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4.3: Chemical Kinetics
The term chemical kinetics refers to the study of the rates of chemical reactions. As we will see, differential equations play a
central role in the mathematical treatment of chemical kinetics. We will start with the simplest examples, and then we will move to
more complex cases. As you will see, in this section we will focus on a couple of reaction mechanisms. The common theme will be
to find expressions that will allow us to calculate the concentration of the different species that take part of the reaction at different
reaction times.

Let’s start with the simplest case, in which a reactant A reacts to give the product B. We’ll assume the reaction proceeds in one
step, meaning there are no intermediates that can be detected.

We’ll use the following notation for the time-dependent concentrations of A and B: [A] , [B]
, or simply [A] and [B]. We’ll use [A]  and [B]  to denote the

concentrations of A and B at time . The constant  is the rate constant of the
reaction, and is a measure of how fast or slow the reaction is. It depends on the reaction itself (the chemical compounds A and B)
and environmental factors such as temperature. The rate constant does not depend on the concentrations of the species involved in
the reaction. The units of  depend on the particular mechanism of the reaction, as we will see through the
examples. For the case described above, the units will be 1/time (e.g. )

The rate of the reaction ( ) will be defined as the number of moles of A that disappear or the number of
moles of B that appear per unit of time (e.g. per second) and volume (e.g. liter). This is true because of the stoichiometry of the
reaction, as we will discuss in a moment. However, because the rate is a positive quantity, we will use a negative sign if we look at
the disappearance of A:

The rate of the reaction, therefore, is a positive quantity with units of M.s , or in general, concentration per
unit of time. As we will see, the rate of the reaction depends on the actual concentration of reactant, and therefore will in general
decrease as the reaction progresses and the reactant is converted into product. Although all the molecules of A are identical, they do
not need to react at the same instant. Consider the simple mechanism of Equation , and imagine that every
molecule of A has a probability  of reacting in every one-second interval. Suppose you start with 1 mole
of A in a 1 L flask ( ), and you measure the concentration of A one second later. How many moles of A do
you expect to see? To answer this question, you can imagine that you get everybody in China (about one billion people) to throw a
die at the same time, and that everybody who gets a six wins the game. How many winners do you expect to see? You know that
the probability that each individual gets a six is , and therefore one-sixth of the players will win in one
round of the game. Therefore, you can predict that the number of winers will be , and the number of losers
will be . If we get the losers to play a second round, we expect that one-sixth of them will get a six, which
accounts for  people. After the second run, therefore, we’ll still have  losers.

Following the same logic, the probability that a molecule of A reacts to give B in each one-second interval is 
, and therefore in the first second you expect that  molecules react and 

remain unreacted. In other words, during the first second of your reaction 0.001 moles of A were converted into B, and therefore
the rate of the reaction was . During the second one-second interval of the reaction you expect that one-
thousand of the remaining molecules will react, and so on. Imagine that you come back one hour later (3,600 s). We expect that

 molecules will remain unreacted, which is about  molecules. If you measure the
reaction rate in the next second, you expect that one-thousand of them (  molecules, or 

 moles) will react to give B. The rate of the reaction, therefore, decreased from  at 
 to  at . You should notice that the fraction of molecules of A that react in

each one-second is always the same (in this case one-thousand). Therefore, the number of molecules that react per time interval is
proportional to the number of molecules of A that remain unreacted at any given time. We just concluded that the rate of the
reaction is proportional to the concentration of A:

The proportionality constant, , is related to the probability that a molecule will react in a small time
interval, as we discussed above. In this class, we will concentrate on solving differential equations such as the one above. This is a
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very simple differential equation that can be solved using different initial conditions. Let’s say that our goal is to find both [A]
 and [B] . As chemists, we need to keep in mind that the law of mass conservation

requires that

In plain English, the concentrations of A and B at any time need to add up to the sum of the initial concentrations, as one molecule
of A converts into B, and we cannot create or destroy matter. Again, keep in mind that this equation will need to be modified
according to the stoichiometry of the reaction. We will call an equation of this type a ‘mass balance’.

Before solving this equation, let’s look at other examples. What are the differential equations that describe this sequential
mechanism?

In this mechanism, A is converted into C through an intermediate, B. Everything we discussed so far will apply to each of these
two elementary reactions (the two that make up the overall mechanism). From the point of view of A nothing changes. Because the
rate of the first reaction does not depend on B, it is irrelevant that B is converted into C (imagine you give 1 dollar per day to a
friend. It does not matter whether you friend saves the money or gives it to someone else, you still lose 1 dollar per day).

On the other hand, the rate of change of [B],  is the sum of the rate at which B is created (
), minus the rate at which it disappears by reacting into C ( ):

This can be read: The rate of change of [B] equals the rate at which [B] appears from A into B, minus the rate at which [B]
disappears from B into C. In each term, the rate is proportional to the reactant of the corresponding step: A for the first reaction,
and B for the second step.

