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14.4: The Energy Gap Hamiltonian
In describing fluctuations in a quantum mechanical system, we describe how an experimental observable is influenced by its
interactions with a thermally agitated environment. For this, we work with the specific example of an electronic absorption
spectrum and return to the Displaced Harmonic Oscillator (DHO) model. We previously described this model in terms of the
eigenstates of the material Hamiltonian , and interpreted the dipole correlation function and resulting lineshape in terms of the
overlap between two wave packets evolving on the ground and excited surfaces  and .

It is worth noting a similarity between the DHO Hamiltonian, and a general form for the interaction of an electronic two-level
“system” with a harmonic oscillator “bath” whose degrees of freedom are dark to the observation, but which influence the behavior
of the system.

Expressed in a slightly different physical picture, we can also conceive of this process as nuclear motions that act to modulate the
electronic energy gap . We can imagine rewriting the same Hamiltonian in a form with a new physical picture that desscribes
the electronic energy gap’s dependence on , i.e., its variation relative to . If we define an Energy Gap Hamiltonian:

we can rewrite the DHO Hamiltonian

as an electronic transition linearly coupled to a harmonic oscillator:

Noting that

we can write this as a system-bath Hamiltonian:

where  describes the interaction of the electronic system ( ) with the vibrational bath ( ). Here

and

The Energy Gap Hamiltonian describes a linear coupling between the electronic transition and a harmonic oscillator. The strength
of the coupling is  and the Hamiltonian has a constant energy offset value given by the reorganization energy ( ). Any motion in
the bath coordinate  introduces a proportional change in the electronic energy gap.
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In an alternate form, the Energy Gap Hamiltonian can also be written to incorporate the reorganization energy into the system:

This formulation describes fluctuations about the average value of the energy gap , however, the observables calculated
are the same.

From the picture of a modulated energy gap one can begin to see how random fluctuations can be treated by coupling to a harmonic
bath. If each oscillator modulates the energy gap at a given frequency, and the phase between oscillators is random as a result of
their independence, then time-domain fluctuations and dephasing can be cast in terms of a Fourier spectrum of couplings to
oscillators with continuously varying frequency.

Energy Gap Hamiltonian 
Now let’s work through the description of electronic spectroscopy with the Energy Gap Hamiltonian more carefully. Working from
Equations  and  we express the energy gap Hamiltonian through reduced coordinates for the momentum, coordinate,
and displacement of the oscillator.

with

From Equation  we have

The energy gap Hamiltonian describes a linear coupling of the electronic system to the coordinate q. The slope of  versus  is
the coupling strength, and the average value of  in the ground state, , is offset by the reorganization energy . We
note that the average value of the energy gap Hamiltonian is .

To obtain the absorption lineshape from the dipole correlation function

we must evaluate the dephasing function.
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We want to rewrite the dephasing function in terms of the time dependence to the
energy gap ; that is, if , then what is ? This involves a unitary
transformation of the dynamics to a new frame of reference. The transformation from
the DHO Hamiltonian to the EG Hamiltonian is similar to our derivation of the
interaction picture.

If we have a time dependent quantity of the form

we can also express the dynamics through the difference Hamiltonian 

using a commonly performed unitary transformation. If we write

we can use the same procedure for partitioning the dynamics in the interaction picture to write

where

Then, we can also write:

Noting the mapping to the interaction picture

we see that we can represent the time dependence of the electronic energy gap  using

where

Remembering the equivalence between the harmonic mode  and the bath mode(s)  indicates that the time dependence of the
EG Hamiltonian reflects how the electronic energy gap is modulated as a result of the interactions with the bath. That is .

