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1.5: Numerically Solving the Schrödinger Equation
Often the bound potentials that we encounter are complex, and the time-independent Schrödinger equation will need to be
evaluated numerically. There are two common numerical methods for solving for the eigenvalues and eigenfunctions of a potential.
Both methods require truncating and discretizing a region of space that is normally spanned by an infinite dimensional Hilbert
space. The Numerov method is a finite difference method that calculates the shape of the wavefunction by integrating step-by-step
across along a grid. The DVR method makes use of a transformation between a finite discrete basis and the finite grid that spans
the region of interest.

Figure : Selection and discretization of a space bounding the region for which the TISE will be solved numerically. A space of
length  is discretized into  points separated by a spacing  over which the potential varies slowly.

The Numerov Method 
A one-dimensional Schrödinger equation for a particle in a potential can be numerically solved on a grid that discretizes the
position variable using a finite difference method. The TISE is

with

which we can write as

where

If we discretize the variable , choosing a grid spacing  over which  varies slowly, we can use a three point finite difference to
approximate the second derivative:

The discretized Schrödinger equation can then be written in the form

Using the equation for , one can iteratively solve for the eigenfunction. In practice, you discretize over a range of space
such that the highest and lowest values lie in a region where the potential is very high or forbidden. Splitting the space into N
points, chose the first two values  and x to be a small positive or negative number, guess , and propagate
iteratively to . A comparison of the wavefunctions obtained by propagating from  to  with that obtained propagating
from  to  tells you how good your guess of  was.
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The Numerov Method improves on Equation  by taking account for the fourth derivative of the wavefunction , leading to
errors on the order . Equation  becomes

By differentiating Equation  we know

and the discretized Schrödinger equation becomes

This equation leads to the iterative solution for the wavefunction

Discrete Variable Representation (DVR) 

Numerical solutions to the wavefunctions of a bound potential in the position representation require truncating and discretizing a
region of space that is normally spanned by an infinite dimensional Hilbert space. The DVR approach uses a real space basis set
whose eigenstates  we know and that span the space of interest—for instance harmonic oscillator wavefunctions—to express
the eigenstates of a Hamiltonian in a grid basis ( ) that is meant to approximate the real space continuous basis . The two
basis sets, which we term the eigenbasis ( ) and grid basis ( ), will be connected through a unitary transformation

 

For  discrete points in the grid basis, there will be  eigenvectors in the eigenbasis, allowing the properties of projection and
completeness will hold in both bases. Wavefunctions can be obtained by constructing the Hamiltonian in the eigenbasis,

 transforming to the DVR basis,  and then diagonalizing.

Here we will discuss a version of DVR in which the grid basis is set up to mirror the continuous  eigenbasis. We begin by
choosing the range of  that contain the bound states of interest and discretizing these into  points ( ) equally spaced by . We
assume that the DVR basis functions  resemble the infinite dimensional position basis

Our truncation is enabled using a projection operator in the reduced space

which is valid for appropriately high . The complete Hamiltonian can be expressed in the DVR basis DVR

For the potential energy, since  is localized with , we make the DVR approximation, which casts  into a
diagonal form that is equal to the potential energy evaluated at the grid point:

This comes from approximating the transformation as 

For the kinetic energy matrix elements , we need to evaluate second derivatives between different grid points.
Fortunately, Colbert and Miller have simplified this process by finding an analytical form for the  matrix for a uniformly
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gridded box with a grid spacing of .

This comes from a Fourier expansion in a uniformly gridded box. Naturally this looks oscillatory in  at period of . Expression
becomes exact in the limit of  or . The numerical routine becomes simple and efficient. We construct a
Hamiltonian filling with matrix elements whose potential and kinetic energy contributions are given by Equations  and 

. Then we diagonalize , from which we obtain  eigenvalues and the  corresponding eigenfunctions.
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