
2.14.1 https://biz.libretexts.org/@go/page/78404

2.14: Layout Formatting

Box Model

Figure : CSS Box Model. (By Matthias Apsel [CC0], via
Wikimedia Commons)

Borders
To better identify where our content falls on a page, and to signify that it is different from the material around it, we can adjust the
borders on our elements. Borders can be enabled or disabled by the top, bottom, left and right of the element and can also have
different styles like solid, double, grooved, dotted and dashed lines, among others.

To specify a full border, we simply use border, and can apply color, width, and style:

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. }
6. p.two {
7. border-style:groove;
8. border-width:medium;
9. }

10. p.three {
11. border-style:dotted;
12. border-width:1px;
13. border-color:red;
14. }
15. </style>
16. <p class="one">Some text.</p>
17. <p class="two">Some more text.</p>
18. <p class="three">Even more text.</p>

The full list of possible border styles is as follows:

Table Border Styles

Value Description

none No border.

2.14.1

2.14.1

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.14%3A_Layout_Formatting
http://commons.wikimedia.org/wiki/File:Boxmodell-detail.gif

2.14.2 https://biz.libretexts.org/@go/page/78404

dotted Dotted border.

dashed Dashed border.

solid Solid border.

double Double (two lines) border.

groove Grooved, 3d border.

ridge Ridged, 3d border.

inset Lowered (sunken) 3d border.

outset Raised 3d border.

inherit Inherits the same style as the parent element.

Margin and Padding
These related concepts allow you to control the amount of space between your content and its container, and between the container
and objects around it. Padding controls the amount of space inside your container, for instance between text and a set of paragraph
tags. You can remember padding as the inside by thinking about a padded room; the padding is only effective if it is on the inside of
the walls.

By adding borders to our paragraphs as we did above, we can see the outline of where the paragraph fits into our page. Now, we
will see the difference when we apply padding:

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. }
6. p.two {
7. border-style:groove;
8. border-width:medium;
9. }

10. p.three {
11. border-style:dotted;
12. border-width:1px;
13. border-color:red;
14. }
15. p {padding:10px;}
16. </style>
17. <p class="one">Some text.</p>
18. <p class="two">Some more text.</p>
19. <p class="three">Even more text.</p>

You will notice that the paragraphs still have not moved relative to one another, they each simply take up more space. In order to
move them further away from each other, we can add a margin:

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.3 https://biz.libretexts.org/@go/page/78404

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. }
6. p.two {
7. border-style:groove;
8. border-width:medium;
9. }

10. p.three {
11. border-style:dotted;
12. border-width:1px;
13. border-color:red;
14. }
15. p {padding:10px;}
16. p {margin:50px;}
17. </style>
18. <p class="one">Some text.</p>
19. <p class="two">Some more text.</p>
20. <p class="three">Even more text.</p>

With both examples, we can adjust our values by pixel or percent. We can also control the amount of change by each side of the
object, by specifying top, bottom, left or right to our rules. To do this we need to edit our values to only pad the left side of our
paragraphs, and only apply a margin to the bottom of each:

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. }
6. p.two {
7. border-style:groove;
8. border-width:medium;
9. }

10. p.three{
11. border-style:dotted;
12. border-width:1px;
13. border-color:red;
14. }
15. p {padding-left:10px;}
16. p {margin-bottom:50px;}
17. </style>
18. <p class="one">Some text.</p>
19. <p class="two">Some more text.</p>
20. <p class="three">Even more text.</p>

Instead of writing out multiple rules to adjust sides, we can combine them into one declaration by writing out our values clockwise,
starting with top, as padding: top right bottom left or margin: top right bottom left, replacing the words with a fixed or relative
value (they can be mixed) and by using zero as a place holder if we do not want the value changed from default:

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.4 https://biz.libretexts.org/@go/page/78404

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. }
6. p.two {
7. border-style:groove;
8. border-width:medium;
9. }

10. p.three {
11. border-style:dotted;
12. border-width:1px;
13. border-color:red;
14. }
15. p {padding:50px 30px 50px 5px;}
16. p {margin:50px;}
17. </style>
18. <p class="one">Some text.</p>
19. <p class="two">Some more text.</p>
20. <p class="three">Even more text.</p>

Background
There is a lot we can do with the background of our pages. Colors and images can be applied to all or portions of our content,
helping to highlight different elements of our site, and play a large part in the overall look and feel. We can specify colors by their
name if they are a basic color like red, white, blue etc. or we can provide its hex value, or the values for its red, green, and blue
values.

