
3.6.1 https://biz.libretexts.org/@go/page/78413

3.6: Data Manipulation

Comparison Operators
PHP supports many of the mathematical comparisons common to programming languages, such as equivalence and relative value
comparison. The symbols used however may be different than what you are used to. In the chart below we will look at how to
represent each comparison test, and under what condition we can expect the test to come back as true.

Table Comparison Operators

Example Name Result

$a == $b Equal TRUE if $a is equal to $b.

$a === $b Identical
TRUE if $a is equal to $b, and they are of
the same type. (introduced in PHP 4)

$a != $b Not equal TRUE if $a is not equal to $b.

$a <> $b Not equal TRUE if $a is not equal to $b.

$a !== $b Not identical
TRUE if $a is not equal to $b, or they are
not of the same type. (introduced in PHP 4)

$a < $b Less than TRUE if $a is strictly less than $b.

$a > $b Greater than TRUE if $a is strictly greater than $b.

$a <= $b Less than or equal to TRUE if $a is less than or equal to $b.

$a >= $b Greater than or equal to TRUE if $a is greater than or equal to $b.

These tests will come in handy as we move into logic structures. The results of these comparisons can help us determine a course of
action like what is displayed to the user, how we modify or create data, or respond to user input. Pay close attention to the
difference between the equal (==) and identical (===) tests. Equal means the comparison of each side is considered the same. For
example, 1 and True are considered equal, because PHP will treat a 1 as both an integer and a binary representation of true. If we
want to ensure elements are the same in both value and type, we would use strictly equal. This test returns a false in our example,
as 1 and true are not both integers of the value 1. Also, do not forget at least the second =, as just one will be treated as assignment,
not a logical test!

Additional notes
Take Note! While using the words “and” and “or” in your logic statements, PHP will not give you an error, as they are in the order
of precedence below. Take note that they are below the = sign—this will affect your logic equations. The vast majority of the time
you will want to use “&&” and “||”, as they will be evaluated before assignment.

Order of Operations
PHP follows the traditional order of operations used in mathematics, as found below. An associativity of “left” means the parser
will read left to right across the equation. “Right” means it will move right to left (i.e.: assign the equation to the element on the left
of the = sign). Precedence takes place from the top down, meaning the operators higher in this list will be evaluated before those
beneath them. Just as in mathematics, parenthesis will interrupt this list by treating the contents of each set of parenthesis (from the
inner most out) as a statement by itself. The portion of the table in yellow highlights the operators most used for development
below application level.

Table Operator Precedence

Associativity Operators

non-associative clone new

left [

3.6.1

3.6.2

https://libretexts.org/
https://biz.libretexts.org/@go/page/78413?pdf
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.06%3A_Data_Manipulation

3.6.2 https://biz.libretexts.org/@go/page/78413

non-associative ++ —

right ~—(int) (float) (string) (array) (object) (bool) @

non-associative instance of

right !

left * / %

left +—.

left << >>

non-associative < <= > >= <>

non-associative == != === !==

left &

left ^

left |

left &&

left ||

left ? :

right = += -= *= /= .= %= &= |= ^= <<= >>= =>

left and

left xor

left or

left ,

Let us look at a few examples to demonstrate precedence in PHP:

1. echo 3 * 4 + 3 + 2;
17 Multiplication takes precedence and all are evaluated left to
right

1. echo 3 * (4 + 3 + 2);
27 Parenthesis take precedence so addition is evaluated before
multiplication

Given: $this = true; $that=false

1. $result = $this && $that $result = false true and false is false

1. $result = $this and $that
$result = true $this (true) is assigned before $this and $that is
evaluated

Manipulating Data Streams
Data streams are long strings of characters specially formatted to convey information between systems. They typically focus on the
ability to quickly convey all the information in as readable a format as possible, resulting in a compressed syntax to identify the
information and its meaning. Two of the most popular methods of streaming data today are JSON and XML.

Data streams do not have to be raw, or complete, records of an entire system. They are frequently used to transmit responses
between the back-end system (server or database) and the system that generates content the viewer sees (browser and/or scripting
language).

https://libretexts.org/
https://biz.libretexts.org/@go/page/78413?pdf

3.6.3 https://biz.libretexts.org/@go/page/78413

JSON
An acronym for JavaScript Object Notation, JSON delimits objects with nested brackets and quoted values, denoting key and value
pairs with colons. This is a very short, concise method of delivering data, but the recipient will need to get the meaning of the
information elsewhere like documentation, and the string is not easily human readable. It is useful when the volume of data is high,
and speed is important.

If we asked our system to give us the family members from Family Guy, we might get the following:

1. {"Griffins":{"Peter":"Father", "Lois":"Mother", "Stewie":"Son", "Chris":"Son", "Meg":"Daughter", "Brian":"Dog"} }

If we asked for the Griffins and Quagmire, we might get:

1. {"Griffins":
2. {"Peter":"Father", "Lois":"Mother", "Stewie":"Son", "Chris":"Son", "Meg":"Daughter", "Brian":"Dog"},
3. {"Quagmire":"Neighbor"}
4. }

XML

An abbreviation of eXtensible Markup Language, XML wraps pieces of information in tags, similar to HTML, but the names of the
tags are user-defined. Grouping of information is done by nesting the tags within each other. Using our Family Guy example above,
our XML response would be as follows:

1. <Response>
2. <Griffin>
3. <Peter >father</Peter>
4. <Lois>mother</Lois>
5. <Stewie>son</Stewie>
6. <Chris>son</Chris>
7. <Meg>daughter</Meg>
8. <Brian>dog</Brian>
9. </Griffin>

10. <Quagmire>
11. <Glen>neighbor</Glen >
12. </Quagmire>
13. </Response>

Useful Feature

You can test validate JSON and XML strings that you create or receive by copying and pasting them into validation sites like
jsonlint.com and xmlvalidation.com. They can help you identify problem areas in your strings to make sure your data is stored
correctly.

