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16.2: A Density Matrix Description of Quantum Relaxation
Here we will more generally formulate a quantum mechanical picture of coherent and incoherent relaxation processes that occur as the
result of interaction between a prepared system and its environment. This description will apply to the case where we separate the
degrees of freedom in our problem into a system and a bath that interact. We have limited information about the bath degrees of freedom.
As a statistical mixture, we only have knowledge of the probability of occupying states of the bath and not of the phase relationships
required to describe a deterministic quantum system. For such problems, the density matrix is the natural tool.

Mixed States 
How does a system get into a mixed state? Generally, if you have two systems and you put these in contact with each other, interaction
between the two will lead to a new system that is inseparable. Imagine that I have two systems  and  for which the eigenstates of 

 are  and those of  are .

with

In general, before these systems interact, they can be described in terms of product states in the eigenstates of  and :

with

After these states are allowed to interact, we have a new state vector . The new state can still be expressed in the zero-order basis,
although this does not represent the eigenstates of the new Hamiltonian

For any point in time,  is the joint probability amplitude for finding particle of  in  and simultaneously finding particle of 
in . At , .

Now suppose that you have an operator  that is only an operator in the  coordinates. This might represent an observable for the
system that you wish to measure. Let’s calculate the expectation value of 

HS HB
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Here we have defined a density matrix for the degrees of freedom in 

with density matrix elements that traced over the  states, that is, that are averaged over the probability of occupying the  states.

Here the matrix elements in direct product states involve elements of a four-dimensional matrix, which are specified by the tetradic
notation.

We have defined a trace of the density matrix over the unobserved degrees of freedom in , i.e. a sum over diagonal elements in . To
relate this to our similar prior expression: , the following definitions are useful:

Also,

Since  is Hermitian, it can be diagonalized by a unitary transformation , where the new eigenbasis  represents the mixed states of
the  system.

The density matrix elements represent the probability of occupying state m averaged over the bath degrees of freedom

The quantum mechanical interaction of one system with another causes the system to be in a mixed state after the interaction. The mixed
states are generally not separable into the original states. The mixed state is described by

If we only observe a few degrees of freedom, we can calculate observables by tracing over unobserved degrees of freedom. This forms
the basis for treating relaxation phenomena. A few degrees of freedom that we observe, coupled to many other degrees of freedom, which
lend to irreversible relaxation.

Equation of Motion for the Reduced Density Matrix 
So now to describe irreversible processes in quantum systems, let’s look at the case where we have partitioned the problem so that we
have a few degrees of freedom that we are most interested in (the system), which is governed by  and which we observe with a system
operator . The remaining degrees of freedom are a bath, which interact with the system. The Hamiltonian is given by Equation 
and . In our observations, we will be interested in expectation values in  which we have seen are written

| ⟩ψs

= | ⟩⟨ |ρS ψS ψS (16.2.11)
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Here  is the reduced density operator for the system degrees of freedom. This is the more commonly variable used for .

 and  are partial traces over the bath and system respectively. Note, that since

for direct product states, all we need to do is describe time evolution of  to understand the time dependence to .

We obtain the equation of motion for the reduced density matrix beginning with

and tracing over bath:

We can treat the time evolution of the reduced density matrix in the interaction picture. From our earlier discussion of the density matrix,
we integrate the equation of motion

to obtain

Remember that the density matrix in the interaction picture is

and similarly

Substituting Equation  into Equation  we have

Now taking a trace over the bath states

If we assume that the interaction of the system and bath is small enough that the system cannot change the bath

Then we obtain an equation of motion for  to second order:

⟨ ⟩AS = Tr[ρ(t)A]

= [σ(t)A]TrS

= (t)∑
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= T T [ρ(t)A]rS rB

σ ρS
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α

TrB ρab (16.2.18)

TrB TrS
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= − [ (t), (t)]ρ̇I

i

ℏ
VI ρI (16.2.22)

(t) = (0) − dτ [ (τ), (τ)]ρI ρI
i

ℏ
∫

t

0

VI ρI (16.2.23)

(t) = ρ(t) = ρ(t)ρI U
†
0 U0 ei( + )t/ℏHs HB e−i( + )t/ℏHs HB (16.2.24)

(t) = V = V (t)VI U
†
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1
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t

0
t′ VI VI t′ ρI t′ (16.2.26)

