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10.2: Correlation Function from a Discrete Trajectory
In practice classical correlation functions in molecular dynamics simulations or single molecule experiments are determined from a
time-average over a long trajectory at discretely sampled data points. Let’s evaluate for a discrete and finite trajectory in which
we are given a series of  observations of the dynamical variable  at equally separated time points ti. The separation between
time points is , and the length of the trajectory is . Then we have ,

where . To make this more useful we want to express it as the time interval between points ,
and average over all possible pairwise products of  separated by . Defining a new count integer , we can express the
delay as . For a finite data set there are a different number of observations to average over at each time interval (n). We
have the most pairwise products—  to be precise—when the time points are equal (ti=tj). We only have one data pair for the
maximum delay . Therefore, the number of pairwise products for a given delay  is . So we can write Equation 
as

Note that this expression will only be calculated for positive values of , for which . As an example consider the following
calculation for fluctuations in a vibrational frequency , which consists of 32000 consecutive frequencies in units of  for
points separated by 10 femtoseconds, and has a mean value of . This trajectory illustrates that there are fast
fluctuations on femtosecond time scales, but the behavior is seemingly random on 100 picosecond time scales

After determining the variation from the mean , the frequency correlation function is determined from
Equation , with the substitution .

We can see that the correlation function reveals no frequency correlation on the time scale of 10  –10  fs, however a decay of the
correlation function is observed for short delays signifying the loss of memory in the fluctuating frequency on the 10  fs time scale.
From Equation , we find that the correlation time is .
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