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1.2: Matrix Mechanics
Most of our work will make use of the matrix mechanics formulation of quantum mechanics. The wavefunction is written as 
and referred to as a ket vector. The complex conjugate  is a bra vector, where . The product of a bra and
ket vector,  is therefore an inner product (scalar), whereas the product of a ket and bra  is an outer product (matrix).
The use of bra–ket vectors is the Dirac notation in quantum mechanics.

In the matrix representation,  is represented as a column vector for the expansion coefficients  in a particular basis set.

The bra vector  refers to a row vector of the conjugate expansion coefficients . Since wavefunctions are normalized, 
. Dirac notation has the advantage of brevity, often shortening the wavefunction to a simple abbreviated notation for

the relevant quantum numbers in the problem. For instance, we can write eq. (1.1.7) as

where the sum is over all eigenstates and the . Implicit in this equation is that the expansion coefficient for
the . With this brevity comes the tendency to hide some of the variables important to the description
of the wavefunction. One has to be aware of this, and although we will use Dirac notation for most of our work, where detail is
required, Schrödinger notation will be used.

The outer product  is known as a projection operator because it can be used to project the wavefunction of the system onto the 
 eigenstate of the system as . Furthermore, if we sum projection operators over the complete basis set, we

obtain an identity operator

which is a statement of the completeness of a basis set. The orthogonality of eigenfunctions (eq. (1.1.8)) is summarized as 
.

The operator  is a square matrix that maps from one state to another

and from eq. (1.1.6) the TISE is

where E is a diagonal matrix of eigenvalues whose solution is obtained from the characteristic equation

The expectation value, a restatement of eq. (1.1.10), is written

or from eq. ( )

where  are the matrix elements of the operator . As we will see later, the matrix of expansion coefficients 
 is known as the density matrix. From eq. ( ), we see that the expectation value of the Hamiltonian is the energy of

the system,

|Ψ⟩

= ⟨Ψ|Ψ∗ ⟨aΨ| = ⟨Ψ|a∗

⟨α ∣ β⟩ |β⟩⟨α|

|Ψ⟩ ci

|Ψ⟩ =

⎛

⎝

⎜⎜⎜⎜

c1

c2

c3

⋮

⎞

⎠

⎟⎟⎟⎟
(1.2.1)

⟨Ψ| c∗
i

⟨Ψ ∣ Ψ⟩ = 1

|Ψ⟩ = |i⟩∑
i

ci (1.2.2)

 eigenstate |i⟩ =ith ψi

 eigenstate is  = ⟨i ∣ Ψ⟩ith  ci

|i⟩⟨i|
ith |i⟩⟨i ∣ Ψ⟩ = |i⟩ci

|i⟩⟨i| = 1∑
i

(1.2.3)

⟨i ∣ j⟩ = δij

Â
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E = ⟨Ψ|H|Ψ⟩ (1.2.9)
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Hermitian operators play a special role in quantum mechanics. The Hermitian adjoint of an operator , and is

defined as the conjugate transpose of . From this we see . A Hermitian operator is one

that is self-adjoint, i.e., . For a Hermitian operator, a unique unitary transformation exists that will diagonalize it.

Each basis set provides a different route to representing the same physical system, and a similarity transformation S transforms a
matrix from one orthonormal basis to another. A transformation from the state  can be expressed as

where the elements of the matrix are . Then the reverse transformation is

If , then  and the transformation is said to be unitary. A unitary transformation refers to a similarity
transformation in Hilbert space that preserves the scalar product, i.e., the length of the vector. The transformation of an operator
from one basis to another is obtained from  and diagonalizing refers to finding the unitary transformation that puts the matrix
A in diagonal form.

Properties of operators 

1. The inverse of  is defined by

2. The transpose of  is

If  then the matrix is antisymmetric.

3. The trace of  is defined as

The trace of a matrix is invariant to a similarity operation.

4. The Hermitian adjoint of  is

5.  is Hermitian if 

If  is Hermitian, then  is Hermitian and  is Hermitian. For a Hermitian operator, . Expectation values
of Hermitian operators are real, so all physical observables are associated with Hermitian operators.

6.  is a unitary operator if its adjoint is also its inverse:
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7.  is said to be anti-Hermitian. Anti-Hermetian operators have imaginary expectation values. Any operator can
be decomposed into its Hermitian and anti-Hermitian parts as

Properties of commutators 

From the definition of a commutator:

we find it is anti-symmetric to exchange:

and distributive:

These properties lead to a number of useful identities:

The Hermetian conjugate of a commutator is

Also, the commutator of two Hermitian operators is also Hermitian. The anti-commutator is defined as

and is symmetric to exchange. For two Hermitian operators, their product can be written in terms of the commutator and anti-
commutator as

The anti-commutator is the real part of the product of two operators, whereas the commutator is the imaginary part.
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