(t) = − T [ (t), ( )] − d T [ (t), [ ( ) , ( )]]σ̇I
i

ℏ
rB VI ρI t0

1

ℏ2
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t

0

t′ rB VI VI t′ ρI t′ (16.2.27)

(t) ≈ (t) (0) = (t)ρI σI ρB σI ρBeq (16.2.28)

=ρBeq
e−βHB

Z
(16.2.29)

σ

(t) = − T [ (t), (0) ] − d T [ (t), [ ( ) , ( ) ]]σ̇I
i

ℏ
rB VI σI ρBeq

1
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∫

t

0
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The last term involves an integral over a correlation function for a fluctuating interaction potential. This looks similar to a linear response
function, and also the same form as the relaxation rates from Fermi’s Golden Rule that we just discussed. The first term in Equation 

 involves a thermal average over the interaction potential,

If this average value is zero, which would be the case for an off-diagonal form of , we can drop the first term in the equation of motion
for . If it were not zero, it is possible to redefine the Hamiltonian such that 

which recasts it in a form where  and the first term can be neglected. Now let’s evaluate the equation of motion for the case
where the system–bath interaction can be written as a product of operators in the system  and bath 

This is equivalent to the bilinear coupling form that was used in our prior description of dephasing and population relaxation. There we
took the interaction to be linearly proportional to the system and bath coordinate(s): . The time evolution in the two variables is
separable and given by

The equation of motion for  becomes

Here the history of the evolution of  depends on the time dependence of the bath variables coupled to the system. The time dependence
of the bath enters as a bath correlation function

The bath correlation function can be evaluated using the methods that we have used in the Energy Gap Hamiltonian and Brownian
Oscillator Models. Switching integration variables to the time interval prior to observation

we obtain

Here we have made use of . For the case that the system–bath interaction is a result of interactions with many bath
coordinates

then Equation  becomes

with the bath correlation function

Equation  or  indicates that the rates of exchange of amplitude between the system states carries memory of the bath’s
influence on the system, that is,  is dependent on . If we make the Markov approximation, for which the dynamics of the
bath are much faster than the evolution of the system and where the system has no memory of its past, we would replace

16.2.30

⟨V = T [V ] .⟩B rB ρBeq (16.2.31)

V

σI → + ⟨V  and V (t) → V (t) − ⟨VH0 H0 ⟩B ⟩B

⟨V → 0⟩B

Â β̂

= V =HsB Âβ̂ (16.2.32)

V = cϱq
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B
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σI
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1
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Â
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B
⟨ (t− ) (0)⟩β̂ t′ β̂
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in Equation , or equivalently in Equation  set

For the subsequent work, we use this approximation. Similarly, the presence of a time scale separation between a slow system and a fast
bath allows us to change the upper integration limit in Equation  from  to .

 

 

The rate constants are defined through:

Here we made use of

Also, it is helpful to note that

The coupled differential equations in Equation  express the relaxation dynamics of the system states almost entirely in terms of
the system Hamiltonian. The influence of the bath only enters through the bath correlation function.

Evaluating the equation of motion: Redfield Equations

Do describe the exchange of amplitude between system states induced by the bath, we will want to evaluate the matrix elements of the
reduced density matrix in the system eigenstates. To begin, we use Equation  to write the time-dependent matrix elements as

Now, let’s convert the time dependence expressed in terms of the interaction picture into a Schrödinger representation using

with

To see how this turns out, consider the first term in Equation :

σ ( ) = σ ( ) δ (t− ) ⇒ σ(t)t′ t′ t′ (16.2.40)

16.2.34 16.2.36

(t−τ) ⇒ (t)σI σI (16.2.41)

16.2.36 t ∞
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1
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~
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2
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(16.2.42)
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1
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~
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~
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~∗

ββ ωcd

(16.2.43)

= ( )Γ+
ab,cd

1

ℏ2
AabAcdC

~
ββ ωdc (16.2.44)

= ( )Γ−
ab,cd

1

ℏ2
AabAcdC

~
ββ ωba (16.2.45)

(ω) = (−ω).C
~∗

ββ C
~
ββ (16.2.46)

=Γ+
ab,cd [ ]Γ−

dc,ba

∗
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16.2.43

16.2.36

(t) = − dτ [ (t), (t−τ) (t−τ)] (τ) −[ (t), (t−τ) (t−τ)] (τ)σ̇I
1
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∑
α,β

