
6.3.1 https://chem.libretexts.org/@go/page/162847

6.3: The Hartree-Fock Approximation
Unfortunately, the Hartree approximation ignores an important property of electronic wavefunctions- their permutational
antisymmetry. The full electronic Hamiltonian

is invariant (i.e., is left unchanged) under the operation  in which a pair of electrons have their labels (i, j) permuted. We say
that  commutes with the permutation operator . This fact implies that any solution  to  must also be an
eigenfunction of  Because permutation operators are idempotent, which means that if one applies  twice, one obtains the
identity , it can be seen that the eigenvalues of  must be either  or . That is, if , then , but 

 means that , so  or .

As a result of  commuting with electron permutation operators and of the idempotency of , the eigenfunctions  must either be
odd or even under the application of any such permutation. Particles whose wavefunctions are even under  are called Bose
particles or Bosons; those for which  is odd are called Fermions. Electrons belong to the latter class of particles.

The simple spin-orbital product function used in Hartree theory

does not have the proper permutational symmetry. For example, the Be atom function

is not odd under the interchange of the labels of electrons 3 and 4; instead one obtains

However, such products of spin-orbitals (i.e., orbitals multiplied by  or  spin functions) can be made into properly antisymmetric
functions by forming the determinant of an  matrix whose row index labels the spin orbital and whose column index labels
the electron. For example, the Be atom function  produces the  matrix whose determinant is
shown below

Clearly, if one were to interchange any columns of this determinant, one changes the sign of the function. Moreover, if a
determinant contains two or more rows that are identical (i.e., if one attempts to form such a function having two or more spin-
orbitals equal), it vanishes. This is how such antisymmetric wavefunctions embody the Pauli exclusion principle.

A convenient way to write such a determinant is as follows:

where the sum is over all N! permutations of the  spin-orbitals and the notation  means that a –1 is affixed to any
permutation that involves an odd number of pair wise interchanges of spin-orbitals and a +1 sign is given to any that involves an

even number. To properly normalize such a determinental wavefunction, one must multiply it by . So, the final result is that a

wavefunction of the form

which is often written in short-hand notation as,
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has the proper permutational antisymmetry. Note that such functions consist of as sum of  factors, all of which have exactly the
same number of electrons occupying the same spin-orbitals; the only difference among the  terms involves which electron
occupies which spin-orbital. For example, in the  function appropriate to the excited state of He, one has

This function is clearly odd under the interchange of the labels of the two electrons, yet each of its two components has one
electron is a  spin-orbital and another electron in a  spin-orbital.

Although having to make  antisymmetric appears to complicate matters significantly, it turns out that the Schrödinger equation
appropriate to the spin-orbitals in such an antisymmetrized product wavefunction is nearly the same as the Hartree Schrödnger
equation treated earlier. In fact, if one variationally minimizes the expectation value of the -electron Hamiltonian for the above
antisymmetric product wavefunction subject to the condition that the spin-orbitals are orthonormal

one obtains the following equation for the optimal :

In this expression, which is known as the Hartree-Fock equation, the same kinetic and nuclear attraction potentials occur as in the
Hartree equation. Moreover, the same Coulomb potential

appears. However, one also finds a so-called exchange contribution to the Hartree-Fock potential that is equal to

and is often written in short-hand notation as . Notice that the Coulomb and exchange terms cancel for the 
case; this causes the artificial self-interaction term  that can appear in the Hartree equations (unless one explicitly
eliminates it) to automatically cancel with the exchange term  in the Hartree-Fock equations.

To derive the above Hartree-Fock equations, one must make use of the so-called Slater-Condon rules to express the Hamiltonian
expectation value as

This expectation value is a sum of terms (the kinetic energy and electron-nuclear Coulomb potentials) that vary quadratically on the
spin-orbitals (i.e., as ) plus another sum (the Coulomb and exchange electron-electron interaction terms) that
depend on the fourth power of the spin-orbitals (i.e., as . When these terms are differentiated to minimize the
expectation value, they generate factors that scale linearly and with the third power of the spin-orbitals. These are the factors

and
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appearing in the Hartree-Fock equations shown above.

When the LCAO expansion of each Hartree-Fock (HF) spin-orbital is substituted into the above HF Schrödinger equation, a matrix
equation is again obtained:

where the overlap integral  is as defined earlier, and the  matrix element is

Clearly, the only difference between this expression and the corresponding result of Hartree theory is the presence of the last term,
the exchange integral. The SCF iterative procedure used to solve the Hartree equations is again used to solve the HF equations.

It is useful to reflect on the physical meaning of the Coulomb and exchange interactions between pairs of orbitals. For example, the
Coulomb integral

appropriate to the two orbitals shown in Figure 6.1.3 represents the Coulombic repulsion energy  of two charge densities, 

 and , integrated over all locations  and  of the two electrons.

Figure 6.1.3: An s and a p Orbital and Their Overlap Region

In contrast, the exchange integral

can be thought of as the Coulombic repulsion between two electrons whose coordinates  and  are both distributed throughout the
“overlap region”  . This overlap region is where both  and  have appreciable magnitude, so exchange integrals tend to be
significant in magnitude only when the two orbitals involved have substantial regions of overlap.

