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7.1: Collections of Molecules at or Near Equilibrium
As introduced in Chapter 5, the approach one takes in studying a system composed of a very large number of molecules at or near thermal equilibrium can be quite different
from how one studies systems containing a few isolated molecules. In principle, it is possible to conceive of computing the quantum energy levels and wave functions of a
collection of many molecules (e.g., ten  ions, ten  ions and 550  molecules in a volume chosen to simulate a concentration of 1 molar ), but doing so
becomes impractical once the number of atoms in the system reaches a few thousand or if the molecules have significant intermolecular interactions as they do in condensed-
phase systems. Also, as noted in Chapter 5, following the time evolution of such a large number of molecules can be confusing if one focuses on the short-time behavior of any
single molecule (e.g., one sees jerky changes in its energy, momentum, and angular momentum). By examining, instead, the long-time average behavior of each molecule or,
alternatively, the average properties of a significantly large number of molecules, one is often better able to understand, interpret, and simulate such condensed-media systems.
Moreover, most experiments do not probe such short-time dynamical properties of single molecules; instead, their signals report on the behavior of many molecules lying
within the range of their detection device (e.g., laser beam, STM tip, or electrode). It is when one want to describe the behavior of collections of molecules under such
conditions that the power of statistical mechanics comes into play.

Distribution of Energy Among Levels 

One of the most important concepts of statistical mechanics involves how a specified total amount of energy  can be shared among a collection of molecules and within the
internal (rotational, vibrational, electronic) and intermolecular (translational) degrees of freedom of these molecules when the molecules have a means for sharing or
redistributing this energy (e.g., by collisions). The primary outcome of asking what is the most probable distribution of energy among a large number  of molecules within a
container of volume  that is maintained in equilibrium by such energy-sharing at a specified temperature  is the most important equation in statistical mechanics, the
Boltzmann population formula:

This equation expresses the probability  of finding the system (which, in the case introduced above, is the whole collection of  interacting molecules) in its  quantum
state, where  is the energy of this quantum state,  is the temperature in K,  is the degeneracy of the  state, and the denominator  is the so-called partition function:

The classical mechanical equivalent of the above quantum Boltzmann population formula for a system with a total of  coordinates (collectively denoted - they would be the
internal and intermolecular coordinates of the  molecules in the system) and  momenta (denoted ) is:

where  is the classical Hamiltonian,  is Planck's constant, and the classical partition function  is

This probability density expression, which must integrate to unity, contains the factor of  because, as we saw in Chapter 1 when we learned about classical action, the
integral of a coordinate-momentum product has units of Planck’s constant.

Notice that the Boltzmann formula does not say that only those states of one particular energy can be populated; it gives non-zero probabilities for populating all states from
the lowest to the highest. However, it does say that states of higher energy  are disfavored by the  factor, but, if states of higher energy have larger
degeneracies  (which they usually do), the overall population of such states may not be low. That is, there is a competition between state degeneracy , which tends to
grow as the state's energy grows, and  which decreases with increasing energy. If the number of particles  is huge, the degeneracy  grows as a high power
(let’s denote this power as ) of  because the degeneracy is related to the number of ways the energy can be distributed among the  molecules. In fact,  grows at least as
fast as . As a result of  growing as , the product function  has the form shown in Fig. 7.1 (for , for illustrative purposes)

Figure 7.1 Probability Weighting Factor  as a Function of  for  = 10.

By taking the derivative of this function  with respect to E, and finding the energy at which this derivative vanishes, one can show that this probability function has a
peak at , and that at this energy value,

By then asking at what energy  the function  drops to  of this maximum value :

one finds

Na+ Cl− OH2 NaCl(aq)

E

N

V T

= .Pj

exp(− /kT )Ωj Ej

Q
(7.1.1)

Pj N jth

Ej T Ωj jth Q

Q = exp(− ).∑
j

Ωj

Ej

kT
(7.1.2)

M q

N M p

P (q, p) = ,

exp(− )h−M
H(q, p)

kT

Q
(7.1.3)

