
3.3.1 https://biz.libretexts.org/@go/page/78410

3.3: PHP Errors
Before starting, an understanding of errors will help you quickly recognize where problems exist (and if they are truly problems) in
your code, which will lend to faster debugging and understanding where to look for problems.

To start with, we can tell PHP what kind of errors we want to know about before we even run a script. While the full list of
supported reporting levels (see Table 8 PHP Errors) covers a variety of concerns, there are a few (notices, errors, and warnings) that
cover what we will run into most often.

Notices
1. Notice: Undefined index: message in /home/example.php on line 9

Notices, technically, are not errors. They will notify us of things that we may have intended or wanted, but that PHP can do
without. For example, using a variable on a page without declaring it first will generate a notice. PHP will create the variable as
soon as it is called, even if we did not declare it, without creating a formal error (other languages would consider this an error
worthy of breaking execution). By notifying us but still continuing, if we had already declared or used the variable elsewhere, this
notice would indicate a spelling error or mistyped variable name.

Warnings
1. Warning: main(): Failed opening 'noFileHere.php' for inclusion on line 2

Warnings still will not stop our script from running, but indicate that something has gone wrong during execution of a script.
Attempting to use include() on a file that does not exist would create a warning.

Errors
1. PHP Fatal error: Undefined class constant 'MYSQL_ATTR_USE_BUFFERED_QUERY' in database.inc on line 43

Finally, errors are unrecoverable (execution will stop). Typical causes of errors are parsing errors like missing semi-colons,
function, or class definitions, or other problems the engine does not know how to resolve. If we used require() on a file instead of
include, an error would be triggered instead.

Most errors that we will receive are parsing errors. They are typically problems caused by what we wrote in our code, like missing
brackets, semi-colons, or typos. When we receive an error, the compiler will tell us what problem it discovered and where. Keep in
mind that we are being told where an error was found not necessary where the source of the problem exists. For example, a missing
semi colon or bracket may have occurred several lines before it created a problems for the compiler.

The other category of errors we will run into are logical. These are errors caused by how we wrote our code, and can be much more
frustrating. Logical errors are usually discovered when the script does not behave as expected. The source can be mistakes in what
code we run in different parts of an if/then statement or even an error in math used in a function that gives us the wrong solution.

Resolving errors can be something of an art form. With parse errors, the engine can guide you to the area to help you begin looking
for the source of the error. Logical errors can usually be resolved by adding extra, temporary outputs to follow the value of a
variable or trace execution of logic statements through a script. This technique can help you find where what happens differs from
what you expect. Unit testing your functions will go a long way toward preventing many of these issues, as does iterative
programming.

To dictate what errors we do and do not wish to see in our script output, we will use the error_reporting() function. By passing one
or more of the constants below, we control what is reported. For example, maybe we want information on warnings and errors, but
do not care about notices. To do this, we can call error_reporting(E_WARNING | E_ERROR). The pipe symbol (|)works as an or
in this case. If we want to see everything except notices we can use E_ALL but leave out notices with the carrot (^) character to
indicate an exception with error_reporting(E_ALL ^ E_NOTICE). It is good practice to set your error reporting level close to the
top of your script, so you can easily find it and change settings:

1. <?php
2. error_reporting(E_WARNING | E_ERROR);
3. //This next line will trigger a notice that the variable does not exist, but we will not see it
4. echo $test;
5. ?>

https://libretexts.org/
https://biz.libretexts.org/@go/page/78410?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.03%3A_PHP_Errors
https://eng.libretexts.org/Under_Construction/Purgatory/The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Languages#Anchor-104

3.3.2 https://biz.libretexts.org/@go/page/78410

6. <?php
7. error_reporting(E_ALL);
8. //This time we will see the notice
9. echo $test;

10. ?>
11. Notice: Undefined variable: test on line 3

You may be wondering why we would selectively show or hide errors; when we are developing our code, the system errors we will
need to see in order to debug are different from what we would want end users to see for a system in production. Revealing,
verbatim, the system generated error message is not only confusing to non-programmers but can expose sensitive information to
those with malicious intent. Instead, we would provide a message we chose in the error’s place. Take a look at the full list of error
reporting levels:

Table PHP Errors

Constant Description

E_ERROR
Fatal run-time errors. These indicate errors that cannot be
recovered from, such as a memory allocation problem. Execution
of the script is halted.

E_WARNING
Run-time warnings (non-fatal errors). Execution of the script is not
halted.

E_PARSE
Compile-time parse errors. Parse errors should only be generated
by the parser.

E_NOTICE
Run-time notices. Indicate that the script encountered something
that could indicate an error, but could also happen in the normal
course of running a script.

E_CORE_ERROR
Fatal errors that occur during PHP’s initial startup. This is like an
E_ERROR, except it is generated by the core of PHP.

E_CORE_WARNING
Warnings (non-fatal errors) that occur during PHP’s initial startup.
This is like an E_WARNING, except it is generated by the core of
PHP.

E_COMPILE_ERROR
Fatal compile-time errors. This is like an E_ERROR, except it is
generated by the Zend Scripting Engine.

E_COMPILE_WARNING
Compile-time warnings (non-fatal errors). This is like an
E_WARNING, except it is generated by the Zend Scripting
Engine.

E_USER_ERROR
User-generated error message. This is like an E_ERROR, except
it is generated in PHP code by using the PHP function
trigger_error().

E_USER_WARNING
User-generated warning message. This is like an E_WARNING,
except it is generated in PHP code by using the PHP function
trigger_error().

E_USER_NOTICE
User-generated notice message. This is like an E_NOTICE,
except it is generated in PHP code by using the PHP function
trigger_error().

E_STRICT
Enable to have PHP suggest changes to your code which will
ensure the best interoperability and forward compatibility of your
code.

3.3.1

https://libretexts.org/
https://biz.libretexts.org/@go/page/78410?pdf
http://www.php.net/manual/en/function.trigger-error.php

3.3.3 https://biz.libretexts.org/@go/page/78410

Constant Description

E_RECOVERABLE_ERROR

Catchable fatal error. It indicates that a probably dangerous error
occurred, but did not leave the Engine in an unstable state. If the
error is not caught by a user defined handle (see also
set_error_handler()), the application aborts as it was an
E_ERROR.

E_DEPRECATED
Run-time notices. Enable this to receive warnings about code that
will not work in future versions.

E_USER_DEPRECATED
User-generated warning message. This is like an
E_DEPRECATED, except it is generated in PHP code by using
the PHP function trigger_error().

E_ALL
All errors and warnings, as supported, except of level E_STRICT
prior to PHP 5.4.0.

Adapted from php.net, Creative Commons 3.0 Attribution Unported

3.3: PHP Errors is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.3: PHP Errors by Michael Mendez has no license indicated.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78410?pdf
http://www.php.net/manual/en/function.set-error-handler.php
http://us3.php.net/manual/en/errorfunc.constants.php
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.03%3A_PHP_Errors
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.03%3A_PHP_Errors?no-cache
https://eng.libretexts.org/@go/page/53797
https://carleton.ca/scs/people/pat-morin/

