Counting partitions of a finite set.23.3.1
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 Warning 23.3.1
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 Proposition : Counting words with a fixed composition of letters.23.3.2
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 Example 23.3.1

9 3 6 9

( ) = = = 9 ⋅ 4 ⋅ 7 ⋅ 5 = 1, 260.

9

3, 4, 2

9!

3!4!2!

9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5

3 ⋅ 2 ⋅ 2
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23.4: Exercises

Choose numbers  so that the equality in the Binomial Theorem becomes

a. Choose numbers  so that the equality in the Binomial Theorem becomes

a. The equality from Task a can be rearranged to yield

 
where

 
What does this rearranged formula tell you about the subsets of a set of size 

Hint.

What is the sum on the left counting? What is the sum on the right counting?
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