∫
t

0

Â Â σI Cαβ Â σI Â C ∗
αβ (16.2.48)

⟨a|A(t)|b⟩ = ei tωab Aab (16.2.49)

⟨a b⟩ =∣∣σ
I ∣∣ ei tωab σab (16.2.50)

= ⟨a b⟩σab
∂

∂t
∣∣σ

I ∣∣ (16.2.51)

16.2.48

(t) = − dτ (t) (t−τ) (t) (τ)σ̇Iab ∑
c,d

1

ℏ2
∫

∞

0

Âac Âcd σI
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Defining the Fourier-Laplace transform of the bath correlation function:

We have

Here the spectral representation of the bath correlation function is being evaluated at the energy gap between system states . So the
evolution of coherences and populations in the system states is governed by their interactions with other system states, governed by the
matrix elements, and this is modified depending on the fluctuations of the bath at different system state energy gaps. In this manner,
Equation  becomes

The common alternate way of writing these expressions is in terms of the relaxation superoperator 

or in the interaction picture

Equation , the reduced density matrix equation of motion for a Markovian bath, is known as the Redfield equation. It describes
the irreversible and oscillatory components of the amplitude in the  coherence as a result of dissipation to the bath and feeding from
other states.  describes the rates of change of the diagonal and off-diagonal elements of  and is expressed as:

where  refers to a system state. The derivation described above can be performed without assuming a form to the system– bath
interaction potential as we did in Equation . If so, one can write the relaxation operator in terms of a correlation function for the
system–bath interaction ,

The tetradic notation for the Redfield relaxation operator allows us to identify four classes of relaxation processes, depending on the
number of states involved:

: Population relaxation (rate of loss of the population in )
: Coherence relaxation or dephasing (damping of the coherence )
: Population transfer (rate of transfer of population from state b to state )
: Coherence transfer (rate at which amplitude in an oscillating superposition between two states (  and ) couples to form

oscillating amplitude between two other states (  and )

The origin and meaning of these terms will be discussed below.

Secular Approximation

From Equation  we note that the largest changes in matrix elements of  result from a resonance condition:

which is satisfied when:

(t) + i = − (t) dτ (τ)σ̇ab ei τωbb ωabe
i τωbb σab ∑

c,d

1

ℏ2
ÂacÂcdσdb ei t+i t+i tωa ωcd ωbb ∫

∞

0

e−i τωct Cββ (16.2.53)

(ω) = dτ (τ)C
~
ββ ∫

∞

0

eiωπCββ (16.2.54)

(t) = −i − (t) ( )σ̇ab ωabσab ∑
c,d

1

ℏ2
ÂacÂcdσdb C

~
ββ ωdc (16.2.55)

ωdc

16.2.48

R

(t) = −i − (t)σ̇ab ωabσab ∑
c,d

Rab,cdσcd (16.2.56)

(t) = (t)σ̇Iab ∑
c,d

σI
cd Rab,cde

i( − − + )t/hEa Eb Ec Ed (16.2.57)

16.2.56

|a⟩⟨b|

R σI

= − − +Rab,cd δdb∑
k

Γ+
ak,kc

Γ+
db,ad

Γ−
db,ad

δac∑
k

Γ−
dk,kb

(16.2.58)

k

16.2.32

= dτΓ+
ab,cd

1

ℏ2
∫

∞

0

⟨ (τ) (0)⟩Vab Vcd Be
−i τωcd (16.2.59)

= dτΓ−
ab,cd

1

ℏ2
∫

∞

0

⟨ (0) (τ)⟩Vab Vcd Be
−i τωab (16.2.60)

aa, aa a

ab, ab ab

aa, bb a

ab, cd c d

a b

16.2.57 σI

exp[i ( − − + ) t/ℏ]Ea Eb Ec Ed

− − +Ea Eb Ec Ed

≈ 1

≈ 0
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In evaluating relaxation rates, often only these secular terms are retained. Whether this approximation is valid must be considered on a
case by case basis and depends on the nature of the system eigenvalues and the bath correlation function.

Population Relaxation and the Master Equation

To understand the information in the relaxation operator and the classification of relaxation processes, let’s first consider the relaxation of
the diagonal elements of the reduced density matrix. Using the secular approximation,

Considering first the case that , Equation  gives the relaxation operator as

Recognizing that  and  are Hermitian conjugates,

So , is a real valued quantity. However, since 

So we see that the relaxation tensor gives the population relaxation rate between states  and  that we derived from Fermi’s Golden rule:

if .

