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10.2: Area and Volume Elements
In any coordinate system it is useful to define a differential area and a differential volume element. In cartesian coordinates the
differential area element is simply dA = dx dy (Figure 10.2.1), and the volume element is simply dV = dz dy dz.
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Figure 10.2.1: Area and volume elements in cartesian coordinates (CC BY-NC-SA; Marcia Levitus)
We already performed double and triple integrals in cartesian coordinates, and used the area and volume elements without paying
any special attention. For example, in example [c2v:c2vex1], we were required to integrate the function |¢(z,y, 2) |2 over all
space, and without thinking too much we used the volume element dx dy dz (see page ). We also knew that “all space” meant
—o0<x<o0,—00<y<oo and —o0 < z < 00, and therefore we wrote:

But what if we had to integrate a function that is expressed in spherical coordinates? Would we just replace dz dy dz by
dr df d¢? The answer is no, because the volume element in spherical coordinates depends also on the actual position of the point.
This will make more sense in a minute. Coming back to coordinates in two dimensions, it is intuitive to understand why the area
element in cartesian coordinates is dA = dz dy independently of the values of = and y. This is shown in the left side of Figure
10.2.2 However, in polar coordinates, we see that the areas of the gray sections, which are both constructed by increasing r by dr,
and by increasing 6 by d, depend on the actual value of r. Notice that the area highlighted in gray increases as we move away
from the origin.
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Figure 10.2.2: Differential of area in cartesian and polar coordinates (CC BY-NC-SA; Marcia Levitus)
The area shown in gray can be calculated from geometrical arguments as
do
dA = [n(r+dr)? —7r?] o
s

Because dr << 0, we can neglect the term (dr)2, and dA =r dr d@ (see Figure 10.2.3).
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Figure 10.2.3: Differential of area in polar coordinates (CC BY-NC-SA; Marcia Levitus)
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Let’s see how this affects a double integral with an example from quantum mechanics. The wave function of the ground state of a
two dimensional harmonic oscillator is: ¥ (z,y) = Ae=o(="+¥”) . We know that the quantity |’(,ZJ|2 represents a probability density,
and as such, needs to be normalized:

y[? dA=1

all space

This statement is true regardless of whether the function is expressed in polar or cartesian coordinates. However, the limits of
integration, and the expression used for dA, will depend on the coordinate system used in the integration.

In cartesian coordinates, “all space” means —oco < < 0o and —oo < y < oo . The differential of area is dA = dzdy:

oo 00

¥ dA = / /A2672“(w2+y2) dzdy =1

all space —00

In polar coordinates, “all space” means 0 <7 < oo and 0 < 6 < 27. The differential of area is dA =r drdf. The function
¥(z,y) = Ae~***+¥") can be expressed in polar coordinates as: 9(r, ) = Ae ™"

oo 27

/ 9l dA://Aze_z‘”Zr dodr =1

all space 0 0

Both versions of the double integral are equivalent, and both can be solved to find the value of the normalization constant (A) that
makes the double integral equal to 1. In polar coordinates:
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0 0 0

0
Therefore!, A = /2a /. The same value is of course obtained by integrating in cartesian coordinates.

It is now time to turn our attention to triple integrals in spherical coordinates. In cartesian coordinates, the differential volume
element is simply dV = dz dy dz, regardless of the values of z, yand z. Using the same arguments we used for polar coordinates
in the plane, we will see that the differential of volume in spherical coordinates is not dV = dr df d¢ . The geometrical derivation
of the volume is a little bit more complicated, but from Figure 10.2.4you should be able to see that V" depends on r and 6, but not
on ¢. The volume of the shaded region is

dV =7*sinfdf de dr (10.2.1)

Figure 10.2.4: Differential of volume in spherical coordinates (CC BY-NC-SA; Marcia Levitus)

We will exemplify the use of triple integrals in spherical coordinates with some problems from quantum mechanics. We already
introduced the Schrodinger equation, and even solved it for a simple system in Section 5.4. We also mentioned that spherical
coordinates are the obvious choice when writing this and other equations for systems such as atoms, which are symmetric around a
point.
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As we saw in the case of the particle in the box (Section 5.4), the solution of the Schrodinger equation has an arbitrary
multiplicative constant. Because of the probabilistic interpretation of wave functions, we determine this constant by normalization.
The same situation arises in three dimensions when we solve the Schrédinger equation to obtain the expressions that describe the
possible states of the electron in the hydrogen atom (i.e. the orbitals of the atom). The Schrédinger equation is a partial differential
equation in three dimensions, and the solutions will be wave functions that are functions of 7,6 and ¢. The lowest energy state,
which in chemistry we call the 1s orbital, turns out to be:

1/]15 = AeiT/ao

This particular orbital depends on r only, which should not surprise a chemist given that the electron density in all s-orbitals is
spherically symmetric. We will see that p and d orbitals depend on the angles as well. Regardless of the orbital, and the coordinate
system, the normalization condition states that:

[* dv =1

all space

For a wave function expressed in cartesian coordinates,

[o olENe olNe o
2dV:///1,b*acy, ¥(z,y, 2) dedydz
—00 —00 —00
where we used the fact that |’l/)|2 =y*.

In spherical coordinates, “all space” means 0<r<oo, 0<¢ <27 and 0<6O<mw. The differential dV is
dV =r%sinfdfdédr , so

all space

2T ™ oo

ik dvzo//o/w* r,0,$)¢(r, 0, ¢) r* sinb drdfdp = 1

all space

Let’s see how we can normalize orbitals using triple integrals in spherical coordinates.

v/ Example 10.2.1

When solving the Schrédinger equation for the hydrogen atom, we obtain 1, = Ae~"/® | where A is an arbitrary constant
that needs to be determined by normalization. Find A.

Solution
In spherical coordinates,

™

2T [
9> dV = ¥ (r, 6, )b(r, 0, ) r? sinf drdfdé = 1
[

all space

because this orbital is a real function, ¥* (r, 8, ¢ (r, 8, ¢) = 1?(r, 8, $) . In this case, Y?(r, 8, ¢) = A2e 2"/,

Therefore,
2 T oo 2 T oo
// ¥ (r, 0, )(r, 0, ) r? sin O drdfde = /// A%e=2/%0 12 6in O drdfdeé = 1
0 00
2t T oo 2 00
///A2e_2’/a°r sinfdrdfde¢ = A2/d¢>/sm0 dO/ e 2/ 2 g
0 00 0 0 0

The result is a product of three integrals in one variable:
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From the formula sheet:

o0 '
_ n!
z'e “dr = ——,
0 antl

where a > 0 and n is a positive integer.

In this case, n =2 and a = 2/ay, so:

6—27‘/(10 7'2 d7’= 2—! _ i _ aO

(2/a0)® ~ 8/a3 4

Putting the three pieces together:

27 ™
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A2/dng/sinGdG/e_zr/“ﬂr2 dr:A2x27r><2><Z‘):1
0 0 0
A2><7r><ag:1—)A:
na}

The normalized 1s orbital is, therefore:
1 efr/ ay

3
™agy

This page titled 10.2: Area and Volume Elements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform.
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