Take note that I specify that this is how your code might look in these examples. The actual output’s format would vary based on
how the developers decides to create the response string, and also based on any options available to the user as to how they want
the information organized. For example, we might want character ages instead of relationships like father or daughter, or the
developer might group the results by gender and put first and last names as the value pairs.

It is important to note that when you actually interact with data streams they will not look as they do above, but will be long strings
without the spacing and line breaks, as this reduces the size of the string. The formatting you see above is often referred to as the
“pretty print” format, which adds extra spacing and formatting to make it more human readable.

We can create both XML and JSON in PHP. You can do this by creating the exact string necessary to format it, or we can use
functions in PHP to help us along. The SimpleXML package allows us to create, navigate, and edit XML content, while the
json_encode and json_decode functions allow us an easy means to convert JSON to and from arrays.

For brevity, we will consider examples of receiving data in these two formats. While converting JSON into, an out of, arrays is
easily done with json_encode() and json_decode(), creating data by hand in these formats would necessitate a much deeper look at
both XML and JSON. Your journey there can begin with the Learn More section. I would recommend you explore at least one

https://libretexts.org/
https://biz.libretexts.org/@go/page/78413?pdf

3.6.4 https://biz.libretexts.org/@go/page/78413

format in depth, as you will come into contact with these formats when you interact with APIs. Current trending has JSON getting
more attention in new development, but there are plenty of already built XML systems in place, and plenty more that offer both.

An easy way to interact with XML or JSON data in PHP is to convert it into arrays that we can more easily traverse. When we are
working with XML we can use the SimpleXML package integrated in PHP to read our string or file using $data =
simplexml_load_string($ourXML); or $data = simplexml_load_file(“ourXmlFile.xml”);. We can open JSON files to string or
receive them from another source, and decode them using $data = json_decode($ourJson). Just like we did with arrays we created
earlier, we can see our data by using print_r($data);.

$ourJson = '{"Griffins":{"Peter":"Father", "Lois":"Mother", "Stewie":"Son", "Chris":"Son", "Meg":"Daughter", "Brian":"Dog"}, }';
$familyGuy = json_decode($ourJson,1);
print_r($familyGuy);

Array ([Griffins] => Array ([Peter] => Father [Lois] => Mother [Stewie] => Son [Chris] => Son [Meg] => Daughter [Brian] => Dog)
)

Be sure to place the 1 as our second option in our json_decode() call, as it instructs the function to return the data as an array
instead of objects. The same transfer to array for XML becomes a little more complicated, as PHP does not natively support this
type of conversion, so we need to do more to get our full list displayed as arrays:

1. $ourXML= '<Response>
2. <Griffin>
3. <Peter >Father</Peter>
4. <Lois>Mother</Lois>
5. <Stewie>Son</Stewie>
6. <Chris>Son</Chris>
7. <Meg>Daughter</Meg>
8. <Brian>Dog</Brian>
9. </Griffin>

10. <Quagmire>
11. <Glen>Neighbor</Glen>
12. </Quagmire>
13. </Response>';
14. $familyGuy = simplexml_load_string($ourXML);
15. $familyGuy = (array) $familyGuy;
16. foreach ($familyGuy as &$group){$group = (array) $group;}
17. print_r($familyGuy);

Array ([Griffin] => Array ([Peter] => Father [Lois] => Mother [Stewie] => Son [Chris] => Son [Meg] => Daughter [Brian] => Dog)
[Quagmire] => Array ([Glen] => Neighbor))

While we were able to make the outermost layer of the data an array just by re-declaring its type, the type casting conversion in
PHP is not recursive. However, simplexml_load_string turns our XML into objects not arrays, so by looping through our array
again and recasting each element to an array, we can correct the data in the second layer. This process would need to be repeated
for each nested layer of data.

Learn more

Keywords, search terms: json, xml, data formatting, data structures

Essential XML Quick Reference: http://bookos.org/book/491155/a86a21

Json.org: http://www.json.org/

Data Structures Succinctly (Pt 1): http://www.syncfusion.com/resources/techportal/ebooks/datastructurespart1

3.6: Data Manipulation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78413?pdf
http://bookos.org/book/491155/a86a21
http://www.json.org/
http://www.syncfusion.com/resources/techportal/ebooks/datastructurespart1
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.06%3A_Data_Manipulation
https://biz.libretexts.org/Courses/Prince_Georges_Community_College/INT_2080%3A__The_Missing_Link_-_An_Introduction_to_Web_Development_(Mendez)/03%3A_Scripting_Language/3.06%3A_Data_Manipulation?no-cache

3.6.5 https://biz.libretexts.org/@go/page/78413

3.6: Data Manipulation by Michael Mendez has no license indicated.

https://libretexts.org/
https://biz.libretexts.org/@go/page/78413?pdf
https://eng.libretexts.org/@go/page/53800
https://carleton.ca/scs/people/pat-morin/

