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1.3: Basic Quantum Mechanical Models
This section summarizes the results that emerge for common models for quantum mechanical objects. These form the starting point
for describing the motion of electrons and the translational, rotational, and vibrational motions for molecules. Thus they are the
basis for developing intuition about more complex problems.

Waves 
Waves form the basis for our quantum mechanical description of matter. Waves describe the oscillatory amplitude of matter and
fields in time and space, and can take a number of forms. The simplest form we will use is plane waves, which can be written as

The angular frequency  describes the oscillations in time and is related to the number of cycles per second through .
The wave amplitude also varies in space as determined by the wavevector , where the number of cycles per unit distance
(wavelength) is . Thus the wave propagates in time and space along a direction  with a vector amplitude A with a phase
velocity .

Free Particles 

For a free particle of mass  in one dimension, the Hamiltonian only reflects the kinetic energy of the particle

Judging from the functional form of the momentum operator, we assume that the wavefunctions will have the form of plane waves

Inserting this expression into the TISE, eq. (1.1.6), we find that

and set . Now, since we know that , we can write

 is the wavevector, which we equate with the momentum of the particle.

Free particle plane waves  form a complete and continuous basis set with which to describe the wavefunction. Note that the
eigenfunctions, Equation ( ), are oscillatory over all space. Thus describing a plane wave allows one to exactly specify the
wavevector or momentum of the particle, but one cannot localize it to any point in space. In this form, the free particle is not
observable because its wavefunction extends infinitely and cannot be normalized. An observation, however, taking an expectation
value of a Hermitian operator will collapse this wavefunction to yield an average momentum of the particle with a corresponding
uncertainty relationship to its position.

Bound particles 

Particle-in-a-Box 

The minimal model for translational motion of a particle that is confined in space is given by the particle-in-a-box. For the case of a
particle confined in one dimension in a box of length L with impenetrable walls, we define the Hamiltonian as

The boundary conditions require that the particle cannot have any probability of being within the wall, so the wavefunction should
vanish at  and , as with standing waves. We therefore assume a solution in the form of a sine function. The properly

ψ(r, t) = A exp[ik ⋅ r − iωt] (1.3.1)
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normalized eigenfunctions are

Here  are the integer quantum numbers that describe the harmonics of the fundamental frequency  whose oscillations will fit
into the box while obeying the boundary conditions. We see that any state of the particle-in-a-box can be expressed in a Fourier
series. On inserting Equation  into the time-independent Schrödinger equation, we find the energy eigenvalues

Note that the spacing between adjacent energy levels grows as . This model is readily extended to a three-dimensional
box by separating the box into , , and  coordinates. Then

in which each term is specified as Equation . Since , ,  commute, each dimension is separable from the others. Then
we find

and

which follow the definitions given in Equation  and  above. The state of the system is now specified by three quantum
numbers with positive integer values: , , 

Figure 1. Particle-in-a-box potential wavefunctions that are plotted superimposed on their corresponding energy levels.
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Figure 2. Harmonic oscillator potential showing wavefunctions that are superimposed on their corresponding energy levels.

Harmonic Oscillator 

The harmonic oscillator Hamiltonian refers to a particle confined to a parabolic, or harmonic, potential. We will use it to represent
vibrational motion in molecules, but it also becomes a general framework for understanding all bosons. For a classical particle
bound in a one-dimensional potential, the potential near the minimum  can be expanded as

Setting  to 0, the leading term with a dependence on  is the second-order (harmonic) term , where the force
constant

The classical Hamiltonian for a particle of mass  confined to this potential is

Noting that the force constant and frequency of oscillation are related by

we can substitute operators for  and  in Equation  to obtain the quantum Hamiltonian

We will also make use of reduced mass-weighted coordinates defined as

for which the Hamiltonian can be written as

The eigenstates for the Harmonic oscillator are expressed in terms of Hermite polynomials
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where  and the Hermite polynomials are obtained from

The corresponding energy eigenvalues are equally spaced in units of the vibrational quantum  above the zero-point energy 
.

