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12.3: The Wave Equation in One Dimension

The wave equation is an important second-order linear partial differential equation that describes waves such as sound waves, light
waves and water waves. In this course, we will focus on oscillations in one dimension. Let’s consider a thin string of length [ that is
fixed at its two endpoints, and let’s call the displacement of the string from its horizontal position u(z, t) (figure [fig:pde1]). The
displacement of each point in the string is limited to one dimension, but because the displacement also depends on time, the one-
dimensional wave equation is a PDE:
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Figure 12.3.1: A vibrating string of length [ held at both ends. (CC BY-NC-SA; Marcia Levitus)
Because the string is held at both ends, the PDE is subject to two boundary conditions:

u(0,t) =u(l,t) =0 (12.3.2)

Using the method of separation of variables, we assume that the function u(z, t) can be written as the product of a function of only
z and a function of only ¢.

u(z,t) = f(z)g(t) (12.3.3)
Substituting Equation 12.3.3in Equation 12.3.1:

0*f(z)g(t) _ 1 9*f(x)g(t)

Oz? 02 ot?
*f(z) 1.,  0%(t)
—_— = —_— 12.3.4
o) = 5 F) (12.3.4)
and separating the terms in  from the terms in y:
1 8 f(x) (1 9%g(t)

1
el 12.3.5
f(z) Ox? v2 g(t) Ot? ( )
Remember that v is a constant, and we could leave it on either side of Equation 12.3.5 The left side of this equation is a function
of z only, and the right side is a function of ¢ only. Because z and ¢ are independent variables, the only way that the equality holds
is that each side equals a constant.
1 0%f(z) 1 1 0%(t)

K

f(z) 022 v g(t) Of

K is called the separation constant, and will be determined by the boundary conditions. Note that after separation of variables, one
PDE became two ODEs:

1 9*f(x) 82 f(z)
F@) oer K7 g ~Kf@=0 (12.3.6)
0? 52
0_12?]5 Bigt):K% aigt)_K”2g(t):0 (12.3.7)

These are both second order ordinary differential equations with constant coefficients, so we can solve them using the methods we
learned in Chapter 5.
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From Equation 12.3.6
9% f(z)

—— —-Kf(z)=0
S K@)
which is a 2nd order ODE with auxiliary equation

& -K=0=a=+tVK
and therefore

F(2) = c1eVE® 4 cpeVE® (12.3.8)

We do not know yet if K is positive, negative or zero, so we do not know if these are real or complex exponentials. We will use the
boundary conditions (f(0) = f(I) = 0) and see what happens:

fz) = cle\/ﬁz +02‘37\/Eﬂc = f0)=ci+ca=0=c; =—c9
F(@) = e1(eV% —e V) 5 f(l) = ey (VK — e VR =0
There are two ways to make
f=a (6\/?1 - e_‘/m) =0.

We could choose ¢; =0, but this choice would result in f(z) = 0, which physically means the string is not vibrating at all (the
displacement of all points is zero). This is certainly a mathematically acceptable solution, but it is not a solution that represents the
physical behavior of our string. Therefore, the only viable choice is eVEl — ¢=VEl Leps see what this means in terms of K. There

is no positive value of K that makes
eVEl _ ~VEIL

If K =0, we obtain f(z) =0, which is again not physically acceptable. Then, the value of K has to be negative, and VK is an
imaginary number:

eVEl _ o—VEl

ez\/|K\l —et |K|l

where | K| = —K is the absolute value of K < 0. Using Euler’s relationship:

cos(,/|K|l) +isin(, /| K|l) = cos(, /| K|l) —isin(, /| K]|l)
2isin(,/|K|l) =0 — /||l = nr — /|K| = (%)
Now that we have an expression for K, we can write an expression for f(z):

f@)=c (6\/Ez - 67‘/1_{1) =c (ei\/mz —e |Klz) = 2icy sin(4 /| K|z)

(@) :Asin("T”a:) (12.3.9)

So far we got f(z), so we need to move on and get an expression for g(t) from Equation 12.3.7. Notice, however, that we now
know the value of K, so let’s re-write Equation 12.3.7as:

