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13.1: The Displaced Harmonic Oscillator Model
Here we will discuss the displaced harmonic oscillator (DHO), a widely used model that describes the coupling of nuclear
motions to electronic states. Although it has many applications, we will look at the specific example of electronic absorption
experiments, and thereby gain insight into the vibronic structure in absorption spectra. Spectroscopically, it can also be used to
describe wavepacket dynamics; coupling of electronic and vibrational states to intramolecular vibrations or solvent; or coupling of
electronic states in solids or semiconductors to phonons. As we will see, further extensions of this model can be used to describe
fundamental chemical rate processes, interactions of a molecule with a dissipative or fluctuating environment, and Marcus Theory
for nonadiabatic electron transfer.

The DHO and Electronic Absorption 
Molecular excited states have geometries that are different from the ground state configuration as a result of varying electron
configuration. This parametric dependence of electronic energy on nuclear configuration results in a variation of the electronic
energy gap between states as one stretches bond vibrations of the molecule. We are interested in describing how this effect
influences the electronic absorption spectrum, and thereby gain insight into how one experimentally determines the coupling of
between electronic and nuclear degrees of freedom. We consider electronic transitions between bound potential energy surfaces for
a ground and excited state as we displace a nuclear coordinate . The simplified model consists of two harmonic oscillators
potentials whose 0-0 energy splitting is  and which depends on . We will calculate the absorption spectrum in the
interaction picture using the time-correlation function for the dipole operator.

We start by writing a Hamiltonian that contains two terms for the potential energy surfaces of the electronically excited state 
and ground state 

These terms describe the dependence of the electronic energy on the displacement of a nuclear coordinate . Since the state of the
system depends parametrically on the level of vibrational excitation, we describe it using product states in the electronic and
nuclear configuration, , or in the present case

Implicit in this model is a Born-Oppenheimer approximation in which the product states are the eigenstates of , i.e.

The Hamiltonian for each surface contains an electronic energy in the absence of vibrational excitation, and a vibronic Hamiltonian
that describes the change in energy with nuclear displacement.

For our purposes, the vibronic Hamiltonian is harmonic and has the same curvature in the ground and excited states, however, the
excited state is displaced by d relative to the ground state along a coordinate .
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The operator  acts only to changes the degree of vibrational excitation on the  or  surface.

We now wish to evaluate the dipole correlation function

Here  is the joint probability of occupying a particular electronic and vibrational state, . The time propagator is

We begin by making the Condon Approximation, which states that there is no nuclear dependence for the dipole operator. It is only
an operator in the electronic states.

This approximation implies that transitions between electronic surfaces occur without a change in nuclear coordinate, which on a
potential energy diagram is a vertical transition.

Under typical conditions, the system will only be on the ground electronic state at equilibrium, and substituting Equations 
and  into Equation , we find:

Here the oscillations at the electronic energy gap are separated from the nuclear dynamics in the final factor, the dephasing
function:

The average  in Equations  and  is only over the vibrational states . Note that physically the dephasing
function describes the time-dependent overlap of the nuclear wavefunction on the ground state with the time-evolution of the same
wavepacket initially projected onto the excited state

This is a perfectly general expression that does not depend on the particular form of the potential. If you have knowledge of the
nuclear and electronic eigenstates or the nuclear dynamics on your ground and excited state surfaces, this expression is your route
to the absorption spectrum.

Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: Mineola, NY, 2002; Ch. 9.
Reimers, J. R.; Wilson, K. R.; Heller, E. J., Complex time dependent wave packet technique for thermal equilibrium
systems: Electronic spectra. J. Chem. Phys. 1983, 79, 4749-4757. 12-4

To evaluate  for this problem, it helps to realize that we can write the nuclear Hamiltonians as

Here  is the spatial displacement operator
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which shifts an operator in space as:

Note  is only an operator in the vibrational degree of freedom. We can now express the excited state Hamiltonian in terms of a
shifted ground state Hamiltonian in Equation , and also relate the time propagators on the ground and excited states

Substituting Equation  into Equation  allows us to write

Equation  says that the effect of the nuclear motion in the dipole correlation function can be expressed as a time-correlation
function for the displacement of the vibration.

To evaluate Equation  we write it as

since

The time-evolution of  is obtained by expressing it in raising and lowering operator form,

and evaluating Equation  using Equation . Remembering , we find

which gives

So for the dephasing function we now have

where we have defined a dimensionless displacement variable

Since  and  do not commute ( ), we split the exponential operators using the identity
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Now to simplify our work further, let’s specifically consider the low temperature case in which we are only in the ground
vibrational state at equilibrium . Since  and 

and

In principle these are expressions in which we can evaluate by expanding the exponential operators. However, the evaluation
becomes much easier if we can exchange the order of operators. Remembering that these operators do not commute, and using

we can write

So finally, we have the dipole correlation function:

 is known as the Huang-Rhys parameter (which should be distinguished from the displacement operator ). It is a dimensionless
factor related to the mean square displacement

and therefore represents the strength of coupling of the electronic states to the nuclear degree of freedom. Note our correlation
function has the form

