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12.3: The Wave Equation in One Dimension
The wave equation is an important second-order linear partial differential equation that describes waves such as sound waves, light
waves and water waves. In this course, we will focus on oscillations in one dimension. Let’s consider a thin string of length  that is
fixed at its two endpoints, and let’s call the displacement of the string from its horizontal position  (figure [fig:pde1]). The
displacement of each point in the string is limited to one dimension, but because the displacement also depends on time, the one-
dimensional wave equation is a PDE:

Figure : A vibrating string of length  held at both ends. (CC BY-NC-SA; Marcia Levitus)

Because the string is held at both ends, the PDE is subject to two boundary conditions:

Using the method of separation of variables, we assume that the function  can be written as the product of a function of only 
 and a function of only .

Substituting Equation  in Equation :

and separating the terms in  from the terms in :

Remember that  is a constant, and we could leave it on either side of Equation . The left side of this equation is a function
of  only, and the right side is a function of  only. Because  and  are independent variables, the only way that the equality holds
is that each side equals a constant.

 is called the separation constant, and will be determined by the boundary conditions. Note that after separation of variables, one
PDE became two ODEs:

These are both second order ordinary differential equations with constant coefficients, so we can solve them using the methods we
learned in Chapter 5.
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From Equation ,

which is a 2nd order ODE with auxiliary equation

and therefore

We do not know yet if  is positive, negative or zero, so we do not know if these are real or complex exponentials. We will use the
boundary conditions ( ) and see what happens:

There are two ways to make

We could choose , but this choice would result in , which physically means the string is not vibrating at all (the
displacement of all points is zero). This is certainly a mathematically acceptable solution, but it is not a solution that represents the
physical behavior of our string. Therefore, the only viable choice is . Let’s see what this means in terms of . There
is no positive value of  that makes

If , we obtain , which is again not physically acceptable. Then, the value of  has to be negative, and  is an
imaginary number:

where  is the absolute value of . Using Euler’s relationship:

Now that we have an expression for , we can write an expression for :

So far we got , so we need to move on and get an expression for  from Equation . Notice, however, that we now
know the value of , so let’s re-write Equation  as:

This is another 2nd order ODE, with auxiliary equation

we can then write  as:
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which you should be able to prove can be rewritten as

We cannot get the values of  and  yet because we do not have information about initial conditions. Before discussing this,
however, let’s put the two pieces together:

where we combined the constants  and  and re-named them  and . The subindices stress the fact that these constants
depend on , which will be important in a minute. Before we move on, and to simplify notation, let’s recognize that the quantity 

 has units of reciprocal time. This is true because it needs to give an dimensionless number when multiplied by . This means

that, physically,  represents a frequency, so we can call it :

At this point, we recognize that we have an infinite number of solutions:

where . As usual, the general solution is a linear combination of all these solutions:

where  and .

Notice that we have not used any initial conditions yet. We used the boundary conditions we were given ( ), so
Equation  is valid regardless of initial conditions as long as the string is held fixed at both ends. As you may suspect, the
values of  and  will be calculated from the initial conditions. However, notice that in order to describe the movement of the
string at all times we will need to calculate an infinite number of -values and and infinite number of -values. This sounds
pretty intimidating, but you will see how all the time you spent learning about Fourier series will finally pay off. Before we look
into how to do that, let’s take a look at the individual solutions listed in Equation .

Each  is called a normal mode. For example, for , we have

which is called the fundamental mode, or first harmonic.

Notice that this function is the product of a function that depends only on  (  ) and another function that depends only on 

, i.e.,
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Figure : The fundamental mode or first harmonic. Different colors represent the string at different times. (CC BY-NC-SA;
Marcia Levitus)

For , we have:

which is called the first overtone, or second harmonic. Again, this function is the product of one function that depends on  only (

), and another one that depends on  and changes the amplitude of  without changing its overall shape:

Figure : The first overtone or second harmonic. Different times are plotted in different colors (CC BY-NC-SA; Marcia
Levitus)

For , we have:

which is called the second overtone, or third harmonic. Again, this function is the product of one function that depends on  only (

), and another one that depends on  and changes the amplitude of  without changing its overall shape:
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Figure : The second overtone or third harmonic. Different times are plotted in different colors (CC BY-NC-SA; Marcia
Levitus)

If the initial shape of the string (i.e. the function  at time zero) is  (Figure , then the string will vibrate as

shown in the figure, just changing the amplitude but not the overall shape. In more general terms, if  is one of the normal
modes, the string will vibrate according to that normal mode, without mixing with the rest. However, in general, the shape of the
string will be described by a linear combination of normal modes (Equation ). If you recall from Chapter 7, a Fourier series
tells you how to express a function as a linear combination of sines and cosines. The idea here is the same: we will express an
arbitrary shape as a linear combination of normal modes, which are a collection of sine functions.