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. Background-color: green;
6. }
7. p.two {
8. border-style:groove;
9. border-width:medium;

10. Background-color:#ff3355;
11. }
12. p.three {
13. border-style:dotted;
14. border-width:1px;
15. border-color:red;
16. background-color: rgb(33,66,99);
17. }
18. p {padding:50px 30px 50px 5px;}
19. p {margin:50px;}
20. </style>
21. <p class="one">Some text.</p>
22. <p class="two">Some more text.</p>
23. <p class="three">Even more text.</p>

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.5 https://biz.libretexts.org/@go/page/78404

To use images instead of colors, we can specify the image’s location in our files, and can also dictate where we want to place it on
our page, whether or not it should repeat, and whether it should move or remain in place when the user scrolls the page. By default,
images will repeat to fill the space they are placed in. To prevent this, we can add a no-repeat attribute to our definitions. This time,
we will use the background attribute as opposed to the background-color attribute. The benefit of this is that you can include both
in a set of rules on the same object (image first, color second), allowing you to have an image on top of a background color. Take
note that in these examples, you will need to select your own images in place of those used below.

1. <style>
2. p.one {
3. border-style:solid;
4. border-width:5px;
5. background:url(clouds.jpg);
6. }
7. p.two {
8. border-style:groove;
9. border-width:medium;

10. background:url(calendar.jpg) no-repeat;
11. background-color:#ff3355;
12. }
13. p.three {
14. border-style:dotted;
15. border-width:1px;
16. border-color:red;
17. background:url(calendar.jpg);
18. }
19. p {padding:50px 30px 50px 5px;}
20. p {margin:50px;}
21. </style>
22. <p class="one">Some text.</p>
23. <p class="two">Some more text.</p>
24. <p class="three">Even more text.</p>

There are two ways of achieving this affect. The first is by using advanced styling through CSS using WebKit features supported
by some browsers, and then adding style rules to create the effect as close as possible in other browsers. The second is by creating a
repeatable gradient image. The first approach’s reliance on WebKit provides support for Apple and Google products. For browsers
that do not use WebKit, we have to add extra rules to achieve the same effect. This is a more advanced example as it requires
knowledge of each browser’s needs to create:

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.6 https://biz.libretexts.org/@go/page/78404

1. <style>
2. #ourBackground {
3. background-color: #1a82f7;
4. background: url(ourFallBackImage.png);
5. background-repeat: repeat-x;
6. /* Safari 4-5, Chrome 1-9 */
7. background: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#1a82f7), to(#2F2727));
8. /* Safari 5.1, Chrome 10+ */
9. background: -webkit-linear-gradient(top, #2F2727, #1a82f7);

10. /* Firefox 3.6+ */
11. background: -moz-linear-gradient(top, #2F2727, #1a82f7);
12. /* IE 10 */
13. background: -ms-linear-gradient(top, #2F2727, #1a82f7);
14. /* Opera 11.10+ */
15. background: -o-linear-gradient(top, #2F2727, #1a82f7);
16. }
17. </style>
18. <div id="ourBackground" width="300px" height="300px">
19.

20. Some

21. Text

22. Here

23.

24. </div>

This code should produce an almost identical image in every browser, depending on which rule(s) the browser is able to execute:

The first three lines of this style script—

1. background-color: #1a82f7;
2. background: url(ourFallBackImage.png);
3. background-repeat: repeat-x;

demonstrate how we create the gradient effect through an image. In this example, ourFallBackImage.png would be a very skinny (1
pixel) wide image as tall as we want our gradient to be. By repeating this image across the X axis (moving horizontally) the image
will fill the width of the parent object. By specifying the bottom-most pixel color from our image as the background, the gradient
will appear to fill the page. The balance of our rules in this example achieve the same result through CSS, but also provides more
control over the gradient without needing to create additional images.

