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13.3: Semiclassical Approximation to the Dipole Correlation Function

In introducing the influence of dark degrees of freedom on the spectroscopy of a bright state, we made some approximations that
are not always valid, such as the Condon approximation and the Second Cumulant Approximation. To develop tools that allow us to
work outside of these approximations, it is worth revisiting the evaluation of the dipole correlation function and looking at this a bit
more carefully. In particular, we will describe the semiclassical approximation, which is a useful representation of the dipole
correlation function when one wants to describe the dark degrees of freedom (the bath) using classical molecular dynamics
simulations.

For a quantum mechanical material system interacting with a light field, the full Hamiltonian is
H=Hy+V(t) (13.3.1)
V(t)=—m- E(t) (13.3.2)

m =), z; is the quantum mechanical dipole operator, where 2; are charges. The absorption lineshape is given by the Fourier
transformation of the dipole autocorrelation function C,:

Cpun(7) = (()(0)) = Tr(pem(£)i7(0)) (13.3.3)

and the time dependence in m is expressed in terms of the usual time-propagator:
m(t) = Ulml, (13.3.4)
Oy —e,n o 0" (13.3.5)

In principle, the time development of the dipole moment for all degrees of freedom can be obtained directly from ab initio
molecular dynamics simulations.

For a more practical expression in which we wish to focus on one or a few bright degrees of freedom, we next partition the
Hamiltonian into system and bath

Hy=Hs(Q)+Hg(q) + Ha(Q, q) (13.3.6)

For purposes of spectroscopy, the system Hg refers to those degrees of freedom (@) with which the light will interacts, and which
will be those in which we calculate matrix elements. The bath Hp refers to all of the other degrees of freedom (g), and the
interaction between the two is accounted for in Hgp. Although the interaction of the light depends on how m varies with @, the
dipole operator remains a function of system and bath coordinates: m(Q, q).

We now use the interaction picture transformation to express the time propagator under the full material Hamiltonian U in terms
of a product of propagators in the individual terms in Hy:

Uy =UsUsUsp (13.3.7)
Hp(t) = e/HsHHn)t g pe—i(HsHHn)t (13.3.8)
H,p(t) = e HsHHa)t [ pe—i(Hs+Hp)t (13.3.9)
Then the dipole autocorrelation function becomes
Cop =D _ P <" |U§pULU§mUsUUsem| n> (13.3.10)
where
pn=(n ‘eiBHO ’ n>/Tr(eiﬂH") (13.3.11)

Further, to make this practical, we make an adiabatic separation between the system and bath coordinates, and say that the
interaction between the system and bath is weak. This allows us to write the state of the system as product states in the system (a)
and bath (a); |n) = |a, a):

(Hs + Hp)|a, o) = (B, + Ey) |a, ) (13.3.12)
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With this we evaluate Equation 13.3.10as

Cup =Y _Paba <a’ @ ‘U;BULEU;EUBUBBE’ a, a> (13.3.13)

= %papa (a|(a|v},UivimUsUsUss|b) i ) (13.3.14)

where my, = (b|m|a), and we have made use of the fact that Hg and Hp commute. Also,
pa =e BT Q. (13.3.15)

Now, by recognizing that the time propagators in the system and system-bath Hamiltonians describe time evolution at the system
eigenstate energy plus any modulations that the bath introduces to it

UsUsp|b) = e~ et |bYe =i Jo TOB () — |p)e~ifo dEu(t) (13.3.16)
and we can write our correlation function as
Cop = Zpapa <a i Jo dEL(¢) U;'Fn-abUBe i [ dt By ( ) e ‘ > (13.3.17)
a,b
Chp = <ﬁab(t)ﬁba(0)e*" I dt’“bu(t')>B (13.3.18)
Mgy (t) = e~ Hotim e~ tHot (13.3.19)

Equation 13.3.18is the first important result. It describes a correlation function in the dipole operator expressed in terms of an
average over the time-dependent transition moment, including its orientation, and the fluctuating energy gap. The time dependence
is due to the bath and refers to a trace over the bath degrees of freedom.

