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1

CHAPTER OVERVIEW

1: The Basics of Quantum Mechanics

In this Chapter, you should have learned about the following things:

Why quantum mechanics is needed; that is, what things classical mechanics does not describe correctly. How quantum and
classical descriptions can sometimes agree and when they will not. How certain questions can only be asked when classical
mechanics applies, not when quantum mechanics is needed.
The Schrödinger equation, operators, wave functions, eigenvalues and eigenfunctions and their relations to experimental
observations.
Time propagation of wave functions.
Free particle motion and corresponding eigenfunctions in one, two, and three dimensions and the associated energy levels,
and the relevance of these models to various chemistry issues.
Action quantization and the resulting semi-classical wave functions and how this point of view offers connections between
classical and quantum perspectives.

In this portion of the text, most of the topics that are appropriate to an undergraduate reader are covered. Many of these subjects are
subsequently discussed again in Chapter 5, where a broad perspective of what theoretical chemistry is about is offered. They are
treated again in greater detail in Chapters 6-8 where the three main disciplines of theory, electronic structure, chemical dynamics,
and statistical mechanics, are covered in depth appropriate to a graduate-student reader.

1.1: Why Quantum Mechanics is Necessary
1.2: The Schrödinger Equation and Its Components
1.3: The Born-Oppenheimer Approximation
1.4: Free Particle Motions in More Dimensions

Contributors and Attributions 
Jack Simons (Henry Eyring Scientist and Professor of Chemistry, U. Utah) Telluride Schools on Theoretical Chemistry

Integrated by Tomoyuki Hayashi (UC Davis) 
 

This page titled 1: The Basics of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons.
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1.1: Why Quantum Mechanics is Necessary
The field of theoretical chemistry deals with the structures, bonding, reactivity, and physical properties of atoms, molecules,
radicals, and ions all of whose sizes range from ca. 1 Å for atoms and small molecules to a few hundred Å for polymers and
biological molecules such as DNA and proteins. Sometimes these building blocks combine to form nanoscopic materials (e.g.,
quantum dots, graphene sheets) whose dimensions span up to thousands of Å, making them amenable to detection using specialized
microscopic tools. However, description of the motions and properties of the particles comprising such small systems has been
found to not be amenable to treatment using classical mechanics. Their structures, energies, and other properties have only been
successfully described within the framework of quantum mechanics. This is why quantum mechanics has to be mastered as part of
learning theoretical chemistry.

We know that all molecules are made of atoms that, in turn, contain nuclei and electrons. As I discuss in this Chapter, the equations
that govern the motions of electrons and of nuclei are not the familiar Newton equations

but a new set of equations called Schrödinger equations. When scientists first studied the behavior of electrons and nuclei, they
tried to interpret their experimental findings in terms of classical Newtonian motions, but such attempts eventually failed. They
found that such small light particles behaved in a way that simply is not consistent with the Newton equations. Let me now
illustrate some of the experimental data that gave rise to these paradoxes and show you how the scientists of those early times then
used these data to suggest new equations that these particles might obey. I want to stress that the Schrödinger equation was not
derived but postulated by these scientists. In fact, to date, to the best of my knowledge, no one has been able to derive the
Schrödinger equation.

From the pioneering work of Bragg on diffraction of x-rays from planes of atoms or ions in crystals, it was known that peaks in the
intensity of diffracted x-rays having wavelength l would occur at scattering angles q determined by the famous Bragg equation:

where d is the spacing between neighboring planes of atoms or ions. These quantities are illustrated in Figure 1.1 shown below.
There are may such diffraction peaks, each labeled by a different value of the integer  ( ). The Bragg formula can
be derived by considering when two photons, one scattering from the second plane in the figure and the second scattering from the
third plane, will undergo constructive interference. This condition is met when the extra path length covered by the second photon
(i.e., the length from points  to  to ) is an integer multiple of the wavelength of the photons.

Figure 1.1. Scattering of two beams at angle  from two planes in a crystal spaced by d.

The importance of these x-ray scattering experiments to electrons and nuclei appears in the experiments of Davisson and Germer in
1927 who scattered electrons of (reasonably) fixed kinetic energy  from metallic crystals. These workers found that plots of the
number of scattered electrons as a function of scattering angle  displayed peaks at angles  that obeyed a Bragg-like equation. The
startling thing about this observation is that electrons are particles, yet the Bragg equation is based on the properties of waves. An
important observation derived from the Davisson-Germer experiments was that the scattering angles  observed for electrons of
kinetic energy  could be fit to the Bragg equation if a wavelength were ascribed to these electrons that was defined by

F = ma (1.1)

nλ = 2d sinθ (1.2)

n n = 1, 2, 3, ⋯

A B C

θ

E

θ θ

θ

E

λ =
h

2 Eme
− −−−−

√
(1.3)
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where  is the mass of the electron and h is the constant introduced by Max Planck and Albert Einstein in the early 1900s to
relate a photon’s energy  to its frequency  via ). These amazing findings were among the earliest to suggest that
electrons, which had always been viewed as particles, might have some properties usually ascribed to waves. That is, as de Broglie
has suggested in 1925, an electron seems to have a wavelength inversely related to its momentum, and to display wave-type
diffraction. I should mention that analogous diffraction was also observed when other small light particles (e.g., protons, neutrons,
nuclei, and small atomic ions) were scattered from crystal planes. In all such cases, Bragg-like diffraction is observed and the
Bragg equation is found to govern the scattering angles if one assigns a wavelength to the scattering particle according to

where

 is the mass of the scattered particle and
 is Planck’s constant (6.62 x10  erg sec).

The observation that electrons and other small light particles display wave like behavior was important because these particles are
what all atoms and molecules are made of. So, if we want to fully understand the motions and behavior of molecules, we must be
sure that we can adequately describe such properties for their constituents. Because the classical Newtonian equations do not
contain factors that suggest wave properties for electrons or nuclei moving freely in space, the above behaviors presented
significant challenges.

Another problem that arose in early studies of atoms and molecules resulted from the study of the photons emitted from atoms and
ions that had been heated or otherwise excited (e.g., by electric discharge). It was found that each kind of atom (i.e., H or C or O)
emitted photons whose frequencies  were of very characteristic values. An example of such emission spectra is shown in Figure
1.2 for hydrogen atoms.

Figure 1.2. Emission spectrum of atomic hydrogen with some lines repeated below to illustrate the series to which they belong.

In the top panel, we see all of the lines emitted with their wave lengths indicated in nano-meters. The other panels show how these
lines have been analyzed (by scientists whose names are associated) into patterns that relate to the specific energy levels between
which transitions occur to emit the corresponding photons.

In the early attempts to rationalize such spectra in terms of electronic motions, one described an electron as moving about the
atomic nuclei in circular orbits such as shown in Figure 1. 3.

Figure 1.3: Characterization of small and large stable orbits for an electron moving around a nucleus.

me

E ν E = hν

λ =
h

2mE
− −−−

√
(1.4)

m

h -27

ν
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A circular orbit was thought to be stable when the outward centrifugal force characterized by radius  and speed  ( ) on the
electron perfectly counterbalanced the inward attractive Coulomb force ( ) exerted by the nucleus of charge :

This equation, in turn, allows one to relate the kinetic energy  to the Coulombic energy , and thus to express the total

energy  of an orbit in terms of the radius of the orbit:

The energy characterizing an orbit or radius , relative to the  reference of energy at , becomes more and more
negative (i.e., lower and lower) as  becomes smaller. This relationship between outward and inward forces allows one to conclude
that the electron should move faster as it moves closer to the nucleus since . However, nowhere in this model is a
concept that relates to the experimental fact that each atom emits only certain kinds of photons. It was believed that photon
emission occurred when an electron moving in a larger circular orbit lost energy and moved to a smaller circular orbit. However,
the Newtonian dynamics that produced the above equation would allow orbits of any radius, and hence any energy, to be followed.
Thus, it would appear that the electron should be able to emit photons of any energy as it moved from orbit to orbit.

The breakthrough that allowed scientists such as Niels Bohr to apply the circular-orbit model to the observed spectral data involved
first introducing the idea that the electron has a wavelength and that this wavelength l is related to its momentum by the de Broglie
equation . The key step in the Bohr model was to also specify that the radius of the circular orbit be such that the
circumference of the circle  be equal to an integer ( ) multiple of the wavelength . Only in this way will the electron’s wave
experience constructive interference as the electron orbits the nucleus. Thus, the Bohr relationship that is analogous to the Bragg
equation that determines at what angles constructive interference can occur is

Both this equation and the analogous Bragg equation are illustrations of what we call boundary conditions; they are extra
conditions placed on the wavelength to produce some desired character in the resultant wave (in these cases, constructive
interference). Of course, there remains the question of why one must impose these extra conditions when the Newton dynamics do
not require them. The resolution of this paradox is one of the things that quantum mechanics does.

Returning to the above analysis and using , , as well as the force-balance equation 
, one can then solve for the radii that stable Bohr orbits obey:

and, in turn for the velocities of electrons in these orbits

These two results then allow one to express the sum of the kinetic ( ) and Coulomb potential ( ) energies as

Just as in the Bragg diffraction result, which specified at what angles special high intensities occurred in the scattering, there are
many stable Bohr orbits, each labeled by a value of the integer . Those with small  have small radii (scaling as ), high
velocities (scaling as 1/n) and more negative total energies (n.b., the reference zero of energy corresponds to the electron at ,
and with ). So, it is the result that only certain orbits are allowed that causes only certain energies to occur and thus only
certain energies to be observed in the emitted photons.

It turned out that the Bohr formula for the energy levels (labeled by ) of an electron moving about a nucleus could be used to
explain the discrete line emission spectra of all one-electron atoms and ions (i.e., , , , etc., sometimes called hydrogenic
species) to very high precision. In such an interpretation of the experimental data, one claims that a photon of energy
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is emitted when the atom or ion undergoes a transition from an orbit having quantum number  to a lower-energy orbit having .
Here the symbol  is used to denote the following collection of factors:

and is called the Rydberg unit of energy and is equal to 13.6 eV.

The Bohr formula for energy levels did not agree as well with the observed pattern of emission spectra for species containing more
than a single electron. However, it does give a reasonable fit, for example, to the Na atom spectra if one examines only transitions
involving only the single 3s valence electron. Moreover, it can be greatly improved if one introduces a modification designed to
treat the penetration of the Na atom’s 3s and higher orbitals within the regions of space occupied by the 1s, 2s, and 2p orbitals.
Such a modification to the Bohr model is achieved by introducing the idea of a so-called quantum defect d into the principal
quantum number  so that the expression for the -dependence of the orbitals changes to

Example 1.1

For example, choosing  equal to 0.41, 1.37, 2.23, 3.19, or 4.13 for Li, Na, K, Rb, and Cs, respectively, in this so-called Rydberg
formula, one finds decent agreement between the -dependence of the energy spacings of the singly excited valence states of these
atoms. The fact that  is larger for Na than for Li and largest for Cs reflects that fact that the 3s orbital of Na penetrates the 1s, 2s, and
2p shells while the 2s orbital of Li penetrates only the 1s shell and the 6s orbital of Cs penetrates  1, 2, 3, 4, and 5 shells.

It turns out this Rydberg formula can also be applied to certain electronic states of molecules. In particular, for closed-shell cations
such as , , protonated alcohols and protonated amines (even on side chains of amino acids), an electron can be
attached into a so-called Rydberg orbital to form corresponding neutral radicals such as , , , or . For
example, in , the electron bound to an underlying  cation core. The lowest-energy state of this Rydberg species is often
labeled 3s because  is isoelectronic with the Na+ cation which binds an electron in its 3s orbital in its ground state. As in the
cases of alkali atoms, these Rydberg molecules also possess excited electronic states. For example, the NH4 radical has states
labeled 3p, 3d, 4s, 4p, 4d, 4f, etc. By making an appropriate choice of the quantum defect parameter d, the energy spacings among
these states can be fit reasonably well to the Rydberg formula (Equation 1.13). In Figure 1.3.a several Rydberg orbitals of  are
shown

Figure 1.3. a. The , , and  Rydberg orbitals of  with their outermost contours containing 60% of their electron density.
The smaller orbitals are supposed to depict C-C, C-N, or C-O  orbitals to give perspective of the Rydberg orbitals’ sizes.
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These Rydberg orbitals can be quite large (their sizes scale as , clearly have the s, p, or d angular shapes, and possess the
expected number of radial nodes. However, for molecular Rydberg orbital’s, and unlike atomic Rydberg orbitals, the three , five ,
seven , etc. orbitals are not degenerate; instead they are split in energy in a manner reflecting the symmetry of the underlying
cation’s symmetry. For example, for , the three  orbitals are degenerate and belong to  symmetry in the  point group;
the five  orbitals are split into three degenerate  and two degenerate e orbitals.

So, the Bohr model works well for one-electron atoms or ions and the quantum defect-modified Bohr equation describes
reasonably well some states of alkali atoms and of Rydberg molecules. The primary reason for the breakdown of the Bohr formula
is the neglect of electron-electron Coulomb repulsions in its derivation, which are qualitatively corrected for by using the quantum
defect parameter for Rydberg atoms and molecules. Nevertheless, the success of the Bohr model made it clear that discrete
emission spectra could only be explained by introducing the concept that not all orbits were allowed. Only special orbits that
obeyed a constructive-interference condition were really accessible to the electron’s motions. This idea that not all energies were
allowed, but only certain quantized energies could occur was essential to achieving even a qualitative sense of agreement with the
experimental fact that emission spectra were discrete.

In summary, two experimental observations on the behavior of electrons that were crucial to the abandonment of Newtonian
dynamics were the observations of electron diffraction and of discrete emission spectra. Both of these findings seem to suggest that
electrons have some wave characteristics and that these waves have only certain allowed (i.e., quantized) wavelengths.

So, now we have some idea about why Newton’s equations fail to account for the dynamical motions of light and small particles
such as electrons and nuclei. We see that extra conditions (e.g., the Bragg condition or constraints on the de Broglie wavelength)
could be imposed to achieve some degree of agreement with experimental observation. However, we still are left wondering what
equations can be applied to properly describe such motions and why the extra conditions are needed. It turns out that a new kind of
equation based on combining wave and particle properties needed to be developed to address such issues. These are the so-called
Schrödinger equations to which we now turn our attention.

As I said earlier, no one has yet shown that the Schrödinger equation follows deductively from some more fundamental theory.
That is, scientists did not derive this equation; they postulated it. Some idea of how the scientists of that era dreamed up the
Schrödinger equation can be had by examining the time and spatial dependence that characterizes so-called traveling waves. It
should be noted that the people who worked on these problems knew a great deal about waves (e.g., sound waves and water waves)
and the equations they obeyed. Moreover, they knew that waves could sometimes display the characteristic of quantized
wavelengths or frequencies (e.g., fundamentals and overtones in sound waves). They knew, for example, that waves in one
dimension that are constrained at two points (e.g., a violin string held fixed at two ends) undergo oscillatory motion in space and
time with characteristic frequencies and wavelengths. For example, the motion of the violin string just mentioned can be described
as having an amplitude  at a position  along its length at time  given by

where  is its oscillation frequency. The amplitude’s spatial dependence also has a sinusoidal dependence given by

where  is the crest-to-crest length of the wave. Two examples of such waves in one dimension are shown in Figure 1. 4.

Figure 1.4. Fundamental and first overtone notes of a violin string of length .
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In these cases, the string is fixed at  and at , so the wavelengths belonging to the two waves shown are  and 
. If the violin string were not clamped at , the waves could have any value of . However, because the string is

attached at , the allowed wavelengths are quantized to obey

where . The equation that such waves obey, called the wave equation, reads:

where  is the speed at which the wave travels. This speed depends on the composition of the material from which the violin string
is made; stiff string material produces waves with higher speeds than for softer material. Using the earlier expressions for the 
and -dependences of the wave , we find that the wave’s frequency and wavelength are related by the so-called dispersion
equation:

or

This relationship implies, for example, that an instrument string made of a very stiff material (large ) will produce a higher
frequency tone for a given wavelength (i.e., a given value of ) than will a string made of a softer material (smaller ).

For waves moving on the surface of, for example, a rectangular two-dimensional surface of lengths  and , one finds

Hence, the waves are quantized in two dimensions because their wavelengths must be constrained to cause  to vanish at 
 and  as well as at  and  for all times .

It is important to note, in closing this discussion of waves on strings and surfaces, that it is not being a solution to the Schrödinger
equation that results in quantization of the wavelengths. Instead, it is the condition that the wave vanish at the boundaries that
generates the quantization. You will see this trend time and again throughout this text; when a wave function is subject to specific
constraints at its inner or outer boundary (or both), quantization will result; if these boundary conditions are not present,
quantization will not occur. Let us now return to the issue of waves that describe electrons moving.

The pioneers of quantum mechanics examined functional forms similar to those shown above. For example, forms such as 
 were considered because they correspond to periodic waves that evolve in  and  under no external -

or -dependent forces. Noticing that

and using the de Broglie hypothesis  in the above equation, one finds

If  is supposed to relate to the motion of a particle of momentum p under no external forces (since the waveform corresponds to
this case),  can be related to the energy  of the particle by . So, the equation for  can be rewritten as:

or, alternatively,
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Returning to the time-dependence of  and using , one can also show that

which, using the first result, suggests that

This is a primitive form of the Schrödinger equation that we will address in much more detail below. Briefly, what is important to
keep in mind that the use of the de Broglie and Planck/Einstein connections (  and ), both of which involve the
constant h, produces suggestive connections between

and between

or, alternatively, between

These connections between physical properties (energy  and momentum ) and differential operators are some of the unusual
features of quantum mechanics.

The above discussion about waves and quantized wavelengths as well as the observations about the wave equation and differential
operators are not meant to provide or even suggest a derivation of the Schrödinger equation. Again the scientists who invented
quantum mechanics did not derive its working equations. Instead, the equations and rules of quantum mechanics have been
postulated and designed to be consistent with laboratory observations. My students often find this to be disconcerting because they
are hoping and searching for an underlying fundamental basis from which the basic laws of quantum mechanics follow logically. I
try to remind them that this is not how theory works. Instead, one uses experimental observation to postulate a rule or equation or
theory, and one then tests the theory by making predictions that can be tested by further experiments. If the theory fails, it must be
refined, and this process continues until one has a better and better theory. In this sense, quantum mechanics, with all of its unusual
mathematical constructs and rules, should be viewed as arising from the imaginations of scientists who tried to invent a theory that
was consistent with experimental data and which could be used to predict things that could then be tested in the laboratory. Thus
far, this theory has proven to be reliable, but, of course, we are always searching for a new and improved theory that describes how
small light particles move.

If it helps you to be more accepting of quantum theory, I should point out that the quantum description of particles reduces to the
classical Newton description under certain circumstances. In particular, when treating heavy particles (e.g., macroscopic masses
and even heavier atoms), it is often possible to use Newton dynamics. Soon, we will discuss in more detail how the quantum and
classical dynamics sometimes coincide (in which case one is free to use the simpler Newton dynamics). So, let us now move on to
look at this strange Schrödinger equation that we have been digressing about for so long.
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1.2: The Schrödinger Equation and Its Components
It has been well established that electrons moving in atoms and molecules do not obey the classical Newton equations of motion.
People long ago tried to treat electronic motion classically, and found that features observed clearly in experimental measurements
simply were not consistent with such a treatment. Attempts were made to supplement the classical equations with conditions that could
be used to rationalize such observations. For example, early workers required that the angular momentum  be allowed to
assume only integer multiples of  (which is often abbreviated as ), which can be shown to be equivalent to the Bohr postulate 

. However, until scientists realized that a new set of laws, those of quantum mechanics, applied to light microscopic
particles, a wide gulf existed between laboratory observations of molecule-level phenomena and the equations used to describe such
behavior.

Quantum mechanics is cast in a language that is not familiar to most students of chemistry who are examining the subject for the first
time. Its mathematical content and how it relates to experimental measurements both require a great deal of effort to master. With these
thoughts in mind, i have organized this material in a manner that first provides a brief introduction to the two primary constructs of
quantum mechanics- operators and wave functions that obey a Schrödinger equation. Next, I demonstrate the application of these
constructs to several chemically relevant model problems. By learning the solutions of the Schrödinger equation for a few model
systems, the student can better appreciate the treatment of the fundamental postulates of quantum mechanics as well as their relation to
experimental measurement for which the wave functions of the known model problems offer important interpretations.

Operators 

Each physically measurable quantity has a corresponding operator. The eigenvalues of the operator tell the only values of the
corresponding physical property that can be observed in an experimental probe of that property. Some operators have a continuum of
eigenvalues, but others have only discrete quantized eigenvalues.

Any experimentally measurable physical quantity  (e.g., energy, dipole moment, orbital angular momentum, spin angular
momentum, linear momentum, kinetic energy) has a classical mechanical expression in terms of the Cartesian positions  and
momenta  of the particles that comprise the system of interest. Each such classical expression is assigned a corresponding
quantum mechanical operator  formed by replacing the  in the classical form by the differential operator

and leaving the coordinates  that appear in  untouched. If one is working with a classical quantity expressed in terms of curvilinear
coordinates, it is important that this quantity first be rewritten in Cartesian coordinates. The replacement of the Cartesian momenta by 

 can then be made and the resultant expression can be transformed back to the curvilinear coordinates if desired.

Example 1.2.1

For example, the classical kinetic energy of  particles (with masses ) moving in a potential field containing both quadratic and linear
coordinate-dependence can be written as

The quantum mechanical operator associated with this  is

Such an operator would occur when, for example, one describes the sum of the kinetic energies of a collection of particles (the first term) in
Eq. 1.3), plus the sum of "Hookes' Law" parabolic potentials (the second term in Eq. 1.3), and the interactions of the particles with an
externally applied field (the last term Eq. 1.3) whose potential energy varies linearly as the particles move away from their equilibrium
positions .

Let us try more examples. The sum of the -components of angular momenta (recall that vector angular momentum  is defined as 
 of a collection of  particles has the following classical expression
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and the corresponding operator is

If one transforms these Cartesian coordinates and derivatives into polar coordinates, the above expression reduces to

where  is the azimuthal angle of the  particle.

The -component of the dipole moment for a collection of  particles has a classical form of

for which the quantum operator is

where  is the charge on the  particle. Notice that in this case, classical and quantum forms are identical because  contains no
momentum operators.

Remember, the mapping from  to  is straightforward only in terms of Cartesian coordinates. To map a classical function , given
in terms of curvilinear coordinates (even if they are orthogonal), into its quantum operator is not at all straightforward. The mapping
can always be done in terms of Cartesian coordinates after which a transformation of the resulting coordinates and differential
operators to a curvilinear system can be performed.

The relationship of these quantum mechanical operators to experimental measurement lies in the eigenvalues of the quantum operators.
Each such operator has a corresponding eigenvalue equation

in which the  are called eigenfunctions and the (scalar numbers)  are called eigenvalues. All such eigenvalue equations are posed
in terms of a given operator (  in this case) and those functions  that  acts on to produce the function back again but multiplied
by a constant (the eigenvalue). Because the operator  usually contains differential operators (coming from the momentum), these
equations are differential equations. Their solutions  depend on the coordinates that  contains as differential operators. An example
will help clarify these points. The differential operator  acts on what functions (of ) to generate the same function back again but
multiplied by a constant? The answer is functions of the form  since

So, we say that  is an eigenfunction of  and  is the corresponding eigenvalue.

As I will discuss in more detail shortly, the eigenvalues of the operator  tell us the only values of the physical property corresponding
to the operator  that can be observed in a laboratory measurement. Some  operators that we encounter possess eigenvalues that are
discrete or quantized. For such properties, laboratory measurement will result in only those discrete values. Other  operators have
eigenvalues that can take on a continuous range of values; for these properties, laboratory measurement can give any value in this
continuous range.

An important characteristic of the quantum mechanical operators formed as discussed above for any measurable property is the fact
that they are Hermitian. An operator  that acts on coordinates denoted  is Hermitian if
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or, equivalently,

for any functions  and . The operator corresponding to any power of the coordinate  itself is easy to show obeys this

identity, but what about the corresponding momentum operator ? Let’s take the left hand side of the above identity for

and rewrite it using integration by parts as follows:

If the functions  and  are assumed to vanish at , the right-hand side of this equation can be rewritten as

So,  is indeed a Hermitian operator. Moreover, using the fact that  and  are Hermitian, one can show that any operator 

formed using the rules described above is also Hermitian.

One thing you need to be aware of concerning the eigenfunctions of any Hermitian operator is that each pair of eigenfunctions  and 
 belonging to different eigenvalues display a property termed orthonormality. This property means that not only may  and 

each normalized so their probability densities integrate to unity

but they are also orthogonal to each other

where the complex conjugate * of the first function appears only when the  solutions contain imaginary components (e.g., the

functions , which eigenfunctions of the -component of angular momentum ). The orthogonality condition can be

viewed as similar to the condition of two vectors  and  being perpendicular, in which case their scalar (sometimes called dot)
product vanishes . I want you to keep this property in mind because you will soon see that it is a characteristic of all
eigenfunctions of any Hermitian operator.

It is common to write the integrals displaying the normalization and orthogonality conditions in the following so-called Dirac notation

and

where the  and  | symbols represent  and , respectively, and putting the two together in the  construct implies the integration
over the variables that y depends upon. The Hermitian character of an operator  means that this operator forms a Hermitian matrix
when placed between pairs of functions and the coordinates are integrated over. For example, the matrix representation of an operator 

 when acting on a set of functions denoted { } is:

For all of the operators formed following the rules stated earlier, one finds that these matrices have the following property:
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∂ (q)ϕI

∂q
]∗ (1.2.2)

−iℏ
∂

∂q
qj pj F

ψn

ψn′ ψn ψn′

1 = ∫ | dx = ∫ | dx,ψn|2 ψn′ |2 (1.14)

0 = ∫ dxψ∗
nψn′ (1.15)

ψ

exp(imϕ) z – iℏ
∂

∂ϕ
v1 v2

⋅ = 0v1 v2

1 = ⟨ | ⟩ψn ψn (1.14)

0 = ⟨ | ⟩,ψn ψn′ (1.14)

|⟩ ⟨ ψ ψ∗ ⟨|⟩
F

F ϕJ

= ⟨ |F| ⟩ = ∫ F dq.FI,J ϕI ϕJ ϕ∗
I

ϕJ (1.14)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11542?pdf


1.2.4 https://chem.libretexts.org/@go/page/11542

which makes the matrices what we call Hermitian. If the functions upon which F acts and F itself have no imaginary parts (i.e., are
real), then the matrices turn out to be symmetric:

The importance of the Hermiticity or symmetry of these matrices lies in the fact that it can be shown that such matrices have all real
(i.e., not complex) eigenvalues and have eigenvectors that are orthogonal (or, in the case of degenerate eigenvalues, can be chosen to
be orthogonal). Let’s see how these conditions follow from the Hermiticity property.

If the operator  has two eigenfunctions  and  having eigenvalues  and , respectively, then

Multiplying this equation on the left by  and integrating over the coordinates (denoted ) that  acts on gives

The Hermitian nature of  allows us to also write

which, because

gives

If  is not equal to , the only way the left-most and right-most terms in this equality can be equal is if

which means the two eigenfunctions are orthogonal. If the two eigenfunctions  and  have equal eigenvalues, the above derivation
can still be used to show that  and  are orthogonal to the other eigenfunctions { etc.} of  that have different eigenvalues.
For the eigenfunctions  and  that are degenerate (i.e., have equal eigenvalues), we cannot show that they are orthogonal (because
they need not be so). However, because any linear combination of these two functions is also an eigenfunction of  having the same
eigenvalue, we can always choose a combination that makes  and  orthogonal to one another.

Finally, for any given eigenfunction , we have

However, the Hermitian character of F allows us to rewrite the left hand side of this equation as

These two equations can only remain valid if

which means that  is a real number (i.e., has no imaginary part).

So, all quantum mechanical operators have real eigenvalues (this is good since these eigenvalues are what can be measured in any
experimental observation of that property) and can be assumed to have orthogonal eigenfunctions. It is important to keep these facts in
mind because we make use of them many times throughout this text.

=FI,J F ∗
J,I

(1.14)

= .FI,J FJ,I (1.14)

F ψ1 ψ2 λ1 λ2

F = .ψ1 λ1ψ1 (1.14)

ψ∗
2

q F

∫ F dq = ∫ dq.ψ∗
2 ψ1 λ1 ψ∗

2ψ1 (1.14)

F

∫ F dq = ∫ (F dq,ψ∗
2 ψ1 ψ2)∗ψ1 (1.14)

F =ψ2 λ2ψ2 (1.14)

∫ dq = ∫ F dq = ∫ (F dq = ∫ dq.λ1 ψ∗
2ψ1 ψ∗

2 ψ1 ψ2)∗ψ1 λ2 ψ∗
2ψ1 (1.14)

λ1 λ2

∫ dq = 0,ψ∗
2ψ1 (1.14)

ψ1 ψ2

ψ1 ψ2 , ,ψ3 ψ4 F

ψ1 ψ2

F

ψ1 ψ2

ψ1

∫ F dq = ∫ dqψ∗
1 ψ1 λ1 ψ∗

1ψ1 (1.14)

∫ F dq = ∫ [F dq = [ ∫ dq.ψ∗
1 ψ1 ψ1]∗ψ1 λ1]∗ ψ∗

1ψ1 (1.14)
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Wave functions 

The eigenfunctions of a quantum mechanical operator depend on the coordinates upon which the operator acts. The particular operator
that corresponds to the total energy of the system is called the Hamiltonian operator. The eigenfunctions of this particular operator are
called wave functions

A special case of an operator corresponding to a physically measurable quantity is the Hamiltonian operator  that relates to the total
energy of the system. The energy eigenstates of the system  are functions of the coordinates  that  depends on and of time t.
The function  gives the probability density for observing the coordinates at the values  at time . For a many-
particle system such as the  molecule, the wave function depends on many coordinates. For , it depends on the , , and 
(or , , and ) coordinates of the ten electrons and the , , and  (or , , and ) coordinates of the oxygen nucleus and of the two
protons; a total of thirty-nine coordinates appear in .

If one is interested in what the probability distribution is for finding the corresponding momenta  at time , the wave function 

 has to first be written as a combination of the eigenfunctions of the momentum operators . Expressing  in this

manner is possible because the momentum operator is Hermitian and it can be shown that the eigenfunctions of any Hermitian operator
form a complete set of functions. The momentum operator’s eigenfunctions are

and they obey

These eigenfunctions can also be shown to be orthonormal.

Expanding  in terms of these normalized momentum eigenfunctions gives

We can find the expansion coefficients  by multiplying the above equation by the complex conjugate of another (labeled )
momentum eigenfunction and integrating over 

The quantities  then give the probability of finding momentum  at time .

In classical mechanics, the coordinates  and their corresponding momenta  are functions of time. The state of the system is then
described by specifying  and . In quantum mechanics, the concept that qj is known as a function of time is replaced by the
concept of the probability density for finding coordinate qj at a particular value at a particular time  or the probability
density  for finding momentum  at time .

The Hamiltonian eigenstates are especially important in chemistry because many of the tools that chemists use to study molecules
probe the energy states of the molecule. For example, most spectroscopic methods are designed to determine which energy state
(electronic, vibrational, rotational, nuclear sp_in, etc.) a molecule is in. However, there are other experimental measurements that
measure other properties (e.g., the -component of angular momentum or the total angular momentum).

As stated earlier, if the state of some molecular system is characterized by a wave function Y that happens to be an eigenfunction of a
quantum mechanical operator F, one can immediately say something about what the outcome will be if the physical property F
corresponding to the operator F is measured. In particular, since

where  is one of the eigenvalues of , we know that the value  will be observed if the property  is measured while the molecule
is described by the wave function . In fact, once a measurement of a physical quantity  has been carried out and a particular
eigenvalue  has been observed, the system's wave function  becomes the eigenfunction  that corresponds to that eigenvalue.
That is, the act of making the measurement causes the system's wave function to become the eigenfunction of the property that was
measured. This is what is meant when one hears that the act of making a measurement can change the state of the system in quantum
mechanics.

What happens if some other property G, whose quantum mechanical operator is  is measured in a case where we have already
determined ? We know from what was said earlier that some eigenvalue mk of the operator G will be observed in the
measurement. But, will the molecule's wave function remain, after G is measured, the eigenfunction  of , or will the

H

Y { }qj H

|Ψ( , t) = Ψqj |2 Ψ∗ qj t

OH2 OH2 x y z

r θ ϕ x y z r θ ϕ

Y

pj t

Ψ( , t)qj – iℏ
∂

∂q j

Ψ( , t)qj

exp(i /ℏ),
1

2πℏ
− −−

√
pjqj (1.14)

– ih exp(i /ℏ) = exp(i /ℏ).
∂

∂qj

1

2πℏ
− −−

√
pjqj pj

1

2πℏ
− −−

√
pjqj (1.14)

Ψ( , t)qj

C( , t)pj pj′

qj

|C( , t)p′
j |

2
p′
j t

qj pj
(t)qj (t)pj

|Ψ( , t)qj |2

|C( j, t)p′ |2 p′
j t

z

F = ,χj λjχj (1.14)

λj F λj F

Y = χj F

λj Y χj

G

Y = χj

Y = χj F
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measurement of G cause Y to be altered in a way that makes the molecule's state no longer an eigenfunction of ? It turns out that if
the two operators F and G obey the condition

then, when the property G is measured, the wave function  will remain unchanged. This property that the order of application
of the two operators does not matter is called commutation; that is, we say the two operators commute if they obey this property. Let us
see how this property leads to the conclusion about Y remaining unchanged if the two operators commute. In particular, we apply the
G operator to the above eigenvalue equation from which we concluded that :

Next, we use the commutation to re-write the left-hand side of this equation, and use the fact that  is a scalar number to thus obtain:

So, now we see that  itself is an eigenfunction of F having eigenvalue . So, unless there are more than one eigenfunction of F
corresponding to the eigenvalue  (i.e., unless this eigenvalue is degenerate),  must itself be proportional to . We write this
proportionality conclusion as

which means that  is also an eigenfunction of G. This, in turn, means that measuring the property G while the system is described by
the wave function  does not change the wave function; it remains .

If there are more than one function { } that are eigenfunctions of F having the same eigenvalue , then the relation 
 only allows us to conclude that  is some combination of these degenerate functions

Below, I offer some examples that i hope will clarify what these rules mean and how the relate to laboratory measurements.

In summary, when the operators corresponding to two physical properties commute, once one measures one of the properties (and thus
causes the system to be an eigenfunction of that operator), subsequent measurement of the second operator will (if the eigenvalue of
the first operator is not degenerate) produce a unique eigenvalue of the second operator and will not change the system wave function.
If either of the two properties is subsequently measured (even over and over, again), the wave function will remain unchanged and the
value observed for the property being measured will remain the same as the original eigenvalue observed.

However, if the two operators do not commute, one simply cannot reach the above conclusions. In such cases, measurement of the
property corresponding to the first operator will lead to one of the eigenvalues of that operator and cause the system wave function to
become the corresponding eigenfunction. However, subsequent measurement of the second operator will produce an eigenvalue of that
operator, but the system wave function will be changed to become an eigenfunction of the second operator and thus no longer the
eigenfunction of the first.

I think an example will help clarify this discussion. Let us consider the following orbital angular momentum operators for  particles

or

and

F

FG= GF , (1.14)

Y = χj

Y = χj

GF = G .χj λjχj (1.14)

λj

FG = G .χj λj χj (1.14)

Gχj λj
λj Gχj χj

G = ,χj μjχj (1.14)

χj

Y = χj χj

, , …χj1
χj2

χjM λj
FG = Gχj λj χj Gχj

G = k.χj ∑
k=1,M

Ckχj (1.14)

N

L = ( × )∑
j=1

N

rj pj (1.14)

= −iℏ ( – )Lz ∑
j=1,N

xj
∂

∂yj
yj

∂

∂xj
(1.14a)

= −iℏ ( – )Lx ∑
j=1,N

yj
∂

∂xj
xj

∂

∂yj
(1.14b)

= −iℏ ( – )Ly ∑
j=1,N

zj
∂

∂xj
xj

∂

∂zj
(1.14c)
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It turns out that the operator  can be shown to commute with any one of , , or , but , , or  do not commute with one
another (we will discuss these operators in considerably more detail in Chapter 2 section 2.7; for now, please accept these statements).

Let us assume a measurement of  is carried out and one obtains the value . Thus far, all one knows is that the system can be
described by a wave function that is some combination of , , , , etc. angular momentum functions  having different 

-values but all having 

but one does not know the amplitudes  telling how much a given -value contributes to . One can express  as such a linear
combination because the Hermitian quantum mechanical operators formed as described above can be shown to possess complete sets
of eigenfunctions; this means that any function (of the appropriate variables) can be written as a linear combination of these
eigenfunctions as done above.

If one subsequently carries out a measurement of , the fact that  and  commute means that this second measurement will not
alter the fact that  contains only contributions with , but it will result in observing only one specific -value. The probability
of observing any particular -value will be given by . Once this measurement is realized, the wave function will contain only
terms having that specific -value and . For example, if  is found, we know the wave function has  and , so
we know it is a F-symmetry function with , but we don’t know any more. That is, we don’t know if it is an  etc. F-
function.

What now happens if we make a measurement of  when the system is in the ,  state (recall, this  is a value of the
 component of angular momentum)? Because  and  commute, the measurement of  will not alter the fact that  contains

only  components. However, because  and  do not commute, we can not assume that  is still an eigenfunction of  ; it
will be a combination of eigenfunctions of  having  but having -values between -3 and 3, with m now referring to the
eigenvalue of  (no longer to )

When  is measured, the value  will be found with probability , after which the wave function will be the 
eigenfunction of  and  (and no longer an eigenfunction of )

I understand that these rules of quantum mechanics can be confusing, but I assure you they are based on laboratory observations about
how atoms, ions, and molecules behave when subjected to state-specific measurements. So, I urge you to get used to the fact that
quantum mechanics has rules and behaviors that may be new to you but need to be mastered by you.

The Schrödinger Equation 
This equation is an eigenvalue equation for the energy or Hamiltonian operator; its eigenvalues provide the only allowed energy levels
of the system

The Time-Dependent Equation 

If the Hamiltonian operator contains the time variable explicitly, one must solve the time-dependent Schrödinger equation

Before moving deeper into understanding what quantum mechanics means, it is useful to learn how the wave functions  are found by
applying the basic equation of quantum mechanics, the Schrödinger equation, to a few exactly soluble model problems. Knowing the
solutions to these 'easy' yet chemically very relevant models will then facilitate learning more of the details about the structure of
quantum mechanics.

The Schrödinger equation is a differential equation depending on time and on all of the spatial coordinates necessary to describe the
system at hand (thirty-nine for the  example cited above). It is usually written

where  is the unknown wavefunction and  is the operator corresponding to the total energy of the system. This Hermitian
operator is called the Hamiltonian and is formed, as stated above, by first writing down the classical mechanical expression for the

= + +L
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2
x L

2
y L
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z (1.14)
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Lz 2ℏ
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total energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing all classical momenta  by their

quantum mechanical operators .

For the  example used above, the classical mechanical energy of all thirteen particles is

where the indices  and  are used to label the ten electrons whose thirty Cartesian coordinates and thirty Cartesian momenta are { }
and { }, and  and  label the three nuclei whose charges are denoted  and whose nine Cartesian coordinates and nine Cartesian
momenta are { } and { }. The electron and nuclear masses are denoted  and , respectively. The corresponding Hamiltonian
operator is

where , , and  denote the distances between electron pairs, electrons and nuclei, and nuclear pairs, respectively.

Notice that  is a second order differential operator in the space of the thirty-nine Cartesian coordinates that describe the positions of
the ten electrons and three nuclei. It is a second order operator because the momenta appear in the kinetic energy as  and , and the

quantum mechanical operator for each momentum  is of first order.

The Schrödinger equation for the  example at hand then reads

The Hamiltonian in this case contains  nowhere. An example of a case where  does contain  occurs, for example, when the an
oscillating electric field  along the -axis interacts with the electrons and nuclei and a term

is added to the Hamiltonian. Here,  and  denote the  coordinates of the  nucleus and the  electron, respectively.

The Time-Independent Equation 

If the Hamiltonian operator does not contain the time variable explicitly, one can solve the time-independent Schrödinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent (e.g.,
interactions with time varying external electric or magnetic fields would add to the above classical energy expression time dependent
terms), the separations of variables techniques can be used to reduce the Schrödinger equation to a time-independent equation. In such
cases,  is not explicitly time dependent, so one can assume that  is of the form (n.b., this step is an example of the use of the
separations of variables method to solve a differential equation)

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Dividing by  then gives

Since  is only a function of time , and  is only a function of the spatial coordinates { }, and because the left hand and
right hand sides must be equal for all values of t and of { }, both the left and right hand sides must equal a constant. If this constant is
called E, the two equations that are embodied in this separated Schrödinger equation read as follows:

pj

= −iℏpj
∂

∂qj
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2me
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∑
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∑
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∑
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The first of these equations is called the time-independent Schrödinger equation; it is an eigenvalue equation in which one is asked to
find functions that yield a constant multiple of themselves when acted on by the Hamiltonian operator. Such functions are called
eigenfunctions of  and the corresponding constants are called eigenvalues of . For example, if  were of the form 

, then functions of the form  would be eigenfunctions because

In this case,    is the eigenvalue. In this example, the Hamiltonian contains the square of an angular momentum operator (recall

earlier that we showed the -component of angular momentum  for a single particle is to equal ).

When the Schrödinger equation can be separated to generate a time-independent equation describing the spatial coordinate dependence
of the wave function, the eigenvalue  must be returned to the equation determining  to find the time dependent part of the wave
function. By solving

once  is known, one obtains

and the full wave function can be written as

For the above example, the time dependence is expressed by

In such cases, the spatial probability density  does not depend upon time because the product 
reduces to unity.

In summary, whenever the Hamiltonian does not depend on time explicitly, one can solve the time-independent Schrödinger equation
first and then obtain the time dependence as  once the energy  is known. In the case of molecular structure theory, it is
a quite daunting task even to approximately solve the full Schrödinger equation because it is a partial differential equation depending
on all of the coordinates of the electrons and nuclei in the molecule. For this reason, there are various approximations that one usually
implements when attempting to study molecular structure using quantum mechanics.

It should be noted that it is possible to prepare in the laboratory, even when the Hamiltonian contains no explicit time dependence,
wave functions that are time dependent and that have time-dependent spatial probability densities. For example, one can prepare a state
of the Hydrogen atom that is a superposition of the  and  wave functions

where the two eigenstates obey

and

When  does not contain  explicitly, it is possible to then express  in terms of  as follows:

HΨ( ) = EΨ( ),qJ qJ (1.14)

iℏ = EF (t).
dF (t)

dt
(1.14)

H H H
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(1.14)
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(1.14)

E

F (t) = exp(−iEt/ℏ), (1.14)

Ψ( , t) = Ψ( ) exp(−iEt/ℏ).qj qj (1.14)

F (t) = exp(− it ).
m2ℏ2

2M

1

ℏ
(1.14)

|Ψ( , t)qj |2 exp(−iEt/ℏ) exp(iEt/ℏ)

exp(−iEt/ℏ) E

2s 2pz

Ψ(r, t = 0) = (r) + (r)C1ψ2s C2ψ2pz (1.14)

H (r) = (r)ψ2s E2sψ2s (1.14)

H (r) = (r).ψ2pz E2pzψ2pz (1.14)
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Ψ(r, t) = exp(− )[ (r) + (r)]
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This function, which is a superposition of  and  functions, does indeed obey the full time-dependent Schrödinger equation 

. The probability of observing the system in the  state if a measurement capable of making this determination were

carried out is

and the probability of finding it in the  state is

both of which are independent of time. This does not mean that  or the spatial probability density  describes is time-independent
because the product

contains cross terms that depend on time.

It is important to note that applying  to such a superposition state in the manner shown above, which then produces a
superposition of states each of whose amplitudes carries its own time dependence, only works when  has no time dependence. If 

were time-dependent,  acting on  would contain an additional factor involving  as a result of

which one would not have .
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1.3: The Born-Oppenheimer Approximation
 One of the most important approximations relating to applying quantum mechanics to molecules and molecular ions is known as
the Born-Oppenheimer (BO) approximation. The basic idea behind this approximation involves realizing that in the full electrons-
plus-nuclei Hamiltonian operator introduced above

the time scales with which the electrons and nuclei move are usually quite different. In particular, the heavy nuclei (i.e., even a H
nucleus weighs nearly 2000 times what an electron weighs) move (i.e., vibrate and rotate) more slowly than do the lighter
electrons. For example, typical bond vibrational motions occur over time scales of ca.  s, molecular rotations require 
times as long, but electrons undergo periodic motions within their orbits on the  s timescale if they reside within core or
valence orbitals. Thus, we expect the electrons to be able to promptly “adjust” their motions to the much more slowly moving
nuclei.

This observation motivates us to consider solving the Schrödinger equation for the movement of the electrons in the presence of
fixed nuclei as a way to represent the fully adjusted state of the electrons at any fixed positions of the nuclei. Of course, we then
have to have a way to describe the differences between how the electrons and nuclei behave in the absence of this approximation
and how they move within the approximation. These differences give rise to so-called non-Born-Oppenheimer corrections,
radiationless transitions, surface hops, and non-adiabatic transitions, which we will deal with later.

It should be noted that this separation of time scales between fast electronic and slow vibration and rotation motions does not apply
as well to, for example, Rydberg states of atoms and molecules. As discussed earlier, in such states, the electron in the Rydberg
orbital has much lower speed and much larger radial extent than for typical core or valence orbitals. For this reason, corrections to
the BO model are usually more important to make when dealing with Rydberg states.

The electronic Hamiltonian that pertains to the motions of the electrons in the presence of clamped nuclei

produces as its eigenvalues through the equation

energies  that depend on where the nuclei are located (i.e., the { } coordinates). As its eigenfunctions, one obtains what
are called electronic wave functions { } which also depend on where the nuclei are located. The energies  are
what we usually call potential energy surfaces. An example of such a surface is shown in Figure 1.5.

Figure 1.5. Two dimensional potential energy surface showing local minima, transition states and paths connecting them.

This surface depends on two geometrical coordinates  and is a plot of one particular eigenvalue  vs. these two
coordinates.

Although this plot has more information on it than we shall discuss now, a few features are worth noting. There appear to be three
minima (i.e., points where the derivative of  with respect to both coordinates vanish and where the surface has positive
curvature). These points correspond, as we will see toward the end of this introductory material, to geometries of stable molecular
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structures. The surface also displays two first-order saddle points (labeled transition structures A and B) that connect the three
minima. These points have zero first derivative of  with respect to both coordinates but have one direction of negative curvature.
As we will show later, these points describe transition states that play crucial roles in the kinetics of transitions among the three
stable geometries.

Keep in mind that Figure 1.5 shows just one of the  surfaces; each molecule has a ground-state surface (i.e., the one that is
lowest in energy) as well as an infinite number of excited-state surfaces. Let’s now return to our discussion of the BO model and
ask what one does once one has such an energy surface in hand.

The motion of the nuclei are subsequently, within the BO model, assumed to obey a Schrödinger equation in which

defines a rotation-vibration Hamiltonian for the particular energy state  of interest. The rotational and vibrational energies and
wave functions belonging to each electronic state (i.e., for each value of the index  in ) are then found by solving a 
Hamiltonian.

This BO model forms the basis of much of how chemists view molecular structure and molecular spectroscopy. For example as
applied to formaldehyde , we speak of the singlet ground electronic state (with all electrons spin paired and occupying
the lowest energy orbitals) and its vibrational and rotational states as well as the  and  electronic states and their
vibrational and rotational levels. Although much more will be said about these concepts later in this text, the student should be
aware of the concepts of electronic energy surfaces (i.e., the { }) and the vibration-rotation states that belong to each such
surface.

I should point out that the  Cartesian coordinates { } used to describe the positions of the molecule’s  nuclei can be replaced
by 3 Cartesian coordinates  specifying the center of mass of the  nuclei and  other so-called internal
coordinates that can be used to describe the molecule’s orientation (these coordinates appear in the rotational kinetic energy) and its
bond lengths and angles (these coordinates appear in the vibrational kinetic and potential energies). When center-of-mass and
internal coordinates are used in place of the  Cartesian coordinates, the Born-Oppenheimer energy surfaces { } are seen
to depend only on the internal coordinates. Moreover, if the molecule’s energy does not depend on its orientation (e.g., if it is
moving freely in the gas phase), the { } will also not depend on the 3 orientational coordinates, but only on the 
vibrational coordinates.

Having been introduced to the concepts of operators, wave functions, the Hamiltonian and its Schrödinger equation, it is important
to now consider several examples of the applications of these concepts. The examples treated below were chosen to provide the
reader with valuable experience in solving the Schrödinger equation; they were also chosen because they form the most elementary
chemical models of electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and vibrations of
chemical bonds.

Your First Application of Quantum Mechanics- Motion of a Particle in One Dimension 

This is a very important problem whose solutions chemists use to model a wide variety of phenomena.

Let’s begin by examining the motion of a single particle of mass  in one direction which we will call  while under the influence

of a potential denoted . The classical expression for the total energy of such a system is , where  is the

momentum of the particle along the x-axis. To focus on specific examples, consider how this particle would move if  were of
the forms shown in Figure 1. 6, where the total energy  is denoted by the position of the horizontal line.

Figure 1. 6. Three characteristic potentials showing left and right classical turning points at energies denoted by the horizontal
lines.
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The Classical Probability Density 

I would like you to imagine what the probability density would be for this particle moving with total energy  and with 
varying as the above three plots illustrate. To conceptualize the probability density, imagine the particle to have a blinking lamp
attached to it and think of this lamp blinking say 100 times for each time it takes for the particle to complete a full transit from its
left turning point, to its right turning point and back to the former. The turning points  and  are the positions at which the
particle, if it were moving under Newton’s laws, would reverse direction (as the momentum changes sign) and turn around. These
positions can be found by asking where the momentum goes to zero:

These are the positions where all of the energy appears as potential energy  and correspond in the above figures to the
points where the dark horizontal lines touch the  plots as shown in the central plot.

The probability density at any value of  represents the fraction of time the particle spends at this value of  (i.e., within  and 
). Think of forming this density by allowing the blinking lamp attached to the particle to shed light on a photographic plate

that is exposed to this light for many oscillations of the particle between  and . Alternatively, one can express the probability 
 that the particle spends between  and  by dividing the spatial distance  by the velocity (p/m) of the particle at

the point :

Because  is constant throughout the particle’s motion,  will be small at  values where the particle is moving quickly (i.e.,
where  is low) and will be high where the particle moves slowly (where  is high). So, the photographic plate will show a bright
region where  is high (because the particle moves slowly in such regions) and less brightness where  is low. Note, however, that
as  approaches the classical turning points, the velocity approaches zero, so the above expression for  will approach infinity.
It does not mean the probability of finding the particle at the turning point is infinite; it means that the probability density is infinite
there. This divergence of  is a characteristic of the classical probability density that will be seen to be very different from the
quantum probability density.

The bottom line is that the probability densities anticipated by analyzing the classical Newtonian dynamics of this one particle
would appear as the histogram plots shown in Figure 1.7 illustrate.

Figure 1. 7 Classical probability plots for the three potentials shown

Where the particle has high kinetic energy (and thus lower ), it spends less time and  is small. Where the particle moves
slowly, it spends more time and  is larger. For the plot on the right,  is constant within the “box”, so the speed is
constant, hence  is constant for all  values within this one-dimensional box. I ask that you keep these plots in mind because
they are very different from what one finds when one solves the Schrödinger equation for this same problem. Also please keep in
mind that these plots represent what one expects if the particle were moving according to classical Newtonian dynamics (which we
know it is not!).

Quantum Treatment 

To solve for the quantum mechanical wave functions and energies of this same kind of problem, we first write the Hamiltonian

operator as discussed above by replacing  by :
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We then try to find solutions  to  that obey certain conditions. These conditions are related to the fact that 
is supposed to be the probability density for finding the particle between  and . To keep things as simple as possible, let’s
focus on the box potential  shown in the right side of Figure 1. 7. This potential, expressed as a function of  is:  for 

 and for ;  for  between  and .

The fact that  is infinite for  and for , and that the total energy  must be finite, says that  must vanish in these two
regions (  for  and for ). This condition means that the particle cannot access regions of space where the potential
is infinite. The second condition that we make use of is that  must be continuous; this means that the probability of the particle
being at  cannot be discontinuously related to the probability of it being at a nearby point. It is also true that the spatial derivative 

 must be continuous except at points where the potential  has an infinite discontinuity like it does in the example shown on

the right in Figure 1.7. The continuity of  relates to continuity of momentum (recall,  is a momentum operator). When a

particle moves under, for example, one of the two potential shown on the left or middle of Figure 1.7, the potential smoothly
changes as kinetic and potential energy interchange during the periodic motion. In contrast, when moving under the potential on the
right of Figure 1.7, the potential undergoes a sudden change of direction when the particle hits either wall. So, even classically, the
particle’s momentum undergoes a discontinuity at such hard-wall turning points. These conditions of continuity of  (and its
spatial first derivative) and that  must vanish in regions of space where the potential is extremely high were postulated by the
pioneers of quantum mechanics so that the predictions of the quantum theory would be in line with experimental observations.

Energies and Wave functions 

The second-order differential equation

has two solutions (because it is a second order equation) in the region between  and  where :

and

where  is defined as

Hence, the most general solution is some combination of these two:

We could, alternatively use  and  as the two independent solutions (we do so later in Section 1.4 to illustrate)
because  and  can be rewritten in terms of  and ; that is, they span exactly the same space.

The fact that  must vanish at  (n.b.,  vanishes for  because  is infinite there and  is continuous, so it must
vanish at the point ) means that the weighting amplitude of the  term must vanish because  at .
That is,

The amplitude of the  term is not affected by the condition that  vanish at , since  itself vanishes at .
So, now we know that  is really of the form:

The condition that  also vanish at  (because it vanishes for  where  again is infinite) has two possible
implications. Either  or  must be such that . The option  would lead to an answer  that vanishes at all
values of  and thus a probability that vanishes everywhere. This is unacceptable because it would imply that the particle is never
observed anywhere.
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The other possibility is that . Let’s explore this answer because it offers the first example of energy quantization that
you have probably encountered. As you know, the sin function vanishes at integral multiples of . Hence  must be some
multiple of ; let’s call the integer  and write  (using the definition of ) in the form:

Solving this equation for the energy , we obtain:

This result says that the only energy values that are capable of giving a wave function  that will obey the above conditions are
these specific  values. In other words, not all energy values are allowed in the sense that they can produce  functions that are
continuous and vanish in regions where  is infinite. If one uses an energy  that is not one of the allowed values and
substitutes this  into , the resultant function will not vanish at . I hope the solution to this problem reminds you of
the violin string that we discussed earlier. Recall that the violin string being tied down at  and at  gave rise to
quantization of the wavelength just as the conditions that  be continuous at  and  gave energy quantization.

Substituting  into  gives

The value of A can be found by remembering that  is supposed to represent the probability density for finding the particle at .
Such probability densities are supposed to be normalized, meaning that their integral over all  values should amount to unity. So,
we can find A by requiring that

where the integral ranges from  to . Looking up the integral of  and solving the above equation for the so-
called normalization constant  gives

 and so

The values that  can take on are ; the choice  is unacceptable because it would produce a wave function 
 that vanishes at all .

The full x- and t- dependent wave functions are then given as

Notice that the spatial probability density  is not dependent on time and is equal to  because the complex
exponential disappears when  is formed. This means that the probability of finding the particle at various values of  is time-
independent.

Another thing I want you to notice is that, unlike the classical dynamics case, not all energy values  are allowed. In the
Newtonian dynamics situation,  could be specified and the particle’s momentum at any  value was then determined to within a
sign. In contrast, in quantum mechanics, one must determine, by solving the Schrödinger equation, what the allowed values of 

are. These  values are quantized, meaning that they occur only for discrete values  determined by a quantum

number , by the mass of the particle m, and by characteristics of the potential (  in this case).
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Probability Densities 

Let’s now look at some of the wave functions  and compare the probability densities  that they represent to the
classical probability densities discussed earlier. The  and  wave functions are shown in the top of Figure 1.8. The
corresponding quantum probability densities are shown below the wave functions in two formats (as  plots and shaded plots
that could relate to the flashing light way of monitoring the particle’s location that we discussed earlier).

Figure 1. 8. The two lowest wave functions and probability densities

A more complete set of wave functions (for  ranging from 1 to 7) are shown in Figure 1. 9.

Figure 1. 9. Seven lowest wave functions and energies

Notice that as the quantum number  increases, the energy  also increases (quadratically with  in this case) and the number of
nodes in  also increases. Also notice that the probability densities are very different from what we encountered earlier for the
classical case. For example, look at the  and  densities and compare them to the classical density illustrated in Figure
1.10.

Figure 1.10. Classical probability density for potential shown
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The classical density is easy to understand because we are familiar with classical dynamics. In this case, we say that  is
constant within the box because the fact that  is constant causes the kinetic energy and hence the speed of the particle to
remain constant, and this is true for any energy . In contrast, the  quantum wave function’s  plot is peaked in the
middle of the box and falls to zero at the walls. The  density  has two peaks (one to the left of the box midpoint, and one
to the right), a node at the box midpoint, and falls to zero at the walls. One thing that students often ask me is “how does the
particle get from being in the left peak to being in the right peak if it has zero chance of ever being at the midpoint where the node
is?” The difficulty with this question is that it is posed in a terminology that asks for a classical dynamics answer. That is, by asking
“how does the particle get...” one is demanding an answer that involves describing its motion (i.e., it moves from here at time  to
there at time ). Unfortunately, quantum mechanics does not deal with issues such as a particle’s trajectory (i.e., where it is at
various times) but only with its probability of being somewhere (i.e., ). The next section will treat such paradoxical issues even
further.

Classical and Quantum Probability Densities 
As just noted, it is tempting for most beginning students of quantum mechanics to attempt to interpret the quantum behavior of a
particle in classical terms. However, this adventure is full of danger and bound to fail because small light particles simply do not
move according to Newton’s laws. To illustrate, let’s try to understand what kind of (classical) motion would be consistent with the 

 or  quantum  plots shown in Figure 1. 8. However, as I hope you anticipate, this attempt at gaining classical
understanding of a quantum result will not work in that it will lead to nonsensical results. My point in leading you to attempt such a
classical understanding is to teach you that classical and quantum results are simply different and that you must resist the urge to
impose a classical understanding on quantum results at least until you understand under what circumstances classical and quantum
results should or should not be comparable.

For the  case in Figure 1.8, we note that  is highest at the box midpoint and vanishes at  and . In a classical

mechanics world, this would mean that the particle moves slowly near  and more quickly near  and . Because

the particle’s total energy  must remain constant as it moves, in regions where it moves slowly, the potential it experiences must
be high, and where it moves quickly,  must be small. This analysis (n.b., based on classical concepts) would lead us to conclude

that the   arises from the particle moving in a potential that is high near  and low as  approaches 0 or L.

A similar analysis of the  plot for  would lead us to conclude that the particle for which this is the correct  must

experience a potential that is high midway between  and , high midway between  and , and low near 

 and near  and . These conclusions are crazy because we know that the potential  for which we solved the

Schrödinger equation to generate both of the wave functions (and both probability densities) is constant between  and .
That is, we know the same  applies to the particle moving in the  and  states, whereas the classical motion
analysis offered above suggests that  is different for these two cases.

What is wrong with our attempt to understand the quantum  plots? The mistake we made was in attempting to apply the
equations and concepts of classical dynamics to a  plot that did not arise from classical motion. simply put, one cannot ask
how the particle is moving (i.e., what is its speed at various positions) when the particle is undergoing quantum dynamics. Most
students, when first experiencing quantum wave functions and quantum probabilities, try to think of the particle moving in a
classical way that is consistent with the quantum . This attempt to retain a degree of classical understanding of the particle’s
movement is almost always met with frustration, as I illustrated with the above example and will illustrate later in other cases.

Continuing with this first example of how one solves the Schrödinger equation and how one thinks of the quantized  values and
wave functions , let me offer a little more optimistic note than offered in the preceding discussion. If we examine the  plot
shown in Figure 1.9 for , and think of the corresponding , we note that the  plot would look something
like that shown in Figure 1. 11.
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Figure 1.11. Quantum probability density for  showing seven peaks and six nodes

It would have seven maxima separated by six nodes. If we were to plot  for a very large  value such as , we would
find a  plot having 55 maxima separated by 54 nodes, with the maxima separated approximately by distances of (1/55L). Such
a plot, when viewed in a coarse-grained sense (i.e., focusing with somewhat blurred vision on the positions and heights of the
maxima) looks very much like the classical  plot in which  is constant for all . Another way to look at the difference
between the low-n and high-n quantum probability distributions is reflected in the so-called local de Broglie wavelength

It can be shown that the classical and quantum probabilities will be similar in regions of space where

This inequality will be true when  is much larger than , which is consistent with the view that high quantum states behave
classically, but it will not hold when  is only slightly above  (i.e., for low-energy quantum states and for any quantum state near
classical turning points) or when  is smaller than  (i.e., in classically forbidden regions).

In summary, it is a general result of quantum mechanics that the quantum  distributions for large quantum numbers take on the
form of the classical  for the same potential  that was used to solve the Schrödinger equation except near turning points and
in classically forbidden regions. It is also true that, at any specified energy, classical and quantum results agree better when one is
dealing with heavy particles than for light particles. For example, a given energy  corresponds to a higher  quantum number in

the particle-in-a-box formula  for a heavier particle than for a lighter particle. Hence, heavier particles, moving with a

given energy , have more classical probability distributions.

To gain perspective about this matter, in the table shown below, I give the energy levels  in kcal mol  for a particle

whose mass is 1, 2000, 20,000, or 200,000 times an electron’s mass constrained to move within a one-dimensional region of length 
 (in Bohr units denoted ; 1  =0.529 Å).

Energies  (kcal mol ) for various  and  combinations

m = 1 m

L = 1 a L = 10 a L = 100 a L = 1000 a

m = 1 m 3.1 x10 n 3.1 x10 n 3.1 x10 n 3.1 x10 n

m = 2000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

m = 20,000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

m = 200,000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

Clearly, for electrons, even when free to roam over 50-500 nanometers (e.g.,  or ), one does not need to
access a very high quantum state to reach 1 kcal mol  of energy (e.g.,  would be adequate for ). Recall, it is high

n = 7

|ψ(x)|2 n n = 55
P (x)

P (x) P (x) x

(x) =λlocal
h

2m(E−V (X))
− −−−−−−−−−−−

√
(1.3.21)
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∣
∣
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quantum states where one expects the classical and quantum spatial probability distribution to be similar. So, when treating
electrons, one is probably (nearly) always going to have to make use of quantum mechanics and one will not be able to rely on
classical mechanics.

For light nuclei, with masses near 2000 times the electron’s mass, if the particle is constrained to a small distance range (e.g., 1-10 
), again even low quantum states will have energies in excess of 1 kcal mol . Only when free to move over of 100 to 1000 

does 1 kcal mol  correspond to relatively large quantum numbers for which one expects near-classical behavior. The data shown in
the above table can also be used to estimate when quantum behavior such as Bose-Einstein condensation can be expected. When
constrained to 100 , particles in the 1 amu mass range have translational energies in the  cal mol  range. Realizing that 

 cal mol  K , this means that translational temperatures near 0.1 K would be needed to cause these particles to occupy
their  ground state.

In contrast, particles with masses in the range of 100 amu, even when constrained

to distances of ca. 5 Å, require  to exceed ca. 10 before having 1 kcal mol  of translational energy. When constrained to 50 Å, 1
kcal mol  requires  to exceed 1000. So, heavy particles will, even at low energies, behave classically except if they are
constrained to very short distances.

We will encounter this so-called quantum-classical correspondence principal again when we examine other model problems. It is
an important property of solutions to the Schrödinger equation because it is what allows us to bridge the gap between using the
Schrödinger equation to treat small light particles and the Newton equations for macroscopic (big, heavy) systems.

Time Propagation of Wave functions 

For a particle in a box system that exists in an eigenstate  having an energy , the time-

dependent wave function is

that can be generated by applying the so-called time evolution operator  to the wave function at :

where an explicit form for  is:

The function  has a spatial probability density that does not depend on time because

since . However, it is possible to prepare systems (even in real laboratory settings) in states that

are not single eigenstates; we call such states superposition states. For example, consider a particle moving along the x- axis within
the box potential but in a state whose wave function at some initial time  is

This is a superposition of the  and  eigenstates. The probability density associated with this function is

The  and  components, the superposition , and the probability density at  are shown in the first three panels of
Figure 1.12.
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Figure 1.12. The  and  wave functions (upper left), their superposition (upper right), and the  (bottom left) and
time-evolved (bottom right) probability densities of the superposition

It should be noted that the probability density associated with this superposition state is not symmetric about the  midpoint

even though the  and  component wave functions and densities are. Such a density describes the particle localized more
strongly in the large-x region of the box than in the small-x region at .

Now, let’s consider the superposition wave function and its density at later times. Applying the time evolution operator 

 to  generates this time-evolved function at time t:

The spatial probability density associated with this  is:

At , this function clearly reduces to that written earlier for . Notice that as time evolves, this density changes because

of the ) factor it contains. In particular, note that as  moves through a period of time , the cos

factor changes sign. That is, for , the  factor is ; for , the cos factor is ; for , it returns to

. The result of this time-variation in the cos factor is that  changes in form from that shown in the bottom left panel of

Figure 1. 12 to that shown in the bottom right panel (at ) and then back to the form in the bottom left panel (at 

). One can interpret this time variation as describing the particle’s probability density (not its classical position!),

initially localized toward the right side of the box, moving to the left and then back to the right. Of course, this time evolution will
continue over more and more cycles as time evolves further.

This example illustrates once again the difficulty with attempting to localize particles that are being described by quantum wave

functions. For example, a particle that is characterized by the eigenstate  is more likely to be detected near 

than near  or  because the square of this function is large near . A particle in the state  is most

likely to be found near  and , but not near , , or . The issue of how the particle in the latter state
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moves from being near  to  is not something quantum mechanics deals with. Quantum mechanics does not allow us

to follow the particle’s trajectory which is what we need to know when we ask how it moves from one place to another.
Nevertheless, superposition wave functions can offer, to some extent, the opportunity to follow the motion of the particle.

For example, the superposition state written above as

 has a probability amplitude that changes with time as shown in Figure 1.12.

Moreover, this amplitude’s major peak does move from side to side within the box as time evolves. So, in this case, we can say
with what frequency the major peak moves back and forth. In a sense, this allows us to follow the particle’s movements, but only to
the extent that we are satisfied with ascribing its location to the position of the major peak in its probability distribution. That is, we
can not really follow its precise location, but we can follow the location of where it is very likely to be found. However, notice that

the time it takes the particle to move from right to left  is dependent upon the energy difference between the two

states contributing to the superposition state, not to the energy of either of these states, which is very different from what would
expect if the particle were moving classically.

These are important observation that I hope the student will keep fresh in mind. They are also important ingredients in modern
quantum dynamics in which localized wave packets, which are similar to superposed eigenstates discussed above, are used to detail
the position and speed of a particle’s main probability density peak.

The above example illustrates how one time-evolves a wave function that is expressed as a linear combination (i.e., superposition)
of eigenstates of the problem at hand. There is a large amount of current effort in the theoretical chemistry community aimed at

developing efficient approximations to the  evolution operator that do not require  to be explicitly written as

a sum of eigenstates. This is important because, for most systems of direct relevance to molecules, one can not solve for the
eigenstates; it is simply too difficult to do so. You can find a significantly more detailed treatment of the research-level treatment of
this subject in my Theory Page web site and my QMIC textbook. However, let’s spend a little time on a brief introduction to what
is involved.

The problem is to express , where  is some initial wave function but not an eigenstate, in a manner that

does not require one to first find the eigenstates { } of  and to expand  in terms of these eigenstates:

after which the desired function is written as

The basic idea is to break the operator  into its kinetic  and potential  energy components and to realize that the differential
operators appear in  only. The importance of this observation lies in the fact that  and  do not commute which means that 
is not equal to  (n.b., recall that for two quantities to commute means that their order of appearance does not matter). Why do
they not commute? Because  contains second derivatives with respect to the coordinates {q_j} that  depends on, so, for

example,  is not equal to . The fact that  and  do not commute is important because the most

obvious attempt to approximate  is to write this single exponential in terms of  and .

However, the identity

is not fully valid as one can see by expanding all three of the above exponential factors as  and

noting that the two sides of the above equation only agree if one can assume that , which, as we noted, is not true.
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In most modern approaches to time propagation, one divides the time interval  into many (i.e.,  of them) small time slices 
. One then expresses the evolution operator as a product of  short-time propagators (the student should by now be

familiar with the fact that , , and  are operators, so, from now on I will no longer necessarily use bold lettering for these
quantities):

If one can then develop an efficient means of propagating for a short time , one can then do so over and over again  times to
achieve the desired full-time propagation.

It can be shown that the exponential operator involving  can better be approximated in terms of the  and  exponential
operators as follows:

So, if one can be satisfied with propagating for very short time intervals (so that the  term can be neglected), one can indeed use

as an approximation for the propagator . It can also be shown that the so-called split short-time expression

provides an even more accurate representation of the short-time propagator (because expansions of the left- and right-hand sides
agree to higher orders in ).

To progress further, one then expresses  acting on  in terms of the eigenfunctions of the kinetic

energy operator . Note that these eigenfunctions do not depend on the nature of the potential V, so this step is valid for any and all

potentials. The eigenfunctions of  are the momentum eigenfunctions that we discussed earlier

and they obey the following orthogonality

and completeness relations

Writing  as

and using the above expression for  gives:

Then inserting the explicit expressions for  and  in terms of

t P
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gives

Now, allowing  to act on  produces

The integral over  above can be carried out analytically and gives

So, the final expression for the short-time propagated wave function is:

which is the working equation one uses to compute  knowing . Notice that all one needs to know to apply this formula
is the potential  at each point in space. One does not need to know any of the eigenfunctions of the Hamiltonian to apply this
method. This is especially attractive when dealing with very large molecules or molecules in condensed media where it is
essentially impossible to determine any of the eigenstates and where the energy spacings between eigenstates is extremely small.
However, one does have to use this formula over and over again to propagate the initial wave function through many small time
steps  to achieve full propagation for the desired time interval .

Because this type of time propagation technique is a very active area of research in the theory community, it is likely to continue to
be refined and improved. Further discussion of it is beyond the scope of this book, so I will not go further into this direction. The
web site of Professor Nancy Makri provides access to further information about the quantum time propagation research area.
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1.4: Free Particle Motions in More Dimensions
The number of dimensions depends on the number of particles and the number of spatial (and other) dimensions needed to characterize the
position and motion of each particle. The number of dimensions also affects the number of quantum numbers that may be used to label
eigenstates of the Hamiltonian.

Schrödinger Equation 
Consider an electron of mass m and charge  moving on a two-dimensional surface that defines the  plane (e.g., perhaps an electron is
constrained to the surface of a solid by a potential that binds it tightly to a narrow region in the -direction but allows it to roam freely over a
rectangular area in the  plane), and assume that the electron experiences a constant and not time-varying potential  at all points in this
plane. For example, if  is negative, it could reflect the binding energy of the electron relative to its energy in vacuum.

The pertinent time independent Schrödinger equation is:

The task at hand is to solve the above eigenvalue equation to determine the allowed energy states for this electron. Because there are no terms

in this equation that couple motion in the  and  directions (e.g., no terms of the form  or  or ), separation of variables can be

used to write  as a product . Substitution of this form into the Schrödinger equation, followed by collecting together all 
-dependent and all y-dependent terms, gives;

Since the first term contains no -dependence and the second contains no -dependence, and because the right side of the equation is
independent of both  and , both terms on the left must actually be constant (these two constants are denoted  and , respectively,
realizing that they have units of energy). This observation allows two separate Schrödinger equations to be written:

and

The total energy  can then be expressed in terms of these separate energies  and  from . Solutions to the  and 
 Schrödinger equations are easily seen to be:

Two independent solutions are obtained for each equation because the  and space Schrödinger equations are both second order
differential equations (i.e., a second order differential equation has two independent solutions).

Boundary Conditions 

The boundary conditions, not the Schrödinger equation, determine whether the eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the  plane, the energies  and  can assume any values; this means that the experimenter
can inject the electron onto the  plane with any total energy  and any components  and  along the two axes as long as

. In such a situation, one speaks of the energies along both coordinates as being in the continuum or not quantized.

In contrast, if the electron is constrained to remain within a fixed area in the  plane (e.g., a rectangular or circular region), then the situation
is qualitatively different. Constraining the electron to any such specified area gives rise to boundary conditions that impose additional
requirements on the above  and  functions. These constraints can arise, for example, if the potential  becomes very large for 
values outside the region, in which case, the probability of finding the electron outside the region is very small. Such a case might represent,
for example, a situation in which the molecular structure of the solid surface changes outside the enclosed region in a way that is highly
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repulsive to the electron (e.g., as in the case of molecular corrals on metal surfaces). This case could then represent a simple model of so-called
corrals in which the particle is constrained to a finite region of space.

For example, if motion is constrained to take place within a rectangular region defined by ; , then the continuity
property that all wave functions must obey (because of their interpretation as probability densities, which must be continuous) causes  to
vanish at 0 and at . That is, because  must vanish for  and must vanish for , and because  is continuous, it must vanish at 

 and at . Likewise,  must vanish at 0 and at . To implement these constraints for , one must linearly combine the

above two solutions and to achieve a function that vanishes at :

One is allowed to linearly combine solutions of the Schrödinger equation that have the same energy (i.e., are degenerate) because Schrödinger
equations are linear differential equations. An analogous process must be applied to  to achieve a function that vanishes at :

Further requiring  and  to vanish, respectively, at  and , respectively, gives equations that can be obeyed only if 
and  assume particular values:

These equations are equivalent (i.e., using ) to

Knowing that  vanishes at , for  (although the  function vanishes for , this function vanishes for all
 or , and is therefore unacceptable because it represents zero probability density at all points in space) one concludes that the energies 

and  can assume only values that obey:

or

and

and

It is important to stress that it is the imposition of boundary conditions, expressing the fact that the electron is spatially constrained, that gives
rise to quantized energies. In the absence of spatial confinement, or with confinement only at  or  or only at  or , quantized
energies would not be realized.

In this example, confinement of the electron to a finite interval along both the  and  coordinates yields energies that are quantized along
both axes. If the electron were confined along one coordinate (e.g., between ) but not along the other (i.e.,  is either restricted
to vanish only at  or at  or at neither point), then the total energy  lies in the continuum; its  component is quantized but 

0 ≤ x ≤ Lx 0 ≤ y ≤ Ly

A(x)
Lx A x < 0 x > Lx A

x = 0 x = Lx B(y) Ly A(x)

exp(ix )
2mEx

ℏ2

− −−−−−
√ exp(−ix )

2mEx

ℏ2

− −−−−−
√ x = 0

A(x) = exp(ix )−exp(−ix ).
2mEx

ℏ2

− −−−−−
√

2mEx

ℏ2

− −−−−−
√ (1.4.7)

B(y) y = 0

B(y) = exp(iy )−exp(−iy ).
2mEy

ℏ2

− −−−−−

√
2mEy

ℏ2

− −−−−−

√ (1.4.8)

A(x) B(y) x = Lx y = Ly Ex

Ey

exp(i )−exp(−i ) = 0, andLx

2mEx

ℏ2

− −−−−−
√ Lx

2mEx

ℏ2

− −−−−−
√ (1.4.9)

exp(i )−exp(−i ) = 0.Ly

2mEy

ℏ2

− −−−−−

√ Ly

2mEy

ℏ2

− −−−−−

√ (1.4.10)

exp(ix) = cos(x) + i sin(x)

sin( ) = sin( ) = 0.Lx

2mEx

ℏ2

− −−−−−
√ Ly

2mEy

ℏ2

− −−−−−

√ (1.4.11)

sin(θ) q = nπ n = 1, 2, 3, ⋯ , sin(nπ) n = 0
x y Ex

Ey

= π,Lx

2mEx

ℏ2

− −−−−−
√ nx (1.4.12)

= πLy

2mEy

ℏ2

− −−−−−

√ ny (1.4.13)

=Ex

n2
xπ

2ℏ2

2mL2
x

(1.4.14)

= ,  with   and  = 1, 2, 3, ⋯Ey

n2
yπ

2ℏ2

2mL2
y

nx ny (1.4.15)

E = + + .V0 Ex Ey (1.4.16)

x = 0 Lx y = 0 Ly

x y

0 ≤ x ≤ Lx B(y)
y = 0 y = Ly E Ex Ey

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11544?pdf


1.4.3 https://chem.libretexts.org/@go/page/11544

is not. Analogs of such cases arise, for example, for a triatomic molecule containing one strong and one weak bond. If the bond with the higher
dissociation energy is excited to a level that is not enough to break it but that is in excess of the dissociation energy of the weaker bond, one
has a situation that is especially interesting. In this case, one has two degenerate states

1. one with the strong bond having high internal energy and the weak bond having low energy ( ), and
2. a second with the strong bond having little energy and the weak bond having more than enough energy to rupture it ( ).

Although an experiment may prepare the molecule in a state that contains only the former component (i.e.,  with 
, ), coupling between the two degenerate functions (induced by terms in the Hamiltonian H that have been ignored in defining 

 and ) can cause the true wave function  to acquire a component of the second function as time evolves. In
such a case, one speaks of internal vibrational energy relaxation (IVR) giving rise to unimolecular decomposition of the molecule.

Energies and Wave Functions for Bound States 
For discrete energy levels, the energies are specified functions that depend on quantum numbers, one for each degree of freedom that is

quantized

Returning to the situation in which motion is constrained along both axes, the resultant total energies and wave functions (obtained by
inserting the quantum energy levels into the expressions for  and ) are as follows:

and

with  and .

The two  factors are included to guarantee that  is normalized:

Normalization allows  to be properly identified as a probability density for finding the electron at a point , .

Shown in Figure 1. 13 are plots of four such two dimensional wave functions for  and  values of (1,1), (2,1), (1.2) and (2,2), respectively.

Figure 1.13. Plots of the (1,1), (2,1), (1,2) and (2,2) wave functions

Note that the functions vanish on the boundaries of the box, and notice how the number of nodes (i.e., zeroes encountered as the wave function
oscillates from positive to negative) is related to the  and  quantum numbers and to the energy. This pattern of more nodes signifying
higher energy is one that we encounter again and again in quantum mechanics and is something the student should be able to use to guess the
relative energies of wave functions when their plots are at hand. Finally, you should also notice that, as in the one-dimensional box case, any
attempt to classically interpret the probabilities  corresponding to the above quantum wave functions will result in failure. As in the

ψ1

ψ2

Ψ(t = 0) = +C1ψ1 C2ψ2

= 1C1 = 0C2

ψ1 ψ2 Ψ = exp(−itH/ℏ)Ψ(t = 0)

A(x) B(y)

=Ex

n2
xπ

2ℏ2

2mL2
x

(1.4.17)

=Ey

 n2
yπ2ℏ2

2mL2
y

(1.4.18)

E = + +Ex Ey V0 (1.4.19)

ψ(x, y) = [exp( )−exp(− )][exp( )−exp(− )]
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one-dimensional case, the classical  would be constant along slices of fixed  and varying  or slices of fixed  and varying  within
the box because the speed is constant there. However, the quantum  plots, at least for small quantum numbers, are not constant. For
large  and ny values, the quantum  plots will again, via the quantum-classical correspondence principle, approach the (constant)
classical  form except near the classical turning points (i.e., near the edges of the two-dimensional box).

If, instead of being confined to a rectangular corral, the electron were constrained to lie within a circle of radius R, the Schrödinger equation is
more favorably expressed in polar coordinates . Transforming the partial derivatives appearing in the Schrödinger equation

into polar coordinates and realizing that the potential depends on  but not on  gives

Again using separation of variables to substitute

into the Schrödinger equation and dividing by , we obtain

where  is the value of the potential inside the circular region. The first two terms on the left and the  on the right side contain no reference

to , so the quantity  must be independent of :

Moreover, because the coordinates  and  describe the same point in space,  must obey

The solutions to the above differential equation for  subject to the periodicity condition are

This means that the equation for the radial part of the wave function is

or

This differential equation is probably not familiar to you, but it turns out this is the equation obeyed by so-called Bessel functions. The Bessel
functions labeled  obey

so, our  function is

The full wave functions are then

where  is a normalization constant. The energy eigenvalues  cannot be expressed analytically as in the particle-in-a box system (where
we used knowledge of the zeros of the sin function to determine ). However, knowing that  must vanish at , we can use tables

P (x, y) x y y x

P (x, y)
P (x, y) P (x, y)

P (x, y)

(r, θ)

− ( + )ψ(x, y) +V (x, y)ψ(x, y) = Eψ(x, y)
ℏ2

2m

∂2

∂x2

∂2

∂y2
(1.4.22)

r θ

− ( (r ) + )ψ(r, θ) +V (r)ψ(r, θ) = Eψ(r, θ).
ℏ2

2m

1

r

∂

∂r

∂

∂r

1

r2

∂2

∂θ2
(1.4.23)

ψ(r, θ) = A(r)B(θ) (1.4.24)

AB

− ( (r )A(r)) + – ( ) = E
1

A

ℏ2

2m

1

r

∂

∂r

∂

∂r
V0

1

B

ℏ2

2m

1

r2

B(θ)∂2

∂θ2
(1.4.25)

V0 E

θ
1

B

B(θ)∂2

∂θ2
θ

= c
1

B

B(θ)∂2

∂θ2
(1.4.26)

(r, θ) (r, θ+2π) B(θ)

B(θ) = B(θ+2π). (1.4.27)

B(θ)

B(θ) = exp(±inθ);n = 0, 1, 2, … .
1

2π
−−

√
(1.4.28)
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1

A

ℏ2

2m

1

r

∂
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∂

∂r
V0

1

B

ℏ2

2m

1

r2
n2 (1.4.29)

+r – A+ (E− )A = 0.r2 Ad2
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n2 2mr2

ℏ2
V0 (1.4.30)

(ax)Jn

+x – J + J = 0x2 Jd2
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(for example, see Kreyszig, E. Advanced Engineering Mathematics, 8th ed.; John Wiley and Sons, Inc.: New York, 1999) that give the values
of  at which  vanishes to determine the set of eigenvalues associated with each value of the angular momentum quantum number . In
the table shown below, we list the first five values at which , , and  vanish.

Values of  at which  vanish for , and 

If we call the values at which  vanishes , then the energies are given as

From the ordering of the  values shown in the table above, we can see that the ordering of the energy levels will be , , , , ,
, and so forth, regardless of the size of the circle  or the mass of the particle .

The state with  has the same energy as that with ; likewise,  has the same energy as . So, all but the  states
are doubly degenerate; the only difference between such pairs of states is the sense of the angular momentum terms . These energy
levels depend on both the angular momentum quantum number , as well as the radial quantum number  and they depend upon  much like
the particle-in-a-box energies depend on the box length . In Figure 1.13a we show plots of the probability densities  for ,
and  and for , and  to illustrate how the number of radial nodes increases as  increases.

Figure 1.13a Plots of  for ;  (top); ;  (middle); and ;  (bottom). Taken from
Ellison, M. D. J. Chem. Educ. 2008, 85, 1282–1287.

The character of  also changes with . For , there is high amplitude for the particle being in the center of the circle, but for 
, there is no amplitude in the center. This is analogous to what one finds for atomic orbitals;  orbitals have non-zero amplitude at the

nucleus, but p, d, and higher orbitals do not.

Let’s examine a few more easy problems that can be solved analytically to some degree. This will help illustrate how boundary conditions
generate quantization and how the number of quantum numbers depends on the dimensionality of the problem. When considering a particle of
mass  moving in three dimensions but constrained to remain within a sphere of radius R, we replace the three Cartesian coordinates  and

 by the spherical coordinates , , and . Doing so, changes the Schrödinger equation’s kinetic energy terms into what we show below

Taking the potential to be  (a constant) for , and infinite for , we can again use separation of variables to progress in
solving this three dimensional differential equation. We substitute

into the Schrödinger equation and taking into account that the so-called spherical harmonic functions  obey the following:

This reduces the Schrödinger equation to an equation for the radial function :

Again, this equation is probably not familiar to you, but it can be recast in a way that makes it equivalent to the equation obeyed by so-called
spherical Bessel functions

by taking

x (x)Jn n

J0 J1 J2

x (x)Jn n = 0, 1 2

Jn(x) zn,j

= + .En,j V0
(zn,j)

2ℏ2

2mR2
(1.4.34)
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n > 0 s

m x, y,
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ℏ2
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∂θ
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ℏ2
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1

sinθr2

ψ∂2
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(1.4.35)

V0 0 ≤ r ≤ R r > R

ψ(r, θ,ϕ) = (θ,ϕ)F (r)YL,M (1.4.36)

(θ,ϕ)YL,M
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1

sinθ

∂

∂θ

∂YL,M

∂θ

1

θsin2

∂2YL,M

∂ϕ2
YL,M (1.4.37)

F (r)

− ( ( ))+ L(L+1)F + F = EF .
ℏ2
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∂
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r2 ∂F
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2mr2
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The result is that the wave functions for this problem reduce to

where  is a normalization constant. The energies are determined by requiring 

to vanish at , which is analogous to insisting that the spherical Bessel function vanish at  in the earlier problem we studied. The
values of  at which  vanish again can be found in various tabulations, including that cited earlier. Several of these values are
tabulated below for illustration.

Values of  at which  vanish for , and 

n=1 n=2 n=3 n=4

L=0 3.142 6.283 9.425 12.566

L=1 4.493 7.725 10.904 14.066

L=2 5.763 9.095 12.323 15.515

L=3 6.988 10.417 13.698 16.924

L=4 8.183 11.705 15.040 18.301

From the values of , one finds the energies from

Again, we see how the energy depends on the size of the constraining region (characterized by ) very much in the same way as in the earlier
systems. We also see that  depends on the angular momentum quantum number  (much as it did in the preceding example) and on the mass
of the particle. However, the energy ordering of these levels is different from what we have seen earlier as reflected in the ordering of the 
values shown in the above table. The energies appear in the order (  ;  ;  ;  ;  ; 

 , and so on, and this is true for any size sphere  and any particle mass m.

If, instead of being constrained to move within a spherical volume, the particle is constrained to move on the surface of a sphere or radius ,
the variable  is fixed (at ) and the Schrödinger equation becomes

Using

we can see that the wave functions are the spherical harmonics and the energies are given by

Note that the energies depend on  but not on the  quantum number. So, each state belonging to level  is  fold degenerate because 
 ranges from  to .

Finally, if instead of being constrained to move within a circle of radius R, the particle were constrained to move on the surface of the circle,
the two-dimensional Schrödinger equation treated earlier would reduce to

The solutions are the familiar functions

x = r.
2m(E− )V0

ℏ2

− −−−−−−−−−

√ (1.4.40)

ψ(r, θ,ϕ) = N (θ,ϕ) ( r)YL,M jL
2m(E− )V0

ℏ2

− −−−−−−−−−

√ (1.4.41)

N ψ(r, θ,ϕ)

r = R r = R

x( )zL,n (x)jL

x (x)jL L = 0, 1, 2, 3 4
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= + .EL,n V0
(zL,n)2ℏ2

2mR2
(1.4.42)
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E L
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L = 0 n = 1 L = −2 n = 1 L = 2 n = 1 L = 0 n = 2 L = 3 n = 1
L = 1 n = 2 R

R
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∂θ
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∂θ

ℏ2

2m

1

θR2 sin2

ψ∂2
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1
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∂θ
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∂θ

1

θsin2

∂2YL,M

∂ϕ2
YL,M (1.4.44)

= +EL,M V0
L(L+1)ℏ2

2mR2
(1.4.45)

L M L 2L+1
M −L L

− + ψ(θ) = Eψ(θ).
ℏ2
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with 

and the energies are

Note that the quantization of energy arises because the angular momentum is quantized to be ; this condition arose, in turn, by the condition
that

As with the case of a particle moving within the circular region, the states with  are doubly degenerate; the difference between pairs of
such states reflecting the sense of their angular momentum.

These model problems will be seen in Chapter 2 to be very useful representations of situations that arise when an electron is constrained within
or on the surface of various nanoscopic particles. For now, they were discussed to illustrate how separations of variables can sometimes be
used to decompose the Schrödinger equation into one-dimensional ordinary differential equations and to show how it is the boundary
conditions (either constraining  to vanish at certain distances or insisting that  be periodic when appropriate) that produce the quantization.
It is important to note that it is when a particle is spatially constrained (e.g., when its wave function was forced to vanish at two locations 

 and ) that quantized energy levels result. When the particle is not so spatially trapped, its energy will not be quantized. You will
see this behavior over and over as we explore other models for electronic, vibrational, and rotational motions in molecules.

Quantized Action Can Also be Used to Derive Energy Levels 
There is another approach that can be used to find energy levels and is especially straightforward to use for systems whose Schrödinger
equations are separable. The so-called classical action (denoted ) of a particle moving with momentum p along a path leading from initial
coordinate  at initial time  to a final coordinate  at time  is defined by:

Here, the momentum vector p contains the momenta along all coordinates of the system, and the coordinate vector  likewise contains the
coordinates along all such degrees of freedom. For example, in the two-dimensional particle-in-a-box problem considered above, 
has two components as does , and the action integral is:

In computing such actions, it is essential to keep in mind the sign of the momentum as the particle moves from its initial to its final positions.
The examples given below will help clarify these matters and will show how to apply the idea.

For systems for which the Hamiltonian is separable, the action integral decomposes into a sum of such integrals, one for each degree of
freedom. In the two-dimensional example, the additivity of H:

means that  and  can be independently solved for in terms of the potentials  and  as well as the energies  and  associated
with each separate degree of freedom:

the signs on  and  must be chosen to properly reflect the motion that the particle is actually undergoing at any instant of time. Substituting
these expressions into the action integral yields:

n = 0, ±1, ±2, …

= + .En

n2ℏ2

2mR2
V0 (1.4.48)

nh

ψ(θ) = ψ(q+2π). (1.4.49)

n > 0

y y

x = 0 x = Lx

S

qi ti qf tf

S = p ⋅ dq.∫
;qf tf

;qi ti

(1.4.50)

q

q = (x, y)
p = ( , )px py

S = ( dx+ dy).∫
; ;xf yf tf

; ;xi yi ti

px py (1.4.51)

H = + = +  +V (x) +V (y)Hx Hy

p2
x

2m

p2
y

2m
(1.4.52)

= − +V (x) −  +V (y)
ℏ2

2m

∂2

∂x2

ℏ2

2m

∂2

∂y2
(1.4.53)

px py V (x) V (y) Ex Ey

= ±px 2m( −V (x))Ex

− −−−−−−−−−−−
√ (1.4.54)

= ± ;py 2m( −V (y))Ey

− −−−−−−−−−−−
√ (1.4.55)

px py

S = +Sx Sy (1.4.56)

=  ± dx+  ± dy.∫
;xf tf

;xi ti

2m( −V (x))Ex

− −−−−−−−−−−−
√ ∫

;yf tf

;yi ti

2m( −V (y))Ey
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The relationship between these classical action integrals and the existence of quantized energy levels has been shown to involve equating the
classical action for motion that is periodic between a left and right turning point, as for a classical particle undergoing periodic vibrational
motion, to the following multiple of Planck's constant:

where the quantization index  ranges from 0 to  in steps of unity. Alternatively, for motion in a closed angular path, as for a particle
moving on a circular or elliptical path, the action quantization condition reads:

where again  ranges from 0 to  in steps of unity.

When action-quantization as described above is applied to the so-called harmonic oscillator problem (this serves as the simplest reasonable
model for vibration of a diatomic molecule AB) that we will study in quantum form later, one expresses the total energy as the sum of kinetic
and potential energies

where

is the reduced mass of the AB diatomic molecule,  is the force constant describing the bond between A and B,  is the bond-length
displacement, and p is the momentum associated with the bond length. The quantized action requirement then reads

This integral is carried out between  and  the left and right turning points of the oscillatory motion and back again to
form a closed path. Carrying out this integral and equating it to  gives the following expression for the energy :

If the quantum number  is allowed to assume integer values ranging from , 1, 2, to infinity, these energy levels agree with the full
quantum treatment’s results that we will obtain later.

For an example of applying this approach to a problem involving motion along a closed loop, let’s consider the free (i.e., with no potential
affecting its angular motion) rotation of a diatomic molecule AB having fixed bond length R. The rotational energy can be written as

where is the momentum associated with rotation and  is the reduced mass of the AB molecule. Solving for and inserting this into the action-
quantization equation appropriate for motion along a closed loop gives

Solving for the energy  then gives

which is exactly the same result as we obtained earlier when solving the Schrödinger equation for the motion of a particle moving on a circle.

Now, let’s apply action quantization to each of the independent coordinates of the two-dimensional particle in a box problem. The two separate
action quantization conditions read:

= qdq = (n+ )h,Sclosed ∫
;qf tf

;qi ti

1

2
(1.4.58)

n ∞

=  pdq = nh,Sclosed ∫
;qf tf

;qi ti

(1.4.59)

n ∞

E = +
p2

2m

k

2
x2 (1.4.60)

m =
mAmB

+mA mB

(1.4.61)

k x

(n+ )h = ∫ pdx = ∫ dx.
1

2
2μ(E−k/2 )x2
− −−−−−−−−−−−

√ (1.4.62)

x = − 2E/k
− −−−

√ 2E/k
− −−−

√
(n+ )h1

2
E

E = (n+ )( π) .
1

2
ℏ2 k

μ

−−

√ (1.4.63)

n n = 0

E =
p2
ϕ

2μR2
(1.4.64)

m

dϕ =  dϕ = (2π) = nh.∫
ϕ=2π

ϕ=0
pϕ ∫

ϕ=2π

ϕ=0
2μ ER2
− −−−−−

√ 2μ ER2
− −−−−−

√ (1.4.65)

E

E = = ,
(nh)2

(2π 2μ)2 R2

n2h2

2μR2
(1.4.66)

( + )h = dx+ − dxnx

1

2
∫

x=Lx

x=0
2m( −V (x))Ex

− −−−−−−−−−−−
√ ∫

x=0

x=Lx

2m( −V (x))Ex

− −−−−−−−−−−−
√ (1.4.67)
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Notice that the sign of the momenta are positive in each of the first integrals appearing above (because the particle is moving from  to 
, and analogously for -motion, and thus has positive momentum) and negative in each of the second integrals (because the motion is

from  to  (and analogously for -motion) and thus the particle has negative momentum). Within the region bounded by 
, the potential is constant and can be taken as zero (this just gives our reference point for total energy). Using this

fact, and reversing the upper and lower limits, and thus the sign, in the second integrals above, one obtains:

Solving for  and , one finds:

These are not the same quantized energy levels that arose when the wave function boundary conditions were matched at ,  and 

, . In the Schrödinger equation approach, the energy expressions did not have the +  factor that appears in the above action-

based result. It turns out that, for potentials that are defined in a piecewise manner, as the particle-in-a-box potential is (i.e., the potential
undergoes an infinite jump at  and ), the action quantization condition has to be modified. An example of how and why one has to
make this modification is given in a paper from Prof. Bill Miller’s group (J. E. Adams and W. H. Miller, J. Chem. Phys. 67, 5775-5778
(1977)), but I will not discuss it further here because its details are beyond the level of this text. Suffice it to say that for periodic motion

between two turning points on a smooth (i.e., non-piecewise) potential,  is the correct action quantization value. For angular motion

on a closed loop, nh is the proper value. But, for periodic motion between turning points on a piecewise potential, the modifications discussed
in the above reference must be applied to cause action quantization to reproduce the correct quantum result.

The use of action quantization as illustrated above has become a very important tool. It has allowed scientists to make great progress toward
bridging the gap between classical and quantum descriptions of molecular dynamics. In particular, by using classical concepts such as
trajectories and then imposing quantized-action conditions, people have been able to develop so-called semi-classical models of molecular
dynamics. In such models, one is able to retain a great deal of classical understanding while building in quantum effects such as energy
quantization, zero-point energies, and interferences. Both at my Theory Page web site and from papers accessed on the web site of Professor
William H. Miller, one of the pioneers of semi-classical theory as applied to chemistry, you can learn more about this subject.

Before leaving this section, it is worth discussing a bit more the energy and angular momentum quantization that occurs when treating free
one-dimensional rotational motion of a particle on a circle or a linear rigid molecule constrained to lie on a plane. When we used action
quantization to address this kind of problem, we obtained quantized energies

which, through the energy expression given in terms of angular momentum

implies that the angular momentum itself is quantized

This is the same result we obtain when we seek eigenfunctions and eigenvalues the quantum mechanics  angular momentum operator. As
we showed earlier, this operator, when computed as the -component of , can be written in polar  coordinates as

( + )h = dy+ − dy.ny

1

2
∫

y=Ly

y=0
2m( −V (y))Ey

− −−−−−−−−−−−
√ ∫

y=0

y=Ly

2m( −V (y))Ey

− −−−−−−−−−−−
√ (1.4.68)

x = 0
x = Lx y

x = Lx x = 0 y

0 ≤ x ≤ ; 0 ≤ y ≤Lx Ly

( + )h = 2 dx = 2nx

1

2
∫

x=Lx

x=0
2mEx
− −−−−

√ 2mEx
− −−−−

√ Lx (1.4.69)

( + )h = 2 dy = 2 .ny

1

2
∫

y=Ly

y=0
2mEy

− −−−−
√ 2mEy

− −−−−
√ Ly (1.4.70)

Ex Ey

=Ex

[( + )hnx

1

2
]2

8mL2
x

(1.4.71)

= .Ey

[( + )hny

1

2
]2

8mL2
y

(1.4.72)

x = 0 x = Lx

y = 0 y = Ly

1

2

x = 0 x = L

(n+ )h
1

2

E =
n2h2

2μR2
(1.4.73)

E = ,
p2
ϕ

2μR2
(1.4.74)

= ±nh.pϕ (1.4.75)

Lz

z R×p (r, θ,ϕ)

= −iℏ .Lz

d

dϕ
(1.4.76)
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The eigenfunctions of this operator have the form , and the eigenvalues are a h. Because geometries with azimuthal angles equal to 
or equal to  are exactly the same geometries, the function  should be exactly the same as . This can only be
the case if a is an integer. Thus, one concludes that only integral multiples of h can be allowed values of the -component of angular
momentum.

Experimentally, one measures the -component of an angular momentum by placing the system possessing the angular momentum in a
magnetic field of strength B and observing how many -component energy states arise. This splitting in energy levels is termed the Zeeman
effect. For example, a boron atom with one unpaired electron its  orbital has one unit of orbital angular momentum, so one finds three
separate -component values which are usually denoted  and . Another example is offered by the scandium atom with
one unpaired electron in a d orbital; this atom’s states split into five ( ) -component states. In each case, one finds 
values of the  quantum number, and, because L is an integer,  is an odd integer. Both of these observations are consistent with the
expectation that only integer values can occur for  eigenvalues as obtained from action quantization and from the boundary condition 

.

However, it has been observed that some species do not possess 3 or 5 or 7 or 9 -component states but an even number of such states. In
particular, electrons, protons, or neutrons are observed to have only two -component eigenvalues. This also is observed in, for example, the
Boron atom mentioned above, if one examines the further splittings of the  (m = -1, 0, and 1) levels caused by the magnetic field’s action on
the unpaired electron’s spin. Because, as we discuss later in this text, all angular momenta have -component eigenvalues that are separated
from one another by unit multiples of h, one is forced to conclude that these three fundamental building-block particles (electrons, protons, and

neutrons) have -component eigenvalues of  and . The appearance of half-integral angular momenta is not consistent with the action-

quantization result or the observation made earlier that  and  correspond to exactly the same physical point in coordinate space,
which, in turn, implies that only full-integer angular momenta are possible.

The resolution of the above paradox (i.e., how can half-integer angular momenta exist?) involves realizing that some angular momenta
correspond not to the  angular momenta of a physical mass rotating, but, instead, are intrinsic properties of certain particles. That is, the
intrinsic angular momenta of electrons, protons, and neutrons can not be viewed as arising from rotation of some mass that comprises these

particles. Instead, such intrinsic angular momenta are fundamental built in characteristics of these particles. For example, the two  and 

 angular momentum states of an electron, usually denoted a and b, respectively, are two internal states of the electron that are degenerate

in the absence of a magnetic field but which represent two distinct states of the electron. Analogously, a proton has  and  states, as do

neutrons. All such half-integral angular momentum states cannot be accounted for using classical mechanics but are known to arise in quantum
mechanics. This means that, when we teach introductory chemistry to young students, it is not correct to say that the up and down (a and b)
spin states of an electron can be viewed in terms of the electron’s mass spinning clockwise or counterclockwise around some axis. Such
spinning-mass angular momenta can only possess integer values; half-integer angular momenta cannot and should not be described in terms of
spinning masses.

Action Can Also be Used to Generate Wave Functions 

Action integrals computed from classical descriptions of motion on potential energy surfaces can also be used to generate approximate
quantum wave functions. So doing offers yet another avenue for making connection between the classical and quantum worlds. To see how
such a connection can arise directly from the Schrödinger equation, we begin with the time-independent Schrödinger equation for a single
particle of mass  moving on a potential  that depends on the particle’s position coordinates :

Then, we express the complex wave function as a constant real amplitude A multiplied by a complex phase which we write as:

Substituting this expression for into the Schrödinger equation gives an equation for :

This equation contains both real and imaginary components (n.b.,  itself is complex). It is usually solved by assuming  can be

expanded in a power series in the variable . This expansion is motivated by noting that if the  factor in the above equation is

neglected, the resulting equation

exp(iaϕ) ϕ

ϕ+2π exp(iaϕ) exp(ia(ϕ+2π))
z

z

z

2π
z m = −1,m = 0, m = 1

m = −2, −1, 0, 1, 2 z 2L+1
m 2L+1

Lz

exp(iaϕ) = exp(ia(ϕ+2π))

z

z

2π
z

z ℏ
1

2
− ℏ

1

2
ϕ ϕ+2π

R×p

ℏ
1

2

− ℏ
1

2

ℏ
1

2
− ℏ

1

2

m V (r) r

EΨ(r) = − Ψ(r) +V (r)Ψ(r).
ℏ2

2m
∇2 (1.4.77)

Ψ(r) = A exp(iW (r)/ℏ). (1.4.78)

W

E = V + − iℏ .
(∇W )2

2m

W∇2

2m
(1.4.79)

W W (r)

ℏ iℏ
W∇2

2m

0 = V −E+
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would make sense if  were equal to the classical momentum of the particle. So, taking the  limit of the equation for 
appears to reduce this quantum mechanics equation to a classical result in which .

So, substituting

into the above equation for  and gathering together all terms of a given power in produces equations for the various , the first two
of which read:

and

To simplify further discussion of this so-called semi-classical wave function theory, let us restrict attention to the case in which there is only
one spatial coordinate. For the two- or three-dimensional cases,  and  are vector quantities, and the solution of these equations is
considerably more complicated, especially if the potential  can not be separated into additive contributions from each of the variables.
When there is only one spatial coordinate, and are scalar quantities.

The first equation can be solved for  and gives two independent solutions (i.e., those corresponding to the ± sign):

each of which will be real when  (i.e., in classically allowed regions of space) and imaginary when  (i.e., in classically
forbidden regions). Notice that  contains an integrand equal to the classical momentum .

The equation for  can also be solved:

So, through first-order in , the semi-classical wave functions are

These pairs of wave functions are often expressed as

in regions of space where , and

in the classically forbidden regions where . Notice that the wave functions in the classically allowed regions have probability densities
given by

which is exactly the classical probability density we discussed earlier in this Chapter. The probability is inversely proportional to the speed of
the particle at location r, and has the same singularity as the classical probability at turning points (where ). In contrast, the probability
densities in regions where  either grow or decay exponentially within these classically forbidden regions.

Let’s see how these semi-classical wave functions can be applied to some of the model problems we discussed earlier. For the one dimensional
particle-in-a-box problem, the two exponentially growing and decaying functions are not needed because in the regions  and , the
wave function can be taken to vanish. Within the region , there are two independent wave functions

∇W (r) ℏ → 0 W (r)
∇W (r) = p(r)

W (r) = (r) +h (r) + (r) +⋯W0 W1 ℏ2W2 (1.4.81)

W (r) (r)Wn

0 = 2m(V −E) +(∇W0)2 (1.4.82)

0 = 2∇ ⋅ ∇ − i .W0 W1 ∇2W0 (1.4.83)

∇W0 ∇W1

V (r)

(r)W0

(r) = ±∫ ,W0 2m(E−V ( ))dr′ r′
− −−−−−−−−−−−−−

√ (1.4.84)

E > V (r) E < V (r)

(r)W0 p(r) = 2m(E−V (r))
− −−−−−−−−−−

√

(r)W1

(r) = ln[ ].W1
i

2
2m(E−V (r))
− −−−−−−−−−−

√ (1.4.85)

ℏ

Ψ(r) = A exp(±  d ) exp( i ln[ ] ).
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ℏ
∫
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2m(E−V ( ))r′
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√ r′ iℏ

2h
2m(E−V (r))
− −−−−−−−−−−

√ (1.4.86)

= A exp(±  d )
1
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√
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∫
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∫
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∫
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and the potential  is constant (let’s call the potential in this region ). So, the integration appearing in these two wave functions can be
carried out to give

We can combine these two functions to generate a function that will vanish at  (as it must for this particle-in-a-box problem):

We can then use the condition that  must also vanish at  to obtain an equation that specifies the energies  that are allowed:

which means that

These energies are exactly the same as we found when we solved the Schrödinger equation for this model problem.

It is informative to note that these semi-classical wave functions, which are not exact because they were obtained by retaining only terms up to
the first power of , were able to generate quantum nodal patterns (i.e., interferences) and quantized energy levels even though they contained
classical concepts such as the momentum at various positions in space. It was by superimposing two functions having the same energy that
nodal patterns were obtained.

Let’s now consider what happens when we apply the semi-classical wave function to the harmonic oscillator problem also discussed earlier. In
this case, there are two classical turning points  and  at which . The semi-classical wave functions appropriate to the three
regions (two classically forbidden and one classically allowed) are:

The first two decay exponentially within the two classically forbidden regions. The third is a combination of the two independent solutions
within the classically allowed region, with the amplitudes of the two solutions defined by the coefficients  and . The amplitudes  and 

 multiply the wave functions in the two classically forbidden regions, and all four amplitudes as well as the energy  must be determined
by (i) normalizing the total wave function to obey

and (2) by matching the wave functions  and  and their first derivatives at , and the wave functions  and  and their first
derivatives at .

Before addressing how this wave function matching might be accomplished, let me point out an interesting property of the factor entering into
the exponential of the semi-classical wave function. We first use the two expressions

and

Ψ = A exp(± d ),
1

2m(E−V (r))
− −−−−−−−−−−√

− −−−−−−−−−−−−
√
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ℏ
∫

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ (1.4.91)

V ( )r′ V0

Ψ = A exp(± ).
1
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ℏ
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given above for the first two components of  and then make use of the harmonic form of 

Next, we evaluate the integral of  for a closed classical path in which the system moves from the left turning point

to the right turning point

and back again to the left turning point. The contribution from integrating  along this closed path is (n.b., the + sign is used for the first

part of the path because the particle has positive momentum, and the – sign applies to the return part of the path when the particle has negative
momentum):

which is exactly the action integral we treated earlier in this Chapter when we computed for the classical harmonic oscillator. The contribution

from integrating  along this closed path can be evaluated by first writing

The integral from  to  of this quantity can be carried out (using the substitution ) as

The evaluation of the integral remaining on the right-hand side can be done using contour integration (undergraduate students may not have
encountered this subject within complex variable theory; I refer them to pp. 367-377 Methods of Theoretical Physics, P. M. Morse and H.
Feshabach, McGraw-Hill, New York (1953) or p. 113 Applied Complex Variables, J. W. Dettman, Macmillan Co. New York (1965)). The

basic equation from contour integration says that an integral of the form , where  is a singularity, is equal to . Our

integral has singularities at  and at , so there are two such contributions. The net result is that our integral reduces to

So, the contribution to the integral of  arising from  to  is equal to . The integral from  back to  gives another factor or 

. Combining the integral of  and the integral of  (multiplied by because ) gives the following final

result

If the original Bohr quantization is applied to the integral of  along a closed classical path:

our result above then says that

=
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which is the same as

This means that the  factor that arises in the action quantization condition for periodic motions between two turning points can be viewed as

arising from the first quantum correction (i.e., the term first order in ) to the semi-classical wave function. Recall that equating this classical

action integral to  gave the correct (i.e., quantum) energies for this harmonic oscillator problem.

We have seen how a semi-classical wave function can be defined, what its spatial probability density is, how it can build in interference (to
achieve proper nodal patterns), and how quantizing its action can give the correct allowed energy levels. However, there is one issue we have
not fully addressed. To solve for the coefficients  multiplying the semi-classical wave functions in the classically allowed and
forbidden regions, the wave functions  and  and their first derivatives must be matched at , and the wave functions  and  and
their first derivatives must be matched at  = . Unfortunately, the details of this matching process are rather complicated and require
examining in more detail the nature of the wave functions near the classical turning points where each of , , and  contain factors of

the form  in their denominators. It should be clear that matching functions and their derivatives that contain such

singularities pose special challenges. I will not go further into this matter here; rather, I refer the interested reader to pp. 268-279 of Quantum
Mechanics, 3rd Ed., L. I. Schiff, McGraw-Hill, New York (1968) for a good treatment of this so-called WKB approach to the matching issue.
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1

CHAPTER OVERVIEW

2: Model Problems That Form Important Starting Points
The model problems discussed in this Chapter form the basis for chemists’ understanding of the electronic states of atoms,
molecules, nano-clusters, and solids as well as the rotational and vibrational motions and energy levels of molecules.

In this Chapter, you should have learned about the following things.

1. Free particle energies and wave functions and their densities of states, as applied to polyenes, electron in surfaces, solids, and
nanoscopic materials and as applied to bands of orbitals in solids.

2. The tight-binding or Hückel model for chemical bonding.
3. The hydrogenic radial and angular wave functions. These same angular functions occur whenever one is dealing with a

potential that depends only on the radial coordinate, not the angular coordinates.
4. Electron tunneling and quasi-bound resonance states.
5. Angular momentum including coupling two or more angular momenta, and angular momentum as applied to rotations of rigid

molecules including rigid rotors, symmetric, spherical, and asymmetric top rotations. Why half-integral angular momenta
cannot be thought of as arising from rotational motion of a physical body.