For the case that , Equation  gives the relaxation operator as

The relaxation accounts for the bath-induced dissipation for interactions with all states of the system (last term), but with the influence of
self-relaxation (first term) removed. The net result is that we are left with the net rate of relaxation from a to all other system states (

)

This term , is also referred to as the inverse of , the population lifetime of the  state.

The combination of these observations shows that the diagonal elements of the reduced density matrix follow a master equation that
describes the net gain and loss of population in a particular state

Coherence Relaxation 

Now let’s consider the relaxation of the off-diagonal elements of the reduced density matrix. It is instructive to limit ourselves at first to
one term in the relaxation operator, so that we write the equation of motion as

The relaxation operator gives

a = c; b = d

a = b; c = d

a = b = c = d

⇒ Rab,ab

⇒ Raa,cc

⇒ Raa,aa

(16.2.61)

(t) = − (t)σ̇aa ∑
b

Raa,bbσbb (16.2.62)

a ≠ b 16.2.58

= − −Raa,bb Γ+
ba,ab

Γ−
ba,ab

(16.2.63)

Γ+ Γ−

Raa,bb = − dτ (τ) +c. c.
1

ℏ2
| |Aab

2 ∫
∞

0

Cββ e−i τωba

= − dτ +c. c.
1

ℏ2
∫

∞

0

⟨ (τ) (0)⟩Vba Vab Be
−i τωab

Raa,bb ⟨ (τ) (0)⟩ = ⟨ (0) (−τ)⟩Vba Vab Vba Vab

= − dtRaa,bb
1

ℏ2
∫

+∞

−∞

⟨ (τ) (0)⟩Vba Vab Be
i τωbb (16.2.64)

a b

= −Raa,bb wab (16.2.65)

a ≠ b

a = b 16.2.58

Raa,aa = −( + ) + ( + )Γ+
aa,aa Γ−

aa,aa ∑
k

Γ+
ak,ka Γ−

ak,ka

= ( + )∑
k≠a

Γ+
ak,ka Γ−

ak,ka

a ≠ k

=Raa,aa ∑
k≠a

wka (16.2.66)

Raa,aa T1 a

(t) = (t) − (t)σ̇aa ∑
b≠a

wabσbb ∑
k≠a

wkaσaa (16.2.67)

(t) = −i (t) − (t) +⋯σ̇ab ωabσab Rab,abσab (16.2.68)
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In the second step, we have separated the sum into two terms, one involving relaxation constants for the two coherent states, and the
second involving all other states. The latter term looks very similar to the relaxation rates. In fact, if we factor out the imaginary parts of
these terms and add them as a correction to the frequency in Equation , , then the remaining expression
is directly related to the population lifetimes of the  and  states:

This term accounts for the decay of the coherence as a sum of the rates of relaxation of the  and  states.

The meaning of the first term on the right hand side of Equation  is a little less obvious. If we write out the four contributing
relaxation factors explicitly using the system–bath correlation functions in Equation  and , the real part can be written as

In essence, this term involves an integral over a correlation function that describes variations in the a-b energy gap that varies as a result
of its interactions with the bath. So this term, in essence, accounts for the fluctuations of the energy gap that we previously treated with
stochastic models. Of course in the current case, we have made a Markovian bath assumption, so the fluctuations are treated as rapid and
only assigned an interaction strength  which is related to the linewidth. In an identical manner to the fast modulation limit of the
stochastic model we see that the relaxation rate is related to the square of the amplitude of modulation times the correlation time for the
bath:

As earlier this is how the pure dephasing contribution to the Lorentzian lineshape is defined. It is also assigned a time scale .

So to summarize, we see that the relaxation of coherences has a contribution from pure dephasing and from the lifetime of the states
involved. Explicitly, the equation of motion in Equation  can be re-written

where the dephasing time is

and the frequency has been corrected as a result interactions with the bath with the (small) imaginary contributions to :

Readings 
1. Blum, K., Density Matrix Theory and Applications. Plenum Press: New York, 1981.
2. Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006; Ch. 10.

Rab,ab = −( + )+ ( + )Γ+
aa,bb Γ−

aa,bb ∑
k

Γ+
ak,ka Γ−

bk,kb
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