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10.5: The Regression Equation
Regression analysis is a statistical technique that can test the hypothesis that a variable is dependent upon one or more other
variables. Further, regression analysis can provide an estimate of the magnitude of the impact of a change in one variable on
another. This last feature, of course, is all important in predicting future values.

Regression analysis is based upon a functional relationship among variables and further, assumes that the relationship is linear. This
linearity assumption is required because, for the most part, the theoretical statistical properties of non-linear estimation are not well
worked out yet by the mathematicians and econometricians. This presents us with some difficulties in economic analysis because
many of our theoretical models are nonlinear. The marginal cost curve, for example, is decidedly nonlinear as is the total cost
function, if we are to believe in the effect of specialization of labor and the law of diminishing marginal product. There are
techniques for overcoming some of these difficulties, exponential and logarithmic transformation of the data for example, but at the
outset we must recognize that standard ordinary least squares (OLS) regression analysis will always use a linear function to
estimate what might be a nonlinear relationship.

The general linear regression model can be stated by the equation:

where  is the intercept, 's are the slope between  and the appropriate , and  (pronounced epsilon) is the error term that
captures errors in measurement of  and the effect on  of any variables missing from the equation that would contribute to
explaining variations in . This equation is the theoretical population equation and therefore uses Greek letters. The equation we
will estimate will have the Roman equivalent symbols. This is parallel to how we kept track of the population parameters and
sample parameters before. The symbol for the population mean was  and for the sample mean  and for the population standard
deviation was  and for the sample standard deviation was . The equation that will be estimated with a sample of data for two
independent variables will thus be:

As with our earlier work with probability distributions, this model works only if certain assumptions hold. These are that the  is
normally distributed, the errors are also normally distributed with a mean of zero and a constant standard deviation, and that the
error terms are independent of the size of  and independent of each other.

Assumptions of the Ordinary Least Squares Regression Model

Each of these assumptions needs a bit more explanation. If one of these assumptions fails to be true, then it will have an effect on
the quality of the estimates. Some of the failures of these assumptions can be fixed while others result in estimates that quite simply
provide no insight into the questions the model is trying to answer or worse, give biased estimates.

1. The independent variables, , are all measured without error, and are fixed numbers that are independent of the error term.
This assumption is saying in effect that  is deterministic, the result of a fixed component “ ” and a random error component “
.”

2. The error term is a random variable with a mean of zero and a constant variance. The meaning of this is that the variances of the
independent variables are independent of the value of the variable. Consider the relationship between personal income and the
quantity of a good purchased as an example of a case where the variance is dependent upon the value of the independent
variable, income. It is plausible that as income increases the variation around the amount purchased will also increase simply
because of the flexibility provided with higher levels of income. The assumption is for constant variance with respect to the
magnitude of the independent variable called homoscedasticity. If the assumption fails, then it is called heteroscedasticity.
Figure  shows the case of homoscedasticity where all three distributions have the same variance around the predicted
value of  regardless of the magnitude of .

3. While the independent variables are all fixed values they are from a probability distribution that is normally distributed. This
can be seen in Figure  by the shape of the distributions placed on the predicted line at the expected value of the relevant
value of .

4. The independent variables are independent of , but are also assumed to be independent of the other  variables. The model is
designed to estimate the effects of independent variables on some dependent variable in accordance with a proposed theory. The
case where some or more of the independent variables are correlated is not unusual. There may be no cause and effect
relationship among the independent variables, but nevertheless they move together. Take the case of a simple supply curve
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where quantity supplied is theoretically related to the price of the product and the prices of inputs. There may be multiple inputs
that may over time move together from general inflationary pressure. The input prices will therefore violate this assumption of
regression analysis. This condition is called multicollinearity, which will be taken up in detail later.

5. The error terms are uncorrelated with each other. This situation arises from an effect on one error term from another error term.
While not exclusively a time series problem, it is here that we most often see this case. An  variable in time period one has an
effect on the  variable, but this effect then has an effect in the next time period. This effect gives rise to a relationship among
the error terms. This case is called autocorrelation, “self-correlated.” The error terms are now not independent of each other, but
rather have their own effect on subsequent error terms.