6. Vibrations of diatomic molecules including the harmonic oscillator and Morse oscillator models including harmonic frequencies
and anharmonicity.

2.1: Free Electron Model of Polyenes
2.2: Bands of Orbitals in Solids
2.3: Densities of States in 1, 2, and 3 dimensions
2.4: Hückel  or Tight Binding Theory
2.5: Hydrogenic Orbitals
2.6: Electron Tunneling
2.7: Angular Momentum
2.8: Rotations of Molecules
2.9: Vibrations of Molecules
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2.1: Free Electron Model of Polyenes
The particle-in-a-box type problems provide important models for several relevant chemical situations

The particle-in-a-box model for motion in one or two dimensions discussed earlier can obviously be extended to three dimensions.
For two and three dimensions, it provides a crude but useful picture for electronic states on surfaces (i.e., when the electron can
move freely on the surface but cannot escape to the vacuum or penetrate deeply into the solid) or in metallic crystals, respectively. I
say metallic crystals because it is in such systems that the outermost valence electrons are reasonably well treated as moving freely
rather than being tightly bound to a valence orbital on one of the constituent atoms or within chemical bonds localized to
neighboring atoms.

Free motion within a spherical volume such as we discussed in Chapter 1 gives rise to eigenfunctions that are also used in nuclear
physics to describe the motions of neutrons and protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons
fill separate , , , etc. orbitals (refer back to Chapter 1 to recall how these orbitals are expressed in terms of spherical Bessel
functions and what their energies are) with each type of nucleon forced to obey the Pauli exclusion principle (i.e., to have no more
than two nucleons in each orbital because protons and neutrons are Fermions). For example,  has two protons in  orbitals
and 2 neutrons in  orbitals, whereas  has two  protons and one  neutron. To remind you, I display in Figure 2. 1 the
angular shapes that characterize , , and  orbitals.

Figure 2.1. The angular shapes of , , and  functions

This same spherical box model has also been used to describe the valence electrons in quasi-spherical nano-clusters of metal atoms
such as , , , , , and their positive and negative ions. Because of the metallic nature of these species, their
valence electrons are essentially free to roam over the entire spherical volume of the cluster, which renders this simple model rather
effective. In this model, one thinks of each valence electron being free to roam within a sphere of radius  (i.e., having a potential
that is uniform within the sphere and infinite outside the sphere).

The orbitals that solve the Schrödinger equation inside such a spherical box are not the same in their radial shapes as the , , ,
etc. orbitals of atoms because, in atoms, there is an additional attractive Coulomb radial potential  present. In
Chapter 1, we showed how the particle-in-a-sphere radial functions can be expressed in terms of spherical Bessel functions. In
addition, the pattern of energy levels, which was shown in Chapter 1 to be related to the values of x at which the spherical Bessel
functions  vanish, are not the same as in atoms, again because the radial potentials differ. However, the angular shapes of the
spherical box problem are the same as in atomic structure because, in both cases, the potential is independent of  and . As the
orbital plots shown above indicate, the angular shapes of s, p, and  orbitals display varying number of nodal surfaces. The 
orbitals have none,  orbitals have one, and  orbitals have two. Analogous to how the number of nodes related to the total energy

s p d

He4 1s

1s He3 1s 1s

s p d

s p d

Csn Cun Nan Aun Agn

R

s p d

V (r) = −Z /re2

(x)jL
θ ϕ

d s

p d

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11571?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/02%3A_Model_Problems_That_Form_Important_Starting_Points/2.01%3A_Free_Electron_Model_of_Polyenes


2.1.2 https://chem.libretexts.org/@go/page/11571

of the particle constrained to the  plane, the number of nodes in the angular wave functions indicates the amount of angular or
orbital rotational energy. Orbitals of  shape have no angular energy, those of  shape have less then do  orbitals, etc.

It turns out that the pattern of energy levels derived from this particle-in-a-spherical-box model can offer reasonably accurate
descriptions of what is observed experimentally. In particular, when a cluster (or cluster ion) has a closed-shell electronic
configuration in which, for a given radial quantum number , all of the , ,  orbitals associated with that  are doubly occupied,
nanoscopic metal clusters are observed to display special stability (e.g., lack of chemical reactivity, large electron detachment
energy). Clusters that produce such closed-shell electronic configurations are sometimes said to have magic-number sizes. The
energy level expression given in Chapter 1

for an electron moving inside a sphere of radius  (and having a potential relative to the vacuum of ) can be used to model the
energies of electron within metallic nano-clusters. Each electron occupies an orbital having quantum numbers , , and , with
the energies of the orbitals given above in terms of the zeros  of the spherical Bessel functions. Spectral features of the nano-
clusters are then determined by the energy gap between the highest occupied and lowest unoccupied orbital and can be tuned by
changing the radius ( ) of the cluster or the charge (i.e., number of electrons) of the cluster.

Another very useful application of the model problems treated in Chapter 1 is the one-dimensional particle-in-a-box, which
provides a qualitatively correct picture for -electron motion along the  orbitals of delocalized polyenes. The one Cartesian
dimension corresponds to motion along the delocalized chain. In such a model, the box length  is related to the carbon-carbon
bond length  and the number  of carbon centers involved in the delocalized network . In Figure 2.2, such a
conjugated network involving nine centers is depicted. In this example, the box length would be eight times the C-C bond length.

Figure 2.2. The  atomic orbitals of a conjugated chain of nine carbon atoms, so the box length  is eight times the C-C bond
length.

The eigenstates  and their energies  represent orbitals into which electrons are placed. In the example case, if nine 
electrons are present (e.g., as in the 1,3,5,7-nonatetraene radical), the ground electronic state would be represented by a total wave
function consisting of a product in which the lowest four 's are doubly occupied and the fifth  is singly occupied:

The -component spin angular momentum states of the electrons are labeled  and  as discussed earlier.

We write the total wave function above as a product wave function because the total Hamiltonian involves the kinetic plus potential
energies of nine electrons. To the extent that this total energy can be represented as the sum of nine separate energies, one for each
electron, the Hamiltonian allows a separation of variables

in which each H(j) describes the kinetic and potential energy of an individual electron. Of course, the full Hamiltonian contains
electron-electron Coulomb interaction potentials  that cannot be written in this additive form. However, as we will treat in
detail in Chapter 6, it is often possible to approximate these electron-electron interactions in a form that is additive.

Recall that when a partial differential equation has no operators that couple its different independent variables (i.e., when it is
separable), one can use separation of variables methods to decompose its solutions into products. Thus, the (approximate) additivity
of  implies that solutions of  are products of solutions to

The two lowest  excited states would correspond to states of the form
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and

where the spin-orbitals (orbitals multiplied by  or ) appearing in the above products depend on the coordinates of the various
electrons. For example,

denotes

The electronic excitation energies from the ground state to each of the above excited states within this model would be

and

It turns out that this simple model of -electron energies provides a qualitatively correct picture of such excitation energies. Its
simplicity allows one, for example, to easily suggest how a molecule’s color (as reflected in the complementary color of the light
the molecule absorbs) varies as the conjugation length  of the molecule varies. That is, longer conjugated molecules have lower-
energy orbitals because  appears in the denominator of the energy expression. As a result, longer conjugated molecules absorb
light of lower energy than do shorter molecules.

This simple particle-in-a-box model does not yield orbital energies that relate to ionization energies unless the potential inside the

box is specified. Choosing the value of this potential  that exists within the box such that  is equal to minus the

lowest ionization energy of the 1,3,5,7-nonatetraene radical, gives energy levels (as ), which can then be used

as approximations to ionization energies.

The individual -molecular orbitals

are depicted in Figure 2.3 for a model of the 1,3,5 hexatriene -orbital system for which the box length  is five times the distance 
 between neighboring pairs of carbon atoms. The magnitude of the  C-atom centered atomic orbital in the  -molecular

orbital is given by

Figure 2.3. The phases of the six molecular orbitals of a chain containing six atoms.
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In this figure, positive amplitude is denoted by the clear spheres, and negative amplitude is shown by the darkened spheres. Where
two spheres of like shading overlap, the wave function has enhanced amplitude (i.e. there is a bonding interaction); where two
spheres of different shading overlap, a node occurs (i.e., there is antibonding interaction). Once again, we note that the number of
nodes increases as one ranges from the lowest-energy orbital to higher energy orbitals. The reader is once again encouraged to keep
in mind this ubiquitous characteristic of quantum mechanical wave functions.

This simple model allows one to estimate spin densities at each carbon center and provides insight into which centers should be
most amenable to electrophilic or nucleophilic attack. For example, radical attack at the  carbon of the nine-atom nonatetraene
system described earlier would be more facile for the ground state  than for either  or . In the former, the unpaired spin
density resides in  (which varies as ) so is non-zero at ), which has non-zero amplitude at the  site 

. In  and , the unpaired density is in  and , respectively, both of which have zero density at 
(because sin(npx/8RCC) vanishes for  or  at ). Plots of the wave functions for  ranging from 1 to 7 are shown in
another format in Figure 2.4 where the nodal pattern is emphasized.

Figure 2.4. The nodal pattern for a chain containing seven atoms

I hope that by now the student is not tempted to ask how the electron gets from one region of high amplitude, through a node, to
another high-amplitude region. Remember, such questions are cast in classical Newtonian language and are not appropriate when
addressing the wave-like properties of quantum mechanics.

Contributors and Attributions 
Jack Simons (Henry Eyring Scientist and Professor of Chemistry, U. Utah) Telluride Schools on Theoretical Chemistry

Integrated by Tomoyuki Hayashi (UC Davis) 
 

This page titled 2.1: Free Electron Model of Polyenes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Jack Simons.

C5

ψ ψ∗ ψ′∗

ψ5 sin(5πx/8RCC x = L/2 C5

x = L/2 = 4RCC ψ∗ ∗ψ′ ψ4 ψ6 C5

n = 4 6 x = 4RCC n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11571?pdf
http://simons.hec.utah.edu/
http://www.telluridescience.org/tstc
http://www.thayashi.com/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/02%3A_Model_Problems_That_Form_Important_Starting_Points/2.01%3A_Free_Electron_Model_of_Polyenes
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/


2.2.1 https://chem.libretexts.org/@go/page/11573

2.2: Bands of Orbitals in Solids
Not only does the particle-in-a-box model offer a useful conceptual representation of electrons moving in polyenes, but it also is
the zeroth-order model of band structures in solids. Let us consider a simple one-dimensional crystal consisting of a large number
of atoms or molecules, each with a single orbital (the blue spheres shown below) that it contributes to the bonding. Let us arrange
these building blocks in a regular lattice as shown in the Figure 2.5.

Figure 2.5. The energy levels arising from 1, 2, 3, 5, and an infinite number of orbitals

In the top four rows of this figure we show the case with 1, 2, 3, and 5 building blocks. To the left of each row, we display the
energy splitting pattern into which the building blocks’ orbitals evolve as they overlap and form delocalized molecular orbitals. Not
surprisingly, for , one finds a bonding and an antibonding orbital. For , one has a bonding, one non-bonding, and one
antibonding orbital. Finally, in the bottom row, we attempt to show what happens for an infinitely long chain. The key point is that
the discrete number of molecular orbitals appearing in the 1-5 orbital cases evolves into a continuum of orbitals called a band as the
number of building blocks becomes large. This band of orbital energies ranges from its bottom (whose orbital consists of a fully in-
phase bonding combination of the building block orbitals) to its top (whose orbital is a fully out-of-phase antibonding
combination).

In Figure 2.6 we illustrate these fully bonding and fully antibonding band orbitals for two cases- the bottom involving s-type
building block orbitals, and the top involving -type orbitals. Notice that when the energy gap between the building block  and 

 orbitals is larger than is the dispersion (spread) in energy within the band of  or band of  orbitals, a band gap occurs between
the highest member of the  band and the lowest member of the  band. The splitting between the  and  orbitals is a property
of the individual atoms comprising the solid and varies among the elements of the periodic table. For example, we teach students
that the -  energy gap in C is smaller than the -  gap in Si, which is smaller than the -  gap in Ge. The dispersion in
energies that a given band of orbitals is split into as these atomic orbitals combine to form a band is determined by how strongly the
orbitals on neighboring atoms overlap. Small overlap produces small dispersion, and large overlap yields a broad band. So, the
band structure of any particular system can vary from one in which narrow bands (weak overlap) do not span the energy gap
between the energies of their constituent atomic orbitals to bands that overlap strongly (large overlap).

Figure 2.6. The bonding through antibonding energies and band orbitals arising from  and from  atomic orbitals.
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Depending on how many valence electrons each building block contributes, the various bands formed by overlapping the building-
block orbitals of the constituent atoms will be filled to various levels. For example, if each building block orbital shown above has
a single valence electron in an s-orbital (e.g., as in the case of the alkali metals), the s-band will be half filled in the ground state
with a and b -paired electrons. Such systems produce very good conductors because their partially filled  bands allow electrons to
move with very little (e.g., only thermal) excitation among other orbitals in this same band. On the other hand, for alkaline earth
systems with two  electrons per atom, the s-band will be completely filled. In such cases, conduction requires excitation to the
lowest members of the nearby p-orbital band. Finally, if each building block were an Al (3s  3p ) atom, the s-band would be full
and the p-band would be half filled. In Figure 2.6 a, we show a qualitative depiction of the bands arising from sodium atoms’ , 

, , and  orbitals. Notice that the  band is very narrow because there is little coupling between neighboring  orbitals, so
they are only slightly stabilized or destabilized relative to their energies in the isolated Na atoms. In contrast, the  and  bands
show greater dispersion (i.e., are wider), and the  band is even wider. The , , and  bands are full, but the  band is half
filled, as a result of which solid Na is a good electrical conductor.

Figure 2.6 a. Example of sodium atoms’ , , , and  orbitals splitting into filled and partially filled bands in sodium metal.

In describing the band of states that arise from a given atomic orbital within a solid, it is common to display the variation in
energies of these states as functions of the number of sign changes in the coefficients that describe each orbital as a linear
combination of the constituent atomic orbitals. Using the one-dimensional array of  and  orbitals shown in Figure 2.6 as an
example,

1. The lowest member of the band deriving from the  orbitals

is a totally bonding combination of all of the constituent  orbitals on the  sites of the lattice.
2. The highest-energy orbital in this band

is a totally anti-bonding combination of the constituent  orbitals.
3. Each of the intervening orbitals in this band has expansion coefficients that allow the orbital to be written as

Clearly, for small values of , the series of expansion coefficients

has few sign changes as the index  runs over the sites of the one-dimensional lattice. For larger n, there are more sign changes.
Thus, thinking of the quantum number  as labeling the number of sign changes and plotting the energies of the orbitals (on the
vertical axis) versus  (on the horizontal axis), we would obtain a plot that increases from  to . In fact, such plots
tend to display quadratic variation of the energy with . This observation can be understood by drawing an analogy between the
pattern of sign changes belonging to a particular value of  and the number of nodes in the one-dimensional particle-in-a-box
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wave function, which also is used to model electronic states delocalized along a linear chain. As we saw in Chapter 1, the
energies for this model system varied as

with  being the quantum number ranging from  to . The lowest-energy state, with , has no nodes; the state with 
has one node, and that with  has  nodes. So, if we replace  by  and replace the box length  by ,
where  is the inter-atom spacing and  is the number of atoms in the chain, we obtain

from which on can see why the energy can be expected to vary as .
4. In contrast for the  orbitals, the lowest-energy orbital is

because this alternation in signs allows each orbital on one site to overlap in a bonding fashion with the orbitals on neighboring
sites.

5. Therefore, the highest-energy orbital in the band is

and is totally anti-bonding.
6. The intervening members of this band have orbitals given by

with low  corresponding to high-energy orbitals (having few inter-atom sign changes but anti-bonding character) and high 
to low-energy orbitals (having many inter-atom sign changes). So, in contrast to the case for the s-band orbitals, plotting the
energies of the orbitals (on the vertical axis) versus  (on the horizontal axis), we would obtain a plot that decreases from 
to .

For bands comprised of  orbitals, the energies vary with the  quantum number in a manner analogous to how the  band varies
because the orbital with no inter-atom sign changes is fully bonding. For two- and three-dimensional lattices comprised of s, p, and
d orbitals on the constituent atoms, the behavior of the bands derived from these orbitals follows analogous trends. It is common to
describe the sign alternations arising from site to site in terms of a so-called  vector. In the one-dimensional case discussed above,
this vector has only one component with elements labeled by the ratio ( ) whose value characterizes the number of inter-atom
sign changes. For lattices containing many atoms,  is very large, so  ranges from zero to a very large number. Thus, the ratio (

) ranges from zero to unity in small fractional steps, so it is common to think of these ratios as describing a continuous
parameter varying from zero to one. Moreover, it is convention to allow the  index to range from  to , so the argument 

 in the cosine function introduced above varies from  to .

In two- or three-dimensions the  vector has two or three elements and can be written in terms of its two or three index ratios,
respectively, as

Here, , , and  would describe the number of unit cells along the three principal axes of the three-dimensional crystal;  and 
 do likewise in the two-dimensional lattice case.

In such two- and three- dimensional crystal cases, the energies of orbitals within bands derived from s, p, d, etc. atomic orbitals
display variations that also reflect the number of inter-atom sign changes. However, now there are variations as functions of the (

), ( ) and ( ) indices, and these variations can display rather complicated shapes depending on the symmetry of the
atoms within the underlying crystal lattice. That is, as one moves within the three-dimensional space by specifying values of the
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indices ( ), ( ) and ( ), one can move throughout the lattice in different symmetry directions. It is convention in the
solid-state literature to plot the energies of these bands as these three indices vary from site to site along various symmetry
elements of the crystal and to assign a letter to label this symmetry element. The band that has no inter-atom sign changes is labeled
as  (sometimes G) in such plots of band structures. In much of our discussion below, we will analyze the behavior of various
bands in the neighborhood of the  point because this is where there are the fewest inter-atom nodes and thus the wave function is
easiest to visualize.

Let’s consider a few examples to help clarify these issues. In Figure 2.6 b, where we see the band structure of graphene, you can
see the quadratic variations of the energies with  as one moves away from the  point labeled , with some bands increasing
with  and others decreasing with .

Figure 2.6 b Band structure plot for graphene.

The band having an energy of ca. -17 eV at the  point originates from bonding interactions involving  orbitals on the carbon
atoms, while those having energies near 0 eV at the  point derive from carbon  bonding interactions. The parabolic increase
with  for the -based and decrease with  for the -based orbitals is clear and is expected based on our earlier discussion of
how  and  bands vary with . The band having energy near -4 eV at the  point involves  orbitals involved in bonding
interactions, and this band shows a parabolic increase with  as expected as we move away from the  point. These are the
delocalized  orbitals of the graphene sheet. The anti-bonding  band decreases quadratically with  and has an energy of ca. 15
eV at the  point. Because there are two atoms per unit cell in this case, there are a total of eight valence electrons (four from each
carbon atom) to be accommodated in these bands. The eight carbon valence electrons fill the bonding  and two  bands fully
as well as the bonding  band. Only along the direction labeled P in Figure 2.6b do the bonding and anti-bonding  bands
become degenerate (near 2.5 eV); the approach of these two bands is what allows graphene to be semi-metallic (i.e., to conduct at
modest temperatures- high enough to promote excitations from the bonding  to the anti-bonding  band).

It is interesting to contrast the band structure of graphene with that of diamond, which is shown in Figure 2. 6 c.

Figure 2.6 c Band structure of diamond carbon.

The band having an energy of ca. – 22 eV at the  point derives from  bonding interactions, and the three bands near 0 eV at the 
 point come from  bonding interactions. Again, each of these bands displays the expected parabolic behavior as functions of 
. In diamond’s two interpenetrating face centered cubic structure, there are two carbon atoms per unit cell, so we have a total of

eight valence electrons to fill the four bonding bands. Notice that along no direction in -space do these filled bonding bands
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become degenerate with or are crossed by any of the other bands. The other bands remain at higher energy along all -directions,
and thus there is a gap between the bonding bands and the others is large (ca. 5 eV or more along any direction in -space). This is
why diamond is an insulator; the band gap is very large.

Finally, let’s compare the graphene and diamond cases with a metallic case such as shown in Figure 2. 6 d for Al and for Ag.

Figure 2.6 d Band structures of Al and Ag.

For Al and Ag, there is one atom per unit cell, so we have three valence electrons (3s 3p ) and eleven valence electrons (3d 4s ),
respectively, to fill the bands shown in Figure 2.6d. Focusing on the  points in the Al and Ag band structure plots, we can say the
following:

1. For Al, the -based band near -11 eV is filled and the three -based bands near 11 eV have an occupancy of 1/6 (i.e., on
average there is one electron in one of these three bands each of which can hold two electrons).

2. The  and  bands are parabolic with positive and negative curvature, respectively.
3. Along several directions (e.g. , , , , ) there are crossings among the bands; these crossings allow electrons to be

promoted from occupied to previously unoccupied bands. The partial occupancy of the  bands and the multiple crossings of
bands are what allow Al to show metallic behavior.

4. For Ag, there are six bands between -4 eV and -8 eV. Five of these bands change little with , and one shows somewhat
parabolic dependence on . The former five derive from  atomic orbitals that are contracted enough to not allow them to
overlap much, and the latter is based on  bonding orbital interaction.

5. Ten of the valence electrons fill the five  bands, and the eleventh resides in the 5s-based bonding band.
6. If the five -based bands are ignored, the remainder of the Ag band structure looks a lot like that for Al. There are numerous

band crossings that include, in particular, the half-filled  band. These crossings and the partial occupancy of the  band
cause Ag to have metallic character.

One more feature of band structures that is often displayed is called the band density of states. An example of such a plot is shown
in Figure 2.6 e for the TiN crystal.

Figure 2.6 e. Energies of orbital bands in TiN along various directions in -space (left) and densities of states (right) as functions of
energy for this same crystal.
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The density of states at energy  is computed by summing all those orbitals having an energy between  and . Clearly, as
seen in Figure 2.6e, for bands in which the orbital energies vary strongly with  (i.e., so-called broad bands), the density of states is
low; in contrast, for narrow bands, the density of states is high. The densities of states are important because their energies and
energy spreads relate to electronic spectral features. Moreover, just as gaps between the highest occupied bands and the lowest
unoccupied bands play central roles in determining whether the sample is an insulator, a conductor, or a semiconductor, gaps in the
density of states suggest what frequencies of light will be absorbed or reflected via inter-band electronic transitions.

The bands of orbitals arising in any solid lattice provide the orbitals that are available to be occupied by the number of electrons in
the crystal. Systems whose highest energy occupied band is completely filled and for which the gap in energy to the lowest unfilled
band is large are called insulators because they have no way to easily (i.e., with little energy requirement) promote some of their
higher-energy electrons from orbital to orbital and thus effect conduction. The case of diamond discussed above is an example of
an insulator. If the band gap between a filled band and an unfilled band is small, it may be possible for thermal excitation (i.e.,
collisions with neighboring atoms or molecules) to cause excitation of electrons from the former to the latter thereby inducing
conductive behavior. The band structures of Al and Ag discussed above offer examples of this case. A simple depiction of how
thermal excitations can induce conduction is illustrated in Figure 2.7.

Figure 2.7. The valence and conduction bands and the band gap with a small enough gap to allow thermal excitation to excite
electrons and create holes in a previously filled band.

Systems whose highest-energy occupied band is partially filled are also conductors because they have little spacing among their
occupied and unoccupied orbitals so electrons can flow easily from one to another. Al and Ag are good examples.

To form a semiconductor, one starts with an insulator whose lower band is filled and whose upper band is empty as shown by the
broad bands in Fig.2.8.

Figure 2.8. The filled and empty bands, the band gap, and empty acceptor or filled donor bands.

If this insulator material is synthesized with a small amount of “dopant” whose valence orbitals have energies between the filled
and empty bands of the insulator, one can generate a semiconductor. If the dopant species has no valence electrons (i.e., has an
empty valence orbital), it gives rise to an empty band lying between the filled and empty bands of the insulator as shown below in
case a of Figure 2.8. In this case, the dopant band can act as an electron acceptor for electrons excited (either thermally or by light)
from the filled band of the insulator into the dopant’s empty band. Once electrons enter the dopant band, charge can flow (because
the insulator’s lower band is no longer filled) and the system thus becomes a conductor. Another case is illustrated in the b part of
Figure 2.8. Here, the dopant has a filled band that lies close in energy to the empty band of the insulator. Excitation of electrons
from this dopant band to the insulator’s empty band can induce current to flow (because now the insulator’s upper band is no
longer empty).

E E E+dE

k

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11573?pdf


2.2.7 https://chem.libretexts.org/@go/page/11573

Contributors and Attributions 

Jack Simons (Henry Eyring Scientist and Professor of Chemistry, U. Utah) Telluride Schools on Theoretical Chemistry

Integrated by Tomoyuki Hayashi (UC Davis) 
 

This page titled 2.2: Bands of Orbitals in Solids is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack
Simons.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11573?pdf
http://simons.hec.utah.edu/
http://www.telluridescience.org/tstc
http://www.thayashi.com/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/02%3A_Model_Problems_That_Form_Important_Starting_Points/2.02%3A_Bands_of_Orbitals_in_Solids
https://creativecommons.org/licenses/by-nc-sa/4.0
http://simons.hec.utah.edu/


2.3.1 https://chem.libretexts.org/@go/page/11574

2.3: Densities of States in 1, 2, and 3 dimensions
When a large number of neighboring orbitals overlap, bands are formed. However, the natures of these bands, their energy

patterns, and their densities of states are very different in different dimensions.

Before leaving our discussion of bands of orbitals and orbital energies in solids, I want to address a bit more the issue of the density
of electronic states and what determines the energy range into which orbitals of a given band will split. First, let’s recall the energy
expression for the 1 and 2- dimensional electron in a box case, and let’s generalize it to three dimensions. The general result is

where the sum over  runs over the number of dimensions (1, 2, or 3), and  is the length of the box along the jth direction. For
one dimension, one observes a pattern of energy levels that grows with increasing , and whose spacing between neighboring
energy levels also grows as a result of which the state density decreases with increasing . However, in 2 and 3 dimensions, the
pattern of energy level spacing displays a qualitatively different character, especially at high quantum number.

Consider first the 3-dimensional case and, for simplicity, let’s use a box that has equal length sides . In this case, the total energy 

 is  times . The latter quantity can be thought of as the square of the length of a vector  having three

components , , . Now think of three Cartesian axes labeled , , and  and view a sphere of radius  in this space. The

volume of the 1/8 th sphere having positive values of , , and   and having radius  is . Because each cube

having unit length along the , , and  axes corresponds to a single quantum wave function and its energy, the total number 

 of quantum states with positive , , and  and with energy between zero and  is

The number of quantum states with energies between  and  is , which gives the density  of states near

energy :

Notice that this state density increases as  increases. This means that, in the 3-dimensional case, the number of quantum states per
unit energy grows; in other words, the spacing between neighboring state energies decreases, very unlike the 1-dimensioal case
where the spacing between neighboring states grows as  and thus  grows. This growth in state density in the 3-dimensional case
is a result of the degeneracies and near-degeneracies that occur. For example, the states with , ,   = 2,1,1 and 1, 1, 2, and 1,
2, 1 are degenerate, and those with , ,   = 5, 3, 1 or 5, 1, 3 or 1, 3, 5 or 1, 5, 3 or 3, 1, 5 or 3, 5, 1 are degenerate and nearly
degenerate to those having quantum numbers 4, 4, 1 or 1, 4, 4, or 4, 1, 4.

In the 2-dimensional case, degeneracies also occur and cause the density of states to possess an -dependence that differs from the
1- or 3-dimensional case. In this situation

, we think of states having energy , but with . The total number of states having energy between

zero and  is

So, the density of states between  and  is
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That is, in this 2-dimensional case, the number of states per unit energy is constant for high  values (where the analysis above
applies best).

This kind of analysis for the 1-dimensional case gives

so, the state density between  and  is:

which clearly shows the widening spacing, and thus lower state density, as one goes to higher energies.

These findings about densities of states in 1-, 2-, and 3- dimensions are important because, in various problems one encounters in
studying electronic states of extended systems such as solids, chains, and surfaces, one needs to know how the number of states
available at a given total energy  varies with . A similar situation occurs when describing the translational states of an electron
or a photo ejected from an atom or molecule into the vacuum; here the 3-dimensional density of states applies. Clearly, the state
density depends upon the dimensionality of the problem, and this fact is what I want the students reading this text to keep in mind.

Before closing this Section, it is useful to overview how the various particle-in-box models can be used as qualitative descriptions
for various chemical systems.

1a. The one-dimensional box model is most commonly used to model electronic orbitals in delocalized linear polyenes.

1b. The electron-on-a-circle model is used to describe orbitals in a conjugated cyclic ring such as in benzene.

2a. The rectangular box model can be used to model electrons moving within thin layers of metal deposited on a substrate or to
model electrons in aromatic sheets such as graphene shown below in Figure 2.8a.

Figure 2.8a Depiction of the aromatic rings of graphene extending in two dimensions.

2b. The particle-within-a-circle model can describe states of electrons (or other light particles requiring quantum treatment)
constrained within a circular corral.

2c. The particle-on-a-sphere’s surface model can describe states of electrons delocalized over the surface of fullerene-type species
such as shown in the upper right of Figure 2.8b.
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Figure 2.8b Fullerene (upper right) and tubes of rolled up graphenes (lower three).

3a. The particle-in-a-sphere model, as discussed earlier, is often used to treat electronic orbitals of quasi-spherical nano-clusters
composed of metallic atoms.

3b. The particle-in-a-cube model is often used to describe the bands of electronic orbitals that arise in three-dimensional crystals
constructed from metallic atoms.

In all of these models, the potential , which is constant in the region where the electron is confined, controls the energies of all
the quantum states relative to that of a free electron (i.e., an electron in vacuum with no kinetic energy).

For some dimensionalities and geometries, it may be necessary to invoke more than one of these models to qualitatively describe
the quantum states of systems for which the valence electrons are highly delocalized (e.g., metallic clusters and conjugated
organics). For example, for electrons residing on the surface of any of the three graphene tubes shown in Figure 2.8b, one expects
quantum states (i) labeled with an angular momentum quantum number and characterizing the electrons’ angular motions about the
long axis of the tube, but also (ii) labeled by a long-axis quantum number characterizing the electron’s energy component along the
tube’s long axis. For a three-dimensional tube-shaped nanoparticle composed of metallic atoms, one expects the quantum states to
be (i) labeled with an angular momentum quantum number and a radial quantum number characterizing the electrons’ angular
motions about the long axis of the tube and its radial (Bessel function) character, but again also (ii) labeled by a long-axis quantum
number characterizing the electron’s energy component along the tube’s long axis.
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2.4: Hückel  or Tight Binding Theory
Now, let’s examine what determines the energy range into which orbitals (e.g.,  orbitals in polyenes, metal, semi-conductor, or
insulator;  or  orbitals in a solid; or  or  atomic orbitals in a molecule) split. I know that, in our earlier discussion, we talked
about the degree of overlap between orbitals on neighboring atoms relating to the energy splitting, but now it is time to make this
concept more quantitative. To begin, consider two orbitals, one on an atom labeled A and another on a neighboring atom labeled B;
these orbitals could be, for example, the  orbitals of two hydrogen atoms, such as Figure 2.9 illustrates.

Figure 2.9. Two  orbitals combine to produce a  bonding and a  antibonding molecular orbital

However, the two orbitals could instead be two  orbitals on neighboring carbon atoms such as are shown in Figure 2.10 as they
form  bonding and  anti-bonding orbitals.

Figure 2.10. Two atomic  orbitals form a bonding  and antibonding  molecular orbital.

In both of these cases, we think of forming the molecular orbitals (MOs)  as linear combinations of the atomic orbitals (AOs) ca
on the constituent atoms, and we express this mathematically as follows:

where the  are called linear combination of atomic orbital to form molecular orbital (LCAO-MO) coefficients. The MOs are
supposed to be solutions to the Schrödinger equation in which the Hamiltonian H involves the kinetic energy of the electron as well
as the potentials  and  detailing its attraction to the left and right atomic centers (this one-electron Hamiltonian is only an
approximation for describing molecular orbitals; more rigorous N-electron treatments will be discussed in Chapter 6):

In contrast, the AOs centered on the left atom A are supposed to be solutions of the Schrödinger equation whose Hamiltonian is 

, and the AOs on the right atom B have . Substituting  into the MO’s

Schrödinger equation

and then multiplying on the left by the complex conjugate of  and integrating over the ,  and  coordinates of the electron
produces

Recall that the Dirac notation  denotes the integral of  and , and  denotes the integral of  and the operator op
acting on b.
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In what is known as the Hückel model in chemistry or the tight-binding model in solid-state theory, one approximates the integrals
entering into the above set of linear equations as follows:

i. The diagonal integral  involving the AO centered on the right atom and labeled  is assumed to

be equivalent to , which means that net attraction of this orbital to the left atomic center is neglected.

Moreover, this integral is approximated in terms of the binding energy (denoted , not to be confused with the electron spin

function a) for an electron that occupies the  orbital: . The physical meaning of  is the

kinetic energy of the electron in   plus the attraction of this electron to the right atomic center while it resides in   . Of course,

an analogous approximation is made for the diagonal integral involving   ;   . These  values

are negative quantities because, as is convention in electronic structure theory, energies are measured relative to the energy of
the electron when it is removed from the orbital and possesses zero kinetic energy.

ii. The off-diagonal integrals  are expressed in terms of a parameter  which relates to the

kinetic and potential energy of the electron while it resides in the “overlap region” in which both  and   are non-vanishing.
This region is shown pictorially above as the region where the left and right orbitals touch or overlap. The magnitude of  is
assumed to be proportional to the overlap  between the two AOs : . It turns out that  is usually a negative

quantity, which can be seen by writing it as . Since  is an eigenfunction of 

 having the eigenvalue  , the first term is equal to   (a negative quantity) times , the overlap . The

second quantity  is equal to the integral of the overlap density   multiplied by the (negative) Coulomb
potential for attractive interaction of the electron with the left atomic center. So, whenever  and  have positive
overlap, b will turn out negative.

iii. Finally, in the most elementary Hückel or tight-binding model, the off-diagonal overlap integrals  are neglected
and set equal to zero on the right side of the matrix eigenvalue equation. However, in some Hückel models, overlap between
neighboring orbitals is explicitly treated, so, in some of the discussion below we will retain .

With these Hückel approximations, the set of equations that determine the orbital energies  and the corresponding LCAO-MO
coefficients  are written for the two-orbital case at hand as in the first  matrix equations shown below

which is sometimes written a

These equations reduce with the assumption of zero overlap to

The a parameters are identical if the two AOs ca and  are identical, as would be the case for bonding between the two  orbitals
of two H atoms or two 2  orbitals of two C atoms or two 3s orbitals of two Na atoms. If the left and right orbitals were not
identical (e.g., for bonding in HeH+ or for the  bonding in a C-O group), their a values would be different and the Hückel matrix
problem would look like:

To find the MO energies that result from combining the AOs, one must find the values of e for which the above equations are valid.
Taking the  matrix consisting of e times the overlap matrix to the left hand side, the above set of equations reduces to the third
set displayed earlier. It is known from matrix algebra that such a set of linear homogeneous equations (i.e., having zeros on the
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right hand sides) can have non-trivial solutions (i.e., values of  that are not simply zero) only if the determinant of the matrix on
the left side vanishes. Setting this determinant equal to zero gives a quadratic equation in which the e values are the unknowns:

This quadratic equation can be factored into a product

which has two solutions

As discussed earlier, it turns out that the b values are usually negative, so the lowest energy such solution is the 
 solution, which gives the energy of the bonding MO. Notice that the energies of the bonding and anti-

bonding MOs are not symmetrically displaced from the value a within this version of the Hückel model that retains orbital overlap.
In fact, the bonding orbital lies less than b below a, and the antibonding MO lies more than b above a because of the  and 

 factors in the respective denominators. This asymmetric lowering and raising of the MOs relative to the energies of the
constituent AOs is commonly observed in chemical bonds; that is, the antibonding orbital is more antibonding than the bonding
orbital i  bonding. This is another important thing to keep in mind because its effects pervade chemical bonding and spectroscopy.

Having noted the effect of inclusion of AO overlap effects in the Hückel model, I should admit that it is far more common to utilize
the simplified version of the Hückel model in which the S factors are ignored. In so doing, one obtains patterns of MO orbital
energies that do not reflect the asymmetric splitting in bonding and antibonding orbitals noted above. However, this simplified
approach is easier to use and offers qualitatively correct MO energy orderings. So, let’s proceed with our discussion of the Hückel
model in its simplified version.

To obtain the LCAO-MO coefficients corresponding to the bonding and antibonding MOs, one substitutes the corresponding a
values into the linear equations

and solves for the  coefficients (actually, one can solve for all, but one , and then use normalization of the MO to determine
the final Ca). For example, for the bonding MO, we substitute  into the above matrix equation and obtain two equations
for  and :

These two equations are clearly not independent; either one can be solved for one C in terms of the other C to give:

which means that the bonding MO is

The final unknown, C_L, is obtained by noting that f is supposed to be a normalized function . Within this version of the
Hückel model, in which the overlap S is neglected, the normalization of f leads to the following condition:

with the final result depending on assuming that each c is itself also normalized. So, finally, we know that , and hence the

bonding MO is:

Actually, the solution of  could also have yielded  and then, we would have

C
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These two solutions are not independent (one is just –1 times the other), so only one should be included in the list of MOs.
However, either one is just as good as the other because, as shown very early in this text, all of the physical properties that one
computes from a wave function depend not on  but on . So, two wave functions that differ from one another by an overall
sign factor as we have here have exactly the same  and thus are equivalent.

In like fashion, we can substitute  into the matrix equation and solve for the  can  values that are appropriate for
the antibonding MO. Doing so, gives us:

or, alternatively,

Again, the fact that either expression for  is acceptable shows a property of all solutions to any Schrödinger equations; any
multiple of a solution is also a solution. In the above example, the two answers for  differ by a multiplicative factor of (-1).

Let’s try another example to practice using Hückel or tight-binding theory. In particular, I’d like you to imagine two possible
structures for a cluster of three Na atoms (i.e., pretend that someone came to you and asked what geometry you think such a cluster
would assume in its ground electronic state), one linear and one an equilateral triangle. Further, assume that the Na-Na distances in
both such clusters are equal (i.e., that the person asking for your theoretical help is willing to assume that variations in bond lengths
are not the crucial factor in determining which structure is favored). In Figure 2.11, I shown the two candidate clusters and their 3s
orbitals.

Figure 2.11. Linear and equilateral triangle structures of sodium trimer.

Numbering the three Na atoms’ valence 3s orbitals , , and , we then set up the 3x3 Hückel matrix appropriate to the two
candidate structures:

for the linear structure (n.b., the zeros arise because  and  do not overlap and thus have no  coupling matrix element).
Alternatively, for the triangular structure, we find

as the Hückel matrix. Each of these 3x3 matrices will have three eigenvalues that we obtain by subtracting e from their diagonals
and setting the determinants of the resulting matrices to zero. For the linear case, doing so generates

and for the triangle case it produces

The first cubic equation has three solutions that give the MO energies:
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for the bonding, non-bonding and antibonding MOs, respectively. The second cubic equation also has three solutions

So, for the linear and triangular structures, the MO energy patterns are as shown in Figure 2.12.

Figure 2.12. Energy orderings of molecular orbitals of linear and triangular sodium trimer.

For the neutral  cluster about which you were asked, you have three valence electrons to distribute among the lowest available
orbitals. In the linear case, we place two electrons into the lowest orbital and one into the second orbital. Doing so produces a 3-
electron state with a total energy of . Alternatively, for the triangular species, we put two
electrons into the lowest MO and one into either of the degenerate MOs resulting in a 3-electron state with total energy 

. Because b is a negative quantity, the total energy of the triangular structure is lower than that of the linear structure
since .

The above example illustrates how we can use Hückel or tight-binding theory to make qualitative predictions (e.g., which of two
shapes is likely to be of lower energy).

Notice that all one needs to know to apply such a model to any set of atomic orbitals that overlap to form MOs is

i. the individual AO energies a (which relate to the electronegativity of the AOs),
ii. the degree to which the AOs couple (the b parameters which relate to AO overlaps),

iii. an assumed geometrical structure whose energy one wants to estimate.

This example and the earlier example pertinent to  or the  bond in ethylene also introduce the idea of symmetry. Knowing, for
example, that , ethylene, and linear  have a left-right plane of symmetry allows us to solve the Hückel problem in terms of
symmetry-adapted atomic orbitals rather than in terms of primitive atomic orbitals as we did earlier. For example, for linear ,
we could use the following symmetry-adapted functions:

both of which are even under reflection through the symmetry plane and

which is odd under reflection. The 3x3 Hückel matrix would then have the form

For example,  and  are evaluated as follows

ε = α +2β, ε = α −β,  and ε = α −β. (2.4.27)
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The three eigenvalues of the above Hückel matrix are easily seen to be , , and , exactly as we found earlier.
So, it is not necessary to go through the process of forming symmetry-adapted functions; the primitive Hückel matrix will give the
correct answers even if you do not. However, using symmetry allows us to break the full (3x3 in this case) Hückel problem into
separate Hückel problems for each symmetry component (one odd function and two even functions in this case, so a 1x1 and a 

 sub - matrix).

While we are discussing the issue of symmetry, let me briefly explain the concept of approximate symmetry again using the above
Hückel problem as it applies to ethylene as an illustrative example.

Figure 2.12a Ethylene molecule’s  and  orbitals showing the  reflection plane that is a symmetry property of this
molecule.

Clearly, as illustrated in Figure 2.12a, at its equilibrium geometry the ethylene molecule has a plane of symmetry (denoted )
that maps nuclei and electrons from its left to its right and vice versa. This is the symmetry element that could used to decompose
the  Hückel matrix describing the  and  orbitals into two 1x1 matrices. However, if any of the four C-H bond lengths or
HCH angles is displaced from its equilibrium value in a manner that destroys the perfect symmetry of this molecule, or if one of the
C-H units were replaced by a C-CH3 unit, it might appear that symmetry would no longer be a useful tool in analyzing the
properties of this molecule’s molecular orbitals. Fortunately, this is not the case.

Even if there is not perfect symmetry in the nuclear framework of this molecule, the two atomic  orbitals will combine to
produce a bonding  and antibonding  orbital. Moreover, these two molecular orbitals will still possess nodal properties similar
to those shown in Figure 2.12a even though they will not possess perfect even and odd character relative to the  plane. The
bonding orbital will still have the same sign to the left of the  plane as it does to the right, and the antibonding orbital will have
the opposite sign to the left as it does to the right, but the magnitudes of these two orbitals will not be left-right equal. This is an
example of the concept of approximate symmetry. It shows that one can use symmetry, even when it is not perfect, to predict the
nodal patterns of molecular orbitals, and it is the nodal patterns that govern the relative energies of orbitals as we have seen time
and again.

Let’s see if you can do some of this on your own. Using the above results, would you expect the cation  to be linear or
triangular? What about the anion ? Next, I want you to substitute the MO energies back into the 3x3 matrix and find the , 

, and  coefficients appropriate to each of the 3 MOs of the linear and of the triangular structure. See if doing so leads you to
solutions that can be depicted as shown in Figure 2.13, and see if you can place each set of MOs in the proper energy ordering.

Figure 2.13. The molecular orbitals of linear and triangular sodium trimer (note, they are not energy ordered in this figure).

Now, I want to show you how to broaden your horizons and use tight-binding theory to describe all of the bonds in a more
complicated molecule such as ethylene shown in Figure 2.14. What is different about this kind of molecule when compared with
metallic or conjugated species is that the bonding can be described in terms of several pairs of valence orbitals that couple to form
two-center bonding and antibonding molecular orbitals. Within the Hückel model described above, each pair of orbitals that touch
or overlap gives rise to a 2x2 matrix. More correctly, all n of the constituent valence orbitals form an nxn matrix, but this matrix is
broken up into 2x2 blocks. Notice that this did not happen in the triangular Na3 case where each AO touched two other AOs. For
the ethlyene case, the valence orbitals consist of (a) four equivalent C  orbitals that are directed toward the four H atoms, (b)
four H  orbitals, (c) two C  orbitals directed toward one another to form the C-C  bond, and (d) two C  orbitals that will
form the C-C  bond. This total of 12 orbitals generates 6 Hückel matrices as shown below the ethylene molecule.
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Figure 2.14 Ethylene molecule with four C-H bonds, one C-C  bond, and one C-C  bond.

We obtain one  matrix for the C-C  bond of the form

and one  matrix for the C-C  bond of the form

Finally, we also obtain four identical  matrices for the C-H bonds:

The above matrices produce

a. four identical C-H bonding MOs having energies

b. four identical C-H antibonding MOs having energies

c. one bonding C-C  orbital with

d. a partner antibonding C-C orbital with

e. a C-C  bonding MO with

and (\phi) its antibonding partner with

In all of these expressions, the  parameter is supposed to be that appropriate to the specific orbitals that overlap as shown in the
matrices.

If you wish to practice this exercise of breaking a large molecule down into sets of interacting valence, try to see what Hückel
matrices you obtain and what bonding and antibonding MO energies you obtain for the valence orbitals of methane shown in
Figure 2.15.
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Figure 2.15. Methane molecule with four C-H bonds.

Before leaving this discussion of the Hückel/tight-binding model, I need to stress that it has its flaws (because it is based on
approximations and involves neglecting certain terms in the Schrödinger equation). For example, it predicts (see above) that
ethylene has four energetically identical C-H bonding MOs (and four degenerate C-H antibonding MOs). However, this is not what
is seen when photoelectron spectra are used to probe the energies of these MOs. Likewise, it suggests that methane has four
equivalent C-H bonding and antibonding orbitals, which, again is not true. It turns out that, in each of these two cases (ethylene and
methane), the experiments indicate a grouping of four nearly iso-energetic bonding MOs and four nearly iso-energetic antibonding
MOs. However, there is some “splitting” among these clusters of four MOs. The splittings can be interpreted, within the Hückel
model, as arising from couplings or interactions among, for example, one sp2 or  orbital on a given C atom and another such
orbital on the same atom. Such couplings cause the nxn Hückel matrix to not block-partition into groups of  sub - matrices
because now there exist off-diagonal b factors that couple one pair of directed valence to another. When such couplings are
included in the analysis, one finds that the clusters of MOs expected to be degenerate are not but are split just as the photoelectron
data suggest.
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2.5: Hydrogenic Orbitals
The Hydrogenic atom problem forms the basis of much of our thinking about atomic structure. To solve the corresponding Schrödinger
equation requires separation of the , , and  variables.

The Schrödinger equation for a single particle of mass  moving in a central potential (one that depends only on the radial coordinate )
can be written as

or, introducing the short-hand notation :

This equation is not separable in Cartesian coordinates ( ) because of the way  and  appear together in the square root.
However, it is separable in spherical coordinates where it has the form 

Subtracting  from both sides of the equation and multiplying by - then moving the derivatives with respect to  to the right-hand
side, one obtains

Notice that, except for  itself, the right-hand side of this equation is a function of  only; it contains no  or  dependence. Let's call the
entire right hand side  to emphasize this fact.

To further separate the  and  dependence, we multiply by  and subtract the  derivative terms from both sides to obtain

Now we have separated the  dependence from the  and r dependence. We now introduce the procedure used to separate variables in
differential equations and assume y can be written as a function of  times a function of  and : . Dividing by , we
obtain

Now all of the  dependence is isolated on the left hand side; the right hand side contains only  and  dependence.

Whenever one has isolated the entire dependence on one variable as we have done above for the  dependence, one can easily see that
the left and right hand sides of the equation must equal a constant. For the above example, the left hand side contains no  or 
dependence and the right hand side contains no  dependence. Because the two sides are equal for all values of , , and , they both
must actually be independent of , , and  dependence; that is, they are constant. This again is what is done when one employs the
separations of variables method in partial differential equations.

For the above example, we therefore can set both sides equal to a so-called separation constant that we call . It will become clear
shortly why we have chosen to express the constant in the form of minus the square of an integer. You may recall that we studied this
same  - equation earlier and learned how the integer  arises via. the boundary condition that  and  represent identical
geometries.

The  Equation 

The resulting  equation reads (the “ symbol is used to represent second derivative)

This equation should be familiar because it is the equation that we treated much earlier when we discussed z-component of angular
momentum. So, its further analysis should also be familiar, but for completeness, I repeat much of it. The above equation has as its most
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general solution

Because the wave functions of quantum mechanics represent probability densities, they must be continuous and single-valued. The latter
condition, applied to our  function, means (n.b., we used this in our earlier discussion of z-component of angular momentum) that

or

This condition is satisfied only when the separation constant is equal to an integer . This provides another example of
the rule that quantization comes from the boundary conditions on the wave function. Here  is restricted to certain discrete values
because the wave function must be such that when you rotate through  about the z-axis, you must get back what you started with.

The  Equation 
Now returning to the equation in which the  dependence was isolated from the  and  dependence and rearranging the  terms to the
left-hand side, we have

In this equation we have separated the  and  terms, so we can further decompose the wave function by introducing ,
which yields

where a second separation constant, , has been introduced once the  and  dependent terms have been separated onto the right and
left hand sides, respectively.  
We now can write the  equation as 

 
where  is the integer introduced earlier. To solve this equation for , we make the substitutions  and , so 

, and  

The range of values for  was , so the range for  is . The equation for , when expressed in terms of  and ,
becomes

Now we can look for polynomial solutions for , because  is restricted to be less than unity in magnitude. If  = 0, we first let

and substitute into the differential equation to obtain

Equating like powers of  gives

Note that for large values of 

Φ = A +B .eimϕ e−imϕ (2.5.8)

Φ

Φ(ϕ) = Φ(2π+ϕ) (2.5.9)

A (1 − ) +B (1 − ) = 0.eimϕ e2imπ e−imϕ e2imπ (2.5.10)

m = 0, ±1, ±2, ⋯
m
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ϕ r θ θ
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1

sinθ

∂

∂θ

∂Q

∂θ
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Since the coefficients do not decrease with  for large , this series will diverge for  unless it truncates at finite order. This
truncation only happens if the separation constant  obeys , where  is an integer (you can see this from the recursion
relation giving  in terms of ; only for certain values of  will the numerator vanish ). So, once again, we see that a boundary
condition (i.e., that the wave function not diverge and thus be normalizable in this case) give rise to quantization. In this case, the values
of  are restricted to ; before, we saw that  is restricted to . 
Since the above recursion relation links every other coefficient, we can choose to solve for the even and odd functions separately.
Choosing  and then determining all of the even   in terms of this  , followed by rescaling all of these   to make the function
normalized generates an even solution. Choosing   and determining all of the odd   in like manner, generates an odd solution.  
For , the series truncates after one term and results in . For  the same thing applies and . For , 

, so one obtains , and so on. These polynomials are called Legendre polynomials and are denoted 

.  
For the more general case where , one can proceed as above to generate a polynomial solution for the  function. Doing so,
results in the following solutions: 

 
These functions are called Associated Legendre polynomials, and they constitute the solutions to the  problem for non-zero  values. 
The above  and  functions, when re-expressed in terms of  and , yield the full angular part of the wave function for any
centrosymmetric potential. These solutions are usually written as 
 

 
 
and are called spherical harmonics. They provide the angular solution of the  Schrödinger equation for any problem in which the
potential depends only on the radial coordinate. Such situations include all one-electron atoms and ions (e.g., , , , etc.), the
rotational motion of a diatomic molecule (where the potential depends only on bond length ), the motion of a nucleon in a spherically
symmetrical box (as occurs in the shell model of nuclei), and the scattering of two atoms (where the potential depends only on
interatomic distance). 
The  functions possess varying number of angular nodes, which, as noted earlier, give clear signatures of the angular or rotational
energy content of the wave function. These angular nodes originate in the oscillatory nature of the Legendre and associated Legendre
polynomials ; the higher  is, the more sign changes occur within the polynomial.

The  Equation 
Let us now turn our attention to the radial equation, which is the only place that the explicit form of the potential appears. Using our
earlier results for the equation obeyed by the  function and specifying  to be the Coulomb potential appropriate for an electron
in the field of a nucleus of charge , yields:

We can simplify things considerably if we choose rescaled length and energy units because doing so removes the factors that depend on 
, , and . We introduce a new radial coordinate  and  quantity  as follows:

Notice that if  is negative, as it will be for bound states (i.e., those states with energy below that of a free electron infinitely far from
the nucleus and with zero kinetic energy),  and  are real. On the other hand, if  is positive, as it will be for states that lie in the

→ = 1.
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(z) = (1 −P m
l z2)|m|/2 (z)d|m|Pl

dz|m|
(2.5.20)

Q m

P eimϕ θ ϕ
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continuum,  and  will be imaginary. These two cases will give rise to qualitatively different behavior in the solutions of the radial
equation developed below.

We now define a function  such that  and substitute  for  to obtain:

The differential operator terms can be recast in several ways using

The strategy that we now follow is characteristic of solving second order differential equations. We will examine the equation for  at
large and small  values. Having found solutions at these limits, we will use a power series in  to interpolate between these two limits.

Let us begin by examining the solution of the above equation at small values of  to see how the radial functions behave at small . As 

, the term  will dominate over . Neglecting these other two terms, we find that, for small values of  (or ),

the solution should behave like  and because the function must be normalizable, we must have . Since  can be any non-negative
integer, this suggests the following more general form for : 

 
This form will insure that the function is normalizable since  as  for all , as long as  is a real quantity. If  is
imaginary, such a form may not be normalized (see below for further consequences). 
Turning now to the behavior of  for large , we make the substitution of  into the above equation and keep only the terms with the
largest power of  (i.e., the  term) and we allow the derivatives in the above differential equation to act on . Upon so
doing, we obtain the equation 

 

which leads us to conclude that the exponent in the large-  behavior of S is .  

Having found the small-  and large-  behaviors of , we can take  to have the following form to interpolate between large and
small r-values: 

 
where the function  is expanded in an infinite power series in  as . Again substituting this expression for  into the
above equation we obtain 

 
and then substituting the power series expansion of  and solving for the ak's we arrive at a recursion relation for the ak coefficients: 

 

For large , the ratio of expansion coefficients reaches the limit , which, when substituted into , gives the same

behavior as the power series expansion of . Because the power series expansion of  describes a function that behaves like   for
large , the resulting  function would not be normalizable because the efactor would be overwhelmed by this  dependence.
Hence, the series expansion of  must truncate in order to achieve a normalizable  function. Notice that if  is imaginary, as it will be
if  is in the continuum, the argument that the series must truncate to avoid an exponentially diverging function no longer applies. Thus,
we see a key difference between bound (with  real) and continuum (with r imaginary) states. In the former case, the boundary condition
of non-divergence arises; in the latter, it does not because  does not diverge if  is imaginary.
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To truncate at a polynomial of order , we must have . This implies that the quantity s introduced previously is
restricted to , which is certainly an integer; let us call this integer . If we label states in order of increasing 

, we see that doing so is consistent with specifying a maximum order ( ) in the  polynomial  after
which the  value can run from , in steps of unity up to .

Substituting the integer  for , we find that the energy levels are quantized because  is quantized (equal to ):

and the scaled distance turns out to be

Here, the length  is the so-called Bohr radius , which turns out to be 0.529 Å; it appears once the above E-expression is

substituted into the equation for . Using the recursion equation to solve for the polynomial's coefficients  for any choice of  and 
quantum numbers generates a so-called Laguerre polynomial; . They contain powers of  from zero through , and
they have  sign changes as the radial coordinate ranges from zero to infinity. It is these sign changes in the Laguerre
polynomials that cause the radial parts of the hydrogenic wave functions to have  nodes. For example,  orbitals have no
radial nodes, but 4d orbitals have one; and, as shown in Figure 2.16,  orbitals have one while  orbitals have two. Once again, the
higher the number of nodes, the higher the energy in the radial direction.

Figure 2.16. Plots of the probability densities  of the radial parts of the  and  orbitals

Let me again remind you about the danger of trying to understand quantum wave functions or probabilities in terms of classical
dynamics. What kind of potential  would give rise to, for example, the   plot shown above? Classical mechanics suggests
that  should be large where the particle moves slowly and small where it moves quickly. So, the   plot suggests that the radial
speed of the electron has three regions where it is low (i.e., where the peaks in  are) and two regions where it is very large (i.e., where
the nodes are). This, in turn, suggests that the radial potential  experienced by the  electron is high in three regions (near peaks in
P) and low in two regions. Of course, this conclusion about the form of  is nonsense and again illustrates how one must not be
drawn into trying to think of the classical motion of the particle, especially for quantum states with small quantum number. In fact, the
low quantum number states of such one-electron atoms and ions have their radial  plots focused in regions of r-space where the
potential  is most attractive (i.e., largest in magnitude).

Finally, we note that the energy quantization does not arise for states lying in the continuum because the condition that the expansion of 
 terminate does not arise. The solutions of the radial equation appropriate to these scattering states (which relate to the scattering

motion of an electron in the field of a nucleus of charge ) are a bit outside the scope of this text, so we will not treat them further here.

To review, separation of variables has been used to solve the full  Schrödinger equation for one electron moving about a nucleus of
charge . The  and  solutions are the spherical harmonics . The bound-state radial solutions
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depend on the  and  quantum numbers and are given in terms of the Laguerre polynomials.

Summary 

To summarize, the quantum numbers  and  arise through boundary conditions requiring that  be normalizable (i.e., not diverge)
and . The radial equation, which is the only place the potential energy enters, is found to possess both bound-states
(i.e., states whose energies lie below the asymptote at which the potential vanishes and the kinetic energy is zero) and continuum states
lying energetically above this asymptote. The former states are spatially confined by the potential, but the latter are not. The resulting
hydrogenic wave functions (angular and radial) and energies are summarized on pp. 133-136 in the text by L. Pauling and E. B. Wilson
for  up to and including 6 and  up to 5 (i.e, for  and  orbitals).

There are both bound and continuum solutions to the radial Schrödinger equation for the attractive coulomb potential because, at
energies below the asymptote, the potential confines the particle between  and an outer classical turning point, whereas at energies
above the asymptote, the particle is no longer confined by an outer turning point (see Figure 2.17). This provides yet another example of
how quantized states arise when the potential spatially confines the particle, but continuum states arise when the particle is not spatially
confined.

 
Figure 2.17: Radial Potential for Hydrogenic Atoms and Bound and Continuum Orbital Energies.

The solutions of this one-electron problem form the qualitative basis for much of atomic and molecular orbital theory. For this reason,
the reader is encouraged to gain a firmer understanding of the nature of the radial and angular parts of these wave functions. The orbitals
that result are labeled by , , and  quantum numbers for the bound states and by  and  quantum numbers and the energy  for the
continuum states. Much as the particle-in-a-box orbitals are used to qualitatively describe p- electrons in conjugated polyenes, these so-
called hydrogen-like orbitals provide qualitative descriptions of orbitals of atoms with more than a single electron. By introducing the
concept of screening as a way to represent the repulsive interactions among the electrons of an atom, an effective nuclear charge  can
be used in place of  in the  and  to generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For
example, in the crudest approximation of a carbon atom, the two  electrons experience the full nuclear attraction so  for them,
whereas the  and  electrons are screened by the two  electrons, so  for them. Within this approximation, one then
occupies two  orbitals with , two  orbitals with  and two  orbitals with  in forming the full six-electron wave
function of the lowest-energy state of carbon. It should be noted that the use of screened nuclear charges as just discussed is different
from the use of a quantum defect parameter d as discussed regarding Rydberg orbitals in Chapter 1. The  screened charge for
carbon’s  and  orbitals is attempting to represent the effect of the inner-shell  electrons on the  and  orbitals. The
modification of the principal quantum number made by replacing  by  represents the penetration of the orbital with nominal
quantum number  inside its inner-shells.
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2.6: Electron Tunneling
As we have seen several times already, solutions to the Schrödinger equation display several properties that are very different from what one
experiences in Newtonian dynamics. One of the most unusual and important is that the particles one describes using quantum mechanics can move
into regions of space where they would not be allowed to go if they obeyed classical equations. We call these classically forbidden regions. Let us
consider an example to illustrate this so-called tunneling phenomenon. Specifically, we think of an electron (a particle that we likely would use
quantum mechanics to describe) moving in a direction we will call  under the influence of a potential that is:

1. Infinite for  (this could, for example, represent a region of space within a solid material where the electron experiences very repulsive
interactions with other electrons);

2. Constant and negative for some range of  between  and  (this could represent the attractive interaction of the electrons with those
atoms or molecules in a finite region or surface of a solid);

3. Constant and repulsive (i.e., positive) by an amount  for another finite region from   to  (this could represent the
repulsive interactions between the electrons and a layer of molecules of thickness d lying on the surface of the solid at  );

4. Constant and equal to  from  to infinity (this could represent the electron being removed from the solid, but with a work function
energy cost of , and moving freely in the vacuum above the surface and the ad-layer). Such a potential is shown in Figure 2.18.

Figure 2.18. One-dimensional potential showing a well, a barrier, and the asymptotic region.

The piecewise nature of this potential allows the one-dimensional Schrödinger equation to be solved analytically. For energies lying in the range 
, an especially interesting class of solutions exists. These so-called resonance states occur at energies that are determined by

the condition that the amplitude of the wave function within the barrier (i.e., for  ) be large. Let us now turn our attention to this
specific energy regime, which also serves to introduce the tunneling phenomenon.

The piecewise solutions to the Schrödinger equation appropriate to the resonance case are easily written down in terms of sin and cos or exponential
functions, using the following three definitions:

The combination of  and  that solve the Schrödinger equation in the inner region and that vanish at  (because the function
must vanish within the region where  is infinite and because it must be continuous, it must vanish at ) is:

Between  and , there are two solutions that obey the Schrödiger equation, so the most general solution is a combination of these two:

Finally, in the region beyond , we can use a combination of either  and  or  and  to express the
solution. Unlike the region near , where it was most convenient to use the sin and cos functions because one of them could be “thrown away”
since it could not meet the boundary condition of vanishing at , in this large-  region, either set is acceptable. We choose to use the 

 and

 set because each of these functions is an eigenfunction of the momentum operator . This allows us to discuss amplitudes for

electrons moving with positive momentum and with negative momentum. So, in this region, the most general solution is

There are four amplitudes (  and ) that can be expressed in terms of the specified amplitude  of the incoming flux (e.g., pretend that
we know the flux of electrons that our experimental apparatus shoots at the surface). Four equations that can be used to achieve this goal result

when  and  are matched at  and at  (one of the essential properties of solutions to the Schrödinger equation is that they and

their first derivative are continuous; these properties relate to y being a probability and the momentum  being continuous). These four

equations are:
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It is especially instructive to consider the value of  that results from solving this set of four equations in four unknowns because the modulus
of this ratio provides information about the relative amount of amplitude that exists inside the barrier in the attractive region of the potential
compared to that existing in the asymptotic region as incoming flux.

The result of solving for  is:

To simplify this result in a manner that focuses on conditions where tunneling plays a key role in creating the resonance states, it is instructive to
consider this result under conditions of a high (large ) and thick (large ) barrier. In such a case, the factor  will be very
small compared to its counterpart , and so

The  factor in  causes the magnitude of the wave function inside the barrier to be small in most circumstances; we say that incident
flux must tunnel through the barrier to reach the inner region and that  governs the probability of this tunneling.

Keep in mind that, in the energy range we are considering ( ), a classical particle could not even enter the region 
; this is why we call this the classically forbidden or tunneling region. A classical particle starting in the large-  region can

not enter, let alone penetrate, this region, so such a particle could never end up in the  inner region. Likewise, a classical particle that
begins in the inner region can never penetrate the tunneling region and escape into the large-  region. Were it not for the fact that electrons obey a
Schrödinger equation rather than Newtonian dynamics, tunneling would not occur and, for example, scanning tunneling microscopy (STM), which
has proven to be a wonderful and powerful tool for imaging molecules on and near surfaces, would not exist. Likewise, many of the devices that
appear in our modern electronic tools and games, which depend on currents induced by tunneling through various junctions, would not be available.
But, or course, tunneling does occur and it can have remarkable effects.

Let us examine an especially important (in chemistry) phenomenon that takes place because of tunneling and that occurs when the energy E
assumes very special values. The magnitude of the  factor in the above solutions of the Schrödinger equation can become large if the energy E
is such that the denominator in the above expression for  approaches zero. This happens when

or if

It can be shown that the above condition is similar to the energy quantization condition

that arises when bound states of a finite potential well similar to that shown above but with the barrier between  and  missing and
with  below . There is, however, a difference. In the bound-state situation, two energy-related parameters occur

and

In the case we are now considering,  is the same, but

A sin(k ) = exp( ) + exp(− ),Rmax B+ κ′Rmax B− κ′Rmax (2.6.5)

Ak cos(k ) =  exp(  ) −  exp(− ),Rmax κ′ B+ κ′ Rmax κ′ B− κ′Rmax (2.6.6)

exp( ( +δ)) + exp(− ( +δ))B+ κ′ Rmax B− κ′ Rmax (2.6.7)

= C exp(i ( +δ) +D exp(−i ( +δ),k′ Rmax k′ Rmax (2.6.8)

exp( ( +δ)) − exp(− ( +δ))k′B+ κ′ Rmax k′B− κ′ Rmax (2.6.9)

= i C exp(i ( +δ)) − i D exp(−i ( +δ)).k′ k′ Rmax k′ k′ Rmax (2.6.10)

A/D

A/D

=
A

D

4 exp(−i ( +δ))κ′ k′ Rmax

exp( δ)(i − )( sin(k ) +k cos(k ))/i +exp(− δ)(i + )( sin(k ) −k cos(k ))/iκ′ k′ κ′ κ′ Rmax Rmax k′ κ′ k′ κ′ κ′ Rmax Rmax k′

.

(2.6.11)

+δV −EDe δ exp(− δ)κ′

exp( δ)κ′

= 4 .
A

D

ik′κ′

i −k′ κ′

exp(−i ( +δ)) exp(− δ)k′ Rmax κ′

sin(k ) +k cos(k )κ′ Rmax Rmax

(2.6.12)

exp(− δ)κ′ A/D

exp(− δ)κ′

E < +δDe

< R < +δRmax Rmax R

0 < R < Rmax

R

A/D

A/D

sin(k ) +k cos(k )κ′ Rmax Rmax (2.6.13)

tan(k ) = − .Rmax
k

κ

′

(2.6.14)

tan(k ) = −Rmax
k

κ
(2.6.15)

Rmax +δRmax

E De

k =
2μE

ℏ2

− −−−
√ (2.6.16)

κ = .
2μ( −E)De

ℏ2

− −−−−−−−−−

√ (2.6.17)

k
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rather than  occurs, so the two equations involving are not identical, but they are quite similar.

Another observation that is useful to make about the situations in which  becomes very large can be made by considering the case of a very
high barrier (so that  is much larger than ). In this case, the denominator that appears in 

can become small at energies satisfying

This condition is nothing but the energy quantization condition that occurs for the particle-in-a-box potential shown in Figure 2.19.

Figure 2.19. One-dimensional potential similar to the tunneling potential but without the barrier and asymptotic region.

This potential is identical to the potential that we were examining for , but extends to infinity beyond  ; the barrier and the
dissociation asymptote displayed by our potential are absent.

Let’s consider what this tunneling problem\hbaras taught us. First, it showed us that quantum particles penetrate into classically forbidden regions.
It showed that, at certain so-called resonance energies, tunneling is much more likely than at energies that are off-resonance. In our model problem,
this means that electrons impinging on the surface with resonance kinetic energies will have a very high probability of tunneling to produce an
electron that is highly localized (i.e., trapped) in the  region. Likewise, it means that an electron prepared (e.g., perhaps by photo-
excitation from a lower-energy electronic state) within the  region will remain trapped in this region for a long time (i.e., will have a
low probability of tunneling outward).

In the case just mentioned, it would make sense to solve the four equations for the amplitude C of the outgoing wave in the  region in
terms of the A amplitude. If we were to solve for  and then examine under what conditions the amplitude of this ratio would become small (so

the electron cannot escape), we would find the same  resonance condition as we found from the other point of view. This

means that the resonance energies tell us for what collision energies the electron will tunnel inward and produce a trapped electron and, at these
same energies, an electron that is trapped will not escape quickly.

Whenever one has a barrier on a potential energy surface, at energies above the dissociation asymptote  but below the top of the barrier (
 here), one can expect resonance states to occur at special scattering energies . As we illustrated with the model problem, these so-called

resonance energies can often be approximated by the bound-state energies of a potential that is identical to the potential of interest in the inner
region (  ) but that extends to infinity beyond the top of the barrier (i.e., beyond the barrier, it does not fall back to values below ).

The chemical significance of resonances is great. Highly rotationally excited molecules may have more than enough total energy to dissociate ( ),
but this energy may be stored in the rotational motion, and the vibrational energy may be less than . In terms of the above model, high rotational
angular momentum may produce a significant centrifugal barrier in the effective potential that characterizes the molecule’s vibration, but the
system's vibrational energy may lie significantly below . In such a case, and when viewed in terms of motion on an angular-momentum-modified
effective potential such as I show in Figure 2.20 , the lifetime of the molecule with respect to dissociation is determined by the rate of tunneling
through the barrier.

=k′ 2μ( +δV −E)De

ℏ2

− −−−−−−−−−−−−−−

√ (2.6.18)

κ tan(k )Rmax

A/D

k′ k A/D

sin(k ) +k cos(k ) ≃ sin(k )κ′ Rmax Rmax κ′ Rmax (2.6.19)

sin(k ) ≃ 0.Rmax (2.6.20)

0 ≤ R ≤ Rmax Rmax

0 < R < Rmax

0 < R < Rmax

R > Rmax

C/A

tan(k ) = −Rmax
k

κ

′

De

+δVDe E

0 ≤ R ≤ Rmax E

De

De

De
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Figure 2.20. Radial potential for non-rotating ( ) molecule and for rotating molecule.

In this case, one speaks of rotational predissociation of the molecule. The lifetime t can be estimated by computing the frequency n at which flux
that exists inside  strikes the barrier at 

and then multiplying by the probability  that flux tunnels through the barrier from  to :

The result is that

with the energy  entering into  and  being determined by the resonance condition: (\kappa'\sin(kR_{\rm max})+k\cos(kR_{\rm max})) =
minimum. We note that the probability of tunneling  falls of exponentially with a factor depending on the width d of the barrier through
which the particle must tunnel multiplied by , which depends on the height of the barrier  above the energy  available. This exponential
dependence on thickness and height of the barriers is something you should keep in mind because it appears in all tunneling rate expressions.

Another important case in which tunneling occurs is in electronically metastable states of anions. In so-called shape resonance states, the anion’s
extra electron experiences an attractive potential due to its interaction with the underlying neutral molecule’s dipole, quadrupole, and induced

electrostatic moments, as well as a centrifugal potential of the form  whose magnitude depends on the angular character of the orbital

the extra electron occupies.

When combined, the above attractive and centrifugal potentials produce an effective radial potential of the form shown in Figure 2.21 for the 
case in which the added electron occupies the  orbital which has  character when viewed from the center of the N-N bond. Again,
tunneling through the barrier in this potential determines the lifetimes of such shape resonance states. 

Figure 2.21 Effective radial potential for the excess electron in  occupying the  orbital which has a dominant  component.

Although the examples treated above analytically involved piecewise constant potentials (so the Schrödinger equation and the boundary matching
conditions could be solved exactly), many of the characteristics observed carry over to more chemically realistic situations. In fact, one can often
model chemical reaction processes in terms of motion along a reaction coordinate (s) from a region characteristic of reactant materials where the
potential surface is positively curved in all direction and all forces (i.e., gradients of the potential along all internal coordinates) vanish; to a
transition state at which the potential surface's curvature along s is negative while all other curvatures are positive and all forces vanish; onward to
product materials where again all curvatures are positive and all forces vanish. A prototypical trace of the energy variation along such a reaction
coordinate is in Figure 2.22. 

J = 0

Rmax Rmax

ν = (sec
ℏk

2μRmax
)−1 (2.6.21)

P Rmax +δRmax

P = exp(−2 δ).κ′ (2.6.22)

= exp(−2 δ)τ−1 ℏk

2μRmax
κ′ (2.6.23)

E k κ′

exp(−2 δ)κ′

κ′ +δDe E

L(L+1)ℏ2

8π2meR2

N−
2

π∗ L = 2

N−
2 π∗ L = 2
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Figure 2.22. Energy profile along a reaction path showing the barrier through which tunneling may occur.

Near the transition state at the top of the barrier on this surface, tunneling through the barrier plays an important role if the masses of the particles
moving in this region are sufficiently light. Specifically, if  or  atoms are involved in the bond breaking and forming in this region of the energy
surface, tunneling must usually be considered in treating the dynamics.

Within the above reaction path point of view, motion transverse to the reaction coordinate is often modeled in terms of local harmonic motion
although more sophisticated treatments of the dynamics is possible. This picture leads one to consider motion along a single degree of freedom,
with respect to which much of the above treatment can be carried over, coupled to transverse motion along all other internal degrees of freedom
taking place under an entirely positively curved potential (which therefore produces restoring forces to movement away from the streambed traced
out by the reaction path). This point of view constitutes one of the most widely used and successful models of molecular reaction dynamics and is
treated in more detail in Chapters 3 and 8 of this text.
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2.7: Angular Momentum

Orbital Angular Momentum 

A particle moving with momentum p at a position r relative to some coordinate origin has so-called orbital angular momentum
equal to . The three components of this angular momentum vector in a Cartesian coordinate system located at the origin
mentioned above are given in terms of the Cartesian coordinates of  and  as follows:

Using the fundamental commutation relations among the Cartesian coordinates and the Cartesian momenta:

which are proven by considering quantities of the from

it can be shown that the above angular momentum operators obey the following set of commutation relations:

Although the components of  do not commute with one another, they can be shown to commute with the operator  defined by

This new operator is referred to as the square of the total angular momentum operator.

The commutation properties of the components of  allow us to conclude that complete sets of functions can be found that are
eigenfunctions of  and of one, but not more than one, component of . It is convention to select this one component as , and
to label the resulting simultaneous eigenstates of  and  as  according to the corresponding eigenvalues:

These eigenfunctions of  and of  will not, in general, be eigenfunctions of either  or of . This means that any
measurement of  or  will necessarily change the wave function if it begins as an eigenfunction of .

The above expressions for , , and  can be mapped into quantum mechanical operators by substituting , , and  as the

corresponding coordinate operators and , , and  for , , and , respectively. The resulting operators can

then be transformed into spherical coordinates the results of which are:

L = r ×p

r p

= x −y ,Lz py px (2.7.1)

= y −z ,Lx pz py (2.7.2)

= z −x .Ly px pz (2.7.3)

[ , ] = − = iℏ (j, k = x, y, z),qk pj qkpj pjqk δj,k (2.7.4)

(x − x)f = −iℏ[x − ] = iℏf ,px px
∂f

∂x

∂(xf)

∂x
(2.7.5)

[ , ] = iℏ ,Lx Ly Lz (2.7.6)

[ , ] = iℏ ,Ly Lz Lx (2.7.7)

[ , ] = iℏ .Lz Lx Ly (2.7.8)

L L2

= + + .L2 L2
x L2

y L2
z (2.7.9)

L

L2 L Lz

L2 Lz |l,m⟩

|l,m⟩ = l(l+1)|l,m⟩, l = 0, 1, 2, 3, . . . .L2 ℏ2 (2.7.10)

|l,m⟩ = ℏm|l,m⟩,m = ±l, ±(l−1), ±(l−2), . . . ±(l−(l−1)), 0.Lz (2.7.11)

L2 Lz Lx Ly

Lx Ly Lz

Lx Ly Lz x y z

−iℏ
∂

∂x
−iℏ

∂

∂y
−iℏ

∂

∂z
px py pz

= −iℏ ,Lz

∂

∂ϕ
(2.7.12)

= iℏ[sinϕ +cotθcosϕ ] ,Lx

∂

∂θ

∂

∂ϕ
(2.7.13)

= −iℏ[cosϕ −cotθ sinϕ ] ,Ly

∂

∂θ

∂

∂ϕ
(2.7.14)

= − [ (sinθ ) + ] .L2 ℏ2 1

sinθ

∂

∂θ

∂

∂θ

1

θsin2

∂2

∂ϕ2
(2.7.15)
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Properties of General Angular Momenta 

There are many types of angular momenta that one encounters in chemistry. Orbital angular momenta, such as that introduced
above, arise in electronic motion in atoms, in atom-atom and electron-atom collisions, and in rotational motion in molecules.
Intrinsic spin angular momentum is present in electrons,  and many other nuclei. In this Section, we will deal with
the behavior of any and all angular momenta and their corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular momentum. The Hamiltonian's interaction potentials present
in a particular species may or may not cause these individual angular momenta to be coupled to an appreciable extent (i.e., the
Hamiltonian may or may not contain terms that refer simultaneously to two or more of these angular momenta). For example, the 

 ion, which has a  ground electronic state (its electronic configuration is ) has electronic spin,
electronic orbital, and molecular rotational angular momenta. The full Hamiltonian  contains terms that couple the electronic spin
and orbital angular momenta, thereby causing them individually to not commute with .

In such cases, the eigenstates of the system can be labeled rigorously only by angular momentum quantum numbers  and 
belonging to the total angular momentum operators  and . The total angular momentum of a collection of individual angular
momenta is defined, component-by-component, as follows:

where  labels , , and , and  labels the constituents whose angular momenta couple to produce J.

For the remainder of this Section, we will study eigenfunction-eigenvalue relationships that are characteristic of all angular
momenta and which are consequences of the commutation relations among the angular momentum vector's three components. We
will also study how one combines eigenfunctions of two or more angular momenta { } to produce eigenfunctions of the total .

Consequences of the Commutation Relations 

Any set of three operators that obey

will be taken to define an angular momentum , whose square  commutes with all three of its components. It is
useful to also introduce two combinations of the three fundamental operators  and :

and to refer to them as raising and lowering operators for reasons that will be made clear below. These new operators can be shown
to obey the following commutation relations:

Using only the above commutation properties, it is possible to prove important properties of the eigenfunctions and eigenvalues of 
 and . Let us assume that we have found a set of simultaneous eigenfunctions of  and  ; the fact that these two operators

commute tells us that this is possible. Let us label the eigenvalues belonging to these functions:

in terms of the quantities  and . Although we certainly hint that these quantities must be related to certain  and 
quantum numbers, we have not yet proven this, although we will soon do so. For now, we view  and  simply as symbols
that represent the respective eigenvalues. Because both  and  are Hermitian, eigenfunctions belonging to different  or 

 quantum numbers must be orthogonal:

, , ,H 1 H 2 C 13

NH− P2 1 2 3 2 2s2 s2 s2 p2
πx p1

πy

H

H

j m

J2 Jz

= (i),Jk ∑
i

Jk (2.7.16)

k x y z i

J(i) J

[ , ] = iℏ ,Jx Jy Jz (2.7.17)

[ , ] = iℏ ,Jy Jz Jx (2.7.18)

[ , ] = iℏ ,Jz Jx Jy (2.7.19)

J = + +J2 J2
x J2

y J2
z

Jx Jy

= ± i ,J± Jx Jy (2.7.20)

[ , ] = 0,J2 J± (2.7.21)

[ , ] = ±ℏ .Jz J± J± (2.7.22)

J2 Jz J2 Jz

|j,m⟩ = f(j,m)|j,m⟩,J2 ℏ2 (2.7.23)

|j,m⟩ = ℏm|j,m⟩,Jz (2.7.24)

m f(j,m) j m

f(j,m) m

J2 Jz f(j,m)
m

⟨j,m| , ⟩ = .j′ m′ δm,m′δj,j′ (2.7.25)
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We now prove several identities that are needed to discover the information about the eigenvalues and eigenfunctions of general
angular momenta that we are after. Later in this Section, the essential results are summarized.

There is a Maximum and a Minimum Eigenvalue for  

Because all of the components of  are Hermitian, and because the scalar product of any function with itself is positive semi-
definite, the following identity holds:

However,  is equal to , so this inequality implies that

which, in turn, implies that  must be less than or equal to . Hence, for any value of the total angular momentum
eigenvalue , the z-projection eigenvalue ( ) must have a maximum and a minimum value and both of these must be less than or
equal to the total angular momentum squared eigenvalue .

The Raising and Lowering Operators Change the  Eigenvalue but not the  Eigenvalue When Acting on  

Applying the commutation relations obeyed by  to  yields another useful result:

Now, using the fact that  is an eigenstate of  and of , these identities give

These equations prove that the functions  must either themselves be eigenfunctions of  and , with eigenvalues 
 and , respectively, or  must equal zero. In the former case, we see that  acting on  generates

a new eigenstate with the same  eigenvalue as but with one unit of h higher or lower in  eigenvalue. It is for this reason
that we call  raising and lowering operators. Notice that, although  is indeed an eigenfunction of  with eigenvalue

,  is not identical to ; it is only proportional to :

Explicit expressions for these  coefficients will be obtained below. Notice also that because the , and hence 
, have the same  eigenvalue as  (in fact, sequential application of  can be used to show that all , for all 

, have this same  eigenvalue), the  eigenvalue  must be independent of m. For this reason,  can be labeled by one
quantum number j.

iii. The  Eigenvalues are Related to the Maximum and Minimum  Eigenvalues, Which are Related to One
Another 

Earlier, we showed that there exists a maximum and a minimum value for m, for any given total angular momentum. It is when one
reaches these limiting cases that  applies. In particular,

Applying the following identities:

respectively, to  and  gives

Jz

J

⟨j,m| + |j,m⟩ = ⟨ ⟨j,m| |j,m⟩+ ⟨ ⟨j,m| |j,m⟩ ≥ 0.J2
x J2

y Jx Jx Jy Jy (2.7.26)

+J2
x J2

y −J2 J2
z

⟨j,m| − |j,m⟩ = f(j,m) − ≥ 0,J2 J2
z ℏ2 m2 (2.7.27)

m2 f(j,m)
f m

f

Jz J2 |j,m⟩

J± |j,m⟩

|j,m⟩− |j,m⟩ = ±ℏ |j,m⟩,JzJ± J±Jz J± (2.7.28)

|j,m⟩− |j,m⟩ = 0.J2J± J±J2 (2.7.29)

|j,m⟩ J2 Jz

|j,m⟩ = (mℏ ±ℏ) |j,m⟩ = h(m±1)|j,m⟩,JzJ± J± (2.7.30)

|j,m⟩ = f(j,m) |j,m⟩.J2J± ℏ2 J± (2.7.31)

|j,m⟩J± J2 Jz

f(j,m)ℏ2 ℏ(m+1) |j,m⟩J± J± |j,m⟩

J2 |j,m⟩ Jz

J± |j,m⟩J± Jz

(m±1)ℏ |j,m⟩J± |j,m±1⟩ |j,m±1⟩

|j,m⟩ = |j,m±1⟩.J± C±
j,m (2.7.32)

C±
j,m |j,m⟩J±

|j,m±1⟩ J2 |j,m⟩ J± |j, ⟩m′

m′ J2 J2 f(j,m) f

J2 Jz

|j,m⟩ = 0J±

|j, ⟩ = 0,J+ mmax (2.7.33)

|j, ⟩ = 0.J− mmin (2.7.34)

= − −ℏ ,J−J+ J2 J2
z Jz (2.7.35)

= − +ℏ ,J+J− J2 J2
z Jz (2.7.36)

|j, ⟩mmax |j, ⟩mmin

{f(j, ) − − } = 0,ℏ2 mmax m2
max mmax (2.7.37)
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which immediately gives the  eigenvalue  and  in terms of  or :

So, we now know the  eigenvalues for  and . However, we earlier showed that and  have the
same  eigenvalue (when we treated the effect of  on ) and that the  eigenvalue is independent of m. If we therefore
define the quantum number  to be , we see that the  eigenvalues are given by

We also see that

from which it follows that

The  Quantum Number Can Be Integer or Half-Integer 

The fact that the -values run from  to  in unit steps (because of the property of the  operators), there clearly can be only
integer or half-integer values for . In the former case, the  quantum number runs over 

;

in the latter,  runs over . Only integer and half-integer values can range

from  to  in steps of unity. Species whose intrinsic angular momenta are integers are known as Bosons and those with half-
integer spin are called Fermions.

More on  

Using the above results for the effect of  acting on  and the fact that  and  are adjoints of one another (two operators 
 and  are adjoints if , for all  and all ) allows us to write:

where  is the proportionality constant between  and the normalized function

. Likewise, the effect of  can be expressed as

where  is the proportionality constant between  and the normalized . Thus, we can solve for  after
which the effect of  on  is given by:

Summary 
The above results apply to any angular momentum operators. The essential findings can be summarized as follows:

(i)  and  have complete sets of simultaneous eigenfunctions. We label these eigenfunctions ; they are orthonormal
in both their m- and j-type indices:

(ii) These  eigenfunctions obey:

{f(j, ) − + } = 0,ℏ2 mmin m2
min

mmin (2.7.38)

J2 f(j, )mmax f(j, )mmin mmax mmin

f(j, ) = ( +1),mmax mmax mmax (2.7.39)

f(j, ) = ( −1).mmin mmin mmin (2.7.40)

J2 |j, ⟩mmax |j, ⟩mmin |j,m⟩ |j,m−1⟩

J2 J± |j,m⟩ J2

j mmax J2

|j,m⟩ = j(j+1)|j,m⟩.J2 ℏ2 (2.7.41)

f(j,m) = j(j+1) = ( +1) = ( −1),mmax mmax mmin mmin (2.7.42)

= − .mmin mmax (2.7.43)

j

m j −j J±

j m

−j, −j+1, −j+2, . . . , −j+(j−1), 0, 1, 2, . . . j

m −j, −j+1, −j+2, . . . −j+(j− ), , , . . . j
1

2

1

2

3

2
j −j

|j,m⟩J±

J± |j,m⟩ J+ J−

F G ⟨ψ|F|χ⟩ = ⟨Gψ|χ⟩ ψ χ

⟨j,m| |j,m⟩ = ⟨j,m|( − −ℏ )|j,m⟩J−J+ J2 J2
z Jz (2.7.44)

= j(j+1) −m(m+1) = ⟨ ⟨j,m| |j,m⟩ = ( ,ℏ2 J+ J+ C+
j,m)2 (2.7.45)

C+
j,m |j,m⟩J+

|j,m+1⟩ J−

⟨j,m| |j,m⟩ = ⟨j,m|( − +ℏ )|j,m⟩J+J− J2 J2
z Jz (2.7.46)

= j(j+1) −m(m−1) = ⟨ ⟨j,m| |j,m⟩ = ( ,ℏ2 J− J− C−
j,m)2 (2.7.47)

C−
j,m |j,m⟩J− |j,m−1⟩ C±

j,m

J± |j,m⟩

|j,m⟩ = h |j,m±1⟩.J± j(j+1)–m(m±1)
− −−−−−−−−−−−−−−

√ (2.7.48)

J2 Jz |j,m⟩

⟨j,m| , ⟩ = .j′ m′ δm,m′δj,j′ (2.7.49)

|j,m⟩
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(iii) The raising and lowering operators  act on  to yield functions that are eigenfunctions of  with the same
eigenvalue as  and eigenfunctions of  with eigenvalue of  :

(iv) When  acts on the extremal states  or , respectively, the result is zero.

The results given above are, as stated, general. Any and all angular momenta have quantum mechanical operators that obey these
equations. It is convention to designate specific kinds of angular momenta by specific letters; however, it should be kept in mind
that no matter what letters are used, there are operators corresponding to , , and  that obey relations as specified above, and
there are eigenfunctions and eigenvalues that have all of the properties obtained above. For electronic or collisional orbital angular
momenta, it is common to use  and  ; for electron spin, S2 and Sz are used; for nuclear spin I2 and Iz are most common; and
for molecular rotational angular momentum, N2 and Nz are most common (although sometimes  and  may be used).
Whenever two or more angular momenta are combined or coupled to produce a total angular momentum, the latter is designated by

 and .

Coupling of Angular Momenta 
If the Hamiltonian under study contains terms that couple two or more angular momenta , then only the components of the
total angular momentum  and the total  will commute with . It is therefore essential to label the quantum states of
the system by the eigenvalues of  and  and to construct variational trial or model wave functions that are eigenfunctions of
these total angular momentum operators. The problem of angular momentum coupling has to do with how to combine
eigenfunctions of the uncoupled angular momentum operators, which are given as simple products of the eigenfunctions of the
individual angular momenta , to form eigenfunctions of  and .

Eigenfunctions of  

Because the individual elements of  are formed additively, but  is not, it is straightforward to form eigenstates of

simple products of the form  are eigenfunctions of :

and have  eigenvalues equal to the sum of the individual  eigenvalues. Hence, to form an eigenfunction with specified  and
 eigenvalues, one must combine only those product states  whose  sum is equal to the specified  value.

Eigenfunctions of ; the Clebsch-Gordon Series 

The task is then reduced to forming eigenfunctions , given particular values for the { } quantum numbers. When coupling
pairs of angular momenta {  and  }, the total angular momentum states can be written, according to what we
determined above, as

where the coefficients  are called vector coupling coefficients (because angular momentum coupling is viewed much like
adding two vectors  and  to produce another vector ), and where the sum over  and  is restricted to those terms for which 

. It is more common to express the vector coupling or so-called Clebsch-Gordon (CG) coefficients as 
 and to view them as elements of a matrix whose columns are labeled by the coupled-state  quantum

numbers and whose rows are labeled by the quantum numbers characterizing the uncoupled product basis . It turns out
that this matrix can be shown to be unitary so that the CG coefficients obey:

|j,m⟩ = j(j+1)|j,m⟩, {j=  integer or half-integer},J2 ℏ2 (2.7.50)

|j,m⟩ = ℏm|j,m⟩, {m = −j,  in steps of 1 to  +j}.Jz (2.7.51)

J± |j,m⟩ J2

|j,m⟩ Jz (m±1)ℏ

|j,m⟩ = ℏ |j,m±1⟩.J± j(j+1) −m(m±1)
− −−−−−−−−−−−−−−−

√ (2.7.52)

J± |j, j⟩ |j, −j⟩

J2 Jz J±

L2 Lz

J2 Jz

J2 Jz

J(i)

J = J(i)∑i J2 H

Jz J2

| , ⟩∏i ji mi J2 Jz

Jz

J J2

= (i);Jz ∑
i

Jz (2.7.53)

| , ⟩∏i ji mi Jz

| , ⟩ = (k) | , ⟩ = ℏ | , ⟩,Jz∏
i

ji mi ∑
k

Jz ∏
i

ji mi ∑
k

mk∏
i

ji mi (2.7.54)

Jz ℏmk J

M | , ⟩∏i ji mi ℏmi M

J2

|J,M⟩ ji
|j,m⟩ | , ⟩j′ m′

|J,M⟩ = |j,m⟩| , ⟩,∑
m,m′

CJ,M
j,m; ,j′ m′ j′ m′ (2.7.55)

C
J,M
j,m; ,j′ m′

j j′ J m m′

m+ = Mm′

⟨j,m; |J,M⟩j′m′ J,M
j,m; ,j′ m′
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and

This unitarity of the CG coefficient matrix allows the inverse of the relation giving coupled functions in terms of the product
functions:

to be written as:

This result expresses the product functions in terms of the coupled angular momentum functions.

Generation of the Clebsch-Gordon Coefficients 

The Clebsch-Gordon coefficients can be generated in a systematic manner; however, they can also be looked up in books where
they have been tabulated (e.g., see Table 2.4 of R. N. Zare, Angular Momentum, John Wiley, New York (1988)). Here, we will
demonstrate the technique by which the CG coefficients can be obtained, but we will do so for rather limited cases and refer the
reader to more extensive tabulations for more cases.

The strategy we take is to generate the  state (i.e., the state with maximum -value) and to then use  to generate 
, after which the state  (i.e., the state with one lower  value) is constructed by finding a combination of

the product states in terms of which  is expressed (because both  and  have the same 
-value ) which is orthogonal to  (because  and  are eigenfunctions of the

Hermitian operator  corresponding to different eigenvalues, they must be orthogonal). This same process is then used to generate
 and (by orthogonality construction) , and so on.

The States With Maximum and Minimum M-Values 

We begin with the state  having the highest -value. This state must be formed by taking the highest  and the highest 
values (i.e.,  and ), and is given by:

Only this one product is needed because only the one term with m=j and m'=j' contributes to the sum in the above CG series. The
state

with the minimum -value is also given as a single product state. Notice that these states have -values given as ;
since this is the maximum -value, it must be that the -value corresponding to this state is .

States With One Lower M-Value But the Same  Value 

Applying  to , and expressing  as the sum of lowering operators for the two individual angular momenta:

gives

⟨j,m; |J,M ⟨j,m; | , ⟩ =∑
m,m′

j′m′ ⟩∗ j′m′ J ′ M ′ δj,j′δm,m′ (2.7.56)

⟨j,n; |J,M⟩⟨j,m; |J,M = .∑
J,M

j′n′ j′m′ ⟩∗ δn,mδ ,n′ m′ (2.7.57)

|J,M⟩ = ⟨j,m; |J,M⟩|j,m⟩| , ⟩∑
m,m′

j′m′ j′ m′ (2.7.58)

|j,m⟩| , ⟩ = ⟨j,m; |J,M |J,M⟩j′ m′ ∑
J,M

j′m′ ⟩∗ (2.7.59)

= ⟨J,M |j,m; ⟩|J,M⟩.∑
J,M

j′m′ (2.7.60)

|J, J⟩ M J−

|J, J −1⟩ |J −1, J −1⟩ J−

|J −1, J −1⟩ |J −1, J −1⟩ |J −1, J −1⟩

M M = J −1 |J, J −1⟩ |J −1, J −1⟩ |J, J −1⟩

J2

|J, J −2⟩|J −1, J −2⟩ |J −2, J −2⟩

|J, J⟩ M m m′

m = j =m′ j′

|J, J⟩ = |j, j⟩| ⟩.j′j′ (2.7.61)

|J, −J⟩ = |j, −j⟩| , − ⟩j′ j′ (2.7.62)

M M ±(j+ )j′

M J J = j+j′

J−

J− |J, J⟩ J−

= (1) + (2)J− J− J− (2.7.63)

|J, J⟩ = ℏ |J, J −1⟩J− J(j+1) −J(j−1)
− −−−−−−−−−−−−−−

√ (2.7.64)

= ( (1) + (2))|j, j⟩| ⟩J− J− j′j′ (2.7.65)
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This result expresses  as follows:

that is, the  state, which has , is formed from the two product states  and  that
have this same -value.

iii. States With One Lower  Value 

To find the state  that has the same -value as the one found above but one lower  value, we must construct
another combination of the two product states with  (i.e.,  and ) that is orthogonal to the
combination representing ; after doing so, we must scale the resulting function so it is properly normalized. In this case,
the desired function is:

It is straightforward to show that this function is indeed orthogonal to .

States With Even One Lower  Value 

Having expressed  and  in terms of   and , we are now prepared to carry on
with this stepwise process to generate the states ,  and  as combinations of the product
states with . These product states are , , and . Notice that there are
precisely as many product states whose  values add up to the desired -value as there are total angular momentum states
that must be constructed (there are three of each in this case).

The steps needed to find the state  are analogous to those taken above:

a. One first applies  to  and to  to obtain  and , respectively as combinations
of , , and .

b. One then constructs  as a linear combination of the , , and 
that is orthogonal to the combinations found for  and .

Once  is obtained, it is then possible to move on to form , , and  by applying 
 to the three states obtained in the preceding application of the process, and to then form  as the combination of 

, , ,  that is orthogonal to the combinations obtained for 
, , and .

Again notice that there are precisely the correct number of product states (four here) as there are total angular momentum states to
be formed. In fact, the product states and the total angular momentum states are equal in number and are both members of
orthonormal function sets (because , , , and  as well as  and  are Hermitian operators which have
complete sets of orthonormal eigenfunctions). This is why the CG coefficient matrix is unitary; because it maps one set of
orthonormal functions to another, with both sets containing the same number of functions.

Example 
Example 1

Let us consider an example in which the spin and orbital angular momenta of the Si atom in its  ground state can be coupled to
produce various  states. In this case, the specific values for  and  are  and . We could, of course take 

 and , but the final wave functions obtained would span the same space as those we are about to determine.
The state with highest -value is the  state, which can be represented by the product of an  spin function
(representing ) and a  spatial function (representing ), where the first function corresponds to the
first open-shell orbital and the second function to the second open-shell orbital. Thus, the maximum -value is  and
corresponds to a state with :

= ℏ |j, j−1⟩| , ⟩+ℏ |j, j⟩| , −1⟩.j(j+1) −j(j−1)
− −−−−−−−−−−−−−

√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′
− −−−−−−−−−−−−−−−

√ j′ j′ (2.7.66)

|J, J −1⟩

|J, J −1⟩ = ;
|j, j−1⟩| , ⟩+ |j, j⟩| , −1⟩j(j+1) −j(j−1)

− −−−−−−−−−−−−−
√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′− −−−−−−−−−−−−−−−

√ j′ j′

J(J +1) −J(J −1)
− −−−−−−−−−−−−−−−√

(2.7.67)

|J, J −1⟩ M = J −1 |j, j−1⟩| , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

M

J−

|J −1, J −1⟩ M J−

M = J −1 |j, j−1⟩| , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

|J, J −1⟩

|J −1, J −1⟩ = .
|j, j⟩| , −1⟩− |j, j−1⟩| , ⟩j(j+1) −j(j−1)

− −−−−−−−−−−−−−
√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′

− −−−−−−−−−−−−−−−
√ j′ j′

J(J +1) −J(J −1)
− −−−−−−−−−−−−−−−√

(2.7.68)

|J, J −1⟩

J−

|J, J −1⟩ |J −1, J −1⟩ |j, j−1⟩ | , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

|J, J −2⟩ |J −1, J −2⟩ |J −2, J −2⟩

M = J −2 |j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

m+m′ M

|J −2, J −2⟩

J− |J −1, J −1⟩ |J, J −1⟩ |J −1, J −2⟩ |J, J −2⟩

|j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

|J −2, J −2⟩ |j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

|J −1, J −2⟩ |J, J −2⟩

|J −2, J −2⟩ |J, J −3⟩ |J −1, J −3⟩ |J −2, J −3⟩

J− |J −3, J −3⟩

|j, j−3⟩| , ⟩j′ j′ |j, j⟩| , −3⟩j′ j′ |j, j−2⟩| , −1⟩j′ j′ |j, j−1⟩| , −2⟩j′ j′

|J, J −3⟩ |J −1, J −3⟩ |J −2, J −3⟩

(1)J2 (1)Jz (2)J2 (2)Jz J2 Jz

P3

3PJ j j′ j = S = 1 = L = 1j′

j = L = 1 = S = 1j′

M P( = 1, = 1)(3 Ms ML αα

S = 1, = 1Ms 3 3p1 p0 L = 1, = 1ML

M M = 2

J = 2

J = 2, M = 2⟩ = |2, 2⟩ = αα3 3 .p1 p0 (2.7.69)
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Clearly, the state  would be given as .
The states  and  with one lower -value are obtained by applying  to  as follows:

To apply  or  to , one must realize that each of these operators is, in turn, a sum of lowering operators for each of the
two open-shell electrons:

The result above can therefore be continued as

So, the function  is given by

which can be rewritten as:

Writing the result in this way makes it clear that  is a combination of the product states  (the
terms containing  and  (the terms containing 

).
There is a good chance that some readers have noticed that some of the terms in the  function would violate the Pauli exclusion
principle. In particular, the term  places two electrons into the same orbitals and with the same spin. Indeed, this electronic
function would indeed violate the Pauli principle, and it should not be allowed to contribute to the final Si  wave functions we are
trying to form. The full resolution of how to deal with this paradox is given in the following Subsection, but for now let me say the
following:
(i) Once you have learned that all of the spin-orbital product functions shown for  (e.g., , , and 

) represent Slater determinants (we deal with this in the next Subsection) that are antisymmetric with respect to permutation
of any pair of electrons, you will understand that the Slater determinant corresponding to  vanishes.
(ii) If, instead of considering the  configuration of Si, we wanted to generate wave functions for the    states of Si,
the same analysis as shown above would pertain, except that now the  state would have a contribution from . This
contribution does not violate the Pauli principle, and its Slater determinant does not vanish.
So, for the remainder of this treatment of the  states of Si, don’t worry about terms arising that violate the Pauli principle; they will
not contribute because their Slater determinants will vanish.
To form the other function with , the  state, we must find another combination of  and 

 that is orthogonal to  and is normalized. Since

we immediately see that the requisite function is

|2, −2⟩ ββ3 3p−1 p0

|2, 1⟩ |1, 1⟩ M = +J− S− L− |2, 2⟩

|2, 2⟩ = ℏ |2, 1⟩ = ℏ |2, 1⟩J− J(J + 1) −M(M − 1)
− −−−−−−−−−−−−−−−−−

√ 2(3) − 2(1)
− −−−−−−−−

√ (2.7.70)

= ( + )αα3 3 .S− L− p1 p0 (2.7.71)

S− L− αα3 3p1 p0

= (1) + (2),S− S− S− (2.7.72)

= (1) + (2).L− L− L− (2.7.73)

( + )αα3 3 = ℏ βα3 3S− L− p1 p0 ( )− (− )
1

2

3

2

1

2

1

2

− −−−−−−−−−−−−−−
√ p1 p0 (2.7.74)

+ℏ αβ3 3( )− (− )
1

2

3

2

1

2

1

2

− −−−−−−−−−−−−−−
√ p1 p0 (2.7.75)

+ℏ αα3 31(2) − 1(0)
− −−−−−−−−

√ p0 p0 (2.7.76)

+ℏ αα3 3 .1(2) − 0(−1)
− −−−−−−−−−

√ p1 p−1 (2.7.77)

|2, 1⟩

|2, 1⟩ = [βα3 3 + ab3 3 + αα3 3 + αα3 3 ],
1

2
p1 p0 p1 p0 2

–
√ p0 p0 2

–
√ p1 p−1 (2.7.78)

|2, 1⟩ = [(βα+ ab 3 + αα(3 3 + 3 3 )].
1

2
)3p1 p0 2

–
√ p0 p0 p1 p−1 (2.7.79)

|2, 1⟩ |S = 1, = 0⟩|L = 1, = 1⟩MS ML

|S = 1, = 0⟩ = (α β +βα ))MS
1

2√
|S = 1, = 1⟩|L = 1, = 0⟩MS ML

|S = 1, = 1⟩ = ααMS

|2, 1⟩

αα3 3p0 p0
3PJ

|2, 1⟩ αα3 3p0 p0 (βα+α β  3)3p1 p0

αα3 3p1 p−1

αα3 3p0 p0

3 3s2 p2 3 3 4s2 p1 p1 3PJ

|2, 1⟩ αα3 4p0 p0

3PJ

M = 1 |1, 1⟩ |S = 1, = 0⟩|L = 1, = 1⟩MS ML

|S = 1, = 1⟩|L = 1, = 0⟩MS ML |2, 1⟩

|2, 1⟩ = [|S = 1, = 0⟩|L = 1, = 1⟩ + |S = 1, = 1⟩|L = 1, = 0⟩],
1

2
–√

MS ML MS ML (2.7.80)
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In the spin-orbital notation used above, this state is:

Thus far, we have found the  states with  and .
To find the  states with ; and  we must once again apply the  tool. In particular, we
apply  to  to obtain  and we apply  to  to obtain , each of which will be expressed in terms of 

, , and . The  state
is then constructed to be a combination of these same product states which is orthogonal to  and to . The results are as
follows:

where, in all cases, a short hand notation has been used in which the  product stated have been represented by their
quantum numbers with the spin function always appearing first in the product. To finally express all three of these new functions in
terms of spin-orbital products it is necessary to give the  products with  in terms of these products. For the spin
functions, we have:

For the orbital product function, we have:

Coupling Angular Momenta of Equivalent Electrons 

If equivalent angular momenta are coupled (e.g., to couple the orbital angular momenta of a  or  configuration), there is a tool
one can use to determine which of the term symbols violate the Pauli principle. To carry out this step, one forms all possible unique
(determinental) product states with non-negative  and  values and arranges them into groups according to their  and 
values. For example, the “boxes” appropriate to the  orbital occupancy that we considered earlier for Si are shown below:

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

There is no need to form the corresponding states with negative  or negative  values because they are simply "mirror
images" of those listed above. For example, the state with  and  is , which can be obtained from the 

|1, 1⟩ = [|S = 1, = 0⟩|L = 1, = 1⟩ − |S = 1, = 1⟩|L = 1, = 0⟩].
1

2
–√

MS ML MS ML (2.7.81)

|1, 1⟩ = .
(βα+ ab 3 − αα(3 3 + 3 3 ))3p1 p0 2

–√ p0 p0 p1 p−1

2
(2.7.82)

3PJ J = 2, M = 2; J = 2, M = 1; J = 1, M = 1
3PJ J = 2, M = 0; J = 1, M = 0 J = 0, M = 0, J−

J− |2, 1⟩ |2, 0⟩ J− |1, 1⟩ |1, 0⟩

|S = 1, = 0⟩|L = 1, = 0⟩MS ML |S = 1, = 1⟩|L = 1, = −1⟩MS ML |S = 1, = −1⟩|L = 1, = 1⟩MS ML |0, 0⟩

|2, 0⟩ |1, 0⟩

|J = 2, M = 0⟩ = [2|1, 0⟩|1, 0⟩ + |1, 1⟩|1, −1⟩ + |1, −1⟩|1, 1⟩],
1

6
–√

(2.7.83)

|J = 1, M = 0⟩ = [|1, 1⟩|1, −1⟩ − |1, −1⟩|1, 1⟩],
1

2
–

√
(2.7.84)

|J = 0, M = 0⟩ = [|1, 0⟩|1, 0⟩ − |1, 1⟩|1, −1⟩ − |1, −1⟩|1, 1⟩],
1

3
–√

(2.7.85)

|S, ⟩|L, ⟩MS ML

|S, ⟩|L, ⟩MS ML M = 0

|S = 1, = 1⟩ = αα,MS (2.7.86)

|S = 1, = 0⟩ = (αβ+ βα).MS

1

2
–

√
(2.7.87)

|S = 1, = −1⟩ = ββ.MS (2.7.88)

|L = 1, = 1⟩ = 3 3 ,ML p1 p0 (2.7.89)

|L = 1, = 0⟩ = (3 3 + 3 3 ),ML

1

2
–

√
p0 p0 p1 p−1 (2.7.90)

|L = 1, = −1⟩ = 3 3 .ML p0 p−1 (2.7.91)

p2 d3

ML MS ML MS

p2

S L

1 0 1 -1

1 1 1 0 0 1

1 -1

-1 1

0 0

ML MS

= −1ML = −1MS | β β|p−1 p0
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 state  by replacing a by b and replacing  by .

Given the box entries, one can identify those term symbols that arise by applying the following procedure over and over until all
entries have been accounted for:

i. One identifies the highest  value (this gives a value of the total spin quantum number that arises, ) in the box. For the
above example, the answer is .

ii. For all product states of this  value, one identifies the highest  value (this gives a value of the total orbital angular
momentum, , that can arise for this ). For the above example, the highest  within the  states is  (not 

), hence .
iii. Knowing an  combination, one knows the first term symbol that arises from this configuration. In the  example, this is 

.
iv. Because the level with this  and  quantum numbers contains  states with  and  quantum numbers

running from  to  and from  to , respectively, one must remove from the original box this number of product states.
To do so, one simply erases from the box one entry with each such  and  value. Actually, since the box need only show
those entries with non-negative  and  values, only these entries need be explicitly deleted. In the  example, this
amounts to deleting nine product states with ,  values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

v. After deleting these entries, one returns to step 1 and carries out the process again. For the  example, the box after deleting
the first nine product states looks as follows (those that appear in italics should be viewed as already deleted in counting all of
the  states):

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

It should be emphasized that the process of deleting or crossing off entries in various  boxes involves only counting how
many states there are; by no means do we identify the particular  wave functions when we cross out any particular
entry in a box. For example, when the  product is deleted from the  box in accounting for the states in
the  level, we do not claim that  itself is a member of the  level; the product state could just as well been
eliminated when accounting for the  states.

Returning to the  example at hand, after the  term symbol's states have been accounted for, the highest  value is 0 (hence
there is an  state), and within this  value, the highest  value is 2 (hence there is an  state). This means there is a 

 level with five states having . Deleting five appropriate entries from the above box (again denoting
deletions by italics) leaves the following box:

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

The only remaining entry, which thus has the highest  and  values, has  and . Thus there is also a  level
in the  configuration.

Thus, unlike the non-equivalent  case, in which  and  levels arise, only the  and  arise in
the  situation. This "box method" is useful to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can determine all possible couplings of the equivalent
angular momenta using this method and then use the simpler vector coupling method to add the non-equivalent angular momenta to
each of these coupled angular momenta. For example, the  configuration can be handled by vector coupling (using the
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straightforward non-equivalent procedure)  (the d orbital) and  (the third electron's spin) to each of  and 

arising from the configuration. The result is  and .
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2.8: Rotations of Molecules

Rotational Motion For Rigid Diatomic and Linear Polyatomic Molecules 

This Schrödinger equation relates to the rotation of diatomic and linear polyatomic molecules. It also arises when treating the
angular motions of electrons in any spherically symmetric potential.

A diatomic molecule with fixed bond length  rotating in the absence of any external potential is described by the following
Schrödinger equation:

or

where  is the square of the total angular momentum operator  expressed in polar coordinates above. The angles 
and  describe the orientation of the diatomic molecule's axis relative to a laboratory-fixed coordinate system, and  is the reduced

mass of the diatomic molecule . The differential operators can be seen to be exactly the same as those that arose in

the hydrogen-like-atom case discussed earlier in this Chapter. Therefore, the same spherical harmonics that served as the angular
parts of the wave function in the hydrogen-atom case now serve as the entire wave function for the so-called rigid rotor: 

. These are exactly the same functions as we plotted earlier when we graphed the , , and 
 orbitals. The energy eigenvalues corresponding to each such eigenfunction are given as:

and are independent of . Thus each energy level is labeled by  and is -fold degenerate (because  ranges from  to 
). Again, this is just like we saw when we looked at the hydrogen orbitals; the p orbitals are 3-fold degenerate and the d orbitals

are 5-fold degenerate. The so-called rotational constant  (defined as ) depends on the molecule's bond length and reduced

mass. Spacings between successive rotational levels (which are of spectroscopic relevance because, as shown in Chapter 6, angular
momentum selection rules often restrict the changes  in  that can occur upon photon absorption to 1,0, and -1) are given by

These energy spacings are of relevance to microwave spectroscopy which probes the rotational energy levels of molecules. In fact,
microwave spectroscopy offers the most direct way to determine molecular rotational constants and hence molecular bond lengths.