From a practical point of view, it will be most useful for us to work problems involving harmonic oscillators in terms of raising
and lower operators (also known as creation and annihilation operators, or ladder operators). We define these as

Note  and  operators are Hermitian conjugates of one another. These operators get their name from their action on the
harmonic oscillator wavefunctions, which is to lower or raise the state of the system:

and

Then we find that the position and momentum operators are

When we substitute these ladder operators for the position and momentum operators—known as second quantization—the
Hamiltonian becomes

The number operator is defined as  and returns the state of the system: . The energy eigenvalues satisfying 
 are given by Equation \ref{62). Since the quantum numbers cannot be negative, we assert a boundary

condition , where  refers to the null vector. The harmonic oscillator Hamiltonian expressed in raising and lowering
operators, together with its commutation relationship

is used as a general representation of all bosons, which for our purposes includes vibrations and photons.
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|n⟩ = |n−1⟩â n−−√ (1.3.25)

|n⟩ = |n+1⟩â
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Morse Oscillator 

The Morse oscillator is a model for a particle in a one-dimensional anharmonic potential energy surface with a dissociative limit at
infinite displacement. It is commonly used for describing the spectroscopy of diatomic molecules and anharmonic vibrational
dynamics, and most of its properties can be expressed through analytical expressions.3 The Morse potential is

where .  sets the depth of the energy minimum at  relative to the dissociation limit as , and α sets the
curvature of the potential. If we expand  in powers of  as described in Equation 

we find that the harmonic, cubic, and quartic expansion coefficients are

and

The Morse oscillator Hamiltonian for a diatomic molecule of reduced mass mR bound by this potential is

and has the eigenvalues

Here  is the fundamental frequency and  is the anharmonic constant. Similar to the harmonic
oscillator, the frequency . The anharmonic constant e x is commonly seen in the spectroscopy expression for the
anharmonic vibrational energy levels

From Equation , the ground state (or zero-point) energy is

So the dissociation energy for the Morse potential is given by . The transition energies are
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The proper harmonic expressions are obtained from the corresponding Morse oscillator expressions by setting  or 
.

Figure 3. Shape of the Morse potential illustrating the first six energy eigenvalues.

Figure 4. First six eigenfunctions of the Morse oscillator potential.

The wavefunctions for the Morse oscillator can also be expressed analytically in terms of associated Laguerre polynomials 

where , , and . These expressions and those for
matrix elements in  have been given by Vasan and Cross.

Angular momentum 

Angular Momentum Operators 

To describe quantum mechanical rotation or orbital motion, one has to quantize angular momentum. The total orbital angular
momentum operator is defined as

It has three components  that generate rotation about the x, y, or z axis, and whose magnitude is given by

. The angular momentum operators follow the commutation relationships
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(In Equation  the , ,  indices can be cyclically permuted.) There is an eigenbasis common to  and  and one of the ,
which we take to be . The eigenvalues for the orbital angular momentum operator L and z-projection of the angular momentum
Lz are

where the eigenstates  are labeled by the orbital angular momentum quantum number , and the magnetic quantum number, 
.

Similar to the strategy used for the harmonic oscillator, we can also define raising and lowering operators for the total angular
momentum,

which follow the commutation relations  and , and satisfy the eigenvalue equation

Spherically Symmetric Potential 

Let’s examine the role of angular momentum for the case of a particle experiencing a spherically symmetric potential V(r) such as
the hydrogen atom, 3D isotropic harmonic oscillator, and free particles or molecules. For a particle with mass , the Hamiltonian
is

Writing the kinetic energy operator in spherical coordinates,

where the square of the total angular momentum is

We note that this representation separates the radial dependence in the Hamiltonian from the angular part. We therefore expect that
the overall wavefunction can be written as a product of a radial and an angular part in the form

Substituting this into the TISE, we find that we solve for the orientational and radial wavefunctions separately. Considering
solutions first to the angular part, we note that the potential is only a function of r, and only need to consider the angular
momentum. This leads to the identities in eqs. ( ) and ( ), and reveals that the  wavefunctions projected onto
spherical coordinates are represented by the spherical harmonics

 are the associated Legendre polynomials and the normalization factor is
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The angular components of the wavefunction are common to all eigenstates of spherically symmetric potentials. In chemistry, it is
common to use real angular wavefunctions instead of the complex form in eq. ( ). These are constructed from the linear
combinations .

