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9.1: Concepts and Definitions
As one change to our thinking, we now have to be concerned with ensembles. Most often, we will be concerned with systems in an
equilibrium state with a fixed temperature for which many quantum states are accessible to the system. For comparing calculations
of pure quantum states to experimental observables on macroscopic samples, we assume that all molecules have been prepared and
observed in the same manner, so that the quantum expectation values for the internal operators can be compared directly to
experimental observations. For mixed states, we have seen the need to perform an additional layer of averaging over the ensemble
in the calculation of expectation values.

Perhaps the most significant change between isolated states and condensed matter is the dynamics. From the time-dependent
Schrödinger equation, we see that the laws governing the time evolution of isolated quantum mechanical systems are invariant
under time reversal. That is, there is no intrinsic directionality to time. If one reverses the sign of time and thereby momenta of
objects, we should be able to exactly reverse the motion and propagate the system to where it was at an earlier time. This is also the
case for classical systems evolving under Newton’s equation of motion. In contrast, when a quantum system is in contact with
another system having many degrees of freedom, a definite direction emerges for time, “the arrow of time,” and the system’s
dynamics is no longer reversible. In such irreversible systems a welldefined prepared state decays in time to an equilibrium state
where energy has been dissipated and phase relationships are lost between the various degrees of freedom.

Additionally, condensed phase systems on a local, microscopic scale all have a degree of randomness or noisiness to their dynamics
that represent local fluctuations in energy on the scale of . This behavior is observed even through the equations of motion that
govern the dynamics are deterministic. Why? It is because we generally have imperfect knowledge about all of the degrees of
freedom influencing the system, or experimentally view its behavior through a highly restricted perspective. For instance, it is
common in experiments to observe the behavior of condensed phases through a molecular probe imbedded within or under the
influence of its surroundings. The physical properties of the probe are intertwined with the dynamics of the surrounding medium,
and to us this appears as random behavior, for instance as Brownian motion. Other examples of the appearance of randomness from
deterministic equations of motion include weather patterns, financial markets, and biological evolution. So, how do irreversible
behavior and random fluctuations, hallmarks of all chemical systems, arise from the deterministic time-dependent Schrödinger
equation? This fascinating question will be the central theme in our efforts going forward.

Definitions 
Let’s begin by establishing some definitions and language that will be useful for us. We first classify chemical systems of interest
as equilibrium or non-equilibrium systems. An equilibrium system is one in which the macroscopic properties (i.e., the intensive
variables) are invariant with time, or at least invariant on the time scales over which one executes experiments and observes the
system. Further, there are no steady state concentration or energy gradients (currents) in the system. Although they are
macroscopically invariant, equilibrium states are microscopically dynamic.

For systems at thermal equilibrium we will describe their time-dependent behavior as dynamically reversible or irreversible. For us,
reversible will mean that a system evolves deterministically. Knowledge of the state of the system at one point in time and the
equation of motion means that you can describe the state of the system for all points in time later or previously. Irreversible systems
are not deterministic. That is, knowledge of the state of the system at one point in time does not provide enough information to
precisely determine its past state.

Since all states are irreversible in the strictest sense, the distinction is often related to the time scale of observation. For a given
system, on a short enough time scale dynamics will appear deterministic whereas on very long times appear random. For instance,
the dynamics of a dilute gas appear ballistic on time scales short compared to the mean collision time between particles, whereas
their motion appears random and diffusive on much longer time scales. Memory refers to the ability to maintain deterministic
motion and reversibility, and we will quantify the decay of memory in the system with correlation functions. For the case of
quantum dynamics, we are particularly interested in the phase relationships between quantum degrees of freedom that results from
deterministic motion under the time-dependent Schrödinger equation.

Nonequilibrium states refers to open or closed systems that have been acted on externally, moving them from equilibrium by
changing the population or energy of the quantum states available to the system. Thermodynamically, work is performed on the
system, leading to a free-energy gradient that the nonequilibrium system will minimize as it re-equilibrates. For nonequilibrium
states, we will be interested in relaxation processes, which refer to the timedependent processes involved in re-equilibrating the
system. Dissipation refers to the relaxation processes involving redistribution of energy as a nonequilibrium state returns toward a
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thermal distribution. However, there are other relaxation processes such as the randomization of the orientation of an aligned
system or the randomization of phase of synchronized oscillations.

Statistics 

With the need to describe ensembles, will use statistical descriptions of the properties and behavior of a system. The variable ,
which can be a classical internal variable or quantum operator, can be described statistically in terms of the mean and mean-square
values of  determined from a large number of measurements:

Here, the summation over  refers to averaging over  independent measurements. Alternatively, these equations can be expressed
as

The sum over  refers to a sum over the  possible values that  can take, weighted by , the probability of observing a
particular value . When the accessible values come from a continuous as opposed to discrete distribution, one can describe the
statistics in terms of the moments of the distribution function, , which characterizes the probability of observing  between 

 and 

For time-dependent processes, we recognize that it is possible that these probability distributions carry a time dependence, .
The ability to specify a value for  is captured in the variance of the distribution

We will apply averages over probability distributions to the description of ensembles of molecules; however, we should emphasize
that a statistical description of a quantum system also applies to a pure state. A fundamental postulate is that the expectation value
of an operator

is the mean value of  obtained over many observations on identically prepared systems. The mean and variance of this
expectation value represent the fundamental quantum uncertainty in a measurement.
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To take this a step further and characterize the statistical relationship between two variables, one can define a joint probability
distribution, , which characterizes the probability of observing  between  and  and \(B\) between  and 

. The statistical relationship between the variables can also emerges from moments of . The most important
measure is a correlation function

You can see that this is the covariance—the variance for a bivariate distribution. This is a measure of the correlation between the
variables  and . That is, for a specific value of , what are the associated statistics for . To interpret this it helps to define a
correlation coefficient

 can take on values from +1 to -1. If  then there is perfect correlation between the two distributions. If the variables  and 
depend the same way on a common internal variable, then they are correlated. If no statistical relationship exists between the two
distributions, then they are uncorrelated, , and . It is also possible that the distributions depend in an equal
and opposite manner on an internal variable, in which case we call them anti-correlated with .
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