The rigid rotor provides the most commonly employed approximation to the rotational energies and wave functions of linear
molecules. As presented above, the model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise to
changes in , which are then reflected in changes in the rotational energy levels (i.e., there are different  values for different
vibrational levels). The coupling between rotational and vibrational motion gives rise to rotational  constants that depend on
vibrational state as well as dynamical couplings, called centrifugal distortions, which cause the total ro-vibrational energy of the
molecule to depend on rotational and vibrational quantum numbers in a non-separable manner.

Within this rigid rotor model, the absorption spectrum of a rigid diatomic molecule should display a series of peaks, each of which
corresponds to a specific  transition. The energies at which these peaks occur should grow linearly with  as shown
above. An example of such a progression of rotational lines is shown in the Figure 2.23.
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Figure 2.23. Typical rotational absorption profile showing intensity vs.  value of the absorbing level

The energies at which the rotational transitions occur appear to fit the  formula rather well. The intensities of
transitions from level  to level  vary strongly with  primarily because the population of molecules in the absorbing level
varies with . These populations  are given, when the system is at equilibrium at temperature , in terms of the degeneracy (

) of the Jth level and the energy of this level  by the Boltzmann formula:

where  is the rotational partition function:

For low values of , the degeneracy is low and the  factor is near unity. As  increases, the degeneracy
grows linearly but the  factor decreases more rapidly. As a result, there is a value of , given by taking the
derivative of  with respect to  and setting it equal to zero,

at which the intensity of the rotational transition is expected to reach its maximum. This behavior is clearly displayed in the above
figure.

The eigenfunctions belonging to these energy levels are the spherical harmonics  which are normalized according to

As noted above, these functions are identical to those that appear in the solution of the angular part of Hydrogenic atoms. The
above energy levels and eigenfunctions also apply to the rotation of rigid linear polyatomic molecules; the only difference is that
the moment of inertia I entering into the rotational energy expression, which is  for a diatomic, is given by

where ma is the mass of the  atom and  is its distance from the center of mass of the molecule to this atom.

Rotational Motions of Rigid Non-Linear Molecules 

The Rotational Kinetic Energy 

The classical rotational kinetic energy for a rigid polyatomic molecule is

where the  are the three principal moments of inertia of the molecule (the eigenvalues of the moment of inertia
tensor). This tensor has elements in a Cartesian coordinate system ( ), whose origin is located at the center of
mass of the molecule, that can be computed as:

J

ΔE = 2B(J +1)

J J +1 J

J PJ T

2J +1 BJ(J +1)

= (2J +1) exp(− ),PJ

1

Q

BJ(J +1)

kT
(2.8.5)

Q
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J

BJ(J +1)

kT
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As discussed in more detail in R. N. Zare, Angular Momentum, John Wiley, New York (1988), the components of the
corresponding quantum mechanical angular momentum operators along the three principal axes are:

The angles , , and  are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator  can be obtained as

and the component along the lab - fixed  axis  is  as we saw much earlier in this text.

The Eigenfunctions and Eigenvalues for Special Cases 

Spherical Tops 

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy can be expressed in terms of the total angular momentum operator 

As a result, the eigenfunctions of  are those of  and  as well as  both of which commute with  and with one another.
 is the component of  along the lab-fixed -axis and commutes with  because  and  act on

different angles. The energies associated with such eigenfunctions are

for all  (i.e.,  quantum numbers) ranging from  to  in unit steps and for all  (i.e.,  quantum numbers) ranging from 
 to . Each energy level is therefore  degenerate because there are  possible  values and  possible 

values for each .

The eigenfunctions  of ,  and  , are given in terms of the set of so-called rotation matrices :

which obey

These  functions are proportional to the spherical harmonics  multiplied by , which reflects its c-
dependence.
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Symmetric Tops 

Molecules for which two of the three principal moments of inertia are equal are called symmetric tops. Those for which the unique
moment of inertia is smaller than the other two are termed prolate symmetric tops; if the unique moment of inertia is larger than the
others, the molecule is an oblate symmetric top. An American football is prolate, and a Frisbee is oblate.

Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can be written in terms of the total rotational angular
momentum operator  and the component of angular momentum along the axis with the unique principal moment of inertia:

Here, the moment of inertia I denotes that moment that is common to two directions; that is, I is the non-unique moment of inertia.
As a result, the eigenfunctions of  are those of  and  or  (and of ), and the corresponding energy levels are:

for prolate tops

for oblate tops, again for  and  (i.e.,  or  and  quantum numbers, respectively) ranging from   to  in unit steps.
Since the energy now depends on  , these levels are only    degenerate due to the   different  values that arise for
each  value. Notice that for prolate tops, because  is smaller than  , the energies increase with increasing  for given . In
contrast, for oblate tops, since  is larger than , the energies decrease with  for given . The eigenfunctions  are the
same rotation matrix functions as arise for the spherical-top case, so they do not require any further discussion at this time.

iii. Asymmetric Tops 

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a so-
called asymmetric top) cannot analytically be expressed in terms of the angular momentum eigenstates and the  and 
quantum numbers. In fact, no one has ever solved the corresponding Schrödinger equation for this case. However, given the three
principal moments of inertia , , and , a matrix representation of each of the three contributions to the rotational Hamiltonian

can be formed within a basis set of the { } rotation-matrix functions discussed earlier. This matrix will not be diagonal
because the  functions are not eigenfunctions of the asymmetric top . However, the matrix can be formed in this
basis and subsequently brought to diagonal form by finding its eigenvectors { } and its eigenvalues { }. The vector
coefficients express the asymmetric top eigenstates as

Because the total angular momentum  still commutes with , each such eigenstate will contain only one  value, and hence 
 can also be labeled by a  quantum number:

To form the only non-zero matrix elements of  within the  basis, one can use the following properties of the
rotation-matrix functions (see, for example, R. N. Zare, Angular Momentum, John Wiley, New York (1988)):

J
2

= + [ −  ] , for prolate topsHrot
J

2

2I
J

2
a

1

2Ia

1

2I
(2.8.24)

= + [ −  ] , for oblate topsHrot
J

2

2I
J

2
c

1

2Ic

1

2I
(2.8.25)

Hrot J
2 Ja Jc JZ

E(J,K,M) = + [ −  ] ,
 J(J +1)ℏ2

2I 2
ℏ2K2 1

2Ia

1

2I
(2.8.26)

E(J,K,M) = + [ −  ] ,
 J(J +1)ℏ2

2I 2
ℏ2K2 1

2Ic

1

2I
(2.8.27)

K M Ja Jc JZ −J J

K 2J +1 2J +1 M

J Ia I K J

Ic I K J |J,M ,K⟩

J,M , K

Ia Ib Ic

= +  +  Hrot
J

2
a

2Ia

J
2
b

2Ib

J
2
c

2Ic
(2.8.28)

|J,M ,K⟩

|J,M ,K⟩ Hrot

Cn,J,M,K En

(θ,ϕ,χ) = |J,M ,K⟩.ψn ∑
J,M,K

Cn,J,M,K (2.8.29)

J
2 Hrot J−

ψn J

(θ,ϕ,χ) = |J,M ,K⟩.ψn ,J ∑
M,K

Cn,J,M,K (2.8.30)

Hrot |J,M ,K⟩

⟨J,M ,K| |J,M ,K⟩ = ⟨J,M ,K| |J,M ,K⟩J
2
a J

2
b (2.8.31)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17182?pdf


2.8.5 https://chem.libretexts.org/@go/page/17182

Each of the elements of , , and  must, of course, be multiplied, respectively, by ,  , and   and summed together

to form the matrix representation of . The diagonalization of this matrix then provides the asymmetric top energies and wave
functions.
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2.9: Vibrations of Molecules
This Schrödinger equation forms the basis for our thinking about bond stretching and angle bending vibrations as well as

collective vibrations in solids called phonons.

The radial motion of a diatomic molecule in its lowest ( ) rotational level can be described by the following Schrödinger
equation:

where  is the reduced mass  of the two atoms. If the molecule is rotating, then the above Schrödinger equation has

an additional term  on its left-hand side. Thus, each rotational state (labeled by the rotational quantum number
) has its own vibrational Schrödinger equation and thus its own set of vibrational energy levels and wave functions. It is common

to examine the  vibrational problem and then to use the vibrational levels of this state as approximations to the vibrational
levels of states with non-zero  values (treating the vibration-rotation coupling via perturbation theory). Let us thus focus on the 

 situation.

By substituting  into this equation, one obtains an equation for  in which the differential operators appear to be less

complicated:

This equation is exactly the same as the equation seen earlier in this text for the radial motion of the electron in the hydrogen-like
atoms except that the reduced mass m replaces the electron mass m and the potential  is not the Coulomb potential.

If the vibrational potential is approximated as a quadratic function of the bond displacement  expanded about the
equilibrium bond length  where  has its minimum:

the resulting harmonic-oscillator equation can be solved exactly. Because the potential  grows without bound as  approaches 
or , only bound-state solutions exist for this model problem. That is, the motion is confined by the nature of the potential, so no
continuum states exist in which the two atoms bound together by the potential are dissociated into two separate atoms.

In solving the radial differential equation for this potential, the large-r behavior is first examined. For large-r, the equation reads:

where  is the bond displacement away from equilibrium. Defining  and  as a new scaled radial

coordinate, and realizing that

allows the larger Schrödinger equation to be written as:

which has the solution

The general solution to the radial equation is then expressed as this large-r solution multiplied by a power series in the  variable:
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where the  are coefficients to be determined. Substituting this expression into the full radial equation generates a set of recursion
equations for the   amplitudes. As in the solution of the hydrogen-like radial equation, the series described by these coefficients
is divergent unless the energy  happens to equal specific values. It is this requirement that the wave function not diverge so it can
be normalized that yields energy quantization. The energies of the states that arise by imposing this non-divergence condition are
given by:

and the eigenfunctions are given in terms of the so-called Hermite polynomials  as follows:

where . Within this harmonic approximation to the potential, the vibrational energy levels are evenly spaced:

In experimental data such evenly spaced energy level patterns are seldom seen; most commonly, one finds spacings 
that decrease as the quantum number  increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the Hermite functions  are odd or even functions of  (depending on whether n is odd or even), the wave functions
yn(x) are odd or even. This splitting of the solutions into two distinct classes is an example of the effect of symmetry; in this case,
the symmetry is caused by the symmetry of the harmonic potential with respect to reflection through the origin along the -axis
(i.e., changing  to ). Throughout this text, many symmetries arise; in each case, symmetry properties of the potential cause the
solutions of the Schrödinger equation to be decomposed into various symmetry groupings. Such symmetry decompositions are of
great use because they provide additional quantum numbers (i.e., symmetry labels) by which the wave functions and energies can
be labeled.

The basic idea underlying how such symmetries split the solutions of the Schrödinger equation into different classes relates to the
fact that a symmetry operator (e.g., the reflection plane in the above example) commutes with the Hamiltonian. That is, the
symmetry operator  obeys

So  leaves  unchanged as it acts on  (this allows us to pass  through  in the above equation). Any operator that leaves the
Hamiltonian (i.e., the energy) unchanged is called a symmetry operator.

If you have never learned about how point group symmetry can be used to help simplify the solution of the Schrödinger equation,
this would be a good time to interrupt your reading and go to Chapter 4 and read the material there.

The harmonic oscillator energies and wave functions comprise the simplest reasonable model for vibrational motion. Vibrations of
a polyatomic molecule are often characterized in terms of individual bond-stretching and angle-bending motions, each of which is,
in turn, approximated harmonically. This results in a total vibrational wave function that is written as a product of functions, one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of anharmonicity (i.e., non-uniform energy level
spacings) and lack of bond dissociation, result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as ), the major shortcomings of the harmonic
oscillator picture can be overcome. The so-called Morse potential (see Figure 2.24)

Φ = exp(− /2) ,ξ2 ∑
n=0

ξnCn (2.9.8)

Cn

Cn

E

= ℏ (n+ ),En

k

μ

−−

√
1

2
(2.9.9)

(y)Hn

(x) = exp(−β /2) ( x),ψn

1

n!2n
− −−−

√
( )
β

π

1/4

ξ2 Hn β
−−

√ (2.9.10)

β =
k

μ

−−

√

ΔE = − = ℏ .En+1 En

k

μ

−−

√ (2.9.11)

−En+1 En

n

Hn x

x

x −x

S

SH = HS. (2.9.12)

S H H S H

x → ∞

V (r) = (1 −exp(−a(r− )) ,De re )2 (2.9.13)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17178?pdf


2.9.3 https://chem.libretexts.org/@go/page/17178

is often used in this regard. In this form, the potential is zero at , the equilibrium bond length and is equal to  as .
Sometimes, the potential is written as

so it vanishes as  and is equal to  at . The latter form is reflected in Figure 2.24.

Figure 2.24. Morse potential energy as a function of bond length

In the Morse potential function,  is the bond dissociation energy,  is the equilibrium bond length, and  is a constant that
characterizes the steepness of the potential and thus affects the vibrational frequencies. The advantage of using the Morse potential
to improve upon harmonic-oscillator-level predictions is that its energy levels and wave functions are also known exactly. The
energies are given in terms of the parameters of the potential as follows:

where the force constant is given in terms of the Morse potential’s parameters by . The Morse potential supports both
bound states (those lying below the dissociation threshold for which vibration is confined by an outer turning point) and continuum
states lying above the dissociation threshold (for which there is no outer turning point and thus the no spatial confinement). Its

degree of anharmonicity is governed by the ratio of the harmonic energy  to the dissociation energy .

The energy spacing between vibrational levels  and  are given by

These spacings decrease until  reaches the value  at which

after which the series of bound Morse levels ceases to exist (i.e., the Morse potential has only a finite number of bound states) and

the Morse energy level expression shown above should no longer be used. It is also useful to note that, if  becomes too

small (i.e., < 1.0 in the Morse model), the potential may not be deep enough to support any bound levels. It is true that some
attractive potentials do not have a large enough  value to have any bound states, and this is important to keep in mind. So, bound
states are to be expected when there is a potential well (and thus the possibility of inner- and outer- turning points for the classical
motion within this well) but only if this well is deep enough.

The eigenfunctions of the harmonic and Morse potentials display nodal character analogous to what we have seen earlier in the
particle-in-boxes model problems. Namely, as the energy of the vibrational state increases, the number of nodes in the vibrational
wave function also increases. The state having vibrational quantum number  has  nodes. I hope that by now the student is getting

r = re De r → ∞

V (r) = (1 −exp(−a(r− )) −De re )2 De (2.9.14)

r → ∞ –De r = re

De re a

= ℏ (n+ ) − ,En

k

μ

−−

√
1

2

(n+ ℏ
1

2
)2 k/μ

− −−
√

4De

(2.9.15)

k = 2Dea
2

ℏ
k

μ

−−

√ De

n n+1

– = ℏ (1 − ) .En+1 En

k

μ

−−

√
(n+1)ℏ k/μ

− −−
√

2De

(2.9.16)

n nmax

1 − = 0,
( +1)ℏnmax k/μ

− −−
√

2De

(2.9.17)

2 μDe
− −−−−

√

aℏ

De

v v

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17178?pdf


2.9.4 https://chem.libretexts.org/@go/page/17178

used to seeing the number of nodes increase as the quantum number and hence the energy grows. As the quantum number  grows,
not only does the wave function have more nodes, but its probability distribution becomes more and more like the classical spatial
probability, as expected. In particular for large- , the quantum and classical probabilities are similar and are large near the outer
turning point where the classical velocity is low. They also have large amplitudes near the inner turning point, but this amplitude is
rather narrow because the Morse potential drops off strongly to the right of this turning point; in contrast, to the left of the outer
turning point, the potential decreases more slowly, so the large amplitudes persist over longer ranges near this turning point.
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CHAPTER OVERVIEW

3: Characteristics of Energy Surfaces

In this Chapter, you will learned about the following things:

1. Characteristics of Born-Oppenheimer energy surfaces, and how to find local minima, transition states, intrinsic reaction
paths, and intersection seams on them.

2. The harmonic normal modes of vibration extracted from the mass weighted Hessian matrix, and how symmetry can be used
to simplify the problem.

Born-Oppenheimer energy surfaces (or the empirical functions often used to represent them) possess important critical points that
detail the properties of stable molecular structures, transition states, intersection seams, and reaction paths, all of which play central
roles in the theoretical description of chemical reactions and molecular properties. In this Chapter, you will learn about these
special points on the surfaces, how to find them, and what to do with them once you know them.

3.1: Strategies for Geometry Optimization and Finding Transition States
3.2: Normal Modes of Vibration
3.3: Intrinsic Reaction Paths
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3.1: Strategies for Geometry Optimization and Finding Transition States
The extension of the harmonic and Morse vibrational models to polyatomic molecules requires that the multidimensional energy
surface be analyzed in a manner that allows one to approximate the molecule’s motions in terms of many nearly independent
vibrations. In this Section, we will explore the tools that one uses to carry out such an analysis of the surface, but first it is
important to describe how one locates the minimum-energy and transition-state geometries on such surfaces.

Finding Local Minima 
Many strategies that attempt to locate minima on molecular potential energy landscapes begin by approximating the potential
energy  for geometries (collectively denoted in terms of  Cartesian coordinates ) in a Taylor series expansion about some
“starting point” geometry (i.e., the current molecular geometry in an iterative process or a geometry that you guessed as a
reasonable one for the minimum or transition state that you are seeking):

Here,

 is the energy at the current geometry,

 is the gradient of the energy along the  coordinate,

 is the second-derivative or Hessian matrix, and

 is the length of the “step” to be taken along this Cartesian direction.

An example of an energy surface in only two dimensions is given in the Figure 3.1 where various special aspects are illustrated. For
example, minima corresponding to stable molecular structures, transition states (first order saddle points) connecting such minima,
and higher order saddle points are displayed.

Figure 3.1. Two-dimensional potential surface showing minima, transition states, and paths connecting them.

If the only knowledge that is available is  and the gradient components (e.g., computation of the second derivatives is usually
much more computationally taxing than is evaluation of the gradient, so one is often forced to work without knowing the Hessian
matrix elements), the linear approximation

suggests that one should choose “step” elements  that are opposite in sign from that of the corresponding gradient elements 

 if one wishes to move “downhill” toward a minimum. The magnitude of the step elements is usually kept small in order

to remain within the “trust radius” within which the linear approximation to  is valid to some predetermined desired precision
(i.e., one wants to assure that  is not too large).

When second derivative data is available, there are different approaches to predicting what step { } to take in search of a
minimum, and it is within such Hessian-based strategies that the concept of stepping along  independent modes arises. We
first write the quadratic Taylor expansion

V 3N { }qj
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in matrix-vector notation

with the elements  collected into the column vector  whose transpose is denoted .

Introducing the unitary matrix  that diagonalizes the symmetric  matrix, the above equation becomes

Because  is diagonal, we have

where  are the eigenvalues of the Hessian matrix. For non-linear molecules,  of these eigenvalues will be non-zero; for
linear molecules,  will be non-zero. The 5 or 6 zero eigenvalues of  have eigenvectors that describe translation and
rotation of the entire molecule; they are zero because the energy surface  does not change if the molecule is rotated or translated.
It can be difficult to properly identify the 5 or 6 translation and rotation eigenvalues of the Hessian because numerical precision
issues often cause them to occur as very small positive or negative eigenvalues. If the molecule being studied actually does possess
internal (i.e., vibrational) eigenvalues that are very small (e.g., the torsional motion of the methyl group in ethane has a very small
energy barrier as a result of which the energy is very weakly dependent on this coordinate), one has to be careful to properly
identify the translation-rotation and internal eigenvalues. By examining the eigenvectors corresponding to all of the low Hessian
eigenvalues, one can identify and thus separate the former from the latter. In the remainder of this discussion, I will assume that the
rotations and translations have been properly identified and the strategies I discuss will refer to utilizing the remaining  or 

 eigenvalues and eigenvectors to carry out a series of geometry “steps” designed to locate energy minima and transition
states.

The eigenvectors of  form the columns of the array  that brings  to diagonal form:

Therefore, if we define

and

to be the component of the step  and of the gradient along the  eigenvector of , the quadratic expansion of  can be
written in terms of steps along the  or  directions that correspond to non-zero Hessian eigenvalues:

The advantage to transforming the gradient, step, and Hessian to the eigenmode basis is that each such mode (labeled m) appears in
an independent uncoupled form in the expansion of . This allows us to take steps along each of the  directions in an
independent manner with each step designed to lower the potential energy when we are searching for minima (strategies for finding
a transition state will be discussed below).

For each eigenmode direction, one can ask for what size step  would the quantity  be a minimum. Differentiating

this quadratic form with respect to  and setting the result equal to zero gives
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that is, one should take a step opposite the gradient but with a magnitude given by the gradient divided by the eigenvalue of the
Hessian matrix. If the current molecular geometry is one that has all positive  values, this indicates that one may be “close” to a
minimum on the energy surface (because all  are positive at minima). In such a case, the step  is opposed to
the gradient along all  or  directions, much like the gradient-based strategy discussed earlier suggested. The energy
change that is expected to occur if the step  is taken can be computed by substituting  into the quadratic
equation for :

This clearly suggests that the step will lead “downhill” in energy along each eigenmode as long as all of the  values are positive.
For example, if one were to begin with a good estimate for the equilibrium geometries of ethylene and propene, one could place
these two molecules at a distance  longer than the expected inter-fragment equilibrium distance  in the van der Waals
complex formed when they interact. Because both fragments are near their own equilibrium geometries and at a distance  at
which long-range attractive forces will act to draw them together, a strategy such as outlined above could be employed to locate the
van der Waals minimum on their energy surface. This minimum is depicted qualitatively in Figure 3.1a.

Figure 3.1a Van der Waals complex (upper right) formed between ethylene and propene whose geometry might be located using the
prescription outlined above. Product of the [2+2] cyclo-addition reaction, methyl-cyclobutane (lower right).

Beginning at , one would find that  of the eigenvalues of the Hessian matrix are non-zero, where  is the
total number of atoms in the ethylene-propene complex. Of these 39 non-zero eigenvalues, three will have eigenvectors describing
radial and angular displacements of the two fragments relative to one another; the remaining 36 will describe internal vibrations of
the complex. The eigenvalues belonging to the inter-fragment radial and angular displacements may be positive or negative
(because you made no special attempt to orient the molecules at optimal angles and you may not have guessed very well at optimal
the equilibrium inter-fragment distance), so it would probably be wisest to begin the energy-minimization process by using gradient
information to step downhill in energy until one reaches a geometry  at which all 39 of the Hessian matrix eigenvalues are
positive. From that point on, steps determined by both the gradient and Hessian (i.e., ) can be used unless one
encounters a geometry at which one of the eigenvalues  is very small, in which case the step  along this
eigenmode could be unrealistically large. In this case, it would be better to not take  for the step along this
particular direction but to take a small step in the direction opposite to the gradient to improve chances of moving downhill. Such
small-eigenvalue issues could arise, for example, if the torsion angle of propene’s methyl group happened, during the sequence of
geometry steps, to move into a region where eclipsed rather than staggered geometries are accessed. Near eclipsed geometries, the
Hessian eigenvalue describing twisting of the methyl group is negative; near staggered geometries, it is positive.

Whenever one or more of the  are negative at the current geometry, one is in a region of the energy surface that is not
sufficiently close to a minimum to blindly follow the prescription  along all modes. If only one  is negative,
one anticipates being near a transition state (at which all gradient components vanish and all but one  are positive with one 
negative). In such a case, the above analysis suggests taking a step  along all of the modes having positive ,
but taking a step of opposite direction (e.g.,  unless  is very small in which case a small step opposite  is
best) along the direction having negative  if one is attempting to move toward a minimum. This is what I recommended in the
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preceding paragraph when an eclipsed geometry (which is a transition state for rotation of the methyl group) is encountered if one
is seeking an energy minimum.

Finding Transition States 

On the other hand, if one is in a region where one Hessian eigenvalues is negative (and the rest are positive) and if one is seeking to
find a transition state, then taking steps  along all of the modes Having positive eigenvalues and taking 

 along the mode having negative eigenvalue is appropriate. The steps  will act to keep the energy
near its minimum along all but one direction, and the step  will move the system uphill in energy along the
direction having negative curvature, exactly as one desires when “walking” uphill in a streambed toward a mountain pass.

However, even the procedure just outlined for finding a transition state can produce misleading results unless some extent of
chemical intuition is used. Let me give an example to illustrate this point. Let’s assume that one wants to find begin near the
geometry of the van der Waals complex involving ethylene and propene and to then locate the transition state on the reaction path
leading to the [2+2] cyclo-addition products methyl-cyclobutane as also shown in Figure 3.1a. Consider employing either of two
strategies to begin the “walk” leading from the van der Waals complex to the desired transition state (TS):

1. One could find the lowest (non-translation or non-rotation) Hessian eigenvalue and take a small step uphill along this direction
to begin a streambed walk that might lead to the TS. Using the smallest Hessian eigenvalue to identify a direction to explore
makes sense because it is along this direction that the energy surface rises least abruptly (at least near the geometry of the
reactants).

2. One could move the ethylene radially a bit (say 0.2 Å) closer to the propene to generate an initial geometry to begin the TS
search. This makes sense because one knows the reaction must lead to inter-fragment carbon-carbon distances that are much
shorter in the methyl-cyclobutane products than in the van der Waals complex.

The first strategy suggested above will likely fail because the series of steps generated by walking uphill along the lowest Hessian
eigenmode will produce a path leading from eclipsed to staggered orientation of propene’s methyl group. Indeed, this path leads to
a TS, but it is not the [2+2] cyclo-addition TS that we want. The take-home lesson here is that uphill streambed walks beginning at
a minimum on the reactants’ potential energy surface may or may not lead to the desired TS. Such walks are not foolish to attempt,
but one should examine the nature of the eigenmode being followed to judge whether displacements along this mode make
chemical sense. Clearly, only rotating the methyl group is not a good way to move from ethylene and propene to methyl-
cyclobutane.

The second strategy suggested above might succeed, but it would probably still need to be refined. For example, if the
displacement of the ethylene toward the propene were too small, one would not have distorted the system enough to move it into a
region where the energy surface has negative curvature along the reaction path as it must have as one approaches the TS. So, if the
Hessian eigenmodes whose eigenvectors possess substantial inter-fragment radial displacements are all positive, one has probably
not moved the two fragments close enough together. Probably the best way to then proceed would be to move the two fragments
even closer (or, to move them along a linear synchronous path[1] connecting the reactants and products) until one finds a geometry
at which a negative Hessian eigenvalue’s eigenmode has substantial components along what appears to be reasonable for the
desired reaction path (i.e., substantial displacements leading to shorter inter-fragment carbon-carbon distances). Once one has
found such a geometry, one can use the strategies detailed earlier (e.g.,  to then walk uphill along one mode while
minimizing along the other modes to move toward the TS. If successful, such a process will lead to the TS at which all components
of the gradient vanish and all but one eigenvalue of the Hessian is positive. The take-home lesson of the example is it is wise to try
to first find a geometry close enough to the TS to cause the Hessian to have a negative eigenvalue whose eigenvector has
substantial character along directions that make chemical sense for the reaction path.

In either a series of steps toward a minimum or toward a TS, once a step has been suggested within the eigenmode basis, one needs
to express that step in terms of the original Cartesian coordinates  so that these Cartesian values can be altered within the
software program to effect the predicted step. Given values for the  or  step components  (n.b., the step
components  along the 5 or 6 modes having zero Hessian eigenvalues can be taken to be zero because the would simply
translate or rotate the molecule), one must compute the { }. To do so, we use the relationship

and write its inverse (using the unitary nature of the  matrix):
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to compute the desired Cartesian step components.

In using the Hessian-based approaches outlined above, one has to take special care when one or more of the Hessian eigenvalues is
small. This often happens when

i. one has a molecule containing “soft modes” (i.e., degrees of freedom along which the energy varies little), or
ii. as one moves from a region of negative curvature into a region of positive curvature (or vice versa)- in such cases, the curvature

must move through or near zero.

For these situations, the expression  can produce a very large step along the mode having small curvature. Care
must be taken to not allow such incorrect artificially large steps to be taken.

Energy Surface Intersections 
I should note that there are other important regions of potential energy surfaces that one must be able to locate and characterize.
Above, we focused on local minima and transition states. Later in this Chapter, and again in Chapter 8, we will discuss how to
follow so-called reaction paths that connect these two kinds of stationary points using the type of gradient and Hessian information
that we introduced earlier in this Chapter.

It is sometimes important to find geometries at which two Born-Oppenheimer energy surfaces  and  intersect because
such regions often serve as efficient funnels for trajectories or wave packets evolving on one surface to undergo so-called non-
adiabatic transitions to the other surface. Let’s spend a few minutes thinking about under what circumstances such surfaces can
indeed intersect, because students often hear that surfaces do not intersect but, instead, undergo avoided crossings. To understand
the issue, let us assume that we have two wave functions  and  both of which depend on  coordinates . These two
functions are not assumed to be exact eigenfunctions of the Hamiltonian , but likely are chosen to approximate such
eigenfunctions. To find the improved functions  and  that more accurately represent the eigenstates, one usually forms linear
combinations of  and ,

from which a 2x2 matrix eigenvalue problem arises:

This quadratic equation has two solutions

These two solutions can be equal (i.e., the two state energies can cross) only if the square root factor vanishes. Because this factor
is a sum of two squares (each thus being positive quantities), this can only happen if two identities hold simultaneously (i.e., at
the same geometry):

and

The main point then is that in the  dimensional space, the two states will generally not have equal energy. However, in a
space of two lower dimensions (because there are two conditions that must simultaneously be obeyed:  and ),
their energies may be equal. They do not have to be equal, but it is possible that they are. It is based upon such an analysis that one
usually says that potential energy surfaces in  dimensions may undergo intersections in spaces of dimension . If the
two states are of different symmetry (e.g., one is a singlet and the other a triplet), the off-diagonal element  vanishes
automatically, so only one other condition is needed to realize crossing. So, we say that two states of different symmetry can cross
in a space of dimension . For a triatomic molecule with  internal degrees of freedom, this means that surfaces
of the same symmetry can cross in a space of dimension 1 (i.e., along a line) while those of different symmetry can cross in a space
of dimension 2 (i.e., in a plane). An example of such a surface intersection is shown in Figure 3.1c.
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Figure 3.1c Depiction of the  and  Born-Oppenheimer surfaces arising when Al ( ) combines with  
to form .

First considering the reaction of Al (3s2 3p1; 2P) with  to form AlH2(^^2A_1) as if it were to occur in 
symmetry, the  atom’s occupied 3p orbital can be directed in either of three ways.

i. If it is directed toward the midpoint of the H-H bond, it produces an electronic state of  symmetry.
ii. If it is directed out of the plane of the , it gives a state of  symmetry, and

iii. if it is directed parallel to the H-H bond, it generates a state of  symmetry.

The  state is, as shown in the upper left of Figure 3.1c, repulsive as the Al atom’s 3s and 3p orbitals begin to overlap with the
hydrogen molecule’s  orbital at large -values. The  state, in which the occupied 3p orbital is directed sideways parallel to
the H-H bond, leads to a shallow van der Waals well at long-R but also moves to higher energy at shorter -values.

The ground state of the  molecule has its five valence orbitals occupied as follows:

i. two electrons occupy a bonding Al-H orbital of  symmetry,
ii. two electrons occupy a bonding Al-H orbital of  symmetry, and

iii. the remaining electron occupies a non-bonding orbital of  character localized on the Al atom and having a1 symmetry.

This  orbital occupancy of the  molecule’s ground state does not correlate directly with any of the three degenerate
configurations of the ground state of  which are , and  as explained earlier. It is this lack of direct
configuration correlation that generates the reaction barrier show in Figure 3.1c.

Let us now return to the issue of finding the lower-dimensional (  or ) space in which two surfaces cross, assuming
one has available information about the gradients and Hessians of both of these energy surfaces  and . There are two
components of characterizing the intersection space within which  = :

1. One has to first locate one geometry  lying within this space and then,
2. one has to sample nearby geometries (e.g., that might have lower total energy) lying within this subspace where .

To locate a geometry at which the difference function  passes through zero, one can employ conventional functional
minimization methods, such as those detailed earlier when discussing how to find energy minima, to locate where , but now
the function one is seeking to locate a minimum on is the potential energy surface difference.

Once one such geometry  has been located, one subsequently tries to follow the seam (i.e., for a triatomic molecule, this is the
one-dimensional line of crossing; for larger molecules, it is a  dimensional space) within which the function  remains
zero. Professor David Yarkony has developed efficient routines for characterizing such subspaces (D. R. Yarkony, Acc. Chem. Res.
31, 511-518 (1998)). The basic idea is to parameterize steps away from ( ) in a manner that constrains such steps to have no
component along either the gradient of ( ) or along the gradient of . Because  requires having both 

 and , taking steps obeying these two constraints allows one to remain within the subspace where 
 and  are simultaneously obeyed. Of course, it is a formidable task to map out the entire  or 

dimensional space within which the two surfaces intersect, and this is essentially never done. Instead, it is common to try to find,
for example, the point within this subspace at which the two surfaces have their lowest energy. An example of such a point is
labeled RMECP in Figure 3.1c, and would be of special interest when studying reactions taking place on the lower-energy surface
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that have to access the surface-crossing seam to evolve onto the upper surface. The energy at RMECP reflects the lowest energy
needed to access this surface crossing.

Such intersection seam location procedures are becoming more commonly employed, but are still under very active development,
so I will refer the reader to Prof. Yarkony’s paper cited above for further guidance. For now, it should suffice to say that locating
such surface intersections is an important ingredient when one is interested in studying, for example, photochemical reactions in
which the reactants and products may move from one electronic surface to another, or thermal reactions that require the system to
evolve onto an excited state through a surface crossing.

Endnotes 
1. This is a series of geometries  defined through a linear interpolation (using a parameter ) between the 

Cartesian coordinates  belonging to the equilibrium geometry of the reactants and the corresponding coordinates 
 of the products: 
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3.2: Normal Modes of Vibration
Having seen how one can use information about the gradients and Hessians on a Born-Oppenheimer surface to locate geometries

corresponding to stable species and transition states, let us now move on to see how this same data is used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy's dependence on the  Cartesian coordinates of its  atoms, the potential energy  can
be expressed (approximately) in terms of a Taylor series expansion about any of the local minima. Of course, different local minima (i.e.,
different isomers) will have different values for the equilibrium coordinates and for the derivatives of the energy with respect to these
coordinates. The Taylor series expansion of the electronic energy is written as:

Here,

 is the energy at the current geometry,

 is the gradient of the energy along the  coordinate,

 is the second-derivative or Hessian matrix, and

 is the length of the “step” to be taken along this Cartesian direction.

If the geometry corresponds to a minimum or transition state, the gradient terms will all vanish, and the Hessian matrix will possess 
(for linear species) or  (for non-linear molecules) positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3 translational
and 2 or 3 rotational motions of the molecule) for a minimum and one negative eigenvalues and  or  positive eigenvalues for a
transition state.

The Newton Equations of Motion for Vibration 

The Kinetic and Potential Energy Matrices 

Truncating the Taylor series at the quadratic terms (assuming these terms dominate because only small displacements from the equilibrium
geometry are of interest), one has the so-called harmonic potential:

The classical mechanical equations of motion for the  coordinates can be written in terms of the above potential energy and the
following kinetic energy function:

where  is the time rate of change of the coordinate  and  is the mass of the atom on which the  Cartesian coordinate resides. The

Newton equations thus obtained are:

where the force along the  coordinate is given by minus the derivative of the potential  along this coordinate

within the harmonic approximation. These classical equations can more compactly be expressed in terms of the time evolution of a set of so-
called mass-weighted Cartesian coordinates defined as:

in terms of which the above Newton equations become
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and the mass-weighted Hessian matrix elements are

The Harmonic Vibrational Energies and Normal Mode Eigenvectors 

Assuming that the  undergo some form of sinusoidal time evolution:

and substituting this into the Newton equations produces a matrix eigenvalue equation:

in which the eigenvalues are the squares of the so-called normal mode vibrational frequencies and the eigenvectors give the amplitudes of
motion along each of the  mass-weighted Cartesian coordinates that belong to each mode. Hence, to perform a normal-mode analysis of a
molecule, one forms the mass-weighted Hessian matrix and then finds the  or  non-zero eigenvalues  as well as the

corresponding eigenvectors .

It is useful to note that, if this same kind of analysis were performed at a geometry corresponding to a transition state,  or  of
the  values would be positive, but one of them would be negative. The eigenvector corresponding to the negative eigenvalue of the mass-
weighted Hessian points along a very important direction that we will discuss later; it is the direction of the so-called intrinsic reaction
coordinate (IRC). When reporting the eigenvalues  at such a transition-state geometry, one often says that there is one imaginary frequency
because one of the  values is negative; this value of  characterizes the curvature of the energy surface along the IRC at the transition
state. The positive vibrational eigenvalues of transition-state geometries are used, as discussed in Chapter 8, to evaluate statistical mechanics
partition functions for reaction rates, and the negative  value plays a role in determining the extent of tunneling through the barrier on the
reaction surface.

Within this harmonic treatment of vibrational motion, the total vibrational energy of the molecule is given as

a sum of  or  independent contributions one for each normal mode. The corresponding total vibrational wave function

is a product of  or  harmonic oscillator functions  one for each normal mode. The energy gap between one
vibrational level and another in which one of the  quantum numbers is increased by unity (i.e., for fundamental vibrational transitions) is

The harmonic model thus predicts that the "fundamental" ( ) and "hot band" ( ) transitions should occur at the
same energy, and the overtone ( ) transitions should occur at exactly twice this energy.

One might wonder whether mass-weighted Cartesian coordinates would be better or more appropriate to use when locating minima and
transition states on Born-Oppenheimer energy surfaces. Although mass-weighted coordinates are indeed essential for evaluating harmonic
vibrational frequencies and, as we will see later, for tracing out so-called intrinsic reaction paths, their use produces the same minima and
transition states as one finds using coordinates that are mass-weighted. This is because the condition that all components of the gradient

of the energy surface vanish at a minimum or at a transition state will automatically be obeyed when expressed in terms of mass-weighted
coordinates since

Notice that this means the geometries of all local minima and transition states on a given Born-Oppenheimer surface will be exactly the same
regardless of what isotopes appear in the molecule. For example, for the reactions
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or

or

or

the geometries of the reactants, products, and transition states (for each of the distinct reactions) will not depend on the identity of the
hydrogen isotopes. However, the harmonic vibrational frequencies will depend on the isotopes because the mass-weighted Hessian differs
from the Hessian expressed in terms of non-mass-weighted coordinates.

The Use of Symmetry 

Symmetry Adapted Modes 

It is often possible to simplify the calculation of the normal mode harmonic frequencies and eigenvectors by exploiting molecular point group
symmetry. For molecules that possess symmetry at a particular stable geometry, the electronic potential  displays symmetry with respect
to displacements of symmetry equivalent Cartesian coordinates. For example, consider the water molecule at its  equilibrium geometry as
illustrated in Figure 3.2. A very small movement of the  molecule's left  atom in the positive  direction ( ) produces the same
change in the potential  as a correspondingly small displacement of the right  atom in the negative  direction

(   ). Similarly, movement of the left H in the positive y direction (  ) produces an energy change identical to movement of the right H
in the positive y direction (  ).

Figure 3.2. Water molecule showing its two bond lengths and angle

The equivalence of the pairs of Cartesian coordinate displacements is a result of the fact that the displacement vectors are connected by the
point group operations of the  group. In particular, reflection of   through the yz plane (the two planes are depicted in Figure 3.3)
produces  , and reflection of    through this same plane yields   .

Figure 3.3. Two planes of symmetry of the water molecule.

More generally, it is possible to combine sets of Cartesian displacement coordinates { } into so-called symmetry adapted coordinates { },
where the index  labels the irreducible representation in the appropriate point group and j labels the particular combination of that symmetry
(i.e., there may be more than one kind of displacement that has a given symmetry G). These symmetry-adapted coordinates can be formed by
applying the point group projection operators (that are treated in detail in Chapter 4) to the individual Cartesian displacement coordinates.

To illustrate, again consider the  molecule in the coordinate system described above. The  mass-weighted Cartesian displacement
coordinates ( ) can be symmetry adapted by applying the following four projection operators:

D−CN → D−NC (3.2.17)

C = O → +COH2 H2 (3.2.18)

HDC = O → HD+CO (3.2.19)

C = O → +COD2 D2 (3.2.20)
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to each of the 9 original coordinates (the symbol s denotes reflection through a plane and  means rotation about the molecule’s  axis). Of
course, one will not obtain 9 x 4 = 36 independent symmetry adapted coordinates in this manner; many identical combinations will arise, and
only 9 will be independent.

The independent combinations of  symmetry (normalized to produce vectors of unit length) are

Those of  symmetry are

and the combinations

are of  symmetry, whereas

is of  symmetry.

Point Group Symmetry of the Harmonic Potential 

These nine symmetry-adapted coordinates  are expressed as unitary transformations of the original mass-weighted Cartesian coordinates:

These transformation coefficients  can be used to carry out a unitary transformation of the 9x9 mass-weighted Hessian matrix. In so
doing, we need only form blocks

within which the symmetries of the two modes are identical. The off-diagonal elements

vanish because the potential  (and the full vibrational Hamiltonian ) commutes with the  point group symmetry
operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be subdivided into two 3x3 matrix problems (of  and  symmetry),
one 2x2 matrix of  symmetry and one 1x1 matrix of  symmetry. For example, the  symmetry block His formed as follows:
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The ,  and  blocks are formed in a similar manner. The eigenvalues of each of these blocks provide the squares of the harmonic
vibrational frequencies, the eigenvectors provide the coefficients  of the  normal mode of symmetry  in terms of the mass-
weighted Cartesian coordinates { }. The relationship  can then be used to express these coefficients in terms of the original
Cartesian coordinates { }.

Regardless of whether symmetry is used to block diagonalize the mass-weighted Hessian, six (for non-linear molecules) or five (for linear
species) of the eigenvalues will equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3 translations and 2 or 3
rotations of the molecule. For example, when expressed in terms of the original (i.e., non-mass-weighted) Cartesian coordinates

are three translation eigenvectors of ,  and  symmetry, and

is a rotation (about the y-axis in the Figure 3.2) of  symmetry. This rotation vector can be generated by applying the  projection operator
to  or to . The other two rotations are of  and  symmetry and involve spinning of the molecule about the - and - axes of the Figure
3.2, respectively.

So, of the 9 Cartesian displacements, 3 are of  symmetry, 3 of , 2 of , and 1 of . Of these, there are three translations ( , , and )
and three rotations ( , , and a2). This leaves two vibrations of  and one of  symmetry. For the  example treated here, the three
non-zero eigenvalues of the mass-weighted Hessian are therefore of , , and  symmetry. They describe the symmetric and asymmetric
stretch vibrations and the bending mode, respectively as illustrated in Figure 3.4. 

Figure 3.4: Symmetric and asymmetric stretch modes and bending mode of water

The method of vibrational analysis presented here can work for any polyatomic molecule. One knows the mass-weighted Hessian and then
computes the non-zero eigenvalues, which then provide the squares of the normal modes’ harmonic vibrational frequencies. Point group
symmetry can be used to block diagonalize this Hessian and to label the vibrational modes according to symmetry as we show in Figure 3.5
for the  molecule in tetrahedral symmetry.

Figure 3.5. Symmetries of vibrations of methane
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3.3: Intrinsic Reaction Paths
As we will discuss in more detail in Chapter 8, there is a special path connecting reactants, transition states, and products that is
especially useful to characterize in terms of energy surface gradients and Hessians. This is the Intrinsic Reaction Path (IRP). To
construct an IRP, one proceeds as follows:

Step 1:

Once a transition state (TS) has been located, its mass-weighted Hessian matrix is formed and diagonalized. The normalized
eigenvector  belonging to the one negative eigenvalue of this matrix defines the initial direction(s) leading from the TS to either
reactants or products (a unit vector along  is one direction; a unit vector along  is the second).

Step 2:

One takes a small step (i.e., a displacement of the Cartesian coordinates { } of the nuclei having a total length ) along the
direction , and this direction is taken to define the first step along the intrinsic reaction coordinate (IRC) that will eventually lead
to the IRP. When  is expressed in terms of the its components { } along the Cartesian coordinates { }

the displacements  can be expressed as

Step 3

One re-evaluates the gradient and Hessian at this new geometry (call it { }), forms the mass-weighted Hessian at { }, and
identifies the eigenmode having negative curvature. The gradient along this direction will no longer vanish (as it did at the TS), and
the normalized eigenvector of this mode is now used to define the continuation of the direction  along the IRC.

Step 4

One then minimizes the energy along the  or  coordinates transverse to . This can be done by expressing the
energy in terms of the corresponding eigenmodes  of the mass-weighted Hessian

where  is the component of the gradient of the energy along the eigenmode  and is the eigenvalue of the mass-weighted
Hessian for this mode. This energy minimization transverse to  is designed to constrain the “walk” downhill from the TS at (or
near) the minimum in the streambed along which the IRC is evolving. After this energy minimization step, the Cartesian
coordinates will be defined as { }.

Step 5

At { }, one re-evaluates the gradient and Hessian, and proceeds as in step (c) above.

This process is continued, generating a series of geometries { } that define points on the IRC. At each of these
geometries, the gradient will have its largest component (excluding at the TS, where all components vanish) along the direction of 
 because the energy minimization process will cause its components transverse to  to (at least approximately) vanish.

Step 6

Eventually, a geometry will be reached at which all  or  of the eigenvalues of the mass-weighted Hessian are
positive; here, one is evolving into a region where the curvature along the IRC is positive and suggests one may be approaching a
minimum. However, at this point, there will be one eigemode (the one whose eigenvalue just changed from negative to positive)
along which the gradient has its largest component. This eigenmode will continue to define the IRC’s direction .

Step 7

One continues by taking a small step along  downhill in energy, after which the energy is minimized along the modes transverse to
. This process is continued until the magnitude of the gradient (which always points along s) becomes small enough that one can
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claim to have reached a minimum.

Step 8

The process described above will lead from the TS to either the reactants or products, and will define one branch of the IRP. To find
the other branch, one returns to step (b) and begins the entire process again but now taking the first small step in the opposite
direction (i.e., along the negative of the eigenvector of the mass-weighted Hessian at the TS). Proceeding along this path, one
generates the other branch of the IRP; the series of geometries leading from reactants, through the TS, to products defines the full
IRP. At any point along this path, the direction  is the direction of the IRC.

This process for generating the IRP can be viewed as generating a series of Cartesian coordinates { } lying along a continuous
path { } that is the solution of the following differential equation

where  is the  Cartesian coordinate,  is the energy gradient along this Cartesian coordinate,  is the norm of the total energy
gradient, and  is the continuous parameter describing movement along the IRC. The initial condition appropriate to solving this
differential equation is that the initial step (i.e., at ) is to be directed along (for one branch of the IRP) or opposed to (for the
other branch) the eigenmode of the mass-weighted Hessian having negative eigenvalue at the TS.
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CHAPTER OVERVIEW

4: Some Important Tools of Theory

In this Chapter, you should have learned about the following things:

Rayleigh-Schrödinger perturbation theory with several example applications.
The variational method for optimizing trial wave functions.
The use of point group symmetry.
Time dependent perturbation theory, primarily for sinusoidal perturbations characteristic of electromagnetic radiation.

For all but the most elementary problems, many of which serve as fundamental approximations to the real behavior of molecules
(e.g., the Hydrogenic atom, the harmonic oscillator, the rigid rotor, particles in boxes), the Schrödinger equation can not be solved
exactly. It is therefore extremely useful to have tools that allow one to approach these insoluble problems by solving other
Schrödinger equations that can be trusted to reasonably describe the solutions of the impossible problem. The approaches discussed
in this Chapter are the most important tools of this type.

4.1: Perturbation Theory
4.2: The Variational Method
4.3: Linear Variational Method
4.4: Point Group Symmetry
4.5: Character Tables
4.6: Time Dependent Perturbation Theory
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4.1: Perturbation Theory
In most practical applications of quantum mechanics to molecular problems, one is faced with the harsh reality that the Schrödinger equation
pertinent to the problem at hand cannot be solved exactly. To illustrate how desperate this situation is, I note that neither of the following two
Schrödinger equations has ever been solved exactly (meaning analytically):

1. The Schrödinger equation for the two electrons moving about the He nucleus:

2. The Schrödinger equation for the two electrons moving in an  molecule even if the locations of the two nuclei (labeled A and B) are
held clamped as in the Born-Oppenheimer approximation:

These two problems are examples of what is called the “three-body problem” meaning solving for the behavior of three bodies moving relative
to one another. Motions of the sun, earth, and moon (even neglecting all the other planets and their moons) constitute another three-body
problem. None of these problems, even the classical Newton’s equation for the sun, earth, and moon, have ever been solved exactly. So, what
does one do when faced with trying to study real molecules using quantum mechanics?

There are two very powerful tools that one can use to “sneak up” on the solutions to the desired equations by first solving an easier model
problem and then using the solutions to this problem to approximate the solutions to the real Schrödinger problem of interest. For example, to
solve for the energies and wave functions of a boron atom, one could use hydrogenic  orbitals (but with ) and hydrogenic  and 
orbitals (with  to account for the screening of the full nuclear charge by the two  electrons) as a starting point. To solve for the
vibrational energies of a diatomic molecule whose energy vs. bond length  is known, one could use the Morse oscillator wave functions
and energies as starting points. But, once one has decided on a reasonable model to use, how does one connect this model to the real system of
interest? Perturbation theory and the variational method are the two tools that are most commonly used for this purpose, and it is these two
tools that are covered in this Chapter.

The perturbation theory approach provides a set of analytical expressions for generating a sequence of approximations to the true energy 
and true wave function . This set of equations is generated, for the most commonly employed perturbation method, Rayleigh-Schrödinger
perturbation theory (RSPT), as follows. First, one decomposes the true Hamiltonian  into a so-called zeroth-order part  (this is the
Hamiltonian of the model problem used to represent the real system) and the difference ( ), which is called the perturbation and
usually denoted :

It is common to associate with the perturbation  a strength parameter , which could, for example, be associated with the strength of the
electric field when the perturbation results from the interaction of the molecule of interest with an electric field. In such cases, it is usual to
write the decomposition of  as

A fundamental assumption of perturbation theory is that the wave functions and energies for the full Hamiltonian  can be expanded in a
Taylor series involving various powers of the perturbation parameter . Hence, one writes the energy  and the wave function  as zeroth-,
first-, second, etc, order pieces which form the unknowns in this method:

with  and  being proportional to . Next, one substitutes these expansions of ,  and  into . This produces one
equation whose right and left hand sides both contain terms of various “powers” in the perturbation . For example, terms of the form , 

, and   and   are all of third power (also called third order). Next, one equates the terms on the left and right sides that are of
the same order. This produces a set of equations, each containing all the terms of a given order. The zeroth, first, and second-order such
equations are given below:

[− − – – + ]ψ = Eψ,
ℏ2

2me

∇2
1

ℏ2

2me

∇2
2

2e2

r1

2e2
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(4.1.1)
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H
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E = + + + +⋯E (0) E (1) E (2) E (3) (4.1.5)

y = + + + +⋯ψ(0) ψ(1) ψ(2) ψ(3) (4.1.6)

E (n) ψ(n) λn E H ψ Hψ = Eψ

λ E (1)

ψ(2) V ψ(2) E (0) ψ(3)

= ,H (0)ψ(0) E (0)ψ(0) (4.1.7)

+V = +H (0)ψ(1) ψ(0) E (0)ψ(1) E (1)ψ(0) (4.1.8)

+V = + + .H (0)ψ(2) ψ(1) E (0)ψ(2) E (1)ψ(1) E (2)ψ(0) (4.1.9)
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It is straightforward to see that the nth order expression in this sequence of equations can be written as

The zeroth-order equation simply instructs us to solve the model Schrödinger equation to obtain the zeroth-order wave function  and its
zeroth-order energy . Since  is a Hermitian operator, it has a complete set of such eigenfunctions, which we label  and
{E^{(0)}_k}. One of these states will be the one we are interested in studying (e.g., we might be interested in the effect of an external electric
field on the  state of the hydrogen atom), but, as will become clear soon, we actually have to find the full set of { } and { } (e.g., we
need to also find the  etc. states of the hydrogen atom when studying the electric field’s effect on the  state).

In the first-order equation, the unknowns are  and  (recall that  is assumed to be known because it is the difference between the
Hamiltonian one wants to solve and the model Hamiltonian ). To solve the first-order and higher-order equations, one expands each of the
corrections to the wave function  of interest in terms of the complete set of wave functions of the zeroth-order problem . As noted
earlier, this means that one must solve  not just for the zeroth-order state one is interested in (denoted  above), but
for all of the other zeroth-order states . For example, expanding  in this manner gives:

Now, the unknowns in the first-order equation become  and the expansion coefficients. To solve

one proceeds as follows:

1. First, one multiplies this equation on the left by the complex conjugate of the zeroth-order function for the state of interest  and
integrates over the variables on which the wave functions depend. This gives

The first and third terms cancel one another because , and the fourth term reduces to  because  is assumed to be
normalized. This allows the above equation to be written as

which is the RSPT expression for . It says the first-order correction to the energy  of the unperturbed state can be evaluated by
computing the average value of the perturbation with respect to the unperturbed wave function .

2. Returning to the first-order equation and multiplying on the left by the complex conjugate of one of the other zeroth-order functions gives

Using , the first term reduces to , and the fourth term vanishes because is orthogonal to  because these two functions are
different eigenfunctions of . This reduces the equation to

The unknown in this expression is , which is the expansion coefficient for the expansion of  in terms of the zeroth-order
functions { }. In RSPT, one assumes that the only contribution of  to the full wave function \psioccurs in zeroth-order; this is referred to as
assuming intermediate normalization of y. In other words,  because  and  for . So,
the coefficients  appearing in the above equation are all one needs to describe .

3. If the state of interest  is non-degenerate in zeroth-order (i.e., none of the other is equal to E^{(0)}), this equation can be solved for the
needed expansion coefficients

which allow the first-order wave function to be written as

where the index  is restricted such that  not equal the state  you are interested in.

+V = + + + +⋯ + .H (0)ψ(n) ψ(n−1) E (0)ψ(n) E (1)ψ(n−1) E (2)ψ(n−2) E (3)ψ(n−3) E (n)ψ(0) (4.1.10)
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4. However, if one or more of the zeroth-order energies is equal to , an additional step needs to be taken before the above expression for 
 can be used. If one were to try to solve  without taking this extra step, the  values

for those states with  could not be determined because the first and third terms would cancel and the equation would read 
. The way RSPT deals with this paradox is realize that, within a set of  degenerate states, any  orthogonal combinations

of these states will also be degenerate. So RSPT assumes that one has already chosen the degenerate sets of zeroth-order states to make 
 for . This extra step is carried out in practice by forming the matrix representation of  in the original set of

degenerate zeroth-order states and then finding the unitary transformation among these states that diagonalizes this matrix. These transformed
states are then what one uses as and  in the RSPT expressions. This means that the paradoxical result  is indeed obeyed
by this choice of states, so one does not need to determine the coefficients  for belonging to the degenerate zeroth-order states (i.e.,
these coefficients can be assumed to be zero). The bottom line is that the expression

remains valid, but the summation index  is now restricted to exclude any members of the zeroth-order states that are degenerate with .

To obtain the expression for the second-order correction to the energy of the state of interest, one returns to

Multiplying on the left by the complex conjugate of  and integrating yields

The intermediate normalization condition causes the fourth term to vanish, and the first and third terms cancel one another. Recalling the fact
that  is normalized, the above equation reduces to

Substituting the expression obtained earlier for  allows  to be written as

where, as before, the sum over  is limited to states that are not degenerate with  in zeroth-order.

These are the fundamental working equations of Rayleigh-Schrödinger perturbation theory. They instruct us to compute the average value of
the perturbation taken over a probability distribution equal to  to obtain the first-order correction to the energy . They also tell us
how to compute the first-order correction to the wave function and the second-order energy in terms of integrals coupling  to other zeroth-
order states and denominators involving energy differences .

An analogous approach is used to solve the second- and higher-order equations. For example, the equation for the nth order energy and wave
functions reads:

The nth order energy is obtained by multiplying this equation on the left by  and integrating over the relevant coordinates (and using the
fact that  is normalized and the intermediate normalization condition  for all ):

This allows one to recursively solve for higher and higher energy corrections once the various lower-order wave functions  are obtained.
To obtain the expansion coefficients for the  expanded in terms of the zeroth-order states { }, one multiplies the above  order equation
on the left by (one of the zeroth-order states not equal to the state  of interest) and obtains

The last term on the right-hand side vanishes because and  are orthogonal. The terms containing the nth order expansion coefficients 
 can be brought to the left-hand side to produce the following equation for these unknowns:
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ψ(n−1) E (0) ψ
(0)
J

ψ(n) E (1) ψ
(0)
J

ψ(n−1) E (2) ψ
(0)
J

ψ(n−2) E (3) ψ
(0)
J

ψ(n−3)

+ ⟨ | ⟩.E (n) ψ(0)
J

ψ(0)

(4.1.26)

ψ(0)

⟨| ⟩ψ(n)

⟨ | ⟩− ⟨ | ⟩ = −⟨ |V | ⟩+ ⟨ | ⟩+ ⟨ | ⟩+ ⟨ | ⟩+…ψ
(0)
J

ψ(n) E (0) ψ
(0)
J

ψ(n) ψ
(0)
J

ψ(n−1) E (1) ψ
(0)
J

ψ(n−1) E (2) ψ
(0)
J

ψ(n−2) E (3) ψ
(0)
J

ψ(n−3)

+ ⟨ | ⟩.E (n) ψ
(0)
J ψ(0)

(4.1.27)
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As long as the zeroth-order energy is not degenerate with  (or, that the zeroth-order states have been chosen as discussed earlier to cause
there to no contribution to  from such degenerate states), the above equation can be solved for the expansion coefficients ,
which then define .

The RSPT equations can be solved recursively to obtain even high-order energy and wave function corrections:

1.  and  and  are used to determine  and  as outlined above,
2.  is determined from  with , and the expansion coefficients of  { } are determined from the above

equation with ,
3.  (and higher ) are then determined from  and the expansion coefficients of  { } are determined

from the above equation with .
4. This process can then be continued to higher and higher order.

Although modern quantum mechanics uses high-order perturbation theory in some cases, much of what the student needs to know is contained
in the first- and second- order results to which I will therefore restrict our further attention. I recommend that students have in memory (their
own brain, not a computer) the equations for , , and  so they can make use of them even in qualitative applications of
perturbation theory as we will discuss later in this Chapter. But, first, let’s consider an example problem that illustrates how perturbation
theory is used in a more quantitative manner.

Example Problem 

As we discussed earlier, an electron moving in a quasi-linear conjugated bond framework can be modeled as a particle in a box. An externally

applied electric field of strength  interacts with the electron in a fashion that can described by adding the perturbation  to

the zeroth-order Hamiltonian. Here,  is the position of the electron in the box,  is the electron's charge, and  is the length of the box. The
perturbation potential varies in a linear fashion across the box, so it acts to pull the electron to one side of the box.

First, we will compute the first-order correction to the energy of the  state and the first-order wave function for the  state. In the
wave function calculation, we will only compute the contribution to  made by  (this is just an approximation to keep things simple in this
example). Let me now do all the steps needed to solve this part of the problem. Try to make sure you can do the algebra, but also make sure
you understand how we are using the first-order perturbation equations.

The zeroth-order wave functions and energies are given by

and

and the perturbation is

The first-order correction to the energy for the state having  and denote  is

The first integral can be evaluated using the following identity with :

The second integral can be evaluated using the following identity with 

and  :

E (0)

ψ(n) ⟨ | ⟩ψ
(0)
J

ψ(n)

ψ(n)

ψ(0) E (0) V E (1) ψ(1)

E (2) ⟨ |V | ⟩ =ψ0 ψn−1 E (n) n = 2 ψ(2) ⟨| ⟩ψ(2)

n = 2

E (3) E (n) ⟨ |V | ⟩ =ψ0 ψn−1 E (n) ψ(2) ⟨| ⟩ψ(2)

n = 2

E (1) E (2) ψ
(1)
0

ε V = eε(x− )
L

2
x e L

n = 1 n = 1

ψ ψ
(0)
2

= sin( ),ψ
(0)
n

2

L

−−
√

nπx

L
(4.1.28)

= ,E
(0)
n

ℏ2π2n2

2mL2
(4.1.29)

V = eε(x− )  .
L

2
(4.1.30)

n = 1 ψ(0)

= ⟨ |V | ⟩ =⟨ eε(x− ) ⟩E (1) ψ(0) ψ(0) ψ(0) ∣

∣
∣

L

2

∣

∣
∣ψ(0) (4.1.31)

= ( )eε(x− )  dx
2

L
∫

L

0
sin2 πx

L

L

2
(4.1.32)

= ( )xdx− ( )dx
2eε

L
∫

L

0
sin2 πx

L

2eε

L

L

2
∫

L

0
sin2 πx

L
(4.1.33)

a =
π

L

(ax)dx = − − =∫
L

0
sin2 x2

4

x sin(2ax)

4a

x cos(2ax)

8a2

∣

∣
∣
L

0

L2

4
(4.1.34)

θ = πx
L

dθ =  dxπ

L
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.

Making all of these appropriate substitutions we obtain:

This result, that the first-order correction to the energy vanishes, could have been foreseen. In the expression for , the

product  is an even function under reflection of  through the midpoint ; in fact, this is true for all of the particle-in-a-box

wave functions. On the other hand, the perturbation  is an odd function under reflection through . Thus, the integral 

 must vanish as its integrand is an odd function. This simple example illustrates how one can use symmetry to tell ahead of time
whether the integrals  and  contributing to the first-order and higher-order energies and wave functions will vanish.

The contribution to the first-order wave function made by the  state is given by

The two integrals in the numerator involve

and

Using the integral identities

and

we obtain the following:

and

( )dx = θdθ = − sin(2θ) + =∫
L

0
sin2 πx

L

L

π
∫

π

0
sin2 1

4

θ

2

∣

∣
∣
π

0

π

2
(4.1.35)

= ( − ) = 0.E (1) 2eε

L

L2

4

L

2

L

π

π

2
(4.1.36)

= ⟨ |V | ⟩E (1) ψ(0) ψ(0)

ψ(0)∗ψ(0) x x =
L

2

V = eε(x− )
L

2
x =

L

2
⟨ |V | ⟩ψ(0) ψ(0)

⟨ |V | ⟩ψ(0) ψ(0) ⟨ |V | ⟩ψ
(0)
J ψ(0)

n = 2

=ψ(1)
⟨ |V | ⟩ψ

(0)
J ψ

(0)
2 ψ

(0)
2

−E (0) E
(0)
2

(4.1.37)

=

⟨sin( ) eε(x− ) sin( )⟩
2

L

πx

L
∣∣

L
2

∣∣
2πx

L

−   
ℏ2π2

2mL2

ℏ2π222

2mL2

(4.1.38)

x sin( ) sin( )dx∫
L

0

2πx

L

πx

L
(4.1.39)

sin( ) sin( )dx∫
L

0

2πx

L

πx

L
(4.1.40)

∫ x cos(ax)dx = cos(ax) + sin(ax)
1

a2

x

a
(4.1.41)

∫ cos(ax)dx = sin(ax),
1

a
(4.1.42)

sin( ) sin( )dx = [ cos( )dx− cos( )dx]∫
L

0

2πx

L

πx

L

1

2
∫

L

0

πx

L
∫

L

0

3πx

L
(4.1.43)

= [ sin( ) − sin( ) ]= 0
1

2

L

π

πx

L

∣

∣
∣
L

L

3π

3πx

L

∣

∣
∣
L

(4.1.44)

x sin( ) sin( )dx = [ x cos( )dx− x cos( )dx]∫
L

0

2πx

L

πx

L

1

2
∫

L

0

πx

L
∫

L

0

3πx

L
(4.1.45)

= [( cos( )+ sin( )) −( cos( )+ sin( )) ]
1

2

L2

π2

πx

L

Lx

π

πx

L

∣

∣
∣
L

L2

9π2

3πx

L

Lx

3π

3πx

L

∣

∣
∣
L

(4.1.46)

= − = − = − .
−2L2

2π2

−2L2

18π2

L2

9π2

L2

π2

−8L2

9π2
(4.1.47)
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Making all of these appropriate substitutions we obtain: 

for the first-order wave function (actually, only the  contribution). So, the wave function through first order (i.e., the sum of the zeorth-
and first-order pieces) is

In Figure 4.1 we show the  and  zeroth-order functions as well as the superposition function formed when the zeroth-order 
and first-order  functions combine.

Figure 4.1  (blue) and  (red) particle-in-a-box zeroth-order functions (left) and the  perturbed function through first order
(right) arising from the electric field polarization.

Clearly, the external electric field acts to polarize the  wave function in a manner that moves its probability density toward the 

side of the box. The degree of polarization will depend on the strength of the applied electric field.

For such a polarized superposition wave function, there should be a net dipole moment induced in the system. We can evaluate this dipole
moment by computing the expectation value of the dipole moment operator:

with being the sum of our zeroth- and first-order wave functions. In computing this integral, we neglect the term proportional to  because
we are interested in only the term linear in  because this is what gives the dipole moment. Again, allow me to do the algebra and see if you
can follow.

where,

The first integral is zero (we discussed this earlier when we used symmetry to explain why this vanishes). The fourth integral is neglected
since it is proportional to  and we are interested in obtaining an expression for how the dipole varies linearly with . The second and third
integrals are identical and can be combined to give:

Substituting our earlier expressions for

and

= sin( )ψ(1) 32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.48)

n = 2

+ = sin( )+ sin( )ψ(0) ψ(1) 2

L

−−
√

πx

L

32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.49)

n = 1 n = 2 n = 1
n = 1

n = 1 n = 2 n = 1

n = 1 x >
L

2

= −e∫ (x− )ψdxμinduced ψ∗ L

2
(4.1.50)

E (2)

ε

= −e∫ (x− )ψdxμinduced ψ∗ L

2
(4.1.51)

ψ = +ψ(0) ψ(1) (4.1.52)

= −e ( + (x− ) ( + )dxμinduced ∫
L

0
ψ(0) ψ(1))∗ L

2
ψ(0) ψ(1) (4.1.53)

= −e  (x− ) dx−e  (x− ) dx∫
L

0
ψ(0)∗ L

2
ψ(0) ∫

L

0
ψ(1)∗ L

2
ψ(0) (4.1.54)

= −e (x− ) dx−e (x− ) dx∫
L

0
ψ(0)∗ L

2
ψ(1) ∫

L

0
ψ(1)∗ L

2
ψ(1) (4.1.55)

E (2) ε

= −2e (x− ) dx μinduced ∫
L

0
ψ(0)∗ L

2
ψ(1) (4.1.56)

= sin( )ψ(0) 2

L

πx

L
(4.1.57)
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we obtain:

These integrals are familiar from what we did to compute ; doing them we finally obtain:

Now. Let’s compute the polarizability, , of the electron in the  state of the box, and try to understand physically why a should depend
as it does upon the length of the box . To compute the polarizability, we need to know that

Using our induced moment result above, we then find

Notice that this finding suggests that the larger the box (i.e., the length of the conjugated molecule), the more polarizable the electron density.
This result also suggests that the polarizability of conjugated polyenes should vary non-linearly with the length of the conjugated chain.

Other Examples 
Let’s consider a few more examples of how perturbation theory is used in chemistry, either quantitatively (i.e., to actually compute changes in
energies and wave functions) or qualitatively (i.e., to interpret or anticipate how changes might alter energies or other properties).

The Stark effect 

When a molecule is exposed to an electric field , its electrons and nuclei experience a perturbation

where  is the charge of the  nucleus whose position is ,  is the position of the  electron, and  is the unit of charge. The effect of
this perturbation on the energies is termed the Stark effect. The first-order change to the energy of this molecule is evaluated by calculating

where  is the unperturbed wave function of the molecule (i.e., the wave function in the absence of the electric field). The quantity inside the
integral is the electric dipole operator, so this integral is the dipole moment of the molecule in the absence of the field. For species that possess
no dipole moment (e.g., non-degenerate states of atoms and centro-symmetric molecules), this first-order energy vanishes. It vanishes in the
two specific cases mentioned because  is either even or odd under the inversion symmetry, but the product  is even, and the dipole
operator is odd, so the integrand is odd and thus the integral vanishes.

If one is dealing with a degenerate state of a centro-symmetric system, things are different. For example, the  and  states of the hydrogen
atom are degenerate, so, to apply perturbation theory one has to choose specific combinations that diagonalize the perturbation. This means
one needs to first form the 2x2 matrix

where  is taken to be the direction of the electric field. The diagonal elements of this matrix vanish due to parity symmetry, so the two
eigenvalues are equal to

These are the two first-order (because they are linear in  and thus linear in ) energies.

So, in such degenerate cases, one can obtain linear Stark effects. The two corrected zeroth-order wave functions corresponding to these two
shifted energies are

= sin( )ψ(1) 32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.58)

= −2e sin( )(x− ) sin( ) dxμinduced

32m eεL3

27ℏ2π4

2

L
∫

L

0

πx

L

L

2

2πx

L
(4.1.59)

= −2e ( )( ) =μinduced

32m eεL3

27ℏ2π4

2

L

−8L2

9π2

m εL4e2

ℏ2π6

210

35
(4.1.60)

α n = 1
L

α = .( )
∂μ

∂ε ε=0

(4.1.61)

α = =( )
∂μ

∂ε ε=0

mL4e2

ℏ2π6

210

35
(4.1.62)

E

V = E ⋅ (e −e )∑
n

ZnRn ∑
i

ri (4.1.63)

Zn nth Rn ri ith e

= ⟨ |V |ψ⟩ = E ⋅ ⟨ψ|e −e |ψE (1) ψ∗ ∑
n

ZnRn ∑
i

ri (4.1.64)

ψ

ψ ψψ∗

2s 2p

( )
⟨2s|V |2s⟩

⟨2 |V |2s⟩pz

⟨2s|V |2 ⟩pz

⟨2  |V |2 ⟩ pz pz
(4.1.65)

z

= ±2⟨2s|V |2 ⟩.E
(1)
± pz (4.1.66)

V
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and correspond to orbitals polarized into or away from the electric field.

The Stark effect example offers a good chance to explain a fundamental problem with applying perturbation theory. One of the basic
assumptions of perturbation theory is that the unperturbed and perturbed Hamiltonians are both bounded from below (i.e., have a discrete
lowest eigenvalues) and allow each eigenvalue of the unperturbed Hamiltonian to be connected to a unique eigenvalue of the perturbed
Hamiltonian. Considering the example just discussed, we can see that these assumptions are not met for the Stark perturbation.

Consider the potential that an electron experiences within an atom or molecule close to a nucleus of charge . It is of the form (in atomic units
where the energy is given in Hartrees (1 H = 27.21 eV) and distances in Bohr units (1 Bohr = 0.529 Å))

where the first term is the Coulomb potential acting to attract the electron to the nucleus and the second is the electron-field potential assuming
the field is directed along the -direction. In Figure 4.2 a we show this potential for a given value of the angle .

Figure 4.2 a Potential experienced by valence electron showing attraction to a nucleus located at the origin (the deep well) and the potential
due to the applied electric field.

Along directions for which  is negative (to the right in Figure 4.2 a), this potential becomes large and positive as the distance  of the
electron from the nucleus increases; for bound states such as the  and  states discussed earlier, such regions are classically forbidden and
the wave function exponentially decays in this direction. However, in directions along which  is positive, the potential is negative and
strongly attractive for small-r (i.e., near the nucleus), then passes through a maximum (e.g., near  in Figure 4.2 a) at

where

(ca. – 1 eV in Figure 4.2 a) and then decreases monotonically as r increases. In fact, this potential approaches  as  approaches  as we
see in the left portion of Figure 4.2 a.

The bottom line is that the total potential with the electric field present violates the assumptions on which perturbation theory is based.
However, it turns out that perturbation theory can be used in such cases under certain conditions. For example as applied to the Stark effect for
the degenerate  and  levels of a hydrogenic atom (i.e., a one-electron system with nuclear charge ), if the energy of the  and  states
lies far below the maximum in the potential , perturbation theory can be used. We know the energies of hydrogenic ions vary with 
and with the principal quantum number  as

So, as long as

the zeroth-order energy of the state will like below the barrier on the potential surface. Because the wave function can penetrate this barrier,
this state will no longer be a true bound state; it will be a metastable resonance state (recall, we studied such states in Chapter 1 where we
learned about tunneling). However, if the zeroth-order energy lies far below the barrier, the extent of tunneling through the barrier will be
small, so the state will have a long lifetime. In such cases, we can use perturbation theory to describe the effects of the applied electric field on
the energies and wave functions of such metastable states, but we must realize that we are only allowed to do so in the limit of weak fields and

= [2s∓2 ]ψ
(0)
±

1

2
–

√
pz (4.1.67)

Z

V (r, θ,ϕ) = − −eEr cosθ
Z

r
(4.1.68)

z θ

cosθ r

2s 2p
cosθ
x = −2

=rmax
Z

eE cosθ

− −−−−−−
√ (4.1.69)

V ( ) = −2rmax eE cosθ
− −−−−−

√ (4.1.70)

−∞ r ∞

2s 2p Z 2s 2p
V ( )rmax Z

n

(Z) = = auE (n) −13.6eV

n2Z2

−1

2n2Z2
(4.1.71)

≪ −2
−1

2n2Z2
eE cosθ
− −−−−−

√ (4.1.72)
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for states that lie significantly below the barrier. In this case, perturbation theory describes the changes in the energy and wave function in
regions of space where the zeroth-order wave function is bound, but does not describe at all the asymptotic part of the wave function where the
electron is unbound.

Another example of Stark effects in degenerate cases arises when considering how polar diatomic molecules’ rotational energies are altered by
an electric field. The zeroth-order wave functions appropriate to such cases are given by

where the spherical harmonic  is the rotational wave function,  is the vibrational function for level , and  is the
electronic wave function. The diagonal elements of the electric-dipole operator

vanish because the vibrationally averaged dipole moment, which arises as

is a vector quantity whose component along the electric field is  (again taking the field to lie along the -direction). Thinking of 
 as , so  is , the integrals

because  is an even function of  (i.e. ,of ). Because the angular dependence of the perturbation (i.e., ) has no -
dependence, matrix elements of the form

also vanish. This means that if one were to form the  matrix representation of  for the  degenerate states 
belonging to a given , all of its elements would be zero. Thus the rotational energies of polar diatomic (or rigid linear polyatomic) molecules
have no first-order Stark splittings.

There will, however, be second-order Stark splittings, in which case we need to examine the terms that arise in the formula

For a zeroth-order state , only certain other zeroth-order states will have non-vanishing coupling matrix elements . These non-zero
integrals are governed by , which can be shown to be

of course, if , the term  does not occur. The limitation that  must equal  arises, as above, because the perturbation
contains no terms dependent on the variable . The limitation that  comes from a combination of three conditions

i. angular momentum coupling, which you learned about in Chapter 2, tells us that , which happens to be proportional to , can
couple to  to generate terms having , , or  for their  quantum number but only  for their  quantum number,

ii. the , , and  factors arising from the product  must match  for the integral not to vanish because 
,

iii. finally, the  terms will vanish because of the inversion symmetry (  is odd under inversion but  is even).

Using the fact that the perturbation is , these two non-zero matrix elements can be used to express the second-order energy
for the  level as

where  is Planck’s constant and  is the rotational constant for the molecule

ψ = (θ,ϕ) (R) (r|R)YJ,M χν ψe (4.1.73)

(θ,ϕ)YJ,M (R)χν ν (r|R)ψe

⟨ (θ,ϕ) (R) (r|R)|V | (θ,ϕ) (R) (r|R)⟩YJ,M χν ψe YJ,M χν ψe (4.1.74)

⟨μ⟩ = ⟨ (R) (r|R)|e −e | (R) (r|R)⟩χν ψe ∑
n

ZnRn ∑
i

ri χν ψe (4.1.75)

⟨μ⟩ cos(θ) z

cos(θ) x sin(θ)dθ dx

⟨ (θ,ϕ)| cosθ| (θ,ϕ)⟩ = ∫ (θ,ϕ) cosθ (θ,ϕ) sinθdθdϕ = ∫ (θ,ϕ)x (θ,ϕ)dxdϕ = 0YJ,M YJ,M Y ∗
J,M YJ,M Y ∗

J,M YJ,M (4.1.76)

|YJ,M |2 x cos(θ) cosθ ϕ

∫  (θ,ϕ) cosθ (θ,ϕ) sinθdθdϕ = 0Y ∗
J,M YJ,M (4.1.77)

(2J +1) ×(2J +1) V 2J +1 YJ,M

J

=E (2) ∑
J

|⟨ |V |ps ⟩ψ(0) i(0) |2

−E (0) E
(0)
J

(4.1.78)

YJ,M

⟨ | cosθ| ⟩ =  for  = J +1;  for  = J −1;YJ,M Y ,J ′ M ′

(J +1 −)2 M 2

(2J +1)(2J +3)

− −−−−−−−−−−−−−

√ δM,M ′ J ′ −J 2 M 2

(2J −1)(2J +1)

− −−−−−−−−−−−−−

√ δM,M ′ J ′ (4.1.79)

J = 0 = J −1J ′ M M ′

ϕ = J ±1J ′

cosθ (θ,ϕ)Y1,0

YJ,M J +1 J J −1 J 2 M Jz
J +1 J J −1 cosθYJ,M YJ,M ′

⟨ | ⟩ =YJ,M Y ,J ′ M ′ δJ,J ′ δM,M ′

J = J ′ cosθ |YJ,M |2

E⟨μ⟩ cos(theta)
J,M

E = ⟨μ +E
2 ⟩2

⎡

⎣

⎢⎢⎢⎢

(J +1 −)2 M 2

(2J +1)(2J +3)

−2B(J +1)

−J 2 M 2

(2J −1)(2J +1)

2BJ

⎤

⎦

⎥⎥⎥⎥
(4.1.80)

h B
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for a diatomic molecule of reduced mass  and equilibrium bond length .

Before moving on to another example, it is useful to point out some common threads that occur in many applications of perturbation theory
and that will also be common to variational calculations that we discuss later in this Chapter. Once one has identified the specific zeroth-order
state  of interest, one proceeds as follows:

i. The first-order energy  is evaluated. In doing so, one should first make use of any symmetry (point group symmetry
is treated later in this Chapter) such as inversion, angular momentum, spin, etc., to determine whether this expectation value will vanish by
symmetry, in which case, we don’t bother to consider this matrix element any more. We used this earlier when considering , 

, and  to conclude that certain first-order energies are zero.
ii. If  vanishes (so the lowest-order effect is in second order) or if we want to examine higher-order corrections, we consider evaluating 

. Before doing so explicitly, we think about whether symmetry will limit the matrix elements  entering into the
expression for . For example, in the case just studied, we saw that only other zeroth-order states having  or 
gave non-vanishing matrix elements. In addition, because  contains energy denominators ( ), we may choose to limit our
calculation to those other zeroth-order states whose energies are close to our state of interest; this assumes that such states will contribute a
dominant amount to the sum

.

You will encounter many times when reading literature articles in which perturbation theory is employed situations in which researchers have
focused attention on zeroth-order states that are close in energy to the state of interest and that have the correct symmetry to couple strongly
(i.e., have substantial ) to that state.

Electron-electron Coulomb repulsion 

In one of the most elementary pictures of atomic electronic structure, one uses nuclear charge screening concepts to partially account for
electron-electron interactions. For example, in 1s 2s  Li, one might posit a zeroth-order wave function consisting of a product

in which two electrons occupy a  orbital and one electron occupies a  orbital. To find a reasonable form for the radial parts of these two
orbitals, one could express each of them as a linear combination of (i) one orbital having hydrogenic  form with a nuclear charge of 3 and
(ii) a second orbital of  form but with a nuclear charge of 1 (to account for the screening of the  nucleus by the two inner-shell 
electrons)

where the index i labels the  and  orbitals to be determined. Next, one could determine the  and  expansion coefficients by requiring
the fi to be approximate eigenfunctions of the Hamiltonian

that would be appropriate for an electron attracted to the Li nucleus but not experiencing any repulsions with other electrons. This would result
in the following equation for the expansion coefficients:

This 2x2 matrix eigenvalue problem can be solved for the  and  coefficients and for the energies  of the  and  orbitals. The lower-
energy solution will have , and will be this model’s description of the  orbital. The higher-energy solution will have 
and is the approximation to the  orbital.

Using these  and  orbitals and the 3-electron wave function they form

as a zeroth-order approximation, how do we then proceed to apply perturbation theory? The full three-electron Hamiltonian

B =
h

8 μπ2 r2
e

(4.1.81)

μ re

ψ(0)

= ⟨ |V | ⟩E (1) ψ(0) ψ(0)

⟨2s| cosθ|2s⟩
⟨2 | cosθ|2 ⟩pσ pσ ⟨ | cosθ| ⟩YJ,M YJ,M

E (1)

E (2) ⟨ |V n⟩ψ(0) ψ(0)

E (2) = J +1J ′ J‘= J −1

E (2) −E (0) E
(0)
n

⟨ |V ⟩ψ(0) ψ
(0)
n

2 1

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.82)

1s 2s
1s

2s Z = 3 1s

(r) = (r) + (r)ϕi Ciχ1s,Z=1 Diχ2s,Z=3 (4.1.83)

1s 2s Ci Di

h = −
1

2
∇2 3

r
(4.1.84)

( )( )
⟨ (r)| − − | (r)⟩χ1s,Z=1

1
2

∇2 3
r
χ1s,Z=1

⟨ (r)| − − | (r)⟩χ1s,Z=1
1
2

∇2 3
r χ2s,Z=3

⟨ (r)| − − | (r)⟩χ1s,Z=1
1
2

∇2 3
r
χ2s,Z=3

⟨ (r)| − − | (r)⟩χ2s,Z=3
1
2

∇2 3
r χ2s,Z=3

C

D

=( )( ) .
⟨ (r)| (r)⟩χ1s,Z=1 χ1s,Z=1

⟨ (r)| (r)⟩χ1s,Z=1 χ2s,Z=3

⟨ (r)| (r)⟩χ1s,Z=1 χ2s,Z=3

⟨ (r)| (r)⟩ χ2s,Z=3 χ2s,Z=3

C

D

(4.1.85)

Ci Di Ei 1s 2s
|C| > |D| 1s |D| > |C|

2s

1s 2s

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.86)

H = [ − ]+∑
i=1

3 1

2
∇2

i

3

ri
∑
i<j=1

3 1

ri,j
(4.1.87)
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can be decomposed into a zeroth-order part

and a perturbation

The zeroth-order energy of the wave function

is

where each of the  are the energies obtained by solving the 2x2 matrix eigenvalue equation shown earlier. The first-order energy of this
state can be written as

with the Coulomb interaction integrals being defined as

To carry out the 3-electron integral appearing in , one proceeds as follows. For the integral

one integrates over the 3 spin variables using ,  and ) and then integrates over the coordinate of the third electron
using  to obtain

which is . The two  integrals arise when carrying out similar integration for the terms arising from (  ) and ( ).

So, through first order, the energy of the Li atom at this level of treatment is given by

The factor  contains the contributions from the kinetic energy and electron-nuclear Coulomb potential. The  terms
describe the Coulombic repulsions among the three electrons. Each of the Coulomb integrals  can be interpreted as being equal to the
Coulombic interaction between electrons (one at location ; the other at ) averaged over the positions of these two electrons with their spatial
probability distributions being given by  and , respectively.

Although the example just considered is rather primitive, it introduces a point of view that characterizes one of the most commonly employed
models for treating atomic and molecular electronic structure- the Hartree-Fock (HF) mean-field model, which we will discuss more in
Chapter 6. In the HF model, one uses as a zeroth-order Hamiltonian

consisting of a sum of one-electron terms containing the kinetic energy, the Coulomb attraction to the nucleus (I use the Li atom as an example
here), and a potential . This potential, which is written in terms of Coulomb integrals similar to those we discussed earlier as well as
so-called exchange integrals that we will discuss in Chapter 6, is designed to approximate the interaction of an electron at location  with the
other electrons in the atom or molecule. Because  is one-electron additive, its eigenfunctions consist of products of eigenfunctions of the
operator

= [ − ]H (0) ∑
i=1

3
1

2
∇2

i

3

ri
(4.1.88)

V = ∑
i<j=1

3 1

ri,j
(4.1.89)

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.90)

= 2 +E (0) E1s E2s (4.1.91)

Ens

= ⟨ ( )α(1) ( )β(2) ( )α(3)|V | ( )α(1) ( )β(2) ( )α(3)⟩ +2E (1) ϕ1s r1 ϕ1s r2 ϕ2s r3 ϕ1s r1 ϕ1s r2 ϕ2s r3 J1s,1s J1s,2s (4.1.92)

= ∫ (r) (r) (r) (r)drdJa,b ϕ∗
a ϕa

1

|r− |r′
ϕ∗
b

ϕb r′ (4.1.93)

E (1)

∫ [ ( )α(1) ( )β(2) ( )α(3) ( )α(1) ( )β(2) ( )α(3)d d dϕ1s r1 ϕ1s r2 ϕ2s r3 ]∗
1

r1,2
ϕ1s r1 ϕ1s r2 ϕ2s r3 r1 r2 r3 (4.1.94)

⟨a|a⟩ = 1 ⟨a|b⟩ = 0 ⟨b|b⟩ = 1
⟨ |  ⟩ = 1ϕ2s ϕ2s

∫ [ ( ) ( )  ( ) ( ) d d dϕ1s r1 ϕ1s r2 ]∗
1

r1,2
ϕ1s r1 ϕ1s r2 r1 r2 r3 (4.1.95)

J1s,1s J1s,2s 1/r1,3 1/r2,3

+ = 2 + + +2 .E (0) E (1) E1s E2s J1s,1s J1s,2s (4.1.96)

2 +E1s E2s +2J1s,1s J1s,2s

Ji,j
r r

′

| (r)ϕi |2 | ( )ϕj r′ |2

= [ − + ( )]H (0) ∑
i=1

3 1

2
∇2

i

3

ri
VHF ri (4.1.97)

( )VHF ri

ri

H (0)

= − + (r)h(0) 1

2
∇2 3

r
VHF (4.1.98)
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 offers an approximation to the true  Coulomb interactions expressed in terms of a “smeared-out” electron distribution
interacting with the electron at ri. Perturbation theory is then used to treat the effect of the perturbation

on the zeroth-order states. We say that the perturbation, often called the fluctuation potential, corrects for the difference between the
instantaneous Coulomb interactions among the  electrons and the mean-field (average) interactions.
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4.2: The Variational Method
Let us now turn to the other method that is used to solve Schrödinger equations approximately, the variational method. In this
approach, one must again have some reasonable wavefunction  that is used to approximate the true wavefunction. Within this
approximate wavefunction, one embeds one or more variables { } that one subsequently varies to achieve a minimum in the
energy of  computed as an expectation value of the true Hamiltonian :

The optimal values of the  parameters are determined by making

To achieve the desired energy minimum. We also should verify that the second derivative matrix

has all positive eigenvalues, otherwise one may not have found the minimum.

The theoretical basis underlying the variational method can be understood through the following derivation. Suppose that someone
knew the exact eigenstates (i.e., true  and true ) of the true Hamiltonian . These states obey

Because these true states form a complete set (it can be shown that the eigenfunctions of all the Hamiltonian operators we ever
encounter have this property), our so-called “trial wavefunction”  can, in principle, be expanded in terms of these :

Before proceeding further, allow me to overcome one likely misconception. What I am going through now is only a derivation of
the working formula of the variational method. The final formula will not require us to ever know the exact  or the exact ,
but we are allowed to use them as tools in our derivation because we know they exist even if we never know them.

With the above expansion of our trial function in terms of the exact eigenfunctions, let us now substitute this into the quantity

that the variational method instructs us to compute:

Using the fact that the  obey  and that the  are orthonormal

the above expression reduces to

ψ(0)

αJ

ψ(0) H

E( ) =αJ

⟨ |H| ⟩ψ(0) ψ(0)

⟨ | ⟩ψ(0) ψ(0)

αJ

= 0
dE

dαJ

E∂2

∂ ∂αJ αL

ψK EK H

H = .ψK EKψK

ψ(0) ψK

= .ψ(0) ∑
K

cKψK

ψK EK

⟨ |H| ⟩ψ(0) ψ(0)

⟨ | ⟩ψ(0) ψ(0)

E = =
⟨ |H| ⟩ψ(0) ψ(0)

⟨ | ⟩ψ(0) ψ(0)

⟨ |H| ⟩∑
K

cKψK ∑
L

cLψL

⟨ | ⟩∑
K

cKψK ∑
L

cLψL

ψK H =ψK EKψK ψK

⟨ | ⟩ =ψK ψL δK.L

E = = .

⟨ |H| ⟩∑
K

cKψK cKψK

⟨ | ⟩∑
K

cKψK cKψK

|∑
K

cK |2EK

|∑
K

cK |
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11581?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/04%3A__Some_Important_Tools_of_Theory/4.02%3A_The_Variational_Method


4.2.2 https://chem.libretexts.org/@go/page/11581

One of the basic properties of the kind of Hamiltonian we encounter is that they have a lowest-energy state. Sometimes we say they
are bounded from below, which means their energy states do not continue all the way to minus infinity. There are systems for
which this is not the case (we saw one earlier when studying the Stark effect), but we will now assume that we are not dealing with
such systems. This allows us to introduce the inequality  which says that all of the energies are higher than or equal to the
energy of the lowest state which we denote . Introducing this inequality into the above expression gives

This means that the variational energy, computed as

will lie above the true ground-state energy no matter what trial function  we use.

The significance of the above result that  is as follows. We are allowed to imbed into our trial wavefunction 
parameters that we can vary to make , computed as Equation  as low as possible because we know that we can never it
lower than the true ground-state energy. The philosophy then is to vary the parameters in  to render  as low as possible,
because the closer  is to  the “better” is our variational wavefunction. Let me now demonstrate how the variational method is
used in such a manner by solving an example problem.

Suppose you are given a trial wavefunction of the form:

to represent a two-electron ion of nuclear charge  and suppose that you are lucky enough that I have already evaluated the
variational energy expression (Equation , which I’ll call , for you and found

Now, let’s find the optimum value of the variational parameter  for an arbitrary nuclear charge  by setting . After
finding the optimal value of , we’ll then find the optimal energy by plugging this  into the above  expression.

Note that 0.3125 represents the shielding factor of one 1s electron to the other, reducing the optimal effective nuclear charge by
this amount (those familiar with Slater's Rules will not be surprised by this number). Now, using this optimal  in our energy
expression gives

≥EK E0

E0
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cK |2E0

|∑
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cK |2
E0
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Since  is the Bohr radius 0.529 Å,  = 27.21 eV, or one atomic unit of energy. Is this energy any good? The total
energies of some two-electron atoms and ions have been experimentally determined to be as shown in Table  below.
Using our optimized expression for , let’s now calculate the estimated total energies of each of these atoms and ions as well
as the percent error in our estimate for each ion.

Table : Comparison of Experimental (true) total energies with predicted for select two-electron species.

Z Atom Experimental Calculated % Error

1 H -14.35 eV -12.86 eV 10.38%

2 He -78.98 eV -77.46 eV 1.92%

3 Li -198.02 eV -196.46 eV 0.79%

4 Be -371.5 eV -369.86 eV 0.44%

5 B -599.3 eV -597.66 eV 0.27%

6 C -881.6 eV -879.86 eV 0.19%

7 N -1218.3 eV -1216.48 eV 0.15%

8 O -1609.5 eV -1607.46 eV 0.13%

The energy errors are essentially constant over the range of , but produce a larger percentage error at small Z.

Aside: In 1928, when quantum mechanics was quite young, it was not known whether the isolated, gas-phase hydride ion, ,
was stable with respect to loss of an electron to form a hydrogen atom. Let’s compare our estimated total energy for  to the
ground state energy of a hydrogen atom and an isolated electron (which is known to be -13.60 eV). When we use our expression
for W and take , we obtain  eV, which is greater than -13.6 eV ( ), so this simple variational calculation
erroneously predicts  to be unstable. More complicated variational treatments give a ground state energy of  of -14.35 eV,
in agreement with experiment and agreeing that  is indeed stable with respect to electron detachment.
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4.3: Linear Variational Method
A widely used example of Variational Methods is provided by the so-called linear variational method. Here one expresses the
trial wave function a linear combination of so-called basis functions { }.

Substituting this expansion into  and then making this quantity stationary with respect to variations in the  subject to the
constraint that  remains normalized

gives

This is a generalized matrix eigenvalue problem that we can write in matrix notation as

It is called a generalized eigenvalue problem because of the appearance of the overlap matrix  on its right hand side. This set of
equations for the  coefficients can be made into a conventional eigenvalue problem as follows:

1. The eigenvectors  and eigenvalues  of the overlap matrix are found by solving

All of the eigenvalues  are positive because  is a positive-definite matrix.
2. Next one forms the matrix  whose elements are

(another matrix  can be formed in a similar way replacing  with ).

3. One then multiplies the generalized eigenvalue equation on the left by  to obtain

4. This equation is then rewritten, using   =   and   as

This is a conventional eigenvalue problem in which the matrix is  and the eigenvectors are .

The net result is that one can form  and then find its eigenvalues and eigenvectors. Its eigenvalues will be the same as
those of the original generalized eigenvalue problem. Its eigenvectors  can be used to determine the eigenvectors  of the
original problem by multiplying by 

Although the derivation of the matrix eigenvalue equations resulting from the linear variational method was carried out as a means
of minimizing , it turns out that the solutions offer more than just an upper bound to the lowest true energy of the
Hamiltonian. It can be shown that the nth eigenvalue of the matrix  is an upper bound to the true energy of the nth
state of the Hamiltonian. A consequence of this is that, between any two eigenvalues of the matrix  there is at least
one true energy of the Hamiltonian. This observation is often called the bracketing condition. The ability of linear variational
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methods to provide estimates to the ground- and excited-state energies from a single calculation is one of the main strengths of this
approach.
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4.4: Point Group Symmetry
It is assumed that the reader has previously learned how symmetry arises in molecular shapes and structures and what symmetry
elements are (e.g., planes, axes of rotation, centers of inversion, etc.). We review and teach here only that material that is of direct
application to symmetry analysis of molecular orbitals and vibrations and rotations of molecules. We use a specific example, the
ammonia molecule, to introduce and illustrate the important aspects of point group symmetry because this example contains most
of the complexities that arise in any application of group theory to molecular problems.

The ammonia molecule  belongs, in its ground-state equilibrium geometry, to the  point group. Its symmetry
operations consist of two  rotations, ,  (rotations by 120° and 240°, respectively about an axis passing through the
nitrogen atom and lying perpendicular to the plane formed by the three hydrogen atoms), three vertical reflection operations, 

, , , and the identity operation. Corresponding to these six operations are symmetry elements: the three-fold rotation
axis,  and the three symmetry planes ,  and  that contain the three  bonds and the -axis (see Figure 4.3).

Figure 4.3 Ammonia Molecule and its Symmetry Elements

These six symmetry operations form a mathematical group. A group is defined as a set of objects satisfying four properties.

1. A combination rule is defined through which two group elements are combined to give a result that we call the product.
The product of two elements in the group must also be a member of the group (i.e., the group is closed under the
combination rule).

2. One special member of the group, when combined with any other member of the group, must leave the group member
unchanged (i.e., the group contains an identity element).

3. Every group member must have a reciprocal in the group. When any group member is combined with its reciprocal, the
product is the identity element.

4. The associative law must hold when combining three group members (i.e., (AB)C must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination rule is successive operation. The identity element
is the operation of doing nothing at all. The group properties can be demonstrated by forming a multiplication table. Let us
label the rows of the table by the first operation and the columns by the second operation. Note that this order is important
because most groups are not commutative. The  group multiplication table is as follows:

Note the reflection plane labels do not move. That is, although we start with  in the  plane,  in , and  in , if 
 moves due to the first symmetry operation,  remains fixed and a different H atom lies in the  plane.

Example : The  Symmetry Group of Ammonia4.4.1 C3v

NH3 C3v

C3 C3 C 2
3

σv σv′ σv"

C3 σv σv′ σv" NH z

C3v

C3

C 2
3

σv

σv′

σv′′

First

Operation

E

C3

C 2
3

σv

σv′

σv′′

C3

C 2
3

E

σv′′

σv

σv′

C 2
3

E

C3

σv′

σv′′

σv

σv

σv′

σv′′

E

C3

C 2
3

σv′

σv′′

σv

C 2
3

E

C3

σv"

σv

σv′

C3

C 2
3

E

Second Operation

(4.4.1)

H1 σv H2 σv′ H3 σv"

H1 σv σv
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Matrices as Group Representations 

In using symmetry to help simplify molecular orbital (mo) or vibration/rotation energy-level identifications, the following strategy
is followed:

1. A set of  objects belonging to the constituent atoms (or molecular fragments, in a more general case) is introduced. These
objects are the orbitals of the individual atoms (or of the fragments) in the mo case; they are unit vectors along the Cartesian , 

, and  directions located on each of the atoms, and representing displacements along each of these directions, in the
vibration/rotation case.

2. Symmetry tools are used to combine these  objects into  new objects each of which belongs to a specific symmetry of the
point group. Because the Hamiltonian (electronic in the mo case and vibration/rotation in the latter case) commutes with the
symmetry operations of the point group, the matrix representation of H within the symmetry-adapted basis will be "block
diagonal". That is, objects of different symmetry will not interact; only interactions among those of the same symmetry need be
considered.

To illustrate such symmetry adaptation, consider symmetry adapting the  orbital of  and the three  orbitals of the three H
atoms. We begin by determining how these orbitals transform under the symmetry operations of the  point group. The act of
each of the six symmetry operations on the four atomic orbitals can be denoted as follows:

Here we are using the active view that a  rotation rotates the molecule by 120°. The equivalent passive view is that the  basis
functions are rotated -120°. In the  rotation,  ends up where  began, , ends up where  began and  ends up where 
began.

These transformations can be thought of in terms of a matrix multiplying a vector with elements . For example, if 
 is the representation matrix giving the  transformation, then the above action of  on the four basis orbitals can be

expressed as:

We can likewise write matrix representations for each of the symmetry operations of the  point group:

 
 

M

x

y z

M M

2s N 1s
C3v

( , , , ) ( , , , )SN S1 S2 S3 →
E

SN S1 S2 S3

( , , , )→
C3

SN S3 S1 S2

( , , , )→
C 2

3

SN S2 S3 S1

( , , , )→
σv

SN S1 S3 S2

( , , , )→
σv′′

SN S3 S2 S1

( , , , )→
σv′

SN S2 S1 S3

(4.4.2)

C3 1s
C3 S3 S1 S1 S2 S2 S3

( , , , )SN S1 S2 S3

( )D(4) C3 C3 C3

( ) =  =D(4) C3

⎛

⎝

⎜
⎜⎜

SN

S1

S2

S3

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

1

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

SN

S1

S2

S3

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

SN

S3

S1

S2

⎞

⎠

⎟
⎟⎟

(4.4.3)

C3v

( ) = (E) =D(4) C 2
3

⎛

⎝

⎜
⎜⎜

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

⎞

⎠

⎟
⎟⎟

D(4)

⎛

⎝

⎜
⎜⎜

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

⎞

⎠

⎟
⎟⎟

(4.4.4)

( ) = ( ) =D(4) σv

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

⎞

⎠

⎟⎟
⎟

D(4) σv′

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

⎞

⎠

⎟⎟
⎟

(4.4.5)
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It is easy to verify that a  rotation followed by a  reflection is equivalent to a  reflection alone. In other words

Note that this same relationship is carried by the matrices:

Likewise we can verify that  directly and we can notice that the matrices also show the same identity:

In fact, one finds that the six matrices, , when multiplied together in all 36 possible ways, obey the same multiplication
table as did the six symmetry operations. We say the matrices form a representation of the group because the matrices have all the
properties of the group.

Characters of Representations 
One important property of a matrix is the sum of its diagonal elements which is called the trace of the matrix  and is denoted 

:

So,  is called the trace or character of the matrix. In the above example

The importance of the characters of the symmetry operations lies in the fact that they do not depend on the specific basis used to
form the matrix. That is, they are invariant to a unitary or orthogonal transformation of the objects used to define the matrices. As a
result, they contain information about the symmetry operation itself and about the space spanned by the set of objects. The
significance of this observation for our symmetry adaptation process will become clear later.

Note that the characters of both rotations are the same as are the characters of all three reflections. Collections of operations having
identical characters are called classes. Each operation in a class of operations has the same character as other members of the class.
The character of a class depends on the space spanned by the basis of functions on which the symmetry operations act.

Another Basis and Another Representation 

Above we used  as a basis. If, alternatively, we use the one-dimensional basis consisting of the  orbital on the N-
atom, we obtain different characters, as we now demonstrate.

The act of the six symmetry operations on this  can be represented as follows:

( ) =D(4) σv"

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

⎞

⎠

⎟⎟
⎟

(4.4.6)

C3 σv σv′

= , or      σvC3 σv′

S2

S1

S3

→
C3

S1

S3

S2

→
σv

S2

S3

S1

(4.4.7)

( ) ( ) = = = ( )D(4) σv D(4) C3

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

⎞

⎠

⎟⎟
⎟

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

⎞

⎠

⎟⎟
⎟

⎛

⎝

⎜⎜
⎜

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

⎞

⎠

⎟⎟
⎟

D(4) σv′ (4.4.8)

( ) =C3 σv σv"

( ) ( ) = = = ( ).D(4) C3 D(4) σv

⎛

⎝

⎜⎜⎜

1

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1 

⎞

⎠

⎟⎟⎟
D(4) σv" (4.4.9)

(R)D(4)

D

Tr(D)

Tr(D) = = χ.∑
i

Dii (4.4.10)

χ

χ(E) = 4 (4.4.11)

χ( ) = χ( ) = 1C3 C 2
3 (4.4.12)

χ( ) = χ( ) = χ( ) = 2.σv σv′ σv" (4.4.13)

( , , , )SN S1 S2 S3 1s

SN
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We can represent this group of operations in this basis by the one-dimensional set of matrices:

Again we have

These six 1x1 matrices form another representation of the group. In this basis, each character is equal to unity. The representation
formed by allowing the six symmetry operations to act on the  N-atom orbital is clearly not the same as that formed when the
same six operations acted on the  basis. We now need to learn how to further analyze the information content of a
specific representation of the group formed when the symmetry operations act on any specific set of objects.

Reducible and Irreducible Representations 

Reducible Representations 

Note that every matrix in the four dimensional group representation labeled  has the so-called block diagonal form

This means that these  matrices are really a combination of two separate group representations (mathematically, it is called a
direct sum representation). We say that  is reducible into a one-dimensional representation  and a three-dimensional
representation formed by the 3x3 submatrices that we will call .

The characters of  are . Note that we would have obtained this  representation
directly if we had originally chosen to examine the basis  alone; also note that these characters are equal to those of 

 minus those of .

Change in Basis 

Now let us convert to a new basis that is a linear combination of the original  basis:

(Don't worry about how I constructed , , and  yet. As will be demonstrated later, we form them by using symmetry
projection operators defined below). We determine how the  basis functions behave under the group operations by allowing
the operations to act on the  and interpreting the results in terms of the . In particular,

;SN →
E
SN SN →

C3
SN SN →

C
2
3
SN (4.4.14)

.SN →
σv

SN SN →
σv′′

SN SN →
σv′

SN (4.4.15)

(E) = 1; ( ) = 1; ( ) = 1,D(1) D(1) C3 D(1) C 2
3 (4.4.16)

( ) = 1; ( ) = 1; ( ) = 1.D(1) σv D(1) σv" D(1) σv′ (4.4.17)

( ) ( ) = 1 ⊕1 = ( ),  andD(1) σv D(1) C3 D(1) σv" (4.4.18)

( )( ( ) = 1 ⊕1 = ( ).D(1) C3 D(1) σv D(1) σv′ (4.4.19)

1s
( , , , )SN S1 S2 S3

D(4)

1

0

0

0

0

A

D

G

0

B

E

H

0

C

F

I

(4.4.20)

D(4)

D(4) D(1)

D(3)

(E) = ( ) = ( ) =D(3)
⎛

⎝
⎜

1

0

0

0

1

0

0

0

1

⎞

⎠
⎟ D(3) C3

⎛

⎝
⎜

0

1

0

0

0

1

1

0

0

⎞

⎠
⎟ D(3) C 2

3

⎛

⎝
⎜

0

0

1

1

0

0

0

1

0

⎞

⎠
⎟ (4.4.21)

( ) = ( ) = ( ) =D(3) σv
⎛

⎝
⎜

1

0

0

0

0

1

0

1

0

⎞

⎠
⎟ D(3) σv′

⎛

⎝
⎜

0

0

1

0

1

0

1

0

0

⎞

⎠
⎟ D(3) σv"

⎛

⎝
⎜

0

1

0

1

0

0

0

0

1

⎞

⎠
⎟ (4.4.22)

D(3) χ(E) = 3,χ(2 ) = 0,χ(3 ) = 1C3 σv D(3)

( , , )S1 S2 S3

D(4) D(1)

, ,S1 S2 S3

= + +T1 S1 S2 S3 (4.4.23)

= 2 − −T2 S1 S2 S3 (4.4.24)

= −T3 S2 S3 (4.4.25)

T1 T2 T3

" T "
Sj Ti
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So the matrix representations in the new  basis are:

Reduction of the Reducible Representation 

These six matrices can be verified to multiply just as the symmetry operations do; thus they form another three-dimensional
representation of the group. We see that in the  basis the matrices are block diagonal. This means that the space spanned by the 

 functions, which is the same space as the  span, forms a reducible representation that can be decomposed into a one
dimensional space and a two dimensional space (via formation of the  functions). Note that the characters (traces) of the matrices
are not changed by the change in bases.

The one-dimensional part of the above reducible three-dimensional representation is seen to be the same as the totally symmetric
representation we arrived at before, . The two-dimensional representation that is left can be shown to be irreducible; it has the
following matrix representations:

The characters can be obtained by summing diagonal elements:

Rotations as a Basis 

Another one-dimensional representation of the group can be obtained by taking rotation about the Z-axis (the  axis) as the object
on which the symmetry operations act:

( , , ) ( , , − ) ( , , ) ( , , );T1 T2 T3 →
σv

T1 T2 T3 T1 T2 T3 →
E

T1 T2 T3 (4.4.26)

( , , ) ( + + , 2 − − , − ) = ( , − – , − + );T1 T2 T3 →
σv′

S3 S2 S1 S3 S2 S1 S2 S1 T1
1

2
T2

3

2
T3

1

2
T2

1

2
T3 (4.4.27)

( , , ) ( + + , 2 − − , − ) = ( , − + , + );T1 T2 T3 →
σv′′

S2 S1 S3 S2 S1 S3 S1 S3 T1
1

2
T2

3

2
T3

1

2
T2

1

2
T3 (4.4.28)

( , , ) ( + + , 2 − − , − ) = ( , − – , – );T1 T2 T3 →
C3

S3 S1 S2 S3 S1 S2 S1 S2 T1
1

2
T2

3

2
T3

1

2
T2

1

2
T3 (4.4.29)

( , , ) ( + + , 2 − − , − ) = ( , − + , − – ).T1 T2 T3 →
C 2

3

S2 S3 S1 S2 S3 S1 S3 S1 T1
1

2
T2

3

2
T3

1

2
T2

1

2
T3 (4.4.30)

Ti

(E) = ( ) = ;D(3)
⎛

⎝
⎜

1

0

0

0

1

0

0

0

1

⎞

⎠
⎟ D(3) C3

⎛

⎝

⎜⎜

1

0

0

0

− 1
2

1
2

0

− 3
2

− 1
2

⎞

⎠

⎟⎟ (4.4.31)

( ) = ( ) = ;D(3) C 2
3

⎛

⎝

⎜⎜

1

0

0

0

− 1
2

− 1
2

0
3
2

− 1
2

⎞

⎠

⎟⎟ D(3) σv
⎛

⎝
⎜

1

0

0

0

1

0

0

0

−1

⎞

⎠
⎟ (4.4.32)

( ) = ( ) =D(3) σv′

⎛

⎝

⎜⎜

1

0

0

0

− 1
2

− 1
2

0

− 3
2

1
2

⎞

⎠

⎟⎟ D(3) σv"

⎛

⎝

⎜⎜

1

0

0

0

− 1
2

1
2

0
3
2
1
2

⎞

⎠

⎟⎟ (4.4.33)

Ti
Ti Sj

Ti

D(1)

(E) =( ) ( ) =( ) ( ) =( )D(2) 1

0

0

1
D(2) C3

− 1
2

1
2

− 3
2

− 1
2

D(2) C 2
3

− 1
2

− 1
2

3
2

− 1
2

(4.4.34)

( ) =( )  ( ) =( ) ( ) =( )D(2) σv
1

0

0

−1
D(2) σv′

− 1
2

− 1
2

− 3
2

1
2

D(2) σ′
v′

− 1
2

− 1
2

− 3
2

1
2

(4.4.35)

χ(E) = 2,χ(2 ) = −1,χ(3 ) = 0.C3 σv (4.4.36)

C3

;Rz →
E
Rz Rz →

C3
Rz Rz →

C 2
3
Rz (4.4.37)

− −  − .Rz →
σv

Rz Rz →
σv′′

Rz Rz →
σv′

Rz (4.4.38)
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In writing these relations, we use the fact that reflection reverses the sense of a rotation. The matrix representations corresponding
to this one-dimensional basis are:

These one-dimensional matrices can be shown to multiply together just like the symmetry operations of the  group. They form
an irreducible representation of the group (because it is one-dimensional, it cannot be further reduced). Note that this one-
dimensional representation is not identical to that found above for the  N-atom orbital, or the  function.

