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14.5: Correspondence of Harmonic Bath and Stochastic Equations of Motion

So, why does the mathematical model for coupling of a system to a harmonic bath give the same results as the classical stochastic
equations of motion for fluctuations? Why does coupling to a continuum of bath states have the same physical manifestation as
perturbation by random fluctuations? The answer is that in both cases, we really have imperfect knowledge of the behavior of all
the particles present. Observing a small subset of particles will have dynamics with a random character. These dynamics can be
quantified through a correlation function or a spectral density for the time-scales of motion of the bath. In this section, we will
demonstrate a more formal relationship that illustrates the equivalence of these pictures.

To take our discussion further, let’s again consider the electronic absorption spectrum from a classical perspective. It’s quite
common to think that the electronic transition of interest is coupled to a particular nuclear coordinate ) which we will call a local
coordinate. This local coordinate could be an intramolecular normal vibrational mode, an intermolecular rattling in a solvent shell,
a lattice vibration, or another motion that influences the electronic transition. The idea is that we take the observed electronic
transition to be linearly dependent on one or more local coordinates. Therefore describing @ allows us to describe the spectroscopy.
However, since this local mode has further degrees of freedom that it may be interacting with, we are extracting a particular
coordinate out or a continuum of other motions, the local mode will appear to feel a fluctuating environment—a friction.

Classically, we describe fluctuations in @ as Brownian motion, typically through a Langevin equation. In the simplest sense, this is
an equation that restates Newton’s equation of motion F' = ma for a fluctuating force acting on a particle with position @Q. For the
case that this particle is confined in a harmonic potential,

mQ(t)+mw8Q2+m7Q=fR(t) (14.5.1)
Here the terms on the left side represent a damped harmonic oscillator. The first term is the force due to acceleration of the particle
of mass m (F,.. =ma). The second term is the restoring force of the potential, Fy.s = —0V /0Q = mwg . The third term allows

friction to damp the motion of the coordinate at a rate . The motion of @ is under the influence of fg(¢), a random fluctuating
force exerted on @ by its surroundings.

Under steady-state conditions, it stands to reason that the random force acting on @ is the origin of the damping. The environment
acts on () with stochastic perturbations that add and remove kinetic energy, which ultimately leads to dissipation of any excess
energy. Therefore, the Langevin equation is modelled as a Gaussian stationary process. We take fg(t) to have a timeaveraged
value of zero,

(fr(t)) =0 (14.5.2)

and obey the classical fluctuation-dissipation theorem:

=5 | " r()72(0)) (14.5.3)

= 2mksT | .

This shows explicitly how the damping is related to the correlation time for the random force. We will pay particular attention to
the Markovian case

(fr(¢)fr(0)) = 2mykpT4(t) (14.5.4)

which indicate that the fluctuations immediately lose all correlation on the time scale of the evolution of Q. The Langevin equation
can be used to describe the correlation function for the time dependence of Q. For the Markovian case, Equation 14.5.11eads to

kT
Coo(t) =2 5 (cos Ct+ lsin(t) e 2 (14.5.5)
mwg 2¢
where the reduced frequency { = wg —~2/4 . The frequency domain expression, obtained by Fourier transformation, is
~ kT 1
Coo(w) =2 (14.5.6)

mm (wg —w2) 2 +w?y?

Remembering that the absorption lineshape was determined by the quantum mechanical energy gap correlation function
(q(t)q(0)), one can imagine an analogous classical description of the spectroscopy of a molecule that experiences interactions with
a fluctuating environment. In essence this is what we did when discussing the Gaussian stochastic model of the lineshape. A more

https://chem.libretexts.org/@go/page/107304



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/107304?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/14%3A_Fluctuations_in_Spectroscopy/14.05%3A_Correspondence_of_Harmonic_Bath_and_Stochastic_Equations_of_Motion

LibreTextsw

general description of the position of a particle subject to a fluctuating force is the Generalized Langevin Equation. The GLE
accounts for the possibility that the damping may be time-dependent and carry memory of earlier configurations of the system:

mQ(t) +mw3Q2 +m/0 dry(t *T)Q.(T) = f(t) (14.5.7)

