LibreTextsw

4.4: Normalization

Normalization is the process of structuring and refining the data we want to store in such a way that we eliminate repeated
information and represent as much connection between records as possible. When a database meets particular rules or features of
normalization, it is usually referred to as being in a particular normal form. The collection of rules progress from the least
restrictive (first normal, or 1NF) through the most restrictive (fifth normal, or 5NF) and beyond. Databases can still be useful and
efficient at any level depending on their use, and anything beyond third normal form is more of a rarity in real world practice.

Bear in mind, that normalization is a theory on data organization, not law. Your database can operate just fine without adhering to
the following steps, but following the process of normalizing will make your life easier and improve the efficiency of your website.
Not every set of circumstances will require all of these rules to be followed. This is especially true if they will make accessing your
data more difficult for your particular application. These rules are designed to help you eliminate repeated data, are able to keep
your overall database size as small as possible, and create integrity in your records.

Zero Normal Form

To begin, we need something to normalize. Through this section we will create a database to keep track of a music collection. First,
we need a list of what we want to track. We will follow what is generally useful for a collection of music, like albums, artists, and
songs. These categories give us a list of things we want to store, so let us come up with what a full record might contain:

Band Name Album Title Song Title Song length Producer Name

Release Year Artist hometown Concert Venue Concert Date Artist Name

To get a visual of what this table might look like, let us take a look at some sample data with many of these fields:

SONG TITLE ARTIST GENRE SUB-GENRE YEAR
Shannon Henry Gross Rock Light Rock 1976
Lover’s Will Bonnie Raitt Rock Light Rock 1998
i/\]itlljlgzt’tYor;aE(r)lie Live Chaptercago Rock Light Rock 1988
Heart Attack Olivia Newton-John Pop Adult Contemporary 1982
In A Dream Badlands Rock Hard Rock 1991
With A Little Luck Paul McCartney Rock Classic Rock 1978
It’s A Miracle Barry Manilow Pop Adult Contemporary 1975
It’s Only Love 512‘7:1121‘ Adams / Tina Pop Adult Contemporary 1984
Jazzman Carole King Pop Adult Contemporary 1974
Jesse Carly Simon Pop Adult Contemporary 1980
Just Like Jesse James Chapterr Pop Adult Contemporary 1989
;i};t;igMiss Cannot Be Spin Doctors Pop Adult Contemporary 1992
Lost In Love Air Supply Pop Adult Contemporary 1980
Good Times Sam Cooke Hip-Hop Soul 1964
Make It With You Bread Pop Adult Contemporary 1970
Mandy Barry Manilow Pop Adult Contemporary 1974

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/04%3A_Persistent_Data_Storage/4.04%3A_Normalization

LibreTextsw

Miss Chaptertelaine K.D. Lang Pop Adult Contemporary 1992
N Fall T

ever G?nna am Eric Carmen Pop Adult Contemporary 1976
Love Again
People Get Ready Rod Stewart Pop Adult Contemporary 1985
T H t Radi

Y . onesty (Radio Billy Talent Rock Modern Rock 2007
Version)
Sil Threads And

HVer reads "% Linda Ronstadt Pop Adult Contemporary 1974
Golden Needles
So Far Away Carole King Pop Adult Contemporary 1971
Fat Lip Sum 41 Rock Modern Rock 2001
Thank You For Bei

ank xou tor being a Andrew Gold Pop Adult Contemporary 1978

Friend

As an example of non-normalized or “zero normal form” data, you can look to the data above where you see long, repeated fields.
While this table is easy to read without a query or software, it quickly becomes unmanageable even in its readable format as 25
records turns into just a few hundred.

Let us take a summary look at our forms that will help us tackle this problem:

First Normal Form

o Create separate tables for related information
¢ Eliminate duplicated columns within tables

o Create primary keys for each table

Second Normal Form

e Meet first normal form

e Move data that will repeat often into a reference table
o Connect reference tables with foreign keys

Third Normal Form
e Meet second normal form
o Eliminate columns that do not relate to their primary key

Fourth Normal Form
e Meet third normal form

e Has no multi-valued dependencies

When working with an existing data set like our example above, you can quickly move through normalization once you are
familiar with the rules. By adjusting our table(s) until they meet each set of rules, our data becomes normalized. Since we are
learning, we will formulate our database from scratch.