We have found three distinct irreducible representations for the  symmetry group; two different one-dimensional and one
two dimensional representations. Are there any more? An important theorem of group theory shows that the number of
irreducible representations of a group is equal to the number of classes. Since there are three classes of operation (i.e., E, 
and ), we have found all the irreducible representations of the  point group. There are no more.

The irreducible representations have standard names; the first  (that arising from the  and  orbitals) is called , the
 arising from  is called  and  is called  (not to be confused with the identity operation E). We will see shortly

where to find and identify these names.

Thus, our original  representation was a combination of two  representations and one  representation. We say that 
 is a direct sum representation: . A consequence is that the characters of the combination representation 
 can be obtained by adding the characters of its constituent irreducible representations.

Decompose Reducible Representations in General 

Suppose you were given only the characters (4,1,2). How can you find out how many times , , and  appear when you
reduce  to its irreducible parts? You want to find a linear combination of the characters of ,  and  that add up (4,1,2).
You can treat the characters of matrices as vectors and take the dot product of  with 

The vector  is not normalized; hence to obtain the component of  along a unit vector in the 
 direction, one must divide by the norm of ; this norm is 6. The result is that the reducible

representation contains  components. Analogous projections in the  and  directions give components of 1 and 0,
respectively. In general, to determine the number  of times irreducible representation  appears in the reducible representation
with characters , one calculates

where  is the order of the group (i.e.. the number of operations in the group; six in our example) and  are the characters of
the  irreducible representation.

(E) = 1 ( ) = 1 ( ) = 1;D(1) D(1) C3 D(1) C 2
3 (4.4.39)

( ) = −1 ( ) = −1 ( ) = −1.D(1) σv D(1) σv" D(1) σv′ (4.4.40)

C3v

1s T1

Overview

C3v

C3

σv C3v

D(1) T1 1sN A1

D(1) Rz A2 D(2) E

D(4) A1 E

D(4) = 2 ⊕ED(4) A1

D(4)

A1

 A1

E

 2 ⊕EA1

E 

1

1

2

4

2C3

1

1

−1

1

3σv
1

1

0

2

(4.4.41)

A1 E A2

D(4) A1 A2 E

A1 D(4)

( ) = 4 +1 +1 +2 +2 +2 = 12.
 1

E

1

C3

1

C 2
3

1

σv

1

σv′

1

σv′′

⎛

⎝

⎜
⎜⎜
⎜⎜
⎜
⎜⎜

4

1

1

2

2

2

E

C3

C 2
3

σv

σv′

σv′′

⎞

⎠

⎟
⎟⎟
⎟⎟
⎟
⎟⎟

(4.4.42)

(1, 1, 1, 1, 1, 1) (4, 1, 1, 2, 2, 2)
(1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

12/6 = 2A1 E A2

nΓ Γ
χred

nΓ = (R) (R),
1

g
∑
R

χΓ χred (4.4.43)

g (R)χΓ

Γth
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Commonly Used Bases 

We could take any set of functions as a basis for a group representation. Commonly used sets include: Cartesian displacement
coordinates  located on the atoms of a polyatomic molecule (their symmetry treatment is equivalent to that involved in
treating a set of p orbitals on the same atoms), quadratic functions such as d orbitals  as well as rotations
about the ,  and  axes. The transformation properties of these very commonly used bases are listed in the character tables shown
in Section 4.4.

Summary 

The basic idea of symmetry analysis is that any basis of orbitals, displacements, rotations, etc. transforms either as one of the
irreducible representations or as a direct sum (reducible) representation. Symmetry tools are used to first determine how the basis
transforms under action of the symmetry operations. They are then used to decompose the resultant representations into their
irreducible components.

More Examples 

The 2p Orbitals of Nitrogen 

For a function to transform according to a specific irreducible representation means that the function, when operated upon by a
point-group symmetry operator, yields a linear combination of the functions that transform according to that irreducible
representation. For example, a  orbital (  is the  axis of ) on the nitrogen atom belongs to the  representation
because it yields unity times itself when , , , ,  or the identity operation act on it. The factor of 1 means that  has 

 symmetry since the characters (the numbers listed opposite  and below  and  in the  character table shown in
Section 4.4) of all six symmetry operations are 1 for the  irreducible representation.

The  and  orbitals on the nitrogen atom transform as the  representation since , , , ,  and the identity
operation map  and  among one another. Specifically,

The 2x2 matrices, which indicate how each symmetry operation maps  and  into some combinations of  and , are the
representation matrices ( ) for that particular operation and for this particular irreducible representation (IR). For example,

This set of matrices have the same characters as the  matrices obtained earlier when the  displacement vectors were
analyzed, but the individual matrix elements are different because we used a different basis set (here  and  ; above it was 
and ). This illustrates the invariance of the trace to the specific representation; the trace only depends on the space spanned, not
on the specific manner in which it is spanned.

(x, y, z)
−xy, yz, xz, − , ,x2 y2 z2

x y z

2pz z C3 NH3 A1

C3 C 2
3 σv σv′ σv" 2pz

A1 A1 E, 2 ,C3 3σv C3v

A1

2px 2py E C3 C 2
3 σv σv′ σv"

2px 2py

( ) =( )( )C3
2px
2py

cos 120∘

sin120∘

−sin120∘

cos 120∘

2px
2py

(4.4.44)

( ) =( )( )C 2
3

2px
2py

cos 240∘

sin240∘

−sin240∘

cos 240∘

2px
2py

(4.4.45)

E( ) =( )( )
2px
2py

1

0

0

1

2px
2py

(4.4.46)

( ) =( )( )σv
2px
2py

−1

0

0

1

2px
2py

(4.4.47)

( ) = ( )σv′
2px
2py

⎛

⎝

1
2

3√

2

3√
2

− 1
2

⎞

⎠

2px
2py

(4.4.48)

( ) = ( ) .σv"
2px
2py

⎛

⎝

1
2

−
3√

2

−
3√

2

− 1
2

⎞

⎠

2px
2py

(4.4.49)

2px 2py 2px 2py
D(IR)

 = ( )
⎛

⎝

1
2

3√
2

3√

2

− 1
2

⎞

⎠
D(E) σv′ (4.4.50)

D(2) Ti
2px 2py T2

T3
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Short-Cut 

A short-cut device exists for evaluating the trace of such representation matrices (that is, for computing the characters). The
diagonal elements of the representation matrices are the projections along each orbital of the effect of the symmetry operation
acting on that orbital. For example, a diagonal element of the  matrix is the component of  along the  direction. More
rigorously, it

is . Thus, the character of the  matrix is the sum of  and . In general, the character 
 of any symmetry operation  can be computed by allowing  to operate on each orbital , then projecting  along  (i.e.,

forming , and summing these terms,

If these rules are applied to the  and  orbitals of nitrogen within the  point group, one obtains

This set of characters is the same as  above and agrees with those of the  representation for the  point group. Hence, 
and  belong to or transform as the  representation. This is why  is to the right of the row of characters for the 
representation in the  character table shown in Section 4.4. In similar fashion, the  character table (please refer to this table
now) states that  and  orbitals on nitrogen transform as E, as do  and , but  transforms as .

Earlier, we considered in some detail how the three  orbitals on the hydrogen atoms transform. Repeating this analysis using
the short-cut rule just described, the traces (characters) of the 3 x 3 representation matrices are computed by allowing  and 

 to operate on , , and  and then computing the component of the resulting function along the original function.
The resulting characters are  and , in agreement with what we
calculated before.

Using the orthogonality of characters taken as vectors we can reduce the above set of characters to . Hence, we say that our
orbital set of three  orbitals forms a reducible representation consisting of the sum of  and  IR's. This means that the three 

 orbitals can be combined to yield one orbital of  symmetry and a pair that transform according to the  representation.

Projector Operators: Symmetry Adapted Linear Combinations of Atomic Orbitals 
To generate the above  and  symmetry-adapted orbitals, we make use of so-called symmetry projection operators  and .
These operators are given in terms of linear combinations of products of characters times elementary symmetry operations as
follows:

where  ranges over , , ,  and  and the identity operation. The result of applying  to say  is

which is an (unnormalized) orbital having  symmetry. Clearly, this same  orbital would be generated by  acting on 
or . Hence, only one  orbital exists. Likewise,

which is one of the symmetry adapted orbitals having  symmetry. The other  orbital can be obtained by allowing  to act on 
 or :

C3 2C3 py 2py

∫ 2 2 dτp∗
yC3 py C3 ∫ 2 2 dτp∗

yC3 py ∫ 2 2 dτp∗
xC3 px

χ S S ϕi Sϕi ϕi

∫ S dτϕ∗
i ϕi

∫ S dτ = χ(S).∑
i

ϕ∗
i ϕi (4.4.51)

2px 2py C3v

χ(E) = 2,χ( ) = χ( ) = −1,χ( ) = χ( ) = χ( ) = 0.C3 C 2
3 σv σv" σv′ (4.4.52)

D(2) E C3v 2px
2py E (x, y) E

C3v C3v

d −x2 y2 dxy dxy dyz dz2 A1

1sH
E, 2 ,C3

3σv 1sH1
1sH2

1sH3

χ(E) = 3,χ( ) = χ( ) = 0,C3 C 2
3 χ( ) = χ( ) = χ( ) = 1σv σv′ σv"

+EA1

1sH A1 E

1sH A1 E

A1 E PE PA1

= (S)SPA1 ∑
S

χA (4.4.53)

= (S)S,PE ∑
S

χE (4.4.54)

S C3 C 2
3 σv σv′ σv" PA1

1sH1

1 = 1 +1 +1 +1 +1 +1PA1
sH1

sH1
sH2

sH3
sH2

sH3
sH1

= 2(1 +1 +1 ) = ,sH1 sH2 sH3 ϕA1

(4.4.55)

A1 ϕA1
PA1

1sH2

1sH3 A1

1 = 2 ⋅ 1 −1 −1 ≡PE sH1
sH1

sH2
sH3

ϕE,1 (4.4.56)

E E PE

1sH2 1sH3

1 = 2 ⋅ 1 −1 −1 ≡PE sH2
sH2

sH1
sH3

ϕE,2 (4.4.57)

1 = 2 ⋅ 1 −1 −1 = .PE sH3
sH3

sH1
sH2

ϕE,3 (4.4.58)
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It might seem as though three orbitals having  symmetry were generated, but only two of these are really independent functions.
For example,  is related to  and  as follows:

Thus, only  and  are needed to span the two-dimensional space of the  representation. If we include  in our set of
orbitals and require our orbitals to be orthogonal, then we must find numbers  and  such that  is orthogonal
to . A straightforward calculation gives  or  which agrees with what we used earlier to
construct the  functions in terms of the  functions.

Summary 

Let us now summarize what we have learned thus far about point group symmetry. Any given set of atomic orbitals { }, atom-
centered displacements, or rotations can be used as a basis for the symmetry operations of the point group of the molecule. The
characters  belonging to the operations  of this point group within any such space can be found by summing the integrals
over all the atomic orbitals (or corresponding unit vector atomic displacements or rotations). The resultant characters will, in
general, be reducible to a combination of the characters of the irreducible representations . To decompose the characters 

 of the reducible representation to a sum of characters  of the irreducible representation

it is necessary to determine how many times, , the  irreducible representation occurs in the reducible representation. The
expression for  is

in which  is the order of the point group- the total number of symmetry operations in the group (e.g.,  for ).

For example, the reducible representation , and  formed by the three  orbitals discussed above
can be decomposed as follows:

These equations state that the three  orbitals can be combined to give one  orbital and, since  is degenerate, one pair of 
orbitals, as established above. With knowledge of the , the symmetry-adapted orbitals can be formed by allowing the projectors

to operate on each of the primitive atomic orbitals. How this is carried out was illustrated for the  orbitals in our earlier
discussion. These tools allow a symmetry decomposition of any set of atomic orbitals into appropriate symmetry-adapted orbitals.

Before considering other concepts and group-theoretical machinery, it should once again be stressed that these same tools can be
used in symmetry analysis of the translational, vibrational and rotational motions of a molecule. The twelve motions of  (three
translations, three rotations, six vibrations) can be described in terms of combinations of displacements of each of the four atoms in
each of three  directions. Hence, unit vectors placed on each atom directed in the , , and  directions form a basis for
action by the operations { } of the point group. In the case of , the characters of the resultant 12 x 12 representation matrices
form a reducible representation in the  point group: , . For
example under , the  and  atoms are interchanged, so unit vectors on either one will not contribute to the trace. Unit z-
vectors on  and  remain unchanged as well as the corresponding y-vectors. However, the x-vectors on  and  are reversed
in sign. The total character for  the  and  atoms are interchanged, so unit vectors on either one will not contribute to the

E

ϕE,3 ϕE,1 ϕE,2

= −( + ).ϕE,3 ϕE,1 ϕE,2 (4.4.59)

ϕE,1 ϕE,2 E ϕE,1

a b = a +bϕ′
E ϕE,2 ϕE,3

:= 0ϕE,1 a = −b = a(1 −1 )ϕ′
E sH2 sH3

Ti Sj

ϕi

χ(S) S

(S)χi

χ(S) (S)χi

χ(S) = (S),∑
i

niχi (4.4.60)

ni ith

ni

= χ(S) (S)ni

1

g
∑
S

χi (4.4.61)

g g = 6 C3v

χ(E) = 3,χ( ) = 0C3 χ( ) = 1σv 1sH

= (3 ⋅ 1 +2 ⋅ 0 ⋅ 1 = 3 ⋅ 1 ⋅ 1) = 1,nA1

1

6
(4.4.62)

= (3 ⋅ 1 +2 ⋅ 0 ⋅ 1 = 3 ⋅ 1 ⋅ −1) = 0,nA2

1

6
(4.4.63)

= (3 ⋅ 2 +2 ⋅ 0 ⋅ −1 = 3 ⋅ 1 ⋅ 0) = 1.nE

1

6
(4.4.64)

1sH A1 E E

ni

= (S)SPi ∑
i

χi (4.4.65)

1sH

NH3

(x, y, z) x y z

S NH3

C2v χ(E) = 12,χ( ) = χ( ) = 0C3 C 2
3 χ( ) = χ( ) = χ( ) = 2σv σv′ σv"

σv H2 H3

N H1 N H1

σv′ H2 H3
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trace. Unit z-vectors on  and  remain unchanged as well as the corresponding y-vectors. However, the x-vectors on  and 
are reversed in sign. The total character for  is thus . This representation can be decomposed as follows:

From the information on the right side of the  character table, translations of all four atoms in the ,  and  directions
transform as  and , respectively, whereas rotations about the , , and  axes transform as  and E.
Hence, of the twelve motions, three translations have  and  symmetry and three rotations have  and  symmetry. This
leaves six vibrations, of which two have  symmetry, none have  symmetry, and two (pairs) have  symmetry. We could
obtain symmetry-adapted vibrational and rotational bases by allowing symmetry projection operators of the irreducible
representation symmetries to operate on various elementary Cartesian  atomic displacement vectors centered on the four
atoms.

Direct Product Representations 

Direct Products in N-Electron Wave functions 

We now turn to the symmetry analysis of orbital products. Such knowledge is important because one is routinely faced with
constructing symmetry-adapted -electron configurations that consist of products of  individual spin orbitals, one for each
electron. A point-group symmetry operator S, when acting on such a product of orbitals, gives the product of  acting on each of
the individual orbitals

For example, reflection of an -orbital product through the  plane in  applies the reflection operation to all  electrons.

Just as the individual orbitals formed a basis for action of the point-group operators, the configurations ( -orbital products) form a
basis for the action of these same point-group operators. Hence, the various electronic configurations can be treated as functions on
which  operates, and the machinery illustrated earlier for decomposing orbital symmetry can then be used to carry out a symmetry
analysis of configurations.

Another shortcut makes this task easier. Since the symmetry adapted individual orbitals { } transform according to
irreducible representations, the representation matrices for the -term products shown above consist of products of the matrices
belonging to each . This matrix product is not a simple product but what is called a direct product. To compute the characters of
the direct product matrices, one multiplies the characters of the individual matrices of the irreducible representations of the 
orbitals that appear in the electron configuration. The direct-product representation formed by the orbital products can therefore be
symmetry-analyzed (reduced) using the same tools as we used earlier.

For example, if one is interested in knowing the symmetry of an orbital product of the form  (note: lower case letters are
used to denote the symmetry of electronic orbitals, whereas capital letters are reserved to label the overall configuration’s
symmetry) in  symmetry, the following procedure is used. For each of the six symmetry operations in the  point group, the
product of the characters associated with each of the six spin orbitals (orbital multiplied by á or â spin) is formed

In the specific case considered here, , , and . Notice that the contributions of any doubly
occupied non-degenerate orbitals (e.g., , and ) to these direct product characters  are unity because for all operators 

 for any one-dimensional irreducible representation. As a result, only the singly occupied or degenerate orbitals need
to be considered when forming the characters of the reducible direct-product representation . For this example this means that
the direct-product characters can be determined from the characters  of the two active (i.e., non-closed-shell) orbitals - the 
orbitals. That is, .

N H1 N H1

σv 4 −2 = 2

= (1 ⋅ 1 ⋅ 12 +2 ⋅ 1 ⋅ 0 +3 ⋅ 1 ⋅ 2) = 3,nA1

1

6
(4.4.66)

= (1 ⋅ 1 ⋅ 12 +2 ⋅ 1 ⋅ 0 +3 ⋅ −1 ⋅ 2) = 1,nA2

1

6
(4.4.67)

= (1 ⋅ 2 ⋅ 12 +2 ⋅ −1 ⋅ 0 +3 ⋅ 0 ⋅ 2) = 4.nE

1

6
(4.4.68)

C3v z x y

(z)A1 E(x, y) z( )Rz x( )Rx y( )Ry A2

A1 E A2 E

A1 A2 E

(x, y, z)

N N

S

S( . . . ) = (S )(S )(S ). . . (S ).ϕ1ϕ2ϕ3 ϕN ϕ1 ϕ2 ϕ3 ϕN (4.4.69)

N σv NH3 N

N

S

, i = 1, . . . ,Mϕi

N

ϕi

N

a2
1a

2
2e

2

C3v C2v

χ(S) = (S) = ( (S) ( (S) ( (S) .∏
j

χj χA1 )2 χA2 )2 χE )2 (4.4.70)

χ(E) = 4 χ(2 ) = 1C3 χ(3 ) = 0σv
a2

1 a2
2 χ(S)

( (S) = 1χk )2

χ(S)
(S)χE e2
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From the direct-product characters  belonging to a particular electronic configuration (e.g., ), one must still decompose
this list of characters into a sum of irreducible characters. For the example at hand, the direct-product characters  decompose
into one , one , and one  representation. This means that the  configuration contains , , and  symmetry elements.
Projection operators analogous to those introduced earlier for orbitals can be used to form symmetry-adapted orbital products from
the individual basis orbital products of the form , where  and  denote the occupation (1 or 0) of the two degenerate
orbitals  and . In Appendix III of Electronic Spectra and Electronic Structure of Polyatomic Molecules , G. Herzberg, Van
Nostrand Reinhold Co., New York, N.Y. (1966) the resolution of direct products among various representations within many point
groups are tabulated.

When dealing with indistinguishable particles such as electrons, it is also necessary to further project the resulting orbital products
to make them antisymmetric (for Fermions) or symmetric (for Bosons) with respect to interchange of any pair of particles. This
step reduces the set of -electron states that can arise. For example, in the above  configuration case, only , , and 
states arise; the , , and  possibilities disappear when the antisymmetry projector is applied. In contrast, for an 
configuration, all states arise even after the wave function has been made antisymmetric. The steps involved in combining the point
group symmetry with permutational antisymmetry are illustrated in Chapter 6 of this text as well as in Chapter 10 of my QMIC
text.

Direct Products in Selection Rules 

Two states  and  that are eigenfunctions of a Hamiltonian  in the absence of some external perturbation (e.g.,
electromagnetic field or static electric field or potential due to surrounding ligands) can be "coupled" by the perturbation  only if
the symmetries of  and of the two wave functions obey a so-called selection rule. In particular, only if the coupling integral

is non-vanishing will the two states be coupled by .

The role of symmetry in determining whether such integrals are non-zero can be demonstrated by noting that the integrand,
considered as a whole, must contain a component that is invariant under all of the group operations (i.e., belongs to the totally
symmetric representation of the group) if the integral is to not vanish. In terms of the projectors introduced above we must have

not vanish. Here the subscript  denotes the totally symmetric representation of whatever point group applies. The symmetry of
the product  is, according to what was covered earlier, given by the direct product of the symmetries of  of  and of .
So, the conclusion is that the integral will vanish unless this triple direct product contains, when it is reduced to its irreducible
components, a component of the totally symmetric representation.

Another way to state the above result, and a way this is more often used in practice, is that the integral  will vanish
unless the symmetry of the direct product  matches the symmetry of . Only when these symmetries match will the triple
direct product contain a non-zero component of the totally symmetric representation. This is very much the same as what we saw
earlier in this Chapter when we discussed how angular momentum coupling could limit which states contribute to the second-order
perturbation theory energy. The angular momenta of  and of , when coupled, must have a component that matches the angular
momentum of .

To see how this result is used, consider the integral that arises in formulating the interaction of electromagnetic radiation with a
molecule within the electric-dipole approximation:

Here,  is the vector giving, together with , the unit charge, the quantum mechanical dipole moment operator

where  and  are the charge and position of the nth nucleus and  is the position of the j  electron. Now, consider evaluating
this integral for the singlet  transition in formaldehyde. Here, the closed-shell ground state is of  symmetry and the
singlet excited state, which involves promoting an electron from the non-bonding  lone pair orbital on the Oxygen atom into the

χ(S) a2
1a

2
2e

2

χ(S)
A1 A2 E e2 A1 A2 E

a2
1a

2
2e

m
x e

m′

y m m′

ex ey

N e2 3A2
1A1 E1

E3 3A1
1A2 e1e′1

ψa ψb Ho

V

V

∫ V dτ =ψ∗
a ψb Va,b (4.4.71)

V

(S)S[ S ]∑
S

χA ψ∗
a ψb (4.4.72)

A

Vψ∗
a ψb ψ∗

a V ψb

∫ V τψa ψb

V ψb ψ∗
a

V ψb

ψa

∫ r dτψ∗
a ψb (4.4.73)

r e

r = e −e ,∑
n

ZnRn ∑
i

ri (4.4.74)

Zn Rn rj
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n → π∗ 1A1

b2
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anti-bonding   orbital on the CO moiety, is of  symmetry ( ). The direct product of the two wave function
symmetries thus contains only  symmetry. The three components ( , , and ) of the dipole operator have, respectively, , ,
and  symmetry. Thus, the triple direct products give rise to the following possibilities:

There is no component of  symmetry in the triple direct product, so the integral vanishes. The alternative way of reaching this
same conclusion is to notice that the direct product of the symmetries of the   orbital and the  lone pair orbital is 

), which does not match the symmetry of any component of the dipole operator. Either route allows us to conclude
that the  excitation in formaldehyde is electric dipole forbidden.

Overview 
We have shown how to make a symmetry decomposition of a basis of atomic orbitals (or Cartesian displacements or orbital
products) into irreducible representation components. This tool is very helpful when studying spectroscopy and when constructing
the orbital correlation diagrams that form the basis of the Woodward-Hoffmann rules that play useful roles in predicting whether
chemical reactions will have energy barriers in excess of thermodynamic barriers. We also learned how to form the direct-product
symmetries that arise when considering configurations consisting of products of symmetry-adapted spin orbitals. Finally, we
learned how the direct product analysis allows one to determine whether or not integrals of products of wave functions with
operators between them vanish. This tool is of utmost importance in determining selection rules in spectroscopy and for
determining the effects of external perturbations on the states of the species under investigation.
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4.5: Character Tables
C_1 E

A 1

Cs E sh

A' 1 1 x,y,Rz x2,y2,z2,xy

A" 1 -1 z,Rx,Ry yz,xz

Ci E i

Ag 1 1 Rx,Ry,Rz x2,y2,z2,xy,xz,yz

Au 1 -1 x,y,z

C2 E C2

A 1 1 z,Rz x2,y2,z2,xy

B 1 -1 x,y,Rx,Ry yz,xz

D2 E C2(z) C2(y) C2(x)

A 1 1 1 1 x2,y2,z2

B1 1 1 -1 -1 z,Rz xy

B2 1 -1 1 -1 y,Ry xz

B3 1 -1 -1 1 x,Rx yz

This page titled 4.5: Character Tables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons.
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4.6: Time Dependent Perturbation Theory
When dealing with the effects of external perturbations (e.g., applied fields, collisions with other species), one needs to have a way
to estimate the probabilities and rates of transitions among states of the system of interest induced by these perturbations. Time-
dependent perturbation theory (TDPT) offers a framework within which such estimates can be achieved.

Derivation 
In deriving the working equations of TDPT, one begins with the time-dependent Schrödinger equation

in which  is the Hamiltonian for the system whose transitions are to be probed, and  is the perturbation caused by the
external field or the collision. The wave function that solves this equation is expanded in an order-by-order manner as in
conventional perturbation theory

Here  is the eigenfunction of  from which transitions to other eigenstates (denoted ) of  are being considered. Because, in
the absence of the external perturbation , the states of  are known to vary with time as , this component of the time
dependence of the total wave function is included in the above expansion. Then, the first-order correction  is expanded in terms
of the complete set of states { } after which the expansion coefficients { } become the unknowns to be solved for

It should be noted that this derivation treats the zeroth-order states {  and } as eigenfunctions of . However, in most

practical applications of TDPT, {  and } are not known exactly and, in fact, are usually approximated by using variational
or perturbative methods (e.g., to treat differences between HF mean-field and true Coulombic interactions among electrons). So,
the derivation of TDPT that we are pursuing assumes the {  and } are exact eigenfunctions. When the final TDPT working

equations are thus obtained, one usually substitutes perturbative or variational approximations to {  and } into these
equations.

Substituting the order-by-order expansion into the Schrödinger equation gives, for the left- and right-hand sides,

and

respectively, through first-order. Multiplying each of these equations on the left by the complex conjugate of a particular  and
integrating over the variables that  depends on produces the following equation for the unknown first-order coefficients

iℏ = [ +V (t)]Ψ
∂Ψ

∂t
H0 (4.6.1)
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The states and can be different electronic states, vibrational states, or rotational states. In Chapter 15 of my book Quantum
Mechanics in Chemistry referred to in Chapter 1, I treat each of these types of transitions in detail. In the present discussion, I will
limit myself to the general picture of TDPT, rather than focusing on any of these particular forms of spectroscopic transitions.

To proceed further, one needs to say something about how the perturbation  depends on time. In the most common application
of TDPT, the perturbation is assumed to consist of a term that depends on spatial variables (denoted ) multiplied by a time-
dependent factor of sinusoidal character. An example of such a perturbation is provided by the electric dipole potential

characterizing photons of frequency  interacting with the nuclei and electrons of a molecule.  is the
spatial part  and  is the time-dependence.

To allow for the possibility that photons over a range of frequencies may impinge on the molecules, we can proceed with the
derivation for photons of a given frequency  and, after obtaining our final result, average over a distribution of frequencies
characterized by a function  giving the number of photons with frequencies between  and . For perturbations that do
not vary in a sinusoidal manner (e.g., a perturbation arising from a collision with another molecule), the derivation follows a
different path at this point (application 3 below). Because spectroscopic time-dependent perturbations are extremely common in
chemistry, we will focus much of our attention to this class of perturbations in this Chapter.

To proceed deriving the working equations of TDPT, the above expression for  is inserted into the differential equation for the
expansion coefficients and the equation is integrated from an initial time  to a final time . These times describe when the
external perturbation is first turned on and when it is turned off, respectively. For example, a laser whose photon intensity profile is
described by  might be pulsed on from  to , and one wants to know what fraction of the molecules initially in  have
undergone transitions to each of the . Alternatively, the molecules may be flowing in a stream that passes through a laser light
source that is continually on, entering the laser beam at  and exiting from the laser beam at . In either case, the molecules would
be exposed to the photons from  until . The result of integrating the differential equation is

where the transition frequencies  are defined by

and  is the time interval .

Now, if the frequency  is close to one of the transition frequencies, the term with  in the denominator will be larger
than the term containing . Of course, if has a higher energy than , so one is studying stimulate emission spectroscopy, 

 will be negative, in which case the term containing  will dominate. In on-resonance absorption spectroscopy
conditions, the above expression for the first-order coefficients reduces to

The modulus squared of this quantity gives a measure of the probability of observing the system in state after being subjected to the
photons of frequency  for a length of time .
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The function  is plotted in Figure 4.4 for a given value of  as a function of . It is sharply peaked around 

, decays rapidly as  increases, and displays recurrences of smaller and smaller intensity when 
passes through multiples of .

Figure 4.4 Plot of  vs  for a given value of .

At larger values of , the main peak in the plot of this function becomes narrower and higher such that, in the  limit, the area
under this plot approaches :

The importance of this observation about the area under the plot shown in Figure 4.4 can be appreciated by returning to our result

and introducing the fact that the photon source used to induce the transitions being studied most likely is not perfectly
monochromatic. If it is characterized, as suggested earlier, by a distribution of frequencies  that is broader than the width of
the large central peak in Figure 4.4 (n.b., this will be true if the time duration  is long enough), then when we average over  to
obtain a result that directly relates to this kind of experiment, we obtain

We are allowed to write the integral over  as ranging from  to  because the function shown in Figure 4.4 is so sharply
peaked around  that extending the range of integration makes no difference. We are allowed to factor the  out of the
integral as f( ) by assuming the light source’s distribution function  is very smoothly varying (i.e., not changing much) in
the narrow range of frequencies around  where the function in Figure 4.4 is sharply peaked.

The result of this derivation of TDPT is the above expression for the average probability of observing a transition from state  to
state . This probability is seen to grow linearly with the time duration over which the system is exposed to the light source. Because
we carried out this derivation within first-order perturbation theory, we should trust this result only under conditions where the
effects of the perturbation are small. In the context of the example considered here, this means only for short times. That is, we
should view
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as expressing the short-time estimate of the probability of a transition from  to and

(obtained as ) as expressing the initial rate of such transitions within the first-order TDPT approximation.

It should be noted that the rate expression given above will not be valid if the time duration t of the perturbation does not obey 
; only when this condition is met an the function shown in Figure 4.4 be integrated to generate a probability prediction

that grows linearly with time. So, one has to be careful when using pulsed lasers of very short duration to not employ the simplified
rate expression given above (e.g., 1 eV corresponds to a frequency of ca. 2.4 x10  s , so to study an electronic transition of this
energy, one needs to use a light source of duration significantly longer than  s to make use of the simplified result).

The working equations of TDPT, given above, allow one to estimate (because this is a first-order theory) the rates of transitions
from one quantum state to another induced by a perturbation whose spatial dependence is characterized by  and whose time
dependence is sinusoidal. The same kind of coupling matrix elements  as we experienced in time-independent
PT govern the selection rules and intensities for these transitions, so there is no need to repeat how symmetry can be used to
analyze these integrals.

Before closing this treatment of TDPT, it is useful to address a few issues that were circumvented in the derivation presented
above.

Application 1: Coupling to a Continuum 

In some cases, one is interested in transitions from a particular initial state  into a manifold of states that exist in a
continuum having energies between  and . This occurs, for example, when treating photoionization of a neutral

or photodetachment of an anion; here the ejected electron exists in a continuum wave function whose density of states  is
given by the formulas discussed in Chapter 2. In such cases, the expression given above for the rate is modified by summing over
all final states having energies within  and . Returning to the earlier expression

using , and assuming the matrix elements  do not vary significantly within the narrow range
between and , one arrives at a rate expression of

which is much like we obtained earlier but now contains the density of states . In some experiments, one may not have only

a single state  that can absorb light of a given frequency w; in such a situation, attenuation of the light source at this

frequency can occur through absorptions from many initial states  into all possible final states whose energy differs from
that of the initial state by . In this case, the correct expression for the total rate of absorption of photons of energy is obtained by
averaging the above result over the probabilities  of the system being in various initial states (which we label ):

Here the  function guarantees that only states  and  whose energies differ by are permitted to enter the sum. The
nature of the initial-state probability  depends on what kind of experiment is being carried out.  might be a Boltzmann
distribution if the initial states are in thermal equilibrium, for example.

f( ) = ⟨| (t) ⟩
π|⟨ |v(r)| (r)⟩ tψ

(0)
f ψ

(0)
f |

2

4ℏ2
ωf,0 C (1)

f
|2 (4.6.14)

ψ0

Rate = f( )
π|⟨ |v(r)| (r)⟩ψ

(0)
f ψ

(0)
f |

2

4ℏ2
ωf,0 (4.6.15)

d⟨| (t) ⟩C
(1)
f |

2

dt

t ≫ pωf,o

14 -1

10−14

v(r)

⟨ |v(r)| (r)⟩ψ
(0)

f
ψ

(0)

f

(r)ψ(0)

E
(0)
f +dE

(0)
f E

(0)
f

ρ( )E
(0)

f

E
(0)

f
+dE

(0)

f
E

(0)

f

∫ ρ( ) f(ω) dωdE
(0)
f

π|⟨ |v(r)| (r)⟩ψ
(0)
f ψ

(0)
f |2

4ℏ2
∫

∞

−∞

(1/2(ω− )t)sin2 ωf,0

(ω−ωf,0)2
E

(0)
f (4.6.16)

d = ℏE
(0)
f ωf,0 ⟨ |v(r)| (r)⟩ψ

(0)
f ψ

(0)
f

Rate = f( )ρ( )
π|⟨ |v(r)| (r)⟩ψ

(0)
f ψ

(0)
f |

2

4ℏ2
ωf,0 E (0)

f
(4.6.17)

ρ( )E
(0)
f

(r)ψ(0)
f

(r)ψ
(0)

f

Pi ψ
(0)
i

Rate = f( )ρ( )δ(ω− ).∑
i

Pi

π|⟨ |v(r)| (r)⟩ψ
(0)
f ψ

(0)
f |

2

4ℏ2
ωf,i E

(0)
f ωf,i (4.6.18)

δ(ω− )ωf,i ψ
(0)
i ψ

(0)
f

Pi Pi

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11584?pdf


4.6.5 https://chem.libretexts.org/@go/page/11584

Application 2: Experimental Oscillations 

In Figure 4.4 the function  is plotted for one value of  as a function of . There also appear in this figure,

dots that represent experimental data. These data were obtained by allowing a stream of  molecules to flow through a laser
beam of width  with the laser frequency tuned to . From the flow velocity  of the  stream and the laser beam width ,

one can determine the duration over which the molecules were exposed to the light source . After the molecules exited the

laser beam, they were probed to determine whether they were in an excited state. This experiment was repeated for various values
of the frequency . The population of excited states was then plotted as a function of  to obtain the data plotted in Figure 4.4. This
experiment is described in the text Molecules and Radiation, J. I. Steinfeld, MIT Press, Cambridge, Mass. (1981). This kind of
experiment provided direct proof of the oscillatory frequency dependence observed in the population of excited states as predicted
in our derivation of TDPT.

Application 3: Collisionally induced Transitions 
To give an example of how one proceeds in TDPT when the perturbation is not oscillatory in time, let us consider an atom located
at the origin of our coordinate system that experiences a collision with an ion of charge c whose trajectory is described in Figure
4.5.

Figure 4.5 An atom (at the origin ) undergoing a collision with an ion of charge  moving along the -axis with
constant velocity .

As an approximation, we assume

a. that the ion moves in a straight line: , characterized by an impact parameter  and a velocity  (this would
be appropriate if the ion were moving so fast that it would not be deflected by interactions with the atom),

b. that the perturbation caused by the ion on the electrons of the atom at the origin can be represented by

where  is the position of the ith electron in the atom and  is the position of the ion. The time dependence of the
perturbation arises from the motion of the ion along the -axis.

Writing the distance  as

and expanding in inverse powers of  we can express the ion-atom interaction potential as

The first term contains no factors dependent on the atom’s electronic coordinates, so it plays no role in causing electronic
transitions. In the second term, the factor  can be neglected compared to  the terms because the ion is assumed to be
somewhat distant from the atom’s valence electrons.

To derive an equation for the probability of the atom undergoing a transition from  to , one returns to the TDPT
expression
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and substitutes the above expression for the perturbation to obtain

This is the equation that must be solved to evaluate by integrating from  to  (representing the full collision with
the ion starting far to the left on the -axis and proceeding far to the right).

There are two limiting cases in which the solution is straightforward. First, if the time duration of the collision (i.e., the time over

which the ion is close to the atom)  is long compared to  where

then the integrand will oscillate repeatedly during the time  as a result of which the integral

will be vanishingly small. So, in this so-called adiabatic case (i.e., with the ion moving slowly relative to the oscillation frequency 

), electronic transitions should not be expected. In the other limit , the factor  will

remain approximately equal to unity, so the integration needed reduces to

The integral involving vanishes because  is odd and the remainder of the integrand is an even function of . The integral
involving  can be performed by trigonometric substitution (  so the denominator reduces to 

 and gives

This result suggests that the probability of a transition

should vary as the square of the ion’s charge and inversely with the speed of the collision. Of course, this result can not be trusted if

the speed  is too low because, then the condition  will not hold. This example shows how one must re-derive the

equations of TDPT when dealing with perturbations whose time-dependence is not sinusoidal.
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CHAPTER OVERVIEW

5: An Overview of Theoretical Chemistry
In this Chapter, many of the basic concepts and tools of theoretical chemistry are discussed only at an introductory level and
without providing much of the background needed to fully comprehend them. Most of these topics are covered again in
considerably more detail in Chapters 6-8, which focus on the three primary sub-disciplines of the field. The purpose of the present
Chapter is to give you an overview of the field that you will learn the details of in these later Chapters. It probably will mainly be
of use to undergraduate students using this text to learn about theoretical chemistry; most graduate students and more senior
scientists should be able to skip this Chapter or briefly glance through it.

In this chapter, you should have learned about how theory and experiment address chemical structure, bonding, energetics, and
change. You were introduced to several experimental probes that involve spectroscopic methods, and the three main sub disciplines
of theory were explained briefly to you.

5.1: What is Theoretical Chemistry About?
5.2: Molecular Structure- Theory and Experiment
5.3: Chemical Change
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5.1: What is Theoretical Chemistry About?
The science of chemistry deals with molecules including the radicals, cations, and anions they produce when fragmented or
ionized. Chemists study isolated molecules (e.g., as occur in the atmosphere and in astronomical environments), solutions of
molecules or ions dissolved in solvents, as well as solid, liquid, and plastic materials comprised of molecules. All such forms of
molecular matter are what chemistry is about. Chemical science includes how to make molecules (synthesis), how to detect and
quantitate them (analysis), how to probe their properties and the changes they undergo as reactions occur (physical).

Molecular Structure- bonding, shapes, electronic structures 
One of the more fundamental issues chemistry addresses is molecular structure, which means how the molecule’s atoms are linked
together by bonds and what the inter-atomic distances and angles are. Another component of structure analysis relates to what the
electrons are doing in the molecule; that is, how the molecule’s orbitals are occupied and in which electronic state the molecule
exists. For example, in the arginine molecule shown in Figure 5.1, a  carboxylic acid group (its oxygen atoms are shown
in red) is linked to an adjacent carbon atom (yellow) which itself is bonded to an  amino group (whose nitrogen atom is
blue). Also connected to the a-carbon atom are a chain of three methylene  groups, a  group, then a carbon atom
attached both by a double bond to an imine  group and to an amino  group.

Figure 5.1 The arginine molecule in its non-zwitterion form with dotted hydrogen bond.

The connectivity among the atoms in arginine is dictated by the well known valence preferences displayed by H, C, O, and N
atoms. The internal bond angles are, to a large extent, also determined by the valences of the constituent atoms (i.e., the  or 
nature of the bonding orbitals). However, there are other interactions among the several functional groups in arginine that also
contribute to its ultimate structure. In particular, the hydrogen bond linking the a-amino group’s nitrogen atom to the 
group’s hydrogen atom causes this molecule to fold into a less extended structure than it otherwise might.

What does theory have to do with issues of molecular structure and why is knowledge of structure so important? It is important
because the structure of a molecule has a very important role in determining the kinds of reactions that molecule will undergo, what
kind of radiation it will absorb and emit, and to what active sites in neighboring molecules or nearby materials it will bind. A
molecule’s shape (e.g., rod like, flat, globular, etc.) is one of the first things a chemist thinks of when trying to predict where, at
another molecule or on a surface or at a cell membrane, the molecule will fit and be able to bind and perhaps react. The presence of
lone pairs of electrons (which act as Lewis base sites), of  orbitals (which can act as electron donor and electron acceptor sites),
and of highly polar or ionic groups guide the chemist further in determining where on the molecule’s framework various reactant
species (e.g., electrophilic or nucleophilic or radical) will be most strongly attracted. Clearly, molecular structure is a crucial aspect
of the chemists’ toolbox.

How does theory relate to molecular structure? As we discussed in the Part 1 of this text, the Born-Oppenheimer approximation
leads us to use quantum mechanics to predict the energy  of a molecule for any positions ({ }) of its nuclei, given the number
of electrons Ne in the molecule (or ion). This means, for example, that the energy of the arginine molecule in its lowest electronic
state (i.e., with the electrons occupying the lowest energy orbitals) can be determined for any location of the nuclei if the
Schrödinger equation governing the movements of the electrons can be solved.

If you have not had a good class on how quantum mechanics is used within chemistry, I urge you to take the time needed to master
Part 1. In those pages, I introduce the central concepts of quantum mechanics and I show how they apply to several very important
cases including

1. electrons moving in 1, 2, and 3 dimensions and how these models relate to electronic structures of polyenes and to electronic
bands in solids

2. the classical and quantum probability densities and how they differ,
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3. time propagation of quantum wave functions,
4. the Hückel or tight-binding model of chemical bonding among atomic orbitals,
5. harmonic vibrations,
6. molecular rotations,
7. electron tunneling,
8. atomic orbitals’ angular and radial characteristics,
9. and point group symmetry and how it is used to label orbitals and vibrations

You need to know this material if you wish to understand most of what this text offers, so I urge you to read Part 1 if your
education to date has not yet adequately been exposed to it.

Let us now return to the discussion of how theory deals with molecular structure. We assume that we know the energy  at
various locations { } of the nuclei. In some cases, we denote this energy  and in others we use  because, within the
Born-Oppenheimer approximation, the electronic energy  serves as the potential V for the molecule’s vibrational motions. As
discussed in Part 1, one can then perform a search for the lowest energy structure (e.g., by finding where the gradient vector

vanishes  and where the second derivative or Hessian matrix  has no negative eigenvalues). By finding such

a local-minimum in the energy landscape, theory is able to determine a stable structure of such a molecule. The word stable is used
to describe these structures not because they are lower in energy than all other possible arrangements of the atoms but because the

curvatures, as given in terms of eigenvalues of the Hessian matrix , are positive at this particular geometry. The

procedures by which minima on the energy landscape are found may involve simply testing whether the energy decreases or

increases as each geometrical coordinate is varied by a small amount. Alternatively, if the gradients  are known at a particular

geometry, one can perform searches directed downhill along the negative of the gradient itself. By taking a small step along such a

direction, one can move to a new geometry that is lower in energy. If not only the gradients  but also the second derivatives 

 are known at some geometry, one can make a more intelligent step toward a geometry of lower energy. For additional

details about how such geometry optimization searches are performed within modern computational chemistry software, see
Chapter 3 where this subject was treated in greater detail.

It often turns out that a molecule has more than one stable structure (isomer) for a given electronic state. Moreover, the geometries
that pertain to stable structures of excited electronic state are different than those obtained for the ground state (because the orbital
occupancy and thus the nature of the bonding is different). Again using arginine as an example, its ground electronic state also has
the structure shown in Figure 5.2 as a stable isomer. Notice that this isomer and that shown earlier have the atoms linked together in
identical manners, but in the second structure the a-amino group is involved in two hydrogen bonds while it is involved in only one
in the former. In principle, the relative energies of these two geometrical isomers can be determined by solving the electronic
Schrödinger equation while placing the constituent nuclei in the locations described in the two figures.

Figure 5.2 Another stable structure for the arginine molecule.

If the arginine molecule is excited to another electronic state, for example, by promoting a non-bonding electron on its C=O oxygen
atom into the neighboring C-O  orbital, its stable structures will not be the same as in the ground electronic state. In particular,
the corresponding C-O distance will be longer than in the ground state, but other internal geometrical parameters may also be
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modified (albeit probably less so than the C-O distance). Moreover, the chemical reactivity of this excited state of arginine will be
different than that of the ground state because the two states have different orbitals available to react with attacking reagents.

In summary, by solving the electronic Schrödinger equation at a variety of geometries and searching for geometries where the
gradient vanishes and the Hessian matrix has all positive eigenvalues, one can find stable structures of molecules (and ions). The
Schrödinger equation is a necessary aspect of this process because the movement of the electrons is governed by this equation
rather than by Newtonian classical equations. The information gained after carrying out such a geometry optimization process
include (1) all of the inter-atomic distances and internal angles needed to specify the equilibrium geometry { } and (2) the total
electronic energy  at this particular geometry.

It is also possible to extract much more information from these calculations. For example, by multiplying elements of the Hessian

matrix  by the inverse square roots of the atomic masses of the atoms labeled a and b, one forms the mass-weighted

Hessian ( ) whose non-zero eigenvalues give the harmonic vibrational frequencies { } of the molecule. The

eigenvectors { } of the mass-weighted Hessian matrix give the relative displacements in coordinates  that accompany
vibration in the  normal mode (i.e., they describe the normal mode motions). Details about how these harmonic vibrational
frequencies and normal modes are obtained were discussed earlier in Chapter 3.

Molecular Change- reactions and interactions 

1.Changes in bonding 

Chemistry also deals with transformations of matter including changes that occur when molecules react, are excited (electronically,
vibrationally, or rotationally), or undergo geometrical rearrangements. Again, theory forms the cornerstone that allows
experimental probes of chemical change to be connected to the molecular level and that allows simulations of such changes.

Molecular excitation may or may not involve altering the electronic structure of the molecule; vibrational and rotational excitation
do not, but electronic excitation, ionization, and electron attachment do. As illustrated in Figure 5.3 where a bi-molecular reaction
is displayed, chemical reactions involve breaking some bonds and forming others, and thus involve rearrangement of the electrons
among various molecular orbitals.

Figure 5.3 Two bimolecular reactions; a and b show an atom combining with a diatomic; c and d show an atom abstracting an atom
from a diatomic.

In this example, in part (a) the green atom collides with the brown diatomic molecule and forms the bound triatomic molecule (b).
Alternatively, in (c) and (d), a pink atom collides with a green diatomic to break the bond between the two green atoms and form a
new bond between the pink and green atoms. Both such reactions are termed bi-molecular because the basic step in which the
reaction takes place requires a collision between to independent species (i.e., the atom and the diatomic).

A simple example of a unimolecular chemical reaction is offered by the arginine molecule considered above. In the first structure
shown for arginine, the carboxylic acid group retains its  bonding. However, in the zwitterion structure of this same
molecule, shown in Figure 5.4, the  group has been deprotonated to produce a carboxylate anion group , with
the  ion now bonded to the terminal imine group, thus converting it to an amino group and placing the net positive charge on
the adjacent carbon atom. The unimolecular tautomerization reaction in which the two forms of arginine are interconverted
involves breaking an  bond, forming a  bond, and changing a carbon-nitrogen double bond into a carbon-nitrogen
single bond. In such a process, the electronic structure is significantly altered, and, as a result, the two isomers can display very
different chemical reactivities toward other reagents. Notice that, once again, the ultimate structure of the zwitterion tautomer of
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arganine is determined by the valence preferences of its constituent atoms as well as by hydrogen bonds formed among various
functional groups (the carboxylate group and one amino group and one  group).

Figure 5.4 The arginine molecule in a zwitterion stable structure.

Energy Conservation 

In any chemical reaction as in all physical processes (other than nuclear event in which mass and energy can be interconveted),
total energy must be conserved. Reactions in which the summation of the strengths of all the chemical bonds in the reactants
exceeds the sum of the bond strengths in the products are termed endothermic. For such reactions, external energy must to provided
to the reacting molecules to allow the reaction to occur. Exothermic reactions are those for which the bonds in the products exceed
in strength those of the reactants. For exothermic reactions, no net energy input is needed to allow the reaction to take place.
Instead, excess energy is generated and liberated when such reactions take place. In the former (endothermic) case, the energy
needed by the reaction usually comes from the kinetic energy of the reacting molecules or molecules that surround them. That is,
thermal energy from the environment provides the needed energy. Analogously, for exothermic reactions, the excess energy
produced as the reaction proceeds is usually deposited into the kinetic energy of the product molecules and into that of surrounding
molecules. For reactions that are very endothermic, it may be virtually impossible for thermal excitation to provide sufficient
energy to effect reaction. In such cases, it may be possible to use a light source (i.e., photons whose energy can excite the reactant
molecules) to induce reaction. When the light source causes electronic excitation of the reactants (e.g., one might excite one
electron in the bound diatomic molecule discussed above from a bonding to an anti-bonding orbital), one speaks of inducing
reaction by photochemical means.

Conservation of Orbital Symmetry- the Woodward-Hoffmann Rules 

An example of how important it is to understand the changes in bonding that accompany a chemical reaction, let us consider a
reaction in which 1,3-butadiene is converted, via ring-closure, to form cyclobutene. Specifically, focus on the four  orbitals of 1,3-
butadiene as the molecule undergoes so-called disrotatory closing along which the plane of symmetry which bisects and is
perpendicular to the  bond is preserved. The orbitals of the reactant and product can be labeled as being even-e or odd-o
under reflection through this symmetry plane. It is not appropriate to label the orbitals with respect to their symmetry under the
plane containing the four C atoms because, although this plane is indeed a symmetry operation for the reactants and products, it
does not remain a valid symmetry throughout the reaction path. That is, in applying the Woodward-Hoffmann rules, we symmetry
label the orbitals using only those symmetry elements that are preserved throughout the reaction path being examined.

–NH−

π

−C2 C3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11586?pdf


5.1.5 https://chem.libretexts.org/@go/page/11586

Figure 5.5 The active valence orbitals of 1, 3- butadiene and of cyclobutene.

The four  orbitals of 1,3-butadiene are of the following symmetries under the preserved symmetry plane (see the orbitals in Figure
5.5): . The  and  and  and  orbitals of the product cyclobutane, which evolve from the four
orbitals of the 1,3-butadiene, are of the following symmetry and energy order: . The Woodward-
Hoffmann rules instruct us to arrange the reactant and product orbitals in order of increasing energy and to then connect these
orbitals by symmetry, starting with the lowest energy orbital and going through the highest energy orbital. This process gives the
following so-called orbital correlation diagram:

Figure 5.6 The orbital correlation diagram for the 1,3-butadiene to cyclobutene reaction.

We then need to consider how the electronic configurations in which the electrons are arranged as in the ground state of the
reactants evolves as the reaction occurs.

We notice that the lowest two orbitals of the reactants, which are those occupied by the four  electrons of the reactant, do not
connect to the lowest two orbitals of the products, which are the orbitals occupied by the two  and two  electrons of the products.
This causes the ground-state configuration of the reactants ( ) to evolve into an excited configuration ( ) of the
products. This, in turn, produces an activation barrier for the thermal disrotatory rearrangement (in which the four active electrons
occupy these lowest two orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state having orbital occupancy , then reaction
along the path considered would not have any symmetry-imposed barrier because this singly excited configuration correlates to a
singly-excited configuration  of the products. The fact that the reactant and product configurations are of equivalent
excitation level causes there to be no symmetry constraints on the photochemically induced reaction of 1,3-butadiene to produce
cyclobutene. In contrast, the thermal reaction considered first above has a symmetry-imposed barrier because the orbital occupancy
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is forced to rearrange (by the occupancy of two electrons from  to ) for the ground-state wave function of the
reactant to smoothly evolve into that of the product. Of course, if the reactants could be generated in an excited state having 
orbital occupancy, then products could also be produced directly in their ground electronic state. However, it is difficult, if not
impossible, to generate such doubly-excited electronic states, so it is rare that one encounters reactions being induced via such
states.

It should be stressed that although these symmetry considerations may allow one to anticipate barriers on reaction potential energy
surfaces, they have nothing to do with the thermodynamic energy differences of such reactions. What the above Woodward-
Hoffmann symmetry treatment addresses is whether there will be symmetry-imposed barriers above and beyond any
thermodynamic energy differences. The enthalpies of formation of reactants and products contain the information about the
reaction's overall energy balance and need to be considered independently of the kind of orbital symmetry analysis just introduced.

As the above example illustrates, whether a chemical reaction occurs on the ground or an excited-state electronic surface is
important to be aware of. This example shows that one might want to photo-excite the reactant molecules to cause the reaction to
occur at an accelerated rate. With the electrons occupying the lowest-energy orbitals, the ring closure reaction can still occur, but it
has to surmount a barrier to do so (it can employ thermal collision al energy to surmount this barrier), so its rate might be slow. If
an electron is excited, there is no symmetry barrier to surmount, so the rate can be greater. Reactions that take place on excited
states also have a chance to produce products in excited electronic states, and such excited-state products may emit light. Such
reactions are called chemiluminescent because they produce light (luminescence) by way of a chemical reaction.

Rates of change 

Rates of reactions play crucial roles in many aspects of our lives. Rates of various biological reactions determine how fast we
metabolize food, and rates at which fuels burn in air determine whether an explosion or a calm flame will result. Chemists view the
rate of any reaction among molecules (and perhaps photons or electrons if they are used to induce excitation in reactant molecules)
to be related to (1) the frequency with which the reacting species encounter one another and (2) the probability that a set of such
species will react once they do encounter one another. The former aspects relate primarily to the concentrations of the reacting
species and the speeds with which they are moving. The latter have more to do with whether the encountering species collide in a
favorable orientation (e.g., do the enzyme and substrate dock properly, or does the  ion collide with the  end of 

 or with the  end in the S 2 reaction that yields  ?) and with sufficient energy to surmount any barrier
that must be passed to effect breaking bonds in reactants to form new bonds in products.

The rates of reactions can be altered by changing the concentrations of the reacting species, by changing the temperature, or by
adding a catalyst. Concentrations and temperature control the collision rates among molecules, and temperature also controls the
energy available to surmount barriers. Catalysts are molecules that are not consumed during the reaction but which cause the rate of
the reaction to be increased (species that slow the rate of a reaction are called inhibitors). Most catalysts act by providing orbitals of
their own that interact with the reacting molecules’ orbitals to cause the energies of the latter to be lowered as the reaction
proceeds. In the ring-closure reaction cited earlier, the catalyst’s orbitals would interact (i.e., overlap) with the 1,3-butadiene’s 
orbitals in a manner that lowers their energies and thus reduces the energy barrier that must be overcome for reaction to proceed

In addition to being capable of determining the geometries (bond lengths and angles), energies, vibrational frequencies of species
such as the isomers of arginine discussed above, theory also addresses questions of how and how fast transitions among these
isomers occur. The issue of how chemical reactions occur focuses on the mechanism of the reaction, meaning how the nuclei move
and how the electronic orbital occupancies change as the system evolves from reactants to products. In a sense, understanding the
mechanism of a reaction in detail amounts to having a mental moving picture of how the atoms and electrons move as the reaction
is occurring.

The issue of how fast reactions occur relates to the rates of chemical reactions. In most cases, reaction rates are determined by the
frequency with which the reacting molecules access a critical geometry (called the transition state or activated complex) near which
bond breaking and bond forming takes place. The reacting molecules’ potential energy along the path connecting reactants through
a transition state to produces is often represented as shown in Figure 5.7.
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Figure 5.7 Energy vs. reaction progress plot showing the transition state or activated complex and the activation energy.

In this figure, the potential energy (i.e., the electronic energy without the nuclei’s kinetic energy included) is plotted along a
coordinate connecting reactants to products. The geometries and energies of the reactants, products, and of the activated complex
can be determined using the potential energy surface searching methods discussed briefly above and detailed earlier in Chapter 3.
Chapter 8 provides more information about the theory of reaction rates and how such rates depend upon geometrical, energetic, and
vibrational properties of the reacting molecules.

The frequencies with which the transition state is accessed are determined by the amount of energy (termed the activation energy 
) needed to access this critical geometry. For systems at or near thermal equilibrium, the probability of the molecule gaining

energy  is shown for three temperatures in Figure 5.8.

Figure 5.8 Distributions of energies at various temperatures.

For such cases, chemical reaction rates usually display a temperature dependence characterized by linear plots of  vs . Of
course, not all reactions involve molecules that have been prepared at or near thermal equilibrium. For example, in supersonic
molecular beam experiments, the kinetic energy distribution of the colliding molecules is more likely to be of the type shown in
Figure 5.9.

Figure 5.9 Molecular speed distributions in thermal and super-sonic beam cases.

In this figure, the probability is plotted as a function of the relative speed with which reactant molecules collide. It is common in
making such collision speed plots to include the  volume element factor in the plot. That is, the normalized probability
distribution for molecules having reduced mass m to collide with relative velocity components  is
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Because only the total collisional kinetic energy is important in surmounting reaction barriers, we convert this Cartesian velocity

component distribution to one in terms of  the collision speed. This is done by changing from Cartesian to

polar coordinates (in which the radial variable is v itself) and gives (after integrating over the two angular coordinates):

It is the  factor in this speed distribution that causes the Maxwell-Boltzmann distribution to vanish at low speeds in the above
plot.

Another kind of experiment in which non-thermal conditions are used to extract information about activation energies occurs
within the realm of ion-molecule reactions where one uses collision-induced dissociation (CID) to break a molecule apart. For
example, when a complex consisting of a  cation bound to a uracil molecule is accelerated by an external electric field to a
kinetic energy  and subsequently allowed to impact into a gaseous sample of Xe atoms, the high-energy collision allows kinetic
energy to be converted into internal energy. This collisional energy transfer may deposit into the Na+(uracil) complex enough
energy to fragment the  …uracil attractive binding energy, thus producing  and neutral uracil fragments. If the signal for
production of  is monitored as the collision energy  is increased, one generates a CID reaction rate profile such as I show in
Figure 5.10.

Figure 5.10 Reaction cross-section as a function of collision energy.

On the vertical axis is plotted a quantity proportional to the rate at which  ions are formed. On the horizontal axis is plotted
the collision energy  in two formats. The laboratory kinetic energy is simply 1/2 the mass of the  complex
multiplied by the square of the speed of these ion complexes measured with respect to a laboratory-fixed coordinate frame. The
center-of-mass (CM) kinetic energy is the amount of energy available between the  complex and the Xe atom, and is
given by

where  is the relative speed of the complex and the Xe atom, and  and  are the respective masses of the colliding
partners.

The most essential lesson to learn from such a graph is that no dissociation occurs if  is below some critical threshold value, and
the CID reaction

occurs with higher and higher rate as the collision energy  increases beyond the threshold. For the example shown above, the
threshold energy is ca. 1.2-1.4 eV. These CID thresholds can provide us with estimates of reaction endothermicities and are
especially useful when these energies are greatly in excess of what can be realized by simply heating the sample.

Statistical Mechanics: Treating Large Numbers of Molecules in Close Contact 
When one has a large number of molecules that undergo frequent collisions (thereby exchanging energy, momentum, and angular
momentum), the behavior of this collection of molecules can often be described in a simple way. At first glance, it seems unlikely
that the treatment of a large number of molecules could require far less effort than that required to describe one or a few such
molecules.
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To see the essence of what I am suggesting, consider a sample of 10 cm  of water at room temperature and atmospheric pressure. In
this macroscopic sample, there are approximately 3.3 x10  water molecules. If one imagines having an instrument that could
monitor the instantaneous speed of a selected molecule, one would expect the instrumental signal to display a very jerky irregular
behavior if the signal were monitored on time scales of the order of the time between molecular collisions. On this time scale, the
water molecule being monitored may be moving slowly at one instant, but, upon collision with a neighbor, may soon be moving
very rapidly. In contrast, if one monitors the speed of this single water molecule over a very long time scale (i.e., much longer than
the average time between collisions), one obtains an average square of the speed that is related to the temperature  of the sample

via . This relationship holds because the sample is at equilibrium at temperature .

An example of the kind of behavior I describe above is shown in Figure 5.11.

Figure 5.11 The energy possessed by a  ion as a function of time.

In this figure, on the vertical axis is plotted the log of the energy (kinetic plus potential) of a single  anion in a solution with
water as the solvent as a function of time. The vertical axis label says Eq.(8) because this figure was taken from a literature article.
The  ion initially has excess vibrational energy in this simulation which was carried out in part to model the energy flow from
this hot solute ion to the surrounding solvent molecules. One clearly sees the rapid jerks in energy that this ion experiences as it
undergoes collisions with neighboring water molecules. These jerks occur approximately every 0.01 ps, and some of them
correspond to collisions that take energy from the ion and others to collisions that given energy to the ion. On longer time scales
(e.g., over 1-10 ps), we also see a gradual drop off in the energy content of the  ion which illustrates the slow loss of its
excess energy on the longer time scale.

Now, let’s consider what happens if we monitor a large number of molecules rather than a single molecule within the 1 cm  sample
of  mentioned earlier. If we imagine drawing a sphere of radius  and monitoring the average speed of all water molecules
within this sphere, we obtain a qualitatively different picture if the sphere is large enough to contain many water molecules. For

large R, one finds that the average square of the speed of all the  water molecules residing inside the sphere (i.e., ) is

independent of time (even when considered at a sequence of times separated by fractions of ps) and is related to the temperature 

through .

This example shows that, at equilibrium, the long-time average of a property of any single molecule is the same as the
instantaneous average of this same property over a large number of molecules. For the single molecule, one achieves the average
value of the property by averaging its behavior over time scales lasting for many, many collisions. For the collection of many
molecules, the same average value is achieved (at any instant of time) because the number of molecules within the sphere (which is

proportional to ) is so much larger than the number near the surface of the sphere (proportional to ) that the molecules

interior to the sphere are essentially at equilibrium for all times.

Another way to say the same thing is to note that the fluctuations in the energy content of a single molecule are very large (i.e., the
molecule undergoes frequent large jerks) but last a short time (i.e., the time between collisions). In contrast, for a collection of
many molecules, the fluctuations in the energy for the whole collection are small at all times because fluctuations take place by
exchange of energy with the molecules that are not inside the sphere (and thus relate to the surface area to volume ratio of the
sphere).
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So, if one has a large number of molecules that one has reason to believe are at thermal equilibrium, one can avoid trying to follow
the instantaneous short-time detailed dynamics of any one molecule or of all the molecules. Instead, one can focus on the average
properties of the entire collection of molecules. What this means for a person interested in theoretical simulations of such
condensed-media problems is that there is no need to carry out a Newtonian molecular dynamics simulation of the system (or a
quantum simulation) if it is at equilibrium because the long-time averages of whatever is calculated can be found another way. How
one achieves this is through the magic of statistical mechanics and statistical thermodynamics. One of the most powerful of the
devices of statistical mechanics is the so-called Monte-Carlo simulation algorithm. Such theoretical tools provide a direct way to
compute equilibrium averages (and small fluctuations about such averages) for systems containing large numbers of molecules. In
Chapter 7, I provide a brief introduction to the basics of this sub-discipline of theoretical chemistry where you will learn more
about this exciting field.

Sometimes we speak of the equilibrium behavior or the dynamical behavior of a collection of molecules. Let me elaborate a little
on what these phrases mean. Equilibrium properties of molecular collections include the radial and angular distribution functions
among various atomic centers. For example, the O-O and  radial distribution functions in liquid water and in ice are shown
in Figure 5.12.

Figure 5.12 Radial O-O distribution functions at three temperatures.

Such properties represent averages, over long times or over a large collection of molecules, of some property that is not changing
with time except on a very fast time scale corresponding to individual collisions.

In contrast, dynamical properties of molecular collections include the folding and unfolding processes that proteins and other
polymers undergo; the migrations of protons from water molecule to water molecule in liquid water and along  chains within
ion channels; and the self assembly of molecular monolayers on solid surfaces as the concentration of the molecules in the liquid
overlayer varies. These are properties that occur on time scales much longer than those between molecular collisions and on time
scales that we wish to probe by some experiment or by simulation.

Having briefly introduced the primary areas of theoretical chemistry- structure, dynamics, and statistical mechanics, let us now
examine each of them in somewhat greater detail, keeping in mind that Chapters 6-8 are where each is treated more fully.
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5.2: Molecular Structure- Theory and Experiment

Experimental Probes of Molecular Shapes 

I expect you are wondering why I want to discuss how experiments measure molecular shapes in this text whose aim is to introduce
you to the field of theoretical chemistry. In fact, theory and experimental measurement are very connected, and it is these
connections that I wish to emphasize in the following discussion. In particular, I want to make it clear that experimental data can
only be interpreted, and thus used to extract molecular properties, through the application of theory. So, theory does not replace
experiment, but serves both as a complementary component of chemical research (via. simulation of molecular properties) and as
the means by which we connect laboratory data to molecular properties.

Rotational Spectroscopy 

Most of us use rotational excitation of molecules in our every-day life. In particular, when we cook in a microwave oven, the
microwave radiation, which has a frequency in the  range, inputs energy into the rotational motions of the
(primarily) water molecules contained in the food. These rotationally hot water molecules then collide with neighboring molecules
(i.e., other water as well as proteins and other molecules in the food and in the cooking vessel) to transfer some of their motional
energy to them. Through this means, the translational kinetic energy of all the molecules inside the cooker gains energy. This
process of rotation-to-translation energy transfer is how the microwave radiation ultimately heats the food, which cooks it. What
happens when you put the food into the microwave oven in a metal container or with some other metal material? As shown in
Chapter 2, the electrons in metals exist in very delocalized partially filled orbitals called bands. These band orbitals are spread out
throughout the entire piece of metal. The application of any external electric field (e.g., that belonging to the microwave radiation)
causes these metal electrons to move throughout the metal. As these electrons accumulate more and more energy from the
microwave radiation, they eventually have enough kinetic energy to be ejected into the surrounding air forming a discharge. This
causes the sparking that we see when we make the mistake of putting anything metal into our microwave oven. Let’s now learn
more about how the microwave photons cause the molecules to become rotationally excited.

Using microwave radiation, molecules having dipole moment vectors ( ) can be made to undergo rotational excitation. In such
processes, the time-varying electric field  of the microwave electromagnetic radiation interacts with the molecules via a
potential energy of the form . This potential can cause energy to flow from the microwave energy source into
the molecule’s rotational motions when the energy of the former  matches the energy spacing between two rotational energy
levels.

This idea of matching the energy of the photons to the energy spacings of the molecule illustrates the concept of resonance and is
something that is ubiquitous in spectroscopy as we learned in mathematical detail in Chapter 4. Upon first hearing that the photon’s
energy must match an energy-level spacing in the molecule if photon absorption is to occur, it appears obvious and even trivial.
However, upon further reflection, there is more to such resonance requirements than one might think. Allow me to illustrate using
this microwave-induced rotational excitation example by asking you to consider why photons whose energies  considerably
exceed the energy spacing  will not be absorbed in this transition. That is, why is more than enough energy not good enough?
The reason is that for two systems (in this case the photon’s electric field and the molecule’s rotation which causes its dipole
moment to also rotate) to interact and thus exchange energy (this is what photon absorption is), they must have very nearly the
same frequencies. If the photon’s frequency ( ) exceeds the rotational frequency of the molecule by a significant amount, the
molecule will experience an electric field that oscillates too quickly to induce a torque on the molecule's dipole that is always in the
same direction and that lasts over a significant length of time. As a result, the rapidly oscillating electric field will not provide a
coherent twisting of the dipole and hence will not induce rotational excitation.

One simple example from every day life can further illustrate this issue. When you try to push your friend, spouse, or child on a
swing, you move your arms in resonance with the swinging person’s movement frequency. Each time the person returns to you,
your arms are waiting to give a push in the direction that gives energy to the swinging individual. This happens over and over
again; each time they return, your arms have returned to be ready to give another push in the same direction. In this case, we say
that your arms move in resonance with the swing’s motion and offer a coherent excitation of the swinger. If you were to increase
greatly the rate at which your arms are moving in their up and down pattern, the swinging person would not always experience a
push in the correct direction when they return to meet your arms. Sometimes they would feel a strong in-phase push, but other
times they would feel an out-of-phase push in the opposite direction. The net result is that, over a long period of time, they would
feel random jerks from your arms, and thus would not undergo smooth energy transfer from you. This is why too high a frequency
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(and hence too high an energy) does not induce excitation. Let us now return to the case of rotational excitation by microwave
photons.

As we saw in Chapter 2, for a rigid diatomic molecule, the rotational energy spacings are given by

where

 is the moment of inertia of the molecule given in terms of its equilibrium bond length  and its reduced mass  as 

. Thus, in principle, measuring the rotational energy level spacings via microwave spectroscopy allows one to determine 
. The second identity above simply defines what is called the rotational constant  in terms of the moment of inertia. The

rotational energy levels described above give rise to a manifold of levels of non-uniform spacing as shown in the Figure 5.13.

Figure 5.13 Rotational energy levels vs. rotational quantum number.

The non-uniformity in spacings is a result of the quadratic dependence of the rotational energy levels  on the rotational quantum
number :

Moreover, the level with quantum number  is -fold degenerate; that is, there are  distinct energy states and wave
functions that have energy  and that are distinguished by a quantum number . These  states have identical energy but
differ among one another by the orientation of their angular momentum in space (i.e., the orientation of how they are spinning).

For polyatomic molecules, we know from Chapter 2 that things are more complicated because the rotational energy levels depend
on three so-called principal moments of inertia ( , , ) which, in turn, contain information about the molecule’s geometry.
These three principle moments are found by forming a 3x3 moment of inertia matrix having elements

and

expressed in terms of the Cartesian coordinates of the nuclei (a) and of the center of mass in an arbitrary molecule-fixed coordinate
system (analogous definitions hold for , ,  and ). The principle moments are then obtained as the eigenvalues of this
3x3 matrix.

For molecules with all three principle moments equal, the rotational energy levels are given by , and are

independent of the  quantum number and on the  quantum number that again describes the orientation of how the molecule is
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spinning in space. Such molecules are called spherical tops. For molecules (called symmetric tops) with two principle moments
equal ( )) and one unique moment , the energies depend on two quantum numbers  and  and are given by

Species having all three principal moments of inertia unique, termed asymmetric tops, have rotational energy levels for which no
analytic formula is yet known. The H2O molecule, shown in Figure 5.14, is such an asymmetric top molecule. More details about
the rotational energies and wave functions were given in Chapter 2.

Figure 5.14 Water molecule showing its three distinct principal moment of inertia.

The moments of inertia that occur in the expressions for the rotational energy levels involve positions of atomic nuclei relative to
the center of mass of the molecule. So, a microwave spectrum can, in principle, determine the moments of inertia and hence the
geometry of a molecule. In the discussion given above, we treated these positions, and thus the moments of inertia as fixed (i.e., not
varying with time). Of course, these distances are not unchanging with time in a real molecule because the molecule’s atomic
nuclei undergo vibrational motions. Because of this, it is the vibrationally-averaged moments of inertia that must be incorporated
into the rotational energy level formulas. Specifically, because the rotationally energies depend on the inverses of moments of
inertia, one must vibrationally average  over the vibrational motion that characterizes the molecule’s movement.
For species containing stiff bonds, the vibrational average  of the inverse squares of atomic distances
relative to the center of mass does not differ significantly from the equilibrium values

 of the same distances. However, for molecules such as weak van der Waals complexes (e.g., (H2O)2 or Ar..HCl)
that undergo floppy large-amplitude vibrational motions, there may be large differences between the equilibrium 
and the vibrationally averaged values . The proper treatment of the rotational energy level patterns in such
floppy molecules is still very much under active study by theoretical and experimental chemists. For this reason, it is a very
challenging task to use microwave data on rotational energies to determine geometries (equilibrium or vibrationally averaged) for
these kinds of molecules.

So, in the area of rotational spectroscopy theory plays several important roles:

a. It provides the basic equations in terms of which the rotational line spacings relate to moments of inertia.
b. It allows one, given the distribution of geometrical bond lengths and angles characteristic of the vibrational state the molecule

exists in, to compute the proper vibrationally-averaged moment of inertia.
c. It can be used to treat large amplitude floppy motions (e.g., by simulating the nuclear motions on a Born-Oppenheimer energy

surface), thereby allowing rotationally resolved spectra of such species to provide proper moment of inertia (and thus geometry)
information.

Vibrational Spectroscopy 

The ability of molecules to absorb and emit infrared radiation as they undergo transitions among their vibrational energy levels is
critical to our planet’s health. It turns out that water and  molecules have bonds that vibrate in the  frequency
range which is within the infrared spectrum ( ). As solar radiation (primarily visible and ultraviolet) impacts the
earth’s surface, it is absorbed by molecules with electronic transitions in this energy range (e.g., colored molecules such as those
contained in plant leaves and other dark material). These molecules are thereby promoted to excited electronic states. Some such
molecules re-emit the photons that excited them but most undergo so-called radiationless relaxation that allows them to return to
their ground electronic state but with a substantial amount of internal vibrational energy. That is, these molecules become
vibrationally very hot. Subsequently, these hot molecules, as they undergo transitions from high-energy vibrational levels to lower-
energy levels, emit infrared (IR) photons.
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If our atmosphere were devoid of water vapor and , these IR photons would travel through the atmosphere and be lost into
space. The result would be that much of the energy provided by the sun’s visible and ultraviolet photons would be lost via IR
emission. However, the water vapor and  do not allow so much IR radiation to escape. These greenhouse gases absorb the
emitted IR photons to generate vibrationally hot water and  molecules in the atmosphere. These vibrationally excited
molecules undergo collisions with other molecules in the atmosphere and at the earth’s surface. In such collisions, some of their
vibrational energy can be transferred to translational kinetic energy of the collision-partner molecules. In this manner, the
temperature (which is measure of the average translational energy) increases. Of course, the vibrationally hot molecules can also
re-emit their IR photons, but there is a thick layer of such molecules forming a blanket around the earth, and all of these molecules
are available to continually absorb and re-emit the IR energy. In this manner, the blanket keeps the IR radiation from escaping and
thus keeps our atmosphere warm. Those of us who live in dry desert climates are keenly aware of such effects. Clear cloudless
nights in the desert can become very cold, primarily because much of the day’s IR energy production is lost to radiative emission
through the atmosphere and into space. Let’s now learn more about molecular vibrations, how IR radiation excites them, and what
theory has to do with this.

When infrared (IR) radiation is used to excite a molecule, it is the vibrations of the molecule that are in resonance with the
oscillating electric field . Molecules that have dipole moments that vary as its vibrations occur interact with the IR
electric field via a potential energy of the form . Here  denotes the change in the molecule’s
dipole moment  associated with motion along the vibrational normal mode labeled .

As the IR radiation is scanned, it comes into resonance with various vibrations of the molecule under study, and radiation can be
absorbed. Knowing the frequencies at which radiation is absorbed provides knowledge of the vibrational energy level spacings in
the molecule. Absorptions associated with transitions from the lowest vibrational level to the first excited lever are called
fundamental transitions. Those connecting the lowest level to the second excited state are called first overtone transitions.
Excitations from excited levels to even higher levels are named hot-band absorptions.

Fundamental vibrational transitions occur at frequencies that characterize various functional groups in molecules (e.g., O-H
stretching, H-N-H bending, N-H stretching, C-C stretching, etc.). As such, a vibrational spectrum offers an important fingerprint
that allows the chemist to infer which functional groups are present in the molecule. However, when the molecule contains soft
floppy vibrational modes, it is often more difficult to use information about the absorption frequency to extract quantitative
information about the molecule’s energy surface and its bonding structure. As was the case for rotational levels of such floppy
molecules, the accurate treatment of large-amplitude vibrational motions of such species remains an area of intense research
interest within the theory community.

In a polyatomic molecule with  atoms, there are many vibrational modes. The total vibrational energy of such a molecule can be
approximated as a sum of terms, one for each of the  (or  for a linear molecule) vibrations:

Here,  is the harmonic frequency of the  mode and  is the vibrational quantum number associated with that mode. As we
discussed in Chapter 3, the vibrational wave functions are products of harmonic vibrational functions for each mode:

and the spacings between energy levels in which one of the normal-mode quantum numbers increases by unity are expressed as

That is, the spacings between successive vibrational levels of a given mode are predicted to be independent of the quantum number
v within this harmonic model as shown in Figure 5.15.
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Figure 5.15 Harmonic vibrational energy levels vs. vibrational quantum number.

In Chapter 3, the details connecting the local curvature (i.e., Hessian matrix elements) in a polyatomic molecule’s potential energy
surface to its normal modes of vibration are presented.

Experimental evidence clearly indicates that significant deviations from the harmonic oscillator energy expression occur as the
quantum number  grows. These deviations are explained in terms of the molecule's true potential  deviating strongly from

the harmonic  potential at higher energy as shown in the Figure 5.16.

Figure 5.16 Harmonic (parabola) and anharmonic potentials.

At larger bond lengths, the true potential is softer than the harmonic potential, and eventually reaches its asymptote, which lies at

the dissociation energy  above its minimum. This deviation of the true  from  causes the true vibrational

energy levels to lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels, along each of the  or  independent
modes in terms of an anharmonic formula similar to what we discussed for the Morse potential in Chapter 2:

The first term is the harmonic expression. The next is termed the first anharmonicity; it (usually) produces a negative contribution

to  that varies as . Subsequent terms are called higher anharmonicity corrections. The spacings between successive

 energy levels are then given by:

A plot of the spacing between neighboring energy levels versus  should be linear for values of  where the harmonic and first
anharmonicity terms dominate. The slope of

vj V (R)

k(R−
1

2
Re)2

De V (R) k(R−
1

2
Re)2

3N −5 6

E( ) = h[ ( + )−( ( + +( ( + +( ( + +. . . ]vj ωj vj
1

2
ωx)j vj

1

2
)2

ωy)j vj
1

2
)3

ωz)j vj
1

2
)4

(5.2.2)

E( )vj ( +vj
1

2
)

2

→ +1vj vj

ΔE = E( +1) −E( )vj vj vj (5.2.1)

= ℏ[ −2( ( +1)+. . . ]ωj ωx)j vj (5.2.1)

vj vj

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11587?pdf


5.2.6 https://chem.libretexts.org/@go/page/11587

such a plot is expected to be  and the small  intercept should be . Such a plot of experimental data,
which clearly can be used to determine the  and  parameters of the vibrational mode of study, is shown in Figure 5.17.

 
Figure 5.17 Birge-Sponer plot of vibrational energy spacings vs. quantum number.

These so-called Birge-Sponer plots can also be used to determine dissociation energies of molecules if the vibration whose
spacings are plotted corresponds to a bond-stretching mode. By linearly extrapolating such a plot of experimental  values to
large  values, one can find the value of  at which the spacing between neighboring vibrational levels goes to zero. This value 

, max specifies the quantum number of the last bound vibrational level for the particular bond-stretching mode of interest. The

dissociation energy  can then be computed by adding to  (the zero point energy along this mode) the sum of the spacings

between neighboring vibrational energy levels from  to :

So, in the case of vibrational spectroscopy, theory allows us to

interpret observed infrared lines in terms of absorptions arising in localized functional groups;
extract dissociation energies if a long progression of lines is observed in a bond-stretching transition;
and treat highly non-harmonic floppy vibrations by carrying out dynamical simulations on a Born-Oppenheimer energy surface.

X-Ray Crystallography 

In x-ray crystallography experiments, one employs crystalline samples of the molecules of interest and makes use of the diffraction
patterns produced by scattered x-rays to determine positions of the atoms in the molecule relative to one another using the famous
Bragg formula:

In this equation,  is the wavelength of the x-rays,  is a spacing between layers (planes) of atoms in the crystal,  is the angle
through which the x-ray beam is scattered, and  is an integer (1,2, …) that labels the order of the scattered beam.

Because the x-rays scatter most strongly from the inner-shell electrons of each atom, the interatomic distances obtained from such
diffraction experiments are, more precisely, measures of distances between high electron densities in the neighborhoods of various
atoms. The x-rays interact most strongly with the inner-shell electrons because it is these electrons whose characteristic Bohr
frequencies of motion are (nearly) in resonance with the high frequency of such radiation. For this reason, x-rays can be viewed as
being scattered from the core electrons that reside near the nuclear centers within a molecule. Hence, x-ray diffraction data offers a
very precise and reliable way to probe inter-atomic distances in molecules.

The primary difficulties with x-ray measurements are:

i. That one needs to have crystalline samples (often, materials simply cannot be grown as crystals),
ii. That one learns about inter-atomic spacings as they occur in the crystalline state, not as they exist, for example, in solution or in

gas-phase samples. This is especially problematic for biological systems where one would like to know the structure of the bio-
molecule as it exists within the living organism.

Nevertheless, x-ray diffraction data and its interpretation through the Bragg formula provide one of the most widely used and
reliable ways for probing molecular structure.
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NMR Spectroscopy 

NMR spectroscopy probes the absorption of radio-frequency (RF) radiation by the nuclear spins of the molecule. The most
commonly occurring spins in natural samples are  (protons),  (deuterons),  and  nuclei. In the presence of an external
magnetic field  along the -axis, each such nucleus has its spin states split in energy by an amount given by ,
where  is the component of the  nucleus’ spin angular momentum along the -axis,  is the strength of the external
magnetic field, and  is a so-called gyromagnetic factor (i.e., a constant) that is characteristic of the  nucleus. This splitting of
magnetic spin levels by a magnetic field is called the Zeeman effect, and it is illustrated in Figure 5.18.

Figure 5.18 Zeeman splitting of magnetic nucleus's two levels caused by magnetic field.

The factor  is introduced to describe the screening of the external -field at the  nucleus caused by the electron cloud
that surrounds this nucleus. In effect,  is the magnetic field experienced local to the  nucleus. It is this 
screening that gives rise to the phenomenon of chemical shifts in NMR spectroscopy, and it is this factor that allows NMR
measurements of shielding factors ( ) to be related, by theory, to the electronic environment of a nucleus. In Figure 5.19 we
display the chemical shifts of proton and  nuclei in a variety of chemical bonding environments.

Figure 5.19 Chemical shifts characterizing various electronic environments for protons and for carbon-13 nuclei.

Because the  quantum number changes in steps of unity and because each photon possesses one unit of angular momentum, the
RF energy  that will be in resonance with the  nucleus’ Zeeman-split levels is given by .

In most NMR experiments, a fixed RF frequency is employed and the external magnetic field is scanned until the above resonance
condition is met. Determining at what  value a given nucleus absorbs RF radiation allows one to determine the local shielding 

 for that nucleus. This, in turn, provides information about the electronic environment local to that nucleus as illustrated in
the above figure. This data tells the chemist a great deal about the molecule’s structure because it suggests what kinds of functional
groups occur within the molecule.

To extract even more geometrical information from NMR experiments, one makes use of another feature of nuclear spin states. In
particular, it is known that the energy levels of a given nucleus (e.g., the  one) are altered by the presence of other nearby
nuclear spins. These spin-spin coupling interactions give rise to splittings in the energy levels of the  nucleus that alter the above
energy expression as follows:
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Where  is the -component of the  nuclear spin angular momentum,  is the corresponding component of a nearby nucleus
causing the splitting, and  is called the spin-spin coupling constant between the two nuclei.

Examples of how spins on neighboring centers split the NMR absorption lines of a given nucleus are shown in Figs. 5.20-5.22 for
three common cases. The first involves a nucleus (labeled A) that is close enough to one other magnetically active nucleus (labeled
X); the second involves a nucleus (A) that is close to two equivalent nuclei (2X); and the third describes a nucleus (A) close to
three equivalent nuclei (X3).

Figure 5.20 Splitting pattern characteristic of AX case

In Figure 5.20 are illustrated the splitting in the X nucleus’ absorption due to the presence of a single A neighbor nucleus (right)
and the splitting in the A nucleus’ absorption (left) caused by the X nucleus. In both of these examples, the X and A nuclei have
only two  values, so they must be spin-1/2 nuclei. This kind of splitting pattern would, for example, arise for a  group
in the benzene molecule where A =  and X = .

Figure 5.21 Splitting pattern characteristic of  case

The ( ) splitting pattern shown if Figure 5.21 would, for example, arise in the  spectrum of a  group, and illustrates
the splitting of the A nucleus’ absorption line by the four spin states that the two equivalent X spins can occupy. Again, the lines
shown would be consistent with X and A both having spin 1/2 because they each assume only two  values.

M z kth M ′

J
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Figure 5.22 Splitting pattern characteristic of  case

In Figure 5.22 is the kind of splitting pattern ( ) that would apply to the  NMR absorptions for a  group. In this case,
the spin-1/2 A line is split by the eight spin states that the three equivalent spin-1/2 H nuclei can occupy.

The magnitudes of these  coupling constants depend on the distances R between the two nuclei to the inverse sixth power (i.e., as 
). They also depend on the  values of the two interacting nuclei. In the presence of splitting caused by nearby (usually

covalently bonded) nuclei, the NMR spectrum of a molecule consists of sets of absorptions (each belonging to a specific nuclear
type in a particular chemical environment and thus have a specific chemical shift) that are split by their couplings to the other
nuclei. Because of the spin-spin coupling’s strong decay with internuclear distance, the magnitude and pattern of the splitting
induced on one nucleus by its neighbors provides a clear signature of what the neighboring nuclei are (i.e., through the number of 

 values associated with the peak pattern) and how far these nuclei are (through the magnitude of the  constant, knowing it is
proportional to ). This near-neighbor data, combined with the chemical shift functional group data, offer powerful information
about molecular structure.

An example of a full NMR spectrum is given in Figure 5.23 where the  spectrum (i.e., only the proton absorptions are shown) of
 appears along with plots of the integrated intensities under each set of peaks. The latter data suggests the total

number of nuclei corresponding to that group of peaks. Notice how the  proton’s absorption, the absorption of the two
equivalent protons on the  group, and that of the three equivalent protons in the  group occur at different field
strengths (i.e., have different chemical shifts). Also note how the  peak is split only slightly because this proton is distant from
any others, but the  protons peak is split by the neighboring  group’s protons in an  pattern. Finally, the 
protons’ peak is split by the neighboring  group’s three protons (in an  pattern).

Figure 5.23 Proton NMR of ethanol showing splitting of three distinct protons as well as integrated intensities of the three sets of
peaks.

In summary, NMR spectroscopy is a very powerful tool that:

allows us to extract inter-nuclear distances (or at least tell how many near-neighbor nuclei there are) and thus geometrical
information by measuring coupling constants  and subsequently using the theoretical expressions that relate  values to 
values.
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allows us to probe the local electronic environment of nuclei inside molecules by measuring chemical shifts or shielding  and
then using the theoretical equations relating the two quantities. Knowledge about the electronic environment tells one, for
example, about the degree of polarity in bonds connected to that nuclear center.
tells us, through the splitting patterns associated with various nuclei, the number and nature of the neighbor nuclei, again
providing a wealth of molecular structure information.

Theoretical Simulation of Structures 

We have seen how microwave, infrared, and NMR spectroscopy as well as x-ray diffraction data, when subjected to proper
interpretation using the appropriate theoretical equations, can be used to obtain a great deal of structural information about a
molecule. As discussed in Part 1 of this text, theory is also used to probe molecular structure in another manner. That is, not only
does theory offer the equations that connect the experimental data to the molecular properties, but it also allows one to simulate a
molecule. This simulation is done by solving the Schrödinger equation for the motions of the electrons to generate a potential
energy surface , after which this energy landscape can be searched for points where the gradients along all directions vanish.
An example of such a PES is shown in Figure 5.24 for a simple case in which the energy depends on only two geometrical
parameters. Even in such a case, one can find several local minima and transition state structures connecting them.

Figure 5.24 Potential energy surface in two dimensions showing reactant and product minima, transition states, and paths
connecting them.

As we discussed in Chapter 3, among the stationary points on the potential energy surface (PES), those at which all eigenvalues of
the second derivative (Hessian) matrix are positive represent geometrically stable isomers of the molecule. Those stationary points
on the PES at which all but one Hessian eigenvalue are positive and one is negative represent transition state structures that connect
pairs of stable isomers.

Once the stable isomers of a molecule lying within some energy interval above the lowest such isomer have been identified, the
vibrational motions of the molecule within the neighborhood of each such isomer can be described either by solving the
Schrödinger equation for the vibrational wave functions  belonging to each normal mode or by solving the classical Newton

equations of motion using the gradient  of the PES to compute the forces along each molecular distortion direction :

The decision about whether to use the Schrödinger or Newtonian equations to treat the vibrational motion depends on whether one
wishes (needs) to properly include quantum effects (e.g., zero-point motion and wave function nodal patterns) in the simulation.

Once the vibrational motions have been described for a particular isomer, and given knowledge of the geometry of that isomer, one
can evaluate the moments of inertia, one can properly vibrationally average all of the  quantities that enter into these moments,
and, hence, one can simulate the microwave spectrum of the molecule. Also, given the Hessian matrix for this isomer, one can form
its mass-weighted variant whose non-zero eigenvalues give the normal-mode harmonic frequencies of vibration of that isomer and
whose eigenvectors describe the atomic motions that correspond to these vibrations. Moreover, the solution of the electronic
Schrödinger equation allows one to compute the NMR shielding  values at each nucleus as well as the spin-spin coupling
constants  between pairs of nuclei (the treatment of these subjects is beyond the level of this text; you can find it in Molecular
Electronic Structure Theory by Helgaker, et. al.). Again, using the vibrational motion knowledge, one can average the  and 
values over this motion to gain vibrationally averaged  and  values that best simulate the experimental parameters.

One carries out such a theoretical simulation of a molecule for various reasons.

Especially in the early days of developing theoretical tools to solve the electronic Schrödinger equation or the vibrational motion
problem, one would do so for molecules whose structures and IR and NMR spectra were well known. The purpose in such cases
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was to calibrate the accuracy of the theoretical methods against established experimental data. Now that theoretical tools have been
reasonably well tested and can be trusted (within known limits of accuracy), one often uses theoretically simulated structural and
spectroscopic properties to identify spectral features whose molecular origin is not known. That is, one compares the theoretical
spectra of a variety of test molecules to the observed spectral features to attempt to identify the molecule that produced the spectra.

It is also common to use simulations to examine species that are especially difficult to generate in reasonable quantities in the
laboratory and species that do not persist for long times. Reactive radicals, cations and anions are often difficult to generate in the
laboratory and may be impossible to retain in sufficient concentrations and for a sufficient duration to permit experimental
characterization. In such cases, theoretical simulation of the properties of these molecules may be the most reliable way to access
such data. Moreover, one might use simulations to examine the behavior of molecules under extreme conditions such as high
pressure, confinement to nanoscopic spaces, high temperature, or very low temperatures for which experiments could be very
difficult or expensive to carry out.

Let me tell you about an example of how such theoretical simulation has proven useful, probably even essential, for interpreting
experimental data (the data is reported in N. I. Hammer, J-W. Shin, J. M. Headrick, E. G. Diken, J. R. Roscioli, G. H. Weddle, and
M. A. Johnson, Science 306, 675 (2004)). In the group of Prof. Mark Johnson at Yale, infrared spectroscopy is carried out on gas-
phase ions. In this particular experiment, water cluster anions  with one or more Ar atoms attached to them were
formed and, using a mass spectrometer, the ions of one specific mass were selected for subsequent study. In the example illustrated
here, the cluster  containing four water molecules was studied.

When infrared (IR) radiation impinges on the  ions, it can be absorbed if its frequency matches the frequency of one
of the vibrational modes of this cluster. If, for example, IR radiation in the 1500-1700 cm  frequency range is absorbed (this range
corresponds to frequencies of H-O-H bending vibrations), this excess internal energy can cause one or more of the weakly bound
Ar atoms to be ejected from the  cluster, thus decreasing the number of intact  ions in the mass
spectrometer. The decrease in the number of intact ions is a direct measure then of the absorption of the IR light. By monitoring the
number of  (i.e., the strength of the mass spectrometer’s signal at this particular mass-to-charge ratio) as the IR
radiation is tuned through the 1500-1700 cm  frequency range, the experimentalists obtain spectral signatures (i.e., the ion
intensity loss) of the IR absorption by the  cluster ions.

When they carry out this kind of experiment using  and scan the IR radiation in the 1500-1700 cm  frequency range,
they obtained the spectrum labeled A in Figure 5. 24 a. When they performed the same kind of experiment on  and
scanned in the 2400-2800 cm  frequency range (which is where O-D stretching vibrations are known to occur), they obtained the
spectrum labeled B in Figure 5. 24 a.
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Figure 5. 24 a Infrared spectra of  and , respectively in the 1400-1800 cm  and 2400-2800 cm
frequency ranges.

What the experimentalists did not know, however, is what the geometrical structure of the underlying  ion was. Nor did
they know exactly which H-O-H bending or O-H (or O-D) stretching vibrations were causing the various peaks shown in Figure
5.24 a A and B.

By carrying out electronic structure calculations on a large number of geometries for  and searching for local minima on
the ground electronic state of this ion (there are a very large number of such local minima) and then using the mass-weighted
Hessian matrix at each local minima to calculate the structure’s vibrational energies, the experimentalists were able to figure out
what structure for  was most consistent with their observed IR spectrum. For example, for the rather extended structure of 

, they computed the IR spectrum shown in panel E (and for  in panel F) of Figure 5. 24 a. Alternatively, for the
cyclic structure of -, they computed the IR spectrum shown in panel C (and for  in panel D) of Figure 5. 24 a.
Clearly, the spectrum of panels C and D agrees much better with their experimental spectrum in panels A and B than does the
spectrum of panels E and F. Based on these comparisons, these scientists concluded that the  ions in their 
and  have the cyclic geometry, not the extended quasi-linear geometry. Moreover, by looking at which particular
vibrational modes of the cyclic  produced which peaks in panels C and D, they were able to assign each of the IR peaks
seen in their data of panels A and B. This is a good example of how theoretical simulation can help interpret experimental data;
without the theory, these scientists would not know the geometry of .
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5.3: Chemical Change

Experimental Probes of Chemical Change 

Many of the same tools that are used to determine the structures of molecules can also be used to follow the changes that the
molecule undergoes as it is involved in a chemical reaction. Specifically, for any reaction in which one kind of molecule  is
converted into another kind , one needs to have

i. the ability to identify, via some physical measurement, the experimental signatures of both  and ,
ii. the ability to relate the magnitude of these experimental signals to the concentrations  and  of these molecules, and

iii. the ability to monitor these signals as functions of time so that these concentrations can be followed as time evolves.

The third requirement is what allows one to determine the rates at which the  and  molecules are reacting.

Many of the experimental tools used to identify molecules (e.g., NMR allows one to identify functional groups and near-neighbor
functional groups, IR also allows functional groups to be seen) and to determine their concentrations have restricted time scales
over which they can be used. For example, NMR spectra require that the sample be studied for ca. 1 second or more to obtain a
useable signal. Likewise, a mass spectroscopic analysis of a mixture of reacting species may require many second or minutes to
carry out. These restrictions, in turn, limit the rates of reactions that can be followed using these experimental tools (e.g., one can
not use NMR of mass spectroscopy to follow a reaction that occurs on a time scale of  s).

Especially for very fast reactions and for reactions involving unstable species that can not easily be handled, so-called pump-probe
experimental approaches are often used.

For example, suppose one were interested in studying the reaction of  radicals (e.g., as formed in the decomposition of
chloroflurocarbons (CFCs) by ultraviolet light) with ozone to generate  and :

One can not simply deposit a known amount of  radicals from a vessel into a container in which gaseous  of a known
concentration has been prepared; the  radicals will recombine and react with other species, making their concentrations difficult
to determine. So, alternatively, one places known concentrations of some  radical precursor (e.g., a CFC or some other X-Cl
species) and ozone into a reaction vessel. One then uses, for example, a very short light pulse whose photon's frequencies are tuned
to a transition that will cause the X-Cl precursor to undergo rapid photodissociation:

Because the pump light source used to prepare the  radicals is of very short duration ( ) and because the X-Cl dissociation is
prompt, one knows, to within , the time at which the Cl radicals begin to react with the ozone. The initial concentration of the 

 radicals can be known if the quantum yield for the  reaction is known, This means that the intensity of
photons, the probability of photon absorption by X-Cl, and the fraction of excited X-Cl molecules that dissociate to produce 

 must be known. Such information is available (albeit, from rather tedious earlier studies) for a variety of X-Cl precursors.

So, knowing the time at which the  radicals are formed and their initial concentrations, one then allows the 
 reaction to proceed for some time duration . One then, at , uses a second light source to probe

either the concentration of the , the  or the , to determine the extent of progress of the reaction. Which species is so
monitored depends on the availability of light sources whose frequencies these species absorb. Such probe experiments are carried
out at a series of time delays , the result of which is the determination of the concentrations of some product or reactant species
at various times after the initial pump event created the reactive  radicals. In this way, one can monitor, for example, the 
concentration as a function of time after the  begins to react with the . If one has reason to believe that the reaction occurs in a
single bimolecular event as

one can then extract the rate constant k for the reaction by using the following kinetic scheme;
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If the initial concentration of  is large compared to the amount of  that is formed in the pump event,  can be taken as
constant and known. If the initial concentration of  is denoted , and the concentration of  is called , this kinetic
equation reduces to

the solution of which is

So, knowing the  concentration as a function of time delay , and knowing the initial ozone concentration  as well as the
initial  radical concentration, one can find the rate constant .

Such pump-probe experiments are necessary when one wants to study species that must be generated and allowed to react
immediately. This is essentially always the case when one or more of the reactants is a highly reactive species such as a radical.
There is another kind of experiment that can be used to probe very fast reactions if the reaction and its reverse reaction can be
brought into equilibrium to the extent that reactants and products both exist in measurable concentrations. For example, consider
the reaction of an enzyme E and a substrate S to form the enzyme-substrate complex ES:

At equilibrium, the forward rate

and the reverse rate

are equal:

The idea behind so called perturbation techniques is to begin with a reaction that is in such an equilibrium condition and to then use
some external means to slightly perturb the equilibrium. Because both the forward and reverse rates are assumed to be very fast, it
is essential to use a perturbation that can alter the concentrations very quickly. This usually precludes simply adding a small
amount of one or more of the reacting species to the reaction vessel. Instead, one might employ, for example, a fast light source or
electric field pulse to perturb the equilibrium to one side or the other. For example, if the reaction thermochemistry is known, the
equilibrium constant  can be changed by rapidly heating the sample (e.g., with a fast laser pulse that is absorbed and rapidly
heats the sample) and using

to calculate the change in  and thus the changes in concentrations caused by the sudden heating. Alternatively, if the polarity of
the reactants and products is substantially different, one may use a rapidly applied electric field to quickly change the
concentrations of the reactant and product species.

In such experiments, the concentrations of the species is shifted by a small amount  as a result of the application of the
perturbation, so that

once the perturbation has been applied and then turned off. Subsequently, the following rate law will govern the time evolution of
the concentration change d:

O3 Cl [ ]O3

Cl [Cl]0 ClO x

= k([Cl −x)[ ]
dx

dt
]0 O3 (5.3.5)

[ClO] = x = [Cl (1 −exp(−k[ ]t)).]0 O3 (5.3.6)

[ClO] t [ ]O3

Cl k

E+S ⇌ ES. (5.3.7)

= [E [Skf ]eq ]eq (5.3.8)

= [ESkr ]eq (5.3.9)
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Assuming that  is very small (so that the term involving  cam be neglected) and using the fact that the forward and reverse rates
balance at equilibrium, this equation for the time evolution of  can be reduced to:

So, the concentration deviations from equilibrium will return to equilibrium (i.e.,  will decay to zero) exponentially with an
effective rate coefficient that is equal to a sum of terms:

involving both the forward and reverse rate constants.

So, by quickly perturbing an equilibrium reaction mixture for a short period of time and subsequently following the concentrations
of the reactants or products as they return to their equilibrium values, one can extract the effective rate coefficient . Doing this
at a variety of different initial equilibrium concentrations (e,g.,  and ), and seeing how  changes, one can then
determine both the forward and reverse rate constants.

Both the pump-probe and the perturbation methods require that one be able to quickly create (or perturb) concentrations of reactive
species and that one have available an experimental probe that allows one to follow the concentrations of at least some of the
species as time evolves. Clearly, for very fast reactions, this means that one must use experimental tools that can respond on a very
short time scale. Modern laser technology and molecular beam methods have provided some of the most widely used of such tools.
These experimental approaches are discussed in some detail in Chapter 8.

Theoretical Simulation of Chemical Change 
The most common theoretical approach to simulating a chemical reaction is to use Newtonian dynamics to follow the motion of the
nuclei on a Born-Oppenheimer electronic energy surface. If the molecule of interest contains few ( ) atoms, such a surface could
be computed (using the methods discussed in Chapter 6) at a large number of molecular geometries  and then fit to an
analytical function  of the  or  variables denoted . Knowing  as a function of these variables, one
can then compute the forces

along each coordinate, and then use the Newton equations

to follow the time evolution of these coordinates and hence the progress of the reaction. The values of the coordinates  at
a series of discrete times  constitute what is called a classical trajectory. To simulate a chemical reaction, one begins the
trajectory with initial coordinates characteristic of the reactant species (i.e., within one of the valleys on the reactant side of the
potential surface) and one follows the trajectory long enough to determine whether the collision results in

i. a non-reactive outcome characterized by final coordinates describing reactant not product molecules, or
ii. a reactive outcome that is recognized by the final coordinates describing product molecules rather than reactants.

One must do so for a large number of trajectories whose initial coordinates and moment are representative of the experimental
conditions one is attempting to simulate. Then, one has to average the outcomes of these trajectories over this ensemble of initial
conditions. More about how one carries out such ensemble averaging is discussed in Chapters 7 and 8.

If the molecule contains more than 3 or 4 atoms, it is more common to not compute the Born-Oppenheimer energy at a set of
geometries and then fit this data to an analytical form. Instead, one begins a trajectory at some initial coordinates  and with
some initial momenta  and then uses the Newton equations, usually in the finite-difference form:

δ δ2

δ

− = ( + [S + [ ])d. v
dδ

dt
kr kf ]eq kf Eeq (5.3.16)
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to propagate the coordinates and momenta forward in time by a small amount . Here,  denotes the gradient of the BO

energy computed at the  values of the coordinates. The above propagation procedure is then used again, but with the values
of  and  appropriate to time  as new initial coordinates and momenta, to generate yet another set of  and 
values. In such direct dynamics approaches, the energy gradients, which produce the forces, are computed only at geometries that
the classical trajectory encounters along its time propagation. In the earlier procedure, in which the BO energy is fit to an analytical
form, one often computes  at geometries that the trajectory never accesses.

In carrying out such a classical trajectory simulation of a chemical reaction, there are other issues that must be addressed. In
particular, as mentioned above, one can essentially never use any single trajectory to simulate a reaction carried out in a laboratory
setting. One must perform a series of such trajectory calculations with a variety of different initial coordinates and momenta chosen
in a manner to represent the experimental conditions of interest. For example, suppose one were to wish to model a molecular beam
experiment in which a beam of species  having a well defined kinetic energy  collides with a beam of species  having
kinetic energy  as shown in Figure 5.25.

Figure 5.25 Crossed beam experiment in which  and  molecules collide in a reaction vessel.

Even though the  and  molecules all collide at right angles and with specified kinetic energies (and thus specified initial
momenta), not all of these collisions occur head on. Figure 5.26 illustrates this point.

Figure 5.26 Two A + B collisions. In the first, the  and  have a small distance of closest approach; in the second this distance is
larger.

Here, we show two collisions between an  and a  molecule, both of which have identical  and  velocities  and ,
respectively. What differs in the two events is their distance of closest approach. In the collision shown on the left, the  and 
come together closely. However, in the left collision, the A molecule is moving away from the region where  would strike it
before  has reached it. These two cases can be viewed from a different perspective that helps to clarify their differences. In Figure
5.27, we illustrate these two collisions viewed from a frame of reference located on the  molecule.

Figure 5.27 Same two close and distant collisions viewed from sitting on  and in the case of no attractive or repulsive
interactions.

In this figure, we show the location of the  molecule relative to  at a series of times, showing  moving from right to left. In the
figure on the left, the  molecule clearly undergoes a closer collision than is the case on the right. The distance of closest approach
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in each case is called the impact parameter and it represents the distance of closest approach if the colliding partners did not
experience any attractive or repulsive interactions (as the above figures would be consistent with). Of course, when  and  have
forces acting between them, the trajectories shown above would be modified to look more like those shown in Figure 5.28.

Figure 5.28 Same two close and distant collisions viewed from sitting on A now in the case of repulsive interactions.

In both of these trajectories, repulsive intermolecular forces cause the trajectory to move away from its initial path, which defines
the respective impact parameters.

So, even in this molecular beam example in which both colliding molecules have well specified velocities, one must carry out a
number of classical trajectories, each with a different impact parameter b to simulate the laboratory event. In practice, the impact
parameters can be chosen to range from  (i.e., a head on collision) to some maximum value  beyond which the  and 
molecules no longer interact (and thus can no longer undergo reaction). Each trajectory is followed long enough to determine
whether it leads to geometries characteristic of the product molecules. The fraction of such trajectories, weighted by the volume
element  for trajectories with impact parameters in the range between  and , then gives the averaged fraction of
trajectories that react.

In most simulations of chemical reactions, there are more initial conditions that also must sampled (i.e., trajectories with a variety
of initial variables must be followed) and properly weighted. For example,

i. if there is a range of velocities for the reactants  and/or , one must follow trajectories with velocities in this range and weigh
the outcomes (i.e., reaction or not) of such trajectories appropriately (e.g., with a Maxwell-Boltzmann weighting factor), and

ii. if the reactant molecules have internal bond lengths, angles, and orientations, one must follow trajectories with different initial
values of these variables and properly weigh each such trajectory (e.g., using the vibrational state's coordinate probability
distribution as a weighting factor for the initial values of that coordinate).

As a result, to properly simulate a laboratory experiment of a chemical reaction, it usually requires one to follow a very large
number of classical trajectories. Fortunately, such a task is well suited to distributed parallel computing, so it is currently feasible to
do so even for rather complex reactions.

There is a situation in which the above classical trajectory approach can be foolish to pursue, even if there is reason to believe that
a classical Newton description of the nuclear motions is adequate. This occurs when one has a rather high barrier to surmount to
evolve from reactants to products and when the fraction of trajectories whose initial conditions permit this barrier to be accessed is
very small. In such cases, one is faced with the reactive trajectories being very rare among the full ensemble of trajectories needed
to properly simulate the laboratory experiment. Certainly, one can apply the trajectory-following technique outlined above, but if
one observes, for example, that only one trajectory in 106 produces a reaction, one may not have adequate statistics to determine
the reaction probability. One could subsequently run 108 trajectories (chosen again to represent the same experiment), and see
whether 100 or 53 or 212 of these trajectories react, thereby increasing the precision of your reaction probability. However, it may
be computationally impractical to perform 100 times as many trajectories to achieve better accuracy in the reaction probability.

When faced with such rare-event situations, one is usually better off using an approach that breaks the problem of determining
what fraction of the (properly weighted) initial conditions produce reaction into two parts:

i. among all of the (properly weighted) initial conditions, what fraction can access the high-energy barrier? and
ii. of those that do access the high barrier, how may react?

This way of formulating the reaction probability question leads to the transition state theory (TST) method that is treated in detail
in Chapter 8, along with some of its more common variants.

Briefly, the answer to the first question posed above involves computing the quasi-equilibrium fraction of reacting species that
reach the barrier region in terms of the partition functions of statistical mechanics. This step becomes practical if the chemical
reactants can be assumed to be in some form of thermal equilibrium (which is where these kinds of models are useful). In the
simplest form of TST, the answer to the second question posed above is taken to be "all trajectories that reach the barrier react". In

A B

b = 0 bMax A B

2πb db b b+δb

A B
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more sophisticated variants, other models are introduced to take into consideration that not all trajectories that cross over the barrier
indeed proceed onward to products and that some trajectories may tunnel through the barrier near its top. I will leave further
discussion of the TST to Chapter 8.

In addition to the classical trajectory and TST approaches to simulating chemical reactions, there are more quantum approaches.
These techniques should be used when the nuclei involved in the reaction include hydrogen or deuterium nuclei. A discussion of
the details involved in quantum propagation is beyond the level of this Chapter, so I will delay it until Chapter 8.
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CHAPTER OVERVIEW

6: Electronic Structure

The subjects you should now be familiar with include

The Hatree and Hartree-Fock models,
Koopmans’theorem
Atomic basis functions- Slater and Gaussian- and the notations used to describe them.
Static and dynamic electron correlation.
The CI, MPPT, CC, and DFT methods for treating correlation, as well as EOM or Greens function methods.
The Slater-Condon rules.
QM-MM methods.
Experimental tools to probe electronic structures including methods for metastable states.
Various contributions to spectroscopic line shapes and line broadening.

Electrons are the “glue” that holds the nuclei together in the chemical bonds of molecules and ions. Of course, it is the nuclei’s
positive charges that bind the electrons to the nuclei. The competitions among Coulomb repulsions and attractions as well as the
existence of non-zero electronic and nuclear kinetic energies make the treatment of the full electronic-nuclear Schrödinger equation
an extremely difficult problem. Electronic structure theory deals with the quantum states of the electrons, usually within the Born-
Oppenheimer approximation (i.e., with the nuclei held fixed). It also addresses the forces that the electrons’ presence creates on the
nuclei; it is these forces that determine the geometries and energies of various stable structures of the molecule as well as transition
states connecting these stable structures. Because there are ground and excited electronic states, each of which has different
electronic properties, there are different stable-structure and transition-state geometries for each such electronic state. Electronic
structure theory deals with all of these states, their nuclear structures, and the spectroscopies (e.g., electronic, vibrational,
rotational) connecting them. In this Chapter, you were introduced to many of the main topics of electronic structure theory.

6.1: Theoretical Treatment of Electronic Structure
6.2: Orbitals
6.3: The Hartree-Fock Approximation
6.4: Deficiencies in the Single Determinant Model
6.5: Various Approaches to Electron Correlation
6.6: The Slater-Condon Rules
6.7: Molecules Embedded in Condensed Media
6.8: High-End Methods for Treating Electron Correlation
6.9: Experimental Probes of Electronic Structure
6.10: Molecular Orbitals
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6.1: Theoretical Treatment of Electronic Structure
In Chapter 5, I introduced you to the strategies that theory uses to interpret experimental data relating to such matters, and how and
why theory can also be used to simulate the behavior of molecules. In carrying out simulations, the Born-Oppenheimer electronic
energy  as a function of the  coordinates of the  atoms in the molecule plays a central role. It is on this landscape that
one searches for stable isomers and transition states, and it is the second derivative (Hessian) matrix of this function that provides
the harmonic vibrational frequencies of such isomers. In the present Chapter, I want to provide you with an introduction to the tools
that we use to solve the electronic Schrödinger equation to generate  and the electronic wave function . In essence,
this treatment will focus on orbitals of atoms and molecules and how we obtain and interpret them.

