
2.8.1 https://biz.libretexts.org/@go/page/78398

2.8: Forms

Forms
Forms drive the internet. They are perhaps the most critical element in creating an interactive experience for your end users, and
allow you to take in input. Forms define places on a page where the user’s interaction can add, change, interact with, or remove the
data in your system. The actions and fields you allow in your form determine what the user is allowed to do, and what information
he is allowed to see.

Form elements range from username and password style boxes to large text fields, drop down lists, checkboxes and more. All of
the elements within a form block are sent from that page to the destination attribute of the form declaration, called an action. When
the user hits send this information is then made available in one of several ways to the receiving page or script.

To create a form section, we provide the form with a name, id, action, and method. An example with blank attributes looks like
this:

1. <form name="" id="" action="" method=""></form>

Our form’s name and id are how we will refer to it in our code when interacting with it using CSS, JavaScript, or other languages.
The action is where the page should send the information (and where the browser will go when we hit send). Our method is how
we will send our information, using either GET or POST.

Get
Sending the data using the get method places all of the form fields by name and value (called a key and value pair) into the address
bar, making our URI longer by appending each item to the receiving page’s address. An easy way to remember this is that the user
“gets” to see the information that was sent, as it will appear in the address bar at the top of the browser. The benefit of using the get
method is that the destination can be bookmarked with the data that was sent. So, if your form is used to search a library and filter
results, you could save the result as a bookmark, and return to the page in the future, seeing the same results without filling out the
form again.

While beneficial, there are two instances in which we DO NOT want to use get: either we do not want the user (or anyone) to see
what was sent, such as passwords or confidential information, or we want to send a lot of information. There is a practical limit to
how much data can reliably and safely be passed using get, although no formal ceiling. The practical limits are those created by the
browser or server’s ability to store the information being sent. When developing large get requests, determine which browsers you
want to support, and how old, and figure out which of the oldest has the lowest maximum threshold.

Post
Posted data is sent from the browser to the server in the background, as the client and server first begin to talk. The data is sent in
the headers (see) of the communication, and are not visible to the end user. Pages bookmarked with the post method will not have
access to the information later on, and that information is lost if the user leaves the page.

How the data is used and values or new content returned bring us to scripting languages. Skip to the server-side language section of
this text to learn about that process.

Form Fields
When a webpage with a form is rendered, we can identify a specific field for the user to start with. You may have experienced this
in action when you load a website and find the cursor already in a textbox. This is autofocus. To include this function, simply add
the attribute autofocus to the field the user will want or need first. We can also apply placeholders to our text fields that tell the user
what we want them to enter with the placeholder attribute. To begin, we will add a text input inside our form tags for a name field:

1. <form name="" id="" action="" method="">
2. <input type="text" placeholder="Your First Name" autofocus name="name" />
3. </form>

Many of the new elements of HTML5 we look at will also assist us with our validation tasks as users fill out forms. These inputs
will attempt to validate and/or limit user entry to only valid data. By doing this immediately, we create a better experience for both
the user and the programmer. Traditionally, validation had to be done when data was sent to the server, resulting in the page

https://libretexts.org/
https://biz.libretexts.org/@go/page/78398?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.08%3A_Forms


2.8.2 https://biz.libretexts.org/@go/page/78398

reloading if there were errors. The other popular approach was to perform validation using JavaScript on the client-side (avoiding
the reload), but validation would still have to be repeated on the server in the event the end user had JavaScript disabled. Some of
the more useful input types are the following:

<input type="url"> Will attempt to format the user’s text into a proper link, or display an error. <input type="email"> Will make
sure an email entered is in proper format, or display an error.

We can also create an input that limits values to a fixed range and increment limitations, which we used to have to display to the
user on the page, and then validate after entry:

1. <input type="range" min="10" max="50" step="5" value="30">

These limits on a range (shown as a slider) also are valid on a number field as well (shown as arrows):

1. <input type="number" min="10" max="50" step="5" value="30">

HTML5 also introduces a wealth of calendar and time controls. We can specify a date, week, or month as well as a time, day and
time, and local day and time. Each of these fields will limit the user’s entry to valid fields for that type.

Calendar options:
1. <input type="date" name="date"/>
2. <input type="week" name="week"/>
3. <input type="month" name="month"/>

Time Options:
1. <input type="time" name="time"/>
2. <input type="datetime" name="dateTime"/>
3. <input type="datetime-local" name="localDateTime"/>

Learn more

Keywords, search terms: Tables, forms

Do not Use Tables For Layout: http://webdesign.about.com/od/layout/a/aa111102a.htm

Mozilla HTML Forms Guide https://developer.mozilla.org/en-US/...ide/HTML/Forms

2.8: Forms is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.8: Forms by Michael Mendez has no license indicated.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78398?pdf
http://webdesign.about.com/od/layout/a/aa111102a.htm
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.08%3A_Forms
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.08%3A_Forms?no-cache
https://eng.libretexts.org/@go/page/53786
https://carleton.ca/scs/people/pat-morin/

