LibreTextsw

3.1: Maclaurin Series

A function [Math Processing Error] can be expressed as a series in powers of [Math Processing Error] as long as [Math
Processing Error] and all its derivatives are finite at [Math Processing Error]. For example, we will prove shortly that the function
[Math Processing Error] can be expressed as the following infinite sum:

[Math Processing Error]
We can write this statement in this more elegant way:
[Math Processing Error]

If you are not familiar with this notation, the right side of the equation reads “sum from [Math Processing Error] to [Math
Processing Error] of [Math Processing Error]” When [Math Processing Error], [Math Processing Error], when [Math Processing
Error], [Math Processing Error], when [Math Processing Error], [Math Processing Error], etc (compare with Equation [Math
Processing Error]). The term “series in powers of [Math Processing Error]” means a sum in which each summand is a power of
the variable [Math Processing Error]. Note that the number 1 is a power of [Math Processing Error] as well ([Math Processing
Error]). Also, note that both Equations [Math Processing Error] and [Math Processing Error] are exact, they are not
approximations.

Similarly, we will see shortly that the function [Math Processing Error] can be expressed as another infinite sum in powers of
[Math Processing Error] (i.e. a Maclaurin series) as:

[Math Processing Error]
Or, more elegantly:
[Math Processing Error]

where [Math Processing Error] is read “n factorial” and represents the product [Math Processing Error]. If you are not familiar
with factorials, be sure you understand why [Math Processing Error]. Also, remember that by definition [Math Processing Error],
not zero.

At this point you should have two questions: 1) how do I construct the Maclaurin series of a given function, and 2) why on earth
would I want to do this if [Math Processing Error] and [Math Processing Error] are fine-looking functions as they are. The answer
to the first question is easy, and although you should know this from your calculus classes we will review it again in a moment. The
answer to the second question is trickier, and it is what most students find confusing about this topic. We will discuss different
examples that aim to show a variety of situations in which expressing functions in this way is helpful.

How to obtain the Maclaurin Series of a Function

In general, a well-behaved function ([Math Processing Error] and all its derivatives are finite at [Math Processing Error]) will be
expressed as an infinite sum of powers of [Math Processing Error] like this:

[Math Processing Error]

Be sure you understand why the two expressions in Equation [Math Processing Error] are identical ways of expressing an infinite
sum. The terms [Math Processing Error] are called the coefficients, and are constants (that is, they are NOT functions of [Math
Processing Error]). If you end up with the variable [Math Processing Error] in one of your coefficients go back and check what
you did wrong! For example, in the case of [Math Processing Error] (Equation [Math Processing Error]), [Math Processing
Error]. In the example of Equation [Math Processing Error], all the coefficients equal 1. We just saw that two very different
functions can be expressed using the same set of functions (the powers of [Math Processing Error]). What makes [Math
Processing Error] different from [Math Processing Error] are the coefficients [Math Processing Error]. As we will see shortly, the
coefficients can be negative, positive, or zero.

How do we calculate the coefficients? Each coefficient is calculated as:
[Math Processing Error]

That is, the [Math Processing Error]-th coefficient equals one over the factorial of [Math Processing Error] multiplied by the
[Math Processing Error]-th derivative of the function [Math Processing Error] evaluated at zero. For example, if we want to
calculate [Math Processing Error] for the function [Math Processing Error], we need to get the second derivative of [Math

@ 0 a @ 3.1.1 https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Mathematical_Methods_in_Chemistry_(Levitus)/03%3A_Series/3.01%3A_Maclaurin_Series

LibreTextsm

Processing Error], evaluate it at [Math Processing Error], and divide the result by [Math Processing Error]. Do it yourself and
verify that [Math Processing Error]. In the case of [Math Processing Error] we need the zeroth-order derivative, which equals the
function itself (that is, [Math Processing Error], because [Math Processing Error]). It is important to stress that although the
derivatives are usually functions of [Math Processing Error], the coefficients are constants because they are expressed in terms of
the derivatives evaluated at [Math Processing Error].

Note that in order to obtain a Maclaurin series we evaluate the function and its derivatives at [Math Processing Error]. This
procedure is also called the expansion of the function around (or about) zero. We can expand functions around other numbers, and
these series are called Taylor series (see Section 3).

v/ Example

Obtain the Maclaurin series of [Math Processing Error].