H h Q

Q = ∫ exp(− )dq dp.h−M
H(q, p)

kT
(7.1.4)

h−M

Ej exp(− /kT )Ej

Ωj Ωj

exp(− /kT )Ej N −Ω
K E N K

N −Ω EK P (E) = exp(−E/kT )EK K = 10

P (E) E K

P (E)
= KkTE∗

P ( ) = (KkT exp(−K),E∗ )K (7.1.5)

E ′ P (E) exp(−1) P ( )E∗

P ( ) = exp(−1)P ( ),E ′ E∗ (7.1.6)

= KkT(1 + ).E ′ 2

K

−−−
√ (7.1.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11595?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/07%3A_Statistical_Mechanics/7.01%3A_Collections_of_Molecules_at_or_Near_Equilibrium


7.1.2 https://chem.libretexts.org/@go/page/11595

So the width of the  graph, measured as the change in energy needed to cause  to drop to  of its maximum value divided by the value of the energy at
which  assumes this maximum value, is

This width gets smaller and smaller as  increases.

The primary conclusion is that as the number  of molecules in the sample grows, which, as discussed earlier, causes  to grow, the energy probability function becomes
more and more sharply peaked about the most probable energy . This, in turn, suggests that we may be able to model, aside from infrequent fluctuations which we may also
find a way to take account of, the behavior of systems with many molecules by focusing on the most probable situation (i.e., those having the energy ) and ignoring or
making small corrections for deviations from this case.

It is for the reasons just shown that for macroscopic systems near equilibrium, in which  (and hence ) is extremely large (e.g.,  ~  to ), only the most probable
distribution of the total energy among the  molecules need be considered. This is the situation in which the equations of statistical mechanics are so useful. Certainly, there
are fluctuations (as evidenced by the finite width of the above graph) in the energy content of the -molecule system about its most probable value. However, these
fluctuations become less and less important as the system size (i.e., ) becomes larger and larger.

Basis of the Boltzmann Population Formula 

To understand how this narrow Boltzmann distribution of energies arises when the number of molecules  in the sample is large, we consider a system composed of 
identical containers, each having volume V, and each made out a material that allows for efficient heat transfer to its surroundings (e.g., through collisions of the molecules
inside the volume with the walls of the container) but material that does not allow any of the  molecules in each container to escape. These containers are arranged into a
regular lattice as shown in Figure 7.2 in a manner that allows their thermally conducting walls to come into contact. Finally, the entire collection of  such containers is
surrounded by a perfectly insulating material that assures that the total energy (of all  molecules) can not change. So, this collection of  identical containers each
containing  molecules constitutes a closed (i.e., with no molecules coming or going) and isolated (i.e., so total energy is constant) system.

Figure 7.2 Collection of  identical cells having energy-conducting walls that do not allow molecules to pass between cells.

Equal priori Probability Assumption 

One of the fundamental assumptions of statistical mechanics is that, for a closed isolated system at equilibrium, all quantum states of the system having energy equal to the
energy  with which the system is prepared are equally likely to be occupied. This is called the assumption of equal a priori probability for such energy-allowed quantum
states. The quantum states relevant to this case are not the states of individual molecules, nor are they the states of  of the molecules in one of the containers of volume .
They are the quantum states of the entire system comprised of  molecules. Because our system consists of  identical containers, each with  molecules in it, we can
describe the quantum states of the entire system in terms of the quantum states of each such container. It may seem foolish to be discussing quantum states of the large system
containing  molecules, given what I said earlier about the futility in trying to find such states. However, what I am doing at this stage is to carry out a derivation that is
based upon such quantum states but whose final form and final working equations will not actually require one to know or even be able to have these states in hand.

Let’s pretend that we know the quantum states that pertain to  molecules in a container of volume  as shown in Figure 7.2, and let’s label these states by an index . That is
 labels the lowest-energy state of  molecules in the container of volume ,  labels the second such state, and so on. As I said above, I understand it may seem

daunting to think of how one actually finds these -molecule eigenstates. However, we are just deriving a general framework that gives the probabilities of being in each such
state. In so doing, we are allowed to pretend that we know these states. In any actual application, we will, of course, have to use approximate expressions for such energies.