Here  is our lineshape function

To illustrate the form of these functions, below is plotted the real and imaginary parts of , ,  for , and 
.  oscillates with the frequency of the single vibrational mode.  quantifies the overlap of vibrational

wavepackets on ground and excited state, which peaks once every vibrational period.  has the same information as , but
is also modulated at the electronic energy gap .
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Figure 

Absorption Lineshape and Franck-Condon Transitions 
The absorption lineshape is obtained by Fourier transforming Equation 

If we now expand the final term as

the lineshape is

The spectrum is a progression of absorption peaks rising from , separated by  with a Poisson distribution of intensities. This
is a vibrational progression accompanying the electronic transition. The amplitude of each of these peaks are given by the Franck–
Condon coefficients for the overlap of vibrational states in the ground and excited states

The intensities of these peaks are dependent on , which is a measure of the coupling strength between nuclear and electronic
degrees of freedom. Illustrated below is an example of the normalized absorption lineshape corresponding to the correlation
function for  in Figure .
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Figure 

Now let’s investigate how the absorption lineshape depends on .

For , there is no dependence of the electronic energy gap  on the nuclear coordinate, and only one resonance is observed.
For , the dependence of the energy gap on  is weak and the absorption maximum is at , with the amplitude of the
vibronic progression falling off as . For , the strong coupling regime, the transition with the maximum intensity is found
for peak at . So  corresponds roughly to the mean number of vibrational quanta excited from  in the ground state.
This is the Franck-Condon principle, that transition intensities are dictated by the vertical overlap between nuclear wavefunctions
in the two electronic surfaces.

To investigate the envelope for these transitions, we can perform a short time expansion of the correlation function applicable for 
 and for . If we approximate the oscillatory term in the lineshape function as

then the lineshape envelope is
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This can be solved by completing the square, giving

The envelope has a Gaussian profile which is centered at Franck–Condon vertical transition

Thus we can equate  with the mean number of vibrational quanta excited in  on absorption from the ground state. Also, we
can define the vibrational energy vibrational energy in  on excitation at 

 is known as the reorganization energy. This is the value of  at , which reflects the excess vibrational excitation on the
excited state that occurs on a vertical transition from the ground state. It is therefore the energy that must be dissipated by
vibrational relaxation on the excited state surface as the system re-equilibrates following absorption.

Figure FC1.png" src="/@api/deki/files/142180/Figure_FC1.png" />

Illustration of how the strength of coupling  influences the absorption lineshape  (Equation ) and dipole correlation
function  (Equation ).
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Also shown, the Gaussian approximation to the absorption profile (Equation ), and the dephasing function (Equation 
).

Fluorescence 
The DHO model also leads to predictions about the form of the emission spectrum from the electronically excited state. The
vibrational excitation on the excited state potential energy surface induced by electronic absorption rapidly dissipates through
vibrational relaxation, typically on picosecond time scales. Vibrational relaxation leaves the system in the ground vibrational state
of the electronically excited surface, with an average displacement that is larger than that of the ground state. In the absence of
other non-radiative processes relaxation processes, the most efficient way of relaxing back to the ground state is by emission of
light, i.e., fluorescence. In the Condon approximation this occurs through vertical transitions from the excited state minimum to a
vibrationally excited state on the ground electronic surface. The difference between the absorption and emission frequencies
reflects the energy of the initial excitation which has been dissipated non-radiatively into vibrational motion both on the excited
and ground electronic states, and is referred to as the Stokes shift.
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From the DHO model, the emission lineshape can be obtained from the dipole correlation function assuming that the initial state is
equilibrated in , centered at a displacement , following the rapid dissipation of energy  on the excited state. Based on
the energy gap at , we see that a vertical emission from this point leaves  as the vibrational energy that needs to be
dissipated on the ground state in order to re-equilibrate, and therefore we expect the Stokes shift to be 

Beginning with our original derivation of the dipole correlation function and focusing on emission, we find that fluorescence is
described by

We note that  and .

Then we can obtain the fluorescence spectrum

This is a spectrum with the same features as the absorption spectrum, although with mirror symmetry about .
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A short time expansion confirms that the splitting between the peak of the absorption and emission lineshape envelopes is ,
or . Further, one can establish that

Note that our description of the fluorescence lineshape emerged from our semiclassical treatment of the light–matter interaction,
and in practice fluorescence involves spontaneous emission of light into a quantum mechanical light field. However, while the light
field must be handled differently, the form of the dipole correlation function and the resulting lineshape remains unchanged.
Additionally, we assumed that there was a time scale separation between the vibrational relaxation in the excited state and the time
scale of emission, so that the system can be considered equilibrated in . When this assumption is not valid then one must
account for the much more complex possibility of emission during the course of the relaxation process.
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