Solution

We need to obtain all the coefficients ([Math Processing Error]). Because there are infinitely many coefficients, we will
calculate a few and we will find a general pattern to express the rest. We will need several derivatives of [Math Processing
Error], so let’s make a table:

[Math Processing Error] [Math Processing Error] [Math Processing Error]
0 [Math Processing Error] 0
1 [Math Processing Error] 1
2 [Math Processing Error] 0
3 [Math Processing Error] -1
4 [Math Processing Error] 0
5 [Math Processing Error] 1

Remember that each coefficient equals [Math Processing Error] divided by [Math Processing Error], therefore:

[Math Processing Error] [Math Processing Error] [Math Processing Error]
0 1 0
1 1 1
2 2 0
3 [Math Processing Error] [Math Processing Error]
4 [Math Processing Error] 0
5 [Math Processing Error] [Math Processing Error]

This is enough information to see the pattern (you can go to higher values of [Math Processing Error] if you don’t see it yet):

1. the coefficients for even values of [Math Processing Error] equal zero.
2. the coefficients for [Math Processing Error] equal [Math Processing Error]
3. the coefficients for [Math Processing Error] equal [Math Processing Error].

Recall that the general expression for a Maclaurin series is [Math Processing Error], and replace [Math Processing Error] by
the coefficients we just found:

[Math Processing Error]

This is a correct way of writing the series, but in the next example we will see how to write it more elegantly as a sum.

https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Mathematical_Methods_in_Chemistry_(Levitus)/03%3A_Series/3.03%3A_Taylor_Series

LibreTextsm

Express the Maclaurin series of [Math Processing Error] as a sum.

Solution
In the previous example we found that:

[Math Processing Error]
We want to express this as a sum:
[Math Processing Error]

The key here is to express the coefficients [Math Processing Error] in terms of [Math Processing Error]. We just concluded
that 1) the coefficients for even values of [Math Processing Error] equal zero, 2) the coefficients for [Math Processing Error]
equal [Math Processing Error] and 3) the coefficients for [Math Processing Error] equal [Math Processing Error]. How do
we put all this information together in a unique expression? Here are three possible (and equally good) answers:

e [Math Processing Error]
e [Math Processing Error]
e [Math Processing Error]

This may look impossibly hard to figure out, but let me share a few tricks with you. First, we notice that the sign in Equation
[Math Processing Error] alternates, starting with a “+”. A mathematical way of doing this is with a term [Math Processing
Error] if your sum starts with [Math Processing Error], or [Math Processing Error] if you sum starts with [Math Processing
Error]. Note that [Math Processing Error] does the same trick.

[Math Processing Error] [Math Processing Error] [Math Processing Error] [Math Processing Error]|
0 1 -1 1
1 -1 1 -1
2 1 -1 1
3 -1 1 -1

We have the correct sign for each term, but we need to generate the numbers [Math Processing Error] Notice that the number
“1” can be expressed as [Math Processing Error]. To do this, we introduce the second trick of the day: we will use the
expression [Math Processing Error] to generate odd numbers (if you start your sum with [Math Processing Error]) or [Math
Processing Error] (if you start at [Math Processing Error]). Therefore, the expression [Math Processing Error] gives [Math
Processing Error], which is what we need in the first and third examples (when the sum starts at zero).

Lastly, we need to use only odd powers of [Math Processing Error]. The expression [Math Processing Error]| generates the
terms [Math Processing Error] when you start at [Math Processing Error], and [Math Processing Error] achieves the same
when you start your series at [Math Processing Error].

Confused about writing sums using the sum operator [Math Processing Error]? This video will help:
http://tinyurl.com/lvwd36q

Need help? The links below contain solved examples.

External links:

Finding the maclaurin series of a function I: http://patrickjmt.com/taylor-and-maclaurin-series-example-1/
Finding the maclaurin series of a function II: http://www.youtube.com/watch?v= dp2ovDuWhro

Finding the maclaurin series of a function III: http://www.youtube.com/watch?v= WWe7pZjc4s8

https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
http://tinyurl.com/lvwd36q
http://patrickjmt.com/taylor-and-maclaurin-series-example-1/
https://chem.libretexts.org/http%3A%2F%2Fwww.youtube.com/watch?v=%20dp2ovDuWhro
https://chem.libretexts.org/http%3A%2F%2Fwww.youtube.com/watch?v=%20WWe7pZjc4s8

Q%meﬂeuy

Graphical Representation

From Equation [Math Processing Error] and the examples we discussed above, it should be clear at this point that any function
whose derivatives are finite at [Math Processing Error] can be expressed by using the same set of functions: the powers of [Math
Processing Error]. We will call these functions the basis set. A basis set is a collection of linearly independent functions that can
represent other functions when used in a linear combination.

2 NI AN V4 I I I I
N

y=x| yEX| / YEX| y=x

3 2 -1 0 1 2 3 3 2 -1 [1 2 3 3 2 -1 [1 2 3 3 2 -1 0 1 2 3

X x x x

Figure [Math Processing Error]: Some of the functions of the basis set for a Maclaurin expansion (CC BY-NC-SA; Marcia

Levitus)
Figure [Math Processing Error] is a graphic representation of the first four functions of this basis set. To be fair, the first function
of the set is [Math Processing Error], so these would be the second, third, fourth and fifth. The full basis set is of course infinite in
length. If we mix all the functions of the set with equal weights (we put the same amount of [Math Processing Error] than we put
[Math Processing Error] or [Math Processing Error]), we obtain [Math Processing Error] (Equation [Math Processing Error]. If
we use only the odd terms, alternate the sign starting with a ‘+’, and weigh each term less and less using the expression [Math
Processing Error] for the [Math Processing Error] term, we obtain [Math Processing Error] (Equation [Math Processing Error]).
This is illustrated in Figure [Math Processing Error], where we multiply the even powers of [Math Processing Error] by zero, and
use different weights for the rest. Note that the ‘etcetera’ is crucial, as we would need to include an infinite number of functions to
obtain the function [Math Processing Error] exactly.

