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1.3: Basic Quantum Mechanical Models

This section summarizes the results that emerge for common models for quantum mechanical objects. These form the starting point
for describing the motion of electrons and the translational, rotational, and vibrational motions for molecules. Thus they are the
basis for developing intuition about more complex problems.

Waves

Waves form the basis for our quantum mechanical description of matter. Waves describe the oscillatory amplitude of matter and

fields in time and space, and can take a number of forms. The simplest form we will use is plane waves, which can be written as
¥(r,t) = A explik - r — iwt] (1.3.1)

The angular frequency w describes the oscillations in time and is related to the number of cycles per second through v = w/2.
The wave amplitude also varies in space as determined by the wavevector k, where the number of cycles per unit distance
(wavelength) is A = w/k. Thus the wave propagates in time and space along a direction k with a vector amplitude A with a phase
velocity v = v .

Free Particles

For a free particle of mass m in one dimension, the Hamiltonian only reflects the kinetic energy of the particle

~2

y_ s D

H=T=— 1.3.2
o (1.3.2)

Judging from the functional form of the momentum operator, we assume that the wavefunctions will have the form of plane waves

P(z) = Aeh® (1.3.3)
Inserting this expression into the TISE, eq. (1.1.6), we find that
2mE
k= o (1.3.4)
and set A =1/+/27. Now, since we know that E = p? /2m, we can write
p
[ 1.3.5
4 (1.3.5)

k is the wavevector, which we equate with the momentum of the particle.

Free particle plane waves () form a complete and continuous basis set with which to describe the wavefunction. Note that the
eigenfunctions, Equation (1.3.3), are oscillatory over all space. Thus describing a plane wave allows one to exactly specify the
wavevector or momentum of the particle, but one cannot localize it to any point in space. In this form, the free particle is not
observable because its wavefunction extends infinitely and cannot be normalized. An observation, however, taking an expectation
value of a Hermitian operator will collapse this wavefunction to yield an average momentum of the particle with a corresponding
uncertainty relationship to its position.

Bound patrticles

Particle-in-a-Box
The minimal model for translational motion of a particle that is confined in space is given by the particle-in-a-box. For the case of a
particle confined in one dimension in a box of length L with impenetrable walls, we define the Hamiltonian as

R A2

0 O<z<lL,

) (1.3.7)
oo otherwise

V(z) = {

The boundary conditions require that the particle cannot have any probability of being within the wall, so the wavefunction should
vanish at * =0 and L., as with standing waves. We therefore assume a solution in the form of a sine function. The properly
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normalized eigenfunctions are

2
¢n=1/fsin$ n=1,2,3... (1.3.8)

Here n are the integer quantum numbers that describe the harmonics of the fundamental frequency 7/ L whose oscillations will fit
into the box while obeying the boundary conditions. We see that any state of the particle-in-a-box can be expressed in a Fourier
series. On inserting Equation 1.3.8 into the time-independent Schrédinger equation, we find the energy eigenvalues

B n?r2h?
" omL2

(1.3.9)

Note that the spacing between adjacent energy levels grows as n(n+1). This model is readily extended to a three-dimensional
box by separating the box into z, y, and z coordinates. Then

H=H,+H,+H, (1.3.10)
in which each term is specified as Equation 1.3.6. Since H > H s H » commute, each dimension is separable from the others. Then
we find

Y(x,y, 2) = Yoy (1.3.11)
and

Eey.=E,+E,+E. (1.3.12)

which follow the definitions given in Equation 1.3.8 and 1.3.9 above. The state of the system is now specified by three quantum
numbers with positive integer values: n;, ny, n,
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Figure 1. Particle-in-a-box potential wavefunctions that are plotted superimposed on their corresponding energy levels.
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Figure 2. Harmonic oscillator potential showing wavefunctions that are superimposed on their corresponding energy levels.

