
3.4.1 https://biz.libretexts.org/@go/page/110801

3.4: Software Creation
We just discussed different types of software and now can ask: How is software created? If the software is the set of instructions
that tells the hardware what to do, how are these instructions written? If a computer reads everything as one and zero, do we have
to learn how to write software that way? Thankfully, another software type is written, especially for software developers to write
system software and applications - called programming languages. The people who can program are called computer programmers
or software developers.

Analogous to a human language, a programming language consists of keywords, comments, symbols, and grammatical rules to
construct statements as valid instructions understandable by the computer to perform certain tasks. Using this language, a
programmer writes a program (called the source code). Another software then processes the source code to convert the
programming statements to a machine-readable form, the ones, and zeroes necessary to execute the CPU. This conversion process
is often known as compiling, and the software is called the compiler. Most of the time, programming is done inside a programming
environment; when you purchase a copy of Visual Studio from Microsoft; It provides the developers with an editor to write the
source code, a compiler, and help for many of Microsoft’s programming languages. Examples of well-known programming
languages today include Java, PHP, and C's various flavors (Visual C, C++, C#.)

 Figure : Convert a
computer program to an executable. Image by Ly-Huong T. Pham is licensed under CC-BY-NC

Thousands of programming languages have been created since the first programming language in 1883 by a woman named Ada
Lovelace. One of the earlier English-like languages called COBOL has been in use since the 1950s to the present time in services
that we still use today, such as payroll, reservation systems. The C programming language was introduced in the 1970s and
remained a top popular choice. Some new languages such as C#, Swift are gaining momentum as well. Programmers select the
best-matched language with the problem to be solved for a particular OS platform. For example, languages such as HTML and
JavaScript are used to develop web pages.

It is hard to determine which language is the most popular since it varies. However, according to the TIOBE Index, one of the
companies that rank the popularity of the programming languages monthly, the top five in August 2023 are Python, C, C++, Java,
and C# with Julia emerging as a language that is faster than Python (Tiobe, 2023). For more information on this methodology,
please visit the TIOBE page. For those who wish to learn more about programming, Python is a good first language to learn
because not only is it a modern language for web development, it is simple to learn and covers many fundamental concepts of
programming that apply to other languages.

One person can write some programs. However, most software programs are written by many developers. For example, it takes
hundreds of software engineers to write Microsoft Windows or Excel. To ensure teams can deliver timely and quality software with
the least amount of errors, also known as bugs, formal project management methodologies are used, a topic that we will discuss in
Chapter 10.

3.4.1: Open-Source vs. Closed-Source Software
When the personal computer was first released, computer enthusiasts immediately banded together to build applications and solve
problems. These computer enthusiasts were happy to share any programs they built and solutions to problems they found; this
collaboration enabled them to innovate more quickly and fix problems.

However, as software began to become a business, this idea of sharing everything fell out of favor for some. When a software
program takes hundreds of hours to develop, it is understandable that the programmers do not want to give it away. This led to a
new business model of restrictive software licensing, which required payment for software to the owner, a model that is still
dominant today. This model is sometimes called closed source, as the source code remains private property and is not made
available to others. Microsoft Windows, Excel, and Apple iOS are examples of closed-source software.

3.4.1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://biz.libretexts.org/@go/page/110801?pdf
https://biz.libretexts.org/Courses/Canada_College/Management_Information_Systems_Remix/03%3A_Software/3.04%3A_Software_Creation
https://creativecommons.org/licenses/by-nc/2.0/
https://www.tiobe.com/
https://www.tiobe.com/tiobe-index/programming-languages-definition/

3.4.2 https://biz.libretexts.org/@go/page/110801

Many, however, feel that software should not be restricted. Like those early hobbyists in the 1970s, they feel that innovation and
progress can be made much more rapidly if we share what we learn. In the 1990s, with Internet access connecting more and more
people, the open-source movement gained steam.

Open-source software has the source code available for anyone to copy and use. For non-programmers, it won’t be of much use
unless the compiled format is also made available for users to use. However, for programmers, the open-source movement has led
to the development of some of the world's most-used software, including the Firefox browser, the Linux operating system, and the
Apache webserver.

Some people are concerned that open-source software can be vulnerable to security risks since the source code is available. Others
counter that because the source code is freely available, many programmers have contributed to open-source software projects,
making the code less buggy and adding features, and fixing bugs much faster than closed-source software.

Many businesses are wary of open-source software precisely because the code is available for anyone to see. They feel that this
increases the risk of an attack. Others counter that this openness decreases the risk because the code is exposed to thousands of
programmers who can incorporate code changes to patch vulnerabilities quickly.

In summary, some benefits of the open-source model are:

The software is available for free.
The software source code is available; it can be examined and reviewed before it is installed.
The large community of programmers who work on open-source projects leads to quick bug-fixing and feature additions.

Some benefits of the closed-source model are:

Providing a financial incentive for software developers or companies
Technical support from the company that developed the software.

Today there are thousands of open-source software applications available for download. An example of open-source productivity
software is Open Office Suite. One good place to search for open-source software is sourceforge.net, where thousands of software
applications are available for free download.

3.4.2: Software Licenses

The companies or developers own the software they create. The software is protected by law through patents, copyrights, or
licenses. It is up to the software owners to grant their users the right to use the software through the terms of the licenses. In a later
chapter, we will discuss the topic of copyright and licenses in more detail.

Paying for software licensing offers several benefits for individuals, businesses, and organizations, such as receiving technical
support, regular updates, and legal protection. Companies usually need the comfort of having regular updates and technical support,
even if the software is free.

For closed-source vendors, the terms vary depending on the price the users are willing to pay. Examples include single-user, single
installation, multi-users, multi-installations, per network, or machine.

They have specific permission levels for open-source vendors to grant using the source code and set the modified version
conditions. Examples include free to distribute, remix, and adapt for non-commercial use but with the condition that the newly
revised source code must also be licensed under identical terms. While open-source vendors don’t make money by charging for
their software, they generate revenues through donations or selling technical support or related services. For example, Wikipedia is
a widely popular online free-content encyclopedia used by millions of users. Yet, it relies mainly on donations to sustain its staff
and infrastructure.

3.4.3: Reference
TIOBE Index for August 2023. Retrieved August 27, 2023, from tiobe.com

This page titled 3.4: Software Creation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ly-Huong T. Pham and
Tejal Desai-Naik (Evergreen Valley College) .

3.4: Software Creation by Ly-Huong T. Pham, Tejal Desai-Naik, Laurie Hammond, & Wael Abdeljabbar is licensed CC BY 3.0.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://biz.libretexts.org/@go/page/110801?pdf
https://sourceforge.net/
https://www.tiobe.com/tiobe-index/
https://biz.libretexts.org/Courses/Canada_College/Management_Information_Systems_Remix/03%3A_Software/3.04%3A_Software_Creation
https://creativecommons.org/licenses/by/4.0
https://biz.libretexts.org/Courses/Canada_College/Management_Information_Systems_Remix/03%3A_Software/3.04%3A_Software_Creation?no-cache
https://evc.edu/
https://workforce.libretexts.org/@go/page/9762
https://creativecommons.org/licenses/by/3.0/

