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10.2: Area and Volume Elements
In any coordinate system it is useful to define a differential area and a differential volume element. In cartesian coordinates the
differential area element is simply  (Figure ), and the volume element is simply .

Figure : Area and volume elements in cartesian coordinates (CC BY-NC-SA; Marcia Levitus)

We already performed double and triple integrals in cartesian coordinates, and used the area and volume elements without paying
any special attention. For example, in example [c2v:c2vex1], we were required to integrate the function  over all
space, and without thinking too much we used the volume element  (see page ). We also knew that “all space” meant 

,  and , and therefore we wrote:

But what if we had to integrate a function that is expressed in spherical coordinates? Would we just replace  by 
? The answer is no, because the volume element in spherical coordinates depends also on the actual position of the point.

This will make more sense in a minute. Coming back to coordinates in two dimensions, it is intuitive to understand why the area
element in cartesian coordinates is  independently of the values of  and . This is shown in the left side of Figure 

. However, in polar coordinates, we see that the areas of the gray sections, which are both constructed by increasing  by ,
and by increasing  by , depend on the actual value of . Notice that the area highlighted in gray increases as we move away
from the origin.

Figure : Differential of area in cartesian and polar coordinates (CC BY-NC-SA; Marcia Levitus)

The area shown in gray can be calculated from geometrical arguments as

Because , we can neglect the term , and  (see Figure ).

Figure : Differential of area in polar coordinates (CC BY-NC-SA; Marcia Levitus)

dA= dx dy 10.2.1 dV = dx dy dz

10.2.1

|ψ(x, y, z)|2

dx dy dz

−∞≤ x ≤∞ −∞≤ y ≤∞ −∞≤ z≤∞

dx dy dz= 1∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
|ψ(x, y, z)|

2

dx dy dz

dr dθ dϕ

dA= dx dy x y

10.2.2 r dr

θ dθ r

10.2.2

dA= [π(r+dr −π ] .)2 r2
dθ

2π

dr<< 0 (dr)2 dA= r dr dθ 10.2.3

10.2.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106863?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Mathematical_Methods_in_Chemistry_(Levitus)/10%3A_Plane_Polar_and_Spherical_Coordinates/10.02%3A_Area_and_Volume_Elements
https://sms.asu.edu/marcia_levitus
https://sms.asu.edu/marcia_levitus
https://sms.asu.edu/marcia_levitus


10.2.2 https://chem.libretexts.org/@go/page/106863

Let’s see how this affects a double integral with an example from quantum mechanics. The wave function of the ground state of a
two dimensional harmonic oscillator is: . We know that the quantity  represents a probability density,
and as such, needs to be normalized:

This statement is true regardless of whether the function is expressed in polar or cartesian coordinates. However, the limits of
integration, and the expression used for , will depend on the coordinate system used in the integration.

In cartesian coordinates, “all space” means  and . The differential of area is :

In polar coordinates, “all space” means  and . The differential of area is . The function 
 can be expressed in polar coordinates as: 

Both versions of the double integral are equivalent, and both can be solved to find the value of the normalization constant ( ) that
makes the double integral equal to 1. In polar coordinates:

Therefore , . The same value is of course obtained by integrating in cartesian coordinates.

It is now time to turn our attention to triple integrals in spherical coordinates. In cartesian coordinates, the differential volume
element is simply , regardless of the values of  and . Using the same arguments we used for polar coordinates
in the plane, we will see that the differential of volume in spherical coordinates is not . The geometrical derivation
of the volume is a little bit more complicated, but from Figure  you should be able to see that  depends on  and , but not
on . The volume of the shaded region is

Figure : Differential of volume in spherical coordinates (CC BY-NC-SA; Marcia Levitus)

We will exemplify the use of triple integrals in spherical coordinates with some problems from quantum mechanics. We already
introduced the Schrödinger equation, and even solved it for a simple system in Section 5.4. We also mentioned that spherical
coordinates are the obvious choice when writing this and other equations for systems such as atoms, which are symmetric around a
point.
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As we saw in the case of the particle in the box (Section 5.4), the solution of the Schrödinger equation has an arbitrary
multiplicative constant. Because of the probabilistic interpretation of wave functions, we determine this constant by normalization.
The same situation arises in three dimensions when we solve the Schrödinger equation to obtain the expressions that describe the
possible states of the electron in the hydrogen atom (i.e. the orbitals of the atom). The Schrödinger equation is a partial differential
equation in three dimensions, and the solutions will be wave functions that are functions of  and . The lowest energy state,
which in chemistry we call the 1s orbital, turns out to be:

This particular orbital depends on  only, which should not surprise a chemist given that the electron density in all -orbitals is
spherically symmetric. We will see that  and  orbitals depend on the angles as well. Regardless of the orbital, and the coordinate
system, the normalization condition states that:

For a wave function expressed in cartesian coordinates,

where we used the fact that .

In spherical coordinates, “all space” means ,  and . The differential  is 
, so

Let’s see how we can normalize orbitals using triple integrals in spherical coordinates.

When solving the Schrödinger equation for the hydrogen atom, we obtain , where  is an arbitrary constant
that needs to be determined by normalization. Find .

Solution
In spherical coordinates,

because this orbital is a real function, . In this case, .

Therefore,

The result is a product of three integrals in one variable:
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From the formula sheet:

where  and  is a positive integer.

In this case,  and , so:

Putting the three pieces together:

The normalized 1s orbital is, therefore:

This page titled 10.2: Area and Volume Elements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform.
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