For an atom, one can approximate the orbitals by using the solutions of the hydrogenic Schrödinger equation discussed in Part 1 of
this text. Although such functions are not proper solutions to the actual -electron Schrödinger equation (believe it or not, no one
has ever solved exactly any such equation for ) of any atom, they can be used as perturbation or variational starting-point
approximations when one may be satisfied with qualitatively accurate answers. In particular, the solutions of this one-electron
hydrogenic problem form the qualitative basis for much of atomic and molecular orbital theory. As discussed in detail in Part 1,
these orbitals are labeled by , , and  quantum numbers for the bound states and by  and  quantum numbers and the energy 
for the continuum states.

Much as the particle-in-a-box orbitals are used to qualitatively describe -electrons in conjugated polyenes or electronic bands in
solids, these so-called hydrogen-like orbitals provide qualitative descriptions of orbitals of atoms with more than a single electron.
By introducing the concept of screening as a way to represent the repulsive interactions among the electrons of an atom, an
effective nuclear charge  can be used in place of  in the hydrogenic  and  formulas to generate approximate atomic
orbitals to be filled by electrons in a many-electron atom. For example, in the crudest approximation of a carbon atom, the two 
electrons experience the full nuclear attraction so  for them, whereas the  and  electrons are screened by the two 
electrons, so  for them. Within this approximation, one then occupies two  orbitals with , two  orbitals with 

 and two  orbitals with  in forming the full six-electron product wave function of the lowest-energy state of carbon

However, such approximate orbitals are not sufficiently accurate to be of use in quantitative simulations of atomic and molecular
structure. In particular, their energies do not properly follow the trends in atomic orbital (AO) energies that are taught in
introductory chemistry classes and that are shown pictorially in Figure 6.1.

Figure 6.1.1: Energies of Atomic Orbitals as Functions of Nuclear Charge for Neutral Atoms.

For example, the relative energies of the  and  orbitals are not adequately described in a model that treats electron repulsion
effects in terms of a simple screening factor. So, now it is time to examine how we can move beyond the screening model and take
the electron repulsion effects, which cause the inter-electronic couplings that render the Schrödinger equation insoluble, into
account in a more reliable manner.

Atomic Units 
The electronic Hamiltonian that appears throughout this text is commonly expressed in the literature and in other texts in so-called
atomic units (aus). In that form, it is written as follows:

E(R) 3N N

E(R) ψ(r|R)

N

N > 1

n l m l m E

π

Zeff Z ψn,l,m En,l

1s

= 6Zeff 2s 2p 1s

= 4Zeff 1s Z = 6 2s

Z = 4 2p Z = 4
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Atomic units are introduced to remove all of the h , e, and me factors from the Schrödinger equation.

To effect the unit transformation that results in the Hamiltonian appearing as above, one notes that the kinetic energy operator
scales as  whereas the Coulomb potentials scale as   and as . So, if each of the Cartesian coordinates of the electrons and
nuclei were expressed as a unit of length  multiplied by a dimensionless length factor, the kinetic energy operator would involve
terms of the form

, and the Coulomb potentials would appear as  and , with the  and  factors
now referring to the dimensionless coordinates. A factor of  (which has units of energy since a_0 has units of length) can then
be removed from the Coulomb and kinetic energies, after which the kinetic energy terms appear as  and the
potential energies appear as  and . Then, choosing  changes the kinetic energy terms into ; as
a result, the entire electronic Hamiltonian takes the form given above in which no , me, or  factors appear. The value of the so-
called Bohr radius  turns out to be 0.529 Å, and the so-called Hartree energy unit , which factors out of He, is
27.21 eV or 627.51 kcal/mol.
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6.2: Orbitals

Hartree Description 

The energies and wave functions within the most commonly used theories of atomic structure are assumed to arise as solutions of a
Schrödinger equation whose Hamiltonian  possess three kinds of energies:

1. Kinetic energy, whose average value is computed by taking the expectation value of the kinetic energy operator  with

respect to any particular solution  to the Schrödinger equation:

2. Coulombic attraction energy with the nucleus of charge :

3. Coulomb repulsion energies with all of the  other electrons, which are assumed to occupy other atomic orbitals (AOs)
denoted , with this energy computed as

The Dirac notation  is used to represent the six-dimensional Coulomb integral

that describes the Coulomb repulsion between the charge density  for the electron in  and the charge density 
for the electron in . Of course, the sum over  must be limited to exclude  to avoid counting a “self-interaction” of the
electron in orbital  with itself.

The total energy  of the orbital , is the sum of the above three contributions:

This treatment of the electrons and their orbitals is referred to as the Hartree-level of theory. As stated above, when screened
hydrogenic AOs are used to approximate the  and  orbitals, the resultant  values do not produce accurate predictions. For
example, the negative of  should approximate the ionization energy for removal of an electron from the AO . Such ionization
potentials (IP s) can be measured, and the measured values do not agree well with the theoretical values when a crude screening
approximation is made for the AO s.

LCAO-Expansion 

To improve upon the use of screened hydrogenic AOs, it is most common to approximate each of the Hartree AOs { } as a linear
combination of so-called basis AOs { }:

using what is termed the linear-combination-of-atomic-orbitals (LCAO) expansion. In this equation, the expansion coefficients {
} are the variables that are to be determined by solving the Schrödinger equation

After substituting the LCAO expansion for  into this Schrödinger equation, multiplying on the left by one of the basis AOs ,
and then integrating over the coordinates of the electron in , one obtains
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This is a matrix eigenvalue equation in which the  and { } appear as eigenvalues and eigenvectors. The matrices 
and  are called the Hamiltonian and overlap matrices, respectively. An explicit expression for the former is obtained by
introducing the earlier definition of he:

An important thing to notice about the form of the matrix Hartree equations is that to compute the Hamiltonian matrix, one must
know the LCAO coefficients { } of the orbitals which the electrons occupy. On the other hand, these LCAO coefficients are
supposed to be found by solving the Hartree matrix eigenvalue equations. This paradox leads to the need to solve these equations
iteratively in a so-called self-consistent field (SCF) technique. In the SCF process, one inputs an initial approximation to the {

} coefficients. This then allows one to form the Hamiltonian matrix defined above. The Hartree matrix equations

are then solved for new { } coefficients and for the orbital energies { }. The new LCAO coefficients of those orbitals that are
occupied are then used to form a new Hamiltonian matrix, after which the Hartree equations are again solved for another
generation of LCAO coefficients and orbital energies. This process is continued until the orbital energies and LCAO coefficients
obtained in successive iterations do not differ appreciably. Upon such convergence, one says that a self-consistent field has been
realized because the { } coefficients are used to form a Coulomb field potential that details the electron-electron interactions.

Basis Sets 

Slater-type orbitals and Gaussian-type orbitals 

As noted above, it is possible to use the screened hydrogenic orbitals as the { }. However, much effort has been expended at
developing alternative sets of functions to use as basis orbitals. The result of this effort has been to produce two kinds of functions
that currently are widely used. The basis orbitals commonly used in the LCAO process fall into two primary classes:

1. Slater-type orbitals (STOs)

are characterized by quantum numbers , , and  and exponents (which characterize the orbital’s radial size) . The symbol 
 denotes the normalization constant.

2. Cartesian Gaussian-type orbitals (GTOs)

are characterized by quantum numbers , , and , which detail the angular shape and direction of the orbital, and exponents 
which govern the radial size.

For both types of AOs, the coordinates , , and  refer to the position of the electron relative to a set of axes attached to the
nucleus on which the basis orbital is located. Note that Slater-type orbitals (STO's) are similar to hydrogenic orbitals in the region
close to the nucleus. Specifically, they have a non-zero slope near the nucleus

In contrast, GTOs, have zero slope near  because
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We say that STOs display a cusp at  that is characteristic of the hydrogenic solutions, whereas GTOs do not. Although STOs
have the proper cusp behavior near nuclei, they are used primarily for atomic and linear-molecule calculations because the multi-
center integrals

which arise in polyatomic-molecule calculations (we will discuss these integrals later in this Chapter) cannot efficiently be
evaluated when STOs are employed. In contrast, such integrals can routinely be computed when GTOs are used. This fundamental
advantage of GTOs has lead to the dominance of these functions in molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e., their radial derivatives vanish at the nucleus), it is common to combine
two, three, or more GTOs, with combination coefficients which are fixed and not treated as LCAO parameters, into new functions
called contracted GTOs (CGTOs). Typically, a series of radially tight, medium, and loose GTOs are multiplied by contraction
coefficients and summed to produce a CGTO that approximates the proper cusp at the nuclear center (although no such
combination of GTOs can exactly produce such a cusp because each GTO has zero slope at .

Although most calculations on molecules are now performed using Gaussian orbitals, it should be noted that other basis sets can be
used as long as they span enough of the regions of space (radial and angular) where significant electron density resides. In fact, it is
possible to use plane wave orbitals of the form

where  is a normalization constant and , , and  are quantum numbers detailing the momenta or wavelength of the orbital
along the , , and  Cartesian directions. The advantage to using such simple orbitals is that the integrals one must perform are
much easier to handle with such functions. The disadvantage is that one must use many such functions to accurately describe
sharply peaked charge distributions of, for example, inner-shell core orbitals while still retaining enough flexibility to also describe
the much smoother electron density in the valence regions. Much effort has been devoted to developing and tabulating in widely
available locations sets of STO or GTO basis orbitals for main-group elements and transition metals. This ongoing effort is aimed
at providing standard basis set libraries which:

1. Yield predictable chemical accuracy in the resultant energies.
2. Are cost effective to use in practical calculations.
3. Are relatively transferable so that a given atom's basis is flexible enough to be used for that atom in various bonding

environments (e.g., hybridization and degree of ionization).

Fundamental Core and Valence Basis 

In constructing an atomic orbital basis, one can choose from among several classes of functions. First, the size and nature of the
primary core and valence basis must be specified. Within this category, the following choices are common:

1. A minimal basis in which the number of CGTO orbitals is equal to the number of core and valence atomic orbitals in the atom.
2. A double-zeta (DZ) basis in which twice as many CGTOs are used as there are core and valence atomic orbitals. The use of

more basis functions is motivated by a desire to provide additional variational flexibility so the LCAO process can generate
molecular orbitals of variable diffuseness as the local electronegativity of the atom varies. A valence double-zeta (VDZ) basis
has only one CGTO to represent the inner-shell orbitals, but uses two sets of CGTOs to describe the valence orbitals.

3. A triple-zeta (TZ) basis in which three times as many CGTOs are used as the number of core and valence atomic orbitals (of
course, there are quadruple-zeta and higher-zeta bases also). Moreover, there are VTZ bases that treat the inner-shell orbitals
with one CGTO and the valence orbitals with three CGTOs.

Optimization of the orbital exponents (z’s or a's) and the GTO-to-CGTO contraction coefficients for the kind of bases described
above has undergone considerable growth in recent years. The theory group at the Pacific Northwest National Labs (PNNL) offer a
world wide web site from which one can find (and even download in a form prepared for input to any of several commonly used
electronic structure codes) a wide variety of Gaussian atomic basis sets. This site can be accessed here. Professor Kirk Peterson at
Washington State University is involved in the PNNL basis set development project, but he also hosts his own basis set site.

Polarization Functions 

One usually enhances any core and valence basis set with a set of so-called polarization functions. They are functions of one higher
angular momentum than appears in the atom's valence orbital space (e.g., -functions for C, N, and O and -functions for H), and

r = 0

⟨ (1) (2)| | (1) (2)⟩χμ χκ

e2

| − |r1 r2
χν χγ (6.2.16)
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they have exponents (  or ) which cause their radial sizes to be similar to the sizes of the valence orbitals ( i.e., the polarization 
orbitals of the H atom are similar in size to the  orbital rather than to the  valence orbital of hydrogen). Thus, they are not
orbitals which describe the atom's valence orbital with one higher l-value; such higher-l valence orbitals would be radially more
diffuse.

A primary purpose of polarization functions is to give additional angular flexibility to the LCAO process in forming bonding
orbitals between pairs of valence atomic orbitals. This is illustrated in Figure 6.1.2 where polarization dp orbitals on C and O are
seen to contribute to formation of the bonding  orbital of a carbonyl group by allowing polarization of the carbon atom's  orbital
toward the right and of the oxygen atom's  orbital toward the left.

Figure 6.1.2 Oxygen and Carbon Form a  Bond That Uses the Polarization Functions on Each Atom

Polarization functions are essential in strained ring compounds such as cyclopropane because they provide the angular flexibility
needed to direct the electron density into regions between bonded atoms, but they are also important in unstrained compounds
when high accuracy is required.

Diffuse Functions 

When dealing with anions or Rydberg states, one must further augment the AO basis set by adding so-called diffuse basis orbitals.
The valence and polarization functions described above do not provide enough radial flexibility to adequately describe either of
these cases. The PNNL web site data base cited above offers a good source for obtaining diffuse functions appropriate to a variety
of atoms as does the site of Prof. Kirk Peterson.

Once one has specified an atomic orbital basis for each atom in the molecule, the LCAO-MO procedure can be used to determine
the  coefficients that describe the occupied and virtual (i.e., unoccupied) orbitals. It is important to keep in mind that the basis
orbitals are not themselves the SCF orbitals of the isolated atoms; even the proper atomic orbitals are combinations (with atomic
values for the  coefficients) of the basis functions. The LCAO-MO-SCF process itself determines the magnitudes and signs of
the . In particular, it is alternations in the signs of these coefficients allow radial nodes to form.

This page titled 6.2: Orbitals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons.
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6.3: The Hartree-Fock Approximation
Unfortunately, the Hartree approximation ignores an important property of electronic wavefunctions- their permutational
antisymmetry. The full electronic Hamiltonian

is invariant (i.e., is left unchanged) under the operation  in which a pair of electrons have their labels (i, j) permuted. We say
that  commutes with the permutation operator . This fact implies that any solution  to  must also be an
eigenfunction of  Because permutation operators are idempotent, which means that if one applies  twice, one obtains the
identity , it can be seen that the eigenvalues of  must be either  or . That is, if , then , but 

 means that , so  or .

As a result of  commuting with electron permutation operators and of the idempotency of , the eigenfunctions  must either be
odd or even under the application of any such permutation. Particles whose wavefunctions are even under  are called Bose
particles or Bosons; those for which  is odd are called Fermions. Electrons belong to the latter class of particles.

The simple spin-orbital product function used in Hartree theory

does not have the proper permutational symmetry. For example, the Be atom function

is not odd under the interchange of the labels of electrons 3 and 4; instead one obtains

However, such products of spin-orbitals (i.e., orbitals multiplied by  or  spin functions) can be made into properly antisymmetric
functions by forming the determinant of an  matrix whose row index labels the spin orbital and whose column index labels
the electron. For example, the Be atom function  produces the  matrix whose determinant is
shown below

Clearly, if one were to interchange any columns of this determinant, one changes the sign of the function. Moreover, if a
determinant contains two or more rows that are identical (i.e., if one attempts to form such a function having two or more spin-
orbitals equal), it vanishes. This is how such antisymmetric wavefunctions embody the Pauli exclusion principle.

A convenient way to write such a determinant is as follows:

where the sum is over all N! permutations of the  spin-orbitals and the notation  means that a –1 is affixed to any
permutation that involves an odd number of pair wise interchanges of spin-orbitals and a +1 sign is given to any that involves an

even number. To properly normalize such a determinental wavefunction, one must multiply it by . So, the final result is that a

wavefunction of the form

which is often written in short-hand notation as,
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has the proper permutational antisymmetry. Note that such functions consist of as sum of  factors, all of which have exactly the
same number of electrons occupying the same spin-orbitals; the only difference among the  terms involves which electron
occupies which spin-orbital. For example, in the  function appropriate to the excited state of He, one has

This function is clearly odd under the interchange of the labels of the two electrons, yet each of its two components has one
electron is a  spin-orbital and another electron in a  spin-orbital.

Although having to make  antisymmetric appears to complicate matters significantly, it turns out that the Schrödinger equation
appropriate to the spin-orbitals in such an antisymmetrized product wavefunction is nearly the same as the Hartree Schrödnger
equation treated earlier. In fact, if one variationally minimizes the expectation value of the -electron Hamiltonian for the above
antisymmetric product wavefunction subject to the condition that the spin-orbitals are orthonormal

one obtains the following equation for the optimal :

In this expression, which is known as the Hartree-Fock equation, the same kinetic and nuclear attraction potentials occur as in the
Hartree equation. Moreover, the same Coulomb potential

appears. However, one also finds a so-called exchange contribution to the Hartree-Fock potential that is equal to

and is often written in short-hand notation as . Notice that the Coulomb and exchange terms cancel for the 
case; this causes the artificial self-interaction term  that can appear in the Hartree equations (unless one explicitly
eliminates it) to automatically cancel with the exchange term  in the Hartree-Fock equations.

To derive the above Hartree-Fock equations, one must make use of the so-called Slater-Condon rules to express the Hamiltonian
expectation value as

This expectation value is a sum of terms (the kinetic energy and electron-nuclear Coulomb potentials) that vary quadratically on the
spin-orbitals (i.e., as ) plus another sum (the Coulomb and exchange electron-electron interaction terms) that
depend on the fourth power of the spin-orbitals (i.e., as . When these terms are differentiated to minimize the
expectation value, they generate factors that scale linearly and with the third power of the spin-orbitals. These are the factors

and
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appearing in the Hartree-Fock equations shown above.

When the LCAO expansion of each Hartree-Fock (HF) spin-orbital is substituted into the above HF Schrödinger equation, a matrix
equation is again obtained:

where the overlap integral  is as defined earlier, and the  matrix element is

Clearly, the only difference between this expression and the corresponding result of Hartree theory is the presence of the last term,
the exchange integral. The SCF iterative procedure used to solve the Hartree equations is again used to solve the HF equations.

It is useful to reflect on the physical meaning of the Coulomb and exchange interactions between pairs of orbitals. For example, the
Coulomb integral

appropriate to the two orbitals shown in Figure 6.1.3 represents the Coulombic repulsion energy  of two charge densities, 

 and , integrated over all locations  and  of the two electrons.

Figure 6.1.3: An s and a p Orbital and Their Overlap Region

In contrast, the exchange integral

can be thought of as the Coulombic repulsion between two electrons whose coordinates  and  are both distributed throughout the
“overlap region”  . This overlap region is where both  and  have appreciable magnitude, so exchange integrals tend to be
significant in magnitude only when the two orbitals involved have substantial regions of overlap.

Finally, a few words are in order about one of the most computer time-consuming parts of any Hartree-Fock calculation (or those
discussed later)- the task of evaluating and transforming the two-electron integrals

When M GTOs are used as basis functions, the evaluation of  of these integrals often poses a major hurdle. For example, with

500 basis orbitals, there will be of the order of 7.8 x10  such integrals. With each integral requiring 2 words of disk storage (most
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integrals need to be evaluated in double precision), this would require at least 1.5 x10  Mwords of disk storage. Even in the era of
modern computers that possess 500 Gby disks, this is a significant requirement. One of the more important technical advances that
is under much current development is the efficient calculation of such integrals when the product functions  and 

 that display the dependence on the two electrons’ coordinates r and r’ are spatially distant. In particular, so-called
multipole expansions of these product functions are used to obtain more efficient approximations to their integrals when these
functions are far apart. Moreover, such expansions offer a reliable way to ignore (i.e., approximate as zero) many integrals whose

product functions are sufficiently distant. Such approaches show considerable promise for reducing the  two-electron integral

list to one whose size scales much less strongly with the size of the AO basis and form an important component if efforts to achieve
CPU and storage needs that scale linearly with the size of the molecule.

Koopmans’ Theorem 

The HF-SCF equations  imply that the orbital energies  can be written as:

where  represents the kinetic ( ) and nuclear attraction ( ) energies, respectively. Thus,  is the average value of the
kinetic energy plus Coulombic attraction to the nuclei for an electron in  plus the sum over all of the spin-orbitals occupied in 
of Coulomb minus Exchange interactions of these electrons with the electron in .

If  is an occupied spin-orbital, the  term  disappears in the above sum and the remaining terms in the sum
represent the Coulomb minus exchange interaction of  with all of the  other occupied spin-orbitals. If  is a virtual spin-
orbital, this cancelation does not occur because the sum over  does not include . So, one obtains the Coulomb minus
exchange interaction of  with all  of the occupied spin-orbitals in . Hence the energies of occupied orbitals pertain to
interactions appropriate to a total of  electrons, while the energies of virtual orbitals pertain to a system with  electrons.
This difference is very important to understand and to keep in mind.

Let us consider the following model of the detachment or attachment of an electron in an -electron system.

1. In this model, both the parent molecule and the species generated by adding or removing an electron are treated at the single-
determinant level.

2. The Hartree-Fock orbitals of the parent molecule are used to describe both species. It is said that such a model neglects orbital
relaxation (i.e., the re-optimization of the spin-orbitals to allow them to become appropriate to the daughter species).

Within this model, the energy difference between the daughter and the parent can be written as follows (  represents the particular
spin-orbital that is added or removed):

for electron detachment:

and for electron attachment:

Let’s derive this result for the case in which an electron is added to the  spin-orbital. Again, using the Slater-Condon rules
from Section 6.1.2 of this Chapter, the energy of the -electron determinant with spin-orbitals  through  occupied is

which can also be written as
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Likewise, the energy of the -electron determinant wavefunction is

The difference between these two energies is given by

That is, the energy difference is equal to minus the expression for the energy of the  spin-orbital, which was given earlier.

So, within the limitations of the HF, frozen-orbital model, the ionization potentials (IPs) and electron affinities (EAs) are given as
the negative of the occupied and virtual spin-orbital energies, respectively. This statement is referred to as Koopmans’ theorem; it is
used extensively in quantum chemical calculations as a means of estimating IPs and EAs and often yields results that are
qualitatively correct (i.e., ± 0.5 eV).

Orbital Energies and the Total Energy 

The total HF-SCF electronic energy can be written as:

and the sum of the orbital energies of the occupied spin-orbitals is given by:

These two expressions differ in a very important way; the sum of occupied orbital energies double counts the Coulomb minus
exchange interaction energies. Thus, within the Hartree-Fock approximation, the sum of the occupied orbital energies is not equal
to the total energy. This finding teaches us that we can not think of the total electronic energy of a given orbital occupation in terms
of the orbital energies alone. We need to also keep track of the inter-electron Coulomb and Exchange energies.

6.3: The Hartree-Fock Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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6.4: Deficiencies in the Single Determinant Model
To achieve reasonable chemical accuracy (e.g., ± 5 kcal/mole in EAs or IPs or bond energies) in electronic structure calculations, one can
not describe the wavefunction  in terms of a single determinant. The reason such a wavefunction is inadequate is because the spatial
probability density functions are not correlated. This means the probability of finding one electron at position r is independent of where the
other electrons are, which is absurd because the electrons’ mutual Coulomb repulsion causes them to avoid one another. This mutual
avoidance is what we call electron correlation because the electrons’ motions, as reflected in their spatial probability densities, are
correlated (i.e., inter-related). Let us consider a simple example to illustrate this problem with single determinant functions. The 

 determinant, when written as

can be multiplied by itself to produce the 2-electron spin- and spatial- probability density:

If we now integrate over the spins of the two electrons and make use of

and

we obtain the following spatial (i.e., with spin absent) probability density:

This probability, being a product of the probability density for finding one electron at r times the density of finding another electron at ,
clearly has no correlation in it. That is, the probability of finding one electron at r does not depend on where  the other electron is. This
product form for  is a direct result of the single-determinant form for y, so this form must be wrong if electron correlation is to be
accounted for.

Electron Correlation 

Now, we need to ask how  should be written if electron correlation effects are to be taken into account. As we now demonstrate, it turns
out that one can account for electron avoidance by taking  to be a combination of two or more determinants that differ by the promotion of
two electrons from one orbital to another orbital. For example, in describing the  bonding electron pair of an olefin or the  electron
pair in alkaline earth atoms, one mixes in doubly excited determinants of the form  or , respectively.

Briefly, the physical importance of such doubly-excited determinants can be made clear by using the following identity involving
determinants:

where

This identity is important to understand, so please make sure you can work through the algebra needed to prove it. It allows one to interpret
the combination of two determinants that differ from one another by a double promotion from one orbital  to another  as equivalent
to a singlet coupling (i.e., having  spin function) of two different orbitals  and  that comprise what are called
polarized orbital pairs. In the simplest embodiment of such a configuration interaction (CI) description of electron correlation, each electron
pair in the atom or molecule is correlated by mixing in a configuration state function (CSF) in which that electron pair is doubly excited to a
correlating orbital. A CSF is the minimum combination of determinants needed to express the proper spin eigenfunction for a given orbital
occupation.

In the olefin example mentioned above, the two non-orthogonal polarized orbital pairs involve mixing the p and p* orbitals to produce two
left-right polarized orbitals as depicted in Figure 6.1.9:
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Figure 6.1. 9: Left and Right Polarized Orbitals of an Olefin

In this case, one says that the  electron pair undergoes left-right correlation when the  determinant is mixed into the CI
wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the  and  orbitals (actually, one must mix in equal
amounts of , and  orbitals to preserve overall  symmetry in this case), and give rise to angular correlation of the electron pair.
Such a pair of polarized orbitals is shown in Figure 6.1.10.

Figure 6.1.10: Angularly Polarized Orbital Pairs

More specifically, the following four determinants are found to have the largest amplitudes in  for Be:

The fact that the latter three terms possess the same amplitude  is a result of the requirement that a state of  symmetry is desired. It can
be shown that this function is equivalent to:

where .

Here two electrons occupy the  orbital (with opposite,  and  spins), and are thus not being treated in a correlated manner, while the
other pair resides in /  polarized orbitals in a manner that instantaneously correlates their motions. These polarized orbital pairs 

 are formed by combining the  orbital with the  orbital in a ratio determined by .

This ratio  can be shown using perturbation theory to be proportional to the magnitude of the coupling  matrix
element between the two configurations involved and inversely proportional to the energy difference

between these configurations. In general, configurations that have similar Hamiltonian expectation values and that are coupled strongly give
rise to strongly mixed (i.e., with large  ratios) polarized orbital pairs.

II.Later in this Chapter, you will learn how to evaluate Hamiltonian matrix elements between pairs of antisymmetric wavefunctions. If you
are anxious to learn this now, go to the subsection entitled The Slater-Condon Rules and read that before returning here.

In each of the three equivalent terms in the alkaline earth wavefunction, one of the valence electrons moves in a  orbital polarized
in one direction while the other valence electron moves in the  orbital polarized in the opposite direction. For example, the first
term

describes one electron occupying a  polarized orbital while the other electron occupies the  orbital. The electrons thus
reduce their Coulomb repulsion by occupying different regions of space; in the SCF picture , both electrons reside in the same 
region of space. In this particular example, the electrons undergo angular correlation to avoid one another.

The use of doubly excited determinants is thus seen as a mechanism by which  can place electron pairs, which in the single-configuration
picture occupy the same orbital, into different regions of space (i.e., each one into a different member of the polarized orbital pair) thereby
lowering their mutual Coulomb repulsion. Such electron correlation effects are extremely important to include if one expects to achieve
chemically meaningful accuracy (i.e., ± 5 kcal/mole).
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Essential Configuration Interaction 

There are occasions in which the inclusion of two or more determinants in  is essential to obtaining even a qualitatively correct description
of the molecule’s electronic structure. In such cases, we say that we are including essential correlation effects. To illustrate, let us consider
the description of the two electrons in a single covalent bond between two atoms or fragments that we label X and Y. The fragment orbitals
from which the bonding  and antibonding  MOs are formed we will label  and , respectively.

Several spin- and spatial- symmetry adapted 2-electron determinants (i.e., CSFs) can be formed by placing two electrons into the  and 
orbitals. For example, to describe the singlet determinant corresponding to the closed-shell  orbital occupancy, a single Slater determinant

suffices. An analogous expression for the  determinant is given by

Also, the  component of the triplet state having  orbital occupancy can be written as a single Slater determinant:

as can the  component of the triplet state

However, to describe the singlet and  triplet states belonging to the  occupancy, two determinants are needed:

is the singlet and

is the triplet (note, you can obtain this  triplet by applying  to the  triplet). In each case, the spin
quantum number , its z-axis projection , and the  quantum number are given in the conventional  term symbol notation.

As the distance  between the X and Y fragments is changed from near its equilibrium value of  and approaches infinity, the energies of
the  and  orbitals vary in a manner well known to chemists as depicted in Figure 6.1.11 if X and Y are identical.

Figure 6.1.11: Orbital Correlation Diagram Showing Two - Type Orbitals Combining to Form a Bonding and an Antibonding Molecular
Orbital.

If X and Y are not identical, the  and  orbitals still combine to form a bonding  and an antibonding  orbital. The energies of these
orbitals, for R values ranging from near  to , are depicted in Figure 6.1.12 for the case in which X is more electronegative than
Y.
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Figure 6.1.12: Orbital Correlation Diagram For - Type Orbitals in the Heteronuclear Case

The energy variation in these orbital energies gives rise to variations in the energies of the six determinants listed above. As , the
determinants’ energies are difficult to intuit because the  and  orbitals become degenerate (in the homonuclear case) or nearly so (in the 

 case). To pursue this point and arrive at an energy ordering for the determinants that is appropriate to the  region, it is
useful to express each such function in terms of the fragment orbitals  and  that comprise  and . To do so, the LCAO-MO
expressions for  and ,

and

are substituted into the Slater determinant definitions given above. Here  and  are the normalization constants. The parameter  is 1.0
in the homonuclear case and deviates from 1.0 in relation to the  and  orbital energy difference (if  lies below , then ; if 
lies above , ).

Let us examine the  case to keep the analysis as simple as possible. The process of substituting the above expressions for  and 
into the Slater determinants that define the singlet and triplet functions can be illustrated as follows for the  case:

The first two of these atomic-orbital-based Slater determinants (  and ) are called ionic because they describe atomic
orbital occupancies, which are appropriate to the  region that correspond to  and  valence bond structures,
while  and  are called "covalent" because they correspond to  structures.

In similar fashion, the remaining five determinant functions may be expressed in terms of fragment-orbital-based Slater determinants. In so
doing, use is made of the antisymmetry of the Slater determinants (e.g., ), which implies that any determinant in
which two or more spin-orbitals are identical vanishes . The result of decomposing the MO-based determinants
into their fragment-orbital components is as follows:

These decompositions of the six valence determinants into fragment-orbital or valence bond components allow the  energies of
these states to specified. For example, the fact that both  and  contain 50% ionic and 50% covalent structures implies that, as 

, both of their energies will approach the average of the covalent and ionic atomic energies 
. The  energy approaches the purely ionic value  as . The

energies of  and  all approach the purely covalent value  as .

The behaviors of the energies of the six valence determinants as  varies are depicted in Figure 6.1.13 for situations in which the homolytic
bond cleavage is energetically favored (i.e., for which ).
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Figure 6.1. 13: Configuration Correlation Diagram Showing How the Determinants’ Energies Vary With .

It is essential to realize that the energies of the determinants do not represent the energies of the true electronic states. For -values at which
the determinant energies are separated widely, the true state energies are rather well approximated by individual determinant energies; such
is the case near Re for the  state.

However, at large , the situation is very different, and it is in such cases that what we term essential configuration interaction occurs.
Specifically, for the  example, the  and  determinants undergo essential CI coupling to form a pair of states of  symmetry
(the  CSF cannot partake in this CI mixing because it is of ungerade symmetry; the  states can not mix because they are of triplet
spin symmetry). The CI mixing of the  and  determinants is described in terms of a 2x2 secular problem

The diagonal entries are the determinants’ energies depicted in Figure 6.1.13. The off-diagonal coupling matrix elements can be expressed
in terms of an exchange integral between the  and  orbitals:

Later in this Chapter, you will learn how to evaluate Hamiltonian matrix elements between pairs of antisymmetric wavefunctions and to
express them in terms of one- and two-electron integrals. If you are anxious to learn this now, go to the subsection entitled the Slater-
Condon Rules and read that before returning here.

At , where the  and  determinants are degenerate, the two solutions to the above CI matrix eigenvalue problem are:

with respective amplitudes for the  and  CSFs given by

The first solution thus has

which, when decomposed into atomic orbital components, yields

The other root has

So, we see that  and , which both contain 50% ionic and 50% covalent parts, combine to produce  which is purely covalent and 
 which is purely ionic.

The above essential CI mixing of  and  as  qualitatively alters the energy diagrams shown above. Descriptions of the
resulting valence singlet and triplet S states are given in Figure 6.1.14 for homonuclear situations in which covalent products lie below the
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ionic fragments.

Figure 6.1.14: State Correlation Diagram Showing How the Energies of the States, Comprised of Combinations of Determinants, vary with 
.
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6.5: Various Approaches to Electron Correlation
There are numerous procedures currently in use for determining the best Born-Oppenheimer electronic wave function that is
usually expressed in the form:

where  is a spin-and space- symmetry-adapted configuration state function (CSF) that consists of one or more determinants 
 combined to produce the desired symmetry. In all such wave functions, there are two kinds of parameters that

need to be determined- the CI coefficients and the LCAO-MO coefficients describing the fIk in terms of the AO basis functions.
The most commonly employed methods used to determine these parameters include:

The CI Method 
In this approach, the LCAO-MO coefficients are determined first usually via a single-configuration HF SCF calculation. The CI
coefficients are subsequently determined by making the expectation value  variationally stationary with  chosen
to be of the form

As with all such linear variational problems, this generates a matrix eigenvalue equation

to be solved for the optimum { } coefficients and for the optimal energy .

The CI wave function is most commonly constructed from spin- and spatial- symmetry adapted combinations of determinants
called configuration state functions (CSFs)  that include:

1. The so-called reference CSF that is the SCF wave function used to generate the molecular orbitals .
2. CSFs generated by carrying out single, double, triple, etc. level excitations (i.e., orbital replacements) relative to the reference

CSF. CI wave functions limited to include contributions through various levels of excitation are denoted S (singly), D (doubly),
SD (singly and doubly), SDT (singly, doubly, and triply) excited.

The orbitals from which electrons are removed can be restricted to focus attention on correlations among certain orbitals. For
example, if excitations out of core orbitals are excluded, one computes a total energy that contains no core correlation energy. The
number of CSFs included in the CI calculation can be large. CI wave functions including 5,000 to 50,000 CSFs are routine, and
functions with one to several billion CSFs are within the realm of practicality.

The need for such large CSF expansions can be appreciated by considering (i) that each electron pair requires at least two CSFs to

form the polarized orbital pairs discussed earlier in this Chapter, (ii) there are of the order of  electron pairs for a

molecule containing  electrons, hence (iii) the number of terms in the CI wave function scales as . For a molecule containing
ten electrons, there could be  terms in the CI expansion. This may be an over estimate of the number of CSFs
needed, but it demonstrates how rapidly the number of CSFs can grow with the number of electrons.

The Hamiltonian matrix elements  between pairs of CSFs are, in practice, evaluated in terms of one- and two- electron
integrals over the molecular orbitals. Prior to forming the  matrix elements, the one- and two- electron integrals, which can be
computed only for the atomic (e.g., STO or GTO) basis, must be transformed to the molecular orbital basis. This transformation
step requires computer resources proportional to the fifth power of the number of basis functions, and thus is one of the more
troublesome steps in most configuration interaction (and most other correlated) calculations.

To transform the two-electron integrals  from this AO basis to the MO basis, one proceeds as

follows:

1. First one utilizes the original AO-based integrals to form a partially transformed set of integrals

ψ = ,∑
i

miCIΦi (6.5.1)
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This step requires of the order of  operations.

2. Next one takes the list  and carries out another so-called one-index transformation

3. This list  is then subjected to another one-index transformation to generate 

, after which

4.  is subjected to the fourth one-index transformation to form the final MO-based integral list 

. In total, these four transformation steps require  computer operations.

A variant of the CI method that is sometimes used is called the multi-configurational self-consistent field (MCSCF) method. To
derive the working equations of this approach, one minimizes the expectation value of the Hamiltonian for a trial wave function
consisting of a linear combination of CSFs

In carrying out this minimization process, one varies both the linear { } expansion coefficients and the LCAO-MO coefficients {
} describing those spin-orbitals that appear in any of the CSFs { }. This produces two sets of equations that need to be

solved:

1. A matrix eigenvalue equation

of the same form as arises in the CI method, and

2. equations that look very much like the HF equations

but in which the he matrix element is

Here  replaces the sum  that appears in the HF equations, with  depending on both the LCAO-MO
coefficients { } of the spin-orbitals and on the { } expansion coefficients. These equations are solved through a self-
consistent process in which initial { } coefficients are used to form the matrix and solve for the { } coefficients, after which
the  can be determined and the HF-like equations solved for a new set of { } coefficients, and so on until convergence is
reached.

Perturbation Theory 
This method uses the single-configuration SCF process to determine a set of orbitals { }. Then, with a zeroth-order Hamiltonian
equal to the sum of the  electrons’ Fock operators , perturbation theory is used to determine the CI amplitudes
for the other CSFs. The Møller-Plesset perturbation (MPPT) procedure is a special case in which the above sum of Fock operators
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is used to define . The amplitude for the reference CSF is taken as unity and the other CSFs' amplitudes are determined by using
 as the perturbation. This perturbation is the difference between the true Coulomb interactions among the electrons and the

mean-field approximation to those interactions:

where  and  are the Coulomb and exchange operators defined earlier in this Chapter and the sum over  runs over the  spin-
orbitals that are occupied in the Hartree-Fock wave function that forms the zeroth-order approximation to .

In the MPPT method, once the reference CSF is chosen and the SCF orbitals belonging to this CSF are determined, the wave
function  and energy  are determined in an order-by-order manner as is the case in the RSPT discussed in Chapter 3. In fact,
MPPT is just RSPT with the above fluctuation potential as the perturbation. The perturbation equations determine what CSFs to
include through any particular order. This is one of the primary strengths of this technique; it does not require one to make further
choices, in contrast to the CI treatment where one needs to choose which CSFs to include.

For example, the first-order wave function correction  is:

where the SCF orbital energies are denoted  and  represents a CSF that is doubly excited (  and  are replaced by  and
) relative to the SCF wave function . The denominators  arise from  because each of these

zeroth-order energies is the sum of the orbital energies for all spin-orbitals occupied. The excited CSFs  are the zeroth-order
wave functions other than the reference CSF. Only doubly excited CSFs contribute to the first-order wave function; the fact that the
contributions from singly excited configurations vanish in  is known at the Brillouin theorem.

The Brillouin theorem can be proven by considering Hamiltonian matrix elements coupling the reference CSF  to singly-excited
CSFs Fim. The rules for evaluating all such matrix elements are called Slater-Condon rules and are given later in this Chapter. If
you don’t know them, this would be a good time to go read the subsection on these rules before returning here. From the Slater-
Condon rules, we know that the matrix elements in question are given by

Here, the factor  simply permutes the coordinates  and  to generate the exchange integral. The sum of two electron integrals
on the right-hand side above can be extended to include the terms arising from  because vanishes. As a result, the entire right-
hand side can be seen to reduce to the matrix element of the Fock operator :

The matrix elements vanish because the spin-orbitals are eigenfunctions of  and are orthogonal to each other.

The MPPT energy  is given through second order as in RSPT by

and again only contains contributions from the doubly excited CSFs. Both  and  are expressed in terms of two-electron integrals
 (that are sometimes denoted ) coupling the virtual spin-orbitals  and  to the spin-orbitals from which

electrons were excited  and  as well as the orbital energy differences  accompanying such excitations.
Clearly, major contributions to the correlation energy are made by double excitations into virtual orbitals  with large 

 integrals and small orbital energy gaps . In higher order corrections, contributions from CSFs
that are singly, triply, etc. excited relative to the HF reference function  appear, and additional contributions from the doubly
excited CSFs also enter. The various orders of MPPT are usually denoted MPn (e.g., MP2 means second-order MPPT).
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The Coupled-Cluster Method 

As noted above, when the Hartree-Fock wave function  is used as the zeroth-order starting point in a perturbation expansion, the
first (and presumably most important) corrections to this function are the doubly-excited determinants. In early studies of CI
treatments of electron correlation, it was observed that double excitations had the largest  coefficients (after the SCF wave
function, which has the very largest ). Moreover, in CI studies that included single, double, triple, and quadruple level
excitations relative to the dominant SCF determinant, it was observed that quadruple excitations had the next largest  amplitudes
after the double excitations. And, very importantly, it was observed that the amplitudes  of the quadruply excited CSFs 

  could be very closely approximated as products of the amplitudes   of the doubly excited CSFs  and . This
observation prompted workers to suggest that a more compact and efficient expansion of the correlated wave function might be
realized by writing  as:

where  is the SCF determinant and the operator  appearing in the exponential is taken to be a sum of operators

that create single ( ), double ( ), etc. level excited CSFs when acting on . As I show below, this so-called coupled-cluster (CC)
form for  then has the characteristic that the dominant contributions from quadruple excitations have coefficients nearly equal to
the products of the coefficients of their constituent double excitations.

In any practical calculation, this sum of  operators would be truncated to keep the calculation practical. For example, if
excitation operators higher than  were neglected, then one would use . However, even when  is so truncated,
the resultant  would contain excitations of higher order. For example, using the truncation just introduced, we would have

This function contains single excitations (in ), double excitations (in  and in ), triple excitations (in , , 
, and ), and quadruple excitations in a variety of terms including  and , as well as even higher level

excitations. By the design of this wave function, the quandruple excitations  will have amplitudes given as products of the
amplitudes of the double excitations  just as were found by earlier CI workers to be most important. Hence, in CC theory, we
say that quadruple excitations include unlinked products of double excitations arising from the  product; the quadruple
excitations arising from  would involve linked terms and would have amplitudes that are not products of double-excitation
amplitudes.

After writing  in terms of an exponential operator, one is faced with determining the amplitudes of the various single, double, etc.
excitations generated by the  operator acting on . This is done by writing the Schrödinger equation as:

and then multiplying on the left by  to obtain:

The CC energy is then calculated by multiplying this equation on the left by  and integrating over the coordinates of all the
electrons:

In practice, the combination of operators appearing in this expression is rewritten and dealt with as follows:

this so-called Baker-Campbell-Hausdorf expansion of the exponential operators can be shown truncate exactly after the fourth
power term shown here. So, once the various operators and their amplitudes that comprise  are known,  is computed using the
above expression that involves various powers of the  operators.
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The equations used to find the amplitudes (e.g., those of the  operator , where the  are the amplitudes and 
 are the excitation operators that promote two electrons from  and  into  and ) of the various excitation level are

obtained by multiplying the above Schrödinger equation on the left by an excited determinant of that level and integrating. For
example, the equation for the double-excitations is:

The zero arises from the right-hand side of  and the fact that ; that is, the determinants
are orthonormal. The number of such equations is equal to the number of doubly excited determinants , which is equal to the
number of unknown  amplitudes. So, the above quartic equations must be solved to determine the amplitudes appearing in the
various  operators. Then, as noted above, once these amplitudes are known, the energy  can be computed using the earlier
quartic equation. Having to solve many coupled quartic equations is one of the most severe computational challenges of CC theory.

Clearly, the CC method contains additional complexity as a result of the exponential expansion form of the wave function  and
the resulting coupled quartic equations that need to be solved to determine the  amplitudes. However, it is this way of writing 
that allows us to automatically build in the fact that products of double excitations are the dominant contributors to quadruple
excitations (and  is the dominant component of six-fold excitations, not ). In fact, the CC method is today one of the
most accurate tools we have for calculating molecular electronic energies and wave functions.

The Density Functional Method 
These approaches provide alternatives to the conventional tools of quantum chemistry, which move beyond the single-
configuration picture by adding to the wave function more configurations (i.e., excited determinants) whose amplitudes they each
determine in their own way. As noted earlier, these conventional approaches can lead to a very large number of CSFs in the
correlated wave function, and, as a result, a need for extraordinary computer resources.

The density functional approaches are different. Here one solves a set of orbital-level equations

in which the orbitals { } feel potentials due to the nuclear centers (having charges ), Coulombic interaction with the total
electron density , and a so-called exchange-correlation potential denoted . The particular electronic state for which the
calculation is being performed is specified by forming a corresponding density  that, in turn, is often expressed as a sum of
squares of occupied orbitals multiplied by orbitial occupation numbers. Before going further in describing how DFT calculations
are carried out, let us examine the origins underlying this theory.

The so-called Hohenberg-Kohn theorem states that the ground-state electron density  of the atom or molecule or ion of interest
uniquely determines the potential  in the molecule’s electronic Hamiltonian (i.e., the positions and charges of the system’s
nuclei)

and, because H determines all of the energies and wave functions of the system, the ground-state density  therefore determines
all properties of the system.

One proof of this theorem proceeds as follows:

a.  determines the number of electrons  because .
b. Assume that there are two distinct potentials (aside from an additive constant that simply shifts the zero of total energy) 

and  which, when used in  and , respectively, to solve for a ground state produce ,  and ,  that have
the same one-electron density: .

c. If we think of  as trial variational wave function for the Hamiltonian , we know that 
.

d. Similarly, taking  as a trial function for the  Hamiltonian, one finds that .
e. Adding the equations in c and d gives
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a clear contradiction unless the electronic state of interest is degenerate.

Hence, there cannot be two distinct potentials  and  that give the same non-degenerate ground-state . So, the ground-state
density  uniquely determines  and , and thus H. Furthermore, because the eigenfunctions of  determine all properties of
the ground state, then , in principle, determines all such properties. This means that even the kinetic energy and the electron-
electron interaction energy of the ground-state are determined by . It is easy to see that  gives the
average value of the electron-nuclear (plus any additional one-electron additive potential) interaction in terms of the ground-state
density . However, how are the kinetic energy  and the electron-electron interaction  energy expressed in terms of r?

There is another point of view that I find sheds even more light on why it makes sense that the ground-state electron density 
contains all the information needed to determine all properties. It was shown many years ago, by examining the mathematical
character of the Schrödinger equation, that the ground-state wave function  has certain so-called cusps in the neighborhoods
of the nuclear centers . In particular  must obey

That is, the derivative or slope of the natural logarithm of the true ground-state wave function must be as any of the electrons’
positions approach the nucleus of charge  residing at position . Because the ground-state electron density can be expressed in
terms of the ground-state wave function as

it can be shown that the ground-state density also displays cusps at the nuclear centers as .

where me is the electron mass and e is the unit of charge. So, imagine that you knew the true ground-state density at all points in
space. You could integrate the density over all space

to determine how many electrons the system has. Then, you could explore over all space to find points at which the density had
sharp points characterized by non-zero derivatives in the natural logarithm of the density. The positions  of such points specify
the nuclear centers, and by measuring the slopes in  at each location, one could determine the charges of these nuclei
through

This demonstrates why the ground-state density is all one needs to fully determine the locations and charges of the nuclei as well as
the number of electrons and thus the entire Hamiltonian .

The main difficulty with DFT is that the Hohenberg-Kohn theorem shows the values of , , , etc. are all unique functionals of
the ground-state  (i.e., that they can, in principle, be determined once  is given), but it does not tell us what these functional
relations are.

To see how it might make sense that a property such as the kinetic energy, whose operator  involves derivatives, can
be related to the electron density, consider a simple system of  non-interacting electrons moving in a three-dimensional cubic box
potential. The energy states of such electrons are known to be

where  is the length of the box along the three axes, and , , and  are the quantum numbers describing the state. We can
view  as defining the squared radius of a sphere in three dimensions, and we realize that the density of
quantum states in this space is one state per unit volume in the , ,  space. Because , , and  must be positive integers,
the volume covering all states with energy less than or equal to a specified energy  is 1/8 the volume of the
sphere of radius :

Since there is one state per unit of such volume,  is also the number of states with energy less than or equal to , and is called
the integrated density of states. The number of states  with energy between  and , the density of states, is the
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derivative of :

If we calculate the total energy for these non-interacting  electrons that doubly occupy all states having energies up to the so-
called Fermi energy (i.e., the energy of the highest occupied molecular orbital HOMO), we obtain the ground-state energy:

The total number of electrons  can be expressed as

which can be solved for  in terms of  to then express  in terms of  instead of in terms of :

This gives the total energy, which is also the kinetic energy in this case because the potential energy is zero within the box and

because the electrons are assumed to have no interactions among themselves, in terms of the electron density . It

therefore may be plausible to express kinetic energies in terms of electron densities , but it is still by no means clear how to do
so for real atoms and molecules with electron-nuclear and electron-electron interactions operative.

In one of the earliest DFT models, the Thomas-Fermi theory, the kinetic energy of an atom or molecule is approximated using the
above kind of treatment on a local level. That is, for each volume element in  space, one assumes the expression given above to be
valid, and then one integrates over all  to compute the total kinetic energy:

where the last equality simply defines the  constant. Ignoring the correlation and exchange contributions to the total energy, this 
 is combined with the electron-nuclear  and Coulombic electron-electron potential energies to give the Thomas-Fermi total

energy:

This expression is an example of how  is given as a local density functional approximation (LDA). The term local means that
the energy is given as a functional (i.e., a function of ) which depends only on  at points in space but not on  at more than
one point in space or on spatial derivatives of .

Unfortunately, the Thomas-Fermi energy functional does not produce results that are of sufficiently high accuracy to be of great use
in chemistry. What is missing in this theory are the exchange energy and the electronic correlation energy. Moreover, the kinetic
energy is treated only in the approximate manner described earlier (i.e., for non-interacting electrons within a spatially uniform
potential).

Dirac was able to address the exchange energy for the uniform electron gas (  Coulomb interacting electrons moving in a uniform
positive background charge whose magnitude balances the total charge of the  electrons). If the exact expression for the
exchange energy of the uniform electron gas is applied on a local level, one obtains the commonly used Dirac local density
approximation to the exchange energy:

with . Adding this exchange energy to the Thomas-Fermi total energy  gives the so-called Thomas-
Fermi-Dirac (TFD) energy functional.
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Because electron densities vary rather strongly spatially near the nuclei, corrections to the above approximations to  and 
 are needed. One of the more commonly used so-called gradient-corrected approximations is that invented by Becke, and

referred to as the Becke88 exchange functional:

where , and  is a parameter chosen so that the above exchange energy can best reproduce the known exchange
energies of specific electronic states of the inert gas atoms (Becke finds  to equal 0.0042). A common gradient correction to the
earlier local kinetic energy functional  is called the Weizsacker correction and is given by

Although the above discussion suggests how one might compute the ground-state energy once the ground-state density  is
given, one still needs to know how to obtain . Kohn and Sham (KS) introduced a set of so-called KS orbitals obeying the
following equation:

where the so-called exchange-correlation potential  could be obtained by functional differentiation if the
exchange-correlation energy functional  were known. KS also showed that the KS orbitals { } could be used to compute
the density  by simply adding up the orbital densities multiplied by orbital occupancies :

(here  or 2 is the occupation number of the orbital  in the state being studied) and that the kinetic energy should be
calculated as

The same investigations of the idealized uniform electron gas that identified the Dirac exchange functional found that the
correlation energy (per electron) could also be written exactly as a function of the electron density  of the system for this model
system, but only in two limiting cases- the high-density limit (large ) and the low-density limit. There still exists no exact
expression for the correlation energy even for the uniform electron gas that is valid at arbitrary values of . Therefore, much work
has been devoted to creating efficient and accurate interpolation formulas connecting the low- and high- density uniform electron
gas. One such expression is

where

is the correlation energy per electron. Here , ,  and , 
, , , and . The parameter  is how the density  enters since  is

equal to ; that is,  is the radius of a sphere whose volume is the effective volume occupied by one electron.

A reasonable approximation to the full  would contain the Dirac (and perhaps gradient corrected) exchange functional plus
the above , but there are many alternative approximations to the exchange-correlation energy functional. Currently, many
workers are doing their best to cook up functionals for the correlation and exchange energies, but no one has yet invented
functionals that are so reliable that most workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows:
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U (r) = d [ρ]/dρ(r)xc Exc

[ρ]Exc ϕJ

ρ nj

ρ(r) = | (r)∑
j

nj ϕJ |
2

(6.5.42)

= 0, 1,nj ϕJ

T = ⟨ (r)| − | (r)⟩∑
j

nj ϕJ

ℏ2

2m
∇2 ϕJ (6.5.43)

ρ

ρ

ρ

[ρ] = ∫ ρ(r) (r)dr,EC εc (6.5.44)

(r) = ln( )+ − [ln( )+εc
A

2

x

X

2b

Q
tan−1 Q

2x+b

bx0

X0

(x−x0)2

X

2(b+2 )x0

Q
tan−1 Q

2x+b
(6.5.45)

x = rs
−−

√ X = +bx+cx2 = +b +cX0 x2
0 x0 Q = 4c−b2

− −−−−−
√

A = 0.0621814 = −0.409286x0 b = 13.0720 c = 42.7198 rs ρ 4/3πr3
s

1/ρ rs
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/162850?pdf


6.5.9 https://chem.libretexts.org/@go/page/162850

1. An atomic orbital basis is chosen in terms of which the KS orbitals are to be expanded. Most commonly, this is a Gaussian basis
or a plane-wave basis.

2. Some initial guess is made for the LCAO-KS expansion coefficients  of the occupied KS orbitals.
3. The density is computed as

. Often,  itself is expanded in an atomic orbital basis, which need not be the same as the basis used for the , and the
expansion coefficients of  are computed in terms of those of the this new basis. It is also common to use an atomic orbital
basis to expand , which, together with , is needed to evaluate the exchange-correlation functional’s contribution to .

4. The current iteration’s density is used in the KS equations to determine the Hamiltonian

whose new eigenfunctions { } and eigenvalues { } are found by solving the KS equations.
5. These new  are used to compute a new density, which, in turn, is used to solve a new set of KS equations. This process is

continued until convergence is reached (i.e., until the  used to determine the current iteration’s  are the same  that arise as
solutions on the next iteration.

6. Once the converged  is determined, the energy can be computed using the earlier expression

Energy Difference Methods 
In addition to the methods discussed above for treating the energies and wave functions as solutions to the electronic Schrödinger
equation, there exists a family of tools that allow one to compute energy differences directly rather than by finding the energies of
pairs of states and subsequently subtracting them. Various energy differences can be so computed: differences between two
electronic states of the same molecule (i.e., electronic excitation energies ), differences between energy states of a molecule and
the cation or anion formed by removing or adding an electron (i.e., ionization potentials (IPs) and electron affinities (EAs)). In the
early 1970s, the author developed one such tool for computing EAs (J. Simons, and W. D. Smith, Theory of Electron Affinities of
Small Molecules, J. Chem. Phys., 58, 4899-4907 (1973)) and he called this the equations of motion (EOM) method. Throughout
much of the 1970s and 1980s, his group advanced and applied this tool to their studies of molecular EAs and electron-molecule
interactions.

Because of space limitations, we will not be able to elaborate much in great detail on these methods. However, it is important to
stress that:

1. These so-called EOM or Greens function or propagator methods utilize essentially the same input information (e.g., atomic
orbital basis sets) and perform many of the same computational steps (e.g., evaluation of one- and two- electron integrals,
formation of a set of mean-field molecular orbitals, transformation of integrals to the MO basis, etc.) as do the other techniques
discussed earlier.

2. These methods are now rather routinely used when , IP, or EA information is sought.

The basic ideas underlying most if not all of the energy-difference methods are:

1. One forms a reference wave function  (this can be of the SCF, MPn, CI, CC, DFT, etc. variety); the energy differences are
computed relative to the energy of this function.

2. One expresses the final-state wave function  (i.e., that describing the excited, cation, or anion state) in terms of an operator 
acting on the reference : . Clearly, the  operator must be one that removes or adds an electron when one is
attempting to compute IPs or EAs, respectively.

3. One writes equations which  and  are expected to obey. For example, in the early development of these methods, the
Schrödinger equation itself was assumed to be obeyed, so  and  are the two equations.

4. One combines  with the equations that  and  obey to obtain an equation that  must obey. In the above example,
one (a) uses  in the Schrödinger equation for , (b) allows  to act from the left on the Schrödinger equation for ,

: =Cj,a ϕJ ∑a Cj,aχa

ρ(r) = | (r)∑
j

nj ϕJ |2 (6.5.46)

ρ(r) ϕJ

ρ

(r)ρ1/3 ρ E0

− +V (r) + ∫ d + (r)
ℏ2

2m
∇2 e2 ρ( )r

′

|r− |r′
r′ Uxc (6.5.47)

ϕJ ϵJ
ϕJ

ϕJ ρ ϕJ

ρ(r)

E[ρ] = ⟨ (r)| − | (r)⟩+∫ V (r)ρ(r)dr+ ∫ drd + [ρ].∑
j

nj ϕJ

ℏ2

2m
∇2 ϕJ

e2

2

ρ(r)ρ( )r
′

|r− |r′
r′ Exc (6.5.48)

ΔE

ΔE

ψ

ψ′ Ω
ψ = Ωψψ′ Ω

ψ ψ′

Hψ = Eψ H =ψ′ E ′ψ′

Ωψ = ψ′ ψ ψ′ Ω
Ωψ = ψ′ ψ′ Ω ψ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/162850?pdf


6.5.10 https://chem.libretexts.org/@go/page/162850

and (c) subtracts the resulting two equations to achieve , or, in commutator form 
.

5. One can, for example, express  in terms of a superposition of configurations  whose amplitudes  have been
determined from a CI or MPn calculation and express  in terms of operators { } that cause single-, double-, etc. level
excitations (for the IP (EA) cases,  is given in terms of operators that remove (add), remove and singly excite (add and singly
excite, etc.) electrons): .

6. Substituting the expansions for  and for  into the equation of motion (EOM)

, and then projecting the resulting equation on the left against a set of functions (e.g., { }) gives a
matrix eigenvalue-eigenvector equation

to be solved for the  operator coefficients and the excitation (or IP or EA) energies . Such are the working equations of the
EOM (or Greens function or propagator) methods.

In recent years, these methods have been greatly expanded and have reached a degree of reliability where they now offer some of
the most accurate tools for studying excited and ionized states. In particular, the use of time dependent variational principles have
allowed a much more rigorous development of equations for energy differences and non-linear response properties. In addition, the
extension of the EOM theory to include coupled-cluster reference functions now allows one to compute excitation and ionization
energies using some of the most accurate ab initio tools.

6.5: Various Approaches to Electron Correlation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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ψ Ω
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6.6: The Slater-Condon Rules
To form Hamiltonian matrix elements  between any pair of Slater determinants constructed from spin-orbitals that are orthonormal, one
uses the so-called Slater-Condon rules. These rules express all non-vanishing matrix elements involving either one- or two- electron operators.
One-electron operators are additive and appear as

two-electron operators are pairwise additive and appear as

The Slater-Condon rules give the matrix elements between two determinants

and

for any quantum mechanical operator that is a sum of one- and two- electron operators ( ). It expresses these matrix elements in terms of
one-and two-electron integrals involving the spin-orbitals that appear in  and  and the operators  and .

As a first step in applying these rules, one must examine  and  and determine by how many (if any) spin-orbitals  and  differ. In so
doing, one may have to reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with those in the other
determinant; it is essential to keep track of the number of permutations ( ) that one makes in achieving maximal coincidence. The results of
the Slater-Condon rules given below are then multiplied by  to obtain the matrix elements between the original  and . The final
result does not depend on whether one chooses to permute  or  to determine .

The Hamiltonian is, of course, a specific example of such an operator that contains both one- and two-electron components; the electric dipole
operator  and the electronic kinetic energy  are examples of one-electron operators (for which one takes ); the
electron-electron coulomb interaction  is a two-electron operator (for which one takes ).

The two Slater determinants whose matrix elements are to be determined can be written as

where the spin-orbitals { } and { } appear in the first and second determinants, respectively, and the operators  and  describe the
permutations of the spin-orbitals appearing in these two determinants. The factors  and  are the signs associated with these
permutations as discussed earlier in Section 6.1.1. Any matrix element involving one- and two-electron operators

needs to be expressed in terms of integrals involving the spin-orbitals in the two determinants and the one- and two-electron operators.

To simplify the above expression, which contains  terms in its two summations, one proceeds as follows:

a. Use is made of the identity  to move the permutation operator  to just before the ( )

b. Because  and  contain sums over all  electrons in a symmetric fashion, any permutation  acting on  leaves these sums
unchanged. So,  commutes with  and with . This allows the above quantity to be rewritten as

HK,L

F = ϕ(i);∑
i

(6.6.1)

G= g(i, j) = g(i, j).∑
i<j

1

2
∑
i≠j

(6.6.2)

|⟩ = | . . . |ϕ1ϕ2ϕ3 ϕN (6.6.3)

⟩ = | . . . ||
′

ϕ′
1ϕ

′
2ϕ

′
3 ϕ′

N (6.6.4)

F +G

|⟩ ⟩|
′

f g

|⟩ ⟩|′ |⟩ ⟩|′

Np

(−1)Np |⟩ ⟩|
′

|⟩ ⟩|′ Np

e∑i ri − ℏ2

2me
∑i ∇2

i g = 0

/∑i<j e
2 rij f = 0

|⟩ = (−1 P (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)
1

N !
−−

√
∑
P=1

N !

)p ϕ1 ϕ2 ϕk ϕn ϕN (6.6.5)

⟩ = (−1 Q (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|′
1

N !
−−

√
∑
P=1

N !

)q ϕ′
1 ϕ′

2 ϕ′
k

ϕ′
n ϕ′

N
(6.6.6)

ϕj ϕ′
j P Q

(−1)p (−1)q

⟨|F +G ⟩ = (−1|′
1

N !
−−

√
∑
P,Q

)p+q

⟨P (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|F +G|Q (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N

(6.6.7)

(N !)2

⟨Pψ| ⟩ = ⟨y|P ⟩ψ′ ψ′ P F +G

⟨P (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|F +G|Q (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N

= ⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|P (F +G)|Q (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N

(6.6.8)

F G N P F +G

P F G

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|F +G|PQ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
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k ϕ′
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c. For any permutation operator , the operator  is just another permutation operator. Moreover, for any , the set of all operators 
runs over all  permutations, and the sign associated with the operator  is the sign belonging to  times the sign associated with , 

. So, the double sum (i.e., over  and over ) appearing in the above expression for the general matrix element of  contains 
 identical sums over the single operator  of the sign of this operator  multiplied by the effect of this operator on the spin-orbital

product on the right-hand side

By assumption, as explained earlier, the two Slater determinants have been compared and arranged in an order of maximal coincidence and
the factor  needed to bring them into maximal coincidence has been determined. So, let us begin by assuming that the two
determinants differ by three spin-orbitals and let us first consider the terms arising from the identity permutation  (i.e., the
permutation that alters none of the spin-orbitals’ labels). These terms will involve integrals of the form

where the three-spin orbitals that differ in the two determinants appear in positions , , and . In these -dimensional (3 spatial and 1 spin
coordinate for each of  electrons) integrals:

a. Integrals of the form (for all , , or )

and (for all i and , , or )

vanish because the spin-orbitals appearing in positions , , and  in the two determinants are orthogonal to one another. For the -operator,
even integrals with , , or  vanish because there are still two spin-orbital mismatches at the other two locations among , , and . For
the -operator, even integrals with  or , , or  vanish because two mismatches remain; and even with both  and , , or , the
integrals vanish because one spin-orbital mismatch remains. The main observation to make is that, even for , if there are three spin-
orbital differences, neither the  nor  operator gives rise to any non-vanishing results.

b. If we now consider any other permutation , the situation does not improve because any permutation cannot alter the fact that three spin-
orbital mismatches do not generate any non-vanishing results.

If there are only two spin-orbital mismatches (say in locations  and ), the integrals we need to evaluate are of the form

and

c. Again, beginning with , we can conclude that all of the integrals involving the -operator (i.e., , , and ) vanish
because the two spin-orbital mismatch is too much even for  or  to overcome; at least one spin-orbital orthogonality integral
remains. For the -operator, the only non-vanishing result arises from the  and  term .

d. The only other permutation that generates another non-vanishing result is the permutation that interchanges  and , and it produces 

, where the negative sign arises from the  factor. All other permutations would interchange other spin-orbitals and thus generate
orthogonality integrals involving other electrons’ coordinates.

If there is only one spin-orbital mismatch (say in location ), the integrals we need to evaluate are of the form

and

e. Again beginning with , the only non-vanishing contribution from the -operator is . For all other
permutations, the -operator produces no non-vanishing contributions because these permutations generate orthogonality integrals. For the 

-operator and , the only non-vanishing contributions are

Q PQ Q PQ

N ! PQ P Q

(−1)p+q P Q F +G

N ! PQ (−1)p+q

⟨|F +G ⟩ = N !|
′ 1

N !
−−

√
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where the sum over  runs over all of the spin-orbitals that are common to both of the two determinants.

f. Among all other permutations, the only one that produces a non-vanishing result are those that permute the spin-orbital in the kth location
with another spin-orbital, and they produce

The minus sign arises from the  factor associated with this pair wise permutation operator.

Finally, if there is no mismatch (i.e., the two determinants are identical), then

g. The identity permutation generates

from the -operator and

from the -operator.

h. The permutation that interchanges spin-orbitals in the kth and jth location produces

The summations over  and  appearing above can, alternatively, be written as

and

So, in summary, once maximal coincidence has been achieved, the Slater-Condon (SC) rules provide the following prescriptions for
evaluating the matrix elements of any operator  containing a one-electron part  and a two-electron part 

.:

i. If  and  are identical, then

where the sums over  and  run over all spin-orbitals in  ;
ii. If  and  differ by a single spin-orbital mismatch (  ),

where the sum over  runs over all spin-orbitals in  except ;
iii. If  and  differ by two spin-orbitals (  and ),

(note that the  contribution vanishes in this case);
iv. If  and  differ by three or more spin orbitals, then

v.  or the identity operator , the matrix elements  if  and  differ by one or more spin-orbitals (i.e., the Slater determinants are
orthonormal if their spin-orbitals are).

In these expressions,

⟨ (k) (j)|g(k, j)| (k) (j)⟩ϕk ϕj ϕ′
k

ϕj (6.6.18)

j

−⟨ (k) (j)|g(k, j)| (k) (j)⟩.ϕk ϕj ϕ′
j ϕk (6.6.19)
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is used to denote the one-electron integral

and

(or, in short hand notation,  ) represents the two-electron integral

The notation  introduced above gives the two-electron integrals for the  operator in the so-called Dirac notation, in which the 
and  indices label the spin-orbitals that refer to the coordinates  and the  and l indices label the spin-orbitals referring to coordinates . The
 and  denote  and  (with  and  being the  or  spin functions).

If the operators  and  do not contain any electron spin operators, then the spin integrations implicit in these integrals (all of the  are spin-
orbitals, so each  is accompanied by an  or  spin function and each  involves the adjoint of one of the  or  spin functions) can be
carried out using , , , , thereby yielding integrals over spatial orbitals.

6.6: The Slater-Condon Rules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

⟨ |f | ⟩ϕi ϕj (6.6.29)

∫ (r)f(r) (r)drϕ∗
i ϕj (6.6.30)

⟨ |g| ⟩ϕiϕj ϕkϕl (6.6.31)

⟨ij|kl⟩

∫ (r) ( )g(r, ) (r) ( )drd .ϕ∗
i ϕ∗

j r′ r′ ϕk ϕl r
′ r′ (6.6.32)

⟨ij|kl⟩ g(r, )r′ i

k r j r′

r r′ r, θ,ϕ, σ , , ,r′ θ′ ϕ′ σ′ σ σ′ α β

f g ϕi

ϕ α β ϕ∗ α β

⟨a|a⟩ = 1 ⟨a|b⟩ = 0 ⟨b|a⟩ = 0 ⟨b|b⟩ = 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/162851?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/06%3A_Electronic_Structure/6.06%3A_The_Slater-Condon_Rules
https://creativecommons.org/licenses/by-nc-sa/4.0


6.7.1 https://chem.libretexts.org/@go/page/162852

6.7: Molecules Embedded in Condensed Media
Often one wants to model the behavior of a molecule or ion that is not isolated as it might be in a gas-phase experiment. When one
attempts to describe a system that is embedded, for example, in a crystal lattice, in a liquid or a glass, one has to have some way to
treat both the effects of the surrounding medium on the molecule of interest and the motions of the medium’s constituents. In so-
called quantum mechanics- molecular mechanics (QM-MM) approaches to this problem, one treats the molecule or ion of interest
using the electronic structure methods outlined earlier in this Chapter, but with one modification. The one-electron component of
the Hamiltonian, which contains the electron-nuclei Coulomb potential , is modified to also contain a term
that describes the potential energy of interaction of the electrons and nuclei with the surrounding medium. In the simplest such
models, this solvation potential depends only on the dielectric constant of the surroundings. In more sophisticated models, the
surroundings are represented by a collection of (fractional) point charges that may also be attributed with local dipole moments and
polarizabilities that allow them to respond to changes in the internal charge distribution of the molecule or ion. The locations of
such partial charges and the magnitudes of their dipoles and polarizabilities are determined to make the resultant solvation potential
reproduce known (from experiment or other simulations) solvation characteristics (e.g., solvation energy, radial distribution
functions) in a variety of calibration cases. The book Molecular Modeling, 2nd ed., A. R. Leach, Prentice Hall, Englewood Cliffs
(2001) offers a good source of information about how these terms are added into the one-electron component of the Hamiltonian to
account for solvation effects.

In addition to describing how the surroundings affect the Hamiltonian of the molecule or ion of interest, one needs to describe the
motions or spatial distributions of the medium’s constituent atoms or molecules. This is usually done within a purely classical
treatment of these degrees of freedom. That is, if equilibrium properties of the solvated system are to be simulated, then Monte-
Carlo (MC) sampling (this subject is treated in Chapter 7 of this text) of the surrounding medium’s coordinates is used. Within such
a MC sampling, the potential energy of the entire system is calculated as a sum of two parts:

i. the electronic energy of the solute molecule or ion, which contains the interaction energy of the molecule’s electrons and nuclei
with the surrounding medium, plus

ii. the intra-medium potential energy, which is taken to be of a simple molecular mechanics (MM) force field character (i.e., to
depend on inter-atomic distances and internal angles in an analytical and easily computed manner). Again, the book Molecular
Modeling, 2nd ed., A. R. Leach, Prentice Hall, Englewood Cliffs (2001) offers a good source of information about these matters.

If, alternatively, dynamical characteristics of the solvated species are to be simulated, a classical molecular dynamics (MD)
treatment is used. In this approach, the solute-medium and internal-medium potential energies are handled in the same way as in
the MC case but where the time evolution of the medium’s coordinates are computed using the MD techniques discussed in
Chapter 7 of this text.

This page titled 6.7: Molecules Embedded in Condensed Media is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons.
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6.8: High-End Methods for Treating Electron Correlation
Although their detailed treatment is beyond the scope of this text, it is important to appreciate that new approaches are always
under development in all areas of theoretical chemistry. In this Section, I want to introduce you to two tools that are proving to
offer high precision in the treatment of electron correlation energies. These are the so-called quantum Quantum Monte-Carlo and
r1,2- approaches to this problem. Both methods currently are used when one wishes to obtain the absolute highest precision in an
electronic structure calculation. The computational requirements of both of these methods are very high, so, at present, they can
only be used on species containing fewer than ca. 100 electrons. However, with the power and speed of computers growing as fast
as they are, it is likely that these high-end methods will be more and more widely used as time goes by.

Quantum Monte-Carlo 
In this method, one first re-writes the time dependent Schrödinger equation

for negative imaginary values of the time variable  (i.e., one simply replaces  by ). This gives

which is analogous to the well-known diffusion equation

The re-written Schrödinger equation can be viewed as a diffusion equation in the  spatial coordinates of the  electrons with a
diffusion coefficient  that is related to the electrons' mass me by

The so-called source and sink term  in the diffusion equation is related to the electron-nuclear and electron-electron Coulomb
potential energies denoted V:

In regions of space where  is large and negative (i.e., where the potential is highly attractive),  is large and negative, so  is
large and positive. This causes the concentration  of the diffusing material to accumulate in such regions. Likewise, where  is
positive,  will decrease. Clearly by recognizing  as the concentration variable in this analogy, one understands that  will
accumulate where  is negative and will decay where  is positive, as one expects.

So far, we see that the trick of taking  to be negative and imaginary causes the electronic Schrödinger equation to look like a -
dimensional diffusion equation. Why is this useful and why does this trick work? It is useful because, as we see in Chapter 7 of this
text, Monte-Carlo methods are highly efficient tools for solving certain equations; it turns out that the diffusion equation is one
such case. So, the Quantum Monte-Carlo approach can be used to solve the imaginary-time Schrödinger equation even for systems
containing many electrons. But, what does this imaginary time mean?

To understand the imaginary time trick, let us recall that any wave function 
(e.g., the trial wave function with which one begins to use Monte-Carlo methods to propagate the diffusing  function)  can be
written in terms of the exact eigenfunctions { } of the Hamiltonian

as follows:
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dΨ

dt
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If the Monte-Carlo method can, in fact be used to propagate forward in time such a function but with , then it will, in
principle, generate the following function at such an imaginary time:

As  increases, the relative amplitudes { } of all states but the lowest state (i.e., that with smallest ) will
decay compared to the amplitude  of the lowest state. So, the time-propagated wave function will, at long enough
t, be dominated by its lowest-energy component. In this way, the quantum Monte-Carlo propagation method can generate a wave
function in  dimensions that approaches the ground-state wave function.

It has turned out that this approach, which tackles the -electron correlation problem head-on, has proven to yield highly accurate
energies and wave functions that display the proper cusps near nuclei as well as the negative cusps (i.e., the wave function
vanishes) whenever two electrons' coordinates approach one another. Finally, it turns out that by using a starting function  of a
given symmetry and nodal structure, this method can be extended to converge to the lowest-energy state of the chosen symmetry
and nodal structure. So, the method can be used on excited states also. In Chapter 7 of this text, you will learn how the Monte-Carlo
tools can be used to simulate the behavior of many-body systems (e.g., the -electron system we just discussed) in a highly
efficient and easily parallellized manner.

 Method 

In this approach to electron correlation, one employs a trial variational wave function that contains components that depend
explicitly on the inter-electron distances . By so doing, one does not rely on the polarized orbital pair approach introduced
earlier in this Chapter to represent all of the correlations among the electrons. An example of such an explicitly correlated wave
function is:

which consists of an antisymmetrized product of  spin-orbitals multiplied by a factor that is symmetric under interchange of any
pair of electrons and contains the electron-electron distances in addition to a single variational parameter . Such a trial function is
said to contain linear-  correlation factors. Of course, it is possible to write many other forms for such an explicitly correlated
trial function. For example, one could use:

as a trial function. Both the linear and the exponential forms have been used in developing this tool of quantum chemistry. Because
the integrals that must be evaluated when one computes the Hamiltonian expectation value  are most computationally
feasible (albeit still very taxing) when the linear form is used, this particular parameterization is currently the most widely used.

This page titled 6.8: High-End Methods for Treating Electron Correlation is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Jack Simons.
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6.9: Experimental Probes of Electronic Structure

Visible and Ultraviolet Spectroscopy 

Visible and ultraviolet spectroscopies are used to study transitions between states of a molecule or ion in which the electrons’
orbital occupancy changes. We call these electronic transitions, and they usually require light in the 5000 cm  to 100,000 cm
regime. When such transitions occur, the initial and final states generally differ in their electronic, vibrational, and rotational
energies because any change to the electrons' orbital occupancy will induce changes in the Born-Oppenheimer energy surface
which, in turn, governs the vibrational and rotational character. Excitations of inner-shell and core orbital electrons may require
even higher energy photons as would excitations that eject an electron. The interpretation of all such spectroscopic data relies
heavily on theory as this Section is designed to illustrate.

The Electronic Transition Dipole and Use of Point Group Symmetry 

The interaction of electromagnetic radiation with a molecule's electrons and nuclei can be treated using perturbation theory as we
discussed in Chapter 4. The result is a standard expression that we derived in Chapter 4

for the rate of photon absorption between initial  and final  states. In this equation,  is the intensity of the photon source
at the frequency ,  is the frequency corresponding to the transition under study, and  is the electric field vector of the
photon field. The vector  is the electric dipole moment of the electrons and nuclei in the molecule.

Because each of these wave functions is a product of an electronic ye, a vibrational, and a rotational function, we realize that the
electronic integral appearing in this rate expression involves

a transition dipole matrix element between the initial  and final  electronic wave functions. This element is a function of the
internal vibrational coordinates of the molecule, and is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a particular transition's dipole matrix element will vanish
and, as a result, the electronic transition will be forbidden and thus predicted to have zero intensity. If the direct product of the
symmetries of the initial and final electronic states   and   do not match the symmetry of the electric dipole operator (which
has the symmetry of its , , and  components; these symmetries can be read off the right most column of the character tables),
the matrix element will vanish.

For example, the formaldehyde molecule  has a ground electronic state that has  symmetry in the  point group. Its 
 singlet excited state also has  symmetry because both the  and  orbitals are of  symmetry. In contrast, the lowest 
 (these orbitals are shown in Figure 6.15) singlet excited state is of  symmetry because the highest energy oxygen

centered non-bonding orbital is of  symmetry and the  orbital is of  symmetry, so the Slater determinant in which both the 
and  orbitals are singly occupied has its symmetry dictated by the  direct product, which is .

Figure 6.15 Electronic Transition From the Non-bonding  orbital to the antibonding  Orbital of Formaldehyde

The  transition thus involves ground ( ) and excited ( ) states whose direct product ( ) is of  symmetry.
This transition thus requires that the electric dipole operator possess a component of  symmetry. A glance at the  point
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group's character table shows that the molecular -axis is of  symmetry. Thus, if the light's electric field has a non-zero
component along the  symmetry axis (the molecule's -axis), the  transition is predicted to be allowed. Light polarized
along either of the molecule's other two axes cannot induce this transition.

In contrast, the  transition has a ground-excited state direct product of  symmetry. The 's point group
character table shows that the electric dipole operator (i.e., its , , and  components in the molecule-fixed frame) has no
component of  symmetry; thus, light of no electric field orientation can induce this  transition. We thus say that the 

 transition is forbidden.

The above examples illustrate one of the most important applications of visible-UV spectroscopy. The information gained in such
experiments can be used to infer the symmetries of the electronic states and hence of the orbitals occupied in these states. It is in
this manner that this kind of experiment probes electronic structures.

The Franck-Condon Factors 

Beyond such electronic symmetry analysis, it is also possible to derive vibrational selection rules for electronic transitions that are
allowed. It is conventional to expand the transition dipole matrix element  in a power series about the equilibrium
geometry of the initial electronic state (since this geometry is characteristic of the molecular structure prior to photon absorption
and, because the photon absorption takes place quickly, the nuclei don’t have time to move far from there):

The first term in this expansion, when substituted into the integral over the vibrational coordinates, gives , which
has the form of the electronic transition dipole multiplied by the overlap integral between the initial and final vibrational wave
functions. The  factor was discussed above; it is the electronic transition integral evaluated at the equilibrium geometry of
the absorbing state. Symmetry can often be used to determine whether this integral vanishes, as a result of which the transition will
be forbidden.

The vibrational overlap integrals  do not necessarily vanish because  and  are eigenfunctions of different
vibrational Hamiltonians because they belong to different Born-Oppenheimer energy surfaces.  is an eigenfunction whose
potential energy is the final electronic state's energy surface;  has the initial electronic state's energy surface as its potential. The
squares of these  integrals, which are what eventually enter into the transition rate expression 

, are called Franck-Condon factors. Their relative magnitudes play strong roles in determining
the relative intensities of various vibrational bands (i.e., series of peaks) within a particular electronic transition's spectrum. In
Figure 6.16, I show two potential energy curves and illustrate the kinds of absorption (and emission) transitions that can occur
when the two electronic states have significantly different geometries.

Figure 6.16 Absorption From One Initial State to One Final State Followed by Relaxation and Then Emission From the Lowest
State of the Upper Surface.

Whenever an electronic transition causes a large change in the geometry (bond lengths or angles) of the molecule, the Franck-
Condon factors tend to display the characteristic broad progression shown in Figure 6.17 when considered for one initial-state
vibrational level  and various final-state vibrational levels :

z A1

C2 z π ⇒ π∗

n ⇒ π∗ × =B2 B1 A2 C2v

x y z

A2 n ⇒ π∗

n ⇒ π∗

(R)μf,i

(R) = ( ) + ( − )+. . . .μf,i μf,i Re ∑
a

∂μf,i

∂Ra

Ra Ra,e (6.9.3)

( )⟨ | ⟩μf,i Re χvf χvi

( )μf,i Re

⟨ | ⟩χvf χvi χvf χvi

χvf

χvi

⟨ | ⟩χvf χvi

= f( )| ⋅ ⟨ |μ| ⟩Ri,f
2π

ℏ2 ωf,i E0 Φf Φi |
2

vi vf

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11590?pdf


6.9.3 https://chem.libretexts.org/@go/page/11590

Figure 6.17 Broad Franck-Condon Progression Characteristic of Large Geometry Change

Notice that as one moves to higher  values, the energy spacing between the states (Evf - Evf-1) decreases; this, of course, reflects
the anharmonicity in the excited-state vibrational potential. For the above example, the transition to the  state has the largest
Franck-Condon factor. This means that the overlap of the initial state's vibrational wave function  is largest for the final state's 

 function with .

As a qualitative rule of thumb, the larger the geometry difference between the initial- and final- state potentials, the broader will be
the Franck-Condon profile (as shown in Figure 6.17) and the larger the  value for which this profile peaks. Differences in
harmonic frequencies between the two states can also broaden the Franck-Condon profile.

If the initial and final states have very similar geometries and frequencies along the mode that is excited when the particular
electronic excitation is realized, the type of Franck-Condon profile shown in Figure 6.18 may result:

Figure 6.18 Franck-Condon Profile Characteristic of Small Geometry Change

Another feature that is important to emphasize is the relation between absorption and emission when the two states’ energy
surfaces have different equilibrium geometries or frequencies. Subsequent to photon absorption to form an excited electronic state
but prior to photon emission, the molecule can undergoe collisions with other nearby molecules. This, of course, is especially true
in condensed-phase experiments. These collisions cause the excited molecule to lose some of its vibrational and rotational energy,
thereby relaxing it to lower levels on the excited electronic surface. This relaxation process is illustrated in Figure 6.19.

Figure 6.19 Absorption Followed by Relaxation to Lower Vibrational Levels of the Upper State.

Subsequently, the electronically excited molecule can undergo photon emission (also called fluorescence) to return to its ground
electronic state as shown in Figure 6.20.
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Figure 6.20 Fluorescence From Lower Levels of the Upper Surface

The Franck-Condon principle discussed earlier also governs the relative intensities of the various vibrational transitions arising in
such emission processes. Thus, one again observes a set of peaks in the emission spectrum as shown in Figure 6.21.

Figure 6.21 Absorption and Emission Spectra With the Latter Red Shifted

There are two differences between the lines that occur in emission and in absorption. First, the emission lines are shifted to the red
(i.e., to lower energy or longer wavelength) because they occur at transition energies connecting the lowest vibrational level of the
upper electronic state to various levels of the lower state. In contrast, the absorption lines connect the lowest vibrational level of the
ground state to various levels of the upper state. These relationships are shown in Figure 6.22.

Figure 6.22 Absorption to High States on the Upper Surface, Relaxation, and Emission From Lower States of the Upper Surface

The second difference relates to the spacings among the vibrational lines. In emission, these spacings reflect the energy spacings
between vibrational levels of the ground state, whereas in absorption they reflect spacings between vibrational levels of the upper
state.

The above examples illustrate how vibrationally-resolved visible-UV absorption and emission spectra can be used to gain valuable
information about
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a. the vibrational energy level spacings of the upper and ground electronic states (these spacings, in turn, reflect the strengths of
the bonds existing in these states),

b. the change in geometry accompanying the ground-to-excited state electronic transition as reflected in the breadth of the Franck-
Condon profiles (these changes also tell us about the bonding changes that occur as the electronic transition occurs).

So, again we see how visible-UV spectroscopy can be used to learn about the electronic structure of molecules in various electronic
states.

Time Correlation Function Expressions for Transition Rates 

The above so-called golden-rule expression for the rates of photon-induced transitions are written in terms of the initial and final
electronic/vibrational/rotational states of the molecule. There are situations in which these states simply cannot be reliably known.
For example, the higher vibrational states of a large polyatomic molecule or the states of a molecule that strongly interacts with
surrounding solvent molecules are such cases. In such circumstances, it is possible to recast the golden rule formula into a form that
is more amenable to introducing specific physical models that lead to additional insights.

Specifically, by using so-called equilibrium averaged time correlation functions, it is possible to obtain rate expressions appropriate
to a large number of molecules that exist in a distribution of initial states (e.g., for molecules that occupy many possible rotational
and perhaps several vibrational levels at room temperature). As we will soon see, taking this route to expressing spectroscopic
transition rates also allows us to avoid having to know each vibrational-rotational wave function of the two electronic states
involved; as noted above, this is especially useful for large molecules or molecules in condensed media where such knowledge is
likely not available.

To begin re-expressing the spectroscopic transition rates, the expression obtained earlier

appropriate to transitions between a particular initial state  and a specific final state , is rewritten as

Here, the  function is used to specifically enforce the resonance condition which states that the photons' frequency 
must be resonant with the transition frequency . The following integral identity can be used to replace the -function:

by a form that is more amenable to further development. Then, the state-to-state rate of transition becomes:

If this expression is then multiplied by the equilibrium probability  that the molecule is found in the state  and summed over all
such initial states and summed over all final states  that can be reached from  with photons of energy , the equilibrium
averaged rate of photon absorption by the molecular sample is obtained:

This expression is appropriate for an ensemble of molecules that can be in various initial states  with probabilities . The
corresponding result for transitions that originate in a particular state ( ) but end up in any of the allowed (by energy and selection
rules) final states reads:

As we discuss in Chapter 7, for an ensemble in which the number of molecules, the temperature , and the system volume are
specified,  takes the form:
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where  is the partition function of the molecules and  is the degeneracy of the state  whose energy is . If you are
unfamiliar with partition functions and do not want to simply trust me in the analysis of time correlation functions that we am about
to undertake, I suggest you interrupt your study of Chapter 6 and read up through Section 7.1.3 of Chapter 7 at this time.

In the above expression for , a double sum occurs. Writing out the elements that appear in this sum in detail, one finds:

In situations in which one is interested in developing an expression for the intensity arising from transitions to all allowed final
states, the sum over the final states can be carried out explicitly by first writing

and then using the fact that the set of states { } are complete and hence obey

The result of using these identities as well as the Heisenberg definition of the time-dependence of the dipole operator

is:

In this form, one says that the time dependence has been reduce to that of an equilibrium averaged (i.e., as reflected in the 
 expression) time correlation function involving the component of the dipole operator along the external electric

field at ,  and this component at a different time , .

If  is positive (i.e., in the photon absorption case), the above expression will yield a non-zero contribution when multiplied by 
 and integrated over positive - values. If  is negative (as for stimulated photon emission), this expression will

contribute, when multiplied by , for negative -values. In the latter situation,  is the equilibrium probability of finding
the molecule in the (excited) state from which emission will occur; this probability can be related to that of the lower state  by

The absorption and emission cases can be combined into a single expression for the net rate of photon absorption by recognizing
that the latter process leads to photon production, and thus must be entered with a negative sign. The resultant expression for the
net rate of decrease of photons is:

It is convention to introduce the so-called line shape function :

in terms of which the net photon absorption rate is

The function

Q gi Φi E0
i

Req.ave.

⋅ ⟨ |μ| ⟩ ⋅ ⟨ |μ| ⟩ exp[i( )t].∑
i,f

ρiE0 Φi Φf E0 Φf Φi ωf,i (6.9.11)

⟨ |μ| ⟩ exp[i( )t] = ⟨ | exp(iHt/ℏ)μexp(−iHt/ℏ)| ⟩Φf Φi ωf,i Φf Φi (6.9.12)

Φk

| ⟩⟨ | = 1.∑
k

Φk Φk (6.9.13)

μ(t) = exp(iHt/ℏ)μexp(−iHt/ℏ), (6.9.14)

⟨ | ⋅ μ ⋅ μ(t)| ⟩.∑
i

ρi Φi E0 E0 Φi (6.9.15)
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exp(−iωt) ω ρi
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excited E0
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= exp[−ℏω/kT ].ρlower
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1

ℏ2
∑
i

ρi (6.9.16)

∫ ∫ f(ω)⟨ |( ⋅ μ) ⋅ μ(t)| ⟩(1 −exp(−ℏω/kT )) exp(−iωt)dωdt.Φi E0 E0 Φi (6.9.17)

I(ω)

I(ω) = exp(−iωt)dt∑
i

ρi (6.9.18)

= (1 −exp(−ℏω/kT )).Req.ave.net
1

ℏ2
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is called the equilibrium averaged time correlation function of the component of the electric dipole operator along the direction of
the external electric field . Its Fourier transform is , the spectral line shape function. The convolution of  with the light
source's  function, multiplied by ), the correction for stimulated photon emission, gives the net rate of
photon absorption.

Although the correlation function expression for the photon absorption rate is equivalent to the state-to-state expression from which
it was derived, we notice that

1.  does not contain explicit reference to the final-state wave functions ; instead,
2.  requires us to describe how the dipole operator changes with time.

That is, in the time correlation framework, one is allowed to use models of the time evolution of the system to describe the spectra.
This is especially appealing for large complex molecules and molecules in condensed media because, for such systems, it would be
hopeless to attempt to find the final-state wave functions, but it may be reasonable (albeit challenging) to model the system’s time
evolution. Prof. Eric Heller at Harvard has pioneered the use of time-domain methods for treating molecular spectroscopy; his web
site offers access to further information and insight into this subject.

It turns out that a very wide variety of spectroscopic and thermodynamic properties (e.g., light scattering intensities, diffusion
coefficients, and thermal conductivity) can be expressed in terms of molecular time correlation functions. The text Statistical
Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has a good treatment of many of these cases. Let’s now examine
how such time evolution issues are used within the correlation function framework for the specific photon absorption case.

Line Broadening Mechanisms 

If the rotational motion of the system’s molecules is assumed to be entirely unhindered (e.g., by any environment or by collisions
with other molecules), it is appropriate to express the time dependence of each of the dipole time correlation functions listed above
in terms of a free rotation model. For example, when dealing with diatomic molecules, the electronic-vibrational-rotational 
appropriate to a specific electronic-vibrational transition becomes:

Here,

is the rotational partition function (I being the molecule's moment of inertia , and  being the molecule's

rotational energy for the state with quantum number  and degeneracy ),

is the vibrational partition function  being the vibrational frequency),  is the degeneracy of the initial electronic state,

is the translational partition function for the molecules of mass  moving in volume , and  is the adiabatic electronic
energy spacing. The origins of such partition functions are treated in Chapter 7 of this text.

The functions  describe the time evolution of the electronic transition dipole vector for the
rotational state . In a free-rotation model, this function is taken to be of the form:

E0 I(ω) I(ω)

f(ω) (1 −exp(−ℏω/kT )

C(t) ϕ

C(t)

C(t)

C(t) = ( (2J +1) exp(− ) exp(− )qrqvqeqt)
−1 ∑

J

J(J +1)ℏ2

8 IkTπ2

ℏνvibvi

kT
(6.9.21)

⟨ | ⋅ ( ) ⋅ ( , t)| ⟩|⟨ | ⟩gie ϕJ E0 μi,f Re E0 μi,f Re ϕJ χiv χfv |2 (6.9.22)

exp(i[ℏ ]t+ iΔ t/ℏ).νvib Ei,f (6.9.23)

=qr
8 IkTπ2

ℏ2
(6.9.24)

I = mR2
e

J(J +1)ℏ2

8 Iπ2

J 2J +1

=qv
exp(−ℏ /2kT )νvib

1 −exp(−ℏ /kT )νvib

(6.9.25)

νvib gie

= (2πmkT/ Vqt ℏ2)3/2 (6.9.26)

μ V ΔEi,f

⟨ | ⋅ ( ) ⋅ ( , t)| ⟩ϕJ E0 μi,f Re E0 μi,f Re ϕJ

J
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where  is the rotational frequency (in cycles per second) for rotation of the molecule in the state labeled by . This oscillatory
time dependence, combined with the  time dependence arising from the electronic and vibrational
factors, produce, when this  function is Fourier transformed to generate , a series of -function peaks. The intensities of
these peaks are governed by the quantities

Boltzmann population factors, as well as by the  Franck-Condon factors and the 
 terms.

This same analysis can be applied to the pure rotation and vibration-rotation  time dependences with analogous results. In the
former, -function peaks are predicted to occur at

and in the latter at

with the intensities governed by the time independent factors in the corresponding expressions for .

In experimental measurements, such sharp -function peaks are, of course, not observed. Even when very narrow bandwidth laser
light sources are used (i.e., for which  is an extremely narrowly peaked function), spectral lines are found to possess finite
widths. Let us now discuss several sources of line broadening, some of which will relate to deviations from the "unhindered"
rotational motion model introduced above.

Doppler Broadening 

In the above expressions for , the averaging over initial rotational, vibrational, and electronic states is explicitly shown. There
is also an average over the translational motion implicit in all of these expressions. Its role has not (yet) been emphasized because
the molecular energy levels, whose spacings yield the characteristic frequencies at which light can be absorbed or emitted, do not
depend on translational motion. However, the frequency of the electromagnetic field experienced by moving molecules does
depend on the velocities of the molecules, so this issue must now be addressed.

Elementary physics classes express the so-called Doppler shift of a wave's frequency induced by relative movement of the light
source and the molecule as follows:

Here,   is the frequency of the unmoving light source seen by unmoving molecules,  is the velocity of relative motion of
the light source and molecules,  is the speed of light, and wobserved is the Doppler-shifted frequency (i.e., the frequency seen by
the molecules). The second identity is obtained by expanding, in a power series, the  factor, and is valid in truncated
form when the molecules are moving with speeds significantly below the speed of light.

For all of the cases considered earlier, a  function is subjected to Fourier transformation to obtain a spectral line shape function
, which then provides the essential ingredient for computing the net rate of photon absorption. In this Fourier transform

process, the variable  is assumed to be the frequency of the electromagnetic field experienced by the molecules. The above
considerations of Doppler shifting then lead one to realize that the correct functional form to use in converting  to  is:

where  is the nominal frequency of the light source.

As stated earlier, within  there is also an equilibrium average over translational motion of the molecules. For a gas-phase
sample undergoing random collisions and at thermal equilibrium, this average is characterized by the well-known Maxwell-
Boltzmann velocity distribution:

ωJ J

exp(i[ℏ ]t+ iΔ t/ℏ)νvib Ei,f

C(t) I(ω) d

( (2J +1) exp(− ) exp(− ) ,qrqvqeqt)
−1 ∑

J

J(J +1)ℏ2

8 IkTπ2

ℏνvibvi

kT
gie (6.9.29)
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Here  is the mass of the molecules and , , and  label the velocities along the lab-fixed Cartesian coordinates.

Defining the -axis as the direction of propagation of the light's photons and carrying out the averaging of the Doppler factor over
such a velocity distribution, one obtains:

This result, when substituted into the expressions for , yields expressions identical to those given for the three cases treated
above but with one modification. The translational motion average need no longer be considered in each ; instead, the earlier
expressions for  must each be multiplied by a factor  that embodies the translationaly averaged
Doppler shift. The spectral line shape function  can then be obtained for each  by simply Fourier transforming:

When applied to the rotation, vibration-rotation, or electronic-vibration-rotation cases within the unhindered rotation model treated
earlier, the Fourier transform involves integrals of the form:

This integral would arise in the electronic-vibration-rotation case; the other two cases would involve integrals of the same form but
with the  absent in the vibration-rotation situation and with  missing for pure rotation transitions. All
such integrals can be carried out analytically and yield:

The result is a series of Gaussian peaks in -space, centered at:

with widths ( ) determined by

given the temperature  and the mass of the molecules . The hotter the sample, the faster the molecules are moving on average,
and the broader is the distribution of Doppler shifted frequencies experienced by these molecules. The net result then of the
Doppler effect is to produce a line shape function that is similar to the unhindered rotation model's series of -functions but with
each -function peak broadened into a Gaussian shape.

If spectra can be obtained to accuracy sufficient to determine the Doppler width of the spectral lines, such knowledge can be used
to estimate the temperature of the system. This can be useful when dealing with systems that cannot be subjected to alternative
temperature measurements. For example, the temperatures of stars can be estimated (if their velocity relative to the earth is known)
by determining the Doppler shifts of emission lines from them. Alternatively, the relative speed of a star from the earth may be
determined if its temperature is known. As another example, the temperature of hot gases produced in an explosion can be probed
by measuring Doppler widths of absorption or emission lines arising from molecules in these gases.

Pressure Broadening 

To include the effects of collisions on the rotational motion part of any of the above  functions, one must introduce a model for
how such collisions change the dipole-related vectors that enter into . The most elementary model used to address collisions
applies to gaseous samples which are assumed to undergo unhindered rotational motion until struck by another molecule at which
time a kick is applied to the dipole vector and after which the molecule returns to its unhindered rotational movement.
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∞
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The effects of such infrequent collision-induced kicks are treated within the so-called pressure broadening (sometimes called
collisional broadening) model by modifying the free-rotation correlation function through the introduction of an exponential
damping factor :

This damping function's time scale parameter  is assumed to characterize the average time between collisions and thus should be
inversely proportional to the collision frequency. Its magnitude is also related to the effectiveness with which collisions cause the
dipole function to deviate from its unhindered rotational motion (i.e., related to the collision strength). In effect, the exponential
damping causes the time correlation function  to lose its memory and to decay to zero. This
memory point of view is based on viewing  as the projection of  along its 

 value  as a function of time t.

Introducing this additional  time dependence into  produces, when  is Fourier transformed to generate ,
integrals of the form

In the limit of very small Doppler broadening, the  factor can be ignored (i.e.,  set equal to unity), and

results. This integral can be performed analytically and generates:

a pair of Lorentzian peaks in -space centered again at

The full width at half height of these Lorentzian peaks is . One says that the individual peaks have been pressure or
collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisional broadening, the above integral

is more difficult to perform. Nevertheless, it can be carried out and again produces a series of peaks centered at

but whose widths are determined both by Doppler and pressure broadening effects. The resultant line shapes are thus no longer
purely Lorentzian nor Gaussian (which are compared in Figure 6.23 for both functions having the same full width at half height and
the same integrated area), but have a shape that is called a Voight shape.
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Figure 6.23 Typical Forms of Gaussian and Lorentzian Peaks having identical widths and areas.

Experimental measurements of line widths that allow one to extract widths originating from collisional broadening provide
information (through ) on the frequency of collisions and the strength of these collisions. By determining  at a series of gas
densities, one can separate the collision-frequency dependence and determine the strength of the individual collisions (meaning
how effective each collision is in reorienting the molecule’s dipole vector).

Rotational Diffusion Broadening 

Molecules in liquids and very dense gases undergo such frequent collisions with the other molecules that the mean time between
collisions is short compared to the rotational period for their unhindered rotation. As a result, the time dependence of the dipole-
related correlation functions can no longer be modeled in terms of free rotation that is interrupted by (infrequent) collisions and
Doppler shifted. Instead, a model that describes the incessant buffeting of the molecule's dipole by surrounding molecules becomes
appropriate. For liquid samples in which these frequent collisions cause the dipole to undergo angular motions that cover all angles
(i.e., in contrast to a frozen glass or solid in which the molecule's dipole would undergo strongly perturbed pendular motion about
some favored orientation), the so-called rotational diffusion model is often used.

In this picture, the rotation-dependent part of  is expressed as:

where  is the rotational diffusion constant whose magnitude details the time

decay in the averaged value of  at time  with respect to its value at time ; the larger , the faster is this
decay. As with pressure broadening, this exponential time dependence, when subjected to Fourier transformation, yields:

Again, in the limit of very small Doppler broadening, the  factor can be ignored (i.e.,  set equal to

unity), and

results. This integral can be evaluated analytically and generates:

a pair of Lorentzian peaks in -space centered again at

The full width at half height of these Lorentzian peaks is . In this case, one says that the individual peaks have been
broadened via rotational diffusion. In such cases, experimental measurement of line widths yield valuable information about how
fast the molecule is rotationally diffusing in its condensed environment.
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Lifetime or Heisenberg Homogeneous Broadening 

Whenever the absorbing species undergoes one or more processes that depletes its numbers, we say that it has a finite lifetime. For
example, a species that undergoes unimolecular dissociation has a finite lifetime, as does an excited state of a molecule that decays
by spontaneous emission of a photon. Any process that depletes the absorbing species contributes another source of time
dependence for the dipole time correlation functions  discussed above. This time dependence is usually modeled by
appending, in a multiplicative manner, a factor . This, in turn modifies the line shape function  in a manner much
like that discussed when treating the rotational diffusion case:

Not surprisingly, when the Doppler contribution is small, one obtains:

In these Lorentzian lines, the parameter  describes the kinetic decay lifetime of the molecule. One says that the spectral lines have
been lifetime or Heisenberg broadened by an amount proportional to . The latter terminology arises because the finite lifetime
of the molecular states can be viewed as producing, via the Heisenberg uncertainty relation , states whose energy is
uncertain to within an amount .

Site Inhomogeneous Broadening 

Among the above line broadening mechanisms, the pressure, rotational diffusion, and lifetime broadenings are all of the
homogeneous variety. This means that each and every molecule in the sample is affected in exactly the same manner by the
broadening process. For example, one does not find some molecules with short lifetimes and others with long lifetimes in the
Heisenberg case; the entire ensemble of molecules is characterized by a single lifetime.

In contrast, Doppler broadening is inhomogeneous in nature because each molecule experiences a broadening that is characteristic
of its particular velocity . That is, the fast molecules have their lines broadened more than do the slower molecules. Another
important example of inhomogeneous broadening is provided by so-called site broadening. Molecules imbedded in a liquid, solid,
or glass do not, at the instant of their photon absorption, all experience exactly the same interactions with their surroundings. The
distribution of instantaneous solvation environments may be rather narrow (e.g., in a highly ordered solid matrix) or quite broad
(e.g., in a liquid at high temperature or in a super-critical liquid). Different environments produce different energy level splittings 

 (because the initial and final states are solvated differently by the surroundings) and thus different
frequencies at which photon absorption can occur. The distribution of energy level splittings causes the sample to absorb at a range
of frequencies as illustrated in Figure 6.24 where homogeneous and inhomogeneous line shapes are compared.

Figure 6.24 Illustration of homogeneous band showing absorption at several concentrations of the absorbing species (left) and of
inhomogeneous band showing absorption at one concentration by numerous sub-populations

The spectral line shape function  is therefore further broadened when site inhomogeneity is present and significant. These
effects can be modeled by convolving the kind of  function that results from Doppler, lifetime, rotational diffusion, and
pressure broadening with a Gaussian distribution  that describes the inhomogeneous distribution of energy level splittings:

Here  is a line shape function such as those described earlier each of which contains a set of frequencies (e.g., 
) at which absorption or emission occurs and  is a Gaussian probability
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function describing the inhomogeneous broadening of the energy splitting .

A common experimental test to determine whether inhomogeneous broadening is significant involves hole burning. In such
experiments, an intense light source (often a laser) is tuned to a frequency  that lies within the spectral line being probed for
inhomogeneous broadening. Then, with the intense light source constantly turned on, a second tunable light source is used to scan
through the profile of the spectral line, and an absorption spectrum is recorded. Given an absorption profile as shown in Figure 6.25
in the absence of the intense burning light source:

Figure 6.25 Absorption Profile in the Absence of Hole Burning

one expects to see a profile such as that shown in Figure 6.26 if inhomogeneous broadening is operative.

Figure 6.26 Absorption Profile With Laser Turned On to Burn a Hole

The interpretation of the change in the absorption profile caused by the bright light source proceeds as follows:

1. In the ensemble of molecules contained in the sample, some molecules will absorb at or near the frequency of the bright light
source ; other molecules (those whose environments do not produce energy level splittings that match ) will not
absorb at this frequency.

2. Those molecules that do absorb at  will have their transition saturated by the intense light source, thereby rendering this
frequency region of the line profile transparent to further absorption.

3. When the probe light source is scanned over the line profile, it will induce absorptions for those molecules whose local
environments did not allow them to be saturated by the  light. The absorption profile recorded by this probe light source's
detector thus will match that of the original line profile, until

4. The probe light source's frequency matches , upon which no absorption of the probe source's photons will be recorded
because molecules that absorb in this frequency regime have had their transition saturated.

5. Hence, a hole will appear in the absorption spectrum recorded by the probe light source's detector in the region of .

Unfortunately, the technique of hole burning does not provide a fully reliable method for identifying inhomogeneously broadened
lines. If a hole is observed in such a burning experiment, this provides ample evidence, but if one is not seen, the result is not
definitive. In the latter case, the transition may not be strong enough (i.e., may not have a large enough rate of photon absorption)
for the intense light source to saturate the transition to the extent needed to form a hole.

Photoelectron Spectroscopy 

Photoelectron spectroscopy (PES) is a special kind of electronic spectroscopy. It uses visible or UV light to excite a molecule or ion
to a final state in which an electron is ejected. In effect, it induces transitions to final states in which an electron has been promoted
to an unbound so-called continuum orbital. Most PES experiments are carried out using a fixed-frequency light source (usually a
laser). This source’s photons, when absorbed, eject electrons whose intensity and kinetic energies  are then measured.
Subtracting the electrons’  from the photon’s energy  gives the binding energy  of the electron:

If the sample subjected to the PES experiment has molecules in a variety of initial states (e.g., two electronic states or various
vibrational-rotational levels of the ground electronic state) having various binding energies , one will observe a series of peaks
corresponding to electrons ejected with a variety of kinetic energies  as Figure 6.27 illustrates and as the energy-balance
condition requires:
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The peak of electrons detected with the highest kinetic energy came from the highest-lying state of the parent, while those with low
kinetic energy came from the lowest-energy state of the parent.

Figure 6.27 Photoelectron spectrum showing absorption from two states of the parent

By examining the spacings between these peaks, one learns about the spacings between the energy levels of the parent species that
has been subjected to electron loss.

Alternatively, if the parent species exists primarily in its lowest state but the daughter species produced when an electron is
removed from the parent has excited (electronic, vibration-rotation) states that can be accessed, one can observe a different
progression of peaks. In this case, the electrons with highest kinetic energy arise from transitions leading to the lowest-energy state
of the daughter as Figure 6.28 illustrates. In that figure, the lower energy surface belongs to the parent and the upper curve to the
daughter.

Figure 6.28 Photoelectron events showing detachment from one state of the parent to several states of the daughter.

An example of experimental photodetachment data is provided in Figure 6.29 showing the intensity of electrons detected when 
 anion loses an electron vs. the kinetic energy of the ejected electrons.

B = hν −K .Ek Ek (6.9.59)

Cu−
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11590?pdf


6.9.15 https://chem.libretexts.org/@go/page/11590

Figure 6.29 Photoelectron spectrum of Cu . The peaks belong to a Franck-Condon vibrational progression of neutral Cu

The peak at a kinetic energy of ca. 1.54 eV, corresponding to a binding energy of 1.0 eV, arises from  in  losing an
electron to produce  in . The most intense peak corresponds to a  to  transition. As in the visible-UV
spectroscopy case, Franck-Condon factors involving the overlap of the  anion and  neutral vibrational wave functions
govern the relative intensities of the PES peaks.

Another example is given in Figure 6.30 where the photodetachment spectrum of  (the anion of the carbene vinylidene)
appears.

Figure 6.30 Photoelectron spectrum of  showing detachments to two electronic states of the neutral

In this spectrum, the peaks having electron binding energies near 0.5 eV correspond to transitions in which ground-state 
 in  is detached to produce ground-state ( )  in various v levels. The spacings between this group of

peaks relate to the spacings in vibrational states of this  electronic state. The series of peaks with binding energies near 2.5 eV
correspond to transitions in which  is detached to produce  in its  excited electronic state. The spacings
between peaks in this range relate to spacings in vibrational states of this  state. The spacing between the peaks near 0.5 eV and
those near 2.5 eV relate to the energy difference between the  and  electronic states of the neutral .

Because PES offers a direct way to measure energy differences between anion and neutral or neutral and cation state energies, it is
a powerful and widely used means of determining molecular electron affinities (EAs) and ionization potentials (IPs). Because IPs
and EAs relate, via Koopmans’ theorem, to orbital energies, PES is thus seen to be a way to measure orbital energies. Its
vibrational envelopes also offer a good way to probe vibrational energy level spacings, and hence the bonding strengths.

Probing Continuum Orbitals 
There is another type of spectroscopy that can be used to directly probe the orbitals of a molecule that lie in the continuum (i.e., at
energies higher than that of the parent neutral). I ask that you reflect back on our discussion in Chapter 2 of tunneling and of
resonance states that can occur when an electron experiences both attractive and repulsive potentials. In such cases, there exists a
special energy at which the electron can be trapped by the attractive potential and have to tunnel through the repulsive barrier to
eventually escape. It is these kinds of situations that this spectroscopy probes.
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This experiment is called electron-transmission spectroscopy (ETS). In such an experiment, a beam of electrons having a known
intensity  and narrowly defined range of kinetic energies  is allowed to pass through a sample (usually gaseous) of thickness .
The intensity  of electrons observed to pass through the sample and arrive at a detector lying along the incident beam’s direction is
monitored, as are the kinetic energies of these electrons . Such an experiment is described in qualitative form in Figure 6.31.

Figure 6.31 Qualitative depiction of a prototypical electron transmission spectrum setup.

If the molecules in the sample have a resonance orbital whose energy is close to the kinetic energy  of the colliding electrons, it is
possible for an electron from the beam to be captured into such an orbital and to exist in this orbital for a considerable time. Of
course, in the absence of any collisions or other processes to carry away excess energy, this anion will re-emit an electron at a later
time. Hence, such anions are called metastable and their electronic states are called resonance states. If the captured electron
remains in this orbital for a length of time comparable to or longer than the time it takes for the nascent molecular anion to undergo
vibrational or rotational motion, various events can take place before the electron is re-emitted:

i.some bond lengths or angles can change (this will happen if the orbital occupied by the beam’s electron has bonding or
antibonding character) so, when the electron is subsequently emitted, the neutral molecule is left with a change in vibrational
energy;

ii.the molecule may rotate, so when the electron is ejected, it is not emitted in the same direction as the incident beam.