Equation  immediately implies that

Now the quantum dephasing function is in the same form as we saw in our earlier classical derivation. Using the second-order
cumulant expansion allows the dephasing function to be written as

F (t) = ⟨ ⟩ = ⟨ ⟩ei tHg e−i tHe U
†
g Ue (14.4.18)

Heg F (t) = ⟨ ⟩Ucg Ueg

Transformation of time-propagators

Aei tHA e−i tHB (14.4.19)

= −HBA HB HA

A =Ae−i( − )tHB HA e−i tHBA (14.4.20)

= +HB HA HBA (14.4.21)

= [− dτ (τ)]e−i tHBt e−i tHA exp+

i

ℏ
∫

t

0

HBA (14.4.22)

(τ) =HBA ei tHA HBAe
−i tHA (14.4.23)

= [− dτ (τ)]ei tHA e−i tHB exp+

i

ℏ
∫

t

0

HBA (14.4.24)

= + ⇔ H = +VHe Hg Heg H0 (14.4.25)

Heg

= [ dτ (τ)]e−i t/hHc e−i t/hHg exp+

−i

ℏ
∫

t

0

Heg (14.4.26)

=Ue UgUeg (14.4.27)

(t)Heg = ei t/ℏHg Hege
−i t/ℏHg

=U †
gHegUg

(14.4.28)

(14.4.29)

Hg HB

⇔Ug UB

14.4.26

F (t) = ⟨ ⟩=⟨ [ dτ (τ)]⟩ei t/ℏHg e−i t/ℏHe exp+

−i

ℏ
∫

t

0

Heg (14.4.30)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/107303?pdf


14.4.4 https://chem.libretexts.org/@go/page/107303

Note that the cumulant expansion is here written as a time-ordered expansion. The first exponential term depends on the mean
value of 

This is a result of how we defined . Alternatively, the EG Hamiltonian could have been defined relative to the energy gap at 
: . In this case the leading term in Equation  would be zero, and the mean energy gap that

describes the high frequency (system) oscillation in the dipole correlation function is .

The second exponential term in Equation  is a correlation function that describes the time dependence of the energy gap

where

Defining the time-dependent energy gap transition frequency in terms of the EG Hamiltonian as

we can write the energy gap correlation function

It follows that

and

and the dipole correlation function can be expressed as

This is the correlation function expression that determines the absorption lineshape for a timedependent energy gap. It is a general
expression at this point, for all forms of the energy gap correlation function. The only approximation made for the bath is the
second cumulant expansion.

Now, let’s look specifically at the case where the bath we are coupled to is a single harmonic mode. The energy gap correlation
function is evaluated from

Noting that the bath oscillator correlation function

we find
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Here, as before, ,  is the thermally averaged occupation number for the oscillator

and . Note that the energy gap correlation function is a complex function. We can separate the real and imaginary parts
of  as

with

where we have made use of the relation

and

We see that the imaginary part of the energy gap correlation function is temperature independent. The real part has the same
amplitude at , and rises with temperature. We can analyze the high and low temperature limits of this expression from

Looking at the low temperature limit  and  we see that Equation  reduces to Equation .

In the high temperature limit ,  and we recover the expected classical result. The
magnitude of the real component dominates the imaginary part  and the energy gap correlation function (
becomes real and even in time.

Similarly, we can evaluate Equation , the lineshape function

The leading term in Equation  gives us a vibrational progression, the second term leads to hot bands, and the final term is
the reorganization energy ( ). The lineshape function can be written in terms of its real and imaginary parts

with

Because these enter into the dipole correlation function as exponential arguments, the imaginary part of  will reflect the bath-
induced energy shift of the electronic transition gap and vibronic structure, and the real part will reflect damping, and therefore the
broadening of the lineshape. Similarly to , in the high temperature limit . Now, using Equation , we see that
the dephasing function is given by

Let’s confirm that we get the same result as with our original DHO model, when we take the low temperature limit. Setting 
in Equation , we have our original result
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In the high temperature limit , and from Equation  we obtain

which leads to an absorption spectrum which is a series of sidebands equally spaced on either side of .

Spectral representation of energy gap correlation function 
Since time- and frequency-domain representations are complementary, and one form may be preferable over another, it is possible
to express the frequency correlation function in terms of its spectrum. For a complex spectrum of vibrational motions composed of
many modes, representing the nuclear motions in terms of a spectrum rather than a beat pattern is often easier. It turns out that
calculation are often easier performed in the frequency domain. To start we define a Fourier transform pair that relates the time and
frequency domain representations:

Since the energy gap correlation function has the property

it also follows from Equation  that the energy gap correlation spectrum is entirely real:

or

Here  and  are the Fourier transforms of the real and imaginary components of , respectively.  and 

 are even and odd in frequency. Thus while  is entirely real valued, it is asymmetric about .