Assuming that the walls that divide the  containers play no role except to allow for collisional (i.e., thermal) energy transfer among the containers, an energy-labeling for
states of the entire collection of  containers can be realized by giving the number of containers that exist in each single-container J-state. This is possible because, under the
assumption about the role of the walls just stated, the energy of each -container state is a sum of the energies of the  single-container states that comprise that -container
state. For example, if , the label 1, 1, 2, 2, 1, 3, 4, 1, 2 specifies the energy of this 9-container state in terms of the energies { } of the states of the 9 containers: 

. Notice that this 9-container state has the same energy as several other 9-container states; for example, 1, 2, 1, 2, 1, 3, 4, 1, 2 and 4, 1, 3, 1, 2, 2, 1, 1,
2 have the same energy although they are different individual states. What differs among these distinct states is which box occupies which single-box quantum state.

The above example illustrates that an energy level of the -container system can have a high degree of degeneracy because its total energy can be achieved by having the
various single-container states appear in various orders. That is, which container is in which state can be permuted without altering the total energy . The formula for how
many ways the  container states can be permuted such that:

i. there are  containers appearing in single-container state , with
ii. a total of  containers, is

Here  denote the number of containers existing in single-container states 1, 2, 3, … , …. This combinatorial formula reflects the permutational
degeneracy arising from placing  containers into state 1,  containers into state 2, etc.

If we imagine an extremely large number of containers and we view  as well as the { } as being large numbers (n.b., we will soon see that this is the case at least for the
most probable distribution that we will eventually focus on), we can ask- for what choices of the variables  is this degeneracy function  a
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maximum? Moreover, we can examine  at its maximum and compare its value at values of the { } parameters changed only slightly from the values that maximized 
. As we will see,  is very strongly peaked at its maximum and decreases extremely rapidly for values of { } that differ only slightly from the optimal values. It is this

property that gives rise to the very narrow energy distribution discussed earlier in this Chapter. So, let’s take a closer look at how this energy distribution formula arises.

We want to know what values of the variables  make  a maximum. However, all of the  variables are not
independent; they must add up to , the total number of containers, so we have a constraint

that the variables must obey. The { } variables are also constrained to give the total energy  of the -container system when summed as

We have two problems: i. how to maximize  and ii. how to impose these constraints. Because  takes on values greater than unity for any choice of the { },  will
experience its maximum where  has its maximum, so we can maximize  if doing so helps. Because the  variables are assumed to take on large numbers (when  is
large), we can use Sterling’s approximation for the natural logarithm of the factorial of a large number:

to approximate  as follows:

This expression will prove useful because we can take its derivative with respect to the  variables, which we need to do to search for the maximum of .

To impose the constraints  and  we use the technique of Lagrange multipliers. That is, we seek to find values of { } that maximize the following
function:

Notice that this function  is exactly equal to the  function we wish to maximize whenever the { } variables obey the two constraints. So, the maxima of  and of 
are identical if the { } have values that obey the constraints. The two Lagrange multipliers  and  are introduced to allow the values of { } that maximize  to ultimately
obey the two constraints. That is, we first find values of the { } variables that make  maximum; these values will depend on  and  and will not necessarily obey the
constraints. However, we will then choose  and  to assure that the two constraints are obeyed. This is how the Lagrange multiplier method works.

Lagrange Multiplier Method 

Taking the derivative of  with respect to each independent  variable and setting this derivative equal to zero gives:

This equation can be solved to give . Substituting this result into the first constraint equation gives , which allows
us to solve for

 in terms of . Doing so, and substituting the result into the expression for  gives:

where

Notice that the  are, as we assumed earlier, large numbers if  is large because  is proportional to . Notice also that we now see the appearance of the partition
function  and of exponential dependence on the energy of the state that gives the Boltzmann population of that state.

It is possible to relate the  Lagrange multiplier to the total energy  of the  containers by summing the number of containers in the Kth quantum state  multiplied by the
energy of that quantum state 

This shows that the average energy of a container, computed as the total energy  divided by the number  of such containers can be computed as a derivative of the
logarithm of the partition function . As we show in the following Section of this Chapter, all thermodynamic properties of the  molecules in the container of volume  can
be obtained as derivatives of the natural logarithm of this  function. This is why the partition function plays such a central role in statistical mechanics.