In the former case, one observes electrons emitted with energies  that differ from that of the incident beam by amounts related to
the internal vibrational energy levels of the anion. In the latter, one sees a reduction in the intensity of the beam that is transmitted
directly through the sample and electrons that are scattered away from this direction.

Such an ETS spectrum is shown in Figure 6.32 for a gaseous sample of  molecules.

In this spectrum, the energy of the transmitted beam’s electrons is plotted on the horizontal axis and the derivative of the intensity
of the transmitted beam is plotted on the vertical axis. It is common to plot such derivatives in ETS-type experiments to allow the
variation of the signal with energy to be more clearly identified.

Figure 6.32 ETS Spectrum (plotted in derivative form as described in the text) of 

In this ETS spectrum of , the oscillations that appear within the major spectral feature displayed (whose center is near 3.8 eV)
correspond to stretching and bending vibrational levels of the metastable  anion. It is the bending vibration that is primarily
excited because the beam electron enters the LUMO of , which is an orbital of the form shown in Figure 6.33.
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Figure 6.33 Antibonding  orbital of  holding the excess electron in 

Occupancy of this antibonding  orbital, causes both C-O bonds to lengthen and the O-C-O angle to bend away from 180 deg.
The bending allows the antibonding nature of this orbital to be reduced.

Other examples of ETS spectra are shown in Figure 6.34.

Figure 6.34 ETS spectra of several DNA bases

Here, again a derivative spectrum is shown, and the vertical lines have been added to show where the derivative passes through
zero, which is where the ETS absorption signal would have a peak. These maxima correspond to electrons entering various virtual 

 orbitals of the uracil and DNA base molecules. It is by finding these peaks in the ETS spectrum that one can determine the
energies of such continuum orbitals.

Before closing this section, it is important to describe how one uses theory to simulate the metastable states that arise in such ETS
experiments. Such calculations are not at all straightforward, and require the introduction of special tools designed to properly
model the resonant continuum orbital.

For metastable anions, it is difficult to approximate the potential experienced by the excess electron. For example, singly charged
anions in which the excess electron occupies a molecular orbital  that possesses non-zero angular momentum have effective
potentials as shown in Figure 6.35, which depend on the angular momentum  value of the orbital.

Figure 6.35 Radial potentials and shape resonance energy levels for two  values.

For example, the  orbital of  shown in Figure 6.36 produces two counteracting contributions to the effective radial potential 
 experienced by an electron occupying it.
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Figure 6.36 Antibonding  orbital of  showing its  character.

First, the two nitrogen centers exert attractive potentials on the electron in this orbital. These attractions are strongest when the
excess electron is near the nuclei but decay rapidly at larger distances because the other electrons’ Coulomb repulsions screen the
nuclear attractions. Secondly, because the  molecular orbital is comprised of atomic basis functions of , , etc. symmetry, it
possesses non-zero angular momentum. Because the  orbital has gerade symmetry, its large-r character is dominated by 
angular momentum. As a result, the excess electron has a centrifugal radial potential  derived largely from its 

 character.

The attractive short-range valence potentials  and the centrifugal potential combine to produce a net effective potential as
illustrated in Figure 6.35. The energy of an electron experiencing such a potential may or may not lie below the  asymptote.
If the attractive potential is sufficiently strong, as it is for , the electron in the  orbital will be bound and its energy will lie
below this asymptote. On the other hand, if the attractive potential is not as strong, as is the case for the less-electronegative
nitrogen atoms in , the energy of the  orbital can lie above the asymptote. In the latter cases, we speak of metastable shape-
resonance states. They are metastable because their energies lie above the asymptote so they can decay by tunneling through the
centrifugal barrier. They are called shape-resonances because their metastability arises from the shape of their repulsive centrifugal
barrier.

If one had in-hand a reasonable approximation to the attractive short-range potential  and if one knew the L-symmetry of the
orbital occupied by the excess electron, one could form  as above. However, to compute the lifetime of the shape resonance,
one has to know the energy  of this state. The most common and powerful tool for studying such metastable states theoretically is
the stabilization method (SM) that Prof. Howard Taylor at USC pioneered. This method involves embedding the system of interest
(e.g., the  anion) within a finite radial box in order to convert the continuum of states corresponding, for example, to ,
into discrete states that can be handled using more conventional methods. By then varying the size of the box, one can vary the
energies of the discrete states that correspond to  (i.e., one varies the kinetic energy  of the orbital containing the
excess electron). As the box size is varied, one eventually notices (e.g., by plotting the orbitals) that one of the  states
possesses a significant amount of valence (i.e., short-range) character. That is, one such state has significant amplitude not only at
large-r but also in the region of the two nitrogen centers. It is this state that corresponds to the metastable shape-resonance state,
and it is the energy  where significant valence components develop that provides the stabilization estimate of the state energy.

Let us continue using  as an example for how the SM would be employed, especially how one usually varies the box within
which the anion is constrained. One would use a conventional atomic orbital basis set that would likely include s and  functions
on each  atom, perhaps some polarization d functions and some conventional diffuse s and  orbitals on each  atom. These
basis orbitals serve primarily to describe the motions of the electrons within the usual valence regions of space.

To this basis, one would append extra sets of diffuse -symmetry orbitals. These orbitals could be  (and maybe ) functions
centered on each nitrogen atom, or they could be  (and maybe ) orbitals centered at the midpoint of the N-N bond. One usually
would not add just one such function; rather several such functions, each with an orbital exponent  that characterizes its radial
extent, would be used. Let us assume, for example, that  such  functions have been used.

Next, using the conventional atomic orbital basis as well as the  extra  basis functions, one carries out a calculation (most often
a variational calculation in which one computes many energy levels) on the  anion. In this calculation, one tabulates the
energies of many (say M) of the electronic states of . Of course, because a finite atomic orbital basis set must be used, one
finds a discrete spectrum of orbital energies and thus of electronic state energies. There are occupied orbitals having negative
energy that represent, via. Koopmans' theorem, the bound states of the . There are also so-called virtual orbitals (i.e., those
orbitals that are not occupied) whose energies lie above zero (i.e., do not describe bound states). The latter orbitals offer a discrete
approximation to the continuum within which the resonance state of interest lies.

One then scales the orbital exponents { } of the  extra  basis orbitals by a factor :  and repeats the calculation of
the energies of the M lowest energies of . This scaling causes the extra  basis orbitals to contract radially (if ) or to
expand radially (if ). It is this basis orbital expansion and contraction that produces expansion and contraction of the box
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discussed above. That is, one does not employ a box directly; instead, one varies the radial extent of the most diffuse basis orbitals
to simulate the box variation.

If the conventional orbital basis is adequate, one finds that the extra  orbitals, whose exponents are being scaled, do not affect
appreciably the energy of the neutral  molecule. This can be probed by plotting the  energy as a function of the scaling
parameter h; if the energy varies little with , the conventional basis is adequate.

In contrast to plots of the neutral  energy vs. , plots of the energies of the M  states show significant h-dependence as
Figure 6.37 illustrates.

Figure 6.37 Typical stabilization plot showing several levels of the metastable anion and their avoided Crossings

What does such a stabilization plot tell us and what do the various branches of the plot mean? First, one should notice that each of
the plots of the energy of an anion state (relative to the neutral molecule’s energy, which is independent of ) grows with increasing
h. This h-dependence arises from the h-scaling of the extra diffuse  basis orbitals. Because most of the amplitude of such basis
orbitals lies outside the valence region, the kinetic energy is the dominant contributor to such orbitals’ energy. Because  enters into
each orbital as , and because the kinetic energy operator involves the second derivative with respect to r, the kinetic
energies of orbitals dominated by the diffuse  basis functions vary as .

For small , all of the  diffuse basis functions have their amplitudes concentrated at large r and have low kinetic energy. This is
because, for small  all of these orbitals are very diffuse and concentrate electron density at large distances. As  grows, these
functions become more radially compact and their kinetic energies grow. For example, note the three lowest energies shown above
increasing from near zero as  grows.

As  further increases, one reaches a point at which the third and fourth anion-state energies undergo an avoided crossing. At this 
value, if one examines the nature of the two wave functions whose energies avoid one another, one finds that one of them contains
substantial amounts of both valence and extra-diffuse  function character. Just to the left of the avoided crossing, the lower-energy
state (the third state for small ) contains predominantly extra diffuse  orbital character, while the higher-energy state (the fourth
state) contains largely valence  orbital character.

However, at the special value of  where these two states nearly cross, the kinetic energy of the third state (as well as its radial size
and its de Broglie wavelength) are appropriate to connect properly with the fourth state. By connect properly we mean that the two
states have wave function amplitudes, phases, and slopes that match. So, at this special  value, one can achieve a description of
the shape-resonance state that correctly describes this state both in the valence region and in the large-r region. Only by tuning the
energy of the large-r states using the  scaling can one obtain this proper boundary condition matching.

In summary, by carrying out a series of anion-state energy calculations for several states and plotting them vs. , one obtains a
stabilization graph. By examining this graph and looking for avoided crossings, one can identify the energies at which metastable
resonances occur. It is also possible to use the shapes (i.e., the magnitude of the energy splitting between the two states and the
slopes of the two avoiding curves) of the avoided crossings in a stabilization graph to compute the lifetimes of the metastable
states. Basically, the larger the avoided crossing energy splitting between the two states, the shorter is the lifetime of the resonance
state.

So, the ETS and PES experiments offer wonderful probes of the bound and continuum states of molecules and ions that tell us a lot
about the electronic nature and chemical bonding of these species. The theoretical study of these phenomena is complicated by the
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need to properly identify and describe any continuum orbitals and states that are involved. The stabilization technique allows us to
achieve a good approximation to resonance states that lie in such continua.
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6.10: Molecular Orbitals
Before moving on to discuss methods that go beyond the HF model, it is appropriate to examine some of the computational effort
that goes into carrying out a HF SCF calculation on a molecule. The primary differences that appear when molecules rather than
atoms are considered are

i. The electronic Hamiltonian  contains not only one nuclear-attraction Coulomb potential , but a sum of such
terms, one for each nucleus in the molecule:

whose locations are denoted .

ii. One has AO basis functions of the type discussed above located on each nucleus of the molecule. These functions are still
denoted , but their radial and angular dependences involve the distance and orientation of the electron relative to
the particular nucleus on which the AO is located.

Other than these two changes, performing a SCF calculation on a molecule (or molecular ion) proceeds just as in the atomic case
detailed earlier. Let us briefly review how this iterative process occurs.

Once atomic basis sets have been chosen for each atom, the one- and two-electron integrals appearing in the  and overlap
matrices must be evaluated. There are numerous highly efficient computer codes that allow such integrals to be computed for , , 

, , and even , , and  basis functions. After executing one of these so-called integral packages for a basis with a total of 

functions, one has available (usually on the computer's hard disk) of the order of  one-electron (  and ) and

 two-electron ( ) integrals. When treating extremely large atomic orbital basis sets (e.g., 500 or more basis

functions), modern computer programs calculate the requisite integrals, but never store them on the disk. Instead, their
contributions to the  matrix elements are accumulated on the fly after which the integrals are discarded. This is usually
referred to as the direct integral-driven approach.

Shapes, Sizes, and Energies of Orbitals 
Each molecular spin-orbital (MO) that results from solving the HF SCF equations for a molecule or molecular ion consists of a sum
of components involving all of the basis AOs:

In this expression, the  are referred to as LCAO-MO coefficients because they tell us how to linearly combine AOs to form the
MOs. Because the AOs have various angular shapes (e.g., , , or  shapes) and radial extents (i.e., different orbital exponents), the
MOs constructed from them can be of different shapes and radial sizes. Let’s look at a few examples to see what I mean.

The first example is rather simple and pertains to two H atoms combining to form the  molecule. The valence AOs on each H
atom are the  AOs; they combine to form the two valence MOs (  and ) depicted in Figure 6.1.4.

Figure 6.1.4: Two  Hydrogen Atomic Orbitals Combine to Form a Bonding and Antibonding Molecular Orbital

The bonding MO labeled s has LCAO-MO coefficients of equal sign for the two  AOs, as a result of which this MO has the same
sign near the left H nucleus (A) as near the right H nucleus (B). In contrast, the antibonding MO labeled  has LCAO-MO
coefficients of different sign for the A and B  AOs. As was the case in the Hückel or tight-binding model outlined in Chapter 2,
the energy splitting between the two MOs depends on the overlap  between the two AOs which, in turn, depends on
the distance  between the two nuclei.
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An analogous pair of bonding and antibonding MOs arises when two  orbitals overlap sideways as in ethylene to form  and 
MOs which are illustrated in Figure 6.1.5.

Figure 6.1.5 Two  Atomic Orbitals on Carbon Atoms Combine to Form a Bonding and Antibonding Molecular Orbital.

The shapes of these MOs clearly are dictated by the shapes of the AOs that comprise them and the relative signs of the LCAO-MO
coefficients that relate the MOs to AOs. For the  MO, these coefficients have the same sign on the left and right atoms; for the 
MO, they have opposite signs.

I should stress that the signs and magnitudes of the LCAO-MO coefficients arise as eigenvectors of the HF SCF matrix eigenvalue
equation:

It is a characteristic of such eigenvalue problems for the lower energy eigenfunctions to have fewer nodes than the higher energy
solutions as we learned from several examples that we solved in Part 1 of this text.

Another thing to note about the MOs shown above is that they will differ in their quantitative details, but not in their overall shapes,
when various functional groups are attached to the ethylene molecule’s C atoms. For example, if electron-withdrawing groups such
as Cl, OH or Br are attached to one of the C atoms, the attractive potential experienced by a  electron near that C atom will be
enhanced relative to the potential near the other C atom. As a result, the bonding MO will have larger LCAO-MO coefficients
Ck,m belonging to tighter basis AOs  on this C atom. This will make the bonding  MO more radially compact in this region of
space, although its nodal character and gross shape will not change. Alternatively, an electron donating group such as H C- or t-
butyl attached to one of the C centers will cause the  MO to be more diffuse (by making its LCAO-MO coefficients for more
diffuse basis AOs larger).

In addition to MOs formed primarily of AOs of one type (i.e., for  it is primarily s-type orbitals that form the  and  MOs; for
ethylene’s  bond, it is primarily the C  AOs that contribute), there are bonding and antibonding MOs formed by combining
several AOs. For example, the four equivalent C-H bonding MOs in  shown in Figure 6.1. 6 each involve C  and  as well
as H  basis AOs.

Figure 6.1. 6 The Four C-H Bonds in Methane

The energies of the MOs depend on two primary factors: the energies of the AOs from which the MOs are constructed and the
overlap between these AOs. The pattern in energies for valence MOs formed by combining pairs of first-row atoms to form homo-
nuclear diatomic molecules is shown in Figure 6.1. 7.
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Figure 6.1.7: Energies of the Valence Molecular Orbitals in Homonuclear Diatomics Involving First-Row Atoms

In this figure, the core MOs formed from the  AOs are not shown; only those MOs formed from  and  AOs appear. The
clear trend toward lower orbital energies as one moves from left to right is due primarily to the trends in orbital energies of the
constituent AOs. That is, F being more electronegative than  has a lower-energy  orbital than does .

Bonding, Anti-bonding, Non-bonding, and Rydberg Orbitals 
As noted above, when valence AOs combine to form MOs, the relative signs of the combination coefficients determine, along with
the AO overlap magnitudes, the MO’s energy and nodal properties. In addition to the bonding and antibonding MOs discussed and
illustrated earlier, two other kinds of MOs are important to know about.

Non-bonding MOs arise, for example, when an orbital on one atom is not directed toward and overlapping with an orbital on a
neighboring atom. For example, the lone pair orbitals on  or on the oxygen atom of  are non-bonding orbitals. They
still are described in the LCAO-MO manner, but their  coefficients do not contain dominant contributions from more than one
atomic center.

Finally, there is a type of orbital that all molecules possess but that is ignored in most elementary discussions of electronic
structure. All molecules have so-called Rydberg orbitals. These orbitals can be thought of as large diffuse orbitals that describe the
regions of space an electron would occupy if it were in the presence of the corresponding closed-shell molecular cation. Two
examples of such Rydberg orbitals are shown in Figure 6.1.8. On the left, we see the Rydberg orbital of  and on the right, that
of . The former species can be thought of as a closed-shell ammonium cation  around which a Rydberg orbital
resides. The latter is protonated methyl amine with its Rydberg orbital.

Figure 6.1.8: Rydberg Orbitals of  and of Protonated Methyl Amine
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CHAPTER OVERVIEW

7: Statistical Mechanics
 

In this Chapter, you will be introduced to many of the main concepts and methods of statistical mechanics. You will be familiar
with the following topics:

a. Microcanonical, canonical, and grandcanonical ensembles and their partition functions.
b. Ensemble averages being equal to long-time averages; the equal a priori postulate.
c. Fluctuations
d. Expressions for thermodynamic properties in terms of partition functions.
e. Monte Carlo methods including Metropolis sampling and umbrella sampling.
f. Molecular dynamics simulations, including molecular mechanics force fields.
g. Coarse graining methods.
h. Time correlation functions.
i. Einstein and Debye models for solids’ phonons.
j. Lattice theories of adsorption, liquids, and phase transitions.
k. Virial expansions of thermodynamic properties.

When one is faced with a system containing many molecules at or near thermal equilibrium, it is not necessary or even wise to try
to describe it in terms of quantum wave functions or even classical trajectories following the positions and momenta of all of the
constituent particles. Instead, the powerful tools of statistical mechanics allow one to focus on quantities that describe the many-
molecule system in terms of the behavior it displays most of the time. In this Chapter, you will learn about these tools and see some
important examples of their application.

7.1: Collections of Molecules at or Near Equilibrium
7.2: Monte Carlo Evaluation of Properties
7.3: Molecular Dynamics Simulations
7.4: Time Correlation Functions
7.5: Some Important Applications of Statistical Mechanics
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7.1: Collections of Molecules at or Near Equilibrium
As introduced in Chapter 5, the approach one takes in studying a system composed of a very large number of molecules at or near thermal equilibrium can be quite different
from how one studies systems containing a few isolated molecules. In principle, it is possible to conceive of computing the quantum energy levels and wave functions of a
collection of many molecules (e.g., ten  ions, ten  ions and 550  molecules in a volume chosen to simulate a concentration of 1 molar ), but doing so
becomes impractical once the number of atoms in the system reaches a few thousand or if the molecules have significant intermolecular interactions as they do in condensed-
phase systems. Also, as noted in Chapter 5, following the time evolution of such a large number of molecules can be confusing if one focuses on the short-time behavior of any
single molecule (e.g., one sees jerky changes in its energy, momentum, and angular momentum). By examining, instead, the long-time average behavior of each molecule or,
alternatively, the average properties of a significantly large number of molecules, one is often better able to understand, interpret, and simulate such condensed-media systems.
Moreover, most experiments do not probe such short-time dynamical properties of single molecules; instead, their signals report on the behavior of many molecules lying
within the range of their detection device (e.g., laser beam, STM tip, or electrode). It is when one want to describe the behavior of collections of molecules under such
conditions that the power of statistical mechanics comes into play.

Distribution of Energy Among Levels 

One of the most important concepts of statistical mechanics involves how a specified total amount of energy  can be shared among a collection of molecules and within the
internal (rotational, vibrational, electronic) and intermolecular (translational) degrees of freedom of these molecules when the molecules have a means for sharing or
redistributing this energy (e.g., by collisions). The primary outcome of asking what is the most probable distribution of energy among a large number  of molecules within a
container of volume  that is maintained in equilibrium by such energy-sharing at a specified temperature  is the most important equation in statistical mechanics, the
Boltzmann population formula:

This equation expresses the probability  of finding the system (which, in the case introduced above, is the whole collection of  interacting molecules) in its  quantum
state, where  is the energy of this quantum state,  is the temperature in K,  is the degeneracy of the  state, and the denominator  is the so-called partition function:

The classical mechanical equivalent of the above quantum Boltzmann population formula for a system with a total of  coordinates (collectively denoted - they would be the
internal and intermolecular coordinates of the  molecules in the system) and  momenta (denoted ) is:

where  is the classical Hamiltonian,  is Planck's constant, and the classical partition function  is

This probability density expression, which must integrate to unity, contains the factor of  because, as we saw in Chapter 1 when we learned about classical action, the
integral of a coordinate-momentum product has units of Planck’s constant.

Notice that the Boltzmann formula does not say that only those states of one particular energy can be populated; it gives non-zero probabilities for populating all states from
the lowest to the highest. However, it does say that states of higher energy  are disfavored by the  factor, but, if states of higher energy have larger
degeneracies  (which they usually do), the overall population of such states may not be low. That is, there is a competition between state degeneracy , which tends to
grow as the state's energy grows, and  which decreases with increasing energy. If the number of particles  is huge, the degeneracy  grows as a high power
(let’s denote this power as ) of  because the degeneracy is related to the number of ways the energy can be distributed among the  molecules. In fact,  grows at least as
fast as . As a result of  growing as , the product function  has the form shown in Fig. 7.1 (for , for illustrative purposes)

Figure 7.1 Probability Weighting Factor  as a Function of  for  = 10.

By taking the derivative of this function  with respect to E, and finding the energy at which this derivative vanishes, one can show that this probability function has a
peak at , and that at this energy value,

By then asking at what energy  the function  drops to  of this maximum value :

one finds
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So the width of the  graph, measured as the change in energy needed to cause  to drop to  of its maximum value divided by the value of the energy at
which  assumes this maximum value, is

This width gets smaller and smaller as  increases.

The primary conclusion is that as the number  of molecules in the sample grows, which, as discussed earlier, causes  to grow, the energy probability function becomes
more and more sharply peaked about the most probable energy . This, in turn, suggests that we may be able to model, aside from infrequent fluctuations which we may also
find a way to take account of, the behavior of systems with many molecules by focusing on the most probable situation (i.e., those having the energy ) and ignoring or
making small corrections for deviations from this case.

It is for the reasons just shown that for macroscopic systems near equilibrium, in which  (and hence ) is extremely large (e.g.,  ~  to ), only the most probable
distribution of the total energy among the  molecules need be considered. This is the situation in which the equations of statistical mechanics are so useful. Certainly, there
are fluctuations (as evidenced by the finite width of the above graph) in the energy content of the -molecule system about its most probable value. However, these
fluctuations become less and less important as the system size (i.e., ) becomes larger and larger.

Basis of the Boltzmann Population Formula 

To understand how this narrow Boltzmann distribution of energies arises when the number of molecules  in the sample is large, we consider a system composed of 
identical containers, each having volume V, and each made out a material that allows for efficient heat transfer to its surroundings (e.g., through collisions of the molecules
inside the volume with the walls of the container) but material that does not allow any of the  molecules in each container to escape. These containers are arranged into a
regular lattice as shown in Figure 7.2 in a manner that allows their thermally conducting walls to come into contact. Finally, the entire collection of  such containers is
surrounded by a perfectly insulating material that assures that the total energy (of all  molecules) can not change. So, this collection of  identical containers each
containing  molecules constitutes a closed (i.e., with no molecules coming or going) and isolated (i.e., so total energy is constant) system.

Figure 7.2 Collection of  identical cells having energy-conducting walls that do not allow molecules to pass between cells.

Equal priori Probability Assumption 

One of the fundamental assumptions of statistical mechanics is that, for a closed isolated system at equilibrium, all quantum states of the system having energy equal to the
energy  with which the system is prepared are equally likely to be occupied. This is called the assumption of equal a priori probability for such energy-allowed quantum
states. The quantum states relevant to this case are not the states of individual molecules, nor are they the states of  of the molecules in one of the containers of volume .
They are the quantum states of the entire system comprised of  molecules. Because our system consists of  identical containers, each with  molecules in it, we can
describe the quantum states of the entire system in terms of the quantum states of each such container. It may seem foolish to be discussing quantum states of the large system
containing  molecules, given what I said earlier about the futility in trying to find such states. However, what I am doing at this stage is to carry out a derivation that is
based upon such quantum states but whose final form and final working equations will not actually require one to know or even be able to have these states in hand.

Let’s pretend that we know the quantum states that pertain to  molecules in a container of volume  as shown in Figure 7.2, and let’s label these states by an index . That is
 labels the lowest-energy state of  molecules in the container of volume ,  labels the second such state, and so on. As I said above, I understand it may seem

daunting to think of how one actually finds these -molecule eigenstates. However, we are just deriving a general framework that gives the probabilities of being in each such
state. In so doing, we are allowed to pretend that we know these states. In any actual application, we will, of course, have to use approximate expressions for such energies.

Assuming that the walls that divide the  containers play no role except to allow for collisional (i.e., thermal) energy transfer among the containers, an energy-labeling for
states of the entire collection of  containers can be realized by giving the number of containers that exist in each single-container J-state. This is possible because, under the
assumption about the role of the walls just stated, the energy of each -container state is a sum of the energies of the  single-container states that comprise that -container
state. For example, if , the label 1, 1, 2, 2, 1, 3, 4, 1, 2 specifies the energy of this 9-container state in terms of the energies { } of the states of the 9 containers: 

. Notice that this 9-container state has the same energy as several other 9-container states; for example, 1, 2, 1, 2, 1, 3, 4, 1, 2 and 4, 1, 3, 1, 2, 2, 1, 1,
2 have the same energy although they are different individual states. What differs among these distinct states is which box occupies which single-box quantum state.

The above example illustrates that an energy level of the -container system can have a high degree of degeneracy because its total energy can be achieved by having the
various single-container states appear in various orders. That is, which container is in which state can be permuted without altering the total energy . The formula for how
many ways the  container states can be permuted such that:

i. there are  containers appearing in single-container state , with
ii. a total of  containers, is

Here  denote the number of containers existing in single-container states 1, 2, 3, … , …. This combinatorial formula reflects the permutational
degeneracy arising from placing  containers into state 1,  containers into state 2, etc.

If we imagine an extremely large number of containers and we view  as well as the { } as being large numbers (n.b., we will soon see that this is the case at least for the
most probable distribution that we will eventually focus on), we can ask- for what choices of the variables  is this degeneracy function  a
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maximum? Moreover, we can examine  at its maximum and compare its value at values of the { } parameters changed only slightly from the values that maximized 
. As we will see,  is very strongly peaked at its maximum and decreases extremely rapidly for values of { } that differ only slightly from the optimal values. It is this

property that gives rise to the very narrow energy distribution discussed earlier in this Chapter. So, let’s take a closer look at how this energy distribution formula arises.

We want to know what values of the variables  make  a maximum. However, all of the  variables are not
independent; they must add up to , the total number of containers, so we have a constraint

that the variables must obey. The { } variables are also constrained to give the total energy  of the -container system when summed as

We have two problems: i. how to maximize  and ii. how to impose these constraints. Because  takes on values greater than unity for any choice of the { },  will
experience its maximum where  has its maximum, so we can maximize  if doing so helps. Because the  variables are assumed to take on large numbers (when  is
large), we can use Sterling’s approximation for the natural logarithm of the factorial of a large number:

to approximate  as follows:

This expression will prove useful because we can take its derivative with respect to the  variables, which we need to do to search for the maximum of .

To impose the constraints  and  we use the technique of Lagrange multipliers. That is, we seek to find values of { } that maximize the following
function:

Notice that this function  is exactly equal to the  function we wish to maximize whenever the { } variables obey the two constraints. So, the maxima of  and of 
are identical if the { } have values that obey the constraints. The two Lagrange multipliers  and  are introduced to allow the values of { } that maximize  to ultimately
obey the two constraints. That is, we first find values of the { } variables that make  maximum; these values will depend on  and  and will not necessarily obey the
constraints. However, we will then choose  and  to assure that the two constraints are obeyed. This is how the Lagrange multiplier method works.

Lagrange Multiplier Method 

Taking the derivative of  with respect to each independent  variable and setting this derivative equal to zero gives:

This equation can be solved to give . Substituting this result into the first constraint equation gives , which allows
us to solve for

 in terms of . Doing so, and substituting the result into the expression for  gives:

where

Notice that the  are, as we assumed earlier, large numbers if  is large because  is proportional to . Notice also that we now see the appearance of the partition
function  and of exponential dependence on the energy of the state that gives the Boltzmann population of that state.

It is possible to relate the  Lagrange multiplier to the total energy  of the  containers by summing the number of containers in the Kth quantum state  multiplied by the
energy of that quantum state 

This shows that the average energy of a container, computed as the total energy  divided by the number  of such containers can be computed as a derivative of the
logarithm of the partition function . As we show in the following Section of this Chapter, all thermodynamic properties of the  molecules in the container of volume  can
be obtained as derivatives of the natural logarithm of this  function. This is why the partition function plays such a central role in statistical mechanics.

To examine the range of energies over which each of the  single-container system varies with appreciable probability, let us consider not just the degeneracy  of that
set of variables  that makes  maximum, but also the degeneracy  for values of  differing by small amounts { } from the
optimal values { }. Expanding  as a Taylor series in the parameters  and evaluating the expansion in the neighborhood of the values { }, we find:

We know that all of the first derivative terms ( ) vanish because  has been made maximum at { }. To evaluate the second derivative terms, we first note that the

first derivative of  is

So the second derivatives needed to complete the Taylor series through second order are:
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Using this result, we can expand  in the neighborhood of { } in powers of  as follows:

or, equivalently,

This result clearly shows that the degeneracy, and hence, by the equal a priori probability hypothesis, the probability of the -container system occupying a state having {
} falls off exponentially as the variables  move away from their most-probable values { }.

Thermodynamic Limit 

As we noted earlier, the  are proportional to  (i.e., ), so when considering deviations  away from the optimal , we should consider

deviations that are also proportional to : . In this way, we are treating deviations of specified percentage or fractional amount which we denote . Thus, the

ratio  that appears in the above exponential has an M-dependence that allows  to be written as:

where  and  are the fraction and fractional deviation of containers in state :  and . The purpose of writing  in this manner is to explicitly

show that, in the so-called thermodynamic limit, when  approaches infinity, only the most probable distribution of energy { } need to be considered because only {
} is important as  approaches infinity.

Fluctuations 

Let’s consider this very narrow distribution issue a bit further by examining fluctuations in the energy of a single container around its average energy . We already

know that the number of containers in a given state  can be written as . Alternatively, we can say that the probability of a container occupying the

state  is:

Using this probability, we can compute the average energy  as:

To compute the fluctuation in energy, we first note that the fluctuation is defined as the average of the square of the deviation in energy from the average:

The following identity is now useful for further re-expressing the fluctuations:

Recognizing the first factor immediately above as , and the second factor as , and noting that , allows the fluctuation formula to be rewritten as:

Because the parameter  can be shown to be related to the Kelvin temperature  as , the above expression can be re-written as:

Recognizing the formula for the constant-volume heat capacity

allows the fractional fluctuation in the energy around the mean energy  to be expressed as:
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What does this fractional fluctuation formula tell us? On its left-hand side it gives a measure of the fractional spread of energies over which each of the containers ranges about
its mean energy . On the right side, it contains a ratio of two quantities that are extensive properties, the heat capacity and the mean energy. That is, both  and  will
be proportional to the number  of molecules in the container as long as  is reasonably large. However, because the right-hand side involves , it is proportional to 

 and thus will be very small for large  as long as  does not become large. As a result, except near so-called critical points where the heat capacity does indeed
become extremely large, the fractional fluctuation in the energy of a given container of  molecules will be very small (i.e., proportional to ). This finding is related to
the narrow distribution in energies that we discussed earlier in this section.

Let’s look at the expression

in a bit more detail for a system that is small but still contains quite a few particles-a cluster of  Ar atoms at temperature . If we assume that each of the Ar atoms in the

cluster has  of kinetic energy and that the potential energy holding the cluster together is small and constant (so it cancels in ),  will be  and  will

be . So,

In a nano-droplet of diameter 100 Å, with each Ar atom occupying a volume of ca. , there will be ca.

Ar atoms. So, the average fractional spread in the energy

That is, even for a very small nano-droplet, the fluctuation in the energy of the system is only a fraction of a percent (assuming  is not large as near a critical point). This
example shows why it is often possible to use thermodynamic concepts and equations even for very small systems, albeit realizing that fluctuations away from the most
probable state are more important than in much larger systems.

Partition Functions and Thermodynamic Properties 

Let us now examine how this idea of the most probable energy distribution being dominant gives rise to equations that offer molecular-level expressions for other
thermodynamic properties. The first equation is the fundamental Boltzmann population formula that we already examined:

which expresses the probability for finding the -molecule system in its  quantum state having energy . Sometimes, this expression is written as

where now the index  is used to label an energy level of the system having energy  and degeneracy. It is important for the student to be used to either notation; a level is
just a collection of those states having identical energy.

System Partition Functions 

Using this result, it is possible to compute the average energy , sometimes written as , of the system

and, as we saw earlier in this Chapter, to show that this quantity can be recast as

To review how this proof is carried out, we substitute the expressions for  and for  into the expression for  (I will use the notation labeling energy levels rather than
energy states to allow the student to become used to this)

By noting that , we can then rewrite  as
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And then recalling that , we finally obtain

All other equilibrium properties can also be expressed in terms of the partition function . For example, if the average pressure  is defined as the pressure of each quantum
state (defined as how the energy of that state changes if we change the volume of the container by a small amount)

multiplied by the probability  for accessing that quantum state, summed over all such states, one can show, realizing that only  (not  or ) depend on the volume ,
that

If you wonder why the energies  should depend on the volume , think of the case of  gas-phase molecules occupying the container of volume V. You know that the
translational energies of each of these  molecules depend on the volume through the particle-in-a-box formula

Changing  can be accomplished by changing the box length . This makes it clear why the energies do indeed depend on the volume . Of course, there are additional
sources of the V-dependence of the energy levels. For example, as one shrinks , the molecules become more crowded, so their intermolecular energies also change.

Without belaboring the point further, it is possible to express all of the usual thermodynamic quantities in terms of the partition function . The average energy and average
pressure are given above, as is the heat capacity. The average entropy is given as

the Helmholtz free energy A is

and the chemical potential  is expressed as follows:

As we saw earlier, it is also possible to express fluctuations in thermodynamic properties in terms of derivatives of partition functions and, thus, as derivatives of other
properties. For example, the fluctuation in the energy  was shown above to be given by

The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has an excellent treatment of these topics and shows how all of these expressions are
derived.

So, if one were able to evaluate the partition function  for  molecules in a volume  at a temperature T, either by summing the quantum-level degeneracy and 
 factors

or by carrying out the phase-space integral over all  of the coordinates and momenta of the system

one could then use the above formulas to evaluate any thermodynamic properties and their fluctuations as derivatives of .

The averages discussed above, derived using the probabilities  associated with the most probable distribution, are called ensemble averages with the

set of states associated with the specified values of , , and  constituting what is called a canonical ensemble. Averages derived using the probabilities  = constant for
all states associated with specified values of , , and  are called ensemble averages for a microcanonical ensemble. There is another kind of ensemble that is often used in
statistical mechanics; it is called the grand canonical ensemble and relates to systems with specified volume , temperature , and chemical potential  (rather than particle
number ). To obtain the partition function (from which all thermodynamic properties are obtained) in this case, one considers maximizing the same function

introduced earlier, but now considering each quantum (labeled J) as having an energy  that depends on the volume and on how may particles occupy this volume.
The variables  are now used to specify how many of the containers introduced earlier contain  particles and are in the  quantum state. These variables have to
obey the same two constraints as for the canonical ensemble
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but they also are required to obey

which means that the sum adds up to the total number of particles in the isolated system’s large container that was divided into M smaller container. In this case, the walls
separating each small container are assumed to allow for energy transfer (as in the canonical ensemble) and for molecules to move from one container to another (unlike the
canonical ensemble). Using Lagrange multipliers as before to maximize  subject to the above three constraints involves maximizing

and gives

or

Imposing the first constraint gives

or

where the partition function  is defined by the sum in the denominator. So, now the probability of the system having  particles and being in the  quantum state is

Very much as was shown earlier for the canonical ensemble, one can then express thermodynamic properties (e.g., , , etc.) in terms of derivatives of . The text
Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) goes through these derivations in good detail, so I will not repeat them here because we showed

how to do so when treating the canonical ensemble. To summarize them briefly, one again uses , finds that g is related to the chemical potential  as

and obtains

The formulas look very much like those of the canonical ensemble, except for the result expressing the average number of molecules in the container Nave in terms of the
derivative of the partition function with respect to the chemical potential .

In addition to the equal a priori probability postulate stated earlier (i.e., that, in the thermodynamic limit (i.e., large ), every quantum state of an isolated system in
equilibrium having fixed , , and  is equally probable), statistical mechanics makes another assumption. It assumes that, in the thermodynamic limit, the ensemble average

(e.g., using equal probabilities  for all states of an isolated system having specified , , and  or using  for states of a system having specified , 

, and  or using  for the grand canonical case) of any quantity is equal to the long-time average of this quantity (i.e., the value one

would obtain by monitoring the dynamical evolution of this quantity over a very long time). This second postulate implies that the dynamics of an isolated system spends equal
amounts of time in every quantum state that has the specified , , and ; this is known as the ergodic hypothesis.

Let’s consider a bit more what the physical meaning or information content of partition functions is. Canonical ensemble partition functions represent the thermal-averaged
number of quantum states that are accessible to the system at specified values of , , and . This can be seen best by again noting that, in the quantum expression,

the partition function is equal to a sum of the number of quantum states in the jth energy level multiplied by the Boltzmann population factor  of that level. So, 
 is dimensionless and is a measure of how many states the system can access at temperature . Another way to think of  is suggested by rewriting the Helmholtz free
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energy definition given above as . This identity shows that  can be viewed as the Boltzmann population, not of a given energy , but of a specified
amount of free energy .

For the microcanonical ensemble, the probability of occupying each state that has the specified values of , , and  is equal

where  is the total number of such states. In the microcanonical ensemble case,  plays the role that  plays in the canonical ensemble case; it gives the
number of quantum states accessible to the system.

Individual-Molecule Partition Functions 

Keep in mind that the energy levels  and degeneracies  and  discussed so far are those of the full -molecule system. In the special case for which the
interactions among the molecules can be neglected (i.e., in the dilute ideal-gas limit) at least as far as expressing the state energies, each of the energies  can be written as a
sum of the energies of each individual molecule: . In such a case, the above partition function  reduces to a product of individual-molecule partition
functions:

where the N! factor arises as a degeneracy factor having to do with the permutational indistinguishability of the  molecules (e.g., one must not count both  with
molecule 3 in state  and molecule 7 in state  and  with molecule 7 in state  and molecule 3 in state ; they are the same state), and  is the partition function
of an individual molecule

Here,  is the energy of the lth level of the molecule and  is its degeneracy.

The molecular partition functions , in turn, can be written as products of translational, rotational, vibrational, and electronic partition functions if the molecular energies  can
be approximated as sums of such energies. Of course, these approximations are most appropriate to gas-phase molecules whose vibration and rotation states are being
described at the lowest level.

The following equations give explicit expressions for these individual contributions to  in the most usual case of a non-linear polyatomic molecule:

Translational 

where  is the mass of the molecule and  is the volume to which its motion is constrained. For molecules constrained to a surface of area , the corresponding result is 
, and for molecules constrained to move along a single axis over a length , the result is . The magnitudes these partition

functions can be computed, using  in amu,  in Kelvin, and , , or  in cm, cm  or cm , as

Clearly, the magnitude of  depends strongly on the number of dimensions the molecule and move around in. This is a result of the vast differences in translational state
densities in 1, 2, and 3 dimensions; recall that we encountered these state-density issues in Chapter 2.

Rotational 

where , , and  are the three principal moments of inertia of the molecule (i.e., eigenvalues of the moment of inertia tensor).  is the symmetry number of the molecule
defined as the number of ways the molecule can be rotated into a configuration that is indistinguishable from its original configuration. For example,  is 2 for  or , 1 for

, 3 for , and 12 for . The magnitudes of these partition functions can be computed using bond lengths in Å and masses in amu and  in , using

Vibrational 

where  is the frequency of the  harmonic vibration of the molecule, of which there are . If one wants to treat the vibrations at a level higher than harmonic, this
expression can be modified by replacing the harmonic energies  by higher-level expressions.

Electronic: 

where  and  are the energies and degeneracies of the  electronic state; the sum is carried out for those states for which the product  is numerically

significant (i.e., levels that any significant thermal population). It is conventional to define the energy of a molecule or ion with respect to that of its atoms. So, the first term in
the electronic partition function is usually written as we , where we is the degeneracy of the ground electronic state and  is the energy required to dissociate
the molecule into its constituent atoms, all in their ground electronic states.
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Notice that the magnitude of the translational partition function is much larger than that of the rotational partition function, which, in turn, is larger than that of the vibrational
function. Moreover, note that the 3-dimensional translational partition function is larger than the 2-dimensional, which is larger than the 1-dimensional. These orderings are
simply reflections of the average number of quantum states that are accessible to the respective degrees of freedom at the temperature  which, in turn, relates to the energy
spacings and degeneracies of these states.

The above partition function and thermodynamic equations form the essence of how statistical mechanics provides the tools for connecting molecule-level properties such as
energy levels and degeneracies, which ultimately determine the  and the , to the macroscopic properties such as , , , , etc.

If one has a system for which the quantum energy levels are not known, it may be possible to express all of the thermodynamic properties in terms of the classical partition
function, if the system could be adequately described by classical dynamics. This partition function is computed by evaluating the following classical phase-space integral
(phase space is the collection of coordinates  and conjugate momenta  as we discussed in Chapter 1)

In this integral, one integrates over the internal (e.g., bond lengths and angles), orientational, and translational coordinates and momenta of the  molecules. If each molecule
has  internal coordinates, 3 translational coordinates, and 3 orientational coordinates, the total number of such coordinates per molecule is . One can then
compute all thermodynamic properties of the system using this  in place of the quantum  in the equations given above for , , etc.

The classical partition functions discussed above are especially useful when substantial intermolecular interactions are present (and, thus, where knowing the quantum energy
levels of the -molecule system is highly unlikely). In such cases, the classical Hamiltonian is often written in terms of  which contains all of the kinetic energy factors as
well as all of the potential energies other than the intermolecular potentials, and the intermolecular potential , which depends only on a subset of the coordinates: 

. For example, let us assume that  depends only on the relative distances between molecules (i.e., on the  translational degrees of freedom which we denote 
). Denoting all of the remaining coordinates as , the classical partition function integral can be re-expressed as follows:

The factor

would be the partition function if the Hamiltonian  contained no intermolecular interactions . The  factor arises from the integration over all of the translational
coordinates if  is absent. The other factor

contains all the effects of intermolecular interactions and reduces to unity if the potential  vanishes. If, as the example considered here assumes,  only depends on the
positions of the centers of mass of the molecules (i.e., not on molecular orientations or internal geometries), the  partition function can be written in terms of the
molecular translational, rotational, and vibrational partition functions shown earlier:

Because all of the equations that relate thermodynamic properties to partition functions contain , all such properties will decompose into a sum of two parts, one coming
from  and one coming from . The latter contains all the effects of the intermolecular interactions. This means that, in this classical mechanics case, all the
thermodynamic equations can be written as an ideal component plus a part that arises from the intermolecular forces. Again, the Statistical Mechanics text by McQuarrie is a
good source for reading more details on these topics.

Equilibrium Constants in Terms of Partition Functions 
One of the most important and useful applications of statistical thermodynamics arises in the relation giving the equilibrium constant of a chemical reaction or for a physical
transformation (e.g., adsorption of molecules onto a metal surface or sublimation of molecules from a crystal) in terms of molecular partition functions. Specifically, for any
chemical or physical equilibrium (e.g., the former could be the  equilibrium; the latter could be ), one can relate the equilibrium
constant (expressed in terms of numbers of molecules per unit volume or per unit area, depending on whether species undergo translational motion in 3 or 2 dimensions) in
terms of the partition functions of these molecules. For example, in the hypothetical chemical equilibrium , the equilibrium constant  can be written, if the
species can be treated as having negligibly weak intermolecular potentials, as:

Here,  is the partition function for molecules of type  confined to volume  at temperature . As another example consider the isomerization reaction involving the normal
(N) and zwitterionic (Z) forms of arginine that were discussed in Chapter 5. Here, the pertinent equilibrium constant would be:

So, if one can evaluate the partition functions  for reactant and product molecules in terms of the translational, electronic, vibrational, and rotational energy levels of these
species, one can express the equilibrium constant in terms of these molecule-level properties.

Notice that the above equilibrium constant expressions equate ratios of species concentrations (in, numbers of molecules per unit volume) to ratios of corresponding partition
functions per unit volume. Because partition functions are a count of the number of quantum states available to the system (i.e., the average density of quantum states), this
means that we equate species number densities to quantum state densities when we use the above expressions for the equilibrium constant. In other words, statistical mechanics
produces equilibrium constants related to numbers of molecules (i.e., number densities) not molar or molal concentrations.
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7.2: Monte Carlo Evaluation of Properties
A tool that has proven extremely powerful in statistical mechanics since computers became fast enough to permit simulations of
complex systems is the Monte Carlo (MC) method. This method allows one to evaluate the integrations appearing in the classical
partition function described above by generating a sequence of configurations (i.e., locations of all of the molecules in the system
as well as of all the internal coordinates of these molecules) and assigning a weighting factor to these configurations. By
introducing an especially efficient way to generate configurations that have high weighting, the MC method allows us to simulate
extremely complex systems that may contain millions of molecules.

To appreciate why it is useful to have a tool such as MC, let’s consider how one might write a computer program to evaluate the
classical partition function

For a system consisting of  Ar atoms in a box of volume  at temperature T. The classical Hamiltonian  consists of a sum
of kinetic and inter-atomic potential energies

The integration over the  momentum variables can be carried out analytically and allows  to be written as

The contribution to  provided by the integral over the coordinates is often called the configurational partition function

If the density of the  Ar atoms is high, as in a liquid or solid state, the potential  will depend on the  coordinates of the Ar
atoms in a manner that would not allow substantial further approximations to be made. One would thus be faced with evaluating an
integral over  spatial coordinates of a function that depends on all of these coordinates. If one were to discretize each of the 
coordinate axes using say  points along each axis, the numerical evaluation of this integral as a sum over the  coordinates
would require computational effort scaling as K3N. Even for 10 Ar atoms with each axis having  = 10 points, this is of the order
of 1030 computer operations. Clearly, such a straightforward evaluation of this classical integral would be foolish to undertake.

The MC procedure allows one to evaluate such high-dimensional integrals by

1. not dividing each of the  axes into  discrete points, but rather
2. selecting values of  for which the integrand  is non-negligible, while also
3. avoiding values of  for which the integrand  is small enough to neglect.

By then summing over only values of  that meet these criteria, the MC process can estimate the integral. Of course,
the magic lies in how one designs a rigorous and computationally efficient algorithm for selecting those  that meet
the criteria.

To illustrate how the MC process works, let us consider carrying out a MC simulation representative of liquid water at some
density r and temperature T. One begins by placing  water molecules in a box of volume  chosen such that  reproduces
the specified density. To effect the MC process, we must assume that the total (intramolecular and intermolecular) potential energy 

 of these  water molecules can be computed for any arrangement of the  molecules within the box and for any values of the
internal bond lengths and angles of the water molecules. Notice that, as we showed above when considering the Ar example, 
does not include the kinetic energy of the molecules; it is only the potential energy. Often, this energy  is expressed as a sum of
intra-molecular bond-stretching and bending contributions, one for each molecule, plus a pair-wise additive intermolecular
potential:

Q = ∫ exp(−H(q, p)/kT )dq dp
h−NM

N !
(7.2.1)

N V H(q, p)

H(p, q) = +V (q)∑
i=1

N p2
i

2m
(7.2.2)
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although the MC process does not require that one employ such a decomposition; the energy  could be computed in other ways, if
appropriate. For example,  might be evaluated as the Born-Oppenheimer energy if an ab initio electronic structure calculation on
the full -molecule system were feasible. The MC process does not depend on how  is computed, but, most commonly, it is
evaluated as shown above.

Metropolis Monte Carlo 

In each step of the MC process, this potential energy  is evaluated for the current positions of the  water molecules. In its most
common and straightforward implementation known as the Metropolis Monte-Carlo process, a single water molecule is then
chosen at random and one of its internal (bond lengths or angle) or external (position or orientation) coordinates is selected at
random. This one coordinate (q) is then altered by a small amount ( ) and the potential energy  is evaluated at the
new configuration ( ). The amount  by which coordinates are varied is usually chosen to make the fraction of MC steps that
are accepted (by following the procedure detailed below) approximately 50%. This has been shown to optimize the performance of
the MC algorithm.

In implementing the MC process, it is usually important to consider carefully how one defines the coordinates  that will be used to
generate the MC steps. For example, in the case of  Ar atoms discussed earlier, it might be acceptable to use the  Cartesian
coordinates of the  atoms. However, for the water example, it would be very inefficient to employ the  Cartesian coordinates
of the  water molecules. Displacement of, for example, one of the  atoms along the x-axis while keeping all other coordinates
fixed would alter the intramolecular O-H bond energy and the H-O-H bending energy as well as the intermolecular hydrogen
bonding energies to neighboring water molecules. The intramolecular energy changes would likely be far in excess of  unless a
very small coordinate change  were employed. Because it is important to the efficiency of the MC process to make displacements

 that produce ca. 50% acceptance, it is better, for the water case, to make use of coordinates such as the center of mass and
orientation coordinates of the water molecules (for which larger displacements produce energy changes within a few ) and
smaller displacements of the O-H stretching and H-O-H bending coordinates (to keep the energy change within a few ).

Another point to make about how the MC process is often used is that, when the inter-molecular energy is pair wise additive,
evaluation of the energy change  accompanying the change in  requires computational effort that is
proportional to the number  of molecules in the system because only those factors , with  or  equal to the
single molecule that is displaced need be computed. This is why pair wise additive forms for  are often employed.

Let us now return to how the MC process is implemented. If the energy change  is negative (i.e., if the potential energy is
lowered by the coordinate displacement), the change in coordinate  is allowed to occur and the resulting new configuration is
counted among the MC-accepted configurations. On the other hand, if  is positive, the move from  to  is not simply
rejected (to do so would produce an algorithm directed toward finding a minimum on the energy landscape, which is not the goal).
Instead, the quantity  is used to compute the probability for accepting this energy-increasing move. In
particular, a random number between, for example, 0.000 and 1.000 is selected. If the random number is greater than  (expressed
in the same decimal format), then the move is rejected. If the random number is less than , the move is accepted and the new
location is included among the set of MC-accepted configurations. Then, new water molecule and its internal or external coordinate
are chosen at random and the entire process is repeated.

In this manner, one generates a sequence of MC-accepted moves representing a series of configurations for the system of  water
molecules. Sometimes this series of configurations is called a Monte Carlo trajectory, but it is important to realize that there is no
dynamics or time information in this series. This set of configurations has been shown to be properly representative of the
geometries that the system will experience as it moves around at equilibrium at the specified temperature  (n.b.,  is the only way
that information about the molecules' kinetic energy enters the MC process), but no time or dynamical attributes are contained in it.

As the series of accepted steps is generated, one can keep track of various geometrical and energetic data for each accepted
configuration. For example, one can monitor the distances R among all pairs of oxygen atoms in the water system being discussed
and then average this data over all of the accepted steps to generate an oxygen-oxygen radial distribution function  as shown
in Figure 7.3. Alternatively, one might accumulate the intermolecular interaction energies between pairs of water molecules and
average this over all accepted configurations to extract the cohesive energy of the liquid water.
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Figure 7.3. Radial distribution functions between pairs of Oxygen atoms in H2O at three different temperatures.

The MC procedure also allows us to compute the equilibrium average of any property  that depends on the coordinates of the
 molecules. Such an average would be written in terms of the normalized coordinate probability distribution function  as:

The denominator in the definition of  is, of course, proportional to the coordinate-contribution to the partition function . In
the MC process, this average is computed by forming the following sum over the M MC-accepted configurations :

In most MC simulations, millions of accepted steps contribute to the above averages. At first glance, it may seem that such a large
number of steps represent an extreme computational burden. However, recall that straightforward discretization of the  axes
produced a result whose effort scaled as , which is unfeasible even for small numbers of molecules

So, why do MC simulations work when the straightforward way fails? That is, how can one handle thousands or millions of
coordinates when the above analysis would suggest that performing an integral over so many coordinates would require 
computations? The main thing to understand is that the -site discretization of the  coordinates is a stupid way to perform the
above integral because there are many (in fact, most) coordinate values where the value of the quantity A whose average one wants
multiplied by  is negligible. On the other hand, the MC algorithm is designed to select (as accepted steps) those
coordinates for which  is non-negligible. So, it avoids configurations that are stupid and focuses on those for which the
probability factor is largest. This is why the MC method works!

The standard Metropolis variant of the MC procedure was described above where its rules for accepting or rejecting trial coordinate
displacements  were given. There are several other ways of defining rules for accepting or rejecting trial MC coordinate
displacements, some of which involve using information about the forces acting on the coordinates, all of which can be shown to
generate a series of MC-accepted configurations consistent with an equilibrium system. The book Computer Simulations of
Liquids, M. P. Allen and D. J. Tildesley, Oxford U. Press, New York (1997) provides good descriptions of these alternatives to the
Metropolis MC method, so I will not go further into these approaches here.

Umbrella Sampling 

It turns out that the MC procedure as outlined above is a highly efficient method for computing multidimensional integrals of the
form

where  is a normalized (positive) probability distribution and  is any property that depends on the multidimensional
variable q.

There are, however, cases where this conventional MC approach needs to be modified by using so-called umbrella sampling. To
illustrate how this is done and why it is needed, suppose that one wanted to use the MC process to compute an average, with 

 as the weighting factor, of a function  that is large whenever two or more molecules have high (i.e., repulsive)
intermolecular potentials. For example, one could have

A(q)

N P (q)

⟨A⟩ = ∫ P (q)A(q)dq =
∫ exp(−βV (q))A(q)dq

∫ exp(−βV (q))dq
(7.2.6)

P (q) Q

qJ

⟨A⟩ = A( )
1

M
∑
J=1

M

qJ (7.2.7)
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Such a function could, for example, be used to monitor when pairs of molecules, with center-of-mass coordinates RJ and RI,
approach closely enough to undergo a reaction that requires them to surmount a high inter-molecular barrier.

The problem with using conventional MC methods to compute

in such cases is that

1. i.  favors those coordinates for which the total potential energy  is low. So, coordinates with high 

 are very infrequently accepted.
2. ii. However,  is designed to identify events in which pairs of molecules approach closely and thus have high  values.

So, there is a competition between  and  that renders the MC procedure ineffective in such cases because the average one
wants to compute involves the product  which is small for most values of q.

What is done to overcome this competition is to introduce a so-called umbrella weighting function  that

1. i. attains it largest values where  is large, and
2. ii. is positive and takes on values between 0 and 1 so it can be used as shown below to define a proper probability weighting

function.

One then replaces  in the MC algorithm by the product  and uses this as a weighting function. To see how this
replacement works, we re-write the average that needs to be computed as follows:

The interpretation of the last identity is that  can be computed by

1. i. using the MC process to evaluate the average of ( ) but with a probability weighting factor of 
to accept or reject coordinate changes, and

2. ii. also using the MC process to evaluate the average of ( (q)) again with  as the weighting factor, and
finally

3. iii. taking the average of ( ) divided by the average of ( ) to obtain the final result.

The secret to the success of umbrella sampling is that the product

 causes the MC process to emphasize in its acceptance and rejection procedure coordinates for which both 
 and  (and hence ) are significant. Of course, the tradeoff is that the quantities (  and ) whose averages one

computes using  as the MC weighting function are themselves susceptible to being very small at coordinates 
where the weighting function is large. Let’s consider some examples of when and how one might want to use umbrella sampling
techniques.

Suppose one has one system for which the evaluation of the partition function (and thus all thermodynamic properties) can be
carried out with reasonable computational effort and another similar system (i.e., one whose potential does not differ much from
the first) for which this task is very difficult. Let’s call the potential function of the first system  and that of the second system 

. The latter system’s partition function can be written as follows

A(q) = .∑
I<J

a

| −RI RJ |
n (7.2.9)

⟨A⟩ = ∫ A(q)P (q)dq (7.2.10)

P (q) =
exp(−βV (q))

∫ exp(−βV )dq
V

V (q)

A(q) V (q)

P (q) A(q)

A(q)P (q)

U(q)

A(q)

P (q) P (q)U(q)

⟨A⟩ = ∫ P (q)A(q)dq =
∫ exp(−βV (q))A(q)dq

∫ exp(−βV (q))dq
(7.2.11)

= =

∫ U(q) exp(−βV (q))(A(q)/U(q))dq

∫ U(q) exp(−βV (q))dq

∫ U(q) exp(−βV (q))(1/U(q))dq

∫ U(q) exp(−βV (q))dq
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where  is the partition function of the first system and is the ensemble average of the quantity taken with respect to the ensemble
appropriate to the first system. This result suggests that one can form the ratio of the partition functions ( ) by computing the
ensemble average of using the first system’s weighting function in the MC process. Likewise, to compute, for second system, the
average value of any property  that depends only on the coordinates of the particles, one can proceed as follows

where is the ensemble average of the quantity  taken with respect to the ensemble appropriate to the first system. Using the result
derived earlier for the ratio ( ), this expression for  can be rewritten as

In this form, we are instructed to form the average of  for the second system by

1. a. forming the ensemble average of using the weighting function for the first system,
2. b. forming the ensemble average of using the weighting function for the first system, and
3. c. taking the ratio of these two averages.

This is exactly what the umbrella sampling device tells us to do if we were to choose as the umbrella function

In this example, the umbrella is related to the difference in the potential energies of the two systems whose relationship we wish to
exploit.

Under what circumstances would this kind of approach be useful? Suppose one were interested in performing a MC average of a
property for a system whose energy landscape  has many local minima separated by large energy barriers, and suppose it was
important to sample configurations characterizing the many local minima in the sampling. A straightforward MC calculation using 

 as the weighting function would likely fail because a sequence of coordinate displacements from near one local
minimum to another local minimum would have very little chance of being accepted in the MC process because the barriers are
very high. As a result, the MC average would likely generate configurations representative of only the system’s equilibrium
existence near one local minimum rather than representative of its exploration of the full energy landscape.

However, if one could identify those regions of coordinate space at which high barriers occur and construct a function  that is
large and positive only in those regions, one could then use

as the umbrella function and compute averages for the system having potential  in terms of ensemble averages for a modified
system whose potential  is

In Figure 7. 3a, I illustrate how the original and modified potential landscapes differ in regions between two local minima.

Figure 7.3 a. Qualitative depiction of the potential  for a system having a large barrier and for the umbrella-modified system with
potential .

The MC-accepted coordinates generated using the modified potential  would sample the various local minima and thus the
entire landscape in a much more efficient manner because they would not be trapped by the large energy barriers. By using these

Q0

Q/Q0

A(q)
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V 0 ⟩0 (7.2.14)

A

Q/Q0 ⟨A⟩

⟨A⟩ = ⟨A exp(−β( +ΔV )) = .
Q0

Q
V 0 ⟩0 ⟨A exp(−β( +ΔV ))V 0 ⟩0

⟨exp(−β( +ΔV ))V 0 ⟩0
(7.2.15)

A exp(−β( +ΔV ))V 0

U = exp(βΔV ). (7.2.16)

V (q)

exp(−βV )

ΔV

U = exp(βΔV ). (7.2.17)

V (q)

V0

= V −ΔVV 0 (7.2.18)

V

= V − ΔVV 0

V 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11596?pdf


7.2.6 https://chem.libretexts.org/@go/page/11596

MC-accepted coordinates, one can then estimate the average value of a property  appropriate to the potential  having the large
barriers by making use of the identity.

The above umbrella strategy could be useful in generating a good sampling of configurations characteristic of the many local
minima, which would be especially beneficial if the quantity  emphasized those configurations. This would be the case, for
example, if  measured the intramolecular and nearest-neighbor oxygen-hydrogen interatomic distances in a MC simulation of
liquid water. On the other hand, if one wanted to use as  a measure of the energy needed for a  ion to undergo, in a 1 M
aqueous solution of NaCl, a change in coordination number from 6 to 5 as illustrated in Figure 7.3 b, one would need a sampling
that is accurate both near the local minima corresponding to the 5- and 6-coordinate and the transition-state structures.

Figure 7.3 b Qualitative depiction of 5- and 6-coordinate  ion in water and of the energy profile connecting these two
structures.

Using an umbrella function similar to that discussed earlier to simply lower the barrier connecting the two  ion structures may
not be sufficient. Although this would allow one to sample both local minima, its sampling of structures near the transition state
would be questionable if the quantity  by which the barrier is lowered (to allow MC steps moving over the barrier to be
accepted with non-negligible probability) is large. In such cases, it is wise to employ a series of umbrellas to connect the local
minima to the transition states.

Assuming that one has knowledge of the energies and local solvation geometries characterizing the two local minima and the
transition state as well as a reasonable guess or approximation of the intrinsic reaction path (refer back to Section 3.3 of Chapter 3)
connecting these structures, one proceeds as follows to generate a series of so-called windows within each of which the free energy 

 of the solvated  ion is evaluated.

1. 1. Using the full potential  of the system to constitute the unaltered weighting function , one multiplies this by
an umbrella function

 
to form the umbrella-altered weighting function . In U(q), s(q) is the value of the value of the intrinsic
reaction coordinate IRC evaluated for the current geometry of the system q,  is the value of the IRC characterizing the first
window, and d is the width of this window. The first window could, for example, correspond to geometries near the 6-
coordinate local minimum of the solvated  ion structure. The width of each window d should be chosen so that the energy
variation within the window is no more than a 1-2 kT; in this way, the MC process will have a good (i.e., ca. 50%) acceptance
fraction and the configurations generated will allow for energy fluctuations uphill toward the TS of about this amount.

2. 2. As the MC process is performed using the above  weighting, one constructs a histogram  for how
often the system reaches various values s along the IRC. Of course, the severe weighting caused by  will not allow the
system to realize any value of s outside of the window .

3. 3. One then creates a second window that connects to the first window (i.e., with ) and repeats the MC
sampling using

A V

⟨A⟩ = ⟨A exp(−β( +ΔV )) = .
Q0

Q
V 0 ⟩0 ⟨A exp(−β( +ΔV ))V 0 ⟩0

⟨exp(−β( +ΔV ))V 0 ⟩0
(7.2.19)
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to generate a second histogram  for how often the system reaches various values of s along the IRC within the second
window.

4. 4. This process is repeated at a series of connected windows 

whose centers  range from the 6-coordinate  ion ( ), through the transition state ( ), and to the 5-coordinate 
ion ( ).

After performing this series of  umbrella-altered samplings, one has in hand a series of  histograms {
}. Within the  window,  gives the relative probability of the system being at a point s along

the IRC. To generate the normalized absolute probability function P(s) expressing the probability of being at a point s, one can
proceed as follows:

1. Because the first and second windows are connected at the point , one can scale  (i.e., multiply it by a
constant) to match  at this common point to produce a new  function

This new function describes exactly the same relative probability within the second window, but, unlike , it connects
smoothly to .

2. Because the second and third windows are connected at the point , one can scale  to match at this
common point to produce a new function

3. This process of scaling  to match at  is repeated until the final window connecting  to 
. Upon completing this series of connections, one has in hand a continuous probability function , which can be

normalized

In this way, one can compute the probability of accessing the TS, , and the free energy profile

at any point along the IRC. It is by using a series of connected windows, within each of which the MC process samples structures
whose energies can fluctuate by 1-2 , that one generates a smooth connection from low-energy to high-energy (e.g., TS)
geometries.
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7.3: Molecular Dynamics Simulations
One thing that the MC process does not address directly is the time evolution of the system. That is, the steps one examines in the
MC algorithm are not straightforward to associate with a time-duration, so it is not designed to compute the rates at which events
take place. If one is interested in simulating such dynamical processes, even when the N-molecule system is at or near equilibrium,
it is more appropriate to carry out a classical molecular dynamics (MD) simulation. In such an MD calculation, one has to assign
initial values for each of the internal and external coordinates of each of the  molecules and an initial value of the kinetic energy
or momentum for each coordinate, after which a time-propagation algorithm generates values for the coordinates and momenta at
later times. For example, the initial coordinates could be chosen close to those of a local minimum on the energy surface and the
initial momenta associated with each coordinate could be assigned values chosen from a Maxwell-Boltzmann distribution
characteristic of a specified temperature T. In such cases, it is common to then allow the MD trajectory to be propagated for a
length of time  long enough to allow further equilibration of the energy among all degrees of freedom before extracting any
numerical data to use in evaluating average values or creating inter-particle distance histograms, for example.

One usually does not choose just one set of such initial coordinates and momenta to generate a single trajectory. Rather, one creates
an ensemble of initial coordinates and momenta designed to represent the experimental conditions the MD calculation is to
simulate. The time evolution of the system for each set of initial conditions is then followed using MD and various outcomes (e.g.,
reactive events, barrier crossings, folding or unfolding events, chemisorption ocurrences, etc.) are monitored throughout each MD
simulation. An average over the ensemble of trajectories is then used in computing averages and creating histograms for the MD
simulation. It is the purpose of this Section to describe how MD is used to follow the time evolution for such simulations.

Trajectory Propagation 

With each coordinate having its initial velocity  and its initial value  specified, one then uses Newton’s equations written

for a time step of duration  to propagate  and  forward in time according, for example , to the following first-order
propagation formula:

Here m_q is the mass factor connecting the velocity  and the momentum pq conjugate to the coordinate q:

and  is the force along the coordinate  at the earlier geometry . In most modern MD simulations, more sophisticated
numerical methods can be used to propagate the coordinates and momenta. For example, the widely used Verlet algorithm is
derived as follows.

1. One expands the value of the coordinate  at the  and  time steps in Taylor series in terms of values at the st
time step

 

2. One adds these two expansions to obtain 
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which allows one to compute  in terms of  and  and the force at the  step, while not requiring knowledge of
velocities.

3. If the two Taylor expansions are subtracted, one obtains

as the expression for the velocity at the  time step in terms of the coordinates at the  and  steps.

There are many other such propagation schemes that can be used in MD; each has strengths and weaknesses. In the present Section,
I will focus on describing the basic idea of how MD simulations are performed while leaving treatment of details about propagation
schemes to more advanced sources such as Computer Simulations of Liquids, M. P. Allen and D. J. Tildesley, Oxford U. Press,
New York (1997).

The forces  appearing in the MD propagation algorithms can be obtained as gradients of a Born-Oppenheimer electronic
energy surface if this is computationally feasible. Following this path involves performing what is called direct-dynamics MD.
Alternatively, the forces can be computed from derivatives of an empirical force field. In the latter case, the system's potential
energy  is expressed in terms of analytical functions of

i. intramolecular bond lengths, bond angles, and torsional angles, as well as
ii. intermolecular distances and orientations.

The parameters appearing in such force fields have usually been determined from electronic structure calculations on molecular
fragments, spectroscopic determination of vibrational force constants, and experimental measurements of intermolecular forces.

Force Fields 

Let’s interrupt our discussion of MD propagation of coordinates and velocities to examine the ingredients that usually appear in the
force fields mentioned above. In Figure 7.3 c, we see a molecule in which various intramolecular and intermolecular interactions
are introduced.

Figure 7.3c. Depiction of a molecule in which bond-stretching, bond-bending, intramolecular van der Waals, and intermolecular
solvation potentials are illustrated.

The total potential of a system containing one or more such molecules in the presence of a solvent (e.g., water) it typically written
as a sum of intramolecular potentials (one for each molecule in the system) and itermolecular potentials. The former are usually
decomposed into a sum of covalent interactions describing how the energy varies with bond stretching, bond bending, and dihedral
angle distortion as depicted in Figure 7.3 d.
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Figure 7.3d. Depiction of bond stretching and bending (top left) and dihedral angle distortion (top right) within a molecule and
equations describing how the energy varies with these geometry changes.

and non-covalent interactions describing electrostatic and van der Waals interactions among the atoms in the molecule a

These functional forms would be used to describe how the energy  changes with the bond lengths ( ) and angles ( ) within,
for example, each of the molecules shown in Figure 7. 3 c (let’s call them solute molecules) as well as for any water molecules that
may be present (if these molecules are explicitly included in the MD simulation).

The interactions among the solute and solvent moleulues are also often expressed in a form involving electrostatic and van der
Waals interations between pairs of atoms- one on one molecule (solute or solvent) and the other on another molecule (solute or
solvent)

The Cartesian forces on any atom within a solute or solvent molecule are then computed for use in the MD simulation by using the
chain rule to relate derivatives with respect to Cartesian coordinates to derivatives of the above intramolecular and intermolecular
potentials with respect to the interatomic distances and the angles appearing in them.

Because water is such a ubiquitous component in condensed-phase chemistry, much effort has been devoted to generating highly
accurate intermolecular potentials to describe the interactions among water molecules. In the popular TIP3P and TIP4P models, the
water-water interaction is given by

where rOO is the distance between the oxygen atoms of the two water molecules in Å, and indices  and  run over 3 or 4 sites,
respectively, for TIP3P or TIP4P, with  labeling sites on one water molecule and  labeling sites on the second water molecule.
The parameter  is 332.1 Å kcal mol . A and B are conventional Lennard-Jones parameters for oxygen atoms and qi is the
magnitude of the partial charge on the ith site. In Figure 7.3 d, we show how the 3 or 4 sites are defined for these two models.

Figure 7.3 d Location of the 3 or 4 sites used in the TIP3P and TIP4P models.

Typical values for the parameters are given in the table below.

r (Å)
HOH angle

degrees
r (Å)

A (Å
kcal/mol)

B (Å
kcal/mol)

q or q q

TIP3P 0.9572 104.52 582 x10 595 -0.834 0.417

TIP4P 0.9672 104.52 0.15 600 x10 610 -1.04 0.52
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In the TIP3P model, the three sites reside on the oxygen and two hydrogen centers. For TIP4P, the fourth site is called the M-site
and it resides off the oxygen center a distance of 0.15 along the bisector of the two O-H bonds as shown in Figure 7.3 d. In using
either the TIP3P or TIP4P model, the intramolecular bond lengths and angles are often constrained to remain fixed; when doing so,
one is said to be using a rigid water model.

There are variants to these two 3-site and 4-site models that, for example, include van der Waals interactions between  atoms on
different water molecules, and there are models including more than 4 sites, and models that allow for the polarization of each
water molecule induced by the dipole fields (as represented by the partial charges) of the other water molecules and of solute
molecules. The more detail and complexity one introduces, the more computational effort is needed to perform MD simulations. In
particular, water molecules that allow for polarization are considerably more computationally demanding because they often
involve solving self-consistently for the polarization of each molecule by the charge and dipole potentials of all the other
molecules, with each dipole potential including both the permanent and induced dipoles of that molecule. Professor John Wampler
has created a web page in which the details about molecular mechanics force fields introduced above are summarized. This web
page provides links to numerous software packages that use these kinds of force fields to carry out MD simulations. These links
also offer more detailed information about the performance of various force fields as well as giving values for the parameters used
in those force fields.

The parameter values are usually obtained by

1. fitting the intramolecular or intermolecular functional form (e.g., as shown above) to energies obtained in electronic structure
calculations at a large number of geometries, or

2. adjusting them to cause MD or MC simulations employing the force field to reproduce certain thermodynamic properties (e.g.,
radial distribution functions, solvation energies, vaporization energies, diffusion constants), or some combination of both. It is
important to observe that the kind of force fields discussed above have limitations beyond issues of accuracy. In particular, they
are not designed to allow for bond breaking and bond forming, and they represent the Born-Oppenheimer energy of one (most
often the ground) electronic state. There are force fields explicitly designed to include chemical bonding changes, but most MD
packages do not include them. When one is interested in treating a problem that involves transitions from one electronic state to
another (e.g., in spectroscopy or when the system undergoes a surface hop near a conical intersection), it is most common to use
a combined QM-MM approach like we talked about in Section 6.1.3 of Chapter 6. A QM treatment of the portion of the system
that undergoes the electronic transition is combined with a force-field (MM) treatment of the rest of the system to carry out the
MD simulation. Let’s now return to the issue of propagating trajectories given a force field and a set of initial conditions
appropriate to describing the system to be simulated.

By applying one of the time-propagation algorithms to all of the coordinates and momenta of the  molecules at time t, one
generates a set of new coordinates  and new velocities  appropriate to the system at time . Using
these new coordinates and momenta as  and  and evaluating the forces  at these new coordinates, one can
again use the propagation equations to generate another finite-time-step set of new coordinates and velocities. Through the
sequential application of this process, one generates a sequence of coordinates and velocities that simulate the system’s behavior.
By following these coordinates and momenta, one can interrogate any dynamical properties that one is interested in. For example,
one could monitor oxygen-oxygen distances throughout an MD simulation of liquid water with initial conditions chosen to
represent water at a given temperature (T would determine the initial momenta) to generate a histogram of O-O distances. This
would allow one to construct the kind of radial distribution function shown in Figure 7. 3 using MD simulation rather than MC.
The radial distribution function obtained in such an MD simulation should be identical to that obtained from MC because statistical
mechanics assumes the ensemble average (MC) is equal to the long-time average (MD) of any property for a system at equilibrium.
Of course, one could also monitor quantities that depend on time, such as how often two oxygen atoms come within a certain
distance, throughout the MD simulation. This kind of interrogation could not be achieved using MC because there is no sense of
time in MC simulations.

In Chapter 8, I again discuss using classical molecular dynamics to follow the time evolution of a chemical system. However, there
is a fundamental difference between the kind of simulations described above and the case I treat in Chapter 8. In the former, one
allows the N-molecule system to reach equilibrium (i.e., either by carefully choosing initial coordinates and momenta or by waiting
until the dynamics has randomized the energy) before monitoring the subsequent time evolution. In the problem discussed in
Chapter 8, we use MD to follow the time progress of a system representing a single bimolecular collision in two crossed beams of
molecules. Each such beam contains molecules whose initial translational velocities are narrowly defined rather than Maxwell-
Boltzmann distributed. In this case, we do not allow the system to equilibrate because we are not trying to model an equilibrium
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system. Instead, we select an ensemble of initial conditions that represent the molecules in the two beams and we then follow the
Newton dynamics to monitor the outcome (e.g., reaction or non-reactive collision).

Unlike the MC method, which is very amenable to parallel computation, MD simulations are more difficult to carry out in a
parallel manner. One can certainly execute many different classical trajectories on many different computer nodes; however, to
distribute one trajectory over many nodes is difficult. The primary difficulty is that, for each time step, all  of the molecules
undergo moves to new coordinates and momenta. To compute the forces on all  molecules requires of the order of 
calculations (e.g., when pairwise additive potentials are used). In contrast, each MC step requires that one evaluate the potential
energy change accompanying the displacement of only one molecule. This uses only of the order of  computational steps (again,
for pair wise additive potentials).

Another factor that complicates MD simulations has to do with the wide range of times scales that may be involved. For example,
for one to use a time step dt short enough to follow high-frequency motions (e.g., O-H stretching) in a simulation of an ion or
polymer in water solvent, dt must be of the order of 10  s. To then simulate the diffusion of an ion or the folding of a polymer in
the liquid state, which might require 10  s or longer, one would have to carry out 10  MD steps. This likely would render the
simulation not feasible. In the table below we illustrate the wide range of time scales that characterize various events that one might
want to simulate using some form of MD, and we give a sense of what is practical using MD simulations in the year 2010.

Examples of dynamical processes taking place over timescales ranging from 10  s through hundreds of seconds, each of which one may wish to
simulate using MD.

10 -10  s 10 s 10 s 10 s 10  s 110 s

C-H, N-H, O-H
bond vibration

Rotation of small
molecule

Routinely accessible
time duration for

atomistic MD
simulation

Time duration for
heroic atomistic
MD simulation

Time duration
achievable using
coarse-graining

techniques

Time needed for
protein folding

a. These techniques are discussed in Section 7.3.3.

Because one can not afford to carry out simulations covering 10  -100 s using time steps needed to follow bond vibrations 10  s,
it is necessary to devise strategies to focus on motions whose time frame is of primary interest while ignoring or approximating
faster motions. For example, when carrying out long-time MD simulations, one can ignore the high-frequency intramolecular
motions by simply not including these coordinates and momenta in the Netwonian dynamics (e.g., as one does when using a rigid-
water model discussed earlier). In other words, one simply freezes certain bond lengths and angles. Of course, this is an
approximation whose consequences must be tested and justified, and would certainly not be a wise step to take if those coordinates
played a key role in the dynamical process being simulated. Another approach, called coarse graining involves replacing the fully
atomistic description of selected components of the system by a much-simplified description involving significantly fewer spatial
coordinates and momenta.

Coarse Graining 
The goal of coarse graining is to bring the computational cost of a simulation into the realm of reality. This is done by replacing the
fully atomistic description of the system, in which coordinates sufficient to specify the positions (and, in MD, the velocities) of
every atom, by a description in terms of fewer functional groups often referred to as “beads”. The TIP4P and TIP3P models for the
water-water interaction potential discussed above are not coarse-grained models because they contain as many (or more) centers as
atoms. An example of a coarse-grained model for the water-water interaction is provided by the Stillinger-Weber model (that was
originally introduced to treat tetrahedral Si) of water introduced in V. Molinero and E. B. Moore, J. Phys. Chem. B 2009, 113,
4008–4016. Here, each water molecule is described only by the location of its oxygen nucleus (labeled ri for the ith water
molecule), and the interaction potential is given as a sum of two-body and three-body terms
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where  is the distance between the ith and jth oxygen atom,  109.47 deg, and  is the angle between the ith (at the
center), jth, and kth oxygen atom. The parameters , , , , and  are used to characterize various characteristics of the potential;
different values are needed to describe the behavior of Si, Ge, diamond, or water even though they all can adopt tetrahedral
coordination. The form of the three-body part of this potential is designed to guide the orientations among oxygen atoms to adopt
tetrahedral character.

Although the above potential seems more complicated than, for example, the form used in the TIP3P or TIP4P potential, it has
three important advantages when it comes to carrying out MD simulations:

1. Because the SW potential contains no terms varying with distance as  (i.e., no Coulomb interactions among partial charges),
it is of qualitatively shorter range than the other two potentials. This allows spatial cut-offs to be used (i.e., to ignore
interactions beyond much shorter distances) efficiently.

2. 2. For a system containing  water molecules, the TIP3P or TIP4P models require one to evaluate functions of the distances
between  or  centers, whereas the SW’s two-body component involves only  interactions and the three-
body component need only be evaluated for molecules  and  that are nearby molecule .

3. 3. If, for the atomistic models, one wishes to treat the O-H stretching and H-O-H bending motions, MD time steps of ca. 10  s
must be employed. For the SW model, the fastest motions involve relative movements of the oxygen centers, which occur on
time scales ca. 10 times longer. This means that one can use longer MD steps.

The net result is that this coarse-grained model of the water-water interaction allows MD simulations to be carried out for
qualitatively longer time durations. Of course, this is only an advantage if the simulations provide accurate results. In the Table
shown below (taken from the above reference), we see MD simulation results (as well as experimental results) obtained with the
above (mW) model, with various TIPnP models, and with two other popular water-water potentials (SPC and SPCE) from which it
is clear that the coarse-grained mW model is capable of yielding reliable results on a range of thermodynamic properties.

Figure 7.3 e, we see a coarse-grained representation of the DNA double helix (taken from this reference) as well as a depiction of
how the beads are defined in terms of base, sugar, and phosphate units.

ri,j =θ0 qi,j,k
A B ε σ a
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N

(3N /2)2 (4N /2)2 /2N 2

j k i
-15

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17634?pdf


7.3.7 https://chem.libretexts.org/@go/page/17634

Figure 7.3e Depiction of cytosine base, sugar, and phosphate units constituting blue, yellow, and brown beads, respectively (a);
bead description of the double helix (d); locations of the beads relative to the atomic positions for the phosphate, sugar, and bases;
and definition of various bead-bead interaction distances (c).

In the Table shown below, the reference cited above specifies the locations and masses of the phosphate, sugar, and base beads in
the B form of the DNA helix. The masses need to be chosen so that the coarse-grained dynamical motions of these units replicate
within reasonable tolerances the center of mass motions of the phosphate, sugar, and base moieties when atomistic MD simulations
are carried out on smaller test systems containing these nucleotide units.

The potential  used to carry out the coarse-grained MD simulations is given by the equations shown below taken from the above
reference. In addition to the usual bond stretching, bending and dihedral terms (n.b., now the bonds relate to linkages between
beads rather than between atoms) that are similar to what we saw earlier in our discussion of force fields, there are additional terms.

1.  describes the interactions among p-stacked base pairs,
2.  describes the hydrogen bonding interactions between bases, and
3.  describes excluded-volume effects.

where

V
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4.  is the screened Coulombic interactions among phosphate units, with its exponential decay constant  given in terms of a
so-called Debye screening length as detailed in the above reference.

The values of the parameters used in this force field potential given in the above reference are reproduced in the two Tables shown
below.
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Although there are numerous parameters in this potential, the key to the success of this coarse graining is that there are only six
kinds of sites whose positions and velocities must be propagated in the MD simulation- phosphate sites, sugar sites, and four kinds
of base sites. This is far fewer coordinates that would arise in a fully atomistic MD simulation. I will refer the reader to the
reference cited above for details about how successful coarse graining was in this case, but I will not go further into it at this time. I
think the two examples we discussed in this Section suffice for introducing the subject of coarse graining to the readers of this
text.In summary for this Section, MD classical simulations are not difficult to implement if one has available a proper
representation of the intramolecular and intermolecular potential energy V. Such calculations are routinely carried out on large bio-
molecules or condensed-media systems containing  thousands to millions of atomic centers. There are, however, difficulties
primarily connected to the time scales over which molecular motions and over which the process being simulated change that limit
the success of this method and which often require one to employ reduced representations of the system such as in coarse graining.
In contrast, quantum MD simulations such as we describe in the following Section are considerably more difficult to carry out.
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7.4: Time Correlation Functions
One of the most active research areas in statistical mechanics involves the evaluation of so-called equilibrium time correlation functions such as
we encountered in Chapter 6. The correlation function  is defined in terms of two physical operators  and , a time dependence that is
carried by a Hamiltonian  via , and an equilibrium average over a Boltzmann population .

The quantum mechanical expression for  is

while the classical mechanical expression (here, we allow the  factor that occurs in the partition function shown in Section 7.1.2 to be
canceled out in the numerator and denominator for simplicity) is

where  and  are the values of all the coordinates and momenta of the system at  and  and  are their values, according to
Newtonian mechanics, at time .

As shown above, an example of a time correlation function that relates to molecular spectroscopy is the dipole-dipole correlation function that
we discussed in Chapter 6:

for which  and  are both the electric dipole interaction  between the photon's electric field whose direction is characterized by the
vector  and the molecule's dipole operator . The Fourier transform of this particular  relates to the absorption intensity for light of
frequency  :

It turns out that many physical properties (e.g., absorption line shapes, Raman scattering intensities) and transport coefficients (e.g., diffusion
coefficients, viscosity) can be expressed in terms of time-correlation functions. It is beyond the scope of this text to go much further in this
direction, so I will limit my discussion to the optical spectroscopy case at hand, which requires that we now discuss how the time-evolution
aspect of this problem is dealt with. The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has a nice treatment
of such other correlation functions, so the reader is directed to that text for further details.

The computation of correlation functions involves propagating either wave functions or classical trajectories which produce the q(t), 
values entering into the expression for . In the classical case, one carries out a large number of Newtonian trajectories with initial
coordinates  and momenta  chosen to represent the equilibrium condition of the -molecule system. For example, one could use the
MC method to select these variables employing  as the probability function for accepting or rejecting initial  and 

 values. In this case, the weighting function contains not just the potential energy but also the kinetic energy (and thus the total
Hamiltonian ) because now we need to also select proper initial values for the momenta. So, with many (e.g., M) selections of the initial 
and  variables of the -molecules being made, one would allow the Newton dynamics of each set of initial conditions to proceed. During
each such trajectory, one would monitor the initial value of the  property and the time progress of the  property. One
would then compute the MC average to obtain the correlation function:

Where the index  labels the  accepted configurations and momenta of the MC sampling.

In the quantum case, the time propagation is especially challenging and is somewhat beyond the scope of this text. However, I want to give you
some idea of the steps that are involved, realizing that this remains an area of very active research development. As noted in Section 1.3.6, it is
possible to time-propagate a wave function  that is known at  if one is able to expand  in terms of the eigenfunctions of the
Hamiltonian . However, for systems comprised of many molecules, which are most common in statistical mechanics studies, it is impossible
to compute (or realistically approximate) these eigenfunctions. Thus, it is not productive to try to express  in terms of these eigenfunctions.
Therefore, an entirely new set of tools has been introduced to handle time-propagation in the quantum case, and it is these new devices that I
now attempt to describe in a manner much like we saw in Section 1.3.6’s discussion of time propagation of wave functions.

To illustrate, consider the time propagation issue contained in the quantum definition of  shown above. One is faced with

1. propagating  from  up to time , using  and then acting with the operator 

C(t) A B

H exp(−iHt/ℏ) exp(−βH)/Q

C(t)

C(t) = ⟨ |A exp(iHt/ℏ)B exp(−iHt/ℏ)| ⟩ ,∑
j

Φj Φj

exp(−β )Ej

Q
(7.4.1)

h−M

C(t) = ∫ dq(0)∫ dp(0)A(q(0), p(0))B(q(t), p(t)) ,
exp(−βH(q(0), p(0)))

Q
(7.4.2)

q(0) p(0) t = 0 q(t) p(t)
t

C(t) = ⟨ |e ∙ μexp(iHt/ℏ)e ⋅ μexp(−iHt/ℏ)| ⟩ ,∑
j

Φj Φj

exp(−β )Ej

Q
(7.4.3)

A B e ∙ μ

e μ C(t)
ω

I(ω) = ∫ dtC(t) exp(iωt). (7.4.4)

p(t)
C(t)

q(0) p(0) N

exp(−βH(p(0), q(0))) q(0)
p(0)

H q

p N

A(q(0), p(0)) B(q(t), p(t))

C(t) = A( (0), (0))B( (t), (t)) exp(−βH( (0), (0))).
1

M
∑
J=1

M

qJ pJ qJ pJ qJ pJ (7.4.5)

J M

F t = 0 F

H

C(t)

C(t)

| ⟩Φj t = 0 t exp(−iHt/ℏ)| ⟩Φj B
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2. acting with the operator  on  and then propagating  from  up to time , using ;
3.  then requires that these two time-propagated functions be multiplied together and integrated over the coordinates that  depends on.

The  operator that also appears in the definition of  can be combined, for example, with the first time propagation step and
actually handled as part of the time propagation as follows:

The latter expression can be viewed as involving a propagation in complex time from  to . Although having a complex time
may seem unusual, as I will soon point out, it turns out that it can have a stabilizing influence on the success of these tools for computing
quantum correlation functions.

Much like we saw earlier in Section 1.3.6, so-called Feynman path integral techniques can be used to carry out the above time propagations.
One begins by dividing the time interval into  discrete steps (this can be the real time interval or the complex interval)

The number  will eventually be taken to be large, so each time step  has a small magnitude. This fact allows us to use
approximations to the exponential operator appearing in the propagator that are valid only for short time steps. For each of these short time
steps one then approximates the propagator in the most commonly used so-called split symmetric form:

Here,  and  are the potential and kinetic energy operators that appear in  = . It is possible to show that the above approximation is
valid up to terms of order . So, for short times (i.e., small ), these symmetric split operator approximation to the propagator should be
accurate.

The time evolved wave function  can then be expressed as

The potential  is (except when external magnetic fields are present) a function only of the coordinates  of the system, while the kinetic
term  is a function of the momenta  (assuming Cartesian coordinates are used). By making use of the completeness relations for
eigenstates of the coordinate operator

and inserting this identity  times (once between each combination of  factors), the expression
given above for  can be rewritten as follows:

Then, by using the analogous completeness identity for the momentum operator

one can write

Finally, by using the fact (recall this from Section 1.3.6) that the momentum eigenfunctions , when expressed as functions of coordinates 
are given by

the above integral becomes

A+ | ⟩Φj | ⟩A+ Φj t = 0 t exp(−iHt/ℏ) | ⟩A+ Φj

C(t) F

exp(−βH) C(t)

exp(−iHt/ℏ)| ⟩ exp(−β ) = exp(−iHt/ℏ) exp(−βH)| ⟩Φj Ej Φj (7.4.6)

= exp(−i[t+βℏ/i]H/ℏ)| ⟩.Φj (7.4.7)

t = 0 t = t+βℏ/i

P

exp[ − ] ={ exp[ − ] .
iHt

ℏ

iHδt

ℏ
}
P

(7.4.8)

P dt = t/P

exp[ − ] = exp[ − ] exp[ − ] exp[ − ].
iHδt

ℏ

iV δt

2ℏ

iT δt

ℏ

iV δt

2ℏ
(7.4.9)

V T H T +V

(δt)4 δt

Φ(t)

Φ(t) = {exp[ − ] exp[ − ] exp[ − ] Φ(t = 0).
iV δt

2ℏ

iT δt

ℏ

iV δt

2ℏ
}P (7.4.10)

V { }qj
T { }pj

1 = ∫ dq| ⟩⟨ |qj qj (7.4.11)

P exp[−iV δt/2ℏ] exp[−iT δt/ℏ] exp[−iV δt/2ℏ]
Φ(t)

Φ( , t) = ∫ d d . . . d d exp[ − (V ( ) +V ( ))]qP qP−1 qP−2 q1 q0 ∏
j=1

P iδt

2ℏ
qj qj−1 (7.4.12)

⟨ | exp[ − ]| ⟩Φ( , 0).qj
iδtT

ℏ
qj−1 q0 (7.4.13)

1 = ∫ d | ⟩⟨ |
1

ℏ
pj pj pj (7.4.14)

⟨ | exp[ − ]| ⟩ = ∫ dp⟨ |p⟩ exp(− )⟨p| ⟩.qj
iδtT

ℏ
qj−1

1

ℏ
qj

i δtp2

2mℏ
qj−1 (7.4.15)

|p⟩ q

⟨ |p⟩ = exp( ),qj
1

2π
−−

√

ipq

ℏ
(7.4.16)
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This integral over  can be carried out analytically to give

When substituted back into the multidimensional integral for , we obtain

or

Recall what we said earlier that the time correlation function was to be computed by:

1. propagating  from  up to time , using  and then acting with the operator B
2. acting with the operator  on  and then propagating  from  up to time , using  ;
3. multiplying together these two functions and integrating over the coordinates that  depends on.

So all of the effort described above would have to be expended for  taken to be  after which the result would be multiplied by the
operator B, as well as for  taken to be  to allow the quantum time correlation function  to be evaluated. These steps can be
performed, but they are very difficult to implement, so I will refer the student to Computer Simulations of Liquids, M. P. Allen and D. J.
Tildesley, Oxford U. Press, New York (1997) for further discussion on this topic.

Why are the multidimensional integrals of the form shown above called path integrals? Because the sequence of positions 
describes a path connecting  to . By integrating over all of the intermediate positions  for any given  and  one is
integrating over all paths that connect  to . Further insight into the meaning of the above is gained by first realizing that

is the finite-difference representation, within the  discrete time steps of length dt, of the integral of Tdt over the jth time step, and that

is the representation of the integral of  over the jth time step. So, for any particular path (i.e., any specific set of 
values), the sum over all such terms

represents the integral over all time from  until  of the so-called Lagrangian :

This time integral of the Lagrangian is called the action  in classical mechanics (recall that in Chapter 1, we used quantization of the action
in the particle-in-a-box problem). Hence, the N-dimensional integral in terms of which  is expressed can be written as

Here, the notation "all paths" is realized in the earlier version of this equation by dividing the time axis from  to  into  equal
divisions, and denoting the coordinates of the system at the jth time step by . By then allowing each  to assume all possible values (i.e.,
integrating over all possible values of  using, for example, the Monte-Carlo method discussed earlier), one visits all possible paths that begin
at  at  and end at  at . By forming the classical action 

⟨ | exp[ − ]| ⟩ = ∫ dp exp(− ) exp[ ].qj
iδtT

ℏ
qj−1

1

2πℏ

i dtp2

2mℏ

ip( − −1)qj qj

ℏ
(7.4.17)

p

⟨ | exp[ − ]| ⟩ = exp[ ].qj
iδtT

ℏ
qj−1 ( )

m

2πiℏδt

1/2 im( −qj qj−1)2

2ℏδt
(7.4.18)

Φ( , t)qP

Φ( , t) = ∫ d d . . . d d exp[ − (V ( ) +V ( ))] exp[ ]F ( , 0)qP ( )
m

2πiℏδt

P/2
qP−1 qP−2 q1 q0 ∏

j=1

P
iδt

2ℏ
qj qj−1

im( −qj qj−1)2

2ℏδt
q0 (7.4.19)

Φ( , t) = ∫ d d . . . d d exp[ [ − (V ( ) +V ( )) + ]]F ( , 0).qP ( )
m

2πiℏδt

P/2
qP−1 qP−2 q1 q0 ∑

j=1

P
iδt

2ℏ
qj qj−1

im( −qj qj−1)2

2ℏδt
q0 (7.4.20)

| ⟩Φj t = 0 t exp(−iHt/ℏ)| ⟩Φj

A+ | ⟩Φj | ⟩A+ Φj t = 0 t exp(−iHt/ℏ) | ⟩A+ Φj

F

F ( , 0)q0 | ⟩Φj

F ( , 0)q0 | ⟩A+ Φj C(t)

, . . .q1 qP−1

q0 qP , , . . .q1 q2 qP−1 q0 qP
q0 qP

( − = ( − δt = ∫ Tdt
m

2δt
qj qj−1)2 m

2(δt)2
qj qj−1)2 (7.4.21)

P

(V ( ) +V ( )) = ∫ V (q)dt
δt

2
qj qj−1 (7.4.22)

V d t , , ⋯ ,q0 q1 qP−1 qP

[ − ]∑
j=1

P−1 m( −qj qj−1)2

2δt

δt(V ( ) +V ( ))qj qj−1

2
(7.4.23)

t = 0 t = t L = T −V

[ − ] = ∫ Ldt.∑
j=1

P−1 m( −qj qj−1)2

2δt

δt(V ( ) +V ( ))qj qj−1

2
(7.4.24)

S

Φ( , t)qP

F ( , t) = exp[ ∫ dtL]F ( , t = 0).qP ( )
m

2πiℏδt

P/2
∑

 all paths

i

ℏ
q0 (7.4.25)

t = 0 t = t P

qj qj
qj

q0 t = 0 qP t = t S

S = ∫ dtL (7.4.26)
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for each path and then summing  over all paths and multiplying by , one is able to form .

The difficult step in implementing this Feynman path integral method in practice involves how one identifies all paths connecting ,  to 
, . Each path contributes an additive term involving the complex exponential of the quantity

Because the time variable  appearing in each action component can be complex (recall that, in one of the time evolutions,  is really 
), the exponentials of these action components can have both real and imaginary parts. The real parts, which arise from the 

, cause the exponential terms to be damped (i.e., to undergo exponential decay), but the imaginary parts give rise (in ) to
oscillations. The sum of many, many (actually, an infinite number of) oscillatory

terms is extremely difficult to evaluate because of the tendency of contributions from one path to cancel those of another path. The practical
evaluation of such sums remains a very active research subject.

The most commonly employed approximation to this sum involves finding the path(s) for which the action

is smallest because such paths produce the lowest-frequency oscillations in , and thus may be less subject to cancelation by
contributions from other paths.

The path(s) that minimize the action  are, in fact, the classical paths. That is, they are the paths that the system whose quantum wave function
is being propagated would follow if the system were undergoing classical Newtonian mechanics subject to the conditions that the system be at 

 at  and at  at . In this so-called semi-classical approximation to the propagation of the initial wave function using Feynman
path integrals, one finds all classical paths that connect  at  and at  at , and one evaluates the action  for each such path. One
then applies the formula

but includes in the sum only the contribution from the classical path(s). In this way, one obtains an approximate quantum propagated wave
function via a procedure that requires knowledge of only classical propagation paths.

Clearly, the quantum propagation of wave functions, even within the semi-classical approximation discussed above, is a rather complicated
affair. However, keep in mind the alternative that one would face in evaluating, for example, spectroscopic line shapes if one adopted a time-
independent approach. One would have to know the energies and wave functions of a system comprised of many interacting molecules. This
knowledge is simply not accessible for any but the simplest molecules. For this reason, the time-dependent framework in which one propagates
classical trajectories or uses path-integral techniques to propagate initial wave functions offers the most feasible way to evaluate the correlation
functions that ultimately produce spectral line shapes and other time correlation functions for complex molecules in condensed media.

Before finishing this Section, it might help if I showed how one obtains the result that classical paths are those that make the action integral 
 minimum. This provides the student with an introduction to the subject called calculus of variations or functional analysis, which

most students reading this text have probably not studied in a class. First, let’s clarify what a functional is. A function  depends on one or
more variables x that take on scalar values; that is, given a scalar number ,  produces the value of the function  at this value of . A
functional  is a function of the function  if, given the function ,  acts on it to produce a value. In more general functionals,  might
depend not only of f, but on various derivatives of . Let’s consider an example. Suppose one has a functional of the form

meaning that the functional involves an integral from  through  of an integrand that may contain (i) the variable  explicitly, (ii) the
function , and (iii) the derivative of this function with respect to the variable . This is the kind of integral one encounters when evaluating
the action integral

where the function  is the coordinate  that evolves from  to . The task at hand is to determine that function  for which
this integral is a minimum.

exp(iS/ℏ)Φ( , t = 0)q0 ( )m

2πiℏδt

P/2
Φ( , t)qP

q0 t = 0
qP t

[ − ]∑
j=1

P−1 m( −qj qj−1)2

2δt

δt(V ( ) +V ( ))qj qj−1

2
(7.4.27)

δt = t/P t

t+βℏ/i
exp(−βH) exp(iS/ℏ

exp(iS/ℏ) = cos(S/ℏ) + i sin(S/ℏ) (7.4.28)

S = [ − ]∑
j=1

P−1 m( −qj qj−1)2

2δt

δt(V ( ) +V ( ))qj qj−1

2
(7.4.29)

exp(iS/ℏ)

S

q0 t = 0 qP t = t

q0 t = 0 qP t = t S

Φ( , t) = exp[ ∫ dtL]F ( , t = 0)qP ( )
m

2πiℏδt

P/2
∑

 all paths

i

ℏ
q0 (7.4.30)

S = ∫ L dt

f(x)
x f(x) f x

F [f ] f f F F [f ]
f

F [f ] = F (t, f(t), )dt∫
tf

t0

df(t)

dt
(7.4.31)

t0 tf t

f(t) t

S = [T −V ]dt = [ ( −V (x(t))]dt∫
tf

t0

∫
tf

t0

m

2

dx(t)

dt
)

2
(7.4.32)
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We solve this problem proceeding much as one would do if one had to minimize a function of a variable; we differentiate with respect to the
variable and set the derivative to zero. However, in our case, we have a function of a function, not a function of a variable; so how do we carry
out the derivative? We assume that the function  that minimizes  is known, and we express any function that differs a little bit from the
correct  as

where is a scalar quantity used to suggest that  and differ by only a small amount and is a function that obeys

this is how we guarantee that we are only considering paths that connect to the proper  at  and  at . By considering all possible
functions that obey these conditions, we have in a parameterization of all paths that begin (at ) and end (at tf) where the exact path  does
but differ by a small amount from . Substituting into

gives

The terms in the integrand are then expanded in powers of the  parameter

and substituted into the integral for . Collecting terms of each power of  allows this integral to be written as

The condition that S(e) be stable with respect to variations in  can be expressed as

which is equivalent to requiring that the terms linear in  in the above expansion for  vanish

Next, we use integration by parts to rewrite the first term involving as a term involving instead

Because the function vanishes at  and , the first term vanishes, so this identity can be used to rewrite the condition that the terms in 
that are linear in  vanish as

Because this result is supposed to be valid for any function that vanishes at  and tf, the factor multiplying in the above integral must itself
vanish

This shows that the path  that makes  stationary is the path that obeys Newton’s equations- the classical path. I urge the student reader to
study this example of the use of functional analysis because this mathematical device is an important tool too master.

x(t) S

x(t)

x(t) +εη(t) (7.4.33)

x(t)

η(t) = 0 at t =  and at t = ;t0 tf (7.4.34)

x0 t0 xf tf
t0 x(t)

x(t)

S = [ ( −V (x(t))]dt∫
tf

t0

m

2

dx(t)

dt
)

2
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S = [ ( +ε −V (x(t) +εη(t))]dt.∫
tf

t0

m

2

dx(t)

dt

dη(t)

dt
)

2
(7.4.36)

ε

( +ε = ( +2ε +
dx(t)

dt

dη(t)

dt
)

2 dx(t)

dt
)

2 dx(t)

dt

dη(t)

dt
ε2( )

dη

dt

2
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−V (x(t) +εη(t)) = −V (x(t)) −ε η(t) − (t) −⋯
∂V (x(t))

∂x(t)

1

2
ε2

V (x(t))∂2

∂x(t)2
η2 (7.4.38)

S ε

S = [ {( +2ε +O( )}−V (x(t) +εη(t)) −V (x(t)) −ε η(t) −O( )]dt.∫
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2
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)
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dη(t)

dt
ε2 ∂V (x(t))

∂x(t)
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ε

= 0 =
ds(ε)

dε
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ε→0

S(ε) −S(0)

ε
(7.4.40)

ε S(ε)

0 = [m − η(t)]dt∫
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dx(t)

dt

dη(x(t))

dt

∂V (x(t))

∂x(t)
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∫
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t0 tf S(ε)
ε
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tf
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7.5: Some Important Applications of Statistical Mechanics
In this Section, I introduce several applications of statistical mechanics that are important for students to be aware of because they
arise frequently when chemists make use of the tools of statistical mechanics. These examples include

1. The basic equations connecting the translational, rotational, vibrational, and electronic properties of isolated (i.e., gas-phase)
molecules to their thermodynamics.

2. The most basic descriptions of the vibrations of ions, atoms, or molecules within crystals.
3. The most elementary models for describing cooperative behavior and phase transitions in gas-surface and liquid-liquid systems.
4. The contributions of intermolecular forces to the thermodynamics of gases.

Gas-Molecule Thermodynamics 

The equations relating the thermodynamic variables to the molecular partition functions can be employed to obtain the following
expressions for the energy , heat capacity , Helmholz free energy , entropy , and chemical potential  in the case of a gas
(i.e., in the absence of intermolecular interactions) of polyatomic molecules:

Earlier in this Chapter in Section 7.1.2, we showed how these equations are derived, so I refer the reader back to that treatment for
further details.

Notice that, except for the chemical potential , all of these quantities are extensive properties that depend linearly on the number
of molecules in the system . Except for the chemical potential  and the pressure , all of the variables appearing in these
expressions have been defined earlier when we showed the explicit expressions for the translational, vibrational, rotational, and
electronic partition functions. These are the working equations that allow one to compute thermodynamic properties of stable
molecules, ions, and even reactive species such as radicals in terms of molecular properties such as geometries, vibrational
frequencies, electronic state energies and degeneracies, and the temperature, pressure, and volume.

Einstein and Debye Models of Solids 
These two models deal with the vibrations of crystals that involve motions among the neighboring atoms, ions, or molecules that
comprise the crystal. These inter-fragment vibrations are called phonons. In the Einstein model of a crystal, one assumes that:
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1. Each atom, ion, or molecule from which the crystal is constituted is trapped in a potential well formed by its interactions with

neighboring species. This potential is denoted  with the volume-to-number  ratio written to keep in mind that it

likely depends on the packing density (i.e., the distances among neighbors) within the crystal. Keep in mind that f represents the

interaction of any specific atom, ion, or molecule with the  other such species. So, , not  is the total interaction

energy among all of the species; the factor of  is necessary to avoid double counting.

2. Each such species is assumed to undergo local harmonic vibrational motions about its equilibrium position ( ) within the local

well that traps it. If the crystal is isotropic, the force constants  that characterize the harmonic potential  along

the , , and  directions are equal; if not, these  parameters may be unequal. It is these force constants, along with the

masses  of the atoms, ions, or molecules, that determine the harmonic frequencies  of the crystal.

3. The inter-species phonon vibrational partition function of the crystal is then assumed to be a product of  partition functions,
one for each atom, ion, or molecule in the crystal, with each partition function taken to be of the harmonic vibrational form:

There is no factor of  in the denominator because, unlike a gas of  species, each of these  species (atoms, ions, or
molecules) are constrained to stay put (i.e., not free to roam independently) in the trap induced by their neighbors. In this sense, the 

 species are distinguishable rather than indistinguishable as they are in the gas case. The  factor arises when one asks what

the total energy of the crystal is, aside from its vibrational energy, relative to  separated species; in other words, what is the total
cohesive energy of the crystal. This energy is  times the energy of any single species , but, as noted above, divided by 2 to
avoid double counting the inter-species interaction energies.

This partition function can be subjected to the thermodynamic equations discussed earlier to compute various thermodynamic
properties. One of the most useful to discuss for crystals is the heat capacity , which is given by (see the vibrational contribution
to  expressed in Section 7.5.1) :

At very high temperatures, this function can be shown to approach , which agrees with the experimental observation know as
the law of Dulong and Petit. However, at very low temperatures, this expression approaches:

which goes to zero as  approaches zero, but not in a way that is consistent with experimental observation. That is, careful
experimental data shows that all crystal heat capacities approach zero proportional to  at low temperature; the Einstein model’s 

 approaches zero but not in the  form found in experiments.

So, although the Einstein model offers a very useful model of how a crystal’s stability relates to  and how its  depends on
vibrational frequencies of the phonon modes, it does not work well at low temperatures. Nevertheless, it remains a widely used
model in which to understand the phonons’ contributions to thermodynamic properties as long as one does not attempt to
extrapolate its predictions to low .

In the Debye model of phonons in crystals, one abandons the view in which each atom, ion, or molecule vibrates independently
about it own equilibrium position and replaces this with a view in which the constituent species vibrate collectively in wave-like
motions. Each such wave has a wave length  and a frequency  that are related to the speed  of propagation of such waves in the
crystal by

The speed  is a characteristic of the crystal’s inter-species forces; it is large for stiff crystals and small for soft crystals.
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In a manner much like we used to determine the density of quantum states  within a three-dimensional box, one can
determine how many waves can fit within a cubic crystalline box having frequencies between  and . The approach to this
problem is to express the allowed wave lengths and frequencies as:

where  is the length of the box on each of its sides and  is an integer . This prescription forces all wave lengths to
match the boundary condition for vanishing at the box boundaries.

Then carrying out a count of how many ( ) waves have frequencies between  and  for a box whose sides are all equal
gives the following expression:

The primary observation to be made is that the density of waves is proportional to :

It is conventional to define the parameter a in terms of the maximum frequency  that one obtains by requiring that the integral of
 over all allowed  add up to , the total number of inter-species vibrations that can occur:

This then gives the constant a in terms of  and  and allows  to be written as

The Debye model uses this wave picture and computes the total energy  of the crystal much as done in the Einstein model, but
with the sum over  vibrational modes replaced by a continuous integral over the frequencies  weighted by the density of such
states  ((see the vibrational contribution to  expressed in Section 7.5.1):

where the integral over  ranges from 0 to nm. It turns out that the  heat capacity obtained by taking the temperature derivative
of this expression for  can be written as follows:

where the so-called Debye function  is defined by

and the integral is taken from  to .

The important thing to be noted about the Debye model is that the heat capacity, as defined above, extrapolates to  at high
temperatures, thus agreeing with the law of Dulong and Petit, and varies at low temperature as

So, the Debye heat capacity does indeed vary as  at low  as careful experiments indicate. For this reason, it is appropriate to
use the Debye model whenever one is interested in properly treating the energy, heat capacity, and other thermodynamic properties

of crystals at temperatures for which  is small. At higher temperatures, it is appropriate to use either the Debye or Einstein
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models. The major difference between the two lies in how they treat the spectrum of vibrational frequencies that occur in a crystal.

The Einstein model says that only one (or at most three, if three different  values are used) frequency occurs ;

each species in the crystal is assumed to vibrate at this frequency. In contrast, the Debye model says that the species vibrate
collectively and with frequencies ranging from  up to , the so-called Debye frequency, which is proportional to the
speed  at which phonons propagate in the crystal. In turn, this speed depends on the stiffness (i.e., the inter-species potentials)
within the crystal.

Lattice Theories of Surfaces and Liquids 
This kind of theory can be applied to a wide variety of chemical and physical problems, so it is a very useful model to be aware of.
The starting point of the model is to consider a lattice containing  sites, each of which has  nearest neighbor sites (n.b., clearly, 
 will depend on the structure of the lattice) and to imagine that each of these sites can exist in either of two states that we label A

and B. Before deriving the basic equations of this model, let me explain how the concepts of sites and A and B states are used to
apply the model to various problems.

1. The sites can represent binding sites on the surface of a solid and the two states A and B can represent situations in which the
site is either occupied (A) or unoccupied (B) by a molecule that is chemisorbed or physisorbed to the site. This point of view is
taken when one applies lattice models to adsorption of gases or liquids to solid surfaces.

2. The sites can represent individual spin = 1/2 molecules or ions within a lattice, and the states A and B can denote the a and b
spin states of these species. This point of view allows the lattice models to be applied to magnetic materials.

3. The sites can represent positions that either of two kinds of molecules A and B might occupy in a liquid or solid in which case
A and B are used to label whether each site contains an A or a B molecule. This is how we apply the lattice theories to liquid
mixtures.

4. The sites can represent cis- and trans- conformations in linkages within a polymer, and A and B can be used to label each such
linkage as being either cis- or trans-. This is how we use these models to study polymer conformations.

In Figure 7.4, I show a two-dimensional lattice having 25 sites of which 16 are occupied by dark (A) species and 9 are occupied by
lighter (B) species.

