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3.1: Time-Evolution Operator
Let’s start at the beginning by obtaining the equation of motion that describes the wavefunction and its time evolution through the
time propagator. We are seeking equations of motion for quantum systems that are equivalent to Newton’s—or more accurately
Hamilton’s—equations for classical systems. The question is, if we know the wavefunction at time , how does it change
with time? How do we determine , for some later time ? We will use our intuition here, based largely on
correspondence to classical mechanics. To keep notation to a minimum, in the following discussion we will not explicitly show the
spatial dependence of wavefunction.

We start by assuming causality:  precedes and determines , which is crucial for deriving a deterministic equation of
motion. Also, as usual, we assume time is a continuous variable:

Now define an “time-displacement operator” or “propagator” that acts on the wavefunction to the right and thereby propagates the
system forward in time:

We also know that the operator  cannot be dependent on the state of the system . This is necessary for conservation of
probability, i.e., to retain normalization for the system. If

then

This is a reflection of the importance of linearity and the principle of superposition in quantum mechanical systems. While 
typically is not equal to 

This dictates that the differential equation of motion is linear in time.

Properties of U 
We now make some important and useful observations regarding the properties of .

1. Unitary. Note that for Equation  to hold and for probability density to be conserved,  must be unitary

which holds if .
2. Time continuity: The state is unchanged when the initial and final time-points are the same

3. Composition property. If we take the system to be deterministic, then it stands to reason that we should get the same
wavefunction whether we evolve to a target time in one step ( ) or multiple steps ( ). Therefore, we can
write

Note, since  acts to the right, order matters:

|ψ( , )⟩r ⃗  to
|ψ( , t)⟩r ⃗  t > to

|ψ( )⟩to |ψ(t)⟩

|ψ(t)⟩ = |ψ ( )⟩lim
t→τ0

t0 (3.1.1)

|ψ(t)⟩ = U (t, ) |ψ ( )⟩t0 t0 (3.1.2)

U |ψ(t)⟩

|ψ ( )⟩ = | ( )⟩+ | ( )⟩t0 a1 φ1 t0 a2 φ2 t0 (3.1.3)

.

|ψ(t)⟩ = U (t, ) |ψ ( )⟩t0 t0

= U (t, ) | ( )⟩+U (t, ) | ( )⟩t0 a1 φ1 t0 t0 a2 φ2 t0

= (t)| ⟩+ (t)| ⟩a1 φ1 a2 φ2

(3.1.4)

(3.1.5)

(3.1.6)

| (t)|ai
| (0)|ai

=∑
n

| (t)|an
2 ∑

n

| ( )|an t0
2 (3.1.7)

U

3.1.7 U

P = ⟨ψ(t)|ψ(t)⟩ = ⟨ψ ( ) U ψ ( )⟩t0 ∣∣U
† ∣∣ t0 (3.1.8)

=U † U−1

U(t, t) = 1 (3.1.9)

→t0 t2 → →t0 t1 t2

U ( , ) = U ( , )U ( , )t2 t0 t2 t1 t1 t0 (3.1.10)

U

|ψ ( )⟩t2 = U ( , )U ( , ) |ψ ( )⟩t2 t1 t1 t0 t0

= U ( , ) |ψ ( )⟩t2 t1 t1
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Equation  is already very suggestive of an exponential form for . Furthermore, since time is continuous and the
operator is linear it it also suggests that the time propagator is only a dependent on a time interval

4. Time-reversal. The inverse of the time-propagator is the time reversal operator. From Equation :

An Equation of Motion for U 

Let’s find an equation of motion that describes the time-evolution operator using the change of the system for an infinitesimal time-
step, : . Since

We expect that for small enough ,  will change linearly with . This is based on analogy to thinking of deterministic motion in
classical systems. Setting  to 0, so that , we can write

 is a time-dependent Hermitian operator, which is required for  to be unitary. We can now write a differential equation for the
time-development of , the equation of motion for :

So from Equation  we have:

You can now see that the operator needed a complex argument, because otherwise probability density would not be conserved; it
would rise or decay. Rather it oscillates through different states of the system.

