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7.2: Classical Light–Matter Interactions

Classical Plane Electromagnetic Waves 

As a starting point, it is helpful to first summarize the classical description of electromagnetic fields. A derivation of the plane
wave solutions to the electric and magnetic fields and vector potential is described in the appendix in Section 6.6.

Maxwell’s equations describe electric ( ) and magnetic fields ( ); however, to construct a Hamiltonian, we must use the time-
dependent interaction potential (rather than a field). To construct the potential representation of  and , you need a vector
potential , and a scalar potential . For electrostatics we normally think of the field being related to the electrostatic
potential through , but for a field that varies in time and in space, the electrodynamic potential must be expressed in
terms of both  and .

In general, an electromagnetic wave written in terms of the electric and magnetic fields requires six variables (the , , and 
components of  and ). This is an over determined problem; Maxwell’s equations constrain these. The potential representation
has four variables ( , , , and ), but these are still not uniquely determined. We choose a constraint—a representation or
gauge—that allows us to uniquely describe the wave. Choosing a gauge such that  (i.e., the Coulomb gauge) leads to a
unique description of  and :

and

This wave equation for the vector potential gives a plane wave solution for charge free space and suitable boundary conditions:

This describes the wave oscillating in time at an angular frequency  and propagating in space in the direction along the wave
vector , with a spatial period . Writing the relationship between , , and  in a medium with index of refraction  in
terms of their values in free space:

The wave has an amplitude , which is directed along the polarization unit vector . Since , we see that  or 
. From the vector potential we can obtain  and 

If we define a unit vector along the magnetic field polarization as

we see that the wave vector, the electric field polarization and magnetic field polarization are mutually orthogonal .
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Also, by comparing Equation  and  we see that the vector potential oscillates as , whereas the electric and
magnetic fields oscillate as . If we define

then,

Note that

We will want to express the amplitude of the field in a manner that is experimentally accessible. The intensity , the energy flux
through a unit area, is most easily measured. It is the time-averaged value of the Poynting vector

An alternative representation of the amplitude that is useful for describing quantum light fields is the energy density

Classical Hamiltonian for radiation field interacting with charged particle 
Now, we obtain a classical Hamiltonian that describes charged particles interacting with a radiation field in terms of the vector
potential. Start with Lorentz force on a particle with charge :

Here v is the velocity of the particle. Writing this for one direction ( ) in terms of the Cartesian components of , , and , we
have:

In Lagrangian mechanics, this force can be expressed in terms of the total potential energy

Using the relationships that describe  and  in terms of  and  (Equations  and ), inserting into Equation ,
and working it into the form of Equation , we can show that

This is derived elsewhere  and is readily confirmed by replacing it into Equation . Now we can write a Lagrangian in terms
of the kinetic and potential energy of the particle
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The classical Hamiltonian is related to the Lagrangian as

Recognizing

we write

Now substituting Equations  into Equation , we have

This is the classical Hamiltonian for a particle in an electromagnetic field. In the Coulomb gauge ( ), the last term is dropped.

We can write a Hamiltonian for a single particle in a bound potential  in the absence of an external field as

and in the presence of the EM field,

Expanding we obtain

Generally the last term which goes as the square of  is small compared to the cross term, which is proportional to first power of 
. This term should be considered for extremely high field strength, which is non-perturbative and significantly distorts the

potential binding molecules together, i.e., when it is similar in magnitude to . One can estimate that this would start to play a role
at intensity levels , which may be observed for very high energy and tightly focused pulsed femtosecond lasers. So,
for weak fields we have an expression that maps directly onto solutions we can formulate in the interaction picture:

with
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