Figure 7.4 Two-dimensional lattice having 25 sites with 16 A and 9 B species

The partition function for such a lattice is written in terms of a degeneracy  and an energy , as usual. The degeneracy is
computed by considering the number of ways a total of  species can be arranged on the lattice:

The interaction energy among the A and B species for any arrangement of the A and B on the lattice is assumed to be expressed in
terms of pair wise interaction energies. In particular, if only nearest neighbor interaction energies are considered, one can write the
total interaction energy  of any arrangement as

where  is the number of nearest neighbor pairs of type I-J and  is the interaction energy of an I-J pair. The example shown
in Figure 7.4 has ,  and .
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The three parameters  that characterize any such arrangement can be re-expressed in terms of the numbers  and  of A
and B species and the number of nearest neighbors per site  as follows:

Note that the sum of these two equations states the obvious fact that twice the sum of AA, BB, and AB pairs must equal the number
of A and B species multiplied by the number of neighbors per species, .

Using the above relationships among , , and , we can rewrite the interaction energy as

The reason it is helpful to write  in this manner is that it allows us to express things in terms of two variables over which one
has direct experimental control,  and , and one variable  that characterizes the degree of disorder among the A and B
species. That is, if  is small, the A and B species are arranged on the lattice in a phase-separated manner; whereas, if  is
large, the A and B are well mixed.

The total partition function of the A and B species arranged on the lattice is written as follows:

Here,  and  are the partition functions (electronic, vibrational, etc.) of the A and B species as they sit bound to a lattice site and
 is the number of ways that  species of type A and  of type B can be arranged on the lattice such that there

are  A-B type nearest neighbors. Of course,  is the interaction energy discussed earlier. The sum occurs because a
partition function is a sum over all possible states of the system. There are no ( ) factors because, as in the Einstein and
Debye crystal models, the A and B species are not free to roam but are tied to lattice sites and thus are distinguishable.

This expression for  can be rewritten in a manner that is more useful by employing the earlier relationships for  and :

where

The quantity  plays a central role in all lattice theories because it provides a measure of how different the A-B interaction energy
is from the average of the A-A and B-B interaction energies. As we will soon see, if  is large and negative (i.e., if the A-A and B-
B interactions are highly attractive), phase separation can occur; if  is positive, phase separation will not occur.

The problem with the above expression for the partition function is that no one has yet determined an analytical expression for the
degeneracy  factor. Therefore, in the most elementary lattice theory, known as the Bragg-Williams
approximation, one approximates the sum over  by taking the following average value of :

in the expression for . This average is formed by taking the number of A sites and multiplying by the number of neighbor sites (c)
and by the fraction of these neighbor sites that would be occupied by a B species if mixing were random. This approximation
produces
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Finally, we realize that the sum  is equal to the number of ways of arranging  A species and  B

species on the lattice regardless of how many A-B neighbor pairs there are. This number is, of course, .

So, the Bragg-Williams lattice model partition function reduces to:

The most common connection one makes to experimental measurements using this partition function arises by computing the
chemical potentials of the A and B species on the lattice and equating these to the chemical potentials of the A and B as they exist
in the gas phase. In this way, one uses the equilibrium conditions (equal chemical potentials in two phases) to relate the vapor
pressures of A and B, which arise through the gas-phase chemical potentials, to the interaction energy .

Let me now show you how this is done. First, we use

to compute the A and B chemical potentials on the lattice. This gives

and an analogous expression for  with  replacing . The expression for the gas-phase chemical potentials  and  given
earlier in this Chapter has the form:

within which the vapor pressure appears. The pressure dependence of this gas-phase expression can be factored out to write each 
as:

where  is the vapor pressure of A (in atmosphere units) and  denotes all of the other factors in . Likewise, the lattice-phase
chemical potentials can be written as a term that contains the  and  dependence and a term that does not:

where  is the mole fraction of A ( ). Of course, an analogous expression holds for .

We now perform two steps:

1. We equate the gas-phase and lattice-phase chemical potentials of species A in a case where the mole fraction of A is unity. This
gives

where  is the vapor pressure of A that exists over the lattice in which only A species are present.
2. We equate the gas- and lattice-phase chemical potentials of A for an arbitrary chemical potential  and obtain:

which contains the vapor pressure  of A over the lattice covered by A and B with  being the mole fraction of A.
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Subtracting these two equations and rearranging, we obtain an expression for how the vapor pressure of A depends on :

Recall that the quantity  is related to the interaction energies among various species as

Let us examine that physical meaning of the above result for the vapor pressure. First, if one were to totally ignore the interaction
energies (i.e., by taking ), one would obtain the well known Raoult’s Law expression for the vapor pressure of a mixture:

In Figure 7.5, I plot the A and B vapor pressures vs. . The two straight lines are, of course, just the Raoult’s Law findings. I also
plot the  vapor pressure for three values of the  interaction energy parameter. When  is positive, meaning that the A-B
interactions are more energetically favorable than the average of the A-A and B-B interactions, the vapor pressure of A is found to
deviate negatively from the Raoult’s Law prediction. This means that the observed vapor pressure is lower than is that expected
based solely on Raoult’s Law. On the other hand, when  is negative, the vapor pressure deviates positively from Raoult’s Law.

Figure 7.5. Plots of vapor pressures in an A, B mixture as predicted in the lattice model with the Bragg-Williams approximation.

An especially important and interesting case arises when the  parameter is negative and has a value that makes  be more

negative than –4. It turns out that in such cases, the function  suggested in this Bragg-Williams model displays a behavior that
suggests a phase transition may occur. Hints of this behavior are clear in Figure 7.5 where one of the plots displays both a

maximum and a minimum, but the plots for  and for  do not. Let me now explain this further by examining the

derivative of  with respect to :

Setting this derivative to zero (in search of a maximum or minimum), and solving for the values of  that make this possible, one
obtains:

Because  is a mole fraction, it must be less than unity and greater than zero. The above result giving the mole fraction at which 

 will not produce a realistic value of  unless
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If , there is only one value of  (i.e.,  = 1/2) that produces a zero slope; for , there will be two such

values given by , which is what we see in Figure 7.5 where the plot displays both a maximum and a

minimum.

What does it mean for  to be less than  and why is this important? For  to be negative, it means that the average of the A-

A and B-B interactions are more energetically favorable than is the A-B interactions. It is for this reason that a phase separation is
may be favored in such cases (i.e., the A species prefer to be near other A species more than to be near B species, and similarly for
the B species). However, thermal motion can overcome a slight preference for such separation. That is, if  is not large enough, 

 can overcome this slight preference. This is why  must be less than , not just less than zero.

So, the bottom line is that if the A-A and B-B interactions are more attractive, on average, than are the A-B interactions, one can
experience a phase separation in which the A and B species do not remain mixed on the lattice but instead gather into two distinct
kinds of domains. One domain will be rich in the A species, having an  value equal to that shown in the right dot in Figure 7.5.
The other domains will be rich in B and have an  value of that shown by the left dot.

As I noted in the introduction to this Section, lattice models can be applied to a variety of problems. We just analyzed how it is
applied, within the Bragg-Williams approximation, to mixtures of two species. In this way, we obtain expressions for how the
vapor pressures of the two species in the liquid or solid mixture display behavior that reflects their interaction energies. Let me now
briefly show you how the lattice model is applied in some other areas.

In studying adsorption of gases to sites on a solid surface, one imagines a surface containing M sites per unit area A with 
molecules (that have been adsorbed from the gas phase) bound to these sites. In this case, the interaction energy  introduced
earlier involves only interactions among neighboring adsorbed molecules; there are no lateral interactions among empty surface
sites or between empty surface sites and adsorbed molecules. So, we can make the following replacements in our earlier equations:

where  is the number of nearest neighbor pairs of adsorbed species and  is the pairwise interaction energy between
such a pair. The primary result obtained by equating the chemical potentials of the gas-phase and adsorbed molecules is:

Here  is the partition function of the gas-phase molecules per unit volume,  is the partition function of the adsorbed
molecules (which contains the adsorption energy as  and  is called the coverage (i.e., the fraction of surface sites to
which molecules have adsorbed). Clearly,  plays the role that the mole fraction  played earlier. This so-called adsorption
isotherm equation allows one to connect the pressure of the gas above the solid surface to the coverage.

As in our earlier example, something unusual occurs when the quantity  is negative and beyond a critical value. In
particular, differentiating the expression for  with respect to  and finding for what  value(s)  vanishes, one finds:

Since  is a positive fraction, this equation can only produce useful values if

In this case, this means that if the attractions between neighboring adsorbed molecules is strong enough, it can overcome thermal
factors to cause phase-separation to occur. The kind of phase separation on observes is the formation of islands of adsorbed
molecules separated by regions where the surface has little or no adsorbed molecules.

There is another area where this kind of lattice model is widely used. When studying magnetic materials one often uses the lattice
model to describe the interactions among pairs of neighboring spins (e.g., unpaired electrons on neighboring molecules or nuclear
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spins on neighboring molecules). In this application, one assumes that up or down spin states are distributed among the lattice sites,
which represent where the molecules are located.  and  are the total number such spins, so ( ) is a measure of what
is called the net magnetization of the sample. The result of applying the Bragg-Williams approximation in this case is that one
again observes a critical condition under which strong spin pairings occur. In particular, because the interactions between a and a
spins, denoted , and between  and  spins, denoted , are equal and opposite, the  variable characteristic of all lattice
models reduces to:

The critical condition under which one expects like spins to pair up and thus to form islands of a-rich centers and other islands of b-
rich centers is

or

Virial Corrections to Ideal-Gas Behavior 
Recall from our earlier treatment of classical partition function that one can decompose the total partition function into a product of
two factors:

one of which

is the result if no intermolecular potentials are operative. The second factor

thus contains all of the effects of intermolecular interactions. Recall also that all of the equations relating partition functions to
thermodynamic properties involve taking  and derivatives of . So, all such equations can be cast into sums of two parts;
that arising from  and that arising from . In this Section, we will be discussing the contributions of  to such
equations.

The first thing that is done to develop the so-called cluster expansion of  is to assume that the total intermolecular potential
energy can be expressed as a sum of pair wise additive terms:

where  labels the distance between molecule  and molecule . This allows the exponential appearing in  to be written as
a product of terms, one for each pair of molecules:

Each of the exponentials  is then expressed as follows:

Nα Nβ −Nα Nβ

– J α β +J X

X = −2 + + = −4J.Eα,β Eα,α Eβ,β (7.5.56)
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the last equality being what defines . These  functions are introduced because, whenever the molecules  and  are distant

from one another and thus not interacting,  vanishes, so  approaches unity, and thus  vanishes. In

contrast, whenever molecules  and  are close enough to experience strong repulsive interactions,  is large and positive, so
 approaches . These properties make  a useful measure of how molecules are interacting; if they are not, , if they

are repelling strongly, , and if they are strongly attracting,  is large and positive.

Inserting the  functions into the product expansion of the exponential, one obtains:

which is called the cluster expansion in terms of the  pair functions. When this expansion is substituted into the expression for 
, we find:

where the integral is over all  of the  molecule’s center of mass coordinates.

The integrals involving only one  function are all equal (i.e., for any pair , , the molecules are identical in their interaction
potentials) and reduce to:

The integrals over  produce , which combines with  to produce the  seen. Finally, because 

depends only on the relative positions of molecules 1 and 2, the six dimensional integral over  can be replaced by integrals
over the relative location of the two molecules r, and the position of their center of mass . The integral over  gives one more
factor of , and the above cluster integral reduces to

with the  coming from the angular integral over the relative coordinate . Because the total number of molecules  is very large,

it is common to write the  factor as .

The cluster integrals containing two  factors can also be reduced. However, it is important to keep track of different kinds
of such factors (depending on whether the indices , , ,  are all different or not). For example, terms of the form

with , , , and  all unique.

reduce (again using the equivalence of the molecules and the fact that  depends only on the relative positions of  and J) to:

where, again I used the fact that  is very large to replace  by .

On the other hand, cluster integrals with, for example,  but  and  different reduce as follows:

Because  depends only on the relative positions of molecules 1 and 2 and  depends on the relative positions of 1 and 3, the
nine-dimensional integral over  can be changed to a six-dimensional integral over  and an integral over the
location of molecule 1; the latter integral produces a factor of  when carried out. Thus, the above cluster integral reduces to:
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There is a fundamental difference between cluster integrals of the type  and those involving . The former are called
unlinked clusters because they involve the interaction of molecules 1 and 2 and a separate interaction of molecules 3 and 4. The
latter are called linked because they involve molecule 1 interacting simultaneously with molecules 2 and 3 (although 2 and 3 need
not be close enough to cause  to be non-zero). The primary differences between unlinked and linked cluster contributions are:

1. The total number of unlinked terms is proportional to , while the number of linked terms is proportional to . This causes
the former to be more important than the latter because they are more numerous.

2. The linked terms only become important at densities where there is a significant probability that three molecules occupy nearby
regions of space. The unlinked terms, on the other hand, do not require that molecules 1 and 2 be anywhere near molecules 3
and 4. This also causes the unlinked terms to dominate especially at low and moderate densities.

I should note that a similar observation was made in Chapter 6 when we discussed the configuration interaction and coupled-cluster
expansion of electronic wave functions. That is, we noted that doubly excited configurations (analogous to ) are the most
important contributions beyond the single determinant, and that quadruple excitations in the form of unlinked products of double
excitations were next most important, not triple excitations. The unlinked nature in this case was related to the amplitudes of the
quadruple excitations being products of the amplitudes of two double excitations. So, both in electronic structures and in liquid
structure, one finds that pair correlations followed by unlinked pair correlations are the most important to consider.

Clearly, the cluster expansion approach to  can be carried to higher and higher-level clusters (e.g., involving  or 
, etc.). Generally, one finds that the unlinked terms (e.g.,  in this example) are most important (because they are

proportional to higher powers of  and because they do not require more than binary collisions). It is most common, however, to
employ a severely truncated expansion and to retain only the linked terms. Doing so for  produces at the lower levels:

One of the most common properties to compute using a partition function that includes molecular interactions in the cluster manner
is the pressure, which is calculated as:

Using  and inserting the above expression for  produces the following result for the pressure:

where the so-called virial coefficients  and  are defined as the factors proportional to  and , respectively. The

second virial coefficient’s expression in terms of the cluster integrals is:

The third virial coefficient involves higher order cluster integrals.

The importance of such cluster analysis is that they allow various thermodynamic properties (e.g., the pressure above) to be
expressed as one contribution that would occur if the system consisted of non-interacting molecules and a second contribution that
arises from the intermolecular forces. It thus allows experimental measurements of the deviation from ideal (i.e., non-interacting)
behavior to provide a direct way to determine intermolecular potentials. For example, by measuring pressures at various 
values and various temperatures, one can determine  and thus gain valuable information about the intermolecular potential .
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1

CHAPTER OVERVIEW

8: Chemical Dynamics

In this Chapter, you should have learned about

Conventional and variational transition state theory.
Classical trajectory and reaction-path Hamiltonian simulations of chemical reactions.
Unimolecular RRKM theory.
Time correlation function and wave packet propagation approaches.
Surface hopping and Landau-Zener theories of non-adiabatic processes.
Spectroscopic, beam, and other experimental approaches to probing chemical reaction rates.

Chemical dynamics is a field in which scientists study the rates and mechanisms of chemical reactions. It also involves the study of
how energy is transferred among molecules as they undergo collisions in gas-phase or condensed-phase environments. Therefore,
the experimental and theoretical tools used to probe chemical dynamics must be capable of monitoring the chemical identity and
energy content (i.e., electronic, vibrational, and rotational state populations) of the reacting species. Moreover, because the rates of
chemical reactions and energy transfer are of utmost importance, these tools must be capable of doing so on time scales over which
these processes, which are often very fast, take place. Let us begin by examining many of the most commonly employed theoretical
models for simulating and understanding the processes of chemical dynamics.

8.1: Theoretical Tools for Studying Chemical Change and Dynamics
8.2: Experimental Probes of Reaction Dynamics
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8.1: Theoretical Tools for Studying Chemical Change and Dynamics

Transition State Theory 

The most successful and widely employed theoretical approach for studying rates involving species undergoing reaction at or near
thermal-equilibrium conditions is the transition state theory (TST) of the author’s late colleague, Henry Eyring. This would not be a
good way to model, for example, photochemical reactions in which the reactants do not reach thermal equilibrium before
undergoing significant reaction progress. However, for most thermal reactions, it is remarkably successful.

In this theory, one views the reactants as undergoing collisions that act to keep all of their degrees of freedom (translational,
rotational, vibrational, electronic) in thermal equilibrium. Among the collection of such reactant molecules, at any instant of time,
some will have enough internal energy to access a transition state (TS) on the Born-Oppenheimer potential energy surface upon
which the reaction takes place. Within TST, the rate of progress from reactants to products is then expressed in terms of the
concentration of species that exist near the TS multiplied by the rate at which these species move through the TS region of the
energy surface.

The concentration of species at the TS is, in turn, written in terms of the equilibrium constant expression of statistical mechanics
discussed in Chapter 7. For example, for a bimolecular reaction  passing through a TS denoted AB*, one writes the
concentration (in molecules per unit volume) of AB* species in terms of the concentrations of A and of B and the respective
partition functions as

There is, however, one aspect of the partition function of the TS species that is specific to this theory. The partition function 
contains all of the usual translational, rotational, vibrational, and electronic partition functions that one would write down, as we
did in Chapter 7, for a conventional AB molecule except for one modification. It does not contain a

vibrational contribution for motion along the one internal coordinate corresponding to the reaction path.

Figure 8.1 Typical potential energy surface in two dimensions showing local minima, transition states and paths connecting them.

As we discussed in Chapter 3, in the vicinity of the TS, the reaction path can be identified as that direction along which the PES has
negative curvature; along all other directions, the energy surface is positively curved. For example, in Figure 8.1, a reaction path
begins at Transition Structure B and is directed downhill. More specifically, if one knows the gradients {  }and Hessian
matrix elements:

of the energy surface at the TS, one can express the variation of the potential energy along the  Cartesian coordinates { } of
the molecule as follows:

A+B → C

[AB∗] = [A][B].
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(8.1.1)

q∗
AB

exp(−h /2kT )νj

1 −exp(−h /kT )νj
(8.1.2)

(∂E/∂ )qk

=Hj,k
E∂2

∂ ∂qj qk
(8.1.3)

3N qk

E( ) = E(0) + + +…qk ∑
k

∂E

∂qk
qk

1

2
∑
j

k

qjHj,kqk (8.1.4)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11598?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/08%3A_Chemical_Dynamics/8.01%3A_Theoretical_Tools_for_Studying_Chemical_Change_and_Dynamics


8.1.2 https://chem.libretexts.org/@go/page/11598

where E(0) is the energy at the TS, and the { } denote displacements away from the TS geometry. Of course, at the TS, the
gradients all vanish because this geometry corresponds to a stationary point. As we discussed in Chapter 3, the Hessian matrix 
has 6 zero eigenvalues whose eigenvectors correspond to overall translation and rotation of the molecule. This matrix has 
positive eigenvalues whose eigenvectors correspond to the vibrations of the TS species, as well as one negative eigenvalue. The
latter has an eigenvector whose components  along the  Cartesian coordinates describe the direction of the reaction path as
it begins its journey from the TS backward to reactants (when followed in one direction) and onward to products (when followed in
the opposite direction). Once one moves a small amount along the direction of negative curvature, the reaction path is subsequently

followed by taking infinitesimal steps downhill along the gradient vector  whose  components are ( ). Note that once one

has moved downhill away from the TS by taking the initial step along the negatively curved direction, the gradient no longer
vanishes because one is no longer at the stationary point.

Returning to the TST rate calculation, one therefore is able to express the concentration  of species at the TS in terms of the
reactant concentrations and a ratio of partition functions. The denominator of this ratio contains the conventional partition functions
of the reactant molecules and can be evaluated as discussed in Chapter 7. However, the numerator contains the partition function of
the TS species but with one vibrational component missing (i.e.:

Other than the one missing , the TS's partition function is also evaluated as in Chapter 7. The motion along the reaction path
coordinate contributes to the rate expression in terms of the frequency (i.e., how often) with which reacting flux crosses the TS
region given that the system is in near-thermal equilibrium at temperature .

To compute the frequency with which trajectories cross the TS and proceed onward to form products, one imagines the TS as
consisting of a narrow region along the reaction coordinate ; the width of this region we denote . We next ask what the classical
weighting factor is for a collision to have momentum  along the reaction coordinate. Remembering our discussion of such
matters in Chapter 7, we know that the momentum factor entering into the classical partition function for translation along the
reaction coordinate is . Here, m is the mass factor associated with the reaction coordinate s. We can

express the rate or frequency at which such trajectories pass through the narrow region of width  as , with  being the

speed of passage (cm s ) and   being the inverse of the distance that defines the TS region. So,  has units of s . In

summary, we expect the rate of trajectories moving through the TS region to be

However, we still need to integrate this over all values of  that correspond to enough energy  to access the TS’s energy
(relative to that of the reactants), which we denote . Moreover, we have to account for the fact that it may be that not all
trajectories with kinetic energy equal to  or greater pass on to form product molecules; some trajectories may pass through the
TS but later recross the TS and return to produce reactants. Moreover, it may be that some trajectories with kinetic energy along the
reaction coordinate less than  can react by tunneling through the barrier.

The way we account for the fact that a reactive trajectory must have at least  in energy along s is to integrate over only values of 
 greater than . To account for the fact that some trajectories with energies above  may recross, we include a so-called

transmission coefficient k whose value is between zero and unity. In the most elementary TST, tunneling is ignored. Putting all of
these pieces together, we carry out the integration over  just described to obtain:

where the momentum is integrated from  to ∞ and the s-coordinate is integrated only over the small region . If the
transmission coefficient is factored out of the integral (treating it as a multiplicative factor), the integral over  can be evaluated
and yields the following:
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The exponential energy dependence is usually then combined with the partition function of the TS species that reflect this species’
other  vibrational coordinates and momenta and the reaction rate is then expressed as

This implies that the rate coefficient  for this bimolecular reaction is given in terms of molecular partition functions by:

which is the fundamental result of TST. Once again we notice that ratios of partition functions per unit volume can be used to
express ratios of species concentrations (in number of molecules per unit volume), just as appeared in earlier expressions for
equilibrium constants as in Chapter 7.

The above rate expression undergoes only minor modifications when unimolecular reactions are considered. For example, in the
hypothetical reaction  via the TS ( ), one obtains

where again  is a partition function of A* with one missing vibrational component.

Before bringing this discussion of TST to a close, I need to stress that this theory is not exact. It assumes that the reacting
molecules are nearly in thermal equilibrium, so it is less likely to work for reactions in which the reactant species are prepared in
highly non-equilibrium conditions. Moreover, it ignores tunneling by requiring all reactions to proceed through the TS geometry.
For reactions in which a light atom (i.e., an H or D atom) is transferred, tunneling can be significant, so this conventional form of
TST can provide substantial errors in such cases (however, there are straightforward approximations similar to those we discussed
in Chapter 2 that can be used to make tunneling corrections to this rate expression). Nevertheless, TST remains the most widely
used and successful theory of chemical reaction rates and can be extended to include tunneling and other corrections as we now
illustrate.

Variational Transition State Theory 

Within the TST expression for the rate constant of a bi-molecular reaction,  or of a uni-molecular

reaction, , the height (E^*) of the barrier on the potential energy surface appears in the TS species’ partition

function  or , respectively. In particular, the TS partition function contains a factor of the form  in which the
Born-Oppenheimer electronic energy of the TS relative to that of the reactant species appears. This energy  is the value of the
potential energy  at the TS geometry, which we denote .

It turns out that the conventional TS approximation to  over-estimates reaction rates because it assumes all trajectories that
cross the TS proceed onward to products unless the transmission coefficient is included to correct for this. In the variational
transition state theory (VTST), one does not evaluate the ratio of partition functions appearing in  at  , but one first
determines at what geometry (S*) the TS partition function (i.e.,  or ) is smallest. Because this partition function is a product
of (i) the  factor as well as (ii) 3 translational, 3 rotational, and  vibrational partition functions (which
depend on ), the value of  for which this product is smallest need not be the conventional TS value . What this means is that
the location (S*) along the reaction path at which the free-energy reaches a saddle point is not the same the location  where the
Born-Oppenheimer electronic energy  has its saddle. This interpretation of how  and  differ can be appreciated by
recalling that partition functions are related to the Helmholtz free energy  by ; so determining the value of 
where  reaches a minimum is equivalent to finding that  where the free energy  is at a maximum.

So, in VTST, one adjusts the dividing surface (through the location of the reaction coordinate S) to first find that value  where 
 has a minimum. One then evaluates both  and the other components of the TS species’ partition functions at this value 

. Finally, one then uses the  expressions given above, but with  taken at . This is how VTST computes reaction rates in
a somewhat different manner than does the conventional TST. As with TST, the VTST, in the form outlined above, does not treat
tunneling and the fact that not all trajectories crossing  proceed to products. These corrections still must be incorporated as an
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add-on to this theory (i.e., in the k factor for recrossing and through tunneling corrections) to achieve high accuracy for reactions
involving light species (recall from Chapter 2 that tunneling probabilities depend exponentially on the mass of the tunneling
particle). I refer the reader to the web page of Prof. Don Truhlar, who has been one of the pioneers of VTST for further details.

Reaction Path Hamiltonian Theory 

Let us review what the reaction path is as defined earlier in Chapter 3. It is a path that

i. begins at a transition state (TS) and evolves along the direction of negative curvature on the potential energy surface (as found

by identifying the eigenvector of the Hessian matrix  that belongs to the negative eigenvalue);

ii. moves further downhill along the gradient vector  whose components are ,

iii. terminates at the geometry of either the reactants or products (depending on whether one began moving away from the TS
forward or backward along the direction of negative curvature).

The individual steps along the reaction coordinate can be labeled , , , …  as they evolve from the TS to the products
(labeled S_P) and , , …  as they evolve from reactants (S-R) to the TS. If these steps are taken in very small
(infinitesimal) lengths, they form a continuous path and a continuous coordinate that we label .

At any point  along a reaction path, the Born-Oppenheimer potential energy surfacef , its gradient components

and its Hessian components

can be evaluated in terms of derivatives of  with respect to the  Cartesian coordinates of the molecule. However, when one
carries out reaction path dynamics, one uses a different set of coordinates for reasons that are similar to those that arise in the
treatment of normal modes of vibration as given in Chapter 3. In particular, one introduces  mass-weighted coordinates 

 that are related to the  Cartesian coordinates  in the same way as we saw in Chapter 3.

The gradient and Hessian matrices along these new coordinates {x_j} can be evaluated in terms of the original Cartesian
counterparts:

The eigenvalues { } and eigenvectors { } of the mass-weighted Hessian  can then be determined. Upon doing so, one finds

i. 6 zero eigenvalues whose eigenvectors describe overall rotation and translation of the molecule;
ii.  positive eigenvalues { } and eigenvectors  along which the gradient  has zero (or nearly so) components;

iii. and one eigenvalue  (that may be positive, zero, or negative) along whose eigenvector  the gradient  has its largest
component.

The one unique direction along  gives the direction of evolution of the reaction path (in these mass-weighted coordinates). All
other directions (i.e., within the space spanned by the  other vectors ) possess (nearly) zero gradient component and
positive curvature. This means that at any point  on the reaction path being discussed

i. one is at or near a local minimum along all  directions  that are transverse to the reaction path direction (i.e., the
gradient direction);

ii. one can move to a neighboring point on the reaction path by moving a small (infinitesimal) amount along the gradient.
iii. In terms of the  mass-weighted Hessian’s eigen-mode directions ({ } and ), the potential energy surface can be

approximated, in the neighborhood of each such point on the reaction path , by expanding it in powers of displacements away
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from this point. If these displacements are expressed as components   along the  eigenvectors  and  along the
gradient direction ,

one can write the Born-Oppenheimer potential energy surface locally as:

Within this local quadratic approximation,  describes a sum of harmonic potentials along each of the  modes transverse to

the reaction path direction. Along the reaction path,  appears with a non-zero gradient  and a curvature  that may be

positive, negative, or zero.

The eigenmodes of the local (i.e., in the neighborhood of any point  along the reaction path) mass-weighted Hessian decompose
the  internal coordinates into  along which  is harmonic and one ( ) along which the reaction evolves. In terms of
these same coordinates, the kinetic energy  can also be written and thus the classical Hamiltonian  can be
constructed. Because the coordinates we use are mass-weighted, in Cartesian form the kinetic energy  contains no explicit mass
factors:

This means that the momenta conjugate to each (mass-weighted) coordinate , obtained in the usual way as

all have identical (unit) mass factors associated with them.

To obtain the working expression for the reaction path Hamiltonian (RPH), one must transform the above equation for the kinetic
energy  by replacing the  Cartesian mass-weighted coordinates { } by

i. the  eigenmode displacement coordinates ,
ii. the reaction path displacement coordinate , and

iii. 3 translation and 3 rotational coordinates.

The three translational coordinates can be separated and ignored (because center-of-mass energy is conserved) in further
consideration. The 3 rotational coordinates do not enter into the potential , but they do appear in . However, it is most common
to ignore their effects on the dynamics that occurs in the internal-coordinates; this amounts to ignoring the effects of overall
centrifugal forces on the reaction dynamics. We will proceed with this approximation in mind although the reader should keep in
mind that doing so is an approximation that one might have to revisit in more sophisticated treatments.

Although it is tedious to perform the coordinate transformation of  outlined above, it has been done in the paper W. H. Miller, N.
C. Handy and J. E. Adams, Reaction Path Hamiltonian for Polyatomic Molecules, J. Chem. Phys. 72, 99-112 (1980), and results in
the following form for the RPH:

where

In the absence of the so-called dynamical coupling factors  and , this expression for  describes

1.  harmonic-oscillator Hamiltonian  each of which has a locally defined frequency  that

varies along the reaction path (i.e., is -dependent);

2. a Hamiltonian  for motion along the reaction coordinate  with  serving as the potential.
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In this limit (i.e., with the  factors turned off), the reaction dynamics can be simulated in what is termed a vibrationally adiabatic
manner by

i. placing each transverse oscillator into a quantum level  that characterizes the reactant’s population of this mode;
ii. assigning an initial momentum  to the reaction coordinate that is characteristic of the collision to be simulated (e.g., 

could be sampled from a Maxwell-Boltzmann distribution if a thermal reaction is of interest, or  could be chosen equal to
the mean collision energy of a beam-collision experiment);

iii. time-evolving the  and , coordinate and momentum using the above Hamiltonian, assuming that each transverse mode
remains in the quantum state  that it had when the reaction began.

The assumption that  remains fixed, which is why this model is called vibrationally adiabatic, does not mean that the energy
content of the  mode remains fixed because the frequencies  vary as one moves along the reaction path. As a result, the

kinetic energy along the reaction coordinate  will change both because  varies along  and because

 varies along S.

Let’s return now to the RPH theory in which the dynamical couplings among motion along the reaction path and the modes
transverse to it are included. In the full RPH, the terms  couple modes  and , while  couples the reaction
path to mode . These couplings express how energy can flow among these various degrees of freedom. Explicit forms for the 

 and  factors are given in terms of the eigenvectors { } of the mass-weighted Hessian matrix as follows:

where the derivatives of the eigenvectors { } are usually computed by taking the eigenvectors at two neighboring points 
and  along the reaction path:

In summary, once a reaction path has been mapped out, one can compute, along this path, the mass-weighted Hessian matrix and
the potential . Given these quantities, all terms in the RPH

are in hand. This knowledge can, subsequently, be used to perform the propagation of a set of classical coordinates and momenta
forward in time. For any initial (i.e., ) momenta  and , one can use the above form for H to propagate the coordinates {

} and momenta { } forward in time. In this manner, one can use the RPH theory to follow the time evolution of a
chemical reaction that begins ( ) with coordinates and moment characteristic of reactants under specified laboratory conditions
and moves through a TS and onward to products. Once time has evolved long enough for product geometries to be realized, one

can interrogate the values of  to determine how much energy has been deposited into various product-

molecule vibrations and of  to see what the final kinetic energy of the product fragments is. Of course, one also monitors what

fraction of the trajectories, whose initial conditions are chosen to represent some experimental situation, progress to product
geometries vs. returning to reactant geometries. In this way, one can determine the overall reaction probability.

Classical Dynamics Simulation of Rates 

One can also perform classical dynamics simulations of reactive events without using the reaction path Hamiltonian. Following a
procedure like that outlined in Chapter 7 where classical condensed-media MD simulations were discussed, one can time-evolve
the Newton equations of motion of the molecular reaction species using, for example, the Cartesian coordinates of each atom in the
system and with either a Born-Oppenheimer surface or a parameterized functional form (e.g., a force field). Of course, it is
essential that whatever function one uses must be able to accurately describe the reactive surface, especially near the transition state
(recall, that may force fields do not do so because they do not account for bond breaking and forming).

With each such coordinate having an initial velocity  and an initial value , one then uses Newton’s equations written for
a time step of duration  to propagate  and  forward in time according, for example , to the following first-order
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propagation formula:

or using the Verlet algorithm described in Chapter 7. Here m_q is the mass factor connecting the velocity dq/dt and the momentum
p_q conjugate to the coordinate q:

and  is the force along the coordinate  at the initial geometry .

By applying the time-propagation process, one generates a set of new coordinates  and new velocities 
appropriate to the system at time . Using these new coordinates and momenta as  and  and evaluating the forces 

 at these new coordinates, one can again use the Newton equations to generate another finite-time-step set of new
coordinates and velocities. Through the sequential application of this process, one generates a sequence of coordinates and
velocities that simulate the system’s dynamical behavior.

In using this kind of classical trajectory approach to study chemical reactions, it is important to choose the initial coordinates and
momenta in a way that is representative of the experimental conditions that one is attempting to simulate. The tools of statistical
mechanics discussed in Chapter 7 guide us in making these choices and allow us efficient methods (e.g., the Monte Carlo
technique) for sampling such initial values. When one attempts, for example, to simulate the reactive collisions of an A atom with a
BC molecule to produce AB + C, it is not appropriate to consider a single classical (or quantal) collision between A and BC. Why?
Because in any laboratory setting,

1. The A atoms are probably moving toward the BC molecules with a distribution of relative speeds. That is, within the sample of
molecules (which likely contains 10  or more molecules), some A + BC pairs have low relative kinetic energies when they
collide, and others have higher relative kinetic energies. There is a probability distribution  for this relative kinetic
energy that must be properly sampled in choosing the initial conditions.

2. The BC molecules may not all be in the same rotational ( ) or vibrational ( ) state. There is a probability distribution function 
 describing the fraction of BC molecules that are in a particular  state and a particular  state. An ensemble of initial

values of the BC molecule's internal vibrational coordinate and momentum as well as its orientation and rotational angular
momentum must be selected to represent this .

3. When the A and BC molecules collide with a relative motion velocity vector , they do not all hit head on. Some collisions
have small impact parameter  (the closest distance from A to the center of mass of BC if the collision were to occur with no
attractive or repulsive forces), and some have large -values (see Figure 8.2). The probability function for these impact
parameters is , which is simply a statement of the geometrical fact that larger -values have more geometrical
volume element than smaller -values.

Figure 8.2 Coordinates needed to characterize an atom-diatom collision showing the impact parameter b.

So, to simulate the entire ensemble of collisions that occur between A atoms and BC molecules in various ,  states and having
various relative kinetic energies  and impact parameters b, one must:

1. run classical trajectories (or quantum propagations) for a large number of , , , and  values,
2. with each such trajectory assigned an overall weighting (or importance factor) of

q(t+δt) = +(dq/dt δtq0 )0 (8.1.24)

dq/dt(t+δt) = (dq/dt −δt[(∂E/∂q / ])0 )0 mq (8.1.25)
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After such an ensemble of trajectories representative of an experimental condition has been carried out, one has available a great
deal of data. This data includes knowledge of what fraction of the trajectories produced final geometries characteristic of products,
so the net reaction probability can be calculated. In addition, the kinetic and potential energy content of the internal (vibrational and
rotational) modes of the product molecules can be interrogated and used to compute histograms giving probabilities for observing
products in these states. This is how classical dynamics simulations allow us to study chemical reactions and/or energy transfer.

RRKM Theory 
Another theory that is particularly suited for studying unimolecular decomposition reactions is named after the four scientists who
developed it- Rice, Ramsperger, Kassel, and Marcus. To use this theory, one imagines an ensemble of molecules that have been
activated to a state in which they possess a specified total amount of internal energy  of which an amount  exists as rotational
energy and the remainder as internal vibrational energy.

The mechanism by which the molecules become activated could involve collisions or photochemistry. It does not matter as long as
enough time has passed to permit one to reasonably assume that these molecules have the energy  distributed randomly
among all their internal vibrational degrees of freedom. When considering thermally activated unimolecular decomposition of a
molecule, the implications of such assumptions are reasonably clear. For photochemically activated unimolecular decomposition
processes, one usually also assumes that the molecule has undergone radiationless relaxation and returned to its ground electronic
state but in a quite vibrationally hot situation. That is, in this case, the molecule contains excess vibrational energy equal to the
energy of the optical photon used to excite it. Finally, when applied to bimolecular reactions, one assumes that collision between
the two fragments results in a long-lived complex. The lifetime of this intermediate must be long enough to allow the energy 

, which is related to the fragments’ collision energy, to be randomly distributed among all vibrational modes of the
collision complex.

For bimolecular reactions that proceed directly (i.e., without forming a long-lived intermediate), one does not employ RRKM-type
theories because their primary assumption of energy randomization almost certainly would not be valid in such cases.

The RRKM expression of the unimolecular rate constant for activated molecules A* (i.e., either a long-lived complex formed in a
bimolecular collision or a hot molecule) dissociating to products through a transition state, , is

Here, the total energy  is related to the energies of the activated molecules by

where  is the rotational energy of the activated molecule and  is the vibrational energy of this molecule. This same energy 
 must, of course, appear in the transition state where it is decomposed as an amount  needed to move from A* to the TS (i.e.,

the energy needed to reach the barrier) and vibrational ( , translational (  along the reaction coordinate), and rotational (
) energies:

In the rate coefficient expression,  is the total sum of internal vibrational quantum states that the transition state
possesses having energies up to and including . This energy is the total energy  but with the activation energy 
removed and the overall rotational energy  of the TS removed. The quantity

 is the density of internal vibrational quantum states (excluding the mode describing the reaction coordinate) that the
activated molecule possesses having an energy between  and . In this expression, the energy  is
the total energy  with the rotational energy  of the activated species removed.

In the most commonly employed version of RRKM theory, the rotational energies of the activated molecules  and of the TS 
 are assumed to be related by

= P ( )P (J, v)2πbdb.Ptotal EKE (8.1.27)
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Here  and  are the average (taken over the three eigenvalues of the moment inertia tensors) moments of inertia of the activated
molecules and TS species, respectively. The primary assumption embodied in the above relationship is that the rotational angular
momenta of the activated and TS species are the same, so their rotational energies can be related, as expressed in the equation, to
changes in geometries as reflected in their moments of inertia. Because RRKM theory assumes that the vibrational energy is
randomly distributed, its fundamental rate coefficient equation

depends on the total energy , the energy  required to access the TS, and the amount of energy contained in the rotational
degrees of freedom that is thus not available to the vibrations.

To implement a RRKM rate coefficient calculation, one must know

i. the total energy  available,
ii. the barrier energy ,

iii. the geometries (and hence the moments of inertia  and ) of the activated molecules and of the TS, respectively,
iv. the rotational energy  of the activated molecules, as well as
v. all  vibrational energies of the activated molecules and all  vibrational energies of the TS (i.e., excluding the

reaction coordinate).

The rotational energy of the TS species can then be related to that of the activated molecules through

To simulate an experiment in which the activated molecules have a thermal distribution of rotational energies, the RRKM rate
constant is computed for a range of  values and then averaged over  using the thermal Boltzmann population

as a weighting factor. This can be carried out, for example, using the MC process for selecting rotational  values. This then
produces a rate constant for any specified total energy E. Alternatively, to simulate experiments in which the activated species are
formed in bimolecular collisions at a specified energy , the RRKM rate coefficient is computed for a range of  values with
each  related to the collisional impact parameter  that we discussed earlier. In that case, the collisional angular momentum 
is given as , where  is the relative collision speed (related to the collision energy) and m is the reduced mass of the two

colliding fragments. Again using  the TS rotational energy can be related to that of the activated

species. Finally, the RRKM rate coefficient is evaluated by averaging the result over a series of impact parameters  (each of which
implies a  value and thus an ) with  as the weighting factor.

he evaluation of the sum of states  and the density of states  that appear in the RRKM expression is
usually carried out using a state-counting algorithm such as that implemented by Beyer and Swinehart in Commun. Assoc.
Comput. Machin. 16, 372 (1973). This algorithm uses knowledge of the  harmonic vibrational frequencies of the activated
molecules and the  frequencies of the TS and determines how many ways a given amount of energy can be distributed
among these modes. By summing over all such distributions for energy varying from zero to , the algorithm determines G(E). By
taking the difference , it determines . Professor Bill Hase has been one of the early pioneers involved
in applying RRKM theory to chemical processes.

Correlation Function Expressions for Rates 
Recall from Chapter 6 that rates of photon absorption can, in certain circumstances, be expressed either in terms of squares of
transition dipole matrix elements connecting each initial state  to each final state ,

or in terms of the equilibrium average of the product of a transition dipole vector at time  dotted into this same vector at
another time 
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That is, these rates can be expressed either in a state-to-state manner or in a time-dependent correlation function framework. In
Chapter 7, this same correlation function approach was examined further.

In an analogous fashion, it is possible to express chemical reaction rate constants in a time-domain language again using time
correlation functions. The TST (or VTST) and RRKM expressions for the rate constant  all involve, through the partition
functions or state densities, the reactant and transition-state energy levels and degeneracies. These theories are therefore analogs of
the state-to-state photon-absorption rate equations.

To make the connection between the state-to-state and time-correlation function expressions, one can begin with a classical
expression for the rate constant given below:

Here

 is the partition function of the reactant species,
L is the number of coordinates and momenta upon which the Hamiltonian  depends, and

 is .

The flux factor  and the reaction probability  are defined in terms of a dividing surface which could, for example, be a plane
perpendicular to the reaction coordinate  and located along the reaction path that was discussed earlier in this Chapter in Section
8.1.3. Points on such a surface can be defined by specifying one condition that the L coordinates {qj} must obey, and we write this
condition as

Points lying where  are classified as lying in the reactant region of coordinate space, while those lying where  are in
the product region. For example, if the dividing surface is defined as being a plane perpendicular to the reaction path, the function f
can be written as:

Here,  is the reaction coordinate (which, of course, depends on all of the  variables) and  is the value of  at the dividing
surface. If the dividing surface is placed at the transition state on the energy surface,  vanishes because the transition state is
then, by convention, the origin of the reaction coordinate.

So, now we see how the dividing surface can be defined, but how are the flux  and probability c constructed? The flux factor  is
defined in terms of the dividing surface function  as follows:

Here,  is the Heaviside step function (  if  if ), whose derivative  is the Dirac
delta function , and the other identities follow by using the chain rule. When the dividing surface is defined in terms of the

reaction path coordinate  as introduced earlier (i.e., ), the factor  contains only one term when the L

coordinates { } are chosen, as in the reaction path theory, to be the reaction coordinate  and L-1 coordinates 
perpendicular to the reaction path. For such a choice, one obtains

⟨ | ⋅ μ ⋅ μ(t)| ⟩∑
i

ρi Φi E0 E0 Φi (8.1.36)

krate

k(t) = ∫ dpdq F (p, q)χ(p, q)
1

(2πℏQr )L
e−βH(q,p) (8.1.37)

Qr

H(p, q)
β 1/kT

F c

S

f(q) = 0. (8.1.38)

f(q) < 0 f > 0

f(q) = (S(q) − ).S0 (8.1.39)

S q S0 S

S0

F F

f(q)

F (p, q) =
dh(f(q))

dt
(8.1.40)

=
dh

df

df

dt
(8.1.41)

=
dh

df
∑
j

∂f

∂qj

dqj

dt
(8.1.42)

= δ(f(q)) .∑
j

∂f

∂qj

dqj

dt
(8.1.43)

h(f(q)) h(x) = 1 x > 0;h(x) = 0 x < 0 dh(x)/dx
δ(x)

S f(q) = (S− )S0 ∑j

∂f

∂qj

dqj

dt

qj S =q ′
j q ′
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where  is the momentum along  and  is the mass factor associated with  in the reaction path Hamiltonian. So, in this case,
the total flux factor  reduces to:

We have seen exactly this construct before in Section 8.1.2 where the TST expression for the rate coefficient was developed.

The reaction probability factor  is defined in terms of those trajectories that evolve, at long time , onto the product
side of the dividing surface; such trajectories obey

This long-time limit can, in turn, be expressed in a form where the flux factor again occurs

In this expression, the flux  pertains to coordinates  and momenta  at . Because of time reversibility, the integral
can be extended to range from  until .

Using the expressions for c and for  as developed above in the equation for the rate coefficient given at the beginning of this
Section allows the rate coefficient  to be rewritten as follows:

 

In this form, the rate constant  appears as an equilibrium average (represented by the integral over the initial values of the
variables  and  with the  weighting factor) of the time correlation function of the flux :

To evaluate the rate constant in this time-domain framework for a specific chemical reaction, one would proceed as follows.

i. Run an ensemble of trajectories whose initial coordinates and momenta  are selected (e.g., using Monte-Carlo methods
discussed in Chapter 7) from a distribution with  as its weighting factor.

ii. Make sure that the initial coordinates  lie on the dividing surface because the flux expression contains the  factor;
iii. Monitor each trajectory to observe when it again crosses the dividing surface (i.e., when  again obeys ; at which

time the quantity

iv.  can be evaluated as , using the coordinates and momenta at time  to compute

these quantities.

Using a planar dividing surface attached to the reaction path at  as noted earlier allows  to be calculated in terms of

the initial ( ) momentum lying along the reaction path direction as ,  and permits  to

be computed when the trajectory again crosses this surface at at time  as . So, all that is
really needed if the dividing surface is defined in this manner is to start trajectories with ; to keep track of the initial

momentum along ; to determine at what times  the trajectory returns to ; and to form the product  for each

such time. It is in this manner that one can compute flux-flux correlation functions and, thus, the rate coefficient.

Notice that trajectories that undergo surface re-crossings contribute negative terms to the flux-flux correlation function computed as

discussed above. That is, a trajectory with a positive initial value of  can, at some later time t, cross the dividing surface with

= =∑
j

∂f

∂qj

dqj

dt

dS

dt

PS

mS

(8.1.44)

PS S mS S

F

F (p, q) = δ(S− ) .S0
PS

mS

(8.1.45)

c(p, q) t → ∞

c(p, q) = h(f(q(t))) = 1.lim
t→∞

(8.1.46)

 h(f(q(t))) = dt = Fdtlim
t→∞

∫
∞

0

dh(f(q(t))) 

dt
∫

∞

0
(8.1.47)

F (t) q(t) p(t) t > 0
t = −∞ t = ∞

F

k(T )

k(T ) = ∫ dpdq F (p, q)χ(p, q) 
1

(2πℏQr )L
e−βH(q,p) (8.1.48)

= dt∫ dpdq F (p, q)F (p(t), q(t)) 
1

(2πℏQr )L
∫

∞

−∞
e−βH(q,p) (8.1.49)

k(T )
p q (2πℏ  exp(−βH)Q−1

r )−L F

q. p
exp(−βH)

q δ(f(q))
q(t) f(q(t)) = 0

F (p(t), q(t)) F (p, q) = δ(f(q))∑j

∂f

∂qj

dqj

dt
t

S = S0 F (q, p)

t = 0 F (p, q) = δ(S− )S0
PS

mS

F (p(t), q(t))

t F (p(t), q(t)) = δ(S− ) (t)/S0 PS mS

S = S0

S t S = S0
PS

mS

(t)PS

mS

( )
PS

mS
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a negative value of  (i.e., be directed back toward reactants). This re-crossing will contribute a negative value, via. the

product , to the total correlation function, which integrates over all times. Of course, if this same trajectory later

undergoes yet another crossing of the dividing surface at t' with positive , it will contribute a positive term to the correlation

function via. . Thus, the correlation function approach to computing the rate coefficient can properly account for

surface re-crossings, unlike the TST which requires one to account for such effects in the transmission coefficient k.

Wave Packet Propagation 
The discussions in Chapters 1 and 7 should have made it clear that it is very difficult to time-propagate wave functions rigorously
using quantum mechanics. On the other hand, to propagate a classical trajectory is relatively straightforward. In addition to the
semi-classical tools introduced in Chapter 1, there is another powerful tool that allows one to retain much of the computational ease
and convenient interpretation of the classical trajectory approach while also incorporating quantum effects that are appropriate
under certain circumstances. In this wave packet propagation approach, one begins with a quantum mechanical wave function that
is characterized by two parameters specifying the average value of the position and of the momentum along each coordinate. One
then propagates not the quantum wave function but the values of these two parameters, which one assumes will evolve according to
Newtonian dynamics. Let's see how these steps are taken in more detail and try to understand when such an approach is expected to
work or to fail.

First, the form of the so-called wave packet quantum function is written as follows:

Here, we have a total of N coordinates that we denote { }. It is these coordinates that the quantum wave function
depends upon. The total wave function is a product of terms, one for each coordinate. Notice that this wave function has two

distinct ways in which the coordinate  appear. First, it has a Gaussian spatial dependence ( ) centered

at the values  and having Gaussian width factors related to . This dependence tends to make the wave function's amplitude

largest when  is close to . Secondly, it has a form  that looks like the travelling wave that we encountered in

Chapter 1 in which the coordinate  moves with momentum . So, these wave packet functions have built into them
characteristics that allow them to describe motion (via. the ) of an amplitude that is centered at  with a width given by the
parameter .

In this approach to chemical dynamics, we assume the parameters  and  will undergo classical time evolution according to
the Newton equations:

where  is the potential energy surface (Born-Oppenheimer or force field) upon which we wish to propagate the wave packet, and 
 is the mass associated with coordinate . For the form of the wave function given above, the  and  parameters can be

shown to be the expectation values of the coordinates  and momenta :

Moreover, the  parameter appearing in the Gaussian part of the function can be shown to equal the dispersion or spread of this
wave function along the coordinate :

(t)PS

mS

PS

mS

(t)PS

mS

( )PS t′

PS

mS

( )PS t′

mS

Y (q,Q,P ) = exp[ − ⟨δ ⟩].∏
J=1

N 1

2π⟨δ ⟩q2
J

− −−−−−
√

iPJqJ

ℏ

( −qJ QJ )2

4
q2
J

(8.1.50)

: J = 1,NqJ

qJ exp[− ⟨δ ⟩]
( −qJ QJ )2

4
q2
J

QJ ⟨ ⟩q2
J

qJ QJ exp[ ]
iPJqJ

ℏ
qJ PJ

PJ QJ

⟨ ⟩q2
J

PJ QJ

=
dQJ

dt

PJ

mJ

(8.1.51)

= −
dPJ

dt

∂V

∂QJ

(8.1.52)

V

mJ qJ QJ PJ

qJ −iℏ
∂

∂qJ

= ∫ Y dq,QJ Y ∗qJ (8.1.53)

= ∫ (−iℏ )Y dq.PJ Y ∗ ∂

∂qJ
(8.1.54)

⟨ ⟩q2
J

qJ
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There is an important characteristic of the above Gaussian wave packet functions that we need to point out. It turns out that
functions of the form:

can be shown to have uncertainties in  and in  whose product is as small as possible:

The proof that the wave packet form of the wave function has the smallest uncertainty product is given in the text book Quantum
Mechanics, 3rd ed., L. I. Schiff, McGraw-Hill, New York (1968). The Heisenberg uncertainty relation, which is discussed in many
texts dealing with quantum mechanics, says that this product of coordinate and momentum dispersions must be greater than or

equal to . In a sense, the Gaussian wave packet function is the most classical function that one can have because its uncertainty

product is as small as possible (i.e., equals ). We say this is the most classical possible quantum function because in classical

mechanics, both the coordinate and the momentum can be known precisely. So, whatever quantum wave function allows these two
variables to be least uncertain is the most classical.

To use wave packet propagation to simulate a chemical dynamics event, one begins with a set of initial classical coordinates and
momenta { } as well as a width  or uncertainty for each coordinate. Each width must be chosen to represent the
range of that coordinate in the experiment that is to be simulated. For example, assume one were to represent the dynamics of a
wave function that is prepared by photon absorption of a  vibrational state of the H-Cl molecule from the ground 1S state to
an excited-state energy surface ( ). Such a situation is described qualitatively in Figure 8.3. In this case, one could choose 

 to be the half width of the  harmonic (or Morse) oscillator wave function  of H-Cl, and take  (because
this is the average value of the momentum for ) and , the equilibrium bond length.

For such initial conditions, classical Newtonian dynamics would then be used to propagate the  and . In the H-Cl example,
introduced above, this propagation would be performed using the excited-state energy surface for  since, for , the molecule is
assumed to be on this surface. The total energy at which the initial wave packet it delivered to the upper surface would be dictated
by the energy of the photon used to perform the excitation. In Figure 8.3, two such examples are shown.

Once the packet is on the upper surface, its position  and momentum  begin to change according to the Newton equations. This,
in turn, causes the packet to move as shown for several equally spaced time steps in Figure 8.3 for the two different photons’ cases.
At such subsequent times, the quantum wave function is then assumed, within this model, to be given by:

That is, it is taken to be of the same form as the initial wave function but to have simply moved its center from  to  with a
momentum that has changed from  to .

⟨ ⟩ = ∫ ( − Y dq.q2
J Y ∗ qJ QJ )2 (8.1.55)

Y (q,Q(t),P (t)) = exp[ − ⟨δ ⟩]∏
J=1

N
1

2π⟨δ ⟩q2
J

− −−−−−
√

i (t)PJ qJ

ℏ

( − (t)qJ QJ )2

4
q2
J (8.1.56)

qJ −iℏ
∂

∂qJ

⟨( – ⟩⟨(−iℏ – ⟩ = .qJ QJ )2 ∂

∂qJ
PJ )2 ℏ2

4
(8.1.57)

ℏ2

4
ℏ2

4

(0), (0)QJ PJ ⟨ ⟩q2
J

v= 0
V (R)

⟨δ ⟩R2 v= 0 (R)χ0 P (0) = 0
χ0 R(0) = Req

QJ PJ

E t⟩0

Q P

Y (q,Q(t),P (t)) = exp[ − ⟨δ ⟩].∏
J=1

N 1

2π⟨δ ⟩q2
J

− −−−−−
√

i (t)PJ qJ

ℏ

( − (t)qJ QJ )2

4
q2
J (8.1.58)
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Figure 8.3 Propagation of wave packet prepared by absorption of two different photons.

It should be noticed that the time evolution of the wave packet shown in Figure 8.3 displays clear classical behavior. For example,
as time evolves, it moves to large R-values and its speed (as evidenced by the spacings between neighboring packets for equal time
steps) is large when the potential is low and small when the potential is higher. As we learned in Chapter 6, the time correlation
function

can be used to extract spectral information by Fourier transformation. For the H-Cl example considered here, this correlation
function will be large at  but will decay in magnitude as the wave packet  moves to the right (at t1, t2, etc.)
because its overlap with  becomes smaller and smaller as time evolves. This decay in  will occur more
rapidly for the high-energy photon case because  moves to the right more quickly because the classical
momentum  grows more rapidly. These dynamics will induce exponential decays in  (i.e.,  will vary as )
at short times.

In fact, the decay of  discussed above produces, when  is Fourier transformed, the primary characteristic of the
correlation function for the higher-energy photon case where dissociation ultimately occurs. In such photo-dissociation spectra, one
observes a Lorentzian line shape whose width is characterized by the decay rate ( ), which, in turn, relates to the total energy of
the packet and the steepness of the excited-state surface. This steepness determines how fast  grows, which then determines
how fast the H-Cl bond fragments.

In the lower-energy photon case shown in Figure 8.3, a qualitatively different behavior occurs in  and thus in the spectrum.
The packet’s movement to larger  causes  to initially undergo  decay. However, as the packet moves to its large-
R turning point (shortly after time ), it strikes the outer wall of the surface where it is reflected. Subsequently, it undergoes
motion to smaller R, eventually returning to its initial value of R. Such recurrences, which occur on time scales that we denote ,
are characteristic of bound motion in contrast to the directly dissociative motion discussed earlier. This recurrence will cause 
to again achieve a large amplitude, but,  will subsequently again undergo  decay as the packet once again departs.
Clearly, the correlation function will display a series of recurrences followed by exponential decays. The frequency of the
recurrences is determined by the frequency with which the packet traverses from its inner to outer turning points and back again,
which is proportional to . This, of course, is the vibrational period of the H-Cl bond. So, in such bound-motion cases, the
spectrum (i.e., the Fourier transform of C(t)) will display a series of peaks spaced by ( ) with the envelope of such peaks having
a width determined by .

In more complicated multi-mode cases (e.g., in molecules containing several coordinates), the periodic motion of the wave packet
usually shows another feature that we have not yet discussed. Let us, for simplicity, consider a case in which only two coordinates
are involved. For the wave packet to return to (or near) its initial location, enough time must pass for both coordinates to have
undergone an excursion to their turning points and back. For example, consider the situation in which one coordinate’s vibrational
frequency is ca. 1000 cm-1 and the other’s is 300 cm-1; these two modes then require ca. 1/30 ps and 1/9 ps, respectively, to
undergo one complete oscillation. At , the wave packet, which is a product of two packets, 

C(t) = ⟨Y (q,Q(0),P (0))|Y (q,Q(t),P (t))⟩ (8.1.59)

t = 0 Y (q,Q(t),P (t))
Y (q,Q(0),P (0)) C(t)

Y (q,Q(t),P (t))
P (t) C(t) C(t) exp(−t/ )τ1

C(t) C(t)

1/τ1

P (t)

C(t)
R C(t) exp(−t/ )τ1

t3

τ2

C(t)
C(t) exp(−t/ )τ1

1/τ2

1/τ2

1/τ1
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, one for each mode, produces a large C(t). After 1/30 ps, the first

mode’s coordinate has returned to its initial location, but the second mode is only 9/30 of the way along in its periodic motion.
Moreover, after 1/9 ps, the second mode’s coordinate has returned to near where it began, but now the first mode has moved away.
So, at both 1/30 ps and 1/9 ps, the correlation function will not be large because one of the mode contribution to 

 will be small. However, after 1/3 ps, both modes’ coordinates will be in positions to
produce a large value of C(t); the high-frequency mode will have undergone 10 oscillations, and the lower-frequency mode will
have undergone 3 oscillations. My point in discussing this example is to illustrate that molecules having many coordinates can
produce spectra that display rather complicated patterns but which, in principle, can be related to the time evolution of these
coordinates using the correlation function’s connection to the spectrum.

Of course, there are problems that arise in using the wave packet function to describe the time evolution of a molecule (or any
system that should be treated using quantum mechanics). One of the most important limitations of the wave packet approach to be
aware of relates to it inability to properly treat wave reflections. It is well know that when a wave strikes a hard wall, it is reflected
by the wall. However, when, for example, a water wave moves suddenly from a region of deep water to a much more shallow
region, one observes both a reflected and a transmitted wave. In the discussion of tunneling resonances given in Chapter 2, we also
encountered reflected and transmitted waves. Furthermore, when a wave strikes a barrier that has two or more holes or openings in
it, one observes wave fronts coming out of these openings. The problem with the most elementary form of wave packets presented
above is that each packet contains only one piece. It therefore can not break into two or more pieces as it, for example, reflects
from turning points or passes through barriers with holes. Because such wave packets can not fragment into two or more packets
that subsequently undergo independent dynamical evolution, they are not able to describe dynamical processes that require
multiple-fragmentation events. It is primarily for this reason that wave packet approaches to simulating dynamics are usually
restricted to treating short-time dynamics where such fragmentation of the wave packet is less likely to occur. Prompt molecular
photo-dissociation processes such as we discussed above is a good example of such a short-time phenomenon. There have been
many refinements of the wave packet approach described above, some of which are designed to allow for splitting of the wave
function. I refer the reader to the work of one of the pioneers of the time-dependent wave packet approach, Prof. Eric Heller, for
more information on this subject.

Surface Hopping Dynamics 
There are, of course, chemical reactions and energy-transfer collisions in which two or more Born-Oppenheimer (BO) energy
surfaces are involved. Under such circumstances, it is essential to have available the tools needed to describe the coupled electronic
and nuclear-motion dynamics appropriate to this situation.

The way this problem is addressed is by returning to the Schrödinger equation before the single-surface BO approximation was
made and expressing the electronic wave function , which depends on the electronic coordinates { } and the nuclear
coordinates , as:

Here,  can be the BO electronic wave function belonging to the  electronic state, in which case we say we are using an
adiabatic basis of electronic states. The  are amplitudes that will relate to the probability that the system is on the  energy
surface. Next, we assume that the coordinates { } of the nuclei undergo classical motion in a manner to be specified in further
detail below that allows us to know their locations and velocities (or momenta) at any time . This assumption implies that the time
dependence of the above wave function is carried in the time dependence of the coordinates  as well as in the 
amplitudes

We next substitute this expansion into the time-dependent Schrödinger equation

exp[ − ⟨δ ⟩]∏2
J=1

1

2π⟨δ ⟩q2
J

− −−−−−
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i (t)PJ qJ

ℏ

( − (t)qJ QJ )2

4
q2
J

C(t) = ⟨Y (q,Q(0),P (0))|Y (q,Q(t),P (t))⟩
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aJ ψJ (8.1.60)
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where  is the electronic Hamiltonian, which depends on the nuclear coordinates  and thus on the time variable. We
then multiply the resultant equation on the left by one of the wave functions  and integrate over the electronic
coordinates { } to obtain an equation for the  amplitudes:

Here,  is the electronic Hamiltonian matrix element that couples  to . This set of coupled differential equations for the
amplitudes can be solved numerically by, for example, starting at  with  and  and propagating the amplitudes’
values forward in time.

The next step is to express , using the chain rule, in terms of derivatives with respect to the nuclear coordinates { }
and the time rate of change of these coordinates:

So, now the equations for the  read as follows:

The

are called non-adiabatic coupling matrix elements (for each pair of states  and , they are a vector in the space of the nuclear
coordinates ), and it is their magnitudes that play a central role in determining the efficiency of surface hoppings. Below we will
make use of the following symmetry property of these quantities, which derive from the orthogonality of the { }

These matrix elements are becoming more commonly available in widely utilized quantum chemistry and dynamics computer
packages (although their efficient evaluation remains a challenge that is undergoing significant study). Qualitatively, one can
expect a coupling  to be large if motion along a coordinate causes an orbital occupied in  to be distorted in a
manner that would produce significant overlap with an orbital in .

If the electronic functions { } appearing in the equations

are BO eigenfunctions, the off-diagonal elements  vanish and the diagonal elements are the BO energy levels. In this case,
only the terms involving  generate transitions between surfaces. On the other hand, if one chooses electronic functions {

} that have vanishing  values, only the  terms induce transitions among surfaces. The latter case is said to involve
using diabatic wave functions, while the former involves adiabatic wave functions. For the remainder of this discussion, I will
assume we are making use of adiabatic (i.e., BO) wave functions, but I will carry through the derivation in a manner that will allow
either adiabatic or diabatic functions to be used.

Because one is eventually interested in the populations for being in various electronic states, it is common to recast the above
equations for the amplitudes  into equations for so-called density matrix elements

The diagonal elements of the  matrix are the state probabilities while the off-diagonal elements contain information about the
phases of the complex quantities { }. So, in place of the equations for the { }, one can use the following equations for the {

(r|R(t))H0 R(t)
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iℏ = [ K, J(R(t)) − iℏ⟨ | ⟩] .
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aJ (8.1.63)
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}:

Setting , it is then possible to derive an equation for the time evolution of the diagonal elements of the density matrix

where

In addition to calculating amplitudes (the probabilities then being computed as ), one often needs to identify (using,
perhaps the kind of strategy discussed in Chapter 3) the seam at which the surfaces of interest intersect. This helps focus attention
on those geometries near which a surface hop is most likely to occur.

To utilize the most basic form of surface hopping theory, one proceeds as follows:

1. One begins with initial values of the nuclear coordinates { } and their velocities { } that properly characterize the kind
of collision or reaction one wishes to simulate. Of course, one has to utilize an ensemble of trajectories with initial conditions
chosen to properly describe such an experimental situation. In addition, one specifies which electronic surface (say the 
surface) the system is initially on.

2. For each such set of initial conditions, one propagates a classical trajectory describing the time evolution of the {Ra} and
{dRa/dt} on this initial ( ) surface.

3. As one is propagating the classical trajectory, one also propagates the coupled differential equations for the density matrix
elements with the nuclei moving on the  energy surface

4. After each time-propagation step of duration , one evaluates the quantity shown above (these elements give estimates for the
rate of change of the population of the  state due to transitions to other states) from which one computes

.

These quantities control the fractional change in the probability of being on the  surface  due to transitions from state 
into state . They are used as follows. A random number  is chosen. If  a hop to surface  is allowed to occur;
otherwise, no hop occurs and the system remains to continue its time evolution on surface K.

1. 5. If a hop occurs, the coordinates and momenta are allowed to now propagate on the  energy surface, where the forces will,
of course, be different, but with one change. The component of the velocity vector along the non-adiabatic coupling vector is
modified to allow for the fact that the system’s electronic energy has suddenly changed from  to , which must be
compensated for by a change in the kinetic energy of the nuclei so that total energy is conserved. If , this
results in an increase in speed; if  it produces a decrease in speed. In the latter case, if  lies considerably
below , it might turn out that there is just not enough total energy to access the surface ; in this case, the hop is not
allowed to occur.

2. 6. Following the above decision about allowing the hop and adjusting the speed along the direction of the vector, the trajectory
is then continued with the system now propagating on the  or  surface, and the differential equations involving continue
to be propagated with no changes other than the fact the nuclei may (or may not) be evolving on a different surface. The entire
process is repeated until the trajectory reaches termination (e.g., a reaction or quenching is observed, or some specified time
limit is reached) at which time one can probe the properties of the products as reflected in the coordinates and velocities of the
nuclei.

Carrying out surface hopping trajectories for an ensemble of trajectories with initial conditions representative of an experiment
generates an ensemble of final  values (i.e., at the end of each trajectory) whose averages can be used to estimate the overall
probability of ending up in the  electronic state. The algorithm discussed above is the so-called fewest-switches method
(detailed in J. C. Tully, J. Chem. Phys. 93, 1061 (1990)) pioneered by Prof. John Tully. This surface-hopping algorithm remains
one of the most widely used approaches to treating such coupled-state dynamics.

gK,J

iℏ = { [ − iℏ (b)]− [ − iℏ (b)]}  
dγK,J

dt
∑
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dt
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dt
dL,J (8.1.71)
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Landau-Zener Surface Jumps 

There is a simplified version of the surface hopping procedure just discussed that is often used when one has two electronic
surfaces that intersect in a region of space that (i) is energetically accessible in the experiment being simulated and (ii) can be
located and characterized (e.g., in terms of its coordinates and energy gradients) in a computationally feasible manner. To illustrate,
we again consider the case of Al interacting with , whose potential energy surfaces are reproduced below from Figure 3.1c.

Figure 8.3a Depiction of the  and  Born-Oppenheimer surfaces arising when  combines with 
to form .

With the Landau-Zener model described in this Section, trajectories are propagated on one energy surface until a point on or very
near the seam (denoted  in Figure 8.3 a) is encountered at which time an equation giving the probability of undergoing a
jump to the other surface is invoked. It is the purpose of this Section to derive and explain this Landau-Zener equation.

In Chapter 4, we learned that the rates of transitions from one state (labeled ) to another (labeled ) can sometimes be expressed in
terms of matrix elements of the perturbation connecting the two states as follows

Because the coupling matrix elements  have units of energy, and the  function has units of inverse
frequency, the rate expression clearly has units of . In the rate equation, is the energy of the transition induced by light of energy
, and  is the perturbation due to the electric dipole operator. These photon-induced rates can be viewed as relating to transitions
between two surfaces that cross: (i) one surface being that of the initial state plus a photon of energy , and (ii) the second being that
of the final state with no photon. In this point of view, the photon lifts the lower-energy state upward in energy until it crosses the
upper state and then the dipole operator effects the transition.

Making analogy with the photon-absorption case, we consider expressing the rates of transitions between

1. an initial state consisting of an electronic state multiplied by a state describing the initial vibrational (including inter-fragment
collisional) and rotational state of the system,

2. a final state consisting of the product of another electronic and vibration-rotation state

as follows

That is, we use the same golden rule rate expression but with no photon energy needed to cause the two surfaces to intersect. Next
we use the identity

to write

which can be substituted into our rate expression to obtain

H2

2A1
2B2 Al(3 3 P )s2 p1;2 ( )H2 σ2

g ;1 Σ+
g

Al )H2(2A1

(r)Rx

i f

Rate = δ(ω− ) .ωf,i

2π|⟨ |v(r)| ⟩Ψ0
f Ψ0

i |
2

ℏ2
(8.1.74)
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δ(x) = exp(ixt)dt
1
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∫
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−∞
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Defining two nuclear-motion Hamiltonian, one for each BO surface,

and assuming that the nuclear-motion wave functions obey

this expression becomes

In the expression

the  elements of  for our surface-jumping problem would involve either the  electronic Hamiltonian
couplings (if one uses a diabatic basis) or the non-adiabatic coupling elements (if one used a BO adiabatic basis). In either case,
these elements are functions of the nuclear coordinates and thus do not commute with the differential operators appearing in . As

a result, the operator combination  must be handled carefully (e.g., as one does in the coupled-

cluster expansion treated in Chapter 6) by expanding the exponential operators and keeping track of the fact that not all terms
commute. The lowest-order term in the expansion of this combination of operators is

which yields the approximation I now want to pursue.

Using this approximation in our expression for the rate of surface jumping transitions gives

We now use

to write the rate as

where we define the electronic transition integrals in shorthand as

Because of the energy-conserving d-function , we can actually simplify this expression even further by summing over the complete
set of the final-state’s vibration-rotation functions and making use of the completeness relation

to obtain

Rate = exp( ) dt.
1

2π
∫

∞

−∞

i( − ) tεf εi

ℏ
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ℏ2
(8.1.78)
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This expression can be seen to have units of s  since the delta function has units of inverse energy and each electronic coupling
integral has units of energy.

In the above rate expression, we see a d-function that limits the integration to only those geometries for which  ; these are
the geometries that lie on the intersection seam. Any geometry  can be expressed in terms of the geometry  of the point on the
seam closest to  plus a displacement of magnitude  along the unit vector normal to the seam at point 

If we now expand the energy difference  in a Taylor series about the point  lying on the seam, we obtain

The gradient  of the potential difference has zero components within the subspace of the seam; its only non-
vanishing component lies along the normal  vector. Now using

the  function can be expressed as

with the  factor constraining the integral to lie within the seam.

This result can be interpreted as follows:

1.  gives the probability density for being at a point  on the seam; this factor has units of (length)
 .

2.  gives the rate of transitions from one surface to the other at the point  on the seam; this factor has

units of length times s .
3. The  factor has units of (length) ; so the entire expression has units of s  as it should.

In this form, the rate expression can be used by (i) sampling (e.g., using Monte Carlo) over as much of the seam as is energetically
accessible, using the initial-state spatial probability density as a weighting factor, and (ii) forming the sampling average of the rate

quantity  computed for each accepted geometry.

There is another way to utilize the above rate expression. If we think of a swarm of  trajectories (i.e., an ensemble representative
of the experiment of interest) and ask what is the rate  at which trajectories pass through a narrow region of thickness  at a
point  on the seam, we could write

where  gives the probability density for a trajectory being at the point  on the seam and lying within a distance  along

the direction  normal to the seam. The quantity  is the component of the velocity along  with which the system moves

through the seam divided by the thickness . This ratio gives the inverse of the time the system spends within the thin  region or,

Rate = ⟨ (R)| |δ( (R) − (R)) (R)⟩.
2π

ℏ
χi v∗

f,ivf,i Vf Vi χi (8.1.90)
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equivalently, the frequency of passing through the thin strip of the seam at S. The quantity  is the volume element  whose
units cancel those of .

If we multiply this rate at which trajectories pass through ,  by the probability  that a surface jump will occur and integrate
over the entire seam space , we can express the rate at which the  trajectories will undergo jumps

If we divide this rate by , the number of trajectories, to produce the average rate per trajectory, and compare this expression to
the rate we derived earlier

we see that they would be equivalent if the probability  of a surface jump were given by

The above expression for the probability of jumping from  to  is known as the Landau-Zener (LZ) formula. The way
it is used in most applications is as follows:

1. An ensemble of classical trajectories with initial coordinates and momenta selected to represent an experimental condition are
run on the potential energy surface .

2. Whenever any trajectory passes very close to an intersection seam between  and another surface , the seam
geometry  nearest to  is determined and the gradient  of the energy difference is evaluated at . In addition, the
component of the velocity along the direction of this gradient is computed.

3. The electronic coupling matrix elements between the two states are evaluated at S, and the above formula is used to estimate the
probability  of a surface jump. In most applications of LZ theory, the electronic states {  } in the region of a crossing seam
are taken to be diabatic states because then the coupling matrix elements can be taken from the splitting between the two
adiabatic states that undergo an avoided crossing near  rather than by evaluating non-adiabatic coupling matrix elements 

 between adiabatic BO states.

In summary, the LZ expression for the probability of a surface jump  should be viewed as an approximate version of the algorithm
provided by the fewest-switches surface hopping approach discussed earlier. Before closing this Section, it is useful to point out
how this formula applies to two distinct cases

1. If, as suggested in Figure 8.3 b, a molecule is prepared (e.g., by photon absorption) in an excited electronic state (the upper blue
curve) that undergoes a crossing with a dissociative electronic state (the green curve), one may wish to estimate the rate of the
process called predissociation in which the excited molecule jumps to the dissociative surface and falls apart. This rate is often
computed by multiplying the frequency  at which the excited molecule passes through the curve crossing by the LZ estimate of
the surface jumping probability P:

with  computed as discussed above and  usually being equal to the vibrational frequency of the bond whose stretching generates
the curve crossing.

dSdη dR
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igure 8.3b Qualitative depiction of predissociation that can occur from an excited (blue) surface onto a dissociative (green) surface.

2. Alternatively, one may be interested in determining the probability that the fragment species (atoms in Figure 8.3 b) collide on
the green curve and undergo a transition to the upper blue curve as a result of this collision. For example, prompt fluorescence from
this upper blue curve might be the experimental signature one wishes to simulate. In this case, the outcome (i.e., generation of the
molecule in the upper blue curve’s electronic state) can occur in either of two ways:

a. The system collides on the green curve and undergoes a surface jump at the crossing, thus ending up on the blue surface from
which it promptly fluoresces; this process has a probability  computed using the LZ formula.

b. The system collides on the green curve and does not jump to the blue curve at the crossing, but remains on the green curve (this
has probability ) until it reaches the turning point. After reflecting off the turning point, the system (still on the green curve)
jumps to the blue curve (this has probability ) when it again reaches the crossing after which prompt fluorescence occurs. The
overall probability for this path is .

So, the total yield of fluorescence would be related to the quantity . The point of these two examples is that the LZ
formula gives an estimate of the jump probability for a given crossing event; one still needs to think about how various crossing
events relate to the particular experiment at hand.
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8.2: Experimental Probes of Reaction Dynamics

Spectroscopic Methods 

To follow the rate of any chemical reaction, one must have a means of monitoring the concentrations of reactant or product
molecules as time evolves. In the majority of current experiments that relate to reaction dynamics, one uses some form of
spectroscopic or alternative physical probe (e.g., an electrochemical signature or a mass spectrometric detection of product ions) to
monitor these concentrations as functions of time. Of course, in all such measurements, one must know how the intensity of the
signal detected relates to the concentration of the molecules that cause the signal. For example, in many absorption experiments, as
illustrated in Figure 8.4, light is passed through a sample of thickness  and the intensity of the light beam in the absence of the
sample  and with the sample present  are measured.

Figure 8.4 Typical Beer’s–law experiment in which a light beam of intensity  is passed through a sample of thickness .

The Beer-Lambert law:

then allows the concentration [A] of the absorbing molecules to be determined, given the path length  over which absorption
occurs and given the extinction coefficient  of the absorbing molecules.

These extinction coefficients, which relate to the electric dipole matrix elements as discussed in Chapter 6, are usually determined
empirically by preparing a known concentration of the absorbing molecules and measuring the  ratio that this concentration
produces in a cell of length . For molecules and ions that are extremely reactive, this calibration approach to determining  is
often not feasible because one cannot prepare a sample with a known concentration that remains constant in time long enough for
the experiment to be carried out. In such cases, one often must resort to using the theoretical expressions given in Chapter 6 (and
discussed in most textbooks on molecular spectroscopy) to compute  in terms of the wave functions of the absorbing species. In
any event, one must know how the strength of the signal relates to the concentrations of the species if one wishes to monitor
chemical reaction or energy transfer rates.

Because modern experimental techniques are capable of detecting molecules in particular electronic and vibration-rotation states, it
has become common to use such tools to examine chemical reaction dynamics on a state-to-state level and to follow energy transfer
processes, which clearly require such state-specific data. In such experiments, one seeks to learn the rate at which reactants in a
specific state  react to produce products in some specific state . One of the most common ways to monitor such state-specific
rates is through a so-called pump-probe experiment in which

i. A short-duration light pulse is used to excite reactant molecules to some specified initial state . Usually a tunable laser is used
because its narrow frequency spread allows specific states to be pumped. The time at which this pump laser thus prepares the
excited reactant molecules in state  defines .

ii. After a delay time of duration t, a second light source is used to probe the product molecules that have been formed in various
final states, . Often, the frequency of this probe source is scanned so that one can examine populations of many such final states.

The concentrations of reactant and products molecules in the initial and final states  and  are determined by the Beer-Lambert
relation assuming that the extinction coefficients  and  for these species and states absorption are known. In the former case,
the extinction coefficient  relates to absorption of the pump photons to prepare reactant molecules in the specified initial state. In
the latter,  refers to absorption of the product molecules that are created in the state . Carrying out a series of such final-state
absorption measurements at various delay times t allows one to determine the concentration of these states as a function of time.

This kind of laser pump-probe experiment is used not only to probe specific electronic or vibration/rotation states of the reactants
and products but also when the reaction is fast (i.e., complete in 10 s or less). In these cases, one is not using the high frequency
resolution of the laser but its fast time response. Because laser pulses of quite short duration can be generated, these tools are well
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suited in such fast chemical reaction studies. The reactions can be in the gas phase (e.g., fast radical reactions in the atmosphere or
in explosions) or in solution (e.g., photo-induced electron transfer reactions in biological systems).

Beam Methods 

Another approach to probing chemical reaction dynamics is to use a beam of reactant molecules A that collides with other reactants
B that may also in a beam or in a bulb in equilibrium at some temperature T. Such crossed-beam and beam-bulb experiments are
illustrated in Figure 8.5.

Figure 8.5 Typical crossed-beam and beam-bulb experimental setups.

Almost always, these beam and bulb samples contain molecules, radicals, or ions in the gas phase, so these techniques are most
prevalent in gas-phase dynamics studies.

The advantages of the crossed-beam type experiments are that:

i. one can control the velocities, and hence the collision energies, of both reagents,
ii. one can examine the product yield as a function of the angle  through which the products are scattered,

iii. one can probe the velocity of the products and,
iv. by using spectroscopic methods, one can determine the fraction of products generated in various internal

(electronic/vibrational/rotational) states.

Such measurements allow one to gain very detailed information about how the reaction rate coefficient depends on collisional
(kinetic) energy and where the total energy available to the products is deposited (i.e., into product translational energy or product
internal energy). The angular distribution of product molecules can also give information about the nature of the reaction process.
For example, if the A + B collision forms a long-lived (i.e., on rotational time scales) collision complex, the product C molecules
display a very isotropic angular distribution. In contrast, reactions that proceed more impulsively show product angular
distributions that are either strongly back-scattered or strongly forward-scattered rather than isotropic.

In beam-bulb experiments, one is not able to gain as much detailed information because one of the reactant molecules B is not
constrained to be moving with a known fixed velocity in a specified direction when the  collisions occur. Instead, the
B molecules collide with A molecules in a variety of orientations and with a distribution of collision energies whose range depends
on the Maxwell-Boltzmann distribution of kinetic energies of the B molecules in the bulb. The advantage of beam-bulb
experiments is that one can achieve much higher collision densities than in crossed-beam experiments because the density of B
molecules inside the bulb can be much higher than the densities achievable in a beam of B molecules.

There are cases in which the beam-bulb experiments can be used to determine how the reaction rate depends on collision energy
even though the molecules in the bulb have a distribution of kinetic energies. That is, if the species in the beam have much higher
kinetic energies than most of the B molecules, then the A + B collision energy is primarily determined by the beam energy. An
example of this situation is provided by so-called guided-ion beam experiments in which a beam of ions having well-specified

θ

A+B → C
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kinetic energy E impinges on molecules in a bulb having a temperature  for which . Figure 8.6 illustrates data that can
be extracted from such an experiment.

Figure 8.6 Collision-induced dissociation data showing cross-section as a function of collision energy.

In Figure 8.6, we illustrate the cross-section  (related to the bimolecular rate constant  by , where v is the relative
collision speed) for production of  ions when a beam of (uracil) complexes having energy E (the horizontal axis) collides
with a bulb containing Xe atoms at room temperature. In this case, the reaction is simply the collision-induced dissociation (CID)
process in which the complex undergoes unimolecular decomposition after gaining internal energy in collisions with Xe atoms:

The primary knowledge gained in this CID experiment is the threshold energy ; that is, the minimum collision energy needed to
effect dissociation of the  complex. This kind of data has proven to offer some of the most useful information about
bond dissociation energies of a wide variety of species. In addition, the magnitude of the reaction cross-section  as a function of
collision energy is a valuable product of such experiments. These kind of CID beam-bulb experiments offer one of the most
powerful and widely used means of determining such bond-rupture energies and reaction rate constants.

Other Methods 
Of course, not all chemical reactions occur so quickly that they require the use of fast lasers to follow concentrations of reacting
species or pump-probe techniques to generate and probe these molecules. For slower chemical reactions, one can use other methods
for monitoring the relevant concentrations. These methods include electrochemistry (where the redox potential is the species’
signature) and NMR spectroscopy (where the chemical shifts of functional groups are the signatures) both of whose instrumental
response times are too slow for probing fast reactions.

In addition, when the reactions under study do not proceed to completion but exist in equilibrium with a back reaction, alternative
approaches can be used. The example discussed in Chapter 5 is one such case. Let us briefly review it here and again consider the
reaction of an enzyme E and a substrate S to form the enzyme-substrate complex ES:

In the perturbation-type experiments, the equilibrium concentrations of the species are "shifted" by a small amount  by application
of the perturbation, so that

Subsequently, the following rate law will govern the time evolution of the concentration change d:

Assuming that  is very small (so that the term involving  cam be neglected) and using the fact that the forward and reverse rates
balance at equilibrium, this equation for the time evolution of  can be reduced to:

T kT ≪ E

σ k σv= k

Na+ Na+

N ( uracil) → N +uracil.a+ a+ (8.2.2)

E∗

N (uracil)a+

σ

E+S ⇌ ES. (8.2.3)

δ

[ES] = [ES −δ]eq (8.2.4)

[E] = [E +δ]eq (8.2.5)

[S] = [S +δ.]eq (8.2.6)

− = − ([ES −δ) + ([E +δ)([S +δ).
dδ

dt
kr ]eq kf ]eq ]eq (8.2.7)

δ δ2

δ
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So, the concentration deviations from equilibrium will return to equilibrium exponentially with an effective rate coefficient that is
equal to a sum of terms:

So, by following the concentrations of the reactants or products as they return to their equilibrium values, one can extract the
effective rate coefficient . Doing this at a variety of different initial equilibrium concentrations (e,g.,  and ), and
seeing how   changes, one can then determine both the forward and reverse rate constants.

Contributors and Attributions 
Jack Simons (Henry Eyring Scientist and Professor of Chemistry, U. Utah) Telluride Schools on Theoretical Chemistry

Integrated by Tomoyuki Hayashi (UC Davis) 
 

This page titled 8.2: Experimental Probes of Reaction Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jack Simons.

−  = ( + [S + [E  )δ.
dδ

dt
kr kf ]eq kf ]eq (8.2.8)

= + [S + [E .keff kr kf ]eq kf ]eq (8.2.9)

keff [S]eq [E]eq

keff
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9: Exercises
The following are some problems that will help you refresh your memory about material you should have learned in undergraduate
chemistry classes and that allow you to exercise the material taught in this text.

Chapters of Part 1 
1.You should be able to set up and solve the one- and two-dimensional particle in a box Schrödinger equations. I suggest you now
try this and make sure you see:

a. How the second order differential equations have two independent solutions, so the most general solution is a sum of these two.
b. How the two boundary conditions reduce the number of acceptable solutions from two to one and limit the values of  that can

be “allowed”.

c. How the wave function is continuous even at the box boundaries, but  is not. In general , which relates to the

momentum because  is the momentum operator, is continuous except at points where the potential  undergoes an

infinite jump as it does at the box boundaries. The infinite jump in , when viewed classically, means that the particle would
undergo an instantaneous reversal in momentum at this point, so its momentum would not be continuous. Of course, in any

realistic system,  does not have infinite jumps, so momentum will vary smoothly and thus  will be continuous.

d. How the energy levels grow with quantum number  as .
e. What the wave functions look like when plotted.

2. You should go through the various wave functions treated in the Part 1 (e.g., particles in boxes, rigid rotor, harmonic oscillator)
and make sure you see how the  probability plots of such functions are not at all like the classical probability distributions
except when the quantum number is very large.

3. You should make sure you understand how the time evolution of an eigenstate  produces a simple  multiple of 
so that  does not depend on time. However, when  is not an eigenstate (e.g., when it is a combination of such states), its time
propagation produces a  whose  probability distribution changes with time.

4. You should notice that the densities of states appropriate to the 1-, 2-, and 3- dimensional particle in a box problem (which relate
to translations in these dimensions) depend of different powers of  for the different dimensions.

5. You should be able to solve 2x2 and 3x3 Hückel matrix eigenvalue problems both to obtain the orbital energies and the
normalized eigenvectors. For practice, try to do so for

a. the allyl radical’s three  orbitals 

 
 

b. the cyclopropenly radical’s three  orbitals. 
 

 
 

Do you see that the algebra needed to find the above sets of orbitals is exactly the same as was needed when we treat the linear and
triangular sodium trimer?

E

dΨ

dx

d

dx

−iℏ
d

dx
V (x)

V

V
dΨ

dx
n n2

|Ψ|2

Ψ exp(−itE/ℏ) Ψ
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6. You should be able to follow the derivation of the tunneling probability. Doing this offers a good test of your ability to apply the
boundary conditions properly, so I suggest you do this task. You should appreciate how the tunneling probability decays
exponentially with the “thickness” of the tunneling barrier and with the “height” of this barrier and that tunneling for heavier
particles is less likely than for light particles. This is why tunneling usually is considered only for electrons, protons, and neutrons.

7. I do not expect that you could carry off a full solution to the Schrödinger equation for the hydrogenic atom. However, I think you
need to pay attention to

a. How separations of variables leads to a radial and two angular second order differential equations.
b. How the boundary condition that and + 2 are equivalent points in space produces the m quantum number.
c. How the l quantum number arises from the equation.
d. How the condition that the radial wave function not “explode” (i.e., go to infinity) as the coordinate r becomes large gives rise

to the equation for the energy .
e. The fact that the angular parts of the wave functions are spherical harmonics, and that these are exactly the same wave functions

for the rotational motion of a linear molecule.
f. How the energy  depends on the  quantum number as  and on the nuclear charge  as , and that the bound state

energies are negative (do you understand what this means? That is, what is the zero or reference point of energy?).

8. You should make sure that you are familiar with how the rigid-rotor and harmonic oscillator energies vary with quantum
numbers ( ,  in the former case,  in the latter). You should also know how these energies depend on the molecular geometry (in
the former) and on the force constant and reduced mass (in the latter). You should note that  depends quadratically on  but
linearly on .

9. You should know what the Morse potential is and what its parameters mean. You should understand that the Morse potential
displays anharmonicity, but the harmonic potential does not.

10. You should be able to follow how the mass-weighted Hessian matrix can be used to approximate the vibrational motions of a
polyatomic molecule. And, you should understand how the eigenvalues of this matrix produce the harmonic vibrational frequencies
and the corresponding eigenvectors describe the motions of the molecule associated with these frequencies.

Practice with matrices and operators 

1.Find the eigenvalues and corresponding normalized eigenvectors of the following matrices:

2. Replace the following classical mechanical expressions with their corresponding quantum mechanical operators:

K.E. =  in three-dimensional space.

, a three-dimensional Cartesian vector.
-component of angular momentum: .

3. Transform the following operators into the specified coordinates:

 from Cartesian to spherical polar coordinates.
 from spherical polar to Cartesian coordinates.

4. Match the eigenfunctions in column B to their operators in column A. What is the eigenvalue for each eigenfunction?

E

E n n−2 Z Z2

J M v

E J

v

[ ]
−1

2

2

2
(9.1)

⎡

⎣
⎢

−2

0

0

0

−1

2

0

2

2 

⎤

⎦
⎥ (9.2)

mv2

2
p = mv

y = z −xLy px pz

=Lx

=Lz
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Review of shapes of orbitals 

5.Draw qualitative shapes of the (1) , (3)  and (5)  atomic orbitals (note that these orbitals represent only the angular portion
and do not contain the radial portion of the hydrogen like atomic wave functions) Indicate with the relative signs of the wave
functions and the position(s) (if any) of any nodes.

6.Plot the radial portions of the , , , and  hydrogen like atomic wave functions.

7. Plot the radial portions of the , , , , and  hydrogen like atomic wave functions for the Si atom using screening
concepts for any inner electrons.

Labeling orbitals using point group symmetry 

8. Define the symmetry adapted "core" and "valence" atomic orbitals of the following systems:

 in the  point group,
 in the  point group,
 (cis) in the  point group

 in , , , and  point groups
 in , , , and  point groups.

problem to practice the basic tools of the Schrödinger equation 

9. A particle of mass  moves in a one-dimensional box of length , with boundaries at  and . Thus,  = 0 for 
, and  elsewhere. The normalized eigenfunctions of the Hamiltonian for this system are given by 

, with , where the quantum number  can take on the values 

a. Assuming that the particle is in an eigenstate, , calculate the probability that the particle is found somewhere in the region

. Show how this probability depends on .

b. For what value of  is there the largest probability of finding the particle in  ?

c. Now assume that  is a superposition of two eigenstates,

What is  at time t? What energy expectation value does  have at time t and how does this relate to its value at ?
d. For an experimental measurement which is capable of distinguishing systems in state  from those in , what fraction of a

large number of systems each described by  will be observed to be in ? What energies will these experimental
measurements find and with what probabilities?

e. For those systems originally in  which were observed to be in  at time , what state ( , , or whatever)
will they be found in if a second experimental measurement is made at a time  later than ?

f. Suppose by some method (which need not concern us at this time) the system has been prepared in a nonstationary state (that is,
it is not an eigenfunction of ). At the time of a measurement of the particle's energy, this state is specified by the normalized

i.

ii.

iii.

iv.

v.

 Column A 

(1 − ) −xx2

d2

dx2

x
d

dx

−2x  
d2

dx2

d

dx

x +(1 −x)
d2

dx2

d

dx

 Column B 

4 −12 +3x4 x2

5x4

+e3x e−3x

−4x+2x2

4 −3xx3

(9.3)

s p d

4s 4p 4d 4f

1s 2s 2p 3s 3p

NH3 C3v

OH2 C2v

H2O2 C2

N D∞h D2h C2v Cs

N2 D∞h D2h C2v Cs

m L x = 0 x = L V (x)
0 ≤ x ≤ L V (x) = ∞

(x) = sinΨn

2

L

−−
√

2πx

L
=En

n2π2ℏ2

2mL2
n n = 1, 2, 3, . . . .

(x)Ψn

0 ≤ x ≤
L

4
n

n 0 ≤ x ≤
L

4
Ψ

Ψ = a +b ,  at time t = 0.Ψn Ψm (9.4)

Ψ Ψ t = 0
Ψn Ψm

Ψ Ψn
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wave function  for , and  elsewhere. What is the probability that a measurement of the

energy of the particle will give the value  for any given value of ?

g. What is the expectation value of , i.e. the average energy of the system, for the wave function  given in part f?

problem on the properties of non-stationary states 

10. Show that for a system in a non-stationary state,

, the average value of the energy does not vary with time but the expectation values of other properties do
vary with time.

problem about Jahn-Teller distortion 

11. The energy states and wave functions for a particle in a 3-dimensional box whose lengths are , , and  are given by

These wave functions and energy levels are sometimes used to model the motion of electrons in a central metal atom (or ion) which
is surrounded by six ligands in an octahedral manner.

a. Show that the lowest energy level is nondegenerate and the second energy level is triply degenerate if . What
values of , , and  characterize the states belonging to the triply degenerate level?

b. For a box of volume  show that for three electrons in the box (two in the nondegenerate lowest "orbital", and one
in the next), a lower total energy will result if the box undergoes a rectangular distortion ( ). which preserves the

total volume than if the box remains undistorted (hint: if  is fixed and , then  and  is the only

"variable").
c. Show that the degree of distortion (ratio of  to ) which will minimize the total energy is . How does this

problem relate to Jahn-Teller distortions? Why (in terms of the property of the central atom or ion) do we do the calculation
with fixed volume?

d. By how much (in eV) will distortion lower the energy (from its value for a cube, ) if  = 8 Å and = 6.01 x 10
erg cm . 1 eV = 1.6 x 10 erg

particle on a ring model for electrons moving in cyclic compounds 
12. The -orbitals of benzene, , may be modeled very crudely using the wave functions and energies of a particle on a ring.
Lets first treat the particle on a ring problem and then extend it to the benzene system.

a. Suppose that a particle of mass m is constrained to move on a circle (of radius ) in the  plane. Further assume that the
particle's potential energy is constant (choose zero as this value). Write down the Schrödinger equation in the normal Cartesian
coordinate representation. Transform this Schrödinger equation to cylindrical coordinates where , , and 

 (  in this case). Taking  to be held constant, write down the general solution, , to this Schrödinger equation.
The "boundary" conditions for this problem require that . Apply this boundary condition to the general
solution. This results in the quantization of the energy levels of this system. Write down the final expression for the normalized
wave functions and quantized energies. What is the physical significance of these quantum numbers that can have both positive
and negative values? Draw an energy diagram representing the first five energy levels.

b. Treat the six -electrons of benzene as particles free to move on a ring of radius 1.40 Å, and calculate the energy of the lowest
electronic transition. Make sure the Pauli principle is satisfied! What wavelength does this transition correspond to? Suggest
some reasons why this differs from the wavelength of the lowest observed transition in benzene, which is 2600 Å.

Ψ = x(L−x)
30

L5

−−−
√ 0 ≤ x ≤ L Ψ = 0

=En

n2π2ℏ2

2mL2
n

H Ψ
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E( , , ) = [( +( +( ]  andn1 n2 n3
h2
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)

2 n2
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)

2 n3
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)

2
(9.5)
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–
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non-stationary state wave function 

13. A diatomic molecule constrained to rotate on a flat surface can be modeled as a planar rigid rotor (with eigenfunctions, ,
analogous to those of the particle on a ring of problem 12) with fixed bond length . At , the rotational (orientational)

probability distribution is observed to be described by a wave function . What values, and with what

probabilities, of the rotational angular momentum, , could be observed in this system? Explain whether these probabilities

would be time dependent as  evolves into .

problem about Franck-Condon factors 

14. Consider an  molecule, in the ground vibrational level of the ground electronic state, which is bombarded by 100 eV
electrons. This leads to ionization of the  molecule to form . In this problem we will attempt to calculate the vibrational
distribution of the newly-formed  ions, using a somewhat simplified approach.

a. Calculate (according to classical mechanics) the velocity (in cm/sec) of a 100 eV electron, ignoring any relativistic effects. Also
calculate the amount of time required for a 100 eV electron to pass an Nmolecule, which you may estimate as having a length
of 2Å.

b. The radial Schrödinger equation for a diatomic molecule treating vibration as a harmonic oscillator can be written as:

Substituting , this equation can be rewritten as:

The vibrational Hamiltonian for the ground electronic state of the  molecule within this approximation is given by:

where  and  have been measured experimentally to be:

The vibrational Hamiltonian for the  ion, however, is given by :

where  and  have been measured experimentally to be:

In both systems the reduced mass is  g. Use the above information to write out the ground state vibrational
wave functions of the  and  molecules, giving explicit values for any constants which appear in them. The  harmonic

oscillator function is .

c. During the time scale of the ionization event (which you calculated in part a), the vibrational wave function of the  molecule
has effectively no time to change. As a result, the newly-formed  ion finds itself in a vibrational state which is not an
eigenfunction of the new vibrational Hamiltonian, . Assuming that the  molecule was originally in its  vibrational
state, calculate the probability that the  ion will be produced in its  vibrational state.

Φ(ϕ)
r t = 0

Ψ(ϕ, 0) = ϕ
4

3π

−−−
√ cos2

−iℏ
∂
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Vibration of a diatomic molecule 

15.The force constant, , of the  bond in carbon monoxide is 1.87 x 10 g/sec. Assume that the vibrational motion of  is
purely harmonic and use the reduced mass  amu.

Calculate the spacing between vibrational energy levels in this molecule, in units of ergs and cm .

Calculate the uncertainty in the internuclear distance in this molecule, assuming it is in its ground vibrational level. Use the ground
state vibrational wave function ( ; recall that I gave you this function in problem 14), and calculate , , and 

.

Under what circumstances (i.e. large or small values of ; large or small values of ) is the uncertainty in internuclear distance
large? Can you think of any relationship between this observation and the fact that helium remains a liquid down to absolute zero?

Variational Method Problem 
16. A particle of mass m moves in a one-dimensional potential whose Hamiltonian is given by

where the absolute value function is defined by  if  and  if .

a. Use the normalized trial wavefunction  to estimate the energy of the ground state of this system, using the

variational principle to evaluate , the variational expectation value of .
b. Optimize b to obtain the best approximation to the ground state energy of this system, using a trial function of the form of , as

given above. The numerically calculated exact ground state energy is . What is the percent error in your
value?

Another Variational Method Problem 

17. The harmonic oscillator is specified by the Hamiltonian:

Suppose the ground state solution to this problem were unknown, and that you wish to approximate it using the variational
theorem. Choose as your trial wavefunction,

where a is an arbitrary parameter which specifies the range of the wavefunction. Note that f is properly normalized as given.

a. Calculate  and show it to be given by:

b. Calculate  for .

c. To find the best approximation to the true wavefunction and its energy, find the minimum of  by setting 

 and solving for . Substitute this value into the expression for  given in part a. to obtain the

best approximation for the energy of the ground state of the harmonic oscillator.

d. What is the percent error in your calculated energy of part c.?

k C −O CO

μ = 6.857

-1

Ψv=0 ⟨x⟩ ⟨ ⟩x2

Δx = ⟨ ⟩− ⟨xx2 ⟩2− −−−−−−−−
√

k μ

H = − +a|x|,
ℏ2

2m

d2

dx2
(9.13)

|x| = x x ≥ 0 |x| = −x x ≤ 0

ϕ = (
2b

π
)

1

4
e−bx2

W (b) H

ϕ

0.808616ℏ
2

3 m− 1

3 a− 2

3

H = − + k ,
ℏ2

2m

d2

dx2

1

2
x2 (9.14)

ϕ =
15

16

−−−
√ a− 5

2

ϕ = 0

for  −a < x < a

for |x| ≥ a

(9.15)

Hϕdx∫
∞

−∞
ϕ∗

Hϕdx = + .∫
∞

−∞
ϕ∗ 5

4

ℏ2

ma

ka2

14
(9.16)

Hϕdx∫
∞

−∞
ϕ∗ a = b(

ℏ2

km
)

1

4

Hϕdx∫
∞

−∞
ϕ∗

Hϕdx = 0
d

da
∫

∞

−∞
ϕ∗ a Hϕdx∫

∞

−∞
ϕ∗
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Perturbation Theory Problem 

18. Consider an electron constrained to move on the surface of a sphere of radius . The Hamiltonian for such motion consists of a

kinetic energy term only , where  is the orbital angular momentum operator involving derivatives with respect to

the spherical polar coordinates ( ).  has the complete set of eigenfunctions .

a. Compute the zeroth order energy levels of this system.

b. A uniform electric field is applied along the -axis, introducing a perturbation , where  is the
strength of the field. Evaluate the correction to the energy of the lowest level through second order in perturbation theory, using the
identity

Note that this identity enables you to utilize the orthonormality of the spherical harmonics.

c. The electric polarizability  gives the response of a molecule to an externally applied electric field, and is defined by 

 where  is the energy in the presence of the field and  is the strength of the field. Calculate  for this system.

d. Use this problem as a model to estimate the polarizability of a hydrogen atom, where  Å, and a cesium atom,
which has a single 6s electron with . The corresponding experimental values are  and .

Hartree-Fock problem you can do by hand 

19. Given the following orbital energies (in hartrees) for the  atom and the coupling elements between two like atoms (these
coupling elements are the Fock matrix elements from standard ab-initio minimum-basis SCF calculations), calculate the molecular
orbital energy levels and orbitals. Draw the orbital correlation diagram for formation of the  molecule. Indicate the symmetry of
each atomic and each molecular orbital. Designate each of the molecular orbitals as bonding, non-bonding, or antibonding.

  Fock matrix*

  Fock matrix*

  Fock matrix*

  Fock matrix*

*The Fock matrices (and orbital energies) were generated using standard minimum basis set SCF calculations. The Fock matrices
are in the orthogonal basis formed from these orbitals.

r0

=H0
L2

2mer
2
0

L

θ,ϕ H0 ψ = (θ,ϕ)Yl,m

z V = −eεz = −eε cosθr0 ε

cosθ (θ,ϕ) = (θ,ϕ) + (θ,ϕ).Yl,m
(l+m+1)(l−m+1)

(2l+1)(2l+3)

− −−−−−−−−−−−−−−−−−−

√ Yl+1,m
(l+m)(l−m)

(2l+1)(2l−1)

− −−−−−−−−−−−−

√ Yl−1,m (9.17)

α

α = −
E∂2

∂ε2
E ε α

= = 0.529r0 a0

≈ 2.60År0 = 0.6668αH Å3
= 59.6αCs Å3

N

N2

= −N1s 15.31∗ (9.18)

= −N2s 0.86∗ (9.19)

= −N2p 0.48∗ (9.20)

N2 σg

⎡

⎣
⎢

−6.52

−6.22

3.61

−7.06

4.00 −3.92

⎤

⎦
⎥ (9.21)

N2 πg

[0.28] (9.22)

N2 σu

⎡

⎣
⎢

1.02

−0.60

0.02

−7.59

7.42 −8.53

⎤

⎦
⎥ (9.23)

N2 πu

−0.58 (9.24)
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orbital correlation diagram problem 

20. Given the following valence orbital energies for the  atom and  molecule, draw the orbital correlation diagram for
formation of the  molecule (via a  insertion of  into  resulting in bent ). Designate the symmetry of each atomic
and molecular orbital in both their highest point group symmetry and in that of the reaction path ( ).

*The orbital energies were generated using standard STO3G minimum basis set SCF calculations.

Practice using point group symmetry 
21. Qualitatively analyze the electronic structure (orbital energies and orbitals) of . Analyze only the  and  electrons of P
and the one  bonding electron of each . Proceed with a  analysis in the following manner:

a. Symmetry adapt the top and bottom  atomic orbitals.
b. Symmetry adapt the three (trigonal)  atomic orbitals.
c. Symmetry adapt the P  and  atomic orbitals.
d. Allow these three sets of   orbitals to interact and draw the resultant orbital energy diagram.
e. Symmetry label each of these molecular energy levels. Fill this energy diagram with 10 "valence" electrons.

Practice with term symbols and determinental wave functions for atoms and molecules 
22. For the given orbital occupations (configurations) of the following systems, determine all possible states (all possible allowed
combinations of spin and space states). There is no need to form the determinental wave functions, simply label each state with its
proper term symbol.

23. Construct Slater determinant wave functions for each of the following states of :

a.  ( )
b.  ( )
c.  ( )

Woodward-Hoffmann rules problem 
24. Let us investigate the reactions:

i. , and

ii. ,

under an assumed  reaction pathway utilizing the following information:

 atom:   

  kcal/mole

  kcal/mole

IP ( ) > IP (2s carbon).

a. Write down (first in terms of  orbitals and then in terms of  orbitals) the:
i. three Slater determinant (SD) wave functions belonging to the  state all of which have ,
ii. five  SD wave functions, and

iii. one  SD wave function.

C H2

CH2 C2v C H2 CH2

C2v

= −C1s 10.91∗

= −C2s 0.60∗

= −C2p 0.33∗

= −H2 σg 0.58∗

=H2 σu 0.67∗ (9.25)

PF5 3s 3p
2p F D3h

F

F

3s 3p
D3h

a.

b.

c.

d.

e.

CH2

B2

O2

Ti

T i

1 2 1 3 1a1
2 a1

2 b2
2 a1

1 b1
1

1 1 2 2 1 2σg
2 σu

2 σg
2 σu

2 πu
1 πu

1

1 1 2 2 1 3 1σg
2 σu

2 σg
2 σu

2 πu
4 σg

2 πg
2

1s 2s 2p 3s 3p 4s 3d 4d2 2 6 2 6 2 1 1

1s 2s 2p 3s 3p 4s 3d2 2 6 2 6 2 2

(9.26)

CH2

1B1 1 2 1 3 1a1
2 a1

2 b2
2 a1

1 b1
1

3B1 1 2 1 3 1a1
2 a1

2 b2
2 a1

1 b1
1

1A1 1 2 1 3a1
2 a1

2 b2
2 a1

2

C ) → +CH2(1A1 H2

C ) → +CH2(3B1 H2

C2v

C P3 D1 S1

C P ) + → C )(3 H2 H2(3B1 ΔE = −78.8

C D) + → C )(1 H2 H2(1A1 ΔE = −97.0

H2

2p1,0,−1 2px,y,z

P3 = 1MS

D1

S1
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b. Using the coordinate system shown below, label the hydrogen orbitals sg, su and the carbon , , , , orbitals as 
 or . Do the same for the , , , , , and  orbitals of . 

 
c. Draw an orbital correlation diagram for the  reactions. Try to represent the relative energy orderings of the

orbitals correctly.
d. Draw a configuration correlation diagram for  showing all configurations which arise from the 

 products. You can assume that doubly excited configurations lie much (~100 kcal/mole) above their parent
configurations.

e. Repeat step d. for  again showing all configurations which arise from the  products.
f. Do you expect the reaction  to have a large activation barrier? About how large? What state of  is

produced in this reaction? Would distortions away from  symmetry be expected to raise or lower the activation barrier?
Show how one could estimate where along the reaction path the barrier top occurs.

g. Would  be expected to have a larger or smaller barrier than you found for the   reaction?

Another Woodward-Hoffmann rule problem 

25. The decomposition of the ground-state singlet carbene,

to produce acetylene and  carbon is known to occur with an activation energy equal to the reaction endothermicity. However,
when the corresponding triplet carbene decomposes to acetylene and ground-state (triplet) carbon, the activation energy exceeds
this reaction's endothermicity. Construct orbital, configuration, and state correlation diagrams that permit you to explain the above
observations. Indicate whether single configuration or configuration interaction wave functions would be required to describe the
above singlet and triplet decomposition processes.

Practice with rotational spectrocopy and its relation to molecular structure 

26. Consider the molecules , , and .

a. What kind of rotor are they (symmetric top, etc; do not bother with oblate, or near-prolate, etc.)
b. Will they show pure rotational (i.e., microwave) spectra?

27. Assume that ammonia shows a pure rotational spectrum. If the rotational constants are 9.44 and 6.20 cm , use the energy
expression:

to calculate the energies (in cm ) of the first three lines (i.e., those with lowest ,  quantum number for the absorbing level) in
the absorption spectrum (ignoring higher order terms in the energy expression).

problem on vibration-rotation spectroscopy 
28. The molecule  has a vibrational frequency  cm , a rotational constant  cm , and a bond energy
from the bottom of the potential well of  eV. Use integral atomic masses in the following:

In the approximation that the molecule can be represented as a Morse oscillator, calculate the bond length,  in angstroms, the
centrifugal distortion constant,  in cm , the anharmonicity constant,  in cm , the zero-point corrected bond energy,  in
eV, the vibration rotation interaction constant,  in cm , and the vibrational state specific rotation constants,  and  in cm .
Use the vibration-rotation energy expression for a Morse oscillator:

where

2s 2px 2py 2pz
, (x), y),a1 b1 b( a2 σ σ σ∗ σ∗ n πp CH2

C → +CH2 H2

C ) → +CH2(3B1 H2

C P ) +(3 H2

C ) → +CH2(1A1 H2 C D) +(1 H2

C P ) + → C(3 H2 H2 CH2

C2v

C D) + → C(1 H2 H2 P3 C

D1

CCl4 CHCl3 C CH2 l2

-1

E = (A−B) +BJ(J +1),K2 (9.27)

-1 K J

O11B16 = 1885ωe
-1 = 1.78Be

-1

D = 8.28

Re

De
-1 ωexe -1 D0

0
αe

-1 B0 B1
-1

E = ℏ (v+ )−ℏ (v+ + J(J +1) − (J +1 ,ωe

1

2
ωexe

1

2
)

2
Bv DeJ

2 )2 (9.28)
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Will this molecule show a pure rotation spectrum? A vibration-rotation spectrum? Assuming that it does, what are the energies (in
cm ) of the first three lines in the P branch ( ) of the fundamental absorption?

problem labeling vibrational modes by symmetry 

29. Consider trans- . The vibrational normal modes of this molecule are shown

below. What is the symmetry of the molecule? Label each of the modes with the appropriate irreducible representation.

problem in rotational spectroscopy 

30. Suppose you are given two molecules (one is  and the other is  but you don't know which is which). Both molecules
have  symmetry. The  bond length of molecule I is 1.121 Å and for molecule II it is 1.076 Å. The bond angle of molecule I
is 104° and for molecule II it is 136°.

a. Using a coordinate system centered on the  nucleus as shown above (the molecule is in the  plane), compute the moment of
inertia tensors of both species (I and II). The definitions of the components of the tensor are, for example:

Here,  is the mass of the nucleus ,  is the mass of the entire molecule, and , ,  are the coordinates of the center of mass
of the molecule. Use Å for distances and amu's for masses.

b. Find the principal moments of inertia  for both compounds ( in amu Å  units) and convert these values into
rotational constants , , and  in cm  using, for example,

c. Both compounds are "nearly prolate tops" whose energy levels can be well approximated using the prolate top formula:

Bv= − (v+ ), = + , and  = .Be αe

1

2
αe

−6B2
e

ℏωe

6 ℏB3
e ωexe

− −−−−−−
√

ℏω
De

4B3
e

ℏω2
(9.29)

-1 Δv= +1, ΔJ = −1

CC2H2 l2

CH2 CH−
2

C2v CH

C Y Z

= − ( + ) −M( + )Ixx ∑
j

mj y2
j z2

j Y 2 Z2 (9.30)

= − −MXYIxy ∑
j

mjxjyj (9.31)

mj j M X Y Z

< <Ia Ib Ic 2

A B C -1

A = .
h

8 cπ2 Ia
(9.32)
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if one uses for the  constant the average of the  and  valued determined earlier. Thus, take the  and  values (for each
compound) and average them to produce an effective  constant to use in the above energy formula. Write down (in cm  units) the
energy formula for both species. What values are  and  allowed to assume? What is the degeneracy of the level labeled by a
given  and ?

d. Draw a picture of both compounds and show the directions of the three principle axes (a,b,c). On these pictures, show the kind of
rotational motion associated with the quantum number .

e. Suppose you are given the photoelectron spectrum of . In this spectrum  transitions are called R-branch
absorptions and those obeying  are called P-branch transitions. The spacing between lines can increase or decrease as
functions of  depending on the changes in the moment of inertia for the transition. If spacings grow closer and closer, we say that
the spectrum exhibits a so-called band head formation. In the photoelectron spectrum that you are given, a rotational analysis of the
vibrational lines in this spectrum is carried out and it is found that the R-branches show band head formation but the P-branches do
not. Based on this information, determine which compound I or II is the  anion. Explain you reasoning.

f. At what  value (of the absorbing species) does the band head occur and at what rotational energy difference?