6@3?) n (n—;r)zv2g(t) =0 (12310)

This is another 2nd order ODE, with auxiliary equation

2
a2+(%) V¥=0—>oa=x=i (%v)

we can then write g(t) as:
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nmw nmw
i| = v |t —i| =/ v |t
g(t):cle< l ) +coe ( l )
which you should be able to prove can be rewritten as
g(t) =c3 sin(—n;rvt) +cy cos(nl—ﬂvt) (12.3.11)

We cannot get the values of cs and ¢4 yet because we do not have information about initial conditions. Before discussing this,
however, let’s put the two pieces together:

u(z,t) = sin(%x) [pn sin(nTﬂ-vt) +qn cos(%vt)}

where we combined the constants A and c¢; » and re-named them p,, and g,. The subindices stress the fact that these constants

depend on n, which will be important in a minute. Before we move on, and to simplify notation, let’s recognize that the quantity
nmwv
- has units of reciprocal time. This is true because it needs to give an dimensionless number when multiplied by ¢. This means

nmTv
that, physically, - represents a frequency, so we can call it w,, :

u(z,t) = sin(%w) [P sin(wnt) + gy cos(wpt)] n=1,2,...,00 (12.3.12)

At this point, we recognize that we have an infinite number of solutions:

uy(z,t) = sin(%m) [p1 sin(wst) + g1 cos(wyt)] (12.3.13)

ug(z,t) =sin (2%x> [p2 sin(wat) 4 g2 cos(wat)]

up(z,t) = sin(n%w) [Py, sin(wpt) + ¢, cos(wpt)]

™ 27V nmwv D . .
where wy,wa, ..., Wy =—, ——, ..., - As usual, the general solution is a linear combination of all these solutions:

171
o~ . (T :
u(z,t) = crui(z,t) + coug(x, t)+. . . +cpun(z,t) = Z sm(T:c) [ay, sin(wyt) + by, cos(wyt)] (12.3.14)
n=1
where a,, = ¢, p, and b, = c,q, .

Notice that we have not used any initial conditions yet. We used the boundary conditions we were given (u(0,t) = u(l,t) = 0), so
Equation 12.3.14is valid regardless of initial conditions as long as the string is held fixed at both ends. As you may suspect, the
values of a,, and b,, will be calculated from the initial conditions. However, notice that in order to describe the movement of the
string at all times we will need to calculate an infinite number of a,-values and and infinite number of b,-values. This sounds
pretty intimidating, but you will see how all the time you spent learning about Fourier series will finally pay off. Before we look
into how to do that, let’s take a look at the individual solutions listed in Equation 12.3.13

Each u,(z, t) is called a normal mode. For example, for n = 1, we have
ui(z,t) = sin(%a:) [p1 sin(w1t) + g1 cos(wit)]
which is called the fundamental mode, or first harmonic.

T
Notice that this function is the product of a function that depends only on x (sin(Tx) ) and another function that depends only on

t,ie.,

[p1 sin(w;t) 4 g1 cos(wit)].

The function on ¢ simply changes the amplitude of the sine function on x:
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Figure 12.3.2: The fundamental mode or first harmonic. Different colors represent the string at different times. (CC BY-NC-SA;
Marcia Levitus)

For n =2, we have:
uz(z,t) =sin (2%13) [p2 sin(wst) 4 g2 cos(wat)]

which is called the first overtone, or second harmonic. Again, this function is the product of one function that depends on z only (

sin(2%w)), and another one that depends on ¢ and changes the amplitude of sin (2%93) without changing its overall shape:
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Figure 12.3.3: The first overtone or second harmonic. Different times are plotted in different colors (CC BY-NC-SA; Marcia
Levitus)

