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11.1: Classical Linear Response Theory
We will use linear response theory as a way of describing a real experimental observable. Specifically this will tell us how an
equilibrium system changes in response to an applied potential. The quantity that will describe this is a response function, a real
observable quantity. We will go on to show how it is related to correlation functions. Embedded in this discussion is a particularly
important observation. We will now deal with a nonequilibrium system, but we will show that when the changes are small away
from equilibrium, the equilibrium fluctuations dictate the nonequilibrium response! Thus knowledge of equilibrium dynamics is
useful in predicting the outcome of nonequilibrium processes.

So, the question is “How does the system respond if you drive it away from equilibrium?” We will examine the case where an
equilibrium system, described by a Hamiltonian  interacts weakly with an external agent, . The system is moved away from
equilibrium by the external agent, and the system absorbs energy from the external agent. How do we describe the time-dependent
properties of the system? We first take the external agent to interact with the system through an internal variable . So the
Hamiltonian for this problem is given by

Here  is the time-dependent action of the external agent, and the deviation from equilibrium is linear in the internal variable.
We describe the behavior of an ensemble initially at thermal equilibrium by assuming that each member of the ensemble is subject
to the same interaction with the external agent, and then ensemble averaging. Initially, the system is described by . It is at
equilibrium and the internal variable is characterized by an equilibrium ensemble average . The external agent is then applied at
time t0, and the system is moved away from equilibrium, and is characterized through a nonequilibrium ensemble average, . 

 as a result of the interaction.

For a weak interaction with the external agent, we can describe  by performing an expansion in powers of 

In this expression the agent is applied at 0 t , and we observe the system att. The leading term in this expansion is independent of f,
and is therefore equal to A . The next term in Equation  describes the deviation from the equilibrium behavior in terms of a
linear dependence on the external agent.  is the linear response function, the quantity that contains the microscopic
information on the system and how it responds to the applied agent. The integration in the last term of Equation  indicates
that the nonequilibrium behavior depends on the full history of the application of the agent  and the response of the system to
it. We are seeking a quantum mechanical description of .
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Properties of the Response Function 
1. Causal: Causality refers to the common sense observation that the system cannot respond before the force has been applied.
Therefore  for , and the time-dependent change in  is

The lower integration limit is set to  to reflect that the system is initially at equilibrium, and the upper limit is the time of
observation. We can also make the statement of causality explicit by writing the linear response function with a step response: 

, where

2. Stationary: Similar to our discussion of correlation functions, the time-dependence of the system only depends on the time
interval between application of the potential and observation. Therefore we write

and

This expression says that the observed response of the system to the agent is a convolution of the material response with the time-
development of the applied force. Rather than the absolute time points, we can define a time-interval , so that we can
write

3. Impulse response: Note that for a delta function perturbation:

We obtain

Thus,  describes how the system behaves when an abrupt perturbation is applied and is often referred to as the impulse response
function. An impulse response kicks the system away from the equilibrium established under H0, and therefore the shape of a
response function will always rise from zero and ultimately return to zero. In other words, it will be a function that can be expanded
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in sines. Thus the response to an arbitrary f(t) can be described through a Fourier analysis, suggesting that a spectral representation
of the response function would be useful.

The Susceptibility 

The observed temporal behavior of the nonequilibrium system can also be cast in the frequency domain as a spectral response
function, or susceptibility. We start with Equation  and Fourier transform both sides:

Now we insert  and collect terms to give

or

In Equation  we switched variables, setting . The first term  is a complex frequency domain representation
of the driving force, obtained from the Fourier transform of . The second term  is the susceptibility which is defined as
the Fourier–Laplace transform (i.e., single-sided Fourier transform) of the impulse response function. It is a frequency domain
representation of the linear response function. Switching between time and frequency domains shows that a convolution of the
force and response in time leads to the product of the force and response in frequency. This is a manifestation of the convolution
theorem:

Here  refers to convolution, ,  is a Fourier transform, and  is an inverse Fourier transform.

Note that  is a real function, since the response of a system is an observable. The susceptibility  is complex:

Since

However, the real and imaginary contributions are not independent. We have

and

 and  are even and odd functions of frequency:
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so that

Notice also that Equation  allows us to write

Kramers–Krönig relations 

Since they are cosine and sine transforms of the same function,  is not independent of . The two are related by the
Kramers–Krönig relationships:

These are obtained by substituting the inverse sine transform of Equation  into Equation 

Using  this can be written as
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If we choose to evaluate the limit , the cosine terms are hard to deal with, but we expect they will vanish since they
oscillate rapidly. This is equivalent to averaging over a monochromatic field. Alternatively, we can average over a single cycle: 

 to obtain eq. (10.24). The other relation can be derived in a similar way. Note that the Kramers– Krönig
relationships are a consequence of causality, which dictate the lower limit of  on the first integral evaluated above.

One can classically model the absorption of light through a resonant interaction of the electromagnetic field with an oscillating
dipole, using Newton’s equations for a forced damped harmonic oscillator:

Here the  is the coordinate being driven,  is the damping constant, and  is the natural frequency of the
oscillator. We originally solved this problem is to take the driving force to have the form of a monochromatic oscillating source

Then, Equation  has the solution

with

This shows that the driven oscillator has an oscillation period that is dictated by the driving frequency , and whose amplitude
and phase shift relative to the driving field is dictated by its detuning from resonance. If we cycle-average to obtain the average
absorbed power from the field, the absorption spectrum is 
 

To determine the response function for the damped harmonic oscillator, we seek a solution to Equation  using an
impulsive driving force

The linear response of this oscillator to an arbitrary force is

so that time-dependence with an impulsive driving force is directly proportional to the response function, . For
this case, we obtain

The reduced frequency is defined as

From this, we evaluate eq. (10.16) and obtain the susceptibility

As we will see shortly, the absorption of light by the oscillator is proportional to the imaginary part of the susceptibility
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The real part is

For the case of weak damping  commonly encountered in molecular spectroscopy, Equation  is written as a
Lorentzian lineshape by using the near-resonance approximation

 
 
Then the imaginary part of the susceptibility shows asymmetric lineshape with a line width of  full width at half maximum. 
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Nonlinear Response Functions 

If the system does not respond in a manner linearly proportional to the applied potential but still perturbative, we can include
nonlinear terms, i.e. higher expansion orders of  in Equation .

Let’s look at second order:

Again we are integrating over the entire history of the application of two forces  and , including any quadratic dependence on 
. In this case, we will enforce causality through a time ordering that requires

1. that all forces must be applied before a response is observed and
2. that the application of  must follow . That is  or

which leads to

Now we will call the system stationary so that we are only concerned with the time intervals between consecutive interaction
times. If we define the intervals between adjacent interactions

Then we have
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