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10.3: Quantum Time-Correlation Functions

Quantum correlation functions involve the equilibrium (thermal) average over a product of Hermitian operators evaluated two
times. The thermal average is implicit in writing

Caalr) = (A(T)A0)). (10.3.1)

Naturally, this also invokes a Heisenberg representation of the operators, although in almost all cases, we will be writing correlation
functions as interaction picture operators

Ap(t) = ettt Ag=iHt, (10.3.2)

To emphasize the thermal average, the quantum correlation function can also be written as

CAA(T):< 7 A(T)A(0)> (10.3.3)
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with 8 = (kgT) . If we evaluate this for a time-independent Hamiltonian in a basis of states n , inserting a projection operator
leads to our previous expression

Caalr an n|A(T)A(0)|n) (10.3.4)

with p,, = e FFn /Z . Given the case of a time-independent Hamiltonian for which we have knowledge of the eigenstates, we can
also express the correlation function in the Schrédinger picture as

Caalr an n|Ut(r)AU(1)A|n) (10.3.5)
= pn(n|Alm)(m|Aln)e " (10.3.6)
=" ol A e (10.3.7)

Properties of Quantum Correlation Functions

There are a few properties of quantum correlation functions for Hermitian operators that can be obtained using the properties of the
time-evolution operator. First, we can show that correlation functions are stationary:

(AB)A[{) = <UT(t)A(0)U U () AO)U (t'))

=(U{UT(t)AUR)UT (') A)

=(UT(t—t)AU (t—t') A)

= (A(t—t") A(0))
Similarly, we can show

(A(=t)A(0)) = (A(t)A(0))" = (A(0)A(?)) (10.3.8)

or in short

C%,(t) =Caa(-t) (10.3.9)

Note that the quantum Cy4(t) is complex. You cannot directly measure a quantum correlation function, but observables are often
related to the real or imaginary part of correlation functions.

Caa(t) = C',(£) +iC" ,(t) (10.3.10)

The real and imaginary parts of C'44(¢) can be separated as
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Ca®) = 3[0aa(0) +Cia(0)] = S [ADA) +(A0) ()
= S {[A®), 40)),)

C(0) = 5[Canlt) = €3, (0)] = 5 [ADAO)) ~ (AO)A®))]
= 2{[A®), A))

Above [A, B]; = AB+ BA is the anticommutator. As illustrated below, the real part is even in time, and can be expanded as
Fourier series in cosines, whereas the imaginary part is odd, and can be expanded in sines. We will see later that the magnitude of
the real part grows with temperature, but the imaginary does not. At 0 K, the real and imaginary components have equal
amplitudes, but as one approaches the high temperature or classical limit, the real part dominates the imaginary.
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We will also see in our discussion of linear response that C, , and C'y , are directly proportional to the step response function
S and the impulse response function R, respectively. R describes how a system is driven away from equilibrium by an external
potential, whereas S describes the relaxation of the system to equilibrium when a force holding it away from equilibrium is
released. Classically, the two are related by R o< S/t .

Since time and frequency are conjugate variables, we can also define a spectral or frequency-domain correlation function by the
Fourier transformation of the TCF. The Fourier transform and its inverse are defined as

Caa(w) = F [Caa(®)] (10.3.11)
:/+oo e“'Cual(t) dt (10.3.12)

Cault) =F [éAA(w)] (10.3.13)
=2—17r - e !0 pa(w) dw (10.3.14)

Examples of the frequency-domain correlation functions are shown below.
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For a time-independent Hamiltonian, as we might have in an interaction picture problem, the Fourier transform of the TCF in
Equation 10.3.7 gives

5 2

Caa(@) = pol Amn |’ (0 — wpnn) (10.3.15)

n,m

This expression looks very similar to the Golden Rule transition rate from first-order perturbation theory. In fact, the Fourier
transform of time-correlation functions evaluated at the energy gap gives the transition rate between states that we obtain from
first-order perturbation theory. Note that this expression is valid whether the initial states n are higher or lower in energy than final

states m, and accounts for upward and downward transitions. If we compare the ratio of upward and downward transition rates
between two states ¢ and j, we have

C:AA (wij) _Pi_ s (10.3.16)
Caa(wi) Pi

This is one way of showing the principle of detailed balance, which relates upward and downward transition rates at equilibrium to
the difference in thermal occupation between states:

Caa(w) =M C 44 (—w) (10.3.17)

This relationship together with a Fourier transform of Equation 10.3.9allows us to obtain the real and imaginary components using
Caa(w)£Casa(~w) = (1£e ™) Cas(w) (10.3.18)

Clia(w) = Caa(w) (1+e ) (10.3.19)

Claa(w) = Caa(w) (1 —e ) (10.3.20)
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