Float
Floating an object with CSS allows us to move it around within its parent object, ignoring (to some extent) the other items near it.
Note that float is only for left/right values, not top/bottom, even though their movement may feel that way as windows resize.

When multiple objects in the same container have the same float style, they will line up next to each other for as many as the
container can fit. While this may sound confusing, we will look at it without the terminology: If you have a big box, and that box
has small boxes in it, those boxes will fit as many of themselves left-to-right in a row as they can. Any boxes that do not fit will
start a new “row” underneath.

The use of float is a big help to responsive styling. Boxes of content that normally fit side by side on a larger screen will
automatically create more “rows,” with less items in each, to accommodate screens with less width. Create a page with the
following code, and then play around with the size of your browser window to see the resizing in action:

1. <style>
2. .thumbnail {

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.7 https://biz.libretexts.org/@go/page/78404

3. float:left;
4. width:80px;
5. height:80px;
6. margin:5px;
7. }
8. </style>
9. <div>

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20. </div>

Content before and after a floated element will attempt to wrap around it. When we do not want this to happen, we can add a rule to
that element’s style to clear the floating effect. To do this, we would add clear: left; clear: right; or clear:both depending which
sides we are concerned with.

Useful Feature

Since relative refers to moving the position from where it would be based on all of the other elements and rules, we can use
negative values to “pull” an element in that particular direction.

Positioning
can specify, with great control, exactly where our elements are ultimately located in our window. CSS allows us to modify location
to such an extent that an items position on the page can have no relation to its location in your code. Just as we have seen in many
of our other rules, there are two methods to declaring position, fixed and relative. Here fixed elements specify the offset of pixels
from a side or corner of the window, and relative declares that our values are moving the content from where it would have been if
we had not changed it.

Here is how we might take a heading and force it to an offset from the top left corner as an absolute, meaning it will sit there no
matter what else is above, underneath, or around it:

1. <style>
2. h2 {
3. position:absolute;
4. left:50px;
5. top:100px;
6. }
7. </style>
8. <h2>This is a heading with an absolute position</h2>
9. <p>

With absolute positioning, an element can be placed anywhere on a page. The heading below is placed 50px from the left of the
page and 100px from the top of the page. As this text continues, you will see that the heading sits on top of the text as if it was not
even there. As this text continues, you will see that the heading sits on top of the text as if it was not even there. As this text
continues, you will see that the heading sits on top of the text as if it was not even there. As this text continues, you will see that the
heading sits on top of the text as if it was not even there. As this text continues, you will see that the heading sits on top of the text
as if it was not even there. As this text continues, you will see that the heading sits on top of the text as if it was not even there. As

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf

2.14.8 https://biz.libretexts.org/@go/page/78404

this text continues, you will see that the heading sits on top of the text as if it was not even there. As this text continues, you will
see that the heading sits on top of the text as if it was not even there.</p>

If we wanted to move our heading relative to where it would normally have been positioned (just above our paragraph) we change
to relative and provide the offset values that we want. Here, we will move it to the right, move it to the left, and show it as it was:

1. <style>
2. h2.pos_left {
3. position:relative;
4. left:-20px;
5. }
6. h2.pos_right {
7. position:relative;
8. left:20px;
9. }

10. </style>
11. <h2>This is a heading with no position</h2>
12. <h2 class="pos_left">This heading is moved left according to

its normal position</h2>
13. <h2 class="pos_right">This heading is moved right according

to its normal position</h2>
14. <p>

This is our paragraph that has a heading with relative positioning. Unless we put a negative bottom offset on our heading large
enough to cover it, it will stay above the paragraph this time.