Figure  shows the case where the assumptions of the regression model are being satisfied. The estimated line is 
. Three values of  are shown. A normal distribution is placed at each point where  equals the estimated line and

the associated error at each value of . Notice that the three distributions are normally distributed around the point on the line, and
further, the variation, variance, around the predicted value is constant indicating homoscedasticity from assumption 2. Figure 

 does not show all the assumptions of the regression model, but it helps visualize these important ones.

Figure 

Figure 

This is the general form that is most often called the multiple regression model. So-called "simple" regression analysis has only one
independent (right-hand) variable rather than many independent variables. Simple regression is just a special case of multiple
regression. There is some value in beginning with simple regression: it is easy to graph in two dimensions, difficult to graph in
three dimensions, and impossible to graph in more than three dimensions. Consequently, our graphs will be for the simple
regression case. Figure  presents the regression problem in the form of a scatter plot graph of the data set where it is
hypothesized that  is dependent upon the single independent variable .

A basic relationship from principles of microeconomics is the consumption function. This theoretical relationship states that as a
person's income rises, their consumption rises, but by a smaller amount than the rise in income. If  is consumption and  is
income in the equation below Figure , the regression problem is, first, to establish that this relationship exists, and second, to
determine the impact of a change in income on a person's consumption. The parameter  is called the marginal propensity to
consume (MPC) in economics.

Each "dot" in Figure  represents the consumption and income of different individuals at some point in time. This was called
cross-section data earlier; observations on variables at one point in time across different people or other units of measurement. This
analysis is often done with time series data, which would be the consumption and income of one individual or country at different
points in time. For macroeconomic problems it is common to use times series aggregated data for a whole country. For this
particular theoretical concept these data are readily available in the annual report of the President’s Council of Economic Advisors.

The regression problem comes down to determining which straight line would best represent the data in Figure . Regression
analysis is sometimes called "least squares" analysis because the method of determining which line best "fits" the data is to
minimize the sum of the squared residuals of a line put through the data.

Figure  
Population Equation:  
Estimated Equation: 
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This figure shows the assumed relationship between consumption and income from microeconomic theory. Here the data are
plotted as a scatter plot and an estimated straight line has been drawn. From this graph we can see an error term, . Each data point
also has an error term. Again, the error term is put into the equation to capture effects on consumption that are not caused by
income changes. Such other effects might be a person’s savings or wealth, or periods of unemployment. We will see how by
minimizing the sum of these errors we can get an estimate for the slope and intercept of this line.

Consider the graph below. The notation has returned to that for the more general model rather than the specific case of the
consumption function in our example.

Figure 

The  is read "  hat" and is the estimated value of . (In Figure   represents the estimated value of consumption
because it is on the estimated line.) It is the value of  obtained using the regression line.  is not generally equal to  from the
data.

The term  is called the "error" or residual. It is not an error in the sense of a mistake. The error term was put into
the estimating equation to capture missing variables and errors in measurement that may have occurred in the dependent variables.
The absolute value of a residual measures the vertical distance between the actual and the estimated value of . In other words, it
measures the vertical distance between the actual data point  and the predicted point  on the line as can be seen on the graph at
point .

If the observed data point lies above the line, the residual is positive, and the line underestimates the actual data value for .

If the observed data point lies below the line, the residual is negative, and the line overestimates that actual data value for .

In the graph,  is the residual for the point shown. Here the point lies above the line and the residual is positive. For
each data point the residuals, or errors, are calculated  for , where  is the sample size. Each  is a
vertical distance.

The sum of the errors squared is the term called Sum of Squared Errors (SSE).

Using calculus, you can determine the straight line that has the parameter values of  and  that minimizes the SSE. When you
make the SSE a minimum, you have determined the points that are on the line of best fit. It turns out that the line of best fit has the
equation:

where:

The sample means of the  values and the  values are  and , respectively. The best fit line always passes through the point (
, ) called the points of means.

The slope  can also be written as:

where  = the standard deviation of the  values and  = the standard deviation of the  values and  is the correlation
coefficient between variables  and .
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These equations are called the Normal Equations and come from another very important mathematical finding called the Gauss-
Markov Theorem without which we could not do regression analysis. The Gauss-Markov Theorem tells us that the estimates we get
from using the ordinary least squares (OLS) regression method will result in estimates that have some very important properties. In
the Gauss-Markov Theorem it was proved that a least squares line is BLUE, which is, Best, Linear, Unbiased, Estimator. Best is
the statistical property that an estimator is the one with the minimum variance. Linear refers to the property of the type of line being
estimated. An unbiased estimator is one whose estimating function has an expected mean equal to the mean of the population. (You
will remember that the expected value of  was equal to the population mean  in accordance with the Central Limit Theorem.
This is exactly the same concept here).