What about C? Again, it is irrelevant that B was created from A (if you get 1 dollar a day from your friend, you don’t care if she
got it from her parents, you still get 1 dollar per day). The rate at which C appears is proportional to the reactant in the second step:
B. Therefore:

The last three equations form a system of differential equations that need to be solved considering the initial conditions of the
problem (e.g. initially we have A but not B or C). We’ll solve this problem in a moment, but we still need to discuss a few issues
related to how we write the differential equations that describe a particular mechanism. Imagine that we are interested in

We know that the rate of a reaction is defined as the change in concentration with time...but which concentration? is it 
? or ? or ? These are all different because 3 molecules of C are

created each time 1 of B and 2 of A disappear. Which one should we use? Because 2 of A disappear every time 1 of B disappears:
. Now, considering that rates are positive quantities, and that the derivatives for the reactants, 

 and , are negative:

This example shows how to deal with the stoichiometric coefficients of the reaction. Note that in all our examples we assume that
the reactions proceed as written, without any ‘hidden’ intermediate steps.

First order reactions 
We have covered enough background, so we can start solving the mechanisms we introduced. Let’s start with the easiest one
(Equations ,  and ):
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This mechanism is called a first order reaction because the rate is proportional to the first power of the concentration of reactant.
For a second-order reaction, the rate is proportional to the square of the concentration of reactant (see Problem 

). Let’s start by finding  from . We’ll then obtain
from the mass balance. This is a very simple differential equation because it is separable:

We integrate both sides of the equation, and combine the two integration constants in one:

We need to solve for [A]:

This is the general solution of the problem. Let’s assume we are giving the following initial conditions: [A]
, [B]  We’ll use this information to find the arbitrary constant :

Therefore, the particular solution is:

What about [B]? From the mass balance, [B] = [A]  + [B]  - [A] = [A]
 - [A] .

Figure  shows three examples of decays with different rate constants.

We can calculate the half-life of the reaction ( ), defined as the time required for half the initial
concentration of A to react. From Equation :

Figure : Time-dependent concentration of the reactant in the reaction  (CC BY-
NC-SA; Marcia Levitus)

When ,

Note that in this case, the half-life does not depend on the initial concentration of A. This will not be the case for other types of
mechanisms. Also, notice that we have already covered the concept of half-life in Chapter 1 (see Figure ),
so this might be a good time to read that section again and refresh what we have already learned about sketching exponential
decays.
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In physical chemistry, scientists often talk about the ‘relaxation time’ instead of the half-life. The relaxation time 
 for a decay of the shape  is , so in this case, the relaxation time is simply

. Notice that the relaxation time has units of time, and it represents the time at which the concentration has
decayed to  of its original value:

The half-life and relaxation time are compared in Figure  for a reaction with .

Figure : Half-life (black) and relaxation time (red) for the reaction  with 
 (CC BY-NC-SA; Marcia Levitus)

Consecutive First Order Processes 

We will now analyze a more complex mechanism, which involves the formation of an intermediate species (B):

which is mathematically described by Equations ,  and .
Let’s assume that initially the concentration of A is [A] , and the concentrations of B and C are zero. In
addition, we can write a mass balance, which for these initial conditions is expressed as:

Let’s summarize the equations we have:

    

Note that Equation  is not independent from Equations -
. If you take the derivative of  you get , which is the same you get if you

add Equations - . This means that Equations -
 are not all independent, and three of them are enough for us to solve the problem. As you will see, the mass

balance ( ) will give us a very easy way of solving for [C] once we have [A] and [B], so we will use it
instead of Equation .

We need to solve the system of Equations - , and although there are methods to
solve systems of differential equations (e.g. using linear algebra), this one is easy enough that can be solved with what we learned
so far. This is because not all equations contain all variables. In particular, Equation  is a simple separable
equation with dependent variable [A], which can be solved independently of [B] and [C]. We in fact just solved this equation in the
First Order Reactions section, so let’s write down the result:

Equation  contains two dependent variables, but luckily we just obtained an expression for one of them.
We can now re-write  as:
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Equation  contains only one dependent variable, [B], one independent variable, ,
and three constants: ,  and . This is therefore an ordinary
differential equation, and if it is either separable or linear, we will be able to solve it with the techniques we learned in this chapter.
Recall eq. [sep], and verify that Equation  cannot be separated as

Equation  is not separable. Is it linear? Recall Equation  and check if you can
write this equation as . We in fact can:

Let’s use the list of steps delineated in Section 4.2. We need to calculate the integrating factor, , which in
this case is . We then multiply Equation  by the integrating factor:

In the next step, we need to recognize that the left-hand side of the equation is the derivative of the product of the dependent
variable times the integrating factor:

We then take ‘ ’ to the right side of the equation and integrate both sides:

We have an arbitrary constant because this is a first order differential equation. Let’s calculate  using the
initial condition :

And therefore,

Before moving on, notice that we have assumed that . We were not explicit, but we performed the
integration with this assumption. If  the exponential term becomes 1, which is not a function of 

. In this case, the integral will obviously be different, so our answer assumes . This is
good news, since otherwise we would need to worry about the denominator of [eq:b(t)] being zero. You will solve the case 

 in Problem 4.4.

