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7.6: Appendix - Review of Free Electromagnetic Field
Here we review the derivation of the vector potential for the plane wave in free space. We begin with Maxwell’s equations (SI):

Here the variables are: , electric field; , magnetic field; , current density; , charge density; , electrical permittivity; ,
magnetic permittivity. We are interested in describing  and  in terms of a vector and scalar potential,  and .

Next, let’s review some basic properties of vectors and scalars. Generally, vector field  assigns a vector to each point in space.
The divergence of the field

is a scalar. For a scalar field , the gradient

is a vector for the rate of change at one point in space. Here

are unit vectors. Also, the curl

is a vector whose , , and  components are the circulation of the field about that component. Some useful identities from vector
calculus that we will use are

Gauge Transforms 

We now introduce a vector potential  and a scalar potential , which we will relate to  and . Since

and

we can immediately relate the vector potential and magnetic field

Inserting this into Equation  and rewriting, we can relate the electric field and vector potential:
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Comparing Equations  and  allows us to state that a scalar product exists with

So summarizing our results, we see that the potentials  and  determine the fields  and :

We are interested in determining the classical wave equation for  and . Using Equation , differentiating Equation ,
and substituting into Equation , we obtain

Using Equation ,

From Equation , we have

and using Equation ,

Notice from Equations  and  that we only need to specify four field components (  to determine all six 
and  components. But  and  do not uniquely determine  and . So we can construct  and  in any number of ways
without changing  and . Notice that if we change  by adding  where  is any function of  and  this will not change 

. It will change  by , but we can change  to . Then  and  will both be

unchanged. This property of changing representation (gauge) without changing  and  is gauge invariance. We can define a
gauge transformation with

Up to this point,  are undetermined. Let’s choose a  such that:

which is known as the Lorentz condition. Then from Equation :

The right hand side of this equation can be set to zero when no currents are present. From Equation , we have:
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Equations  and  are wave equations for  and . Within the Lorentz gauge, we can still arbitrarily add another ; it
must only satisfy Equation . If we substitute Equations  and  into Equation , we see

So we can make further choices/constraints on  as long as it obeys Equation . We now choose , the Coulomb
gauge, and from Equation  we see

So the wave equation for our vector potential when the field is far currents ( ) is

The solutions to this equation are plane waves:

where  is a phase.  is the wave vector which points along the direction of propagation and has a magnitude

Since  (Equation ), then

and

So the direction of the vector potential is perpendicular to the direction of wave propagation ( ). From Equations  and 
, we see that for :

Here the electric field is parallel with the vector potential, and the magnetic field is perpendicular to the electric field and the
direction of propagation ( ). The Poynting vector describing the direction of energy propagation is

and its average value, the intensity, is
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