Both Gauss and Markov were giants in the field of mathematics, and Gauss in physics too, in the 18  century and early 19
century. They barely overlapped chronologically and never in geography, but Markov’s work on this theorem was based
extensively on the earlier work of Carl Gauss. The extensive applied value of this theorem had to wait until the middle of this last
century.

Using the OLS method we can now find the estimate of the error variance which is the variance of the squared errors, e . This is
sometimes called the standard error of the estimate. (Grammatically this is probably best said as the estimate of the error’s
variance) The formula for the estimate of the error variance is:

where  is the predicted value of  and  is the observed value, and thus the term  is the squared errors that are to be

minimized to find the estimates of the regression line parameters. This is really just the variance of the error terms and follows our
regular variance formula. One important note is that here we are dividing by , which is the degrees of freedom. The degrees
of freedom of a regression equation will be the number of observations, , reduced by the number of estimated parameters, ,
which includes the intercept as a parameter.

The variance of the errors is fundamental in testing hypotheses for a regression. It tells us just how “tight” the dispersion is about
the line. As we will see shortly, the greater the dispersion about the line, meaning the larger the variance of the errors, the less
probable that the hypothesized independent variable will be found to have a significant effect on the dependent variable. In short,
the theory being tested will more likely fail if the variance of the error term is high. Upon reflection this should not be a surprise.
As we tested hypotheses about a mean we observed that large variances reduced the calculated test statistic and thus it failed to
reach the tail of the distribution. In those cases, the null hypotheses could not be rejected. If we cannot reject the null hypothesis in
a regression problem, we must conclude that the hypothesized independent variable has no effect on the dependent variable.

A way to visualize this concept is to draw two scatter plots of  and  data along a predetermined line. The first will have little
variance of the errors, meaning that all the data points will move close to the line. Now do the same except the data points will have
a large estimate of the error variance, meaning that the data points are scattered widely along the line. Clearly the confidence about
a relationship between  and  is effected by this difference between the estimate of the error variance.

Testing the Parameters of the Line
The whole goal of the regression analysis was to test the hypothesis that the dependent variable, , was in fact dependent upon the
values of the independent variables as asserted by some foundation theory, such as the consumption function example. Looking at
the estimated equation under Figure , we see that this amounts to determining the values of  and . Notice that again we
are using the convention of Greek letters for the population parameters and Roman letters for their estimates.

The regression analysis output provided by the computer software will produce an estimate of  and , and any other 's for other
independent variables that were included in the estimated equation. The issue is how good are these estimates? In order to test a
hypothesis concerning any estimate, we have found that we need to know the underlying sampling distribution. It should come as
no surprise at his stage in the course that the answer is going to be the normal distribution. This can be seen by remembering the
assumption that the error term in the population, , is normally distributed. If the error term is normally distributed and the variance
of the estimates of the equation parameters,  and , are determined by the variance of the error term, it follows that the variances
of the parameter estimates are also normally distributed. And indeed this is just the case.

We can see this by the creation of the test statistic for the test of hypothesis for the slope parameter,  in our consumption function
equation. To test whether or not  does indeed depend upon , or in our example, that consumption depends upon income, we
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need only test the hypothesis that  equals zero. This hypothesis would be stated formally as:

If we cannot reject the null hypothesis, we must conclude that our theory has no validity. If we cannot reject the null hypothesis that
 then , the coefficient of Income, is zero and zero times anything is zero. Therefore the effect of Income on Consumption

is zero. There is no relationship as our theory had suggested.

Notice that we have set up the presumption, the null hypothesis, as "no relationship". This puts the burden of proof on the
alternative hypothesis. In other words, if we are to validate our claim of finding a relationship, we must do so with a level of
significance greater than 90, 95, or 99 percent. The status quo is ignorance, no relationship exists, and to be able to make the claim
that we have actually added to our body of knowledge we must do so with significant probability of being correct.

