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15.2: Förster Resonance Energy Transfer (FRET)
Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an
acceptor molecule:

This electronic excitation transfer, whose practical description was first given by Förster, arises from a dipole–dipole interaction
between the electronic states of the donor and the acceptor, and does not involve the emission and reabsorption of a light field.
Transfer occurs when the oscillations of an optically induced electronic coherence on the donor are resonant with the electronic
energy gap of the acceptor. The strength of the interaction depends on the magnitude of a transition dipole interaction, which
depends on the magnitude of the donor and acceptor transition matrix elements, and the alignment and separation of the dipoles.
The sharp  dependence on distance is often used in spectroscopic characterization of the proximity of donor and acceptor.

The electronic ground and excited states of the donor and acceptor molecules all play a role in FRET. We consider the case in
which we have excited the donor electronic transition, and the acceptor is in the ground state. Absorption of light by the donor at
the equilibrium energy gap is followed by rapid vibrational relaxation that dissipates the reorganization energy of the donor 
over the course of picoseconds. This leaves the donor in a coherence that oscillates at the energy gap in the donor excited state 

. The time scale for FRET is typically nanoseconds, so this preparation step is typically much faster than the transfer
phase. For resonance energy transfer we require a resonance condition, so that the oscillation of the excited donor coherence is
resonant with the ground state electronic energy gap of the acceptor . Transfer of energy to the acceptor leads to
vibrational relaxation and subsequent acceptor fluorescence that is spectrally shifted from the donor fluorescence. In practice, the
efficiency of energy transfer is obtained by comparing the fluorescence emitted from donor and acceptor.

This description of the problem lends itself naturally to treating with a DHO Hamiltonian, However, an alternate picture is also
applicable, which can be described through the EG Hamiltonian. FRET arises from the resonance that occurs when the fluctuating
electronic energy gap of a donor in its excited state matches the energy gap of an acceptor in its ground state. In other words

These energy gaps are time-dependent with occasion crossings that allow transfer of energy.

Our system includes the ground and excited potentials of the donor and acceptor molecules. The four possible electronic
configurations of the system are
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Here the notation refers to the ground ( ) or excited ( ) vibronic states of either donor ( ) or acceptor ( ). More explicitly, the
states also include the vibrational excitation:

Thus the system can have no excitation, one excitation on the donor, one excitation on the acceptor, or one excitation on both donor
and acceptor. For our purposes, let’s only consider the two electronic configurations that are close in energy, and are likely to play a
role in the resonance transfer in Equation  and

 and 

Since the donor and acceptor are weakly coupled, we can write our Hamiltonian for this problem in a form that can be solved by
perturbation theory ( ). Working with the DHO. approach, our material Hamiltonian has four electronic manifolds to
consider:

Each of these is defined as we did previously, with an electronic energy and a dependence on a displaced nuclear coordinate. For
instance

 is the electronic energy of donor excited state.

Then, what is ? Classically it is a Coulomb interaction of the form ,

Here the sum is over all electrons and nuclei of the donor ( ) and acceptor ( ).
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As is, this is challenging to work with, but at large separation between molecules, we can recast this as a dipole–dipole interaction.
We define a frame of reference for the donor and acceptor molecule, and assume that the distance between molecules is large. Then
the dipole moments for the molecules are

The interaction between donor and acceptor takes the form of a dipole–dipole interaction:

where  is the distance between donor and acceptor dipoles and  is a unit vector that marks the direction between them. The
dipole operators here are taken to only act on the electronic states and be independent of nuclear configuration, i.e., the Condon
approximation. We write the transition dipole matrix elements that couple the ground and excited electronic states for the donor and
acceptor as

For the dipole operator, we can separate the scalar and orientational contributions as

This allows the transition dipole interaction in Equation  to be written as

All of the orientational factors are now in the term 

We can now obtain the rates of energy transfer using Fermi’s Golden Rule expressed as a correlation function in the interaction
Hamiltonian:

Note that this is not a Fourier transform! Since we are using a correlation function there is an assumption that we have an
equilibrium system, even though we are initially in the excited donor state. This is reasonable for the case that there is a clear time
scale separation between the ps vibrational relaxation and thermalization in the donor excited state and the time scale (or inverse
rate) of the energy transfer process.

Now substituting the initial state  and the final state , we find
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Here, we have neglected the rotational motion of the dipoles. Most generally, the orientational average is

However, this factor is easier to evaluate if the dipoles are static, or if they rapidly rotate to become isotropically distributed. For
the static case . For the case of fast loss of orientation:

Since the dipole operators act only on  or , and the  and  nuclear coordinates are orthogonal, we can separate terms in the
donor and acceptor states.

The terms in this equation represent the dipole correlation function for the donor initiating in the excited state and the acceptor
correlation function initiating in the ground state. That is, these are correlation functions for the donor emission (fluorescence) and
acceptor absorption. Remembering that  represents the electronic and nuclear configuration , we can use the displaced
harmonic oscillator Hamiltonian or energy gap Hamiltonian to evaluate the correlation functions. For the case of Gaussian statistics
we can write

Here we made use of

which expresses the emission frequency as a frequency shift of  relative to the donor absorption frequency. The dipole
correlation functions can be expressed in terms of the inverse Fourier transforms of a fluorescence or absorption lineshape:

To express the rate of energy transfer in terms of its common practical form, we make use of Parsival’s Theorem, which states that
if a Fourier transform pair is defined for two functions, the integral over a product of those functions is equal whether evaluated in
the time or frequency domain:

This allows us to express the energy transfer rate as an overlap integral  between the donor fluorescence and acceptor
absorption spectra:

Here � � is the lineshape normalized to the transition matrix element squared: . The overlap integral is a measure of
resonance between donor and acceptor transitions.
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So, the energy transfer rate scales as , depends on the strengths of the electronic transitions for donor and acceptor molecules,
and requires resonance between donor fluorescence and acceptor absorption. One of the things we have neglected is that the rate of
energy transfer will also depend on the rate of excited donor state population relaxation. Since this relaxation is typically dominated
by the donor fluorescence rate, the rate of energy transfer is commonly written in terms of an effective distance , and the
fluorescence lifetime of the donor :

At the critical transfer distance  the rate (or probability) of energy transfer is equal to the rate of fluorescence.  is defined in
terms of the sixth-root of the terms in Equation , and is commonly written as

This is the practical definition that accounts for the frequency dependence of the transitiondipole interaction and non-radiative
donor relaxation in addition to being expressed in common units.  represents units of frequency in cm . The fluorescence
spectrum  must be normalized to unit area, so that at  is expressed in cm (inverse wavenumbers). The absorption
spectrum  must be expressed in molar decadic extinction coefficient units (liter/mol*cm).  is the index of refraction of the
solvent,  is Avagadro’s number, and  is the donor fluorescence quantum yield.

FRET is one example of a quantum mechanical transition dipole interaction. The interaction between two dipoles,  and , in
Equation  is

Here,  is the transition dipole moment in Debye for the ground-to-excited state transition of molecule .  is the
distance between the centers of the point dipoles, and  is the unitless orientational factor

The figure below illustrates this function for the case of two parallel dipoles, as a function of the angle between the dipole and
the vector defining their separation.

In the case of vibrational coupling, the dipole operator is expanded in the vibrational normal coordinate: 
 and harmonic transition dipole matrix elements are
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where  is the vibrational frequency. If the frequency  is given in cm , and the transition dipole moment  is
given in units of , then the matrix element in units of  is

If the distance between dipoles is specified in Ångstroms, then the transition dipole coupling from Equation  in cm  is

Experimentally, one can determine the transition dipole moment from the absorbance  as
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