In order to do that, we need information about the initial shape: . We also need information about the initial velocity of all

the points in the string: . The initial shape is the displacement of all points at time zero, and it is a function of . Let’s call

this function :

The initial velocity of all points is also a function of , and we will call it :

Both functions together represent the initial conditions, and be will used to calculate all the  and  coefficients. To simplify the
problem, let’s assume that at time zero we hold the string still, so the velocity of all points is zero:

Let’s see how we can use this information to finish the problem (i.e. calculate the coefficients  and ). From Equations 
and :

and applying the first initial condition:

This equation tells us that the initial shape, , can be described as an infinite sum of sine functions....sounds familiar? In
Chapter 7, we saw that we can represent a periodic odd function  of period  as an infinite sum of sine functions (Equation 

,  ):
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Comparing Equations  and , we see that in order to calculate the  coefficients of Equation , we need to
create an odd extension of  with period .

Let’s see how this works with an example. Let’s assume that the initial displacement is given by the function shown in the figure:

Figure : Initial conditions for the vibrating string problem (Equations  and ). (CC BY-NC-SA; Marcia
Levitus)

Equation  tells us that the function of Figure  can be expressed as an infinite sum of sine functions. If we figure out
which sum, we will have the coefficients  we need to write down the expression of  we are seeking (Equation ).
We will still need the coefficients , which will be calculated from the second initial condition (Equation ).

Because we know the infinite sum of Equation  describes an odd periodic function of period , our first step is to extend 
 in an odd fashion:

Figure : The odd extension of  (Figure ). (CC BY-NC-SA; Marcia Levitus)

What is the Fourier series of the periodic function of Figure ? Using the methods we learned in Chapter 7, we obtain:

From Equation 

comparing Equations  and :

Great! we have all the coefficients , so we are just one step away from our final goal of expressing . Our last step is to

calculate the coefficients . We will use the last initial condition: . Taking the partial derivative of Equation 
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Equation  tells us that the function  can be expressed as an infinite sum of sine functions. Again, we need to create an

odd extension of  and obtain its Fourier series: . The coefficients  of the Fourier series equal

 (Equation ). In this particular case:

The coefficients  are zero, because the derivative needs to be zero for all values of .

Now that we have all coefficients  and  we are ready to wrap this up. From Equations  and :

Recalling that :

Success! We got a full description of the movement of the string. We just need to know the length of the string ( ), the initial
displacement of the midpoint ( ) and the parameter , and we can start plotting the shape of the string at different times. Just
remember that Mathematica cannot plot a function defined as an infinite sum, so you will have to plot a truncated version of
Equation . As usual, the more terms you include the better the approximation, but the longer the computer will take to
execute the command. To see an amazing slow motion movie of a real string follow this youtube link.

The parameter  has units of length over time (e.g. m/s), and it depends on factors such as the material of the string, its tension, and
its thickness. A string instrument like a guitar, for instance, has strings made of different materials, and held at different tensions.
When plucked, they produce vibrations of different frequencies, which we perceive as different musical notes. In general, the
vibration of the string will be a linear combination of the normal modes we talked about earlier in this section. Each normal mode
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has a unique frequency ( ), and if this frequency is within our audible range, we will perceive it as a pure musical note.

A linear combination of normal modes contains many frequencies, and we perceive them as a more complex sound.

Music is nice, but what about the applications of normal modes in chemistry? We already mentioned molecular vibrations in
different chapters, and we know that the atoms in molecules are continuously vibrating following approximately harmonic motions.
The same way that the vibration of the string of Figure  can be expressed as a linear combination of all the normal modes
(Figures - , we can express the vibrations of a polyatomic molecule as a linear combination of normal modes. As you
will see in your advanced physical chemistry courses, a non-linear polyatomic molecule has  vibrational normal modes,
where  is the number of atoms. For the molecule of water, for example, we have 3 normal modes:

Figure : The normal modes of vibration of water (CC BY-NC-SA; Marcia Levitus)

Any other type of vibration can be expressed as a linear combination of these three normal modes. As you can imagine, these
motions occur very fast. Typically, you may see of the order of  vibrations per second. The most direct way of probing the
vibrations of a molecule is through infra-red spectroscopy, and in fact you will measure and analyze the vibrational spectra of
simple molecules in your 300-level physical chemistry labs.
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