To examine the range of energies over which each of the  single-container system varies with appreciable probability, let us consider not just the degeneracy  of that
set of variables  that makes  maximum, but also the degeneracy  for values of  differing by small amounts { } from the
optimal values { }. Expanding  as a Taylor series in the parameters  and evaluating the expansion in the neighborhood of the values { }, we find:

We know that all of the first derivative terms ( ) vanish because  has been made maximum at { }. To evaluate the second derivative terms, we first note that the

first derivative of  is

So the second derivatives needed to complete the Taylor series through second order are:
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Using this result, we can expand  in the neighborhood of { } in powers of  as follows:

or, equivalently,

This result clearly shows that the degeneracy, and hence, by the equal a priori probability hypothesis, the probability of the -container system occupying a state having {
} falls off exponentially as the variables  move away from their most-probable values { }.

Thermodynamic Limit 

As we noted earlier, the  are proportional to  (i.e., ), so when considering deviations  away from the optimal , we should consider

deviations that are also proportional to : . In this way, we are treating deviations of specified percentage or fractional amount which we denote . Thus, the

ratio  that appears in the above exponential has an M-dependence that allows  to be written as:

where  and  are the fraction and fractional deviation of containers in state :  and . The purpose of writing  in this manner is to explicitly

show that, in the so-called thermodynamic limit, when  approaches infinity, only the most probable distribution of energy { } need to be considered because only {
} is important as  approaches infinity.

Fluctuations 

Let’s consider this very narrow distribution issue a bit further by examining fluctuations in the energy of a single container around its average energy . We already

know that the number of containers in a given state  can be written as . Alternatively, we can say that the probability of a container occupying the

state  is:

Using this probability, we can compute the average energy  as:

To compute the fluctuation in energy, we first note that the fluctuation is defined as the average of the square of the deviation in energy from the average:

The following identity is now useful for further re-expressing the fluctuations:

Recognizing the first factor immediately above as , and the second factor as , and noting that , allows the fluctuation formula to be rewritten as:

Because the parameter  can be shown to be related to the Kelvin temperature  as , the above expression can be re-written as:

Recognizing the formula for the constant-volume heat capacity

allows the fractional fluctuation in the energy around the mean energy  to be expressed as:
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What does this fractional fluctuation formula tell us? On its left-hand side it gives a measure of the fractional spread of energies over which each of the containers ranges about
its mean energy . On the right side, it contains a ratio of two quantities that are extensive properties, the heat capacity and the mean energy. That is, both  and  will
be proportional to the number  of molecules in the container as long as  is reasonably large. However, because the right-hand side involves , it is proportional to 

 and thus will be very small for large  as long as  does not become large. As a result, except near so-called critical points where the heat capacity does indeed
become extremely large, the fractional fluctuation in the energy of a given container of  molecules will be very small (i.e., proportional to ). This finding is related to
the narrow distribution in energies that we discussed earlier in this section.

Let’s look at the expression

in a bit more detail for a system that is small but still contains quite a few particles-a cluster of  Ar atoms at temperature . If we assume that each of the Ar atoms in the

cluster has  of kinetic energy and that the potential energy holding the cluster together is small and constant (so it cancels in ),  will be  and  will

be . So,

In a nano-droplet of diameter 100 Å, with each Ar atom occupying a volume of ca. , there will be ca.

Ar atoms. So, the average fractional spread in the energy

That is, even for a very small nano-droplet, the fluctuation in the energy of the system is only a fraction of a percent (assuming  is not large as near a critical point). This
example shows why it is often possible to use thermodynamic concepts and equations even for very small systems, albeit realizing that fluctuations away from the most
probable state are more important than in much larger systems.

Partition Functions and Thermodynamic Properties 

Let us now examine how this idea of the most probable energy distribution being dominant gives rise to equations that offer molecular-level expressions for other
thermodynamic properties. The first equation is the fundamental Boltzmann population formula that we already examined:

which expresses the probability for finding the -molecule system in its  quantum state having energy . Sometimes, this expression is written as

where now the index  is used to label an energy level of the system having energy  and degeneracy. It is important for the student to be used to either notation; a level is
just a collection of those states having identical energy.

