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8.6: Problems

Given a generic equation of state , explain how you can obtain the derivative

using the properties of partial derivatives we learned in this chapter.

The thermodynamic equation:

shows how the internal energy of a system varies with the volume at constant temperature.

Prove that

1.  for an ideal gas.

2.  for one mole of van der Waals gas (Equation )

Consider one mole of a van der Waals gas (Equation ) and show that

Consider a van der Waals gas (Equation ) and show that

Hint: Calculate derivatives that are easier to obtain and use the properties of partial derivatives to get the one the problem asks
for. Do not use the answer in your derivation; obtain the derivative assuming you don’t know the answer and simplify your
expression until it looks like the equation above.

From the definitions of expansion coefficient ( ) and isothermal compressibility ( ):

and

prove that
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independently of the equation of state used.

Note: A common mistake in this problem is to assume a particular equation of state. Use the cycle rule to find the required
relationship independently of any particular equation of state.

Derive an equation similar to Equation , but that relates

with

and

(Extra-credit level)

The expression:

is known as the Laplacian operator in two dimensions.

When applied to a function , we get:

Express  in polar coordinates (2D) assuming the special case where  is a constant.

Calculate  Try three different orders of integration an verify you always get the same result.

Calculate  Use only the formula sheet.

How would Figure , reproduced below, look like for an ideal gas? Sketch the potential energy as a function of the distance
between the atoms.
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From everything we learned in this chapter, and without doing any math, we should be able to calculate the sign (>0, <0, or 0)
of the following derivatives:

For an ideal gas: 

 

For a van der Vaals gas: 

 

Be sure you can write a short sentence explaining your answers.

The critical point is the state at which the liquid and gas phases of a substance first become indistinguishable. A gas above the
critical temperature will never condense into a liquid, no matter how much pressure is applied. Mathematically, at the critical
point:

and

Obtain the critical constants of a van der Waals gas (Equation ) in terms of the parameters  and .

Hint: obtain the first and second derivatives of  with respect to , make them equal to zero, and obtain  and  from these
equations. Finally, replace these expressions in Equation  to obtain .

As derived in Section 8.3,

As defined in Section 8.5, the Van der Waals is defined as:

1. If you are not familiar with this you need to read about it before moving on

 Problem 8.6.11
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