For n = 3, we have:
uz(z,t) =sin (3%90) [p3 sin(wst) 4 g3 cos(wst)]
which is called the second overtone, or third harmonic. Again, this function is the product of one function that depends on x only (

sin(3%w)), and another one that depends on ¢ and changes the amplitude of sin(3%z) without changing its overall shape:
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Figure 12.3.4: The second overtone or third harmonic. Different times are plotted in different colors (CC BY-NC-SA; Marcia
Levitus)
LT . . . .
If the initial shape of the string (i.e. the function u(z, t) at time zero) is s1n(7 w) (Figure 12.3.2 then the string will vibrate as

shown in the figure, just changing the amplitude but not the overall shape. In more general terms, if u(z, 0) is one of the normal
modes, the string will vibrate according to that normal mode, without mixing with the rest. However, in general, the shape of the
string will be described by a linear combination of normal modes (Equation 12.3.14). If you recall from Chapter 7, a Fourier series
tells you how to express a function as a linear combination of sines and cosines. The idea here is the same: we will express an
arbitrary shape as a linear combination of normal modes, which are a collection of sine functions.

In order to do that, we need information about the initial shape: u(z, 0). We also need information about the initial velocity of all

Ou(z,0
the points in the string: % The initial shape is the displacement of all points at time zero, and it is a function of x. Let’s call
this function y; (z):
u(z,0) =y (z) (12.3.15)
The initial velocity of all points is also a function of z, and we will call it yo (z):
Ou(z,0
—(Bt ) =yo(x) (12.3.16)

Both functions together represent the initial conditions, and be will used to calculate all the a,, and b,, coefficients. To simplify the
problem, let’s assume that at time zero we hold the string still, so the velocity of all points is zero:

ou(z,0) 0
ot
Let’s see how we can use this information to finish the problem (i.e. calculate the coefficients a,, and b,,). From Equations 12.3.14

and 12.3.15%

u(z,t) = i sin(ﬂx) [an sin(wy,t) + by, cos(wyt)]

n=1 !
and applying the first initial condition:
= nm
,0)=) si (— )bn = 12.3.17
u(z,0) n;sm 7 %) [bu] = 31 () ( )

This equation tells us that the initial shape, y;(z), can be described as an infinite sum of sine functions....sounds familiar? In

Chapter 7, we saw that we can represent a periodic odd function f(z) of period 2L as an infinite sum of sine functions (Equation

7.2.1 f(z) = a_20 +3 0 an cos(%) +> 0 by sin(%) ):
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(@) :2bnsin ("Lﬂ) (12.3.18)

Comparing Equations 12.3.17and 12.3.18 we see that in order to calculate the b, coefficients of Equation 12.3.14 we need to
create an odd extension of y; with period 21.

Let’s see how this works with an example. Let’s assume that the initial displacement is given by the function shown in the figure:

(=) ou(x,0
F 0 _,
= A ot
X
i
0 l
Figure 12.3.5: Initial conditions for the vibrating string problem (Equations 12.3.15 and 12.3.16). (CC BY-NC-SA; Marcia

Levitus)
Equation 12.3.17tells us that the function of Figure 12.3.5 can be expressed as an infinite sum of sine functions. If we figure out
which sum, we will have the coefficients b, we need to write down the expression of u(z,y) we are seeking (Equation 12.3.14).
We will still need the coefficients a,,, which will be calculated from the second initial condition (Equation 12.3.16).

Because we know the infinite sum of Equation 12.3.17describes an odd periodic function of period 2, our first step is to extend
y1(x) in an odd fashion:

27
Figure 12.3.6: The odd extension of y1 (z) (Figure 12.3.5). (CC BY-NC-SA; Marcia Levitus)

What is the Fourier series of the periodic function of Figure 12.3.6? Using the methods we learned in Chapter 7, we obtain:

> (1) 2n+1
yl(m):%[sin”_w_isinﬂ+i2sin57f_x,..]:%Z (1) sin(("+ )”m) (12.3.19)

el T I w2 = (2n+1)? I
From Equation 12.3.17
u(e,0)= 3 sin( 'z ) (] = 11 @)
comparing Equations 12.3.17and 12.3.1%
0 n=2,4,6...
by = 7r82:2 n=159.. (12.3.20)
_7r82i2 n=3,7,11...