The test statistic for this test comes directly from our old friend the standardizing formula:

where  is the estimated value of the slope of the regression line,  is the hypothesized value of beta, in this case zero, and  is
the standard deviation of the estimate of . In this case we are asking how many standard deviations is the estimated slope away
from the hypothesized slope. This is exactly the same question we asked before with respect to a hypothesis about a mean: how
many standard deviations is the estimated mean, the sample mean, from the hypothesized mean?

The test statistic is written as a Student's -distribution, but if the sample size is larger enough so that the degrees of freedom are
greater than 100 we may again use the normal distribution. To see why we can use the Student's  or normal distribution we have
only to look at ,the formula for the standard deviation of the estimate of :

Where  is the estimate of the error variance and  is the variance of  values of the coefficient of the independent variable
being tested.

We see that , the estimate of the error variance, is part of the computation. Because the estimate of the error variance is based
on the assumption of normality of the error terms, we can conclude that the sampling distribution of the 's, the coefficients of our
hypothesized regression line, are also normally distributed.

One last note concerns the degrees of freedom of the test statistic, . Previously we subtracted 1 from the sample size to
determine the degrees of freedom in a Student's  problem. Here we must subtract one degree of freedom for each parameter
estimated in the equation. For the example of the consumption function we lose 2 degrees of freedom, one for , the intercept, and
one for , the slope of the consumption function. The degrees of freedom would be , where  is the number of
independent variables and the extra one is lost because of the intercept. If we were estimating an equation with three independent
variables, we would lose 4 degrees of freedom: three for the independent variables, , and one more for the intercept.

The decision rule for the rejection of the null hypothesis follows exactly the same form as in all our previous test of hypothesis.
Namely, if the calculated value of  (or ) falls into the tails of the distribution, where the tails are defined by , the required
significance level in the test, we reject the null hypothesis. If on the other hand, the calculated value of the test statistic is within the
critical region, we cannot reject the null hypothesis.

If we conclude that we reject the null hypothesis, we are able to state with  level of confidence that the slope of the line is
given by . This is an extremely important conclusion. Regression analysis not only allows us to test if a relationship exists, but
we can also determine the magnitude of that relationship, if one is found to exist. It is this feature of regression analysis that makes
it so valuable. If models can be developed that have statistical validity, we are then able to simulate the effects of changes in
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variables that may be under our control with some degree of probability, of course. For example, if advertising is demonstrated to
effect sales, we can determine the effects of changing the advertising budget and decide if the increased sales are worth the added
expense.

Multicollinearity
Our discussion earlier indicated that like all statistical models, the OLS regression model has important assumptions attached. Each
assumption, if violated, has an effect on the ability of the model to provide useful and meaningful estimates. The Gauss-Markov
Theorem has assured us that the OLS estimates are unbiased and minimum variance, but this is true only under the assumptions of
the model. Here we will look at the effects on OLS estimates if the independent variables are correlated. The other assumptions and
the methods to mitigate the difficulties they pose if they are found to be violated are examined in econometrics courses. We take up
multicollinearity because it is so often prevalent in economic models and it often leads to frustrating results.

The OLS model assumes that all the independent variables are independent of each other. This assumption is easy to test for a
particular sample of data with simple correlation coefficients. Correlation, like much in statistics, is a matter of degree: a little is not
good, and a lot is terrible.

The goal of the regression technique is to tease out the independent impacts of each of a set of independent variables on some
hypothesized dependent variable. If two 2 independent variables are interrelated, that is, correlated, then we cannot isolate the
effects on  of one from the other. In an extreme case where  is a linear combination of , correlation equal to one, both
variables move in identical ways with . In this case it is impossible to determine the variable that is the true cause of the effect on 

. (If the two variables were actually perfectly correlated, then mathematically no regression results could actually be calculated.)

The normal equations for the coefficients show the effects of multicollinearity on the coefficients.

The correlation between  and , , appears in the denominator of both the estimating formula for  and . If the
assumption of independence holds, then this term is zero. This indicates that there is no effect of the correlation on the coefficient.
On the other hand, as the correlation between the two independent variables increases the denominator decreases, and thus the
estimate of the coefficient increases. The correlation has the same effect on both of the coefficients of these two variables. In
essence, each variable is “taking” part of the effect on  that should be attributed to the collinear variable. This results in biased
estimates.

Multicollinearity has a further deleterious impact on the OLS estimates. The correlation between the two independent variables also
shows up in the formulas for the estimate of the variance for the coefficients.