Additional notes

As we draw up our design, each bolded word represents a table, and the names underneath represent our columns. We can simulate

a record, or row, in our database by writing out sample values for each thing in our list.

First Normal Form

To get started, we will go through our draft list piece by piece. “Band Name” refers to the official name of the group or artist we are
talking about. A good question to ask is does the column sounds like a concept, object, or idea that represents something, or would
have properties, in our database. The concept of a band for us is important, and it will have properties made up of other columns we
plan to have, like songs and albums. Since we can see this is a concept, it is a good candidate for a table, so we will start by
creating a table for our bands. Just like we studied in the PHP section, it is good practice to keep a set of conventions when naming

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

elements. With databases, it can be helpful to treat your tables as the plural form of what its rows will contain. In this case, we will
name our table Bands. Under this name, we will list “Band Name” to the list of information in that table. A key element to think
about every time we consider adding a field to a table is to make sure it represents only one piece of information. A band name
meets our criteria of being only one piece of information, so we are on track.

Now our design notes might look more like this:

Band Name Album Title Song Titles Song length Producer Name
Release Year Artist hometown Concert Venue Concert Date Artist Names
Bands

Band Name

Our next element, Album Title, seems like it would relate to a band. At first, we might be tempted to put it in the band table
because the album record we add belongs to the band. However, when we consider our data relationships, it becomes clear that we
have a one to many situation; one band will (one-hit wonders aside) release more than one album. Since we always program to
meet our highest possible level of relationship, the one-hit-wonders will exist perfectly fine even with only one album in our
database. If you recall, we address one to many relationships by placing the two sides in separate tables and identifying in the
“many” table which “one” the record is paired with. To do this, we will make an albums table just like we did for bands, and add a
placeholder in our note to refer to the band table:

Band Name Album Title Song Titles Song length Producer Name

Release Year Artist hometown Concert Venue Concert Date Artist Names
Alb

Bands Album?\l

Band Name um tame

(reference to Band)

Now we are on to “Song Titles.” The songs are organized into albums, so we will add it in.
Albums

Album Name

Song Titles

Apply our tests and see if this works. Does this field represent one piece of information? Titles is plural as we have it written, but
we cannot put more than one piece of information in a single cell. We will need to break that up into individual titles to resolve. To
make that change in this table though, we would have to create a column for each track. In order to do that, we would need to know
ahead of time the max number of tracks any album we enter will have. This is not only impractical, but violates our first normal
form of not repeating columns. Through this we can see that we again have a one to many relationship on our hands as one album
will have multiple tracks. To resolve this, once again we will break our multiple field out to its own table, where we can create a
link back to our album table:

Band Name Album Title Song Titles Song length Producer Name
Release Year Artist hometown Concert Venue Concert Date Artist Names
Band Name um Name ong Title

(reference to Band) (reference to Album)

We can already see a thread weaving its way through our tables. Even though these fields are no longer all in one record together,
you can see how we can trace our way through by looking for the band we want in the albums table, and when we know the

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

albums, we can find all the tracks the band has published. To continue with our design we will move to song length. This field
sounds fitting in our songs table, and is only one piece of information, so we are off to a good start! We can also see that we would
only have one song length per record as each record here is a song, so we comply with column count, too. We can put it there for
now, and will see if it meets the rest of our tests as we move on.