Z-index
Just when you thought we had escaped the terrors of precedence and inheritance, we have another factor in our layering to consider.
The z-index of an object determines its order in the stack of elements on a page. This is how we can control which items are
depicted as on “top” of another when they occupy the same portion of a page. While items are automatically layered according to
their location on the page and in our code, these can be modified and overridden by a z-index to set the order we want. A larger
value of a z-index forces an object “higher” on the page, or, puts it closer to the “top” of all the elements you are looking at. A page
background, for example, is usually the lowest level on your page. As such, other content on your page sits on top of your
background layer, and becomes the next layer in the stack. A simple way to ensure important messages are never hidden behind
something else is to assign them a z-index of an extremely large like 99999. You should only use such a method for one or two
critical items in a site. In our first example, we will see an image with a negative index that ensures it is behind our text. Then we
will change our index value to make it higher, putting it on top of the text instead:

1. <style>
2. img {
3. position:absolute;
4. left:0px;
5. top:0px;
6. z-index:-1;
7. }
8. </style>
9. <h1>Here is some text</h1>

10. <img src="http://bglabs.evade.netdna-cdn.com/f...ground-
824.jpg" width="100" height="100" />

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf
http://bglabs.evade.netdna-cdn.com/files/clouds-seamless-background-824.jpg

2.14.9 https://biz.libretexts.org/@go/page/78404

1. <style>
2. img {
3. position:absolute;
4. left:0px;
5. top:0px;
6. z-index:-1;
7. }
8. </style>
9. <h1>Here is some text</h1>

10. <img src="http://bglabs.evade.netdna-cdn.com/f...ground-
824.jpg" width="100" height="100" />

Mouse Cursor
While this is not a regular feature in most sites, it can be an important player if you intend for your website to act as if it were an
application.

We can add cursor rules to our selectors in order to change the appearance of the mouse cursor when that rule is active. Much the
same as working in your operating system, we can select the regular icon, wait (also called working, busy, thinking, etc.), text
insert, a pointer, a question mark, and a crosshair. While most of these have little use in the average web page, they come in handy
when your end product is more application focused.

I would strongly recommend judicious use of cursor changes, and be sure that your changes are reverted back as soon as it is
appropriate (i.e. change your waiting/busy back as soon as an event is compete) as forgetting to reset can leave your user thinking
your site (or their system) is locked up or endlessly cycling. The full list of the available cursors is as follows:

Table Pointer Styles

Value Description

auto (default) let the browser choose

crosshair Crosshair, or “plus,” symbol

default The default cursor

e-resize
Shows resize to the right (note all resize values are compass
combinations)

help The help (question mark) icon

move Item can be moved

n-resize Shows resize up

ne-resize Shows resize up and right

nw-resize Shows resize up and left

pointer A pointer (arrow)

progress The busy symbol (be careful with this one!)

s-resize Shows resize down

se-resize Shows resize down and right

sw-resize Shows resize down and left

text Text line (flashing or steady “I”)

w-resize Shows resize left

2.14.2

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf
http://bglabs.evade.netdna-cdn.com/files/clouds-seamless-background-824.jpg

2.14.10 https://biz.libretexts.org/@go/page/78404

wait Shows busy, wait (be careful with this one!)

inherit Inherits value from parent

Cursor styles can be applied when the element with a CSS attribute that affects the cursor is triggered. This is usually caused by
hovering over the object, or when the user initiates an action, in reaction to which we apply the new style using JavaScript. Note
that user triggered actions like busy icons normally need to stay “busy” until the script is done. In this case, the body tag should
receive the attribute that affects the cursor so it continues to show as busy even if the user moves the mouse off of the button or
other trigger that they used.

Learn more
Keywords, search terms: css layout, page formatting, positioning, css layers

LearnLayout: http://learnlayout.com/toc.html

Full layout example without tables: http://www.w3.org/2002/03/csslayout-howto

A set of basic layouts: http://blog.html.it/layoutgala/

2.14: Layout Formatting is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

2.14: Layout Formatting by Michael Mendez has no license indicated.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78404?pdf
http://learnlayout.com/toc.html
http://www.w3.org/2002/03/csslayout-howto
http://blog.html.it/layoutgala/
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.14%3A_Layout_Formatting
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/02%3A_Document_Markup/2.14%3A_Layout_Formatting?no-cache
https://eng.libretexts.org/@go/page/53792
https://carleton.ca/scs/people/pat-morin/