System Partition Functions 

Using this result, it is possible to compute the average energy , sometimes written as , of the system

and, as we saw earlier in this Chapter, to show that this quantity can be recast as

To review how this proof is carried out, we substitute the expressions for  and for  into the expression for  (I will use the notation labeling energy levels rather than
energy states to allow the student to become used to this)
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And then recalling that , we finally obtain

All other equilibrium properties can also be expressed in terms of the partition function . For example, if the average pressure  is defined as the pressure of each quantum
state (defined as how the energy of that state changes if we change the volume of the container by a small amount)

multiplied by the probability  for accessing that quantum state, summed over all such states, one can show, realizing that only  (not  or ) depend on the volume ,
that

If you wonder why the energies  should depend on the volume , think of the case of  gas-phase molecules occupying the container of volume V. You know that the
translational energies of each of these  molecules depend on the volume through the particle-in-a-box formula

Changing  can be accomplished by changing the box length . This makes it clear why the energies do indeed depend on the volume . Of course, there are additional
sources of the V-dependence of the energy levels. For example, as one shrinks , the molecules become more crowded, so their intermolecular energies also change.

Without belaboring the point further, it is possible to express all of the usual thermodynamic quantities in terms of the partition function . The average energy and average
pressure are given above, as is the heat capacity. The average entropy is given as

the Helmholtz free energy A is

and the chemical potential  is expressed as follows:

As we saw earlier, it is also possible to express fluctuations in thermodynamic properties in terms of derivatives of partition functions and, thus, as derivatives of other
properties. For example, the fluctuation in the energy  was shown above to be given by

The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has an excellent treatment of these topics and shows how all of these expressions are
derived.

So, if one were able to evaluate the partition function  for  molecules in a volume  at a temperature T, either by summing the quantum-level degeneracy and 
 factors

or by carrying out the phase-space integral over all  of the coordinates and momenta of the system

one could then use the above formulas to evaluate any thermodynamic properties and their fluctuations as derivatives of .

The averages discussed above, derived using the probabilities  associated with the most probable distribution, are called ensemble averages with the

set of states associated with the specified values of , , and  constituting what is called a canonical ensemble. Averages derived using the probabilities  = constant for
all states associated with specified values of , , and  are called ensemble averages for a microcanonical ensemble. There is another kind of ensemble that is often used in
statistical mechanics; it is called the grand canonical ensemble and relates to systems with specified volume , temperature , and chemical potential  (rather than particle
number ). To obtain the partition function (from which all thermodynamic properties are obtained) in this case, one considers maximizing the same function

introduced earlier, but now considering each quantum (labeled J) as having an energy  that depends on the volume and on how may particles occupy this volume.
The variables  are now used to specify how many of the containers introduced earlier contain  particles and are in the  quantum state. These variables have to
obey the same two constraints as for the canonical ensemble

=
∂X/∂T

X

∂ lnX

∂T

⟨E⟩ = k .T 2( )
∂ lnQ

∂T N ,V

(7.1.43)

Q ⟨p⟩

=(pj
∂Ej

∂V
)

N
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Pj Ej T W V

⟨p⟩ = ( )∑
j

∂Ej

∂V

N exp(− /kT )Ωj Ej

Q
(7.1.45)

= kT .( )
∂ lnQ

∂V N ,T
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Q

⟨S⟩ = k lnQ+kT( )
∂ lnQ

∂N V,T
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A = −kT lnQ (7.1.49)

μ

μ = −kT .( )
∂ lnQ

∂N T ,V

(7.1.50)

⟨(E− ⟨E⟩ ⟩)2

⟨(E− ⟨E⟩ ⟩ = k .)2 T 2CV (7.1.51)

Q N V

exp(− /kT )Ej
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j

Ωj Ej (7.1.52)

M

Q = ∫ exp(− )dq dp,h−M H(q, p)

kT
(7.1.53)

lnQ
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Q
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N

Ω(n) =
M !

