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15.4: Symmetry Operators
The symmetry of molecules is essential for understanding the structures and properties of organic and inorganic compounds. The
properties of chemical compounds are often easily explained by consideration of symmetry. For example, the symmetry of a
molecule determines whether the molecule has a permanent dipole moment or not. The theories that describe optical activity,
infrared and ultraviolet spectroscopy, and crystal structure involve the application of symmetry considerations. Matrix algebra is
the most important mathematical tool in the description of symmetry.

A symmetry operation, such as a rotation around a symmetry axis or a reflection through a plane, is an operation that, when
performed on an object, results in a new orientation of the object that is indistinguishable from the original. For example, if we
rotate a square in the plane by  or  the new orientation of the square is superimposable on the original one (Figure ).

If rotation by an angle  of a molecule (or object) about some axis results in an orientation of the molecule (or object) that is
superimposable on the original, the axis is called a rotation axis. The molecule (or object) is said to have an -fold rotational axis,
where  is . The axis is denoted as . The square of Figure  has a  axis perpendicular to the plane because a 
rotation leaves the figure indistinguishable from the initial orientation. This axis is also a  axis because a  degree rotation
leaves the square indistinguishable from the original square. In addition, the figure has several other  axis that lie on the same
plane as the square:

Figure : Symmetry operations performed on a square (CC BY-NC-SA; Marcia Levitus)

A symmetry operation moves all the points of the object from one initial position to a final position, and that means that symmetry
operators are  square matrices (or  in two dimensions). The following equation represents the action of a symmetry
operator  on the location of the point  (a vector):

The vector  represents the location of the point after the symmetry operation. Let’s come back to the rotation axes we
discussed before. A 2-fold rotation around the axis changes the location of a point  to  (see Figure ).
By convention, rotations are always taken in the counterclockwise direction.

Figure : A 2-fold rotation around the -axis (CC BY-NC-SA; Marcia Levitus)

What is the matrix that represents the operator ? The matrix transforms the vector  into , so
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We know the matrix is a  square matrix because it needs to multiply a 3-dimensional vector. In addition, we write the vector
as a vertical column to satisfy the requirements of matrix multiplication.

and we conclude that , , ,  and , :

Rotations are not the only symmetry operations we can perform on a molecule. Figure  illustrates the reflection of a point
through the  plane. This operation transforms the vector  into the vector . Symmetry operators involving
reflections through a plane are usually denoted with the letter , so the operator that reflects a point through the  plane is :

Figure : A reflection through the  plane (CC BY-NC-SA; Marcia Levitus)

Following the same logic we used for the rotation matrix, we can write the  operator as:

This is true because

As we said before, the symmetry properties of molecules are essential for understanding the structures and properties of organic
and inorganic compounds. For example, those of you who took organic chemistry know that molecules that have an inversion
center (Problem 15.3) do not have permanent dipole moments. The symmetry of molecules is also related to their abilities to absorb
light. Figure  shows the three symmetry elements of the molecule of water (H O). This molecule has only one rotation axis,
which is 2-fold, and therefore we call it a “  axis”. It also has two mirror planes, one that contains the two hydrogen atoms ( ),
and another one perpendicular to it ( ). Both planes contain the C  axis.
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Figure : The symmetry elements of the molecule of water (CC BY-NC-SA; Marcia Levitus)

As you will learn in your inorganic chemistry course, chemists organize molecules that share the same symmetry elements under a
common group. For example, the group that contains molecules with these three symmetry elements is called “the  group”.
Because the inversion operation (Problem 15.3) is not part of this group we know that all  molecules are polar.

The molecule of methane (CH ) has several symmetry elements, some of which we have not learned in this chapter. One that is
relatively easy to identify is the C  rotation axis (Figure ):

Figure : The C  axis of the molecule of methane (CC BY-NC-SA; Marcia Levitus)

Can we write the matrix for the operator that corresponds to the 3-fold rotation? If we look at the molecule from the top, so the -
axis is perpendicular to the plane of the paper (or screen if you are reading this in a computer), we see that the rotation moves one
hydrogen atom from one vertex of an equilateral triangle to the other one in a counterclockwise fashion. Therefore, we need a
matrix that will move these vertices as shown in the figure:

Figure : A 3-fold rotation around the axis perpendicular to the plane that contains the triangle. (CC BY-NC-SA; Marcia
Levitus)

We need the coordinates of the three vertices, which can be obtained from simple geometrical arguments. If we place the green
vertex at  and , then the position of the magenta vertex is  and  and the position of
the orange vertex is  and  (Figure ).
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Figure : A 3-fold rotation around the axis perpendicular to the plane that contains the triangle. (CC BY-NC-SA; Marcia
Levitus)

The matrix we are looking for needs to rotate the magenta circle until it overlaps with the green circle:

where we note that this rotation does not change the value of .

Here, we have used the fact that  and .

Multiplying the matrix by the vector:

From these equations, we conclude that , , and . So far the matrix looks
like:

To find the remaining entries let’s apply the matrix to the vector , which needs to rotate to :

From this multiplication we get

and therefore,

This page titled 15.4: Symmetry Operators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia
Levitus via source content that was edited to the style and standards of the LibreTexts platform.
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