Using point group symmetry in vibrational spectroscopy 
31. Let us consider the vibrational motions of benzene. To consider all of the vibrational modes of benzene we should attach a set
of displacement vectors in the , , and  directions to each atom in the molecule (giving 36 vectors in all), and evaluate how these
transform under the symmetry operations of  . For this problem, however, let's only inquire about the  stretching
vibrations.

a. Represent the  stretching motion on each  bond by an outward-directed vector on each  atom, designated :

b. These vectors form the basis for a reducible representation. Evaluate the characters for this reducible representation under the
symmetry operations of the  group.

c. Decompose the reducible representation you obtained in part b. into its irreducible components. These are the symmetries of the
various  stretching vibrational modes in benzene.

d. The vibrational state with zero quanta in each of the vibrational modes (the ground vibrational state) of any molecule always
belongs to the totally symmetric representation. For benzene, the ground vibrational state is therefore of  symmetry. An excited
state which has one quantum of vibrational excitation in a mode which is of a given symmetry species has the same symmetry
species as the mode which is excited (because the vibrational wave functions are given as Hermite polynomials in the stretching
coordinate). Thus, for example, excitation (by one quantum) of a vibrational mode of  symmetry gives a wave function of  
symmetry. To resolve the question of what vibrational modes may be excited by the absorption of infrared radiation we must
examine the , , and  components of the transition dipole integral for initial and final state wave functions  and ,
respectively:

Using the information provided above, which of the  vibrational modes of benzene will be infrared-active, and how will the
transitions be polarized? How many  vibrations will you observe in the infrared spectrum of benzene?

e. A vibrational mode will be active in Raman spectroscopy only if one or more of the following integrals is nonzero:

E = (A−B) +BJ(J +1),K2 (9.33)

B B C B C

B -1

J K

J K

K

CH−
2 = +1Jj Ji

= −1Jj Ji
Ji

CH−
2

J

x y z

D6h C −H

C −H C −H H ri

D6h

C −H

A1g

A2u A2u

x y z ψi ψf

|⟨ |x| ⟩|, |⟨ |y| ⟩|, and |⟨ |z| ⟩|.ψf ψi ψf ψi ψf ψi (9.34)

C −H

C −H

|⟨ |xy| ⟩|, |⟨ |xz| ⟩|, |⟨ |yz| ⟩|,ψf ψi ψf ψi ψf ψi (9.35)
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Using the fact that the quadratic operators transform according to the irreducible representations:

Determine which of the  vibrational modes will be Raman-active.

f. Are there any of the  stretching vibrational motions of benzene which cannot be observed in either infrared of Raman
spectroscopy? Give the irreducible representation label for these unobservable modes.

problem on electronic spectra and lifetimes 

32. Time dependent perturbation theory provides an expression for the radiative lifetime of an excited electronic state, given by :

where  refers to the excited state,  refers to the lower state, and  is the transition dipole.

a. Evaluate the -component of the transition dipole for the  transition in a hydrogenic atom of nuclear charge , given:

Express your answer in units of .

b. Use symmetry to demonstrate that the  and -components of  are zero, i.e.

c. Calculate the radiative lifetime  of a hydrogenlike atom in its  state. Use the relation  to simplify your results.

difference between slowly and quickly turning on a perturbation 

33. Consider a case in which the complete set of states { } for a Hamiltonian is known.

a. If the system is initially in the state m at time  when a constant perturbation  is suddenly turned on, find the probability
amplitudes  and , to second order in , that describe the system being in a different state  or the same state  at
time .

b. If the perturbation is turned on adiabatically (i.e., very slowly), what are  and ? Here, consider that the initial time
is , and the potential is , where the positive parameter  is allowed to approach zero  in order to describe the
adiabatically turned on perturbation.

c. Compare the results of parts a. and b. and explain any differences.

d. Ignore first order contributions (assume they vanish) and evaluate the transition rates

 for the results of part b. by taking the limit , to obtain the adiabatic results.

example of quickly turning on a perturbation- the sudden approximation 
34. Consider an interaction or perturbation which is carried out suddenly (instantaneously, e.g., within an interval of time  which
is small compared to the natural period  corresponding to the transition from state  to state ), and after that is turned off
adiabatically (i.e., extremely slowly as ). The transition probability in this case is given as:

|⟨ | | ⟩|, |⟨ | | ⟩|, and |⟨ | | ⟩|.ψf x2 ψi ψf y2 ψi ψf z2 ψi (9.36)

( + , ) ⇒x2 y2 z2 A1g (9.37)

(xz, yz) ⇒ E1g (9.38)

( − , xy) ⇒x2 y2 E2g (9.39)

C −H

C −H

tR

= ,tR
3ℏ4c3

4( − |Ei Ef )3 μfi|
2

(9.40)

i f μfi

z 2 → 1spz Z

= ( exp(− ),  and  = ( r cosθexp(− ).ψ1s
1

π−−√

Z

a0
)

3

2 Zr

a0
ψ2pz

1

4 2π
−−

√

Z

a0
)

5

2 Zr

2a0
(9.41)

ea0

x− y μfi

⟨2 |ex|1s⟩ = ⟨2 |ey|1s⟩ = 0.pz pz (9.42)

tR 2pz =e2 ℏ2

mea0

ϕk

t = 0 V

(t)C
(2)
k (t)C

(2)
m V k m

t

(t)C
(2)
k

(t)C
(2)
m

→ −∞t0 V teη η η → 0

| (t)C
(2)
k

|2 η → 0+

Δt

ω−1
nm m n

V teη

≈Tnm
|⟨n|V |m⟩|

2

ℏ2ω2
nm

(9.43)
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where  corresponds to the maximum value of the interaction when it is turned on. This formula allows one to calculate the
transition probabilities under the action of sudden perturbations which are small in absolute value whenever perturbation theory is
applicable.

Let's use this "sudden approximation" to calculate the probability of excitation of an electron under a sudden change of the charge
of the nucleus. Consider the reaction:

and assume the tritium atom has its electron initially in a  orbital.

a. Calculate the transition probability for the transition  for this reaction using the above formula for the transition
probability.

b. Suppose that at time  the system is in a state which corresponds to the

wave function , which is an eigenfunction of the operator . At , the sudden change of the Hamiltonian occurs (now
denoted as  and remains unchanged). Calculate the same  transition probability as in part a., only this time as the square
of the magnitude of the coefficient,  using the expansion:

where

Note, that the eigenfunctions of  are  with eigenvalues . Compare this value with that obtained by perturbation theory in
part a.

symmetric top rotational spectrum problem 
35. The methyl iodide molecule is studied using microwave (pure rotational)

spectroscopy. The following integral governs the rotational selection rules for transitions labeled :

The dipole moment  lies along the molecule's  symmetry axis. Let the electric field of the light  define the lab-fixed Z-
direction.

a. Using the fact that , show that

b. What restrictions does this result place on ? Explain physically why the  quantum number can not change.

problem in electronic and photo-electron spectroscopy 
36. Consider the molecule .

a. What are the total number of possible electronic states that can be formed by combination of ground-state  and  atoms?

b. What electron configurations of the molecule are likely to be low in energy? Consider all reasonable orderings of the molecular
orbitals. What are the states corresponding to these configurations?

c. What are the bond orders in each of these states?

d. The true ground state of  is . Specify the +/- and u/g symmetries for this state.

e. Which of the excited states you derived above will radiate to the  ground state? Consider electric dipole radiation only.

f. Does ionization of the molecule to form a cation lead to a stronger, weaker, or equivalent bond strength?

V

H → H + ,3
1

3
2 e+ e− (9.44)

1s

1s → 2s

t = 0

ϕm H0 t = 0
H 1s → 2s

A1s,2s

Ψ(r, 0) = (r) = (r),ϕm ∑
n

Anmψn (9.45)

= ∫ (r) (r) rAnm ϕm ψn d3 (9.46)

H ψn En

J,M ,K → , ,J ′ M ′ K ′

I =< |ε ∙ μ| >.DJ ′

M ′K ′ DJ
MK

(9.47)

μ C3 μ

cosβ = D∗
00

I = 8 με(−1 ( )( )π2 )(M+K) J ′

M

1

0

J

M

J ′

K

1

0

J

K
δ MM ′ δ KK ′ (9.48)

ΔJ = −JJ ′ K

BO

B O

BO Σ2

Σ2
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g. Assuming that the energies of the molecular orbitals do not change upon ionization, what are the ground state, the first excited
state, and the second excited state of the positive ion?

h. Considering only these states, predict the structure of the photoelectron spectrum you would obtain for ionization of .

problem on vibration-rotation spectroscopy 
37.

The above figure shows part of the infrared absorption spectrum of  gas. The molecule has a  stretching vibration, a
bending vibration, and a  stretching vibration.

a. Are any of the vibrations of linear  degenerate?

b. To which vibration does the group of peaks between 600 cm  and 800 cm  belong?

c. To which vibration does the group of peaks between 3200 cm  and 3400 cm  belong?

d. What are the symmetries (s, p, d) of the  stretch,  stretch, and bending

vibrational motions?

e. Starting with  in its 0,0,0 vibrational level, which fundamental transitions would be infrared active under parallel polarized
light (i.e., z-axis polarization):

f. Why does the 712 cm  transition have a Q-branch, whereas that near 3317 cm  has only P- and R-branches?

Problem in Which You Can Practice Deriving Equations 

This is Important Because a Theory Scientist Does Derivations as Part of Her/His Job

38.

By expanding the molecular orbitals { } as linear combinations of atomic orbitals { },

show how the canonical Hartree-Fock (HF) equations:

reduce to the matrix eigenvalue-type equation of the form:

where:

BO

HCN CH

CN

HCN

-1 -1

-1 -1

CH CN

HCN

000 → 001? (9.49)

000 → 100? (9.50)

000 → 010? (9.51)

-1 -1

ϕk χμ

=ϕk ∑
μ

cμkχμ (9.52)

F =ϕi εiϕj (9.53)

=∑
ν

FμνCνi εi∑
ν

SμνCνi (9.54)
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and

Note that the sum over  in  and  is a sum over spin orbitals. In addition, show that this Fock matrix can be further reduced
for the closed shell case to:

where the charge bond order matrix, , is defined to be:

where the sum over  here is a sum over orbitals not spin orbitals.

Another Derivation Practice Problem 

39. Show that the HF total energy for a closed-shell system may be written in terms of integrals over the orthonormal HF orbitals
as:

.

More Derivation Problem 
40. Show that the HF total energy may alternatively be expressed as:

where the  refer to the HF orbital energies.

Molecular Hartree-Fock SCF Problem 

41. This problem will be concerned with carrying out an SCF calculation for the  molecule in the  ground state.
The one- and two-electron integrals (in atomic units) needed to carry out this SCF calculation at  a.u. using Slater type
orbitals with orbital exponents of 1.6875 and 1.0 for the  and , respectively are:

S  = 1.0, S  = 1.0, S  = 0.5784

h  = -2.6442, h  = -1.7201, h  = -1.5113,

g  = 1.0547, g  = 0.4744, g  = 0.5664,

g  = 0.2469, g  = 0.3504, g  = 0.6250,

where 1 refers to  and 2 to . The two-electron integrals are given in Dirac notation. Parts a. – d should be done by hand.
Any subsequent parts can make use of the QMIC software that can be found at

www.emsl.pnl.gov:2080/people/...a_nichols.html.

= ⟨ |h| u⟩+ [ ⟨ |g| ⟩− ⟨ |g| ⟩] ,Fμν χμ χn ∑
δκ

γδκ χμχδ χνχκ γex
δκ

χμχδ χκχν (9.55)

= ⟨ | u⟩, = ,Sμν χμ χn γδκ ∑
i=occ

CδiCκi (9.56)

= .γex
δκ

∑
i=occ and same spin

CδiCκi (9.57)

i γδκ γex
δκ

= ⟨ |h| u⟩+ [⟨ |g| ⟩− ⟨ |g| ⟩],Fμν χμ χn ∑
δκ

Pδκ χμχδ χνχκ

1

2
χμχδ χκχν (9.58)

P

= 2 ,Pδκ ∑
i=occ

CδiCκi (9.59)

i

E(SCF) = 2 ⟨ |h| ⟩+ [2⟨kl|g|kl⟩− ⟨kl|g|lk⟩] +∑
k

occ

ϕk ϕk ∑
k,l

occ

∑
μ>ν

ZμZν

Zμν

(9.60)

E(SCF) = ( + ⟨ |h| ⟩) + ,∑
k

occ

εk ϕk ϕk ∑
μ>ν

ZμZν

Rμν

(9.61)

εk

HeH+ 1 )Σ+
g (1σ2

R = 1.4
He H

11 22 12

11 22 12

1111 1121 1212

2211 2221 2222

1sHe 1sH
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a. Using  for the initial guess of the occupied molecular orbital, form a 2x2 Fock matrix. Use the equation derived
above in problem 38 for .

b. Solve the Fock matrix eigenvalue equations given above to obtain the orbital energies and an improved occupied molecular
orbital. In so doing, note that  gives the needed normalization condition for the expansion coefficients
of the  in the atomic orbital basis.

c. Determine the total SCF energy using the expression of problem 39 at this step of the iterative procedure. When will this energy
agree with that obtained by using the alternative expression for  given in problem 40?

d. Obtain the new molecular orbital, , from the solution of the matrix eigenvalue problem (part b).
e. A new Fock matrix and related total energy can be obtained with this improved choice of molecular orbital, . This process

can be continued until a convergence criterion has been satisfied. Typical convergence criteria include: no significant change in
the molecular orbitals or the total energy (or both) from one iteration to the next. Perform this iterative procedure for the 

 system until the difference in total energy between two successive iterations is less than 10  a.u.
f. Show, by comparing the difference between the SCF total energy at one iteration and the converged SCF total energy, that the

convergence of the above SCF approach is primarily linear (or first order).
g. Is the SCF total energy calculated at each iteration of the above SCF procedure as in problem 39 an upper bound to the exact

ground-state total energy?
h. Does this SCF wave function give rise (at ) to proper dissociation products?

Configuration Interaction Problem 

42. This problem will continue to address the same  molecular system as above, extending the analysis to include
correlation effects. We will use the one- and two-electron integrals (same geometry) in the converged (to 10  au) SCF molecular
orbital basis which we would have obtained after 7 iterations above. The converged MOs you should have obtained in problem 1
are:

a. Carry out a two configuration CI calculation using the  and  configurations first by obtaining an expression for the CI
matrix elements  ( ) in terms of one- and two-electron integrals, and secondly by showing that the resultant CI
matrix is (ignoring the nuclear repulsion energy):

b. Obtain the two CI energies and eigenvectors for the matrix found in part a.

c. Show that the lowest energy CI wave function is equivalent to the following two-determinant (single configuration) wave
function:

involving the polarized orbitals: , where  and .

d. Expand the CI list to 3 configurations by adding  to the original  and  configurations of part a above. First, express
the proper singlet spin-coupled  configuration as a combination of Slater determinants and then compute all elements of this
3x3 matrix.

. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI problem.

f. Determine the excitation energies and transition moments for  using the full CI result of part e above. The nonvanishing
matrix elements of the dipole operator  in the atomic basis are:

First determine the matrix elements of  in the SCF orbital basis then determine the excitation energies and transition moments
from the ground state to the two excited singlet states of .

g. Now turning to perturbation theory, carry out a perturbation theory calculation of the first-order wave function  for the
case in which the zeroth-order wave function is taken to be the  Slater determinant. Show that the first-order wave function is

≈ 1ϕ1 sHe

Fμν

⟨ | ⟩ = 1 = Sϕ1 ϕ1 CT
1 C1

ϕ1

E(SCF)
ϕ1

ϕ1

HeH+ -5

R → ∞

HeH+

-5

= [ ] = [ ]ϕ1
−0.89997792

−0.15843012
ϕ2

−0.83233180

1.21558030
(9.62)

1σ2 2σ2

HI,J I, J = 1 , 2σ2 σ2

[ ]
−4.2720

0.1261

0.1261

−2.0149
(9.63)

{|( + )α( − )β| + |( − )α( + )β|}
1

2
a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2 a−−√ ϕ1 b√ ϕ2 (9.64)

±a−−√ ϕ1 b√ ϕ2 a = 0.9984 b = 0.0556

1σ2σ 1σ2 2σ2

1σ2σ

E

HeH+

r(x, y, z)

⟨1 |z|1 ⟩ = 0.2854 and ⟨1 |z|1 ⟩ = 1.4.sH sHe sH sH (9.65)

r

HeH+

|1σ2⟩(1)

1σ2
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given by:

h. Why does the  configuration not enter into the first-order wave function?

i. Normalize the resultant wave function that contains zeroth- plus first-order parts and compare it to the wave function obtained in
the two-configuration CI study of part b.

j. Show that the second-order RSPT correlation energy, , of  is -0.0056 a.u. How does this compare with the correlation
energy obtained from the two-configuration CI study of part b?

Repeating the SCF Problem but With a Computer Program 
43. Using either programs that are available to you or the QMIC programs that you can find at the web site

www.emsl.pnl.gov:2080/people/...ichols_ja.html

calculate the SCF energy of  using the same geometry as in problem 42 and the STO3G basis set provided in the QMIC
basis set library. How does this energy compare to that found in problem 42? Run the calculation again with the 3-21G basis basis
provided. How does this energy compare to the STO3G and the energy found using STOs in problem 42?

Series of SCF Calculations to Produce a Potential Energy Curve 
44. Generate SCF potential energy surfaces for  and  using the QMIC software or your own programs. Use the 3-21G
basis set and generate points for geometries of  and . Plot the energies vs. geometry for
each system. Which system dissociates properly?

Configuration Interaction Potential Curves for Several States 
45. Generate CI potential energy surfaces for the 4 states of  resulting from a calculation with 2 electrons occupying the lowest 2
SCF orbitals (  and ) in all possible ways. Use the same geometries and basis set as in problem 44. Plot the energies vs.
geometry for each system. Properly label and characterize each of the states (e.g., repulsive, dissociate properly, etc.).

Problem on Partition Functions and Thermodynamic Properties 

46. F atoms have   ground electronic states that are split by spin-orbit coupling into  and  states that differ
by only 0.05 eV in energy.

a. Write the electronic partition function (take the energy of the  state to be zero and that of the  state to be 0.05eV and
ignore all other states) for each F atom.

b. Using , derive an expression for the average electronic energy of  gaseous F atoms.

c. Using the fact that  eV at  °K, make a (qualitative) graph of  vs  for  ranging from 100°K to
3000°K.

Problem Using Transition State Theory 

47. Suppose that we used transition state theory to study the reaction

 assuming it to proceed through a bent transition state, and we obtained an expression for
the rate coefficient

a. Now, let us consider what differences would occur if the transition state structure were linear rather than bent. Assuming that the
activation energy  and electronic state degeneracies are not altered, derive an expression for the ratio of the rate coefficients for
the linear and bent transition state cases

|1 = −0.0442|2 ⟩.σ2⟩(1) σ2 (9.66)

|1σ2σ⟩

E (2) HeH+

HeH+

HeH+ H2

R = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 10.0a0

H2

1σg 1σu

1 2 2s2 s2 p5 P2 2P3/2
2P1/2

2P3/2
2P1/2

N

kT = 0.03 T = 300 /NĒ T T

NO(g) +C (g) → NOCl(g) +Cl(g)l2

=kbent
kT

h
e− /kTE≠

q≠

v
qNO

v

qCl2

v

(9.67)

E≠
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b. Using the following order of magnitude estimates of translational, rotational, and vibrational partition functions per degree of
freedom at 300°K

what ratio would you expect for ?

Problem With Slater Determinants 

48. Show that the configuration (determinant) corresponding to the   state vanishes.

Another Problem With Slater Determinants and Angular Momenta 
49. Construct the 3 triplet and 1 singlet wave functions for the   configuration. Show that each state is a proper
eigenfunction of S2 and Sz (use raising and lowering operators for S2)

Problem With Slater Determinants for a Linear Molecule 
50. Construct determinant wave functions for each state of the  configuration of .

Problem With Slater Determinants for an Atom 

51. Construct determinant wave functions for each state of the  configuration of .

Problem on Angular Momentum of an Atom 
52. Determine all term symbols that arise from the  configuration of the excited  atom.

Practice With the Slater Condon Rules 
53. Calculate the energy (using Slater Condon rules) associated with the  valence electrons for the following states of the 
atom.

i. 

ii. 

iii. , and

iv. .

More Practice With the Slater Condon Rules 
54. Calculate the energy (using Slater Condon rules) associated with the  valence electrons for the following states of the 
molecule.

i.  

ii.   and

iii.  

Practice With The Equations of Statistical Mechanics 
55. Match each of the equations below with the proper phrase A-K

klinear

kbent
(9.68)

∼ , ∼ , ∼ 1,qt 108 qr 102 qv (9.69)

/klinear kbent

Li+ 1s(α)1s(α)

Li+ 1 2s1 s1

1 2 3 1σ2 σ2 σ2 π2 NH

1 2 3s1 s1 s1 Li

1 2 2 3s2 s2 p2 d1 N

2p C

P ( = 1, = 1),3 ML MS

P ( = 0, = 0),3 ML MS

S( = 0, = 0)1 ML MS

D( = 0, = 0)1 ML MS

π NH

Δ1 ( = 2, = 0),ML MS

Σ1 ( = 0, = 0),ML MS

Σ3 ( = 0, = 0).ML MS
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A. Raoult's law
B. Debye solid
C. Critical Point
D. Ideal adsorption
E. Langmuir isotherm
F. Bragg-Williams
G. Partition function for surface translation
H. Concentrated solution
I. Fluctuation
J. Virial coefficient

K. Einstein solid

Problem Dealing With the Second Virial Coefficient 

56. The Van der Waals equation of state is

solve this equation for , and then obtain an expression for . Finally, expand  in powers of  and obtain an

expression for the second virial coefficient of this Van der Waals gas in terms of , , and .

= −2π ( exp(− )−1)drB2 ∫ ∞
0

r2
u(r)

kT

−( = k (E2¯ Ē)2 T 2 ∂E

∂T
)
N ,V

2πmKT

h2

Q = exp(− )(
Nϕ

2kT

exp(−θ/2T )

1 −exp(−θ/2T )
)

3N

g(ν) = aν2

Q =
M !

N !(M −N)!
qN

Θ =

q exp( )p
μ0

kT

1 +q exp( )p
μ0

kT

=pA p0
A
XA

= −4
cω

kT

W = + +WAANAA WBBNBB WABNAB

≅NAB

cNA NB

+NA NB

(9.70)

(p+( a) (V −Nb) = NkT
N

V
)

2

(9.71)

p
pV

NkT

pV

NkT
( )
N

V

b a T
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Problem to Make You Think About Carrying Out Monte-Carlo and Molecular Dynamics Simulations 

57. Briefly answer each of the following:

For which of the following would you be wisest to use Monte-Carlo (MC) simulation and for which should you use molecular
dynamics (MD)

a. Determining the rate of diffusion of  in liquid .

b. Determining the equilibrium radial distribution of  atoms relative to the  in the above example

c. Determining the mean square end-to-end distance for a floppy hydrocarbon chain in the liquid state

Suppose you are carrying out a Monte-Carlo simulation involving 1000  atoms. Further suppose that the potentials are pair wise
additive and that your computer requires approximately 50 floating point operations (FPO's) (e.g. multiply, add, divide, etc.) to
compute the interaction potential between any pair of atoms

d. For each M-C trial move, how many FPO's are required? Assuming your computer has a speed of 100 MFlops (i.e., 100 million
FPO's per sec), how long will it take you to carry out 1,000,000 M-C moves?

e. If the fluctuations observed in the calculation of question d are too large, and you wish to make a longer M-C calculation to
reduce the statistical "noise", how long will your new calculation require if you wish to cut the noise in half?

f. How long would the calculation of question d require if you were to use 1,000,000  atoms (with the same potential and the
same computer)?

g. Assuming that the evaluation of the forces between pairs of  atoms ( ;) requires approximately the same number of
FPO's (50) as for computing the pair potential, how long (in sec) would it take to carry out a molecular dynamics simulation
involving 1000  atoms using a time step ( ) of 10  sec and persisting for a total time duration of one nanosecond (10  sec)
using the 100 MFlop computer?

h. How long would a 10  MFlop (i.e., 1 FPO per sec) Ph.D. student take to do the calculation in part d?

Problem to Practice Using Partition Functions 
58. In this problem, you will compute the pressure-unit equilibrium constant  for the equilibrium

in the gas phase at a temperature of 1000 K. Your final answer should be expressed in units of atm . In doing so, you need to
consider the electronic term symbols of  and of , and you will need to use the following data:

i.  has no excited electronic states that you need to consider.

ii.  K for 

iii.  K for 

iv. 

v. The dissociation energy of  from the  = 0 to dissociation is .

a. First, write the expressions for the  and  partition functions showing their translational, rotational, vibrational and
electronic contributions.

b. Next, substitute the data and compute , and change units to atm .

Problem Using Transition State Theory 
59. Looking back at the  reaction treated using transition state theory in Problem 47, let us assume that this same
reaction (via. the bent transition state) were to occur while to reagents  and  were adsorbed to a surface in the following
manner:

a. both  and  lie flat against the surface with both of their atoms touching the surface.

CH4 Kr

Kr CH4

Ar

Ar

Ar ∂V /∂r

Ar Δt -15 -9

-6

Kp

2Na ⇌ Na2 (9.72)

-1

Na Na2

Na

= 0.221
ℏ2

8 Ikπ2
Na2

= 229
hν

k
Na2

1 atm = 1.01 ×106  dynes cm −2

Na2 v = 17.3D0  kcal mol−1

Na Na2

Kp
-1

NO+Cl2
NO Cl2

NO Cl2
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b. both  and  move freely along the surface (i.e., they can translate parallel to the surface).

c. both  and  are tightly bound to the surface in a manner that causes their movements perpendicular to the surface to
become high-frequency vibrations.

Given this information, and again assuming the following order of magnitude estimates of

partition functions

calculate the ratio of the TS rate constants for this reaction occurring in the surface adsorbed state and in the gas phase. In doing so,
you may assume that the activation energy and all properties of the transition state are identical in the gas and adsorbed state,
except that the TS species is constrained to lie flat on the surface just as are  and .
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9.1: Solutions
Solutions

1.

a. First determine the eigenvalues:

det = 0

(-1 - l)(2 - l) - 22 = 0

-2 + l - 2l + l2 - 4 = 0

l2 - l - 6 = 0

(l - 3)(l + 2) = 0

l = 3 or l = -2.

Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2:

= -2

-C11 + 2C21 = -2C11

C11 = -2C21 (Note: The second row offers no new information, e.g. 2C11 + 2C21 = -2C21)

C112 + C212 = 1 (from normalization)

(-2C21)2 + C212 = 1

4C212 + C212 = 1

5C212 = 1

C212 = 0.2

C21 = , and therefore C11 = -2.

For the eigenvector associated with eigenvalue 3:

= 3

-C12 + 2C22 = 3C12

-4C12 = -2C22

C12 = 0.5C22 (again the second row offers no new information)

C122 + C222 = 1 (from normalization)

(0.5C22)2 + C222 = 1

0.25C222 + C222 = 1

1.25C222 = 1

C222 = 0.8

C22 = = 2, and therefore C12 = .

Therefore the eigenvector matrix becomes:

b. First determine the eigenvalues:

det = 0

det det = 0

From 1a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First the eigenvector associated with
eigenvalue 3 (the third root):

= 3
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-2 C13 = 3C13 (row one)

C13 = 0

-C23 + 2C33 = 3C23 (row two)

2C33 = 4C23

C33 = 2C23 (again the third row offers no new information)

C132 + C232 + C332 = 1 (from normalization)

0 + C232 + (2C23)2 = 1

5C232 = 1

C23 = , and therefore C33 = 2.

Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2. First, root one eigenvector one:

-2C11 = -2C11 (no new information from row one)

-C21 + 2C31 = -2C21 (row two)

C21 = -2C31 (again the third row offers no new information)

C112 + C212 + C312 = 1 (from normalization)

C112 + (-2C31)2 + C312 = 1

C112 + 5C312 = 1

C11 =

Second, root two eigenvector two:

-2C12 = -2C12 (no new information from row one)

-C22 + 2C32 = -2C22 (row two)

C22 = -2C32 (again the third row offers no new information)

C122 + C222 + C322 = 1 (from normalization)

C122 + (-2C32)2 + C322 = 1

C122 + 5C322 = 1

C12 = (1- 5C322)1/2 (Note: again, two equations in three unknowns)

C11C12 + C21C22 + C31C32 = 0 (from orthogonalization)

Now there are five equations with six unknowns.

Arbitrarily choose C11 = 0

(whenever there are degenerate eigenvalues, there are not unique eigenvectors because the degenerate eigenvectors span a 2- or
more- dimensional space, not two unique directions. One always is then forced to choose one of the coefficients and then determine
all the rest; different choices lead to different final eigenvectors but to identical spaces spanned by these eigenvectors).

C11 = 0 =

5C312 = 1

C31 =

C21 = -2

C11C12 + C21C22 + C31C32 = 0 (from orthogonalization)

0 + -2+ C32 = 0

5C32 = 0

C32 = 0, C22 = 0, and C12 = 1
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Therefore the eigenvector matrix becomes:

2.

a. K.E. = = = =

K.E. =

K.E. =

K.E. =

b. p = mv = ipx + jpy + kpz

p =

where i, j, and k are unit vectors along the x, y, and z axes.

c. Ly = zpx - xpz

Ly = z - x

3.

First derive the general formulas for , , in terms of r,q, and f, and , , and in terms of x,y, and z. The general relationships are as
follows:

x = r Sinq Cosf r2 = x2 + y2 + z2

y = r Sinq Sinf sinq =

z = r Cosq cosq =

tanf =

First , , and from the chain rule:

= y,z + y,z + y,z ,

= x,z + x,z + x,z ,

= x,y + x,y + x,y .

Evaluation of the many "coefficients" gives the following:

y,z = Sinq Cosf , y,z = , y,z = - ,

x,z = Sinq Sinf , x,z = , x,z = ,

x,y = Cosq , x,y = - , and x,y = 0 .

Upon substitution of these "coefficients":

= Sinq Cosf + - ,

= Sinq Sinf + + , and

= Cosq - + 0 .

Next , , and from the chain rule:

= q,f + q,f + q,f ,

= r,f + r,f + r,f , and

= r,q + r,q + r,q .

Again evaluation of the the many "coefficients" results in:

q,f = , q,f = ,

q,f = , r,f = , r,f = ,

r,f = - , r,q = -y , r,q = x , and r,q = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.4 https://chem.libretexts.org/@go/page/11570

Upon substitution of these "coefficients":

= +

+

= + -

= -y + x + 0 .

Note, these many "coefficients" are the elements which make up the Jacobian matrix used whenever one wishes to transform a
function from one coordinate representation to another. One very familiar result should be in transforming the volume element
dxdydz to r2Sinqdrdqdf. For example:

=

a. Lx =

Lx =

-

Lx = -

b. Lz = = - i

Lz =

4.

B dB/dx d2B/dx2

i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24

ii. 5x4 20x3 60x2

iii. e3x + e-3x 3(e3x - e-3x) 9(e3x + e-3x)

iv. x2 - 4x + 2 2x - 4 2

v. 4x3 - 3x 12x2 - 3 24x

B(v.) is an eigenfunction of A(i.):

(1-x2) - x B(v.) =

(1-x2) (24x) - x (12x2 - 3)

24x - 24x3 - 12x3 + 3x

-36x3 + 27x

-9(4x3 -3x) (eigenvalue is -9)

B(iii.) is an eigenfunction of A(ii.):

B(iii.) =

9(e3x + e-3x) (eigenvalue is 9)

B(ii.) is an eigenfunction of A(iii.):

x B(ii.) =

x (20x3)

20x4

4(5x4) (eigenvalue is 4)

B(i.) is an eigenfunction of A(vi.):

- 2x B(i) =

(48x2 - 24) - 2x (16x3 - 24x)
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48x2 - 24 - 32x4 + 48x2

-32x4 + 96x2 - 24

-8(4x4 - 12x2 + 3) (eigenvalue is -8)

B(iv.) is an eigenfunction of A(v.):

x + (1-x) B(iv.) =

x (2) + (1-x) (2x - 4)

2x + 2x - 4 - 2x2 + 4x

-2x2 + 8x - 4

-2(x2 - 4x +2) (eigenvalue is -2)

5.

6.

7.

8.

i. In ammonia, the only "core" orbital is the N 1s and this becomes an a1 orbital in C3v symmetry. The N 2s orbitals and 3 H 1s
orbitals become 2 a1 and an e set of orbitals. The remaining N 2p orbitals also become 1 a1 and a set of e orbitals. The total valence
orbitals in C3v symmetry are 3a1 and 2e orbitals.

ii. In water, the only core orbital is the O 1s and this becomes an a1 orbital in C2v symmetry. Placing the molecule in the yz plane
allows us to further analyze the remaining valence orbitals as: O 2pz = a1, O 2py as b2, and O 2px as b1. The (H 1s + H 1s)
combination is an a1 whereas the (H 1s - H 1s) combination is a b2.

iii. Placing the oxygens of H2O2 in the yz plane (z bisecting the oxygens) and the (cis) hydrogens distorted slightly in +x and -x
directions allows us to analyze the orbitals as follows. The core O 1s + O 1s combination is an a orbital whereas the O 1s - O 1s
combination is a b orbital. The valence orbitals are: O 2s + O 2s = a, O 2s - O 2s = b, O 2px + O 2px = b, O 2px - O 2px = a, O 2py
+ O 2py = a, O 2py - O 2py = b, O 2pz + O 2pz = b, O 2pz - O 2pz = a, H 1s + H 1s = a, and finally the H 1s - H 1s = b.

iv. For the next two problems we will use the convention of choosing the z axis as principal axis for the D¥h, D2h, and C2v point
groups and the xy plane as the horizontal reflection plane in Cs symmetry.

D¥h D2h C2v Cs

N 1s sg ag a1 a'

N 2s sg ag a1 a'

N 2px pxu b3u b1 a'

N 2py pyu b2u b2 a'

N 2pz su b1u a1 a''

9.

a. Yn(x) = Sin

Pn(x)dx = dx

The probability that the particle lies in the interval 0 £ x £ is given by:

Pn = =

This integral can be integrated to give :

Pn =

Pn =

Pn = - \f(1,4q,2
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=

= - Sin

b. If n is even, Sin= 0 and Pn = .

If n is odd and n = 1,5,9,13, ... Sin= 1

and Pn = -

If n is odd and n = 3,7,11,15, ... Sin= -1

and Pn = +

The higher Pn is when n = 3. Then Pn = +

Pn = + = 0.303

c. Y(t) = e= aYne+ bYme

HY = aYnEne+ bYmEme

= |a|2En + |b|2Em + a*be

+ b*ae

Since and are zero,

= |a|2En + |b|2Em (note the time independence)

d. The fraction of systems observed in Yn is |a|2. The possible energies measured are En and Em. The probabilities of measuring
each of these energies is |a|2 and |b|2.

e. Once the system is observed in Yn, it stays in Yn.

f. P(En) = 2 = |cn|2

cn = x(L-x)dx

= dx

=

These integrals can be evaluated to give:

cn = 60,L6L\b(\f(L2,n2p2

- 60,L6\b(\f(2xL2,n2p2

cn = {

- )

- (

- Cos(np)

+ Cos(0))}

cn = L-3{- Cos(np) + Cos(np)

+ }

cn =

cn =

cn = )

|cn|2 = )

If n is even then cn = 0

If n is odd then cn = =

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.7 https://chem.libretexts.org/@go/page/11570

The probability of making a measurement of the energy and obtaining one of the eigenvalues, given by:

En = is:

P(En) = 0 if n is even

P(En) = if n is odd

g. =

=

=

=

= 30\o(h,-L\f(x2,2

=

=

= =

10.

= Ci*eeCj

Since = Ejdij

= Cj*CjEje

=

For other properties:

= Ci*eeCj

but, does not necessarily = ajdij because the Yj are not eigenfunctions of A unless [A,H] = 0.

= Ci*Cje

Therefore, in general, other properties are time dependent.

11.

a. The lowest energy level for a particle in a 3-dimensional box is when n1 = 1, n2 = 1, and n3 = 1. The total energy (with L1 = L2
= L3) will be:

Etotal = =

Note that n = 0 is not possible. The next lowest energy level is when one of the three quantum numbers equals 2 and the other two
equal 1:

n1 = 1, n2 = 1, n3 = 2

n1 = 1, n2 = 2, n3 = 1

n1 = 2, n2 = 1, n3 = 1.

Each of these three states have the same energy:

Etotal = =

Note that these three states are only degenerate if L1 = L2 = L3.

b. ¾ ¾¾ ¾¾ ¾¾ ¾¾

¾

L1 = L2 = L3 L3 ¹ L1 = L2

For L1 = L2 = L3, V = L1L2L3 = L13,

Etotal(L1) = 2e1 + e2
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= +

= + =

For L3 ¹ L1 = L2, V = L1L2L3 = L12L3, L3 = V/L12

Etotal(L1) = 2e1 + e2

= +

= +

=

= =

In comparing the total energy at constant volume of the undistorted box (L1 = L2 = L3) versus the distorted box (L3 ¹ L1 = L2) it
can be seen that:

£ as long as L3 ³ L1.

c. In order to minimize the total energy expression, take the derivative of the energy with respect to L1 and set it equal to zero. = 0

= 0

But since V = L1L2L3 = L12L3, then L3 = V/L12. This substitution gives:

= 0

= 0

= 0

=

24L16 = 12V2

L16 = V2 = = L14L32

L12 = L32

L3 = L1

d. Calculate energy upon distortion:

cube: V = L13, L1 = L2 = L3 = (V)

distorted: V = L12L3 = L12L1 = L13

L3 = ¹ L1 = L2 =

DE = Etotal(L1 = L2 = L3) - Etotal(L3 ¹ L1 = L2)

= -

=

=

Since V = 8Å3, V2/3 = 4Å2 = 4 x 10-16 cm2 , and = 6.01 x 10-27 erg cm2:

DE = 6.01 x 10-27 erg cm2

DE = 6.01 x 10-27 erg cm2

DE = 0.99 x 10-11 erg

DE = 0.99 x 10-11 erg

DE = 6.19 eV

12.

a. H = (Cartesian coordinates)
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Finding andfrom the chain rule gives:

= y + y , = x + x ,

Evaluation of the "coefficients" gives the following:

y = Cosf , y = - ,

x = Sinf , and x = ,

Upon substitution of these "coefficients":

= Cosf - = - ; at fixed r.

= Sinf + = ; at fixed r.

=

= + ; at fixed r.

=

= - ; at fixed r.

+ = + + -

= ; at fixed r.

So, H = (cylindrical coordinates, fixed r)

=

The Schrödinger equation for a particle on a ring then becomes:

HY = EY

= EF

= F

The general solution to this equation is the now familiar expression:

F(f) = C1e-imf + C2eimf , where m =

Application of the cyclic boundary condition, F(f) = F(f+2p), results in the quantization of the energy expression: E = where m = 0,
±1, ±2, ±3, ... It can be seen that the ±m values correspond to angular momentum of the same magnitude but opposite directions.
Normalization of the wavefunction (over the region 0 to 2p) corresponding to + or - m will result in a value of for the normalization
constant.

\ F(f) = eimf

¾¾ ¾¾

¾¾ ¾¾

¾¾ ¾¾

b. = 6.06 x 10-28 erg cm2

=

= 3.09 x 10-12 erg

DE = (22 - 12) 3.09 x 10-12 erg = 9.27 x 10-12 erg

but DE = hn = hc/l So l = hc/DE

l =

= 2.14 x 10-5 cm = 2.14 x 103 Å

Sources of error in this calculation include:

i. The attractive force of the carbon nuclei is not included in the Hamiltonian.
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ii. The repulsive force of the other p-electrons is not included in the Hamiltonian.

iii. Benzene is not a ring.

iv. Electrons move in three dimensions not one.

13.

Y(f,0) = Cos2f.

This wavefunction needs to be expanded in terms of the eigenfunctions of the angular momentum operator, . This is most easily
accomplished by an exponential expansion of the Cos function.

Y(f,0) =

=

The wavefunction is now written in terms of the eigenfunctions of the angular momentum operator, , but they need to include their
normalization constant, .

Y(f,0) =

=

Once the wavefunction is written in this form (in terms of the normalized eigenfunctions of the angular momentum operator having
mas eigenvalues) the probabilities for observing angular momentums of 0, 2, and -2can be easily identified as the squares of the
coefficients of the corresponding eigenfunctions.

P2= =

P-2= =

P0= =

14.

a. mv2 = 100 eV

v2 =

v = 0.593 x 109 cm/sec

The length of the N2 molecule is 2Å = 2 x 10-8 cm.

v =

t = = = 3.37 x 10-17 sec

b. The normalized ground state harmonic oscillator can be written as:

Y0 = 1/4e-ax2/2, where a = and x = r - re

Calculating constants;

aN2 =

= 0.48966 x 1019 cm-2 = 489.66 Å-2

For N2: Y0(r) = 3.53333Åe-(244.83Å-2)(r-1.09769Å)2

aN2+ =

= 0.45823 x 1019 cm-2 = 458.23 Å-2

For N2+: Y0(r) = 3.47522Åe-(229.113Å-2)(r-1.11642Å)2

c. P(v=0) =

Let P(v=0) = I2 where I = integral:

I= .

(3.53333Åe-(244.830Å-2)(r-1.09769Å)2)dr
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Let C1 = 3.47522Å, C2 = 3.53333Å,

A1 = 229.113Å-2, A2 = 244.830Å-2,

r1 = 1.11642Å, r2 = 1.09769Å,

I = C1C2dr .

Focusing on the exponential:

-A1(r-r1)2-A2(r-r2)2 = -A1(r2 - 2r1r + r12) - A2(r2 - 2r2r + r22)

= -(A1 + A2)r2 + (2A1r1 + 2A2r2)r - A1r12 - A2r22

Let A = A1 + A2,

B = 2A1r1 + 2A2r2,

C = C1C2, and

D = A1r12 + A2r22 .

I = Cdr

= Cdr

where -A(r-r0)2 + D' = -Ar2 + Br - D

-A(r2 - 2rr0 + r02) + D' = -Ar2 + Br - D

such that, 2Ar0 = B

-Ar02 + D' = -D

and, r0 =

D' = Ar02 - D = A- D = - D .

I = Cdr

= CeD'dy

= CeD'

Now back substituting all of these constants:

I = C1C2exp

I = (3.47522)(3.53333)

. exp

. exp

I = 0.959

P(v=0) = I2 = 0.92, so there is a 92% probability.

15.

a. En =

DE = En+1 - En

= =

=

= 4.27 x 10-13 erg

DE =

l = =

= 4.66 x 10-4 cm
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= 2150 cm-1

b. Y0 = 1/4e-ax2/2

=

=

=

=

= 1/2e-ax2 ½= 0

=

=

=

= 21/2

= 21/21/2

=

Dx = (<x2> - <x>2)1/2.=

=

=

= 3.38 x 10-10 cm = 0.0338Å

c. Dx =

The smaller k and m become, the larger the uncertainty in the internuclear distance becomes. Helium has a small m and small
attractive force between atoms. This results in a very large Dx. This implies that it is extremely difficult for He atoms to "vibrate"
with small displacement as a solid, even as absolute zero is approached.

16.

a. W =

W =

e=

= +

= +

Making this substitution results in the following three integrals:

W = +

+

= + +

a

= 2 + 2 +

a

= + +

W = + a

b. Optimize b by evaluating = 0

=

= - b
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So, b= or, b= = ,

and, b = . Substituting this value of b into the expression for W gives:

W = + a

= + a

= 2pam+ 2pam

= am= am

= 0.812889106am-1/3 which is in error by only 0.5284% !!!!!

17.

a. H = -+ kx2

f = a for -a < x < a

f = 0 for |x| ³ a

=

= a-5

= a-5

+ a-5

= a-5

+ a-5

= a-5dx + a-5

= a-5\o(\s\up10(a-a

+ a-5a4k,3\o(\s\up10(a

= a-5+ a-5

= a-5

= a-5

= a-5

= a-5= +

b. Substituting a = binto the above expression for E we obtain:

E = +

= km

c. E = +

= -+ = -+ = 0

= and 352 = 2mka4

So, a4 = , or a =

Therefore fbest = ,

and Ebest = + = km.

d. =

= = = 0.1952 = 19.52%

18.

a. H0 y= y= Yl,m(q,f)
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= 2 l(l+1) Yl,m(q,f)

E= l(l+1)

b. V = -eez = -eer0Cosq

E= =

= -eer0

Using the given identity this becomes:

E= -eer0+

-eer0

The spherical harmonics are orthonormal, thus = = 0, and E= 0.

E=

= -eer0

Using the given identity this becomes:

= -eer0+

-eer0

= -

This indicates that the only term contributing to the sum in the expression for Eis when l=1, and m=), otherwise vanishes (from
orthonormality). In quantum chemistry when using orthonormal functions it is typical to write the term as a delta function, for
example dlm,10 , which only has values of 1 or 0; dij = 1 when i = j and 0 when i ¹ j. This delta function when inserted into the sum
then eliminates the sum by "picking out" the non-zero component. For example,

= -dlm,10 , so

E= =

E= 0(0+1) = 0 and E= 1(1+1) =

Inserting these energy expressions above yields:

E= -= -

c. E= E+ E+ E+ ...

= 0 + 0 -

= -

a = -=

=

d. a =

a = r04 12598x106cm-1 = r04 1.2598Å-1

aH = 0.0987 Å3

aCs = 57.57 Å3

19.

The above diagram indicates how the SALC-AOs are formed from the 1s,2s, and 2p N atomic orbitals. It can be seen that there are
3sg, 3su, 1pux, 1puy, 1pgx, and 1pgy SALC-AOs. The Hamiltonian matrices (Fock matrices) are given. Each of these can be
diagonalized to give the following MO energies:

3sg; -15.52, -1.45, and -0.54 (hartrees)

3su; -15.52, -0.72, and 1.13

1pux; -0.58

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.15 https://chem.libretexts.org/@go/page/11570

1puy; -0.58

1pgx; 0.28

1pgy; 0.28

It can be seen that the 3sg orbitals are bonding, the 3su orbitals are antibonding, the 1pux and 1puy orbitals are bonding, and the
1pgx and 1pgy orbitals are antibonding.

20.

Using these approximate energies we can draw the following MO diagram:

This MO diagram is not an orbital correlation diagram but can be used to help generate one. The energy levels on each side (C and
H2) can be "superimposed" to generate the reactant side of the orbital correlation diagram and the center CH2 levels can be used to
form the product side. Ignoring the core levels this generates the following orbital correlation diagram.

21.

a. The two F p orbitals (top and bottom) generate the following reducible representation:

D3h E 2C3 3C2 sh 2S3 3sv

Gp 2 2 0 0 0 2

This reducible representation reduces to 1A1' and 1A2'' irreducible representations.

Projectors may be used to find the symmetry-adapted AOs for these irreducible representations.

fa1' =

fa2'' =

b. The three trigonal F p orbitals generate the following reducible representation:

D3h E 2C3 3C2 sh 2S3 3sv

Gp 3 0 1 3 0 1

This reducible representation reduces to 1A1' and 1E' irreducible representations.

Projectors may be used to find the symmetry-adapted -AOs for these irreducible representations (but they are exactly analogous to
the previous few problems):

fa1' =

fe' = (1/6)-1/2 (2 f3 – f4 –f5)

fe' = .

c. The 3 P sp2 orbitals generate the following reducible representation:

D3h E 2C3 3C2 sh 2S3 3sv

Gsp2 3 0 1 3 0 1

This reducible representation reduces to 1A1' and 1E' irreducible representations. Again, projectors may be used to find the
symmetry-adapted -AOs for these irreducible representations:

fa1' =

fe' =

fe' = .

The leftover P pz orbital generate the following irreducible representation:

D3h E 2C3 3C2 sh 2S3 3sv

Gpz 1 1 -1 -1 -1 1

This irreducible representation is A2''

fa2'' = f9.
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Drawing an energy level diagram using these SALC-AOs would result in the following:

22.

a. For non-degenerate point groups, one can simply multiply the representations (since only one representation will be obtained):

a1 Ä b1 = b1

Constructing a "box" in this case is unnecessary since it would only contain a single row. Two unpaired electrons will result in a
singlet (S=0, MS=0), and three triplets (S=1, MS=1; S=1, MS=0; S=1, MS=-1). The states will be: 3B1(MS=1), 3B1(MS=0),
3B1(MS=-1), and 1B1(MS=0).

b. Remember that when coupling non-equivalent linear molecule angular momenta, one simple adds the individual Lz values and
vector couples the electron spin. So, in this case (1pu12pu1), we have ML values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2). The
term symbol D is used to denote the spatially doubly degenerate level (ML=±2) and there are two distinct spatially non-degenerate
levels denoted by the term symbol S (ML=0) Again, two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets
(S=1, MS=1;S=1, MS=0;S=1, MS=-1). The states generated are then:

1D (ML=2); one state (MS=0),

1D (ML=-2); one state (MS=0),

3D (ML=2); three states (MS=1,0, and -1),

3D (ML=-2); three states (MS=1,0, and -1),

1S (ML=0); one state (MS=0),

1S (ML=0); one state (MS=0),

3S (ML=0); three states (MS=1,0, and -1), and

3S (ML=0); three states (MS=1,0, and -1).

c. Constructing the "box" for two equivalent p electrons one obtains:

ML

MS

2

1

0

1

|p1ap-1a|

0

|p1ap1b|

|p1ap-1b|,

|p-1ap1b|

From this "box" one obtains six states:

1D (ML=2); one state (MS=0),

1D (ML=-2); one state (MS=0),

1S (ML=0); one state (MS=0),

3S (ML=0); three states (MS=1,0, and -1).

d. It is not necessary to construct a "box" when coupling non-equivalent angular momenta since vector coupling results in a range
from the sum of the two individual angular momenta to the absolute value of their difference. In this case, 3d14d1, L=4, 3, 2, 1, 0,
and S=1,0. The term symbols are: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S. The L and S angular momenta can be vector coupled
to produce further splitting into levels:
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J = L + S ... |L - S|.

Denoting J as a term symbol subscript one can identify all the levels and subsequent (2J + 1) states:

3G5 (11 states),

3G4 (9 states),

3G3 (7 states),

1G4 (9 states),

3F4 (9 states),

3F3 (7 states),

3F2 (5 states),

1F3 (7 states),

3D3 (7 states),

3D2 (5 states),

3D1 (3 states),

1D2 (5 states),

3P2 (5 states),

3P1 (3 states),

3P0 (1 state),

1P1 (3 states),

3S1 (3 states), and

1S0 (1 state).

e. Construction of a "box" for the two equivalent d electrons generates (note the "box" has been turned side ways for convenience):

MS

ML

1

0

4

|d2ad2b|

3

|d2ad1a|

|d2ad1b|, |d2bd1a|

2

|d2ad0a|

|d2ad0b|, |d2bd0a|, |d1ad1b|

1

|d1ad0a|, |d2ad-1a|

|d1ad0b|, |d1bd0a|, |d2ad-1b|, |d2bd-1a|

0

|d2ad-2a|, |d1ad-1a|
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|d2ad-2b|, |d2bd-2a|, |d1ad-1b|, |d1bd-1a|, |d0ad0b|

The term symbols are: 1G, 3F, 1D, 3P, and 1S. The L and S angular momenta can be vector coupled to produce further splitting
into levels:

1G4 (9 states),

3F4 (9 states),

3F3 (7 states),

3F2 (5 states),

1D2 (5 states),

3P2 (5 states),

3P1 (3 states),

3P0 (1 state), and

1S0 (1 state).

23.

a. Once the spatial symmetry has been determined by multiplication of the irreducible representations, the spin coupling gives the
result:

b. There are three states here :

1.) |3a1a1b1a|,

2.) , and

3.) |3a1b1b1b|

c. |3a1a3a1b|

24.

a. All the Slater determinants have in common the |1sa1sb2sa2sb| "core" and hence this component will not be written out
explicitly for each case.

3P(ML=1,MS=1) = |p1ap0a|

= |a(pz)a|

=

3P(ML=0,MS=1) = |p1ap-1a|

= |aa|

=

=

=

= -i|pxapya|

3P(ML=-1,MS=1) = |p-1ap0a|

= |a(pz)a|

=

As you can see, the symmetries of each of these states cannot be labeled with a single irreducible representation of the C2v point
group. For example, |pxapza| is xz (B1) and |pyapza| is yz (B2) and hence the 3P(ML=1,MS=1) state is a combination of B1 and B2
symmetries. But, the three 3P(ML,MS=1) functions are degenerate for the C atom and any combination of these three functions
would also be degenerate. Therefore, we can choose new combinations that can be labeled with "pure" C2v point group labels.

3P(xz,MS=1) = |pxapza|
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= = 3B1

3P(yx,MS=1) = |pyapxa|

= = 3A2

3P(yz,MS=1) = |pyapza|

= = 3B2

Now, we can do likewise for the five degenerate 1D states:

1D(ML=2,MS=0) = |p1ap1b|

= |ab|

=

1D(ML=-2,MS=0) = |p-1ap-1b|

= |ab|

=

1D(ML=1,MS=0) =

=

=

1D(ML=-1,MS=0) =

=

=

1D(ML=0,MS=0) =

=

+ |ab|)

=

+

+ )

= )

Analogous to the three 3P states, we can also choose combinations of the five degenerate 1D states which can be labeled with
"pure" C2v point group labels:

1D(xx-yy,MS=0) = |pxapxb| - |pyapyb|

= = 1A1

1D(yx,MS=0) = |pxapyb| + |pyapxb|

= = 1A2

1D(zx,MS=0) = |pzapxb| - |pzbpxa|

= = 1B1

1D(zy,MS=0) = |pzapyb| - |pzbpya|

= = 1B2

1D(2zz+xx+yy,MS=0) = )

= 1D(ML=0,MS=0) = 1A1

The only state left is the 1S:
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1S(ML=0,MS=0) =

=

- |ab|)

=

-

- )

= )

Each of the components of this state are A1 and hence this state has

A1 symmetry.

b. Forming symmetry-adapted AOs from the C and H atomic orbitals would generate the following:

The bonding, nonbonding, and antibonding orbitals of CH2 can be illustrated in the following manner:

c.

d. - e. It is necessary to determine how the wavefunctions found in part a. correlate with states of the CH2 molecule:

3P(xz,MS=1); 3B1 = sg2s2pxpz ¾¾® s2n2pps*

3P(yx,MS=1); 3A2 = sg2s2pxpy ¾¾® s2n2pps

3P(yz,MS=1); 3B2 = sg2s2pypz ¾¾® s2n2ss*

1D(xx-yy,MS=0); 1A1 ¾¾® s2n2pp2 - s2n2s2

1D(yx,MS=0); 1A2 ¾¾® s2n2spp

1D(zx,MS=0); 1B1 ¾¾® s2n2s*pp

1D(zy,MS=0); 1B2 ¾¾® s2n2s*s

1D(2zz+xx+yy,MS=0); 1A1 ¾¾® 2s2n2s*2 + s2n2pp2 + s2n2s2

Note, the C + H2 state to which the lowest 1A1 (s2n2s2) CH2 state decomposes would be sg2s2py2. This state (sg2s2py2) cannot
be obtained by a simple combination of the 1D states. In order to obtain pure sg2s2py2 it is necessary to combine 1S with 1D. For
example,

sg2s2py2 = - .

This indicates that a configuration correlation diagram must be drawn with a barrier near the 1D asymptote to represent the fact that
1A1 CH2 correlates with a mixture of 1D and 1S carbon plus hydrogen. The C + H2 state to which the lowest 3B1 (s2ns2pp) CH2
state decomposes would be sg2spy2px.

f. If you follow the 3B1 component of the C(3P) + H2 (since it leads to the ground-state products) to 3B1 CH2 you must go over an
approximately 20 Kcal/mole barrier. Of course this path produces 3B1 CH2 product. Distortions away from C2v symmetry, for
example to Cs symmetry, would make the a1 and b2 orbitals identical in symmetry (a'). The b1 orbitals would maintain their
different symmetry going to a'' symmetry. Thus 3B1 and 3A2 (both 3A'' in Cs symmetry and odd under reflection through the
molecular plane) can mix. The system could thus follow the 3A2 component of the C(3P) + H2 surface to the place (marked with a
circle on the CCD) where it crosses the 3B1 surface upon which it then moves and continues to products. As a result, the barrier
would be lowered.

You can estimate when the barrier occurs (late or early) using thermodynamic information for the reaction (i.e. slopes and
asymptotic energies). For example, an early barrier would be obtained for a reaction with the characteristics:

and a late barrier would be obtained for a reaction with the characteristics:

This relation between reaction endothermicity or exothermicity and the character of the transition state is known as the Hammond
postulate. Note that the C(3P1) + H2 --> CH2 reaction of interest here has an early barrier.

g. The reaction C(1D) + H2 ---> CH2 (1A1) should have no symmetry barrier (this can be recognized by following the 1A1 (C(1D)
+ H2) reactants down to the 1A1 (CH2) products).

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.21 https://chem.libretexts.org/@go/page/11570

25.

This problem in many respects is analogous to problem 24.

The 3B1 surface certainly requires a two configuration CI wavefunction; the s2s2npx (p2py2spx) and the s2n2pxs* (p2s2pxpz).
The 1A1 surface could use the s2s2n2 (p2s2py2) only but once again there is no combination of 1D determinants which gives
purely this configuration (p2s2py2). Thus mixing of both 1D and 1S determinants are necessary to yield the required p2s2py2
configuration. Hence even the 1A1 surface would require a multiconfigurational wavefunction for adequate description.

Configuration correlation diagram for the reaction C2H2 + C ---> C3H2.

26.

a. CCl4 is tetrahedral and therefore is a spherical top. CHCl3 has C3v symmetry and therefore is a symmetric top. CH2Cl2 has C2v
symmetry and therefore is an asymmetric top.

b. CCl4 has such high symmetry that it will not exhibit pure rotational spectra because it has no permanent dipole moment. CHCl3
and CH2Cl2 will both exhibit pure rotation spectra.

27.

NH3 is a symmetric top (oblate). Use the given energy expression,

E = (A - B) K2 + B J(J + 1),

A = 6.20 cm-1, B = 9.44 cm-1, selection rules DJ = ±1, and the fact that lies along the figure axis such that DK = 0, to give:

DE = 2B (J + 1) = 2B, 4B, and 6B (J = 0, 1, and 2).

So, lines are at 18.88 cm-1, 37.76 cm-1, and 56.64 cm-1.

28.

To convert between cm-1 and energy, multiply by hc = (6.62618x10-34J sec)(2.997925x1010cm sec-1) = 1.9865x1023 J cm.

Let all quantities in cm-1 be designated with a bar,

e.g. = 1.78 cm-1.

a. hc=

Re = ,

m = = x 1.66056x10-27 kg

= 1.0824x10-26 kg.

hc= hc(1.78 cm-1) = 3.5359x10-23 J

Re =

Re = 1.205x10-10 m = 1.205 Å

De = , = = = 6.35x10-6 cm-1

wexe = , = = = 13.30 cm-1.

D= D- + , = - +

= 66782.2 - +

= 65843.0 cm-1 = 8.16 eV.

ae = +

= +

= + = 0.0175 cm-1.

B0 = Be - ae(1/2) , = - = 1.78 - 0.0175/2

= 1.77 cm-1

B1 = Be - ae(3/2) , = - = 1.78 - 0.0175(1.5)
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= 1.75 cm-1

b. The molecule has a dipole moment and so it should have a pure rotational spectrum. In addition, the dipole moment should
change with R and so it should have a vibration-rotation spectrum.

The first three lines correspond to J = 1 ® 0, J = 2 ® 1, J = 3 ® 2

E = we(v + 1/2) - wexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2

DE = we - 2wexe - B0J(J + 1) + B1J(J - 1) - 4DeJ3

= - 2- J(J + 1) + J(J - 1) - 4J3

= 1885 - 2(13.3) - 1.77J(J + 1) + 1.75J(J - 1) - 4(6.35x10-6)J3

= 1858.4 - 1.77J(J + 1) + 1.75J(J - 1) - 2.54x10-5J3

= 1854.9 cm-1

= 1851.3 cm-1

= 1847.7 cm-1

29.

The C2H2Cl2 molecule has a sh plane of symmetry (plane of molecule), a C2 axis (^ to the molecular plane), and inversion
symmetry, this results in C2h symmetry. Using C2h symmetry, the modes can be labeled as follows: n1, n2, n3, n4, and n5 are ag,
n6 and n7 are au, n8 is bg, and n9, n10, n11, and n12 are bu.

30.

Molecule I Molecule II

RCH = 1.121 Å RCH = 1.076 Å

ÐHCH = 104° ÐHCH = 136°

yH = R Sin (q/2) = ±0.8834 yH = ±0.9976

zH = R Cos (q/2) = -0.6902 zH = -0.4031

Center of Mass(COM):

clearly, X = Y = 0,

Z = = -0.0986 Z = -0.0576

a. Ixx = - M(Y2 + Z2)

Ixy = -- MXY

Ixx = 2(1.121)2 - 14(-0.0986)2 Ixx = 2(1.076)2 - 14(-0.0576)2

= 2.377 = 2.269

Iyy = 2(0.6902)2 - 14(-0.0986)2 Iyy = 2(0.4031)2 - 14(-0.0576)2

= 0.8167 = 0.2786

Izz = 2(0.8834)2 Izz = 2(0.9976)2

= 1.561 = 1.990

Ixz = Iyz = Ixy = 0

b. Since the moment of inertia tensor is already diagonal, the principal moments of inertia have already been determined to be

(Ia < Ib < Ic):

Iyy < Izz < Ixx Iyy < Izz < Ixx

0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269

Using the formula: A = = X
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A = cm-1

similarly, B = cm-1, and C = cm-1.

So,

Molecule I Molecule II

y Þ A = 20.62 y Þ A = 60.45

z Þ B = 10.79 z Þ B = 8.46

x Þ C = 7.08 x Þ C = 7.42

c. Averaging B + C:

B = (B + C)/2 = 8.94 B = (B + C)/2 = 7.94

A - B = 11.68 A - B = 52.51

Using the prolate top formula:

E = (A - B) K2 + B J(J + 1),

Molecule I Molecule II

E = 11.68K2 + 8.94J(J + 1) E = 52.51K2 + 7.94J(J + 1)

Levels: J = 0,1,2,... and K = 0,1, ... J

For a given level defined by J and K, there are MJ degeneracies given by: (2J + 1) x

d.

Molecule I Molecule II

e. Assume molecule I is CH2- and molecule II is CH2. Then,

DE = EJj(CH2) - EJi(CH2-), where:

E(CH2) = 52.51K2 + 7.94J(J + 1), and E(CH2-) = 11.68K2 + 8.94J(J + 1)

For R-branches: Jj = Ji + 1, DK = 0:

DER = EJj(CH2) - EJi(CH2-)

= 7.94(Ji + 1)(Ji + 1 + 1) - 8.94Ji(Ji + 1)

= (Ji + 1){7.94(Ji + 1 + 1) - 8.94Ji}

= (Ji + 1){(7.94- 8.94)Ji + 2(7.94)}

= (Ji + 1){-Ji + 15.88}

For P-branches: Jj = Ji - 1, DK = 0:

DEP = EJj(CH2) - EJi(CH2-)

= 7.94(Ji - 1)(Ji - 1 + 1) - 8.94Ji(Ji + 1)

= Ji{7.94(Ji - 1) - 8.94(Ji + 1)}

= Ji{(7.94- 8.94)Ji - 7.94 - 8.94}

= Ji{-Ji - 16.88}

This indicates that the R branch lines occur at energies which grow closer and closer together as J increases (since the 15.88 - Ji
term will cancel). The P branch lines occur at energies which lie more and more negative (i.e. to the left of the origin). So, you can
predict that if molecule I is CH2- and molecule II is CH2 then the R-branch has a band head and the P-branch does not. This is
observed, therefore our assumption was correct: molecule I is CH2- and molecule II is CH2.

f. The band head occurs when = 0.

= [(Ji + 1){-Ji + 15.88}] = 0
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= = 0

= -2Ji + 14.88 = 0

\ Ji = 7.44, so J = 7 or 8.

At J = 7.44:

DER = (J + 1){-J + 15.88}

DER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-1 above the origin.

31.

a.

D6h

E

2C6

2C3

C2

3C2'

3C2"

i

2S3

2S6

sh

3sd

3sv

A1g

1

1

1

1

1

1

1

1

1

1

1

1

x2+y2,z2

A2g

1

1
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1

1

-1

-1

1

1

1

1

-1

-1

Rz

B1g

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

B2g

1

-1

1

-1

-1

1

1

-1

1

-1

-1

1

E1g
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2

1

-1

-2

0

0

2

1

-1

-2

0

0

Rx,Ry

(xz,yz)

E2g

2

-1

-1

2

0

0

2

-1

-1

2

0

0

(x2-y2,xy)

A1u

1

1

1

1

1

1

-1

-1

-1
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-1

-1

-1

A2u

1

1

1

1

-1

-1

-1

-1

-1

-1

1

1

z

B1u

1

-1

1

-1

1

-1

-1

1

-1

1

-1

1

B2u

1

-1

1

-1

-1

1

-1
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1

-1

1

1

-1

E1u

2

1

-1

-2

0

0

-2

-1

1

2

0

0

(x,y)

E2u

2

-1

-1

2

0

0

-2

1

1

-2

0

0

GC-H

6

0

0

0

0
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2

0

0

0

6

2

0

b. The number of irreducible representations may be found by using the following formula:

nirrep = ,

where g = the order of the point group (24 for D6h).

nA1g =

= {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

+(3)(0)(1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(1)

+(2)(0)(1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(1)}

= 1

nA2g = {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

+(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)

+(2)(0)(1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(-1)}

= 0

nB1g = {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

+(3)(0)(1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(-1)

+(2)(0)(1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(-1)}

= 0

nB2g = {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

+(3)(0)(-1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(-1)

+(2)(0)(1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(1)}

= 0

nE1g = {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)

+(2)(0)(-1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

= 0

nE2g = {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(-1)

+(2)(0)(-1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}

= 1

nA1u = {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

+(3)(0)(1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(-1)

+(2)(0)(-1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(-1)}
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= 0

nA2u = {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

+(3)(0)(-1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(-1)

+(2)(0)(-1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(1)}

= 0

nB1u = {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

+(3)(0)(1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(1)

+(2)(0)(-1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(1)}

= 0

nB2u = {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

+(3)(0)(-1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(1)

+(2)(0)(-1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(-1)}

= 1

nE1u = {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)

+(2)(0)(1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}

= 1

nE2u = {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

+(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(1)

+(2)(0)(1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}

= 0

We see that GC-H = A1gÅE2gÅB2uÅE1u

c. x and y Þ E1u , z Þ A2u , so, the ground state A1g level can be excited to the degenerate E1u level by coupling through the x or y
transition dipoles. Therefore E1u is infrared active and ^ polarized.

d. (x2 + y2, z2) Þ A1g, (xz, yz) Þ E1g, (x2 - y2, xy) Þ E2g ,so, the ground state A1g level can be excited to the degenerate E2g
level by coupling through the x2 - y2 or xy transitions or be excited to the degenerate A1g level by coupling through the xz or yz
transitions. Therefore A1g and E2g are Raman active..

e. The B2u mode is not IR or Raman active.

32.

a. Evaluate the z-component of mfi:

mfi = <2pz|e r Cosq|1s>, where y1s = e , and y2pz = r Cosq e .

mfi = <r Cosq e |e r Cosq|e >

= <r Cosq e |e r Cosq|e >

= Cos2q

= 2p

= 2p Cos3q\s\up15(p0

= 2p

= = = 0.7449

b. Examine the symmetry of the integrands for <2pz| e x |1s> and <2pz| e y |1s>. Consider reflection in the xy plane:

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.31 https://chem.libretexts.org/@go/page/11570

Function

Symmetry

2pz

-1

x

+1

1s

+1

y

+1

Under this operation, the integrand of <2pz| e x |1s> is (-1)(1)(1) = -1 (it is antisymmetric) and hence <2pz| e x |1s> = 0.

Similarly, under this operation the integrand of <2pz| e y |1s> is

(-1)(1)(1) = -1 (it is also antisymmetric) and hence <2pz| e y |1s> = 0.

c. tR = ,

Ei = E2pz = -Z2

Ef = E1s = -Z2

Ei - Ef = Z2

Making the substitutions for Ei - Ef and |mfi| in the expression for tR we obtain:

tR = ,

= ,

= ,

Inserting e2 = we obtain:

tR = =

= 25.6289

= 25,6289 x

= 1.595x10-9 sec x

So, for example:

Atom

tR

H

1.595 ns

He+

99.7 ps

Li+2

19.7 ps

Be+3

6.23 ps

Ne+9
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159 fs

33.

a. H = H0 + lH'(t), H'(t) = Vq(t), H0jk = Ekjk, wk = Ek/

i= Hy

let y(r,t) = iand insert into the Schrödinger equation:

ie-iwjtjj = ijj

e-iwjtjj = 0

e-iwjt = 0

im e-iwmt = e-iwjt

So,

m = e-i(wjm)t

Going back a few equations and multiplying from the left by jk instead of jm we obtain:

e-iwjt = 0

ik e-iwkt = e-iwjt

So,

k = e-i(wjk)t

Now, let:

cm = cm(0) + cm(1)l + cm(2)l2 + ...

ck = ck(0) + ck(1)l + ck(2)l2 + ...

and substituting into above we obtain:

m(0) + m(1)l + m(2)l2 + ... = lH'mj e-i(wjm)t

first order:

m(0) = 0 Þ cm(0) = 1

second order:

m(1) =

(n+1)st order:

m(n) =

Similarly:

first order:

k(0) = 0 Þ ck¹m(0) = 0

second order:

k(1) =

(n+1)st order:

k(n) =

So,

m(1) = cm(0) H'mm e-i(wmm)t = H'mm

cm(1)(t) = =

and similarly,
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k(1) = cm(0) H'km e-i(wmk)t = H'km e-i(wmk)t

ck(1)(t) = Vkm =

m(2) =

m(2) = H'mj e-i(wjm)t + H'mm

cm(2) = e-i(wjm)t' -

= -

= -

= + t -

Similarly,

k(2) =

= H'kj e-i(wjk)t +

H'km e-i(wmk)t

ck(2)(t) = e-i(wjk)t'

- e-i(wmk)t'

=

- h,-e-i(wmk

=

+ h,-e-i(wmk

=

+

So, the overall amplitudes cm, and ck, to second order are:

cm(t) = 1 + + t +

-

ck(t) = +

+ e-i(wmk)t +

b. The perturbation equations still hold:

m(n) = ; k(n) =

So, cm(0) = 1 and ck(0) = 0

m(1) = H'mm

cm(1) = Vmm =

k(1) = H'km e-i(wmk)t

ck(1) = Vkm =

=

m(2) = e-i(wmj+h)t Vmj eht e-i(wjm)t +

Vmm eht

cm(2) = -

= e2ht - e2ht

k(2) = e-i(wmj+h)t H'kj e-i(wjk)t +
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H'km e-i(wmk)t

ck(2) = -

= -

Therefore, to second order:

cm(t) = 1 + + e2ht

ck(t) =

+

c. In part a. the c(2)(t) grow linearly with time (for Vmm = 0) while in part b. they remain finite for h > 0. The result in part a. is
due to the sudden turning on of the field.

d. |ck(t)|2 =

=

=

|ck(t)|2 =

Now, look at the limit as h ® 0+:

|ck(t)|2 ¹ 0 when Em = Ek

limhÆ0+a d(Em-Ek)

So, the final result is the 2nd order golden rule expression:

|ck(t)|2 = d(Em-Ek)limhÆ0+

34.

a. Tnm »

evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since the spherical harmonics will integrate to
unity) where V = (e2/r), the change in Coulomb potential when tritium becomes He:

<1s|V|2s> = e e r2dr

<1s|V|2s> =

=

<1s|V|2s> =

<1s|V|2s> = =

Now,

En = -, E1s = -, E2s = -, E2s - E1s =

So,

Tnm = = = = 0.312 (for Z = 1)

b. jm(r) = j1s = 2e Y00

The orthogonality of the spherical harmonics results in only s-states having non-zero values for Anm. We can then drop the Y00
(integrating this term will only result in unity) in determining the value of A1s,2s.

yn(r) = y2s = e

Remember for j1s Z = 1 and for y2s Z = 2

Anm = e e r2dr

Anm = e r2dr

Anm =
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We obtain:

Anm =

Anm =

Anm =

Anm = -2

The transition probability is the square of this amplitude:

Tnm = = = 0.25 (for Z = 1).

The difference in these two results (parts a. and b.) will become negligible at large values of Z when the perturbation becomes less
significant than in the case of Z = 1.

35.

is along Z (lab fixed), and is along z (the C-I molecule fixed bond). The angle between Z and z is b:

.= emCosb = emD

So,

I = <D|.|D> = Sinbdbdgda

= emSinbdbdgda.

Now use:

DD= *,

to obtain:

I = em*Sinbdbdgda.

Now use:

Sinbdbdgda = dJjdMmdKn,

to obtain:

I = em*dJjdMmdKn

= em<J'M'10|JM><JK|J'K'10>.

We use:

<JK|J'K'10> =

and,

<J'M'10|JM> =

to give:

I = em

= em8p2(-i)(J'-1+M+J'-1+K)

= em8p2(-i)(M+K)

The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.

So,

I = em8p2(-i)(M+K)dM'MdK'K.

b. and vanish unless J' = J + 1, J, J - 1

\ DJ = ±1, 0

The K quantum number can not change because the dipole moment lies along the molecule's C3 axis and the light's electric field
thus can exert no torque that twists the molecule about this axis. As a result, the light can not induce transitions that excite the
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molecule's spinning motion about this axis.

36.

a. B atom: 1s22s22p1, 2P ground state L = 1, S = , gives a degeneracy ((2L+1)(2S+1)) of 6.

O atom: 1s22s22p4, 3P ground state L = 1, S = 1, gives a degeneracy ((2L+1)(2S+1)) of 9.

The total number of states formed is then (6)(9) = 54.

b. We need only consider the p orbitals to find the low lying molecular states:

Which, in reality look like this:

This is the correct ordering to give a 2S+ ground state. The only low-lying electron configurations are 1p35s2 or 1p45s1. These
lead to 2P and 2S+ states, respectively.

c. The bond orders in both states are 2.5.

d. The 2S is + but g/u symmetry cannot be specified since this is a heteronuclear molecule.

e. Only one excited state, the 2P, is spin-allowed to radiate to the 2S+. Consider symmetries of transition moment operators that
arise in the electric dipole contributions to the transition rate z ® S+, x,y ® P, \ the 2P ® 2S+ is electric dipole allowed via a
perpendicular band.

f. Since ionization will remove a bonding electron, the BO+ bond is weaker than the BO bond.

g. The ground state BO+ is 1S+ corresponding to a 1p4 electron configuration. An electron configuration of 1p3 5s1 leads to a 3P
and a 1P state. The 3P will be lower in energy. A 1p2 5s2 configuration will lead to higher lying states of 3S-, 1D, and 1S+.

h. There should be 3 bands corresponding to formation of BO+ in the 1S+, 3P, and 1P states. Since each of these involves removing
a bonding electron, the Franck-Conden integrals will be appreciable for several vibrational levels, and thus a vibrational
progression should be observed.

37.

a. The bending (p) vibration is degenerate.

b. H---CºN

Ý

bending fundamental

c. H---CºN

Ý

stretching fundamental

d. CH stretch (n3 in figure) is s, CN stretch is s, and HCN (n2 in figure) bend is p.

e. Under z (s) light the CN stretch and the CH stretch can be excited, since y0 = s, y1 = s and z = s provides coupling.

f. Under x,y (p) light the HCN bend can be excited, since y0 = s, y1 = p and x,y = p provides coupling.

g. The bending vibration is active under (x,y) perpendicular polarized light. DJ = 0, ±1 are the selection rules for ^ transitions. The
CH stretching vibration is active under (z) || polarized light. DJ = ±1 are the selection rules for || transitions.

38.

F fi = ei fj = h fi + fi

Let the closed shell Fock potential be written as:

Vij = , and the 1e- component as:

hij = fi| - Ñ2 - |fj , and the delta as:

dij = , so that: hij + Vij = dijei.

using: fi = , fj = , and fk = , and transforming from the MO to AO basis we obtain:
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Vij = CmiCgkCnjCkk

=

= Vmn where,

Vmn = Pgk, and Pgk = ,

hij = hmn , where

hmn = cm| - Ñ2 - |cn , and

dij = = .

So, hij + Vij = dijej becomes:

hmn + Vmn = ej ,

ej - hmn - Vmn = 0 for all i,j

CmiCnj = 0 for all i,j

Therefore,

Cnj = 0

This is FC = SCE in the AO basis.

39.

The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin orbitals is:

E = = +

= +

= +

If all orbitals are doubly occupied and we carry out the spin integration we obtain:

E = 2+ ,

where i and j now refer to orbitals (not spin-orbitals).

40.

If the occupied orbitals obey Ffk = ekfk , then the expression for E in problem 39 can be rewritten as.

E = +

We recognize the closed shell Fock operator expression and rewrite this as:

E = + =

41.

I will use the QMIC software to do this problem. Lets just start from the beginning. Get the starting "guess" MO coefficients on
disk. Using the program MOCOEFS it asks us for the first and second MO vectors. We input 1, 0 for the first mo (this means that
the first MO is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding MO is more likely to be heavily weighted on
the atom having the higher nuclear charge) and 0, 1 for the second. Our beginning LCAO-MO array looks like: and is placed on
disk in a file we choose to call "mocoefs.dat". We also put the AO integrals on disk using the program RW_INTS. It asks for the
unique one- and two- electron integrals and places a canonical list of these on disk in a file we choose to call "ao_integrals.dat". At
this point it is useful for us to step back and look at the set of equations which we wish to solve: FC = SCE. The QMIC software
does not provide us with a so-called generalized eigenvalue solver (one that contains an overlap matrix; or metric), so in order to
use the diagonalization program that is provided we must transform this equation (FC = SCE) to one that looks like (F'C' = C'E).
We do that in the following manner:

Since S is symmetric and positive definite we can find an Ssuch that SS= 1, SS = S, etc.

rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on the left by S. This gives:

SFSSC = SSCE = SCE.
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Letting: F' = SFS

C' = SC, and inserting these expressions above give:

F'C' = C'E

Note, that to get the next iteration’s MO coefficients we must calculate C from C':

C' = SC, so, multiplying through on the left by Sgives:

SC' = SSC = C

This will be the method we will use to solve our fock equations.

Find Sby using the program FUNCT_MAT (this program generates a function of a matrix). This program will ask for the elements
of the S array and write to disk a file (name of your choice ... a good name might be "shalf") containing the Sarray. Now we are
ready to begin the iterative Fock procedure.

a. Calculate the Fock matrix, F, using program FOCK which reads in the MO coefficients from "mocoefs.dat" and the integrals
from "ao_integrals.dat" and writes the resulting Fock matrix to a user specified file (a good filename to use might be something like
"fock1").

b. Calculate F' = SFSusing the program UTMATU which reads in F and Sfrom files on the disk and writes F' to a user specified file
(a good filename to use might be something like "fock1p"). Diagonalize F' using the program DIAG. This program reads in the
matrix to be diagonalized from a user specified filename and writes the resulting eigenvectors to disk using a user specified
filename (a good filename to use might be something like "coef1p"). You may wish to choose the option to write the eigenvalues
(Fock orbital energies) to disk in order to use them at a later time in program FENERGY. Calculate C by using. C = SC'. This is
accomplished by using the program MATXMAT which reads in two matrices to be multiplied from user specified files and writes
the product to disk using a user specified filename (a good filename to use might be something like "mocoefs.dat").

c. The QMIC program FENERGY calculates the total energy:

2<k|h|k> + 2<kl|kl> - <kl|lk> + , and

ek + <k|h|k> + .

This is the conclusion of one iteration of the Fock procedure ... you may continue by going back to part a. and proceeding onward.

d. and e. Results for the successful convergence of this system using the supplied QMIC software are as follows (this data is
provided to give the student assurance that they are on the right track; alternatively one could switch to the QMIC program SCF
and allow that program to iteratively converge the Fock equations):

The one-electron AO integrals:

The two-electron AO integrals:

1 1 1 1 1.054700

2 1 1 1 0.4744000

2 1 2 1 0.5664000

2 2 1 1 0.2469000

2 2 2 1 0.3504000

2 2 2 2 0.6250000

The "initial" MO-AO coefficients:

AO overlap matrix (S):

S

**************

ITERATION 1

**************
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The charge bond order matrix:

The Fock matrix (F):

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9779331

2 1 1 1 0.1924623

2 1 2 1 0.5972075

2 2 1 1 0.1170838

2 2 2 1 -0.0007945194

2 2 2 2 0.6157323

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84219933

from formula:

ek + <k|h|k> + = -2.80060530

the difference is: -0.04159403

**************

ITERATION 2

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9626070

2 1 1 1 0.1949828

2 1 2 1 0.6048143

2 2 1 1 0.1246907

2 2 2 1 0.003694540

2 2 2 2 0.6158437

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84349298
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from formula:

ek + <k|h|k> + = -2.83573675

the difference is: -0.00775623

**************

ITERATION 3

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9600707

2 1 1 1 0.1953255

2 1 2 1 0.6060572

2 2 1 1 0.1259332

2 2 2 1 0.004475587

2 2 2 2 0.6158972

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84353018

from formula:

ek + <k|h|k> + = -2.84225941

the difference is: -0.00127077

**************

ITERATION 4

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9596615

2 1 1 1 0.1953781

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.41 https://chem.libretexts.org/@go/page/11570

2 1 2 1 0.6062557

2 2 1 1 0.1261321

2 2 2 1 0.004601604

2 2 2 2 0.6159065

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84352922

from formula:

ek + <k|h|k> + = -2.84332418

the difference is: -0.00020504

**************

ITERATION 5

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9595956

2 1 1 1 0.1953862

2 1 2 1 0.6062872

2 2 1 1 0.1261639

2 2 2 1 0.004621811

2 2 2 2 0.6159078

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84352779

from formula:

ek + <k|h|k> + = -2.84349489

the difference is: -0.00003290

**************

ITERATION 6

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:
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Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9595859

2 1 1 1 0.1953878

2 1 2 1 0.6062925

2 2 1 1 0.1261690

2 2 2 1 0.004625196

2 2 2 2 0.6159083

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84352827

from formula:

ek + <k|h|k> + = -2.84352398

the difference is: -0.00000429

**************

ITERATION 7

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9595849

2 1 1 1 0.1953881

2 1 2 1 0.6062936

2 2 1 1 0.1261697

2 2 2 1 0.004625696

2 2 2 2 0.6159083

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84352922

from formula:

ek + <k|h|k> + = -2.84352827

the difference is: -0.00000095

**************

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.43 https://chem.libretexts.org/@go/page/11570

ITERATION 8

**************

The charge bond order matrix:

The Fock matrix:

S F S

The eigenvalues of this matrix (Fock orbital energies) are:

Their corresponding eigenvectors (C' = S * C) are:

The "new" MO-AO coefficients (C = S * C'):

The one-electron MO integrals:

The two-electron MO integrals:

1 1 1 1 0.9595841

2 1 1 1 0.1953881

2 1 2 1 0.6062934

2 2 1 1 0.1261700

2 2 2 1 0.004625901

2 2 2 2 0.6159081

The closed shell Fock energy from formula:

2<k|h|k> + 2<kl|kl> - <kl|lk> + = -2.84352827

from formula:

ek + <k|h|k> + = -2.84352827

the difference is: 0.00000000

f. In looking at the energy convergence we see the following:

Iter

Formula 1

Formula 2

1

-2.84219933

-2.80060530

2

-2.84349298

-2.83573675

3

-2.84353018

-2.84225941

4

-2.84352922

-2.84332418

5
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-2.84352779

-2.84349489

6

-2.84352827

-2.84352398

7

-2.84352922

-2.84352827

8

-2.84352827

-2.84352827

If you look at the energy differences (SCF at iteration n - SCF converged) and plot this data versus iteration number, and do a 5th
order polynomial fit, we see the following:

In looking at the polynomial fit we see that the convergence is primarily linear since the coefficient of the linear term is much
larger than those of the cubic and higher terms.

g. The converged SCF total energy calculated using the result of problem 40 is an upper bound to the ground state energy, but,
during the iterative procedure it is not. Only at convergence does the expectation value of the Hamiltonian for the Hartree Fock
determinant become equal to that given by the equation in problem 40.

h. Yes, the 1s2 configuration does dissociate properly because at at R®¥ the lowest energy state is He + H+, which also has a 1s2
orbital occupancy (i.e., 1s2 on He and 1s0 on H+).

42.

2. At convergence the MO coefficients are:

f1 = f2 =

and the integrals in this MO basis are:

h11 = -2.615842 h21 = -0.1953882 h22 = -1.315354

g1111 = 0.9595841 g2111 = 0.1953881 g2121 = 0.6062934

g2211 = 0.1261700 g2221 = 004625901 g2222 = 0.6159081

a. H = =

=

=

b. The eigenvalues are E1 = -4.279131 and E2 = -2.007770. The corresponding eigenvectors are:

C1 = , C2 =

c.

=

=

= a- b.

d. The third configuration |1s2s| = ,

Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI:

H =

=
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Evaluating the new matrix elements:

H13 = H31 = *(-0.1953882 + 0.1953881) = 0.0

H23 = H32 = *(-0.1953882 + 0.004626) = -0.269778

H33 = -2.615842 - 1.315354 + 0.606293 + 0.126170

= -3.198733

=

e. The eigenvalues are E1 = -4.279345, E2 = -3.256612 and E3 = -1.949678. The corresponding eigenvectors are:

C1 = , C2 = , C3 =

f. We need the non-vanishing matrix elements of the dipole operator in the MO basis. These can be obtained by calculating them by
hand. They are more easily obtained by using the TRANS program. Put the 1e- AO integrals on disk by running the program
RW_INTS. In this case you are inserting z11 = 0.0, z21 = 0.2854, and z22 = 1.4 (insert 0.0 for all the 2e- integrals) ... call the
output file "ao_dipole.ints" for example. The converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine). The
transformed integrals can be written to a file (name of your choice) for example "mo_dipole.ints". These matrix elements are:

z11 = 0.11652690, z21 = -0.54420990, z22 = 1.49117320

The excitation energies are E2 - E1 = -3.256612 - -4.279345 = 1.022733, and

E3 - E1 = -1.949678.- -4.279345 = 2.329667.

Using the Slater-Conden rules to obtain the matrix elements between configurations we obtain:

Hz =

=

=

Now, <Y1|z|Y2> = C1THzC2, (this can be accomplished with the program UTMATU)

= T

= -.757494

and, <Y1|z|Y3> = C1THzC3

= T

= 0.014322

g. Using the converged coefficients the orbital energies obtained from solving the Fock equations are e1 = -1.656258 and e2 =
-0.228938. The resulting expression for the PT first-order wavefunction becomes:

|1s2>(1) = - |2s2>

|1s2>(1) = - |2s2>

|1s2>(1) = -0.0441982|2s2>

h. As you can see from part c., the matrix element <1s2|H|1s2s> = 0 (this is also a result of the Brillouin theorem) and hence this
configuration does not enter into the first-order wavefunction.

i. |0> = |1s2> - 0.0441982|2s2>. To normalize we divide by:

= 1.0009762

|0> = 0.999025|1s2> - 0.044155|2s2>

In the 2x2 CI we obtained:

|0> = 0.99845123|1s2> - 0.05563439|2s2>

j. The expression for the 2nd order RSPT is:

E(2) = - = -
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= -0.005576 au

Comparing the 2x2 CI energy obtained to the SCF result we have:

-4.279131 - (-4.272102) = -0.007029 au

43. STO total energy: -2.8435283

STO3G total energy -2.8340561

3-21G total energy -2.8864405

The STO3G orbitals were generated as a best fit of 3 primitive Gaussians (giving 1 CGTO) to the STO. So, STO3G can at best
reproduce the STO result. The 3-21G orbitals are more flexible since there are 2 CGTOs per atom. This gives 4 orbitals (more
parameters to optimize) and a lower total energy.

44.

R

HeH+ Energy

H2 Energy

1.0

-2.812787056

-1.071953297

1.2

-2.870357513

-1.113775015

1.4

-2.886440516

-1.122933507

1.6

-2.886063576

-1.115567684

1.8

-2.880080938

-1.099872589

2.0

-2.872805595

-1.080269098

2.5

-2.856760263

-1.026927710

10.0

-2.835679293

-0.7361705303

Plotting total energy vs. geometry for HeH+:

Plotting total energy vs. geometry for H2:
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For HeH+ at R = 10.0 au, the eigenvalues of the converged Fock matrix and the corresponding converged MO-AO coefficients are:

-.1003571E+01

-.4961988E+00

.5864846E+00

.1981702E+01

.4579189E+00

-.8245406E-05

.1532163E-04

.1157140E+01

.6572777E+00

-.4580946E-05

-.6822942E-05

-.1056716E+01

-.1415438E-05

.3734069E+00

.1255539E+01

-.1669342E-04

.1112778E-04

.7173244E+00

-.1096019E+01

.2031348E-04

Notice that this indicates that orbital 1 is a combination of the s functions on He only (dissociating properly to He + H+).

For H2 at R = 10.0 au, the eigenvalues of the converged Fock matrix and the corresponding converged MO-AO coefficients are:

-.2458041E+00

-.1456223E+00

.1137235E+01

.1137825E+01

.1977649E+00

-.1978204E+00

.1006458E+01

-.7903225E+00

.5632566E+00

-.5628273E+00

-.8179120E+00

.6424941E+00

.1976312E+00

.1979216E+00

.7902887E+00
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.1006491E+01

.5629326E+00

.5631776E+00

-.6421731E+00

-.8181460E+00

Notice that this indicates that orbital 1 is a combination of the s functions on both H atoms (dissociating improperly; equal
probabilities of H2 dissociating to two neutral atoms or to a proton plus hydride ion).

45. The H2 CI result:

R

1Sg+

3Su+

1Su+

1Sg+

1.0

-1.074970

-0.5323429

-0.3997412

0.3841676

1.2

-1.118442

-0.6450778

-0.4898805

0.1763018

1.4

-1.129904

-0.7221781

-0.5440346

0.0151913

1.6

-1.125582

-0.7787328

-0.5784428

-0.1140074

1.8

-1.113702

-0.8221166

-0.6013855

-0.2190144

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.49 https://chem.libretexts.org/@go/page/11570

2.0

-1.098676

-0.8562555

-0.6172761

-0.3044956

2.5

-1.060052

-0.9141968

-0.6384557

-0.4530645

5.0

-0.9835886

-0.9790545

-0.5879662

-0.5802447

7.5

-0.9806238

-0.9805795

-0.5247415

-0.5246646

10.0

-0.980598

-0.9805982

-0.4914058

-0.4913532

For H2 at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding determinant amplitudes are:

determinant

-1.129904

-0.722178

-0.544035

0.015191

|1sga1sgb|

0.99695

0.00000

0.00000

0.07802

|1sgb1sua|

0.00000
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0.70711

0.70711

0.00000

|1sga1sub|

0.00000

0.70711

-0.70711

0.00000

|1sua1sub|

-0.07802

0.00000

0.00000

0.99695

This shows, as expected, the mixing of the first 1Sg+ (1sg2) and the 2nd 1Sg+ (1su2) determinants in the first and fourth states, and
the

3Su+ = (),

and 1Su+= ()

states as the second and third states.

Also notice that the first 1Sg+ state has coefficients (0.99695 - 0.07802) (note specifically the + - combination) and the second
1Sg+ state has the opposite coefficients with the same signs (note specifically the + + combination). The + + combination always
gives a higher energy than the + - combination.

46.

F atoms have 1s22s22p5 2P ground electronic states that are split by spin-orbit coupling into 2P3/2 and 2P1/2 states that differ by
only 0.05 eV in energy.

a.

The degeneracy of a state having a given J is 2J+1, and the J=3/2 state is lower in energy because the 2p orbital shell is more than
half filled (I learned this in inorganic chemistry class), so

qel = 4 exp(-0/kT) + 2 exp(-0.05 eV/kT).

0.05 eV is equivalent to k(500 K), so 0.05/kT = 500/T, hence

qel = 4 exp(-0/kT) + 2 exp(-500/T).

b.

Q = qN/N!

so, ln Q = N lnq – lnN!

E =kT2 ∂lnQ/∂T = NkT2 ∂lnq/∂T = Nk{1000 exp(-500/T)/[4 + 2 exp(-500/T)]}

c. Using the fact that kT=0.03eV at T=300°K, make a (qualitative) graph of /N vs T for T ranging from 100°K to 3000°K.

At T = 100 K, E/N is small and equal to 1000k exp(-5)/(4 + 2 exp(-5)).

At T = 3000 K, E/N has grown to 1000k exp(-1/6)/(4 + 2 exp(-1/6)) which is

approximately 1000k/6.

47.

a.
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The difference between a linear and bent transition state would arise in the vibrational and rotational partition functions. For the
linear TS, one has 3N-6 vibrations (recall that one loses one vibration as a reaction coordinate), but for the bent TS, one has 3N-7
vibrations. For the linear TS, one has 2 rotational axes, and for the bent TS, one has 3.

So the ratio of rate constants will reduce to ratios of vibration and rotation partition functions. In particular, one will have

klinear/kbent = (qvib3N-6 qrot2/qvib3N-7qrot3) = (qvib/qrot).

b. Using

qt ~ 108, qr ~ 102, qv ~ 1,

I would expect klinear/kbent to be of the order of 1/102 = 10-2.

48.

Constructing the Slater determinant corresponding to the "state" 1s(a)1s(a) with the rows labeling the orbitals and the columns
labeling the electron gives:

|1sa1sa| =

=

= 0

49.

Starting with the MS=1 3S state (which in a "box" for this ML=0, MS=1 case would contain only one product function; |1sa2sa|)
and applying S- gives:

S- 3S(S=1,MS=1) = 3S(S=1,MS=0)

= 3S(S=1,MS=0)

= |1sa2sa|

= S-(1)|1sa2sa| + S-(2)|1sa2sa|

= |1sb2sa|

+ |1sa2sb|

=

So, 3S(S=1,MS=0) =

3S(S=1,MS=0) =

The three triplet states are then:

3S(S=1,MS=1)= |1sa2sa|,

3S(S=1,MS=0) = , and

3S(S=1,MS=-1) = |1sb2sb|.

The singlet state which must be constructed orthogonal to the three singlet states (and in particular to the 3S(S=1,MS=0) state) can
be seen to be:

1S(S=0,MS=0) = .

Applying S2 and Sz to each of these states gives:

Sz |1sa2sa| = |1sa2sa|

= Sz(1)|1sa2sa| + Sz(2))|1sa2sa|

= |1sa2sa| + |1sa2sa|

= |1sa2sa|

S2 |1sa2sa| = (S-S+ + Sz2 + Sz) |1sa2sa|

= S-S+|1sa2sa| + Sz2|1sa2sa| + Sz|1sa2sa|

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11570?pdf


9.1.52 https://chem.libretexts.org/@go/page/11570

= 0 + 2 |1sa2sa| + 2|1sa2sa|

= 22 |1sa2sa|

Sz =

= |1sb2sa|

+ |1sa2sb|

= |1sb2sa|

+ |1sa2sb|

= 0

S2 = (S-S+ + Sz2 + Sz)

= S-S+

=

=

= 2

= 2

= 2 2

Sz |1sb2sb| = |1sb2sb|

= Sz(1)|1sb2sb| + Sz(2))|1sb2sb|

= |1sb2sb| + |1sb2sb|

= -|1sb2sb|

S2 |1sb2sb| = (S+S- + Sz2 - Sz) |1sb2sb|

= S+S-|1sb2sb| + Sz2|1sb2sb| - Sz|1sb2sb|

= 0 + 2 |1sb2sb| + 2|1sb2sb|

= 22 |1sb2sb|

Sz =

= |1sb2sa|

- |1sa2sb|

= |1sb2sa|

- |1sa2sb|

= 0

S2 = (S-S+ + Sz2 + Sz)

= S-S+

=

=

= 0

= 0

= 0 2

50.

As shown in problem 22c, for two equivalent p electrons one obtains six states:
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1D (ML=2); one state (MS=0),

1D (ML=-2); one state (MS=0),

1S (ML=0); one state (MS=0), and

3S (ML=0); three states (MS=1,0, and -1).

By inspecting the "box" in problem 22c, it should be fairly straightforward to write down the wavefunctions for each of these:

1D (ML=2); |p1ap1b|

1D (ML=-2); |p-1ap-1b|

1S (ML=0);

3S (ML=0, MS=1); |p1ap-1a|

3S (ML=0, MS=0);

3S (ML=0, MS=-1); |p1bp-1b|

51.

We can conveniently couple another s electron to the states generated from the 1s12s1 configuration:

3S(L=0, S=1) with 3s1(L=0, S=) giving:

L=0, S=, ; 4S (4 states) and 2S (2 states).

1S(L=0, S=0) with 3s1(L=0, S=) giving:

L=0, S=; 2S (2 states).

Constructing a "box" for this case would yield:

ML

MS

0

|1sa2sa3sa|

|1sa2sa3sb|, |1sa2sb3sa|, |1sb2sa3sa|

One can immediately identify the wavefunctions for two of the quartets (they are single entries):

4S(S=,MS=): |1sa2sa3sa|

4S(S=,MS=-): |1sb2sb3sb|

Applying S- to 4S(S=,MS=) yields:

S-4S(S=,MS=) = 4S(S=,MS=)

= 4S(S=,MS=)

S-|1sa2sa3sa| =

So, 4S(S=,MS=) =

Applying S+ to 4S(S=,MS=-) yields:

S+4S(S=,MS=-) = 4S(S=,MS=-)

= 4S(S=,MS=-)

S+|1sb2sb3sb| =

So, 4S(S=,MS=-) =

It only remains to construct the doublet states which are orthogonal to these quartet states. Recall that the orthogonal combinations
for systems having three equal components (for example when symmetry adapting the 3 sp2 hybrids in C2v or D3h symmetry) give
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results of + + +, +2 - -, and 0 + -. Notice that the quartets are the + + + combinations and therefore the doublets can be recognized
as:

2S(S=,MS=) =

2S(S=,MS=) =

2S(S=,MS=-) =

2S(S=,MS=-) =

52.

As illustrated in problem 24, a p2 configuration (two equivalent p electrons) gives rise to the term symbols: 3P, 1D, and 1S.
Coupling an additional electron (3d1) to this p2 configuration will give the desired 1s22s22p23d1 term symbols:

3P(L=1,S=1) with 2D(L=2,S=) generates;

L=3,2,1, and S=, with term symbols 4F, 2F,4D, 2D,4P, and 2P,

1D(L=2,S=0) with 2D(L=2,S=) generates;

L=4,3,2,1,0, and S=with term symbols 2G, 2F, 2D, 2P, and 2S,

1S(L=0,S=0) with 2D(L=2,S=) generates;

L=2 and S=with term symbol 2D.

53. The notation used for the Slater Condon rules will be as follows:

(a.) zero (spin orbital) difference;

= +

= +

(b.) one (spin orbital) difference (fp ¹ fp');

= +

= fpp' +

(c.) two (spin orbital) differences (fp ¹ fp' and fq ¹ fq');

= -

= gpqp'q' - gpqq'p'

(d.) three or more (spin orbital) differences;

= 0

i. 3P(ML=1,MS=1) = |p1ap0a|

= <| 10| H | 10|>

Using the Slater Condon rule (a.) above (I will denote these SCa-SCd):

= f11 + f00 + g1010 - g1001

ii. 3P(ML=0,MS=0) =

=

+ + )

Evaluating each matrix element gives:

= f1a1a + f-1b-1b + g1a-1b1a-1b - g1a-1b-1b1a (SCa)

= f11 + f-1-1 + g1-11-1 - 0

= g1a-1b1b-1a - g1a-1b-1a1b (SCc)

= 0 - g1-1-11
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= g1b-1a1a-1b - g1b-1a-1b1a (SCc)

= 0 - g1-1-11

= f1b1b + f-1a-1a + g1b-1a1b-1a - g1b-1a-1a1b (SCa)

= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

=

+ f11 + f-1-1 + g1-11-1)

= f11 + f-1-1 + g1-11-1 - g1-1-11

iii. 1S(ML=0,MS=0);

=

- -

+ +

- +

+ )

Evaluating each matrix element gives:

= f0a0a + f0b0b + g0a0b0a0b - g0a0b0b0a (SCa)

= f00 + f00 + g0000 - 0

=

= g0a0b1a-1b - g0a0b-1b1a (SCc)

= g001-1 - 0

=

= g0a0b-1a1b - g0a0b1b-1a (SCc)

= g00-11 - 0

= f1a1a + f-1b-1b + g1a-1b1a-1b - g1a-1b-1b1a (SCa)

= f11 + f-1-1 + g1-11-1 - 0

=

= g1a-1b-1a1b - g1a-1b1b-1a (SCc)

= g1-1-11 - 0

= f-1a-1a + f1b1b + g-1a1b-1a1b - g-1a1b1b-1a (SCa)

= f-1-1 + f11 + g-11-11 - 0

Substitution of these expressions give:

=

+ g1-11-1 + g1-1-11 - g00-11 + g1-1-11 + f-1-1 + f11 + g-11-11)

=

iv. 1D(ML=0,MS=0) =

Evaluating we note that all the Slater Condon matrix elements generated are the same as those evaluated in part iii. (the signs for
the wavefunction components and the multiplicative factor of two for one of the components, however, are different).

=
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+ f-1-1 + g1-11-1 + g1-1-11 + 2g00-11 + g1-1-11 + f-1-1 + f11

+ g-11-11)

=

54.

i. 1D(ML=2,MS=0) = |p1ap1b|

=

= f1a1a + f1b1b + g1a1b1a1b - g1a1b1b1a (SCa)

= f11 + f11 + g1111 - 0

= 2f11 + g1111

ii. 1S(ML=0,MS=0) =

=

- + )

Evaluating each matrix element gives:

= f1a1a + f-1b-1b + g1a-1b1a-1b - g1a-1b-1b1a (SCa)

= f11 + f-1-1 + g1-11-1 - 0

= g1a-1b1b-1a - g1a-1b-1a1b (SCc)

= 0 - g1-1-11

= g1b-1a1a-1b - g1b-1a-1b1a (SCc)

= 0 - g1-1-11

= f1b1b + f-1a-1a + g1b-1a1b-1a - g1b-1a-1a1b (SCa)

= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

=

= f11 + f-1-1 + g1-11-1+ g1-1-11

iii. 3S(ML=0,MS=0) =

= f11 + f-1-1 + g1-11-1 - 0

= g1a-1b1b-1a - g1a-1b-1a1b (SCc)

= 0 - g1-1-11

= g1b-1a1a-1b - g1b-1a-1b1a (SCc)

= 0 - g1-1-11

= f1b1b + f-1a-1a + g1b-1a1b-1a - g1b-1a-1a1b (SCa)

= f11 + f-1-1 + g1-11-1 - 0

Substitution of these expressions give:

=

= f11 + f-1-1 + g1-11-1- g1-1-11

55.

The order of the answers is J, I, G. K, B, D, E, A, C, H, F

56.
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p = N/(V-Nb) – N2 a/(kTV2)

but p/kT = (∂lnQ/∂V)T,N

so we can integrate to obtain ln Q

lnQ = ò (p/kT) dV = ò [N/(V-Nb) – N2 a/(kTV2)] dV

= N ln(V-Nb) + N2a/kT (1/V)

So,

Q = {(V-Nb)exp[(a/kT) (N/V)]}N

57.

a.

MD because you need to keep track of how far the molecule moves as a function of time and MC does not deal with time.

b.

MC is capable of doing this although MD is also. However, MC requires fewer computational steps, so I would prefer to use it.

c.

MC can do this, as could MD. Again, because MC needs fewer computational steps, I’d use it.

Suppose you are carrying out a Monte-Carlo simulation involving 1000 Ar atoms. Further suppose that the potentials are pairwise
additive and that your computer requires approximately 50 floating point operations (FPO's) (e.g. multiply, add, divide, etc.) to
compute the interaction potential between any pair of atoms

d.

For each MC move, we must compute only the change in potential energy. To do this, we need to compute only the change in the
pair energies that involve the atom that was moved. This will require 999x50 FPOs (the 99 being the number of atoms other than
the one that moved). So, for a million MC steps, I would need 106 x 999 x 50 FPOs. At 100 x106 FPOs per second, this will
require 495 seconds, or a little over eight minutes.

e.

Because the statistical fluctuations in MC calculations are proportional to (1/N)1/2, where N is the number of steps taken, I will
have to take 4 times as many steps to cut the statistical errors in half. So, this will require 4 x 495 seconds or 1980 seconds.

f.

If we have one million rather than one thousand atoms, the 495 second calculation of part d would require

999,999/999

times as much time. This ratio arises because the time to compute the change in potential energy accompanying a MC move is
proportional to the number of other atoms. So, the calculation would take 495 x (999,999/999) seconds or about 500,000 seconds
or about 140 hours.

g.

We would be taking 10-9s/(10-15 s per step) = 106 MD steps.

Each step requires that we compute all forces(-∂V∂RI,J) between all pairs of atoms. There are 1000x999/2 such pairs. So, to
compute all the forces would require

(1000x999/2)x 50 FPOs = 2.5 x107 FPOs. So, we will need

2.5 x107 FPOs/step x 106 steps/(100 FPOs per second)

= 2.5 x105 seconds or about 70 hours.

h.

The graduate student is 108 times slower than the 100 Mflop computer, so it will take her/him 108 times as long, so 495 x108
seconds or about 1570 years.
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58.

First, Na has a 2S ground state term symbol whose degeneracy is 2S + 1 = 2.

Na2 has a 1S ground state whose degeneracy is 1.

The symmetry number for Na2 is s = 2.

The D0 value given is 17.3 kcal mol-1.

The Kp equilibrium constant would be given in terms of partial pressures as (and then using pV=NkT)

Kp = pNa2/pNa2 = (kT)-1 (qNa/V)2/(qNa2/V)

in terms of the partition functions.

a.

qNa = (2pmkT/h2)3/2 V q el

qNA2 = (2pm’kT/h2)3/2 V (8p2IkT/h2) 1/2 [ exp-hn/2kT) (1- exp-hn/kT))-1 exp(De/kT)

We can combine the De and the –hn/2kT to obtain the D0 which is what we were given.

b. For Na (I will use cgs units in all cases):

q/V = (2p 23 1.66x10-24 1.38 x10-16 1000)3/2 2

= (6.54 x1026) x 2 = 1.31 x1027

For Na2:

q/N = 23/2 x (6.54 x1026) (1000/0.221) (1/2) (1-exp(-229/1000))-1 exp(D0/kT)

= 1.85 x1027 (2.26 x103) (4.88) (5.96 x103)

= 1.22 x1035

So,

Kp = [1.22 x1035]/[(1.38 x10-16)(1000) (1.72 x1054)

= 0.50 x10-6 dynes cm-2 = 0.50 atm-1.

59.

The differences in krate will arise from differences in the number of translational, rotational, and vibrational partition functions
arising in the adsorbed and gas-phase species. Recall that

krate = (kT/h) exp(-E*/kT) [qTS/V]/[(qNO/V) (qCl2/V)]

In the gas phase,

NO has 3 translations, two rotations, and one vibration 
Cl2 has 3 translations, two rotations, and one vibration

the NOCl2 TS, which is bent, has 3 translations, three rotations, and five vibrations (recall that one vibration is missing and is the
reaction coordinate)

In the adsorbed state,

NO has 2 translations, one rotation, and three vibrations 
Cl2 has 2 translations, one rotation, and three vibrations

the NOCl2 TS, which is bent, has 2 translations, one rotation, and eight vibrations (again, one vibration is missing and is the
reaction coordinate).

So, in computing the partition function ratio:

[qTS/V]/[(qNO/V) (qCl2/V)]

for the adsorbed and gas-phase cases, one does not obtain the same number of translational, rotational, and vibrational factors. In
particular, the ratio of these factors for the adsorbed and gas-phase cases gives the ratio of rate constants as follows:
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kad/kgas = (qtrans/V)/qvib

which should be of the order of 108 (using the ratio of partition functions as given).

Notice that this result suggests that reaction rates can be altered by constraining the reacting species to move freely in lower
dimensions even if one does not alter the energetics (e.g., activation energy or thermochemistry).
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