
3.8.1 https://biz.libretexts.org/@go/page/78415

3.8: File Interaction
We can use PHP to create and read files in a variety of formats, allowing us to create whole new pages, store information in
document form, copy files, and plenty more. The first step in this process is creating a new file, or opening an existing file, that we
want to work with. To do this, we use the function fopen() to declare the file’s location and how we intend to interact with its
contents.

File Permissions
PHP follows the Unix/Linux approach to file permissions, which is more granular to what Microsoft and Apple users are typically
used to. In this approach, a particular file can have different permission levels depending on if the person editing the file is the
owner, belongs to the same system group as the owner, or falls into the “anyone else” category. Within these three categories we
can also specify whether or not the person is allowed to read, write, or execute the file, in any combination.

One of the methods used to depict permissions is with a string of letters and dashes, using R, W, and X to represent read write and
execute. In this approach, three groupings of these letters are strung together in the order of owner, group, other, by read, write and
execute. A file that everyone has full permissions would be represented by rwxrwxrwx, while a file where the owner can do
anything, others in his group can read and execute, and anyone else can execute would be shown as rwxr-xr—. The dashes here
indicate that the permission is lacking. Group membership refers to the group your account is associated with on the server, which
can be anything the server is told to recognize like administrators, users, guests, professor, student, and so on. If the owner of our
imaginary file was in the administrator group, other administrators could read and execute the file, where anyone in any other
group would only be able to execute it without seeing its contents.

Understanding this structure is important to understanding why file open methods are necessary, and can also help us understand
problems opening files when appropriate permissions are not used. Any time we open a file in PHP we need to use one of the
following methods, which will determine what PHP lets us do with the file.

Table PHP File Methods

mode Description

‘r’
Open for reading only; place the file pointer at the beginning of the
file.

‘r+’
Open for reading and writing; place the file pointer at the
beginning of the file.

‘w’
Open for writing only; place the file pointer at the beginning of the
file and truncate the file to zero length. If the file does not exist,
attempt to create it.

‘w+’
Open for reading and writing; place the file pointer at the
beginning of the file and truncate the file to zero length. If the file
does not exist, attempt to create it.

‘a’
Open for writing only; place the file pointer at the end of the file.
If the file does not exist, attempt to create it.

‘a+’
Open for reading and writing; place the file pointer at the end of
the file. If the file does not exist, attempt to create it.

‘x’

Create and open for writing only; place the file pointer at the
beginning of the file. If the file already exists, the fopen() call will
fail by returning FALSE and generating an error of level
E_WARNING. If the file does not exist, attempt to create it. This
is equivalent to specifying O_EXCL|O_CREAT flags for the
underlyingopen(2) system call.

‘x+’
Create and open for reading and writing; otherwise it has the same
behavior as ‘x’.

3.8.1

https://libretexts.org/
https://biz.libretexts.org/@go/page/78415?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.08%3A_File_Interaction

3.8.2 https://biz.libretexts.org/@go/page/78415

mode Description

‘c’

Open the file for writing only. If the file does not exist, it is
created. If it exists, it is neither truncated (as opposed to ‘w’), nor
the call to this function fails (as is the case with ‘x’). The file
pointer is positioned on the beginning of the file. This may be
useful if it is desired to get an advisory lock (see flock()) before
attempting to modify the file, as using ‘w’ could truncate the file
before the lock was obtained (if truncation is desired, ftruncate()
can be used after the lock is requested).

‘c+’
Open the file for reading and writing; otherwise it has the same
behavior as ‘c’.

PHP.net [CC-A 3.0]

File Actions
Assuming we want our file in the same folder as our page and that the web server has permission to create files in that location, we
can start a new file with the following:

1. $handler = fopen("ourFile.txt", 'x+');

If all was successful in creating our new file, the $handler variable would now represent the system’s position in our open file as a
reference. If the file already existed, we would have received an error (this keeps us from accidently overwriting a file we wanted).
If no permissions errors cropped up, you can now add content to your file. If you do have permission errors, you will need to
change folders to one your web server can write to, or give your server permissions on that folder. Since this is an operating system
task, you will need to find instructions on how to achieve this based on your OS type, version, and web server settings.

We can now add whatever we want to our file, so long as it results in valid content for the file type we are creating. For example,
any HTML placed in a text file will appear as plain text, not a web page. We would need to create our file as ourFIle.html for that
type of content to render correctly. If we had a large block of text already stored in a variable called content, we can add it to our
file by using fwrite(). Each time we call fwrite, the variable passed to it will be appended to what we have already sent. If we had
opened an existing file, the content might be appended (‘a’) or overwrite what exists (‘w+’) depending on how we opened it. When
we are done, we need to close the file, which actually writes the content using the $handler variable and saves it in our folder:

1. fwrite($content);
2. fwrite($moreContent);
3. fclose($handler);

If we browse to our file from our operating system, you should be able to open it in a text editor and see the text you stored in your
$content variable.

Uploading Files
In order to allow users to upload files to our server, we have to create a folder that allows the web server to write to it, and make the
following changes in our php.ini file:

1. File_uploads = on
2. Upload_tmp_dir = [location of our upload folder]
3. Upload_max_filesize = [size in megs, i.e. 5M = 5 megs]

After making these changes and restarting our web server, our users will be able to use upload form elements, which we create
using an input with a type attribute of file:

1. <input type="file" name="userUpload" id="userUpload">

On the page that processes our form we can access the file (and information describing it) by using the reserved PHP array
$_FILES:

1. echo "File name:" . $_FILES["userUpload"]["name"] . "
";

https://libretexts.org/
https://biz.libretexts.org/@go/page/78415?pdf
http://www.php.net/manual/en/function.flock.php
http://www.php.net/manual/en/function.ftruncate.php
http://php.net/manual/en/function.fopen.php

3.8.3 https://biz.libretexts.org/@go/page/78415

2. echo "Type:" . $_FILES["userUpload"]["type"] . "
";
3. echo "Size:" . ($_FILES["userUpload"]["size"] / 1024) . "kB
";
4. echo "Stored in:" . $_FILES["userUpload"]["tmp_name"];

3.8: File Interaction is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

3.8: File Interaction by Michael Mendez has no license indicated.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78415?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.08%3A_File_Interaction
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.08%3A_File_Interaction?no-cache
https://eng.libretexts.org/@go/page/53802
https://carleton.ca/scs/people/pat-morin/