2 N VA I I

AR R A ARAANY

etcetera 56 7 8
/—\\ - 5 XX X

Figure [Math Processing Error]: Construction of [Math Processing Error] using the powers of [Math Processing Error] as the
basis set. (CC BY-NC-SA; Marcia Levitus)

https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
https://sms.asu.edu/marcia_levitus
https://sms.asu.edu/marcia_levitus

LibreTextsw

Although we need an infinite number of terms to express a function exactly (unless the function is a polynomial, of course), in
many cases we will observe that the weight (the coefficient) of each power of [Math Processing Error] gets smaller and smaller as
we increase the power. For example, in the case of [Math Processing Error], the contribution of [Math Processing Error] is [Math
Processing Error] of the contribution of [Math Processing Error] (in absolute terms), and the contribution of [Math Processing
Error] is [Math Processing Error]. This tells you that the first terms are much more important than the rest, although all are needed
if we want the sum to represent [Math Processing Error] exactly. What if we are happy with a ‘pretty good’ approximation of
[Math Processing Error]? Let’s see what happens if we use up to [Math Processing Error] and drop the higher terms. The result is
plotted in blue in Figure [Math Processing Error] together with [Math Processing Error] in red. We can see that the function
[Math Processing Error] is a very good approximation of [Math Processing Error] as long as we stay close to [Math Processing
Error]. As we move further away from the origin the approximation gets worse and worse, and we would need to include higher
powers of [Math Processing Error] to get it better. This should be clear from eq. [series:sin], since the terms [Math Processing
Error] get smaller and smaller with increasing [Math Processing Error] if [Math Processing Error] is a small number. Therefore,
if [Math Processing Error] is small, we could write [Math Processing Error], where the symbol [Math Processing Error] means
approximately equal.

S
Il
=
<
I
=
[
<
|
=
S
|
=

Figure [Math Processing Error]. Approximation of [Math Processing Error] up to the third power of [Math Processing Error].

The curve in blue is the function [Math Processing Error], and the curve in red is [Math Processing Error] (CC BY-NC-SA;

Marcia Levitus)
But why stopping at [Math Processing Error] and not [Math Processing Error] or 5? The above argument suggests that the
function [Math Processing Error] might be a good approximation of [Math Processing Error] around [Math Processing Error],
when the term [Math Processing Error] is much smaller than the term [Math Processing Error]. This is in fact this is the case, as
shown in Figure [Math Processing Error].

We have seen that we can get good approximations of a function by truncating the series (i.e. not using the infinite terms).
Students usually get frustrated and want to know how many terms are ‘correct’. It takes a little bit of practice to realize there is no
universal answer to this question. We would need some context to analyze how good of an approximation we are happy with. For
example, are we satisfied with the small error we see at [Math Processing Error] in Figure [Math Processing Error]? It all depends
on the context. Maybe we are performing experiments where we have other sources of error that are much worse than this, so using
an extra term will not improve the overall situation anyway. Maybe we are performing very precise experiments where this
difference is significant. As you see, discussing how many terms are needed in an approximation out of context is not very useful.

@ 0 g @ 3.1.5 https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
https://sms.asu.edu/marcia_levitus

LibreTextsm

We will discuss this particular approximation when we learn about second order differential equations and analyze the problem of
the pendulum, so hopefully things will make more sense then.

04

A) 0.2

\ zoom in

> 0 > 00
\\/
02
2
0.4
3 2 -1 0 1 2 3 0.4 0.2 0.0 0.2 0.4
X

X

Figure [Math Processing Error]: Approximation of [Math Processing Error] up to the first power of [Math Processing Error]. The
curve in blue is the function [Math Processing Error], and the curve in red is [Math Processing Error] (CC BY-NC-SA; Marcia

Levitus)

This page titled 3.1: Maclaurin Series is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus
via source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/106813

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/106813?pdf
https://sms.asu.edu/marcia_levitus
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Mathematical_Methods_in_Chemistry_(Levitus)/03%3A_Series/3.01%3A_Maclaurin_Series
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Mathematical_Methods_in_Chemistry_(Levitus)/03%3A_Series/School%20of%20Molecular%20Sciences
https://www.public.asu.edu/~mlevitus/chm240/book.pdf