The memory kernel, (¢t —7), is a correlation function that describes the time-scales over which the fluctuating force retains
memory of its previous state. The force due to friction on ¢ depends on the history of the system through 7, the time preceding ¢,
and the relaxation of (¢ — 7). The classical fluctuation-dissipation relationship relates the magnitude of the fluctuating forces on
the system coordinate to the damping

(frR@)fr(T)) =2mkpT(t — ) (14.5.8)
As expected, for the case that y(t —7) = v8(t — 7) , the GLE reduces to the Markovian case, Equation 14.5.1.

To demonstrate that the classical dynamics of the particle described under the GLE is related to the quantum mechanical dynamics
for a particle interacting with a harmonic bath, we will outline the derivation of a quantum mechanical analog of the classical GLE.
To do this we will derive an expression for the time-evolution of the system under the influence of the harmonic bath. We work
with a Hamiltonian with a linear coupling between the system and the bath

HHB:HS(PaQ)+HB (pa;Qa)+HSB(Q7q) (1459)

We take the system to be a particle of mass M, described through variables P and Q, whereas m,,, p,, and g, are bath variables.
For the present case, we will take the system to be a quantum harmonic oscillator,

P2

Hy=-——
2M

1
+ §MQ2Q2 (14.5.10)

and the Hamiltonian for the bath and its interaction with the system is written as

2 Maws Ca 2
Hp+Hsp=3 (21; + = (qa——QQ) (14.5.11)
a (87

MqWa

This expression explicitly shows that each of the bath oscillators is displaced with respect to the system by an amount dependent on
their mutual coupling. In analogy to our work with the Displaced Harmonic Oscillator, if we define a displacement operator

Dzexp(—% Z%&) (14.5.12)

where

fo = Q (14.5.13)

then

Hp+ Hsp =D HpD (14.5.14)

Equation 14.5.11is merely a different representation of our earlier harmonic bath model. To see this we write Equation 14.5.11as
2
Hp+Hsp = hwa ($+ (42— caQ)°) (14.5.15)
(6]

where the coordinates and momenta are written in reduced form

Q =Q/mwy/2k
9o = qa+/ mawa/2h (14.5.16)
Do :pa/ V 2hmawe

Also, the reduced coupling is of the system to the ot oscillator is

Co = Co [ War/MiaWamwy (14.5.17)
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Expanding Equation 14.5.15and collecting terms, we find that we can separate terms as in the harmonic bath model

Hp = hwa (p3 +43) (14.5.18)
a
Hsp= -2 hwadada + A5 (14.5.19)
a

The reorganization energy due to the bath oscillators is

B :Zhwadg (14.5.20)
and the unit less bath oscillator displacement is
do :S Co (14.5.21)

For our current work we regroup the total Hamiltonian (Equation 14.5.9) as

p2
Hyp = m + - MQ Q2:| +za:hwa (p%z +Qc2x) -2 ;hwaCaQQa (14.5.22)

where the renormalized frequency is
—2
Q=040 wacd (14.5.23)
a

To demonstrate the equivalence of the dynamics under this Hamiltonian and the GLE, we can derive an equation of motion for the
system coordinate (). We approach this by first expressing these variables in terms of ladder operators

P=i(al-a) p,=i (ISL—EG) (14.5.24)
Q=(a'+a) do- (bL +ba) (14.5.25)

Here &, &' are system operators, b and I;T are bath operators. If the observed particle is taken to be bound in a harmonic potential,
then the Hamiltonian in Equation 14.5.9 can be written as

Hyp = hQ (aﬁa ) +3 (13 ba + ) —(a"+a) 3 Awaca (Bl +5a) (14.5.26)

The equations of motion for the operators in Equations 14.5.24and 14.5.25 can be obtained from the Heisenberg equation of

motion.
a= %[HHB, al (14.5.27)
from which we find
a=—iQa+iY  waca (BLHSQ) (14.5.28)
bo = —iwaba +iwaCo (&' +3) (14.5.29)