!∏J nJ

(7.1.54)

(N ,V )EJ

(N)nJ N J th

,N (N) = M∑
J

nJ (7.1.55)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11595?pdf


7.1.7 https://chem.libretexts.org/@go/page/11595

but they also are required to obey

which means that the sum adds up to the total number of particles in the isolated system’s large container that was divided into M smaller container. In this case, the walls
separating each small container are assumed to allow for energy transfer (as in the canonical ensemble) and for molecules to move from one container to another (unlike the
canonical ensemble). Using Lagrange multipliers as before to maximize  subject to the above three constraints involves maximizing

and gives

or

Imposing the first constraint gives

or

where the partition function  is defined by the sum in the denominator. So, now the probability of the system having  particles and being in the  quantum state is

Very much as was shown earlier for the canonical ensemble, one can then express thermodynamic properties (e.g., , , etc.) in terms of derivatives of . The text
Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) goes through these derivations in good detail, so I will not repeat them here because we showed

how to do so when treating the canonical ensemble. To summarize them briefly, one again uses , finds that g is related to the chemical potential  as

and obtains

The formulas look very much like those of the canonical ensemble, except for the result expressing the average number of molecules in the container Nave in terms of the
derivative of the partition function with respect to the chemical potential .

In addition to the equal a priori probability postulate stated earlier (i.e., that, in the thermodynamic limit (i.e., large ), every quantum state of an isolated system in
equilibrium having fixed , , and  is equally probable), statistical mechanics makes another assumption. It assumes that, in the thermodynamic limit, the ensemble average

(e.g., using equal probabilities  for all states of an isolated system having specified , , and  or using  for states of a system having specified , 

, and  or using  for the grand canonical case) of any quantity is equal to the long-time average of this quantity (i.e., the value one

would obtain by monitoring the dynamical evolution of this quantity over a very long time). This second postulate implies that the dynamics of an isolated system spends equal
amounts of time in every quantum state that has the specified , , and ; this is known as the ergodic hypothesis.

Let’s consider a bit more what the physical meaning or information content of partition functions is. Canonical ensemble partition functions represent the thermal-averaged
number of quantum states that are accessible to the system at specified values of , , and . This can be seen best by again noting that, in the quantum expression,

the partition function is equal to a sum of the number of quantum states in the jth energy level multiplied by the Boltzmann population factor  of that level. So, 
 is dimensionless and is a measure of how many states the system can access at temperature . Another way to think of  is suggested by rewriting the Helmholtz free

,N (N) (N ,V ) = E,∑
J

nJ εJ (7.1.56)

N (N) =∑
J,N

nJ Ntotal (7.1.57)

lnΩ(n)

F = lnM ! − ( ln – ) −α( –M) −β( –E)– γ( N (N) − )∑
J,N

nJ,N nJ,N nJ,N ∑
J,N

nJ,N ∑
J,N

nJ,NεJ ∑
J,N

nJ,N Ntotal (7.1.58)

−ln −α−β −γN = 0nK,N εK (7.1.59)

= exp[−α−β −γN ].nK,N εK (7.1.60)

M = exp[−α−β −γN ], ]∑
K,N

εK (7.1.61)

exp(−α) = =
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exp(−β (N) −γN)∑K,N εK
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Q N K th
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energy definition given above as . This identity shows that  can be viewed as the Boltzmann population, not of a given energy , but of a specified
amount of free energy .

For the microcanonical ensemble, the probability of occupying each state that has the specified values of , , and  is equal

where  is the total number of such states. In the microcanonical ensemble case,  plays the role that  plays in the canonical ensemble case; it gives the
number of quantum states accessible to the system.

Individual-Molecule Partition Functions 

Keep in mind that the energy levels  and degeneracies  and  discussed so far are those of the full -molecule system. In the special case for which the
interactions among the molecules can be neglected (i.e., in the dilute ideal-gas limit) at least as far as expressing the state energies, each of the energies  can be written as a
sum of the energies of each individual molecule: . In such a case, the above partition function  reduces to a product of individual-molecule partition
functions:

where the N! factor arises as a degeneracy factor having to do with the permutational indistinguishability of the  molecules (e.g., one must not count both  with
molecule 3 in state  and molecule 7 in state  and  with molecule 7 in state  and molecule 3 in state ; they are the same state), and  is the partition function
of an individual molecule

Here,  is the energy of the lth level of the molecule and  is its degeneracy.