Substituting eq. ( ) and eq. ( ) into eq. ( ) leads to a new Hamiltonian that can be inserted into the Schrödinger
equation. This can be solved as a purely radial problem for a given value of . It is convenient to define the radial distribution
function , which allows the TISE to be rewritten as

U plays the role of an effective potential

Equation ( ) is known as the radial wave equation. It looks like the TISE for a one-dimensional problem in r, where we could
solve this equation for each value of . Note U has a barrier due to centrifugal kinetic energy that scales as .

The wavefunctions defined in eq. ( ) are normalized such that

where

If we restrict the integration to be over all angles, we find that the probability of finding a particle between a distance r and 
.

To this point the treatment of orbital angular momentum is identical for any spherically symmetric potential. Now we must
consider the specific form of the potential; for instance in the case of the isotropic harmonic oscillator, . In the case
of a free particle, we substitute  and find that the radial solutions can be written in terms of spherical
Bessel functions, . Then the solutions to the full wavefunction for the free particle can be written as

where the wavevector k is defined as in eq. ( ).

Hydrogen Atom 

For a hydrogen-like atom, a single electron of charge e interacts with a nucleus of charge  under the influence of a Coulomb
potential

We can simplify the expression by defining atomic units for distance and energy. The Bohr radius is defined as

and the Hartree is

Written in terms of atomic units, we can see from eq. ( ) that eq. ( ) becomes . Thus the
conversion effectively sets the SI variables . Then the radial wave equation is
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The effective potential within the parentheses in eq. ( ) is shown in Figure 5 for varying . Solutions to the radial
wavefunction for the hydrogen atom take the form

where the reduced radius  are the associated Laguerre polynomials. The primary quantum number takes on
integer values  is constrained such that . The radial normalization factor in eq. ( ) is

The energy eigenvalues are

Figure 5. The radial effective potential, 

Figure 6. Radial probability density R and radial distribution function .

Electron Spin 
In describing electronic wavefunctions, the electron spin also results in a contribution to the total angular momentum, and results in
a spin contribution to the wavefunction. The electron spin angular momentum S and its z-projection are quantized as
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where the electron spin eigenstates  are labeled by the electron spin angular momentum quantum number s and the spin
magnetic quantum number . The number of values of  is  and is referred to as the spin multiplicity. As fermions,
electrons have half-integer spin, and each unpaired electron contributes  to the electron spin quantum number s. A single
unpaired electron has  corresponding to spin-up and spin-down configurations. For multi-electron
systems, the spin is calculated as the vector sum of spins, essentially  times the number of unpaired electrons.

The resulting total angular momentum for an electron is . J has associated with it the total angular momentum quantum
number , which takes on values of . The additive nature of the orbital and spin contributions to
the angular momentum leads to a total electronic wavefunction that is a product of spatial and spin wavefunctions.

Thus the state of an electron can be specified by four quantum numbers .

Rigid Rotor 

In the case of a freely spinning anisotropic molecule, the total angular momentum J is obtained from the sum of the orbital angular
momentum L and spin angular momentum S for the molecular constituents: . The
case of the rigid rotor refers to the minimal model for the rotational quantum states of a freely spinning object that has cylindrical
symmetry and no magnetic spin. Then, the Hamiltonian is given by the rotational kinetic energy

I is the moment of inertia about the principle axis of rotation. The eigenfunctions for this Hamiltonian are spherical harmonics 

J is the rotational quantum number. M is its projection onto the z axis. The energy eigenvalues for  are

where the rotational constant is

More commonly,  is given in units of .
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