With these definitions in hand, we can write the spectrum of the energy gap correlation function for coupling to a single harmonic
mode spectrum (Equation ):

This is a spectrum that characterizes how bath vibrational modes of a certain frequency and thermal occupation act to modify the
observed energy of the system. The first and second terms in Equation  describe upward and downward energy shifts of the
system, respectively. Coupling to a vibration typically leads to an upshift of the energy gap transition energy since energy must be
put into the system and bath. However, as with hot bands, when there is thermal energy available in the bath, it also allows for
down-shifts in the energy gap. The net balance of upward and downward shifts averaged over the bath follows the detailed balance
expression

The balance of rates tends toward equal with increasing temperature. Fourier transforms of Equation \ref13.76} gives two other
representations of the energy gap spectrum
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The representations in Equation , , and  are not independent, but can be related to one another through

That is, given either the real or imaginary part of the energy gap correlation spectrum, we can predict the other part. As we will see,
this relationship is one manifestation of the fluctuationdissipation theorem that we address later. Due to its independence on
temperature, the spectral density  is the commonly used representation.

Also from Equations.  and  we obtain the lineshape function as

The first expression relates g(t) to the complex energy gap correlation function, whereas the second separates the real and the
imaginary parts and relates them to the imaginary part of the energy gap correlation function.

Coupling to a Harmonic Bath 
More generally for condensed phase problems, the system coordinates that we observe in an experiment will interact with a
continuum of nuclear motions that may reflect molecular vibrations, phonons, or intermolecular interactions. We describe this
continuum as continuous distribution of harmonic oscillators of varying mode frequency and coupling strength. The Energy Gap
Hamiltonian is readily generalized to the case of a continuous distribution of motions if we statistically characterize the density of
states and the strength of interaction between the system and this bath. This method is also referred to as the Spin-Boson Model
used for treating a two level spin-½ system interacting with a quantum harmonic bath.

Following our earlier discussion of the DHO model, the generalization of the EG Hamiltonian to the multimode case is

Note that the time-dependence to  results from the interaction with the bath:

Also, since the harmonic modes are normal to one another, the dephasing function and lineshape function are obtained from
Equation 
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For a continuum, we assume that the number of modes are so numerous as to be continuous, and that the sums in the equations
above can be replaced by integrals over a continuous distribution of states characterized by a density of states W Z . Also the
interaction with modes of a particular frequency are equal so that we can simply average over a frequency dependent coupling
constant 2 D d Z Z . For instance, Equation  becomes

Coupling to a continuum leads to dephasing resulting from interaction to a continuum of modes of varying frequency. This will be
characterized by damping of the energy gap frequency correlation function

Here  refers to the energy gap frequency correlation function for a single harmonic mode
given in Equation . While Equation  expresses the modulation of the energy gap in the time domain, we can
alternatively express the continuous distribution of coupled bath modes in the frequency domain:

An integral of a single harmonic mode spectrum over a continuous density of states provides a coupling weighted density of states
that reflects the action spectrum for the system-bath interaction. We evaluate this with the single harmonic mode spectrum,
Equation . We see that the spectrum of the correlation function for positive frequencies is related to the product of the
density of states and the frequency dependent coupling

This is an action spectrum that reflects the coupling weighted density of states of the bath that contributes to the spectrum.

In practice, the unusually symmetry of  and its growth as  make it difficult to work with. Therefore we choose to express
the frequency domain representation of the coupling-weighted density of states in Equation  as a spectral density, defined
as

This expression is real and defined only for positive frequencies. Note  is an odd function in , and therefore  is also.