Let’s consider the matrix elements. These will reflect the strength of interaction of the electromagnetic field with the motion of the
system coordinate, which may also be dependent on the bath coordinates. Since we have made an adiabatic approximation, to
evaluate the matrix elements we would typically expand the dipole moment in the system degrees of freedom, Q. As an example
for one system coordinate () and many bath coordinates g, we can expand:

ﬁ(Q,q)zﬁoJr CJJrZaQ(9 Qo+ (13.3.20)

myg is the permanent dipole moment, which we can take as a constant. In the second term, dm/9Q is the magnitude of the
transition dipole moment. The third term includes the dependence of the transition dipole moment on the bath degrees of freedom,
i.e., non-Condon terms. So now we can evaluate

ﬁab = <a

We have set (a |mg| b) = 0. Now defining the transition dipole matrix element,

-
Frab = 20 2 (alQ[b) (13.3.21)

—  Om 0’m
mo +8—Q +Z 3004, Qqa|b

8 om
3G (alaib+3- 5~ 55 @lalba.

we can write

Tab = Fap (1+Z Oy ) (13.3.22)

Remember that 1, is a vector. The bath can also change the orientation of the transition dipole moment. If we want to separate the
orientational and remaining dynamics this we could split the matrix element into an orientational component specified by a unit
vector along &m/AQ and a scalar that encompasses the amplitude factors: f1,;, = tgpptap - Then Equation 13.3.18becomes

@ 0 g @ 13.3.2 https://chem.libretexts.org/@go/page/107295



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/107295?pdf

LibreTextsw

8ﬁab
B qa) (13.3.23)

M) :ﬁab (1+Z

Mixed quantum-classical spectroscopy models apply a semiclassical approximation to Equation 13.3.18 Employing the
semiclassical approximation says that we will replace the quantum mechanical operator mab (t) with a classicalMab (t), i.e., we
replace the time propagator Up with classical propagation of the dynamics. Also, the trace over the bath in the correlation function
becomes an equilibrium ensemble average over phase space.

How do you implement the semiclassical approximation? Replacing the time propagator Up with classical dynamics amounts to
integrating Newton’s equations for all of the bath degrees of freedom. Then you must establish how the bath degrees of freedom
influence wpy, (t) and mg;(t). For the quantum operator m(Q, g, t), only the system coordinate ) remains quantized, and following
Equation 13.3.22we can express the orientation and magnitude of the dipole moment and the dynamics depends on the classical
degrees of freedom ¢, .

Mab = flap (1+Zaada> (13.3.24)

a, is a (linear) mapping coefficient
a6 =0y /04, (13.3.25)
between the bath and the transition dipole moment.

In practice, use of this approximation has been handled in different ways, but practical considerations have dictated that wp, (t) and
My (t) are not separately calculated for each time step, but are obtained from a mapping of these variables to the bath coordinates
q. This mapping may be to local or collective bath coordinates, and to as many degrees of freedom as are necessary to obtain a
highly correlated single valued mapping of wy,(t) and 4 (¢). Examples of these mappings include correlating wp, with the
electric field of the bath acting on the system coordinate.

Appendix

Let’s evaluate the dipole correlation function for an arbitrary HSB and an arbitrary number of system eigenstates. From Equation
13.3.14we have

Cun =3 papa (@ Ka Ul|e) Ul {c[vlmu,|d) Up (d|Uss| ) (bl ) o) (13.3.26)

abed
<c UimUs| d> = e (BBt (13.3.27)
Mea(t) = UlmeaUs (13.3.28)

.t 7 7 t
<a|U§B\ c> - <a et ot Hsb<f)‘c> = exp [z/ dt' [Hyp],, (t’)} (13.3.29)
0

Cuw =Y pa <e—iw«ktei Iy ¢ Hsglou o0 Ji dt'[HSBJdb<t/>mba>B (13.3.30)

ckitd

t
- <mcd(t)mba (0) exp [iwdct —i / dt'[Hspl,, (') — [Hss),, (t’)] > (13.3.31)
0 B
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