We note that  has units of frequency. Since quantum mechanics fundamentally associates frequency and energy as , and
since the Hamiltonian is the operator corresponding to the energy, and responsible for time evolution in Hamiltonian mechanics, we
write

With that substitution we have an equation of motion for

Multiplying from the right by  gives the TDSE:

If you use the Hamiltonian for a free particle ( ), this looks like a classical wave equation, except that it is
linear in time. Rather, this looks like a diffusion equation with imaginary diffusion constant. We are also interested in the equation
of motion for  which describes the time evolution of the conjugate wavefunctions. Following the same approach and
recognizing that , acts to the left:

we get

3.1.10 U

U ( , ) = U ( − )t1 t0 t1 t0 (3.1.11)

3.1.10

U (t, )U ( , t) =t0 t0

∴ (t, )U−1 t0

1

= U ( , t) .t0

(3.1.12)

(3.1.13)

δt U(t+δt)

U(t+δt, t) = 1lim
δt→0

(3.1.14)

δt U δt

t0 U(t, ) = U(t)to

U(t+δt) = U(t) − i (t)δtΩ̂ (3.1.15)

Ω̂ U

U(t, )to U

=
dU(t)

dt
lim
δt→0

U(t+δt) −U(t)

δt
(3.1.16)

3.1.15

= −i U (t, )
∂U (t, )t0

∂t
Ω̂ t0 (3.1.17)

Ω̂ E = ℏω

=Ω̂
Ĥ

ℏ
(3.1.18)

iℏ U (t, ) = U (t, )
∂

∂t
t0 Ĥ t0 (3.1.19)

|ψ( )⟩to

iℏ |ψ⟩ = |ψ⟩
∂

∂t
Ĥ (3.1.20)

−( /2m) ( /∂ )ℏ2 ∂2 x2

U †

(t, )U † t0

⟨ψ(t)| = ⟨ψ ( ) | (t, )t0 U † t0 (3.1.21)

−iℏ (t, ) = (t, )
∂

∂t
U † t0 U † t0 Ĥ (3.1.22)
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Evaluating the Time-Evolution Operator 

At first glance it may seem straightforward to integrate Equation . If  is a function of time, then the integration of 

 gives

Following our earlier definition of the time-propagator, this exponential would be cast as a series expansion

This approach is dangerous, since we are not properly treating  as an operator. Looking at the second term in Equation , we
see that this expression integrates over both possible time-orderings of the two Hamiltonian operations, which would only be
proper if the Hamiltonians at different times commute: 

Now, let’s proceed a bit more carefully assuming that the Hamiltonians at different times do not commute. Integrating Equation 
 directly from  to  gives

This is the solution; however, it is not very practical since  is a function of itself. But we can make an iterative expansion
by repetitive substitution of  into itself. The first step in this process is

Note in the last term of this equation, that the integration limits enforce a time-ordering; that is, the first integration variable 
must precede the second . Pictorially, the area of integration is

The next substitution step gives

From this expansion, you should be aware that there is a time-ordering to the interactions. For the third term,  acts before ,
which acts before : 

3.1.19 H

iℏ = H dt
dU

U

U (t, ) = exp[ H ( )d ]t0
−i

ℏ
∫

t

t0

t′ t′ (3.1.23)

U = 1 − H ( )d + d d H ( )H ( ) +…(t, )t0
2 i

ℏ
∫

t

t0

t′ t′ 1

2!
( )

−i

ℏ

2

∫
t

t0

t′ t′′ t′ t′′ (3.1.24)

H 3.1.24

H( ),H( )] = 0t′ t′′

3.1.19 t0 t

U (t, ) = 1 − dτH(τ)U (τ , )t0
i

ℏ
∫

t

t0

t0 (3.1.25)