Band Name Album Title Song Titles Song length Producer Name
Release Year Artist hometown Concert Venue Concert Date Artist Names
Band Albums :ongsT'ﬂ

ands Album Name ong it
Band Name Song Length

(reference to Band)
(reference to Album)

Now that we have an idea of first normal form, we will get the rest of our initial columns out of the way:

Band Name Album Title Song Titles Song length Producer Name
Release Year Artist hometown Concert Venue Concert Date Artist Names
Albums Songs
Bands Album Name Song Title
Band Name Release Year Song Length
(reference to Band) (reference to Album)
Labels Arttlsts Concerts
Artist Name Venue

Producer Name
Hometown Date

Now that we have exhausted our initial list, we will consider the last element of 1NF, which is primary keys for each table. Many
of our tables are not presenting us with good candidates, as band names, venues, albums, tracks, and even artists could share the
same names as time goes on. To make things consistent, we will create auto incrementing IDs for each table. To follow best
practices, we will use the singular version of the noun with ID after it to denote our primary keys. This identifies the row as a
singular version of the concept our table name is a plural of:

Albums Songs
Bands albumID songID
bandID Album Name Song Title
Band Name Release Year Song Length

(reference to Band) (reference to Album)
Labels Ar.tists Concerts

artistID venuelD
producerID .

Artist Name Venue
Producer Name

Hometown Date

Second Normal Form

We have now reached first normal form. Now I must admit, I have been a bit sneaky. By introducing data relationships, and
showing you how to apply the relationship when considering where to put columns, we have already addressed part of second
normal form, so, technically, we are already beyond first normal form. The first piece of second normal form is creating tables
anywhere where a value of a cell could apply to multiple records of that table. When we moved song title out of albums, we were
fulfilling this requirement. Looking over our tables again, we can see that, as we have things now, this has been met.

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

The other element of second normal form is that connections between tables should be facilitated by foreign keys. We have already
started that process by earmarking a couple tables with notes where we knew we needed connections. Now that we have our
primary keys, we have the unique values we will need to use. For this pass, we will look at how our tables relate to each other and
see if we need connections. This is another step where remembering how to solve our data relationships will be important. To start
with the tables we earmarked, we will look at “Albums.” Our reference calls for connecting it to “Bands,” so we will add a foreign
key in “Albums” that points to “Bands.” To make things easy on us, we can use the same name in both tables so we know what it is

for.

Albums Songs
Bands albumID songID
bandID Album Name Song Title
Band Name Release Year Song Length

bandID (reference to Album)
Labels Ar.nsts Concerts

artistID venuelD
producerID .

Artist Name Venue
Producer Name

Hometown Date

We can do the same with our “Songs” table as well to reference our “Albums” table. Looking at our “Labels” table, it could be
argued that since a band belongs to a label that we should connect them. However, the relationship between a band and a label can
change over time as contracts come and go, which would give us a many-to-many relationship. Another place we can associate this
information is in the album. Once an album is published, the label that produced it will not change, and multiple labels do not
publish the same album. To resolve these, we need album in two places. First, we need a many-to-many relationship table for labels
and bands, and a one-to-many link between albums and labels. We already know how to link on-to-many, so we will add a foreign
key to producerID in or albums table. Then we will add a table that has an incrementing auto ID, a foreign key to labels, and
foreign key to albums, and a timestamp:

Albums

IbumID Songs
Bands j\ll;lm N songID
bandID R lurn ;me Song Title
Band Name elease Fear Song Length
bandID
(reference to Album)
producerID
Label Artists Concerts zandSZLabels
ade S D artistID venuelD ! d D
producer Artist Name Venue e
Producer Name bandID
Hometown Date .
timestamp

By adding the timestamp column in our many-to-many table, we can sort by the date the records were added, assuming they were
added chronologically. This means the newest record would represent who the band is signed with now, and we can look at all the
records with a particular band to see who a band has worked with, and we can look at all the records for a label to see who they
have signed.

If we wanted to round out this information more, we could add start and end timestamps that represent contracts with the label.
With the additional of these fields we could create even more timelines.

Continuing on, we have our “Artists” table. We know performers can be solo or in groups, and can belong to different bands over
time, so we have another many-to-many relationship. You will notice the name given to the table bridging our bands and labels
relationship is labelled Bands2Labels. This of course is only one possible name we could use, but is an example of how to clearly
identify the purpose of the table, as we are linking “bands to labels.” Our last table to look at is “Concerts.” We need a way to
associate a particular concert with the band that performed. Since each row of this table is a particular concert we will add a foreign
key in.

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

We now have foreign keys to link our tables together where needed, and do not have a situation where multiple records in a table
would contain the same values. We have now reached second normal form.