Finally, a few words are in order about one of the most computer time-consuming parts of any Hartree-Fock calculation (or those
discussed later)- the task of evaluating and transforming the two-electron integrals

When M GTOs are used as basis functions, the evaluation of  of these integrals often poses a major hurdle. For example, with

500 basis orbitals, there will be of the order of 7.8 x10  such integrals. With each integral requiring 2 words of disk storage (most
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integrals need to be evaluated in double precision), this would require at least 1.5 x10  Mwords of disk storage. Even in the era of
modern computers that possess 500 Gby disks, this is a significant requirement. One of the more important technical advances that
is under much current development is the efficient calculation of such integrals when the product functions  and 

 that display the dependence on the two electrons’ coordinates r and r’ are spatially distant. In particular, so-called
multipole expansions of these product functions are used to obtain more efficient approximations to their integrals when these
functions are far apart. Moreover, such expansions offer a reliable way to ignore (i.e., approximate as zero) many integrals whose

product functions are sufficiently distant. Such approaches show considerable promise for reducing the  two-electron integral

list to one whose size scales much less strongly with the size of the AO basis and form an important component if efforts to achieve
CPU and storage needs that scale linearly with the size of the molecule.

Koopmans’ Theorem 

The HF-SCF equations  imply that the orbital energies  can be written as:

where  represents the kinetic ( ) and nuclear attraction ( ) energies, respectively. Thus,  is the average value of the
kinetic energy plus Coulombic attraction to the nuclei for an electron in  plus the sum over all of the spin-orbitals occupied in 
of Coulomb minus Exchange interactions of these electrons with the electron in .

If  is an occupied spin-orbital, the  term  disappears in the above sum and the remaining terms in the sum
represent the Coulomb minus exchange interaction of  with all of the  other occupied spin-orbitals. If  is a virtual spin-
orbital, this cancelation does not occur because the sum over  does not include . So, one obtains the Coulomb minus
exchange interaction of  with all  of the occupied spin-orbitals in . Hence the energies of occupied orbitals pertain to
interactions appropriate to a total of  electrons, while the energies of virtual orbitals pertain to a system with  electrons.
This difference is very important to understand and to keep in mind.

Let us consider the following model of the detachment or attachment of an electron in an -electron system.

1. In this model, both the parent molecule and the species generated by adding or removing an electron are treated at the single-
determinant level.

2. The Hartree-Fock orbitals of the parent molecule are used to describe both species. It is said that such a model neglects orbital
relaxation (i.e., the re-optimization of the spin-orbitals to allow them to become appropriate to the daughter species).

Within this model, the energy difference between the daughter and the parent can be written as follows (  represents the particular
spin-orbital that is added or removed):

for electron detachment:

and for electron attachment:

Let’s derive this result for the case in which an electron is added to the  spin-orbital. Again, using the Slater-Condon rules
from Section 6.1.2 of this Chapter, the energy of the -electron determinant with spin-orbitals  through  occupied is

which can also be written as
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Likewise, the energy of the -electron determinant wavefunction is

The difference between these two energies is given by

That is, the energy difference is equal to minus the expression for the energy of the  spin-orbital, which was given earlier.

So, within the limitations of the HF, frozen-orbital model, the ionization potentials (IPs) and electron affinities (EAs) are given as
the negative of the occupied and virtual spin-orbital energies, respectively. This statement is referred to as Koopmans’ theorem; it is
used extensively in quantum chemical calculations as a means of estimating IPs and EAs and often yields results that are
qualitatively correct (i.e., ± 0.5 eV).

Orbital Energies and the Total Energy 

The total HF-SCF electronic energy can be written as:

and the sum of the orbital energies of the occupied spin-orbitals is given by:

These two expressions differ in a very important way; the sum of occupied orbital energies double counts the Coulomb minus
exchange interaction energies. Thus, within the Hartree-Fock approximation, the sum of the occupied orbital energies is not equal
to the total energy. This finding teaches us that we can not think of the total electronic energy of a given orbital occupation in terms
of the orbital energies alone. We need to also keep track of the inter-electron Coulomb and Exchange energies.

6.3: The Hartree-Fock Approximation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

N +1

= ⟨ |T +V | ⟩+ [ − ].EN+1 ∑
i=1

N+1

ϕi ϕi

1

2
∑
i,j=1

N+1

Ji,j Ki,j

– = −⟨ |T +V | ⟩− [ − ]EN EN+1 ϕN+1 ϕN+1
1

2
∑
i=1

N+1

Ji,N+1 Ki,N+1

− [ − ] = −⟨ |T +V | ⟩− [ − ]
1

2
∑
j=1

N+1

JN+1,j KN+1,j ϕN+1 ϕN+1 ∑
i=1

N+1

Ji,N+1 Ki,N+1

= − .ϵN+1

N +1st

E = ⟨ |T +V | ⟩+ [ − ]∑
i(occupied)

ϕi ϕi ∑
i>j(occupied)

Ji,j Ki,j

= ⟨ |T +V | ⟩+ [ − ].∑
i(occupied)

ϵi ∑
i(occupied)

ϕi ϕi ∑
i,j(occupied)

Ji,j Ki,j

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/162847?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/06%3A_Electronic_Structure/6.03%3A_The_Hartree-Fock_Approximation
https://creativecommons.org/licenses/by-nc-sa/4.0