Now that we have [A] and [B], we can get the expression for [C]. We could use Equation :

This is not too difficult because the equation is separable. However, it is easier to get [C] from the mass balance, Equation 
:

Plugging the answers we got for [A] and [B]:

Equations , ,  are the solutions we were looking for. If
we had the values of  and  we could plot , 
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 and  and see how the three species evolve with time. If we had 
 we could plot the actual concentrations, but notice that this does not add too much, because it just re-scales the 

axis but does not change the shape of the curves.

Figure  shows the concentration profiles for a reaction with  and 
. Notice that because B is an intermediate, its concentration first increases, but then decreases as B is converted

into C. The product C has a ‘lag phase’, because we need to wait until enough B is formed before we can see the concentration of C
increase (first couple of seconds in this example). As you will see after solving your homework problems, the time at which the
intermediate (B) achieves its maximum concentration depends on both  and .

Figure : Concentration profiles for the reaction  with 
and  (CC BY-NC-SA; Marcia Levitus)

Reversible first order reactions 

So far we have discussed irreversible reactions. Yet, we know that many reactions are reversible, meaning that the reactant and
product exist in equilibrium:

The rate of change of [A], , is the rate at which A appears ( ) minus the rate at
which A disappears ( ):

We cannot solve this equation as it is, because it has two dependent variables, [A] and [B]. However, we can write [B] in terms of
[A], or [A] in terms of [B], by using the mass balance:

This is an ordinary, separable, first order differential equation, so it can be solved by direct integration. You will solve this problem
in your homework, so let’s skip the steps and jump to the answer:

This is a reversible reaction, so if we wait long enough it will reach equilibrium The concentration of [A] in equilibrium, [A]
, is the limit of the previous expression when . Because  when

:

and we can re-write Equation  as

As you will do in your homework, we can calculate  from the mass balance as .
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Equation  is not too different from Equation . In the case of an irreversible
reaction, (Equation ), [A] decays from an initial value [A]  to a final value 

 with a relaxation time . For the reversible reaction,  decays
from an initial value  to a final value  with a relaxation time 

. This last statement is not trivial! It says that the rate at which a reaction approaches equilibrium depends on the sum of the
forward and backward rate constants.

Figure : The kinetics of a reaction with ,  and 
 approaching equilibrium. Note that the relaxation time is  (CC BY-NC-SA; Marcia

Levitus)

In your homework you will be asked to prove that the ratio of the concentrations in equilibrium,  is equal
to the ratio of the forward and backwards rate constants. In addition, from your introductory chemistry courses you should know
that the equilibrium constant of a reaction ( ) is the ratio of the equilibrium concentrations of product of
reactant. Therefore:

This means that we can calculate the ratio of  and  from the concentrations of A
and B we observe once equilibrium has been reached (i.e. once ). At the same time, we can obtain the sum
of  and  from the relaxation time of the process. If we have the sum and the ratio,
we can calculate both  and . This all makes sense, but it requires that we can
watch the reaction from an initial state outside equilibrium. If the system is already in equilibrium, , and

 at all times. A plot of [A]  will look flat, and we will not be able to extract the
relaxation time of the reaction. If, however, we have an experimental way of shifting the equilibrium so ,
we can measure the relaxation time by observing how the reaction returns to its equilibrium position.

Advanced topic: How can we shift the equilibrium? One way is to produce a very quick change in the temperature of the system.
The equilibrium constant of a reaction usually depends on temperature, so if a system is equilibrated at a given temperature (say

), and we suddenly increase the temperature (e.g. to ), the reaction will suddenly
be away from its equilibrium condition at the new temperature. We can watch the system relax to the equilibrium concentrations at

, and measure the relaxation time. This will allow us to calculate the rate constants at 
.

Advanced topic The following figure illustrates the experimental procedure known as “T-jump”, in which a sudden change in
temperature is used to shift the position of a reversible reaction out of equilibrium. The experiment starts at a temperature

, and the temperature is increased to  instantaneously at time 
. Because the equilibrium constant at  is different from the equilibrium constant at

, the system needs to relax to the new equilibrium state. From the graph below estimate to the best of
your abilities , , and the rate constants , and 

 at .
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Solution
At ,  and . The equilibrium constant is 

.

At ,  and . The equilibrium constant is 
.

Because , at , . To calculate the relaxation time let’s
look at the expression for  (Equation ).

When the time equals the relaxation time ( ),

From the graph,  at , and therefore the relaxation time is 
.

We have  and :
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