To derive an equation of motion for the system coordinate, we begin by solving for the time evolution of the bath coordinates by
directly integrating Equation 14.5.29

b (t) = e it /0 " gt (iwaca (af +a)) At + b (0)e et (14.5.30)

and insert the result into Equation 14.5.28 This leads to
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. —_ t . .
Q+iQa—i) wack (a* +a) —H’/ ' (t —t') (a* (t/)+d(t’)) —iF(t) (14.5.31)
o 0
where
k(t) = Zwaca cos(wqt) (14.5.32)
a
and
Fit)=Y ca [BQ(O)  WaCa (a’f(O) +a(0))] et 4 hc. (14.5.33)
Now, recognizing that the time-derivative of the system variables is given by
P—i (&T ~&) (14.5.34)
Aorats
Q(a' +a) (14.5.35)
and substituting Equation 14.5.31into 14.5.34 we can write an equation of motion
. — 202 t ~
PH+(0-2) —=|Q +/ dt'2k (t—t)Q (') = F(t)+ F1(t) (14.5.36)
o Wa 0
Equation 14.5.36bears a striking resemblance to the classical GLE, Equation 14.5.7. In fact, if we define
y(t) = 2Qk(t) (14.5.37)
1 2
= ; — coswut (14.5.38)
fr(t) = V2RMQ[F(t)+ F1(t)] (14.5.39)
0
= an [qa(O)coswat+ Pa(0) sinwet (14.5.40)
— MW

then the resulting equation is isomorphic to the classical GLE

P(t) + MQ2Q(t) + M /0 “dty (t—#) O (¢) = falt) (14.5.41)

This demonstrates that the quantum harmonic bath acts a dissipative environment, whose friction on the system coordinate is given
by Equation 14.5.38 What we have shown here is an outline of the proof, but detailed discussion of these relationships can be
found elsewhere.

Readings

1. Calderia, A. O.; Legget, A. J., H.O.-bath model;theory. Ann. Phys 1983, 149, 372-456.

2. Fleming, G. R.; Cho, M., Chromophore-Solvent Dynamics. Annual Review of Physical Chemistry 1996, 47 (1), 109-134.

3. Leggett, A.; Chakravarty, S.; Dorsey, A.; Fisher, M.; Garg, A.; Zwerger, W., Dynamics of the dissipative two-state system.
Reviews of Modern Physics 1987, 59 (1), 1-85.

4. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New York, 1995; Ch. 8

5. Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006; Ch. 8.

6. Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: Mineola, NY, 2002; Sections 6.5, 12.2,
12.5.

7. Weiss, U., Quantum Dissipative Systems. 3rd ed.; World Scientific: Hackensack, N.J., 2008.

8. Yan, Y. J.; Xu, R. X., Quantum mechanics of dissipative systems. Annual Review of Physical Chemistry 2005, 56, 187-219.

1 Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006.
2 Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006; Ch. 8.

@ 0 g @ 14.5.4 https://chem.libretexts.org/@go/page/107304



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/107304?pdf

LibreTextsw

3 Calderia, A. O.; Legget, A. J., Ann. Phys 1983, 149, 372-456
4 4 Weiss, U. Quantum Dissipative Systems. 3rd ed.; World Scientific: Hackensack, N.J. , 2008; Leggett, A. J.; Chakravarty, S.;

Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system. Reviews of Modern Physics
1987, 59 (1), 1-85; Yan, Y.; Xu, R. Quantum Mechanics of Dissipative Systems. Annual Review of Physical Chemistry 2005, 56

(1), 187-219. 13-3

This page titled 14.5: Correspondence of Harmonic Bath and Stochastic Equations of Motion is shared under a CC BY-NC-SA 4.0 license and
was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts
platform.

@ 0 e @ 14.5.5 https://chem.libretexts.org/@go/page/107304


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/107304?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/14%3A_Fluctuations_in_Spectroscopy/14.05%3A_Correspondence_of_Harmonic_Bath_and_Stochastic_Equations_of_Motion
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/

