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3.8: Fermi’s Golden Rule
A number of important relationships in quantum mechanics that describe rate processes come from first-order perturbation theory.
These expressions begin with two model problems that we want to work through:

1. time evolution after applying a step perturbation, and
2. time evolution after applying a harmonic perturbation.

As before, we will ask: if we prepare the system in the state , what is the probability of observing the system in state 
following the perturbation?

Constant Perturbation (or a Step Perturbation) 
The system is prepared such that . A constant perturbation of amplitude  is applied at :

Here  is the Heaviside step response function, which is 0 for  and 1 for . Now, turning to first order
perturbation theory, the amplitude in , we have:

Here  is independent of time.

Setting 

For Equation , the following identity was used

Now the probability of being in the  state is

If we write this using the energy splitting variable we used earlier:

then

Fortunately, we have the exact result for the two-level problem to compare this approximation to
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From comparing Equation  and , it is clear that the perturbation theory result works well for , as expected for
this approximation approach.

Let’s examine the time-dependence to , and compare the perturbation theory (solid lines) to the exact result (dashed lines) for
different values of .

The worst correspondence is for  (red curves) for which the behavior appears quadratic and the probability quickly
exceeds unity. It is certainly unrealistic, but we do not expect that the expression will hold for the “strong coupling” case: .
One begins to have quantitative accuracy in for the regime  or .

Now let’s look at the dependence on . We can write the first-order result Equation  as

where

If we plot the probability of transfer from  to  as a function of the energy level splitting ( ), we have:

The probability of transfer is sharply peaked where energy of the initial state matches that of the final state, and the width of the
energy mismatch narrows with time. Since
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we see that the short time behavior is a quadratic growth in 

The integrated area grows linearly with time.

Since the energy spread of states to which transfer is efficient scales approximately as , this observation is
sometimes referred to as an uncertainty relation with

However, remember that this is really just an observation of the principles of Fourier transforms. A frequency can only be
determined as accurately as the length of the time over which you observe oscillations. Since time is not an operator, it is not a
true uncertainly relation like

In the long time limit, the  function narrows to a delta function:

So the long time probability of being in the  state is

The delta function enforces energy conservation, saying that the energies of the initial and target state must be the same in the long
time limit. What is interesting in Equation  is that we see a probability growing linearly in time. This suggests a transfer rate
that is independent of time, as expected for simple first-order kinetics:

This is one statement of Fermi’s Golden Rule—the state-to-state form—which describes relaxation rates from first-order
perturbation theory. We will show that this rate properly describes long time exponential relaxation rates that you would expect
from the solution to

Harmonic Perturbation 
The second model calculation is the interaction of a system with an oscillating perturbation turned on at time . The results
will be used to describe how a light field induces transitions in a system through dipole interactions.

Again, we are looking to calculate the transition probability between states  and :
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Setting , first-order perturbation theory leads to

Using

as before:

Notice that these terms are only significant when . The condition for efficient transfer is resonance, a matching of the
frequency of the harmonic interaction with the energy splitting between quantum states. Consider the resonance conditions that will
maximize each of these:

If we consider only absorption,

We can compare this with the exact expression:

Again, we see that the first-order expression is valid for couplings  that are small relative to the detuning .
The maximum probability for transfer is on resonance 
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Similar to our description of the constant perturbation, the long time limit for this expression leads to a delta function .
In this long time limit, we can neglect interferences between the resonant and antiresonant terms. The rates of transitions between 
and  states determined from  becomes

We can examine the limitations of this formula. When we look for the behavior on resonance, expanding the sin(x) shows us that
Pk rises quadratically for short times:

This clearly will not describe long-time behavior, but it will hold for small , so we require

At the same time, we cannot observe the system on too short a time scale. We need the field to make several oscillations for this to
be considered a harmonic perturbation.

These relationships imply that we require
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