The molecular partition functions , in turn, can be written as products of translational, rotational, vibrational, and electronic partition functions if the molecular energies  can
be approximated as sums of such energies. Of course, these approximations are most appropriate to gas-phase molecules whose vibration and rotation states are being
described at the lowest level.

The following equations give explicit expressions for these individual contributions to  in the most usual case of a non-linear polyatomic molecule:

Translational 

where  is the mass of the molecule and  is the volume to which its motion is constrained. For molecules constrained to a surface of area , the corresponding result is 
, and for molecules constrained to move along a single axis over a length , the result is . The magnitudes these partition

functions can be computed, using  in amu,  in Kelvin, and , , or  in cm, cm  or cm , as

Clearly, the magnitude of  depends strongly on the number of dimensions the molecule and move around in. This is a result of the vast differences in translational state
densities in 1, 2, and 3 dimensions; recall that we encountered these state-density issues in Chapter 2.

Rotational 

where , , and  are the three principal moments of inertia of the molecule (i.e., eigenvalues of the moment of inertia tensor).  is the symmetry number of the molecule
defined as the number of ways the molecule can be rotated into a configuration that is indistinguishable from its original configuration. For example,  is 2 for  or , 1 for

, 3 for , and 12 for . The magnitudes of these partition functions can be computed using bond lengths in Å and masses in amu and  in , using

Vibrational 

where  is the frequency of the  harmonic vibration of the molecule, of which there are . If one wants to treat the vibrations at a level higher than harmonic, this
expression can be modified by replacing the harmonic energies  by higher-level expressions.

Electronic: 

where  and  are the energies and degeneracies of the  electronic state; the sum is carried out for those states for which the product  is numerically

significant (i.e., levels that any significant thermal population). It is conventional to define the energy of a molecule or ion with respect to that of its atoms. So, the first term in
the electronic partition function is usually written as we , where we is the degeneracy of the ground electronic state and  is the energy required to dissociate
the molecule into its constituent atoms, all in their ground electronic states.
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Notice that the magnitude of the translational partition function is much larger than that of the rotational partition function, which, in turn, is larger than that of the vibrational
function. Moreover, note that the 3-dimensional translational partition function is larger than the 2-dimensional, which is larger than the 1-dimensional. These orderings are
simply reflections of the average number of quantum states that are accessible to the respective degrees of freedom at the temperature  which, in turn, relates to the energy
spacings and degeneracies of these states.

The above partition function and thermodynamic equations form the essence of how statistical mechanics provides the tools for connecting molecule-level properties such as
energy levels and degeneracies, which ultimately determine the  and the , to the macroscopic properties such as , , , , etc.

If one has a system for which the quantum energy levels are not known, it may be possible to express all of the thermodynamic properties in terms of the classical partition
function, if the system could be adequately described by classical dynamics. This partition function is computed by evaluating the following classical phase-space integral
(phase space is the collection of coordinates  and conjugate momenta  as we discussed in Chapter 1)

In this integral, one integrates over the internal (e.g., bond lengths and angles), orientational, and translational coordinates and momenta of the  molecules. If each molecule
has  internal coordinates, 3 translational coordinates, and 3 orientational coordinates, the total number of such coordinates per molecule is . One can then
compute all thermodynamic properties of the system using this  in place of the quantum  in the equations given above for , , etc.

The classical partition functions discussed above are especially useful when substantial intermolecular interactions are present (and, thus, where knowing the quantum energy
levels of the -molecule system is highly unlikely). In such cases, the classical Hamiltonian is often written in terms of  which contains all of the kinetic energy factors as
well as all of the potential energies other than the intermolecular potentials, and the intermolecular potential , which depends only on a subset of the coordinates: 

. For example, let us assume that  depends only on the relative distances between molecules (i.e., on the  translational degrees of freedom which we denote 
). Denoting all of the remaining coordinates as , the classical partition function integral can be re-expressed as follows:

The factor

would be the partition function if the Hamiltonian  contained no intermolecