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3.2: Integrating the Schrödinger Equation Directly
Okay, how do we evaluate the time-propagator and obtain a time-dependent trajectory for a quantum system? Expressions such as
the time-ordered exponentials are daunting, and there are no simple ways in which to handle this. One cannot truncate the
exponential because usually this is not a rapidly converging series. Also, the solutions oscillate rapidly as a result of the phase
acquired at the energy of the states involved, which leads to a formidable integration problem. Rapid oscillations require small time
steps, when in fact the time scales. For instance in a molecular dynamics problem, the highest frequency oscillations may be as a
result of electronically excited states with periods of less than a femtosecond, and the nuclear dynamics that you hope to describe
may occur on many picosecond time scales. Rather than general recipes, there exist an arsenal of different strategies that are suited
to particular types of problems. The choice of how to proceed is generally dictated by the details of your problem, and is often an
art-form. Considerable effort needs to be made to formulate the problem, particularly choosing an appropriate basis set for your
problem. Here it is our goal to gain some insight into the types of strategies available, working mainly with the principles, rather
than the specifics of how it’s implemented.

Let’s begin by discussing the most general approach. With adequate computational resources, we can choose the brute force
approach of numerical integration. We start by choosing a basis set and defining the initial state . Then, we can numerically
evaluate the timedependence of the wavefunction over a time period  by discretizing time into  small steps of width 
over which the change of the system is small. A variety of strategies can be pursed in practice.

One possibility is to expand your wavefunction in the basis set of your choice

and solve for the time-dependence of the expansion coefficients. Substituting into the right side of the TDSE,

and then acting from the left by  on both sides leads to an equation that describes their time dependence:

or in matrix form . This represents a set of coupled first-order differential equations in which amplitude flows between
different basis states at rates determined by the matrix elements of the time-dependent Hamiltonian. Such equations are
straightforward to integrate numerically. We recognize that we can integrate on a grid if the time step forward ( ) is small enough
that the Hamiltonian is essentially constant. Then Equation  becomes

and the system is propagated as

The downside of such a calculation is the unusually small time-steps and significant computational cost required.

Similarly, we can use a grid with short time steps to simplify our time-propagator as

Therefore the time propagator can be written as a product of  propagators over these small intervals.
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Here the time-propagation over the j  small time step is

Note that the expressions in Equations  and  are operators time ordered from right to left, which we denote with the “+”
subscript. Although Equation  is exact in the limit  (or ), we can choose a finite number such that  does
not change much over the time . In this limit the time propagator does not change much and can be approximated as an expansion

In a general sense this approach is not very practical. The first reason is that the time step is determined by  which is
typically very small in comparison to the dynamics of interest. The second complication arises when the potential and kinetic
energy operators in the Hamiltonian don’t commute. Taking the Hamiltonian to be 

The second line makes the Split Operator approximation, what states that the time propagator over a short enough period can be
approximated as a product of independent propagators evolving the system over the kinetic and potential energy. The validity of
this approximation depends on how well these operators commute and the time step, with the error scaling like 

 meaning that we should use a time step, such that 

This approximation can be improved by symmetrizing the split operator as

Here the error scales as . There is no significant increase in computational effort since

half of the operations can be combined as

to give 
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