Harmonic Oscillator

The harmonic oscillator Hamiltonian refers to a particle confined to a parabolic, or harmonic, potential. We will use it to represent
vibrational motion in molecules, but it also becomes a general framework for understanding all bosons. For a classical particle
bound in a one-dimensional potential, the potential near the minimum x( can be expanded as

V(z)=V (z9)+ (Z—Z) » (x —=z0) + % ( ?;22 )Z_ZO (x—x0) 2+ - (1.3.13)
Setting z to 0, the leading term with a dependence on z is the second-order (harmonic) term V = —Kz?/2, where the force
constant
k=—(0°V/02?) . (1.3.14)
The classical Hamiltonian for a particle of mass m confined to this potential is
H:%Jr%mﬂ (1.3.15)
Noting that the force constant and frequency of oscillation are related by
K =mw3, (1.3.16)
we can substitute operators for p and z in Equation 1.3.15to obtain the quantum Hamiltonian
ﬁ:—%%;—;Jr%mwgf (1.3.17)
We will also make use of reduced mass-weighted coordinates defined as
2
p= mhwgp (1.3.18)
= ";‘;‘)m (1.3.19)
for which the Hamiltonian can be written as
H = huw (p* +¢°) (1.3.20)

The eigenstates for the Harmonic oscillator are expressed in terms of Hermite polynomials
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a _
Yu(z) = /2"—\/%11'6 229, (o) (1.3.21)
where o = /mwy /k and the Hermite polynomials are obtained from
d’n
Ho(z) = (—1)%’”2%69”2 (1.3.22)
The corresponding energy eigenvalues are equally spaced in units of the vibrational quantum fw; above the zero-point energy

Fuw /2.

E,=hw (n+3) n=0,1,2...

Raising and Lowering Operators for Harmonic Oscillators

From a practical point of view, it will be most useful for us to work problems involving harmonic oscillators in terms of raising
and lower operators (also known as creation and annihilation operators, or ladder operators). We define these as

2k ]

a=| (5:+ : p) (1.3.23)
mwy mwy

at = 2P (:i— : ;3) (1.3.24)
mwy mwy

Note a and a' operators are Hermitian conjugates of one another. These operators get their name from their action on the
harmonic oscillator wavefunctions, which is to lower or raise the state of the system:

a|ln) =+/nln—1) (1.3.25)

and

alln) = vn+1jn+1) (1.3.26)
Then we find that the position and momentum operators are

h

i=,/ il +4) 1.3.2

z CT (a +a (1.3.27)

- hwy (.1 4

p:i1/m2 0 (aT—a) (1.3.28)

When we substitute these ladder operators for the position and momentum operators—known as second quantization—the

Hamiltonian becomes
~ R 1
H= th n-+ 5

The number operator is defined as n = a'a and returns the state of the system: 7 = a'a. The energy eigenvalues satisfying

(1.3.29)

H|n) = E,|n) are given by Equation \ref{62). Since the quantum numbers cannot be negative, we assert a boundary
condition a|0) = 0, where 0 refers to the null vector. The harmonic oscillator Hamiltonian expressed in raising and lowering
operators, together with its commutation relationship

[a,al] =1 (1.3.30)
is used as a general representation of all bosons, which for our purposes includes vibrations and photons.
Properties of raising and lower operators
a and a' a operators are Hermitian conjugates of one another.
1
aaT—l—aTa:aTa+5 (1.3.31)
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[a,al] =1 (1.3.32)

[a,a] =0 [a',al] =0 (1.3.33)

[a, (aT)"} :n(aT)n_l (1.3.34)

[aT, a"] = —na"" (1.3.35)
1 n

|n) = ﬁ(aT) |0) (1.3.36)