Third Normal Form

Our next normal form requires that all of the fields in a table relate to the key (or are a key), or in other words the concept of that
table. In our smaller tables this is immediately apparent to us—a band name relates directly to a band, and a producer name relates
directly to a label. It can be remembered in a popular rewording to the well-known court room oath that references Edgar Codd,
who created the concept of third normal form. My favorite variation is the following: “All columns in the table must relate to the
key, the whole key, and nothing but the key, so help me Codd”(source unknown).

To see third normal form in action we will review our current design. We already considered bands and labels while describing this
form, so we will mark them green as OK.

Albums
IbumID Songs
Bands j&lb N songID
bandID R lum ;me Song Title
Band Name elease Year Song Length
bandID
(reference to Album)
producerID
B 2L.abel
Label Artists Concerts .dands 2hel
ade S D artistID venuelD ! d D
procucer Artist Name Venue procucer
Producer Name bandID
Hometown Date)
timestamp

When we review “Albums” and “Songs” we only have a couple fields to consider from each table as the rest are primary and
foreign keys. Album names and release years both refer to albums, and the same holds true for song titles and length in the songs
table. Bands2Lables is also easy to review as all of the elements are keys—it is an all-reference table.

Albums
IbumID Songs
Bands Lb N songID
bandID R lurn ;me Song Title
Band Name glease year Song Length
bandID
(reference to Album)
producerID
Label Artists Concerts iandsZLabels
ade S D artistID venuelD ! d D
procucer Artist Name Venue producer
Producer Name bandID
Hometown Date .
timestamp

Next, consider the “Artists” table. Artist name, obviously, fits with artist. What about hometown? Certainly they relate—a person
usually identifies one location as home—but the actual information that would reside in the cell (likely a city) does not just relate to
an artist. Looking at our concert table for example, a venue would have a physical location in which it resides as well. This tells us
that hometown needs to be moved somewhere else. Since we do not have a place in our database that speaks specifically to
locations, we will have to add one. When we do this, we should also consider that in reality the hometown city name by itself is not
sufficiently unique without a state and zip code reference as well, and we will need to change our existing hometown column to
reference the new table:

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

Albums
IbumID Songs
Bands Zlb N songID
bandID R lum ;rne Song Title
Band Name elease Year Song Length
bandID
(reference to Album)
producerID
Locations . Bands2L.abels
Label JocID Artists Concerts id
4 de S D otc artistID venuelD ! d D
producer ay Artist Name Venue procucer
Producer Name state . bandID
] locationID Date R
zip timestamp

Almost there! When we consider the “Concerts” table, at first glance we appear to be in third normal form (because we are). While
we are here though, we need to keep in mind that in each pass of normalization we need to consider the database as a whole and all
of the other forms of normalization as we keep tweaking our tables. Here, while venue makes sense as a column, using venue as the
primary key seems confusing, as we are identifying a particular concert, not a particular place. When we consider this, it may also
become apparent that just knowing the name of a venue may not be enough to uniquely identify it either. Since we have created a
location table, we can take advantage of it here as well:

Albums
IbumID Songs
Bands j&lb N songID
bandID N lum ;me Song Title
Band Name elease Year Song Length
bandID
(reference to Album)
producerID
Locations . Concerts Bands2L.abels
Artists .
Labels locID . concertID id
ducerID it artistiD Vi ducerID
producer city Artist Name enue producer
Producer Name state . locID bandID
) locationID)
zip Date timestamp

Have we satisfied all forms? Well, not quite yet. We have adjusted our concerts table to better meet third normal form, but is it fully
compliant or did we miss something? Imagine this table populated and you will notice that the venue field—the name of our
location—would be repeated each time the venue was used. This violates second normal form. To solve this, we know we need to
split the data out to its own table, so we need to see if anything else should go with it. The location ID we just created relates to the
venue, not the event, so that should go too. The date is correct where it is, as it identifies a particular piece of information about the
concert. Does this cover everything? We do not seem to have a means to identify who actually performed the concert at that venue
on that date, do we? This is a key piece of information about a concert, and any given concert usually involves more than one
performer. Not only do we need to add the field but we need to remember our data relationships and see that this is a many-to-many
between artists and concerts. Multiple artists can perform at the same event, and with any luck a given artist will perform more than
one concert. We can address all of these changes by creating a Venues table, a many-to-many reference table for concerts and
performers, and adjusting our concerts table to meet these changes. Try writing it out yourself before looking at the next table!

