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3.7: Time-Dependent Perturbation Theory
Perturbation theory refers to calculating the time-dependence of a system by truncating the expansion of the interaction picture
time-evolution operator after a certain term. In practice, truncating the full time-propagator  is not effective, and only works well
for times short compared to the inverse of the energy splitting between coupled states of your Hamiltonian. The interaction picture
applies to Hamiltonians that can be cast as

and allows us to focus on the influence of the coupling. We can then treat the time evolution under  exactly, but truncate the
influence of . This works well for weak perturbations. Let’s look more closely at this.

We know the eigenstates for :

and we can calculate the evolution of the wavefunction that results from :

For a given state , we calculate  as:

where

Now we can truncate the expansion after a few terms. This works well for small changes in amplitude of the quantum states with
small coupling matrix elements relative to the energy splittings involved ( ). As we will see, the
results we obtain from perturbation theory are widely used for spectroscopy, condensed phase dynamics, and relaxation. Let’s take
the specific case where we have a system prepared in � , and we want to know the probability of observing the system in  at time
 due to :
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The first-order term allows only direct transitions between  and , as allowed by the matrix element in , whereas the second-
order term accounts for transitions occurring through all possible intermediate states . For perturbation theory, the time-ordered
integral is truncated at the appropriate order. Including only the first integral is first-order perturbation theory. The order of
perturbation theory that one would extend a calculation should be evaluated initially by which allowed pathways between  and 

 you need to account for and which ones are allowed by the matrix elements.

For first-order perturbation theory, the expression in Equation  is the solution to the differential equation that you get for direct
coupling between  and :

This indicates that the solution does not allow for the feedback between  and  that accounts for changing populations. This is
the reason we say that validity dictates

If the initial state of the system  is not an eigenstate of , we can express it as a superposition of eigenstates,

Another observation applies to first-order perturbation theory. If the system is initially prepared in a state , and a time-dependent
perturbation is turned on and then turned off over the time interval , then the complex amplitude in the target state 

 is just related to the Fourier transform of  evaluated at the energy gap .

If the Fourier transform pair is defined in the following manner:

Then we can write the probability of transfer to state  as
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Let’s consider a simple model for vibrational excitation induced by the compression of harmonic oscillator. We will subject a
harmonic oscillator initially in its ground state to a Gaussian compression pulse, which increases its force constant.

First, write the complete time-dependent Hamiltonian:

Now, partition it according to  in such a manner that we can write  as a harmonic oscillator Hamiltonian.
This involves partitioning the time-dependent force constant into two parts:

Here  is the magnitude of the induced change in the force constant, and  is the time-width of the Gaussian perturbation.
So, we know the eigenstates of : 

and

Now we ask, if the system is in  before applying the perturbation, what is the probability of finding it in state n after the
perturbation?

For 

Using

and recognizing that we can set the limits to 

Example: First-order Perturbation Theory
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This leads to

Here we made use of an important identity for Gaussian integrals:

and

What about the matrix element?

From these we see that first-order perturbation theory will not allow transitions to , only  and . Generally
this would not be realistic, because you would certainly expect excitation to  would dominate over excitation to .
A real system would also be anharmonic, in which case, the leading term in the expansion of the potential V(x), that is linear in
x, would not vanish as it does for a harmonic oscillator, and this would lead to matrix elements that raise and lower the
excitation by one quantum.

However for the present case,

So,

and we can write the probability of occupying the  state as

From the exponential argument, significant transfer of amplitude occurs when the compression pulse width is small compared
to the vibrational period.

In this regime, the potential is changing faster than the atoms can respond to the perturbation. In practice, when considering a
solid-state problem, with frequencies matching those of acoustic phonons and unit cell dimensions, we need perturbations that
move faster than the speed of sound, i.e., a shock wave. The opposite limit, , is the adiabatic limit. In this case, the
perturbation is so slow that the system always remains entirely in n=0, even while it is compressed.

Now, let’s consider the validity of this first-order treatment. Perturbation theory does not allow for  to change much from its
initial value. First we re-write Equation  as

Now for changes that don’t differ much from the initial value, 
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Generally, the magnitude of the perturbation  must be small compared to .

One step further… 

The preceding example was simple, but it tracks the general approach to setting up problems that you treat with time-dependent
perturbation theory. The approach relies on writing a Hamiltonian that can be cast into a Hamiltonian that you can treat exactly ,
and time-dependent perturbations that shift amplitudes between its eigenstates. For this scheme to work well, we need the
magnitude of perturbation to be small, which immediately suggests working with a Taylor series expansion of the potential. For
instance, take a one-dimensional potential for a bound particle, , which is dependent on the form of an external variable y. We
can expand the potential in x about its minimum  as

The first term is the harmonic force constant for , and the second term is a bi-linear coupling whose magnitude  indicates
how much a change in the variable y influences the variable . The remaining terms are cubic expansion terms.  is the cubic
anharmonicity of , and the remaining two terms are cubic couplings that describe the dependence of x and y. Introducing a
time-dependent potential is equivalent to introducing a time-dependence to the operator y, where the form and strength of the
interaction is subsumed into the amplitude . In the case of the previous example, our formulation of the problem was equivalent
to selecting only the  term, so that , and giving the value of y a time-dependence described by the Gaussian
waveform.
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