Morse Oscillator

The Morse oscillator is a model for a particle in a one-dimensional anharmonic potential energy surface with a dissociative limit at
infinite displacement. It is commonly used for describing the spectroscopy of diatomic molecules and anharmonic vibrational
dynamics, and most of its properties can be expressed through analytical expressions.3 The Morse potential is
V(z) =D, [1-e**]? (1.3.37)
where ¢ = (r —rg) . D, sets the depth of the energy minimum at = r relative to the dissociation limit as 7 — oo, and « sets the
curvature of the potential. If we expand V' in powers of « as described in Equation 1.3.13
V(z) ~ l/‘ex2—|——gmg‘—i—iha:‘l—iﬂw (1.3.38)
2 6 24

we find that the harmonic, cubic, and quartic expansion coefficients are

k=2D,a?, (1.3.39)

g=—6D.o?, (1.3.40)
and

h =14D.a". (1.3.41)

The Morse oscillator Hamiltonian for a diatomic molecule of reduced mass mR bound by this potential is

p2

- 2mR

(n+3) - (n+§)2

Here wy = 4/2D.a?/mp is the fundamental frequency and x, = hwy /4D, is the anharmonic constant. Similar to the harmonic
oscillator, the frequency wy = y/k/mpg. The anharmonic constant e x is commonly seen in the spectroscopy expression for the
anharmonic vibrational energy levels

H

+V(z) (1.3.42)

and has the eigenvalues

B, = hwy (1.3.43)

1 1\° 1\°
G(v) = we (v+ 5) — W, (v+ 5) + Wee (v+ 5) o (1.3.44)
From Equation 1.3.43 the ground state (or zero-point) energy is
1 1
E() = 57ng (1 - 5%,5) (1345)

So the dissociation energy for the Morse potential is given by Dy = D, — Ey . The transition energies are

By — By = hwo(n—m) [l—me (n+m+%>] (1.3.46)
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The proper harmonic expressions are obtained from the corresponding Morse oscillator expressions by setting D, — oo or

z. — 0.
N
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Figure 4. First six eigenfunctions of the Morse oscillator potential.

The wavefunctions for the Morse oscillator can also be expressed analytically in terms of associated Laguerre polynomials £, (2)
Y = Npe #2202 L0 (2) (1.3.47)

where N, = [a-b-n!/T'(k—n)]'/? , z=kexp[—aq],b=k—2n—1 , and k=4D./kw,. These expressions and those for
matrix elements in g, g%, e~%¢, andge ¢ have been given by Vasan and Cross.

Angular momentum

Angular Momentum Operators

To describe quantum mechanical rotation or orbital motion, one has to quantize angular momentum. The total orbital angular
momentum operator is defined as

L=7xp=1h(r xV) (1.3.48)

It has three components (Lz, Ly, Lz) that generate rotation about the X, y, or z axis, and whose magnitude is given by

~2

A2 a2 a2
L =L,+L,+L, . The angular momentum operators follow the commutation relationships

[H,L.]=0 (1.3.49)
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[H,L*] =0 (1.3.50)
Ly, Ly| =4hL, (1.3.51)
(In Equation 1.3.51the x, y, z indices can be cyclically permuted.) There is an eigenbasis common to H and L? and one of the L;,

which we take to be L,. The eigenvalues for the orbital angular momentum operator L and z-projection of the angular momentum
Lz are

L*tm) =h*£(L+1)|fm) £=0,1,2... (1.3.52)
L.[fm)=hm[fm) m=0,%+1,+2...+¢ (1.3.53)

where the eigenstates |¢m) are labeled by the orbital angular momentum quantum number ¢, and the magnetic quantum number,
m.