Albums Songs
albumID songID Concerts2Artists
Bands Album N Song Titl 1d
bandID R lum ;me SOrlg Ll eth tistID
Band Name elease Year ong Leng artis
bandID (reference to concertID
producerID Album)

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

Locations . Bands2Labels
Label JocID Artists Venues Concerts id
a de S D otc artistID venuelD concertID ! d D
groducer N Ctl }t’ Artist Name Name venuelD Ero dl;];er
roducer fxame s’a ¢ locationID locID Date 'an
zip timestamp

Now, all of the tables we had at the beginning of third normal form are complete. We need to review the three we created to make
sure they, too, meet all three forms. In this example, they do.

Now that we have reached third normal form we can see how normalization helps us out. We could have a list of 2000 concerts in
our system, and each of those records would just be numerical references to one record for each artist and concert. In doing this, we
do not of repeat all of those details in every record.

Fourth Normal Form

While most systems (and most tutorials) usually stop at third normal form, we are going to explore a bit further. Fourth normal
form is meant to address the fact that independent records should not be repeated in the same table. We began running into this
when we looked for problems in complying with second normal form as we began to consider the data relationships between our
fields. At the time, not only did we split out tables where we found one-to-many relationships, we also split out all-reference tables
to account for the many-to-many relationships we found. This was easy to do at the time as we were focused on looking for those
relationship types. That also means, however, that we have already met fourth normal form, by preventing many-to-many records
from creating repeated values within our tables.

To keep fourth normal compliance in other systems, you will need to be mindful of places where user-submitted data could be
repeated. For example, you may allow users to add links to their favorite sites. Certainly at some point more than one user will have
entered the same value, and this would end up repeated in the table. To prevent this, you would store all links in a table and create a
many-to-many reference with your user records. Each time a link is saved, you would check your links table for a match, update
records if it exists, or add it to the table if it has never been used.

This process can be helpful when you expect very high volumes of records and/or need to be very mindful of the size, or footprint,
of your database (for example, running the system on a smartphone).

Before we move on, we will make one more pass to clean up our design. Since we started with words as concepts, but want to
honor best practices when we create our database, we will revise all of our tables to follow a consistent capitalization and
pluralization pattern:

Albums Sones
Bands albumID son gID Concerts2Artists
bandID albumName titleg id
bandName releaseDate lenath artistD
bandID albﬁmID concertID
producerID
Locations . Bands2L.abels
Label JocID Artists Venues Concerts id
abels oc i
d D it artistID venuelD concertID d D
roducer ci roducer
P du t}t, artistName venueName venuelD E dlIJD
producer s.a € locationID locationID date .an
zip timestamp

Congratulations, you now have a normalized database! Flip back to look at our original design, and you will see a number of
trends. First, the process was a bit extensive, and turned into far more tables than you likely expected. However, it also helped us
identify more pieces of information that we thought we would want, and helped us isolate the information into single pieces (like
splitting location in city, state, zip) which allows us to search by any one of those items.

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf

LibreTextsw

Learn more

Keywords, search terms: Normalization, boyce-cobb normal form

MySQL’s Guide:
High Performance MySQL: http://my.safaribooksonline.com/book/-/9781449332471

4.4: Normalization is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

e 4.4: Normalization by Michael Mendez has no license indicated.

https://biz.libretexts.org/@go/page/78426

https://libretexts.org/
https://biz.libretexts.org/@go/page/78426?pdf
http://my.safaribooksonline.com/book/-/9781449332471
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/04%3A_Persistent_Data_Storage/4.04%3A_Normalization
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/04%3A_Persistent_Data_Storage/4.04%3A_Normalization?no-cache
https://eng.libretexts.org/@go/page/53812
https://carleton.ca/scs/people/pat-morin/

