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3.2: Linear Approximations
If you take a look at Equation  you will see that we can always approximate a function as  as long as  is small.
When we say ‘any function’ we of course imply that the function and all its derivatives need to be finite at . Looking at the
definitions of the coefficients, we can write:

We call this a linear approximation because Equation  is the equation of a straight line. The slope of this line is  and the 
-intercept is .

A fair question at this point is ‘why are we even talking about approximations?’ What is so complicated about the functions , 
 or  that we need to look for an approximation? Are we getting too lazy? To illustrate this issue, let’s consider the

problem of the pendulum, which we will solve in detail in the chapter devoted to differential equations. The problem is illustrated
in Figure , and those of you who took a physics course will recognize the equation below, which represents the law of motion
of a simple pendulum. The second derivative refers to the acceleration, and the  term is due to the component of the net force
along the direction of motion. We will discuss this in more detail later in this semester, so for now just accept the fact that, for this
system, Newton’s law can be written as:

Figure : A rigid pendulum with massless and inextensible cord of length . The motion is assumed to occur in two dimensions,
and the friction is assumed to be negligible. The mass of the object is , and  is the acceleration due to gravity. (CC BY-NC-SA;
Marcia Levitus)

This equation should be easy to solve, right? It has only a few terms, nothing too fancy other than an innocent sine function...How
difficult can it be to obtain ? Unfortunately, this differential equation does not have an analytical solution! An analytical
solution means that the solution can be expressed in terms of a finite number of elementary functions (such as sine, cosine,
exponentials, etc). Differential equations are sometimes deceiving in this way: they look simple, but they might be incredibly hard
to solve, or even impossible! The fact that we cannot write down an analytical solution does not mean there is no solution to the
problem. You can swing a pendulum and measure  and create a table of numbers, and in principle you can be as precise as you
want to be. Yet, you will not be able to create a function that reflects your numeric results. We will see that we can solve equations
like this numerically, but not analytically. Disappointing, isn’t it? Well... don’t be. A lot of what we know about molecules and
chemical reactions came from the work of physical chemists, who know how to solve problems using numerical methods. The fact
that we cannot obtain an analytical expression that describes a particular physical or chemical system does not mean we cannot
solve the problem numerically and learn a lot anyway!

But what if we are interested in small displacements only (that is, the pendulum swings close to the vertical axis at all times)? In
this case, , and as we saw  (see Figure ). If this is the case, we have now:

As it turns out, and as we will see in Chapter 2, in this case it is very easy to obtain the solution we are looking for:

This solution is the familiar ‘back and forth’ oscillatory motion of the pendulum you are familiar with. What you might have not
known until today is that this solution assumes  and is therefore valid only if !
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There are lots of ‘hidden’ linear approximations in the equations you have learned in your physics and chemistry courses. You may
recall your teachers telling you that a give equation is valid only at low concentrations, or low pressures, or low... you hopefully get
the point. A pendulum is of course not particularly interesting when it comes to chemistry, but as we will see through many
examples during the semester, oscillations, generally speaking, are. The example below illustrates the use of series to a problem
involving diatomic molecules, but before discussing it we need to provide some background.

The vibrations of a diatomic molecule are often modeled in terms of the so-called Morse potential. This equation does not provide
an exact description of the vibrations of the molecule under any condition, but it does a pretty good job for many purposes.

Here,  is the distance between the nuclei of the two atoms,  is the distance at equilibrium (i.e. the equilibrium bond length), 
is the dissociation energy of the molecule,  is a constant that measures the strength of the bond, and  is the potential energy.
Note that  is the distance at which the potential energy is a minimum, and that is why we call this the equilibrium distance. We
would need to apply energy to separate the atoms even more, or to push them closer (Figure ).

At room temperature, there is enough thermal energy to induce small vibrations that displace the atoms from their equilibrium
positions, but for stable molecules, the displacement is very small: . In the next example we will prove that under
these conditions, the potential looks like a parabola, or in mathematical terms,  is proportional to the square of the
displacement. This type of potential is called a ’harmonic potential’. A vibration is said to be simple harmonic if the potential is
proportional to the square of the displacement (as in the simple spring problems you may have studied in physics).

Figure : The Morse potential (CC BY-NC-SA; Marcia Levitus)

Expand the Morse potential as a power series and prove that the vibrations of the molecule are approximately simple harmonic
if the displacement  is small.

Solution
The relevant variable in this problem is the displacement , not the actual distance . Let’s call the displacement 

, and let’s rewrite Equation  as

The goal is to prove that  (i.e. the potential is proportional to the square of the displacement) when . The
constant  is the proportionality constant. We can approach this in two different ways. One option is to expand the function
shown in Equation  around zero. This would be correct, but it but involve some unnecessary work. The variable  appears
only in the exponential term, so a simpler option is to expand the exponential function, and plug the result of this expansion
back in Equation . Let’s see how this works:

We want to expand  as , and we know that the coefficients are  

The coefficient  is . The first three derivatives of  are
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When evaluated at  we obtain, 

and therefore  for .

Therefore,

and

From the last result, when , we know that the terms in  will be increasingly smaller, so  and 
.

Plugging this result in Equation  we obtain , so we demonstrated that the potential is proportional to the
square of the displacement when the displacement is small (the proportionality constant is ). Therefore, stable diatomic
molecules at room temperatures behave pretty much like a spring! (Don’t take this too literally. As we will discuss later,
microscopic springs do not behave like macroscopic springs at all).

This page titled 3.2: Linear Approximations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia
Levitus via source content that was edited to the style and standards of the LibreTexts platform.
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