Similar to the strategy used for the harmonic oscillator, we can also define raising and lowering operators for the total angular
momentum,
Ly =1L;+iL, (1.3.54)

which follow the commutation relations [ﬁz, I:i} =0 and [iz, I:i] = :I:hI:i , and satisfy the eigenvalue equation

Ly |tm) = Ay |tm) (1.3.55)
Apn =hL(L+1) —m(m=+1)]"/2 (1.3.56)

Spherically Symmetric Potential

Let’s examine the role of angular momentum for the case of a particle experiencing a spherically symmetric potential V(r) such as
the hydrogen atom, 3D isotropic harmonic oscillator, and free particles or molecules. For a particle with mass mg, the Hamiltonian
is
A h2
H=——V21+V(r) (1.3.57)
2m
Writing the kinetic energy operator in spherical coordinates,
h? R2 (10 ,0 1
__vZ - __7.2___L2 (1358)
2m 2m\r2 9r Or 12
where the square of the total angular momentum is
1 1 02 0 )
[?=———| — — + —sinf— 1.3.59
Sind <sin0 a52 a0 aa) (1.3.59)

We note that this representation separates the radial dependence in the Hamiltonian from the angular part. We therefore expect that
the overall wavefunction can be written as a product of a radial and an angular part in the form

¥(r,0,¢) = R(r)Y (6, $) (1.3.60)

Substituting this into the TISE, we find that we solve for the orientational and radial wavefunctions separately. Considering
solutions first to the angular part, we note that the potential is only a function of r, and only need to consider the angular
momentum. This leads to the identities in egs. (1.3.52) and (1.3.53), and reveals that the |[¢m) wavefunctions projected onto
spherical coordinates are represented by the spherical harmonics

Y,;™(6,¢) = NY P,"™ (cos f)e™™ (1.3.61)

P are the associated Legendre polynomials and the normalization factor is

NY — (_1)<m+m>/2ie[ (1.3.62)

20+1 (E—|m|)!]1/2
(

i (L+|m))
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The angular components of the wavefunction are common to all eigenstates of spherically symmetric potentials. In chemistry, it is
common to use real angular wavefunctions instead of the complex form in eq. (1.3.61). These are constructed from the linear
combinations Yy, , £Y;, ;.

Substituting eq. (1.3.58) and eq. (1.3.52) into eq. (1.3.57) leads to a new Hamiltonian that can be inserted into the Schrodinger
equation. This can be solved as a purely radial problem for a given value of l. It is convenient to define the radial distribution
function x(r) = rR(r), which allows the TISE to be rewritten as

h? 92

U plays the role of an effective potential

2

Ulr, €)=V (r)+ 2h 0 +1) (1.3.64)

mr?

Equation (1.3.63) is known as the radial wave equation. It looks like the TISE for a one-dimensional problem in r, where we could
solve this equation for each value of £. Note U has a barrier due to centrifugal kinetic energy that scales as r2for/ > 0.

The wavefunctions defined in eq. (1.3.6(0) are normalized such that

/|1p|2dﬂ =1 (1.3.65)

[e'9) T 2
/dQ z/ r2dr/ sin0d0/ do (1.3.66)
0 0 0

If we restrict the integration to be over all angles, we find that the probability of finding a particle between a distance r and
r+drisP(r) = 4xr?|R(r)|* = 4x|x(r)|* .

where

To this point the treatment of orbital angular momentum is identical for any spherically symmetric potential. Now we must
consider the specific form of the potential; for instance in the case of the isotropic harmonic oscillator, U(r) = 1/2kr2 . In the case
of a free particle, we substitute V() = Oineq.(1.3.64) and find that the radial solutions can be written in terms of spherical
Bessel functions, j,. Then the solutions to the full wavefunction for the free particle can be written as

\I,(T'y b, (;b) :je(kr)}/lm(e, ¢) (1367)
where the wavevector k is defined as in eq. (1.3.4).