U(t, )to
U

U (t, )t0 = 1 − dτH(τ)[1 − d H ( )U ( , )]
i

ℏ
∫

t

t0

i

ℏ
∫

τ

t0

τ ′ τ ′ τ ′ t0

= 1 +( ) dτH(τ) + dτ d H(τ)H ( )U ( , )
−i

ℏ
∫

t

t0

( )
−i

ℏ

2

∫
t

t0

∫
τ

t0

τ ′ τ ′ τ ′ t0

(3.1.26)

(3.1.27)

τ ′

τ

U (t, )t0 = 1 +( ) dτH(τ)
−i

ℏ
∫

t

t0

+ dτ d H(τ)H ( )( )
−i

ℏ

2

∫
t

t0

∫
τ

t0

τ ′ τ ′

+ dτ d d H(τ)H ( )H ( )U ( , )( )
−i

ℏ

3

∫
t

t0

∫
τ

t0

τ ′ ∫
t′

t0

τ ′′ τ ′ τ ′′ τ ′′ t0

(3.1.28)

τ ′′ τ ′

τ ≤ ≤ ≤ τ ≤ tt0 τ ′′ τ ′
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What does this expression represent? Imagine you are starting in state  and you want to describe how one evolves toward
a target state . The possible paths by which one can shift amplitude and evolve the phase, pictured in terms of these time
variables are:

The first term in Equation  represents all actions of the Hamiltonian which act to directly couple  and . The second
term described possible transitions from  to  via an intermediate state . The expression for  describes all possible paths
between initial and final state. Each of these paths interferes in ways dictated by the acquired phase of our eigenstates under the
timedependent Hamiltonian.

The solution for  obtained from this iterative substitution is known as the positive timeordered exponential

(  is known as the Dyson time-ordering operator.) In this expression the time-ordering is

So, this expression tells you about how a quantum system evolves over a given time interval, and it allows for any possible
trajectory from an initial state to a final state through any number of intermediate states. Each term in the expansion accounts for
more possible transitions between different intermediate quantum states during this trajectory.

Compare the time-ordered exponential with the traditional expansion of an exponential:

Here the time-variables assume all values, and therefore all orderings for  are calculated. The areas are normalized by the 
 factor (there are  time-orderings of the  times.) (As commented above these points need some more clarification.) We are

also interested in the Hermitian conjugate of , which has the equation of motion in Equation . If we repeat the
method above, remembering that , acts to the left, then we obtain

Performing iterative substitution leads to a negative-time-ordered exponential:

Here the  act to the left.

| ⟩ = |ℓ⟩ψ0

|ψ⟩ = |k⟩

3.1.28 |ℓ⟩ |k⟩

|ℓ⟩ |k⟩ |m⟩ U

U

U (t, )t0 = 1 +( ) dτH(τ)
−i

ℏ
∫

t

t0

+ dτ d H(τ)H ( )( )
−i

ℏ

2

∫
t

t0

∫
τ

t0

τ ′ τ ′

+ dτ d d H(τ)H ( )H ( )U ( , )( )
−i

ℏ

3

∫
t

t0

∫
τ

t0

τ ′ ∫
t′

t0

τ ′′ τ ′ τ ′′ τ ′′ t0

T̂

→ → → … → tt0 τ1 τ2 τ3 τn

→ … → → τt0 τ ′′ τ ′
(3.1.29)

1 + d … d H ( )H ( ) …H ( )∑
n=1

∞ 1

n!
( )

−i

ℏ

n

∫
t

t0

τn ∫
t

t0

τ1 τn τn−1 τ1 (3.1.30)

H(t, )t0

n! n! tn
U (t, )t0 3.1.22

(t, )U † t0

(t, ) = 1 + dτ (t, τ)H(τ)U † t0
i

ℏ
∫

t

t0

U † (3.1.31)

(t, ) = 1 + dτ (t, τ)H(τ)U † t0
i

ℏ
∫

t

t0

U † (3.1.32)

H( )τi
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