Example of spectral density using an ohmic density of states,  and a linearly varying frequency dependent
coupling.
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The reorganization energy can be obtained from the first moment of the spectral density

Furthermore, from Equation  and  we obtain the lineshape function in two forms

In this expression the temperature dependence implies that in the high temperature limit, the real part of  will dominate, as
expected for a classical system. This is a perfectly general expression for the lineshape function in terms of an arbitrary spectral
distribution describing the time scale and amplitude of energy gap fluctuations. Given a spectral density , you can calculate
various spectroscopic observables and other time-dependent processes in a fluctuating environment.

Now, let’s evaluate the behavior of the lineshape function and absorption lineshape for different forms of the spectral density. To
keep things simple, we will consider the high temperature limit, . Here

and we can neglect the imaginary part of the frequency correlation function and lineshape function. These examples are motivated
by the spectral densities observed for random or noisy processes. Depending on the frequency range and process of interest, noise
tends to scale as , where ,  or . This behavior is often described in terms of a spectral density of the form

where  is a cut-off frequency, and the units are inverse frequency. These spectral densities have the desired property of being an
odd function in , and can be integrated to a finite value. The case  is known as the Ohmic spectral density, whereas 
is super-ohmic and  is sub-ohmic.

Step 1 

Let’s first consider the example when  drops as  with frequency, which refers to the Ohmic spectral density with a high cut-
off frequency. This is the spectral density that corresponds to an energy gap correlation function that decays infinitely fast:

. To choose a definition consistent with Equation , we set

where  is a finite high frequency integration limit that we enforce to keep  well behaved.  has units of frequency, it is equated
with the inverse correlation time for the fast decay of .
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iλt

ℏ
∫

∞

0

βℏω

2

g(t)

ρ(∞)

T ≪ℏωkB

coth(βℏω/2)→ 2/βℏω (14.4.79)

U ≈Z−n n= 0 1 2

ρ(ω) ∝ ω1−s
c ωs−2e−ω/ωc (14.4.80)

Zc

Z s= 1 s> 1

s< 1

U 1/Z

(t) ∼ δ(t)Ceg 14.4.78

ρ(ω) = λ/Λℏω (14.4.81)

Λ U Λ

(t)Ceg
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Then we obtain the dephasing function

where we have defined the exponential damping constant as

From this we obtain the absorption lineshape

Thus, a spectral density that scales as  has a rapidly fluctuating bath and leads to a homogeneous Lorentzian lineshape with a
half-width .

Step 2 

Now take the case that we choose a Lorentzian spectral density centered at . To keep the proper odd function of  and
definition of  we write:

Note that for frequencies  this has the ohmic form of Equation . This is a spectral density that corresponds to an
energy gap correlation function that drops exponentially as . Here, in the high temperature (classical) limit 

, neglecting the imaginary part, we find

This expression looks familiar. If we equate

and

we obtain the same lineshape function as the classical Gaussian-stochastic model:

g(t) = dω ρ(ω)(1−cosωt)−∫
∞

0

2 TkB

Λℏω

iλt

ℏ

= dω −∫
∞

0

2λ T (1−cosωt)kB

ω2

iλt

ℏ

= λ t−
π TkB

Λℏ2

iλt

ℏ

F (t) = e−Γt (14.4.82)

Γ = λ
πkT

Λℏ2
(14.4.83)

∝σabs
| |μeg

2

(ω− )+ iΓωeg

(14.4.84)

1/ω

Γ

Z = 0 Z

O

ρ(ω) =
λ

ℏω

Λ

+ω2 Λ2
(14.4.85)

ω≪Λ 14.4.81

(t) ∼ exp(−Λt)Ceg

kT >> ℏΛ

g(t) ≈ [exp(−Λt)+Λt−1]
πλkT

ℏ2Λ2
(14.4.86)

= λΔ2 πkT

ℏ2
(14.4.87)

=τc
1

Λ
(14.4.88)

g(t) = [exp(−t/ )+ t/ −1]Δ2τ 2
c τc τc (14.4.89)
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So, the interaction of an electronic transition with a harmonic bath leads to line broadening that is equivalent to random fluctuations
of the energy gap. As we noted earlier, for the homogeneous limit, we find .

Readings 
1. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New York, 1995; Ch. 7 and Ch. 8.
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