Hydrogen Atom

For a hydrogen-like atom, a single electron of charge e interacts with a nucleus of charge Ze under the influence of a Coulomb
potential
Ze* 1

Vir(r) =~ (1.3.68)

We can simplify the expression by defining atomic units for distance and energy. The Bohr radius is defined as

2

=5.2918 x10 "' m (1.3.69)

ag =4mey 5 =

mee
and the Hartree is

1 2
= S —4.3598 x 107187 =27.2eV (1.3.70)
471'60 ag

Written in terms of atomic units, we can see from eq. (1.3.70) that eq. (1.3.68 becomes (V/Ex)=—Z/ (r/ag). Thus the
conversion effectively sets the SI variables m, =e = (471'50)71 =h =1 . Then the radial wave equation is

0%x n (%_ £(£+1)

o

=2F 1.3.71
r 2 ) X X ( )
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The effective potential within the parentheses in eq. (1.3.71) is shown in Figure 5 for varying £. Solutions to the radial
wavefunction for the hydrogen atom take the form

Ry(r) = NEpt L2} (p)e?/? (1.3.72)
where the reduced radius p = 2r/nagandLj (z) are the associated Laguerre polynomials. The primary quantum number takes on
integer valuesm = 1,2, 3 ..., and/ is constrained such that £ =0,1,2...n — 1. The radial normalization factor in eq. (1.3.72) is

2 [(n—£-1)! ]1/2
N f =— [ (1.3.73)
¢ n3ag/2 [(n+1)13

The energy eigenvalues are

Z2
E, :_ﬁgH (1.3.74)

OoO-=_2MNW

SO O

0 10 20 30
rla,

Figure 5. The radial effective potential, U (p)

R(r) for n=3
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Figure 6. Radial probability density R and radial distribution function y =rR.

Electron Spin

In describing electronic wavefunctions, the electron spin also results in a contribution to the total angular momentum, and results in
a spin contribution to the wavefunction. The electron spin angular momentum S and its z-projection are quantized as

S%|sm) =h*s(s+1)|sm,) 5=0,1/2,1,3/2,2... (1.3.75)
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where the electron spin eigenstates |sm) are labeled by the electron spin angular momentum quantum number s and the spin

S, |sms) = hmg [sms) ms=—s,—s+1,...,s (1.3.76)

magnetic quantum number ms. The number of values of S, is 2s+1 and is referred to as the spin multiplicity. As fermions,
electrons have half-integer spin, and each unpaired electron contributes 1/2 to the electron spin quantum number s. A single
unpaired electron has s = 1/2, for whichm, = 4+1/2 corresponding to spin-up and spin-down configurations. For multi-electron
systems, the spin is calculated as the vector sum of spins, essentially 1/2 times the number of unpaired electrons.

The resulting total angular momentum for an electron is J = L 4.5 . J has associated with it the total angular momentum quantum
number 7, which takes on values of j=|{ —s|,|f —s|+1,...£+s . The additive nature of the orbital and spin contributions to
the angular momentum leads to a total electronic wavefunction that is a product of spatial and spin wavefunctions.

Uit = U(r, 6, d)|sms) (1.3.77)

Thus the state of an electron can be specified by four quantum numbers ¥, = |[ném,m) .

Rigid Rotor

In the case of a freely spinning anisotropic molecule, the total angular momentum J is obtained from the sum of the orbital angular
momentum L and spin angular momentum S for the molecular constituents: J = L+ S, whereL =), L;andS =), S; . The
case of the rigid rotor refers to the minimal model for the rotational quantum states of a freely spinning object that has cylindrical
symmetry and no magnetic spin. Then, the Hamiltonian is given by the rotational kinetic energy

~2

H,..: = % (1.3.78)
I is the moment of inertia about the principle axis of rotation. The eigenfunctions for this Hamiltonian are spherical harmonics
Y m(6, 8)
T Yya) =R2J(J+1) Vo) J=0,1,2... (1.3.79)
J\Yrm) =MR|Ys ) M=-J,-J+1,...,J
J is the rotational quantum number. M is its projection onto the z axis. The energy eigenvalues for H, are
Ejy =BJ(J+1) (1.3.80)
where the rotational constant is
B= % (1.3.81)

More commonly, B is given in units of ¢ 'usingB = h /8n?Ic.

This page titled 1.3: Basic Quantum Mechanical Models is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
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