Great! we have all the coefficients b,,, so we are just one step away from our final goal of expressing u(z, t). Our last step is to
Ou(z,0)

calculate the coefficients a,,. We will use the last initial condition: ——=——= = y»(x). Taking the partial derivative of Equation

ot
12.3.14

u(z,t) = i sin(%m) [an sin(wy,t) + by, cos(wyt)]

n=1

_(9u(x, t) sin(%x) [anwn, cos(wnt) — bywy, sin(wyt))
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Ou(z,0 > n
% :Zsin(Tﬂ-m> [anwn] = ya(z) (12.3.21)
n=1
Equation tells us that the function y»(z) can be expressed as an infinite sum of sine functions. Again, we need to create an

nrT
odd extension of y () and obtain its Fourier series: y(z) = > " ; bysin (T) . The coefficients b, of the Fourier series equal

anwy, (Equation ). In this particular case:

% = isin(%m) [anwn] =0 —a, =0

The coefficients a,, are zero, because the derivative needs to be zero for all values of x.

Now that we have all coefficients b,, and a,, we are ready to wrap this up. From Equations and

[o¢]
u(z,t) = Z sin(n—;ra:) [ay, sin(wy,t) + by, cos(wyt)] (12.3.22)
n=1
. (T . (3w AL
=b sm(T:L‘) cos(wit) + bz sin 7 cos(wst) + bs sin T cos(wst). .. (12.3.23)

= i—f [sin(%x) cos(wit) — 3—12sin(3—l7rm) cos(wst) + 5—12$in(577ra:) cos(wst). . ] (12.3.24)

Recalling that w,, = nTﬂ-v:

_8A LT s 1 . /3« 37 1 . /5« 51
u(:c,t)—? 51n(7m>cos(7vt)—3—2s1n %) cos Tvt —|—5—251n ¢ | cos Tvt

u(x,t):%i (1) sin<(2n+1)wx> cos<Mm> (12.3.25)

l l

Success! We got a full description of the movement of the string. We just need to know the length of the string (1), the initial
displacement of the midpoint (A) and the parameter v, and we can start plotting the shape of the string at different times. Just
remember that Mathematica cannot plot a function defined as an infinite sum, so you will have to plot a truncated version of
Equation . As usual, the more terms you include the better the approximation, but the longer the computer will take to
execute the command. To see an amazing slow motion movie of a real string follow this link.

The parameter v has units of length over time (e.g. m/s), and it depends on factors such as the material of the string, its tension, and
its thickness. A string instrument like a guitar, for instance, has strings made of different materials, and held at different tensions.
When plucked, they produce vibrations of different frequencies, which we perceive as different musical notes. In general, the
vibration of the string will be a linear combination of the normal modes we talked about earlier in this section. Each normal mode
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. nmw
has a unique frequency (w, = —

l

A linear combination of normal modes contains many frequencies, and we perceive them as a more complex sound.

v), and if this frequency is within our audible range, we will perceive it as a pure musical note.

Music is nice, but what about the applications of normal modes in chemistry? We already mentioned molecular vibrations in
different chapters, and we know that the atoms in molecules are continuously vibrating following approximately harmonic motions.
The same way that the vibration of the string of Figure 12.3.5 can be expressed as a linear combination of all the normal modes
(Figures 12.3.2-12.3.4, we can express the vibrations of a polyatomic molecule as a linear combination of normal modes. As you
will see in your advanced physical chemistry courses, a non-linear polyatomic molecule has 3n — 6 vibrational normal modes,
where n is the number of atoms. For the molecule of water, for example, we have 3 normal modes:

/g‘; gA (‘L &‘k “\
S LA\ g‘u & t‘t
S B B R S

screenshots

Figure 12.3.7: The normal modes of vibration of water (CC BY-NC-SA; Marcia Levitus)

Any other type of vibration can be expressed as a linear combination of these three normal modes. As you can imagine, these
motions occur very fast. Typically, you may see of the order of 10'2 vibrations per second. The most direct way of probing the
vibrations of a molecule is through infra-red spectroscopy, and in fact you will measure and analyze the vibrational spectra of
simple molecules in your 300-level physical chemistry labs.

This page titled 12.3: The Wave Equation in One Dimension is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform.
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