Here again we see the correlation between  and  in the denominator of the estimates of the variance for the coefficients for
both variables. If the correlation is zero as assumed in the regression model, then the formula collapses to the familiar ratio of the
variance of the errors to the variance of the relevant independent variable. If however the two independent variables are correlated,
then the variance of the estimate of the coefficient increases. This results in a smaller -value for the test of hypothesis of the
coefficient. In short, multicollinearity results in failing to reject the null hypothesis that the  variable has no impact on  when in
fact  does have a statistically significant impact on . Said another way, the large standard errors of the estimated coefficient
created by multicollinearity suggest statistical insignificance even when the hypothesized relationship is strong.
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How Good is the Equation?
In the last section we concerned ourselves with testing the hypothesis that the dependent variable did indeed depend upon the
hypothesized independent variable or variables. It may be that we find an independent variable that has some effect on the
dependent variable, but it may not be the only one, and it may not even be the most important one. Remember that the error term
was placed in the model to capture the effects of any missing independent variables. It follows that the error term may be used to
give a measure of the "goodness of fit" of the equation taken as a whole in explaining the variation of the dependent variable, .

The multiple correlation coefficient, also called the coefficient of multiple determination or the coefficient of determination, is
given by the formula:

where SSR is the regression sum of squares, the squared deviation of the predicted value of  from the mean value of ,
and SST is the total sum of squares which is the total squared deviation of the dependent variable, , from its mean value,
including the error term, SSE, the sum of squared errors. Figure  shows how the total deviation of the dependent variable, ,
is partitioned into these two pieces.

Figure 

Figure  shows the estimated regression line and a single observation, . Regression analysis tries to explain the variation of
the data about the mean value of the dependent variable, . The question is, why do the observations  vary from the average

level of ? The value of  at observation  varies from the mean of  by the difference . The sum of these

differences squared is SST, the sum of squares total. The actual value of  at  deviates from the estimated value, , by the

difference between the estimated value and the actual value, . We recall that this is the error term, , and the sum of these

errors is SSE, sum of squared errors. The deviation of the predicted value of , , from the mean value of  is  and is
the SSR, sum of squares regression. It is called “regression” because it is the deviation explained by the regression. (Sometimes the
SSR is called SSM for sum of squares mean because it measures the deviation from the mean value of the dependent variable, ,
as shown on the graph.).

Because the SST = SSR + SSE we see that the multiple correlation coefficient is the percent of the variance, or deviation in  from
its mean value, that is explained by the equation when taken as a whole.  will vary between zero and 1, with zero indicating that
none of the variation in  was explained by the equation and a value of 1 indicating that 100% of the variation in  was explained
by the equation. For time series studies expect a high  and for cross-section data expect low .

While a high  is desirable, remember that it is the tests of the hypothesis concerning the existence of a relationship between a set
of independent variables and a particular dependent variable that was the motivating factor in using the regression model. It is
validating a cause and effect relationship developed by some theory that is the true reason that we chose the regression analysis.
Increasing the number of independent variables will have the effect of increasing . To account for this effect the proper measure

of the coefficient of determination is the , adjusted for degrees of freedom, to keep down mindless addition of independent
variables.

There is no statistical test for the  and thus little can be said about the model using  with our characteristic confidence level.
Two models that have the same size of SSE, that is sum of squared errors, may have very different  if the competing models
have different SST, total sum of squared deviations. The goodness of fit of the two models is the same; they both have the same
sum of squares unexplained, errors squared, but because of the larger total sum of squares on one of the models the  differs.
Again, the real value of regression as a tool is to examine hypotheses developed from a model that predicts certain relationships
among the variables. These are tests of hypotheses on the coefficients of the model and not a game of maximizing .

Another way to test the general quality of the overall model is to test the coefficients as a group rather than independently. Because
this is multiple regression (more than one ), we use the -test to determine if our coefficients collectively affect . The
hypothesis is:

: "at least one of the  is not equal to 0"
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If the null hypothesis cannot be rejected, then we conclude that none of the independent variables contribute to explaining the
variation in . Reviewing Figure  we see that SSR, the explained sum of squares, is a measure of just how much of the
variation in  is explained by all the variables in the model. SSE, the sum of the errors squared, measures just how much is
unexplained. It follows that the ratio of these two can provide us with a statistical test of the model as a whole. Remembering that
the -distribution is a ratio of chi-squared distributions and that variances are distributed according to chi-squared, and the sum of
squared errors and the sum of squares are both variances, we have the test statistic for this hypothesis as:

where  is the number of observations and  is the number of independent variables. It can be shown that this is equivalent to:

Figure  where  is the coefficient of determination which is also a measure of the “goodness” of the model.

