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1.5: Numerically Solving the Schrédinger Equation

Often the bound potentials that we encounter are complex, and the time-independent Schrodinger equation will need to be
evaluated numerically. There are two common numerical methods for solving for the eigenvalues and eigenfunctions of a potential.
Both methods require truncating and discretizing a region of space that is normally spanned by an infinite dimensional Hilbert
space. The Numerov method is a finite difference method that calculates the shape of the wavefunction by integrating step-by-step
across along a grid. The DVR method makes use of a transformation between a finite discrete basis and the finite grid that spans
the region of interest.
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Figure 1.5.1: Selection and discretization of a space bounding the region for which the TISE will be solved numerically. A space of
length L is discretized into N points separated by a spacing dz over which the potential varies slowly.

The Numerov Method

A one-dimensional Schrodinger equation for a particle in a potential can be numerically solved on a grid that discretizes the
position variable using a finite difference method. The TISE is

[T+V(z)]¥(z) = EyY(zx) (1.5.1)
with
h2 82
= “om et (1.5.2)
which we can write as
¥'(@) = K (2)h() (1.5.3)
where
1 (z) = i—?[E—V(az)]. (1.5.4)

If we discretize the variable x, choosing a grid spacing éx over which V varies slowly, we can use a three point finite difference to
approximate the second derivative:

1
fi'~ @(f (it1) —2f (i) + f (zi1)) (1.5.5)
The discretized Schrodinger equation can then be written in the form

¥ (ziv1) =29 () +9 (zi1) = =k () ¥ (i) (1.5.6)

Using the equation for % (z;1 ), one can iteratively solve for the eigenfunction. In practice, you discretize over a range of space
such that the highest and lowest values lie in a region where the potential is very high or forbidden. Splitting the space into N
points, chose the first two values 9 (z1) =0 and % (z2)x to be a small positive or negative number, guess E, and propagate
iteratively to ¢ (zx). A comparison of the wavefunctions obtained by propagating from z; to =y with that obtained propagating
from x to 1 tells you how good your guess of E was.
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The Numerov Method improves on Equation 1.5.6 by taking account for the fourth derivative of the wavefunction ¥(¥), leading to
errors on the order O (5:1:6). Equation 1.5.5becomes

1 oz’
1 s (f (i) =2 (@) +  (@i0)) = 75 £ (15.7)
x
By differentiating Equation 1.5.3 we know
Y(2) = — (K (2)¢()" (1.5.8)
and the discretized Schrédinger equation becomes
1
V(@) = 5 (W (2i) 29 (20) +9) (i) +
L2 2 2
E (K? (@is1) ¥ (2ig1) — 2K (@ip1) ¥ (23) + K (@ig1) ¥ (2i-1))
This equation leads to the iterative solution for the wavefunction
106> dx?
¥ () (2 +—13 k? ($z)> — ¢ (zi-1) (1 - EI& (ﬂ’?i—l))

Y (2in) = (1.5.9)
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Discrete Variable Representation (DVR)

Numerical solutions to the wavefunctions of a bound potential in the position representation require truncating and discretizing a
region of space that is normally spanned by an infinite dimensional Hilbert space. The DVR approach uses a real space basis set
whose eigenstates ¢;(z) we know and that span the space of interest—for instance harmonic oscillator wavefunctions—to express
the eigenstates of a Hamiltonian in a grid basis (#;) that is meant to approximate the real space continuous basis §(z). The two
basis sets, which we term the eigenbasis (¢) and grid basis (6), will be connected through a unitary transformation

Blp(z) = 0(z) 26(z) = p(x)

For N discrete points in the grid basis, there will be N eigenvectors in the eigenbasis, allowing the properties of projection and
completeness will hold in both bases. Wavefunctions can be obtained by constructing the Hamiltonian in the eigenbasis,

H=T(p)+V(z), transforming to the DVR basis, H'VE = & H®, and then diagonalizing.

Here we will discuss a version of DVR in which the grid basis is set up to mirror the continuous |X) eigenbasis. We begin by
choosing the range of x that contain the bound states of interest and discretizing these into IV points (z;) equally spaced by dz. We
assume that the DVR basis functions 6; (z;) resemble the infinite dimensional position basis

Our truncation is enabled using a projection operator in the reduced space
N
Py =>_10:)(6:] ~1 (1.5.11)
=1

which is valid for appropriately high INV. The complete Hamiltonian can be expressed in the DVR basis DVR
HPVE —PVR |y DVE, (1.5.12)

For the potential energy, since {6;} is localized with (6;|6;) = ;;, we make the DVR approximation, which casts V°VE into a
diagonal form that is equal to the potential energy evaluated at the grid point:

ViR = (0:|V(2)]6;) = V (2:) 8y (1.5.13)

This comes from approximating the transformation as ®V ()®' ~ V (@i@f) .

For the kinetic energy matrix elements (6;|T'(p)|6;), we need to evaluate second derivatives between different grid points.
Fortunately, Colbert and Miller have simplified this process by finding an analytical form for the T°Y# matrix for a uniformly
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gridded box with a grid spacing of Az.

R s iy
W = s {2/(i—j)2 z‘aéj} (514

This comes from a Fourier expansion in a uniformly gridded box. Naturally this looks oscillatory in z at period of éx. Expression
becomes exact in the limit of N — oo or Az — 0. The numerical routine becomes simple and efficient. We construct a
Hamiltonian filling with matrix elements whose potential and kinetic energy contributions are given by Equations 1.5.13 and
1.5.14. Then we diagonalize H”V® | from which we obtain N eigenvalues and the N corresponding eigenfunctions.
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