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14.5: Correspondence of Harmonic Bath and Stochastic Equations of Motion
So, why does the mathematical model for coupling of a system to a harmonic bath give the same results as the classical stochastic
equations of motion for fluctuations? Why does coupling to a continuum of bath states have the same physical manifestation as
perturbation by random fluctuations? The answer is that in both cases, we really have imperfect knowledge of the behavior of all
the particles present. Observing a small subset of particles will have dynamics with a random character. These dynamics can be
quantified through a correlation function or a spectral density for the time-scales of motion of the bath. In this section, we will
demonstrate a more formal relationship that illustrates the equivalence of these pictures.

To take our discussion further, let’s again consider the electronic absorption spectrum from a classical perspective. It’s quite
common to think that the electronic transition of interest is coupled to a particular nuclear coordinate  which we will call a local
coordinate. This local coordinate could be an intramolecular normal vibrational mode, an intermolecular rattling in a solvent shell,
a lattice vibration, or another motion that influences the electronic transition. The idea is that we take the observed electronic
transition to be linearly dependent on one or more local coordinates. Therefore describing  allows us to describe the spectroscopy.
However, since this local mode has further degrees of freedom that it may be interacting with, we are extracting a particular
coordinate out or a continuum of other motions, the local mode will appear to feel a fluctuating environment—a friction.

Classically, we describe fluctuations in  as Brownian motion, typically through a Langevin equation. In the simplest sense, this is
an equation that restates Newton’s equation of motion  for a fluctuating force acting on a particle with position . For the
case that this particle is confined in a harmonic potential,

Here the terms on the left side represent a damped harmonic oscillator. The first term is the force due to acceleration of the particle
of mass . The second term is the restoring force of the potential, . The third term allows
friction to damp the motion of the coordinate at a rate . The motion of  is under the influence of , a random fluctuating
force exerted on  by its surroundings.

Under steady-state conditions, it stands to reason that the random force acting on  is the origin of the damping. The environment
acts on  with stochastic perturbations that add and remove kinetic energy, which ultimately leads to dissipation of any excess
energy. Therefore, the Langevin equation is modelled as a Gaussian stationary process. We take  to have a timeaveraged
value of zero,

and obey the classical fluctuation-dissipation theorem:

This shows explicitly how the damping is related to the correlation time for the random force. We will pay particular attention to
the Markovian case

which indicate that the fluctuations immediately lose all correlation on the time scale of the evolution of Q. The Langevin equation
can be used to describe the correlation function for the time dependence of Q. For the Markovian case, Equation  leads to

where the reduced frequency . The frequency domain expression, obtained by Fourier transformation, is

Remembering that the absorption lineshape was determined by the quantum mechanical energy gap correlation function 
, one can imagine an analogous classical description of the spectroscopy of a molecule that experiences interactions with

a fluctuating environment. In essence this is what we did when discussing the Gaussian stochastic model of the lineshape. A more
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general description of the position of a particle subject to a fluctuating force is the Generalized Langevin Equation. The GLE
accounts for the possibility that the damping may be time-dependent and carry memory of earlier configurations of the system:

The memory kernel, , is a correlation function that describes the time-scales over which the fluctuating force retains
memory of its previous state. The force due to friction on  depends on the history of the system through , the time preceding ,
and the relaxation of . The classical fluctuation-dissipation relationship relates the magnitude of the fluctuating forces on
the system coordinate to the damping

As expected, for the case that , the GLE reduces to the Markovian case, Equation .

To demonstrate that the classical dynamics of the particle described under the GLE is related to the quantum mechanical dynamics
for a particle interacting with a harmonic bath, we will outline the derivation of a quantum mechanical analog of the classical GLE.
To do this we will derive an expression for the time-evolution of the system under the influence of the harmonic bath. We work
with a Hamiltonian with a linear coupling between the system and the bath

We take the system to be a particle of mass M, described through variables P and Q, whereas , , and  are bath variables.
For the present case, we will take the system to be a quantum harmonic oscillator,

and the Hamiltonian for the bath and its interaction with the system is written as

This expression explicitly shows that each of the bath oscillators is displaced with respect to the system by an amount dependent on
their mutual coupling. In analogy to our work with the Displaced Harmonic Oscillator, if we define a displacement operator

where

then

Equation  is merely a different representation of our earlier harmonic bath model. To see this we write Equation  as

where the coordinates and momenta are written in reduced form

Also, the reduced coupling is of the system to the  oscillator is
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Expanding Equation  and collecting terms, we find that we can separate terms as in the harmonic bath model

The reorganization energy due to the bath oscillators is

and the unit less bath oscillator displacement is

For our current work we regroup the total Hamiltonian (Equation ) as

where the renormalized frequency is

To demonstrate the equivalence of the dynamics under this Hamiltonian and the GLE, we can derive an equation of motion for the
system coordinate . We approach this by first expressing these variables in terms of ladder operators

Here ,  are system operators,  and  are bath operators. If the observed particle is taken to be bound in a harmonic potential,
then the Hamiltonian in Equation  can be written as

The equations of motion for the operators in Equations  and  can be obtained from the Heisenberg equation of
motion.

from which we find

To derive an equation of motion for the system coordinate, we begin by solving for the time evolution of the bath coordinates by
directly integrating Equation ,

and insert the result into Equation . This leads to
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â†â
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where

and

Now, recognizing that the time-derivative of the system variables is given by

and substituting Equation  into , we can write an equation of motion

Equation  bears a striking resemblance to the classical GLE, Equation . In fact, if we define

then the resulting equation is isomorphic to the classical GLE

This demonstrates that the quantum harmonic bath acts a dissipative environment, whose friction on the system coordinate is given
by Equation . What we have shown here is an outline of the proof, but detailed discussion of these relationships can be
found elsewhere.
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t

0
t′ t′ ȧ̂
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