As with all our tests of hypothesis, we reach a conclusion by comparing the calculated -statistic with the critical value given our
desired level of confidence. If the calculated test statistic, an -statistic in this case, is in the tail of the distribution, then we need to
reject the null hypothesis. By rejecting the null hypothesis, we conclude that this specification of this model has validity, because at
least one of the estimated coefficients is significantly different from zero.

An alternative way to reach this conclusion is to use the -value comparison rule. The -value is the area in the tail, given the
calculated -statistic. In essence, the computer is finding the -value in the table for us. The computer regression output for the
observed -statistic is typically found in the ANOVA table section labeled “significance F". How to read the output of an Excel
regression is presented below. This is the probability of rejecting a false null hypothesis. If this probability is less than our pre-
determined alpha error, then the conclusion is that we reject the null hypothesis.

Dummy Variables

Thus far the analysis of the OLS regression technique assumed that the independent variables in the models tested were continuous
random variables. There are, however, no restrictions in the regression model against independent variables that are binary. This
opens the regression model for testing hypotheses concerning categorical variables such as gender, race, region of the country,
before a certain data, after a certain date and innumerable others. These categorical variables take on only two values, 1 and 0,
success or failure, from the binomial probability distribution. The form of the equation becomes:

Figure 

where  is the dummy variable and  is some continuous random variable. The constant, , is the -intercept, the value where
the line crosses the -axis. When the value of , the estimated line crosses at . When the value of  then the
estimated line crosses at . In effect the dummy variable causes the estimated line to shift either up or down by the size of the
effect of the characteristic captured by the dummy variable. Note that this is a simple parallel shift and does not affect the impact of
the other independent variable, .This variable is a continuous random variable and predicts different values of  at different
values of  holding constant the condition of the dummy variable.

An example of the use of a dummy variable is the work estimating the impact of gender on salaries. There is a full body of
literature on this topic and dummy variables are used extensively. For this example the salaries of elementary and secondary school
teachers for a particular state is examined. Using a homogeneous job category, school teachers, and for a single state reduces many
of the variations that naturally effect salaries such as differential physical risk, cost of living in a particular state, and other working
conditions. The estimating equation in its simplest form specifies salary as a function of various teacher characteristic that
economic theory would suggest could affect salary. These would include education level as a measure of potential productivity, age
and/or experience to capture on-the-job training, again as a measure of productivity. Because the data are for school teachers
employed in a public school districts rather than workers in a for-profit company, the school district’s average revenue per average
daily student attendance is included as a measure of ability to pay. The results of the regression analysis using data on 24,916
school teachers are presented below.
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Variable Regression Coefficients (b)
Standard Errors of the estimates 
for teacher's earnings function ( )

Intercept 4269.9

Gender (male = 1) 632.38 13.39

Total Years of Experience 52.32 1.10

Years of Experience in Current District 29.97 1.52

Education 629.33 13.16

Total Revenue per ADA 90.24 3.76

.725

24,916

Table  Earnings Estimate for Elementary and Secondary School Teachers

The coefficients for all the independent variables are significantly different from zero as indicated by the standard errors. Dividing
the standard errors of each coefficient results in a -value greater than 1.96 which is the required level for 95% significance. The
binary variable, our dummy variable of interest in this analysis, is gender where male is given a value of 1 and female given a value
of 0. The coefficient is significantly different from zero with a dramatic -statistic of 47 standard deviations. We thus reject the null
hypothesis that the coefficient is equal to zero. Therefore we conclude that there is a premium paid male teachers of $632 after
holding constant experience, education and the wealth of the school district in which the teacher is employed. It is important to note
that these data are from some time ago and the $632 represents a six percent salary premium at that time. A graph of this example
of dummy variables is presented below.

Figure 

In two dimensions, salary is the dependent variable on the vertical axis and total years of experience was chosen for the continuous
independent variable on horizontal axis. Any of the other independent variables could have been chosen to illustrate the effect of
the dummy variable. The relationship between total years of experience has a slope of $52.32 per year of experience and the
estimated line has an intercept of $4,269 if the gender variable is equal to zero, for female. If the gender variable is equal to 1, for
male, the coefficient for the gender variable is added to the intercept and thus the relationship between total years of experience and
salary is shifted upward parallel as indicated on the graph. Also marked on the graph are various points for reference. A female
school teacher with 10 years of experience receives a salary of $4,792 on the basis of her experience only, but this is still $109 less
than a male teacher with zero years of experience.

A more complex interaction between a dummy variable and the dependent variable can also be estimated. It may be that the
dummy variable has more than a simple shift effect on the dependent variable, but also interacts with one or more of the other
continuous independent variables. While not tested in the example above, it could be hypothesized that the impact of gender on
salary was not a one-time shift, but impacted the value of additional years of experience on salary also. That is, female school
teacher’s salaries were discounted at the start, and further did not grow at the same rate from the effect of experience as for male
school teachers. This would show up as a different slope for the relationship between total years of experience for males than for
females. If this is so then females school teachers would not just start behind their male colleagues (as measured by the shift in the
estimated regression line), but would fall further and further behind as time and experienced increased.

The graph below shows how this hypothesis can be tested with the use of dummy variables and an interaction variable.
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Figure 

The estimating equation shows how the slope of , the continuous random variable experience, contains two parts,  and :

This occurs because of the new variable  , called the interaction variable, was created to allow for an effect on the slope of 
 from changes in , the binary dummy variable. Note that when the dummy variable,  the interaction variable has a

value of 0, but when  the interaction variable has a value of . The coefficient  is an estimate of the difference in the
coefficient of  when  compared to when . In the example of teacher’s salaries, if there is a premium paid to male
teachers that affects the rate of increase in salaries from experience, then the rate at which male teachers’ salaries rises would be 

 and the rate at which female teachers’ salaries rise would be simply . This hypothesis can be tested with the hypothesis:

This is a -test using the test statistic for the parameter . If we reject the null hypothesis that  we conclude there is a
difference between the rate of increase for the group for whom the value of the binary variable is set to 1, males in this example.
This estimating equation can be combined with our earlier one that tested only a parallel shift in the estimated line. The
earnings/experience functions in Figure  are drawn for this case with a shift in the earnings function and a difference in the
slope of the function with respect to total years of experience.

A random sample of 11 statistics students produced the following data, where  is the third exam score out of 80, and  is the
final exam score out of 200. Can you predict the final exam score of a randomly selected student if you know the third exam
score?

 (third exam score)  (final exam score)

65 175

67 133

71 185

71 163
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 (third exam score)  (final exam score)

66 126

75 198

67 153

70 163

71 159

69 151

69 159

Table 
This is a scatter plot of the data provided. The third exam score is
plotted on the x-axis, and the final exam score is plotted on the y-axis.

The points form a strong, positive, linear pattern.

Figure  Scatter plot showing the scores on the final exam based on scores from the third exam.

Recall Example  on the third exam and final exam scores.

We found the equation of the best-fit line for the final exam grade as a function of the grade on the third-exam. We can now use
the least-squares regression line for prediction. Assume the coefficient for  was determined to be significantly different from
zero.

Suppose you want to estimate, or predict, the mean final exam score of statistics students who received 73 on the third exam.
The exam scores ( -values) range from 65 to 75. Since 73 is between the X variable values 65 and 75, we feel comfortable to
substitute  into the equation. Then:

We predict that statistics students who earn a grade of 73 on the third exam will earn a grade of 179.08 on the final exam, on
average.

a. What would you predict the final exam score to be for a student who scored a 66 on the third exam?

b. What would you predict the final exam score to be for a student who scored a 90 on the third exam?

Answer

a. 145.27

b. The  values in the data are between 65 and 75. Ninety is outside of the domain of the observed  values in the data
(independent variable), so you cannot reliably predict the final exam score for this student. (Even though it is possible to
enter 90 into the equation for  and calculate a corresponding  value, the  value that you get will have a confidence
interval that may not be meaningful.)

To understand really how unreliable the prediction can be outside of the observed  values observed in the data, make the
substitution  into the equation.

The final-exam score is predicted to be 261.19. The largest the final-exam score can be is 200.

This page titled 10.5: The Regression Equation is shared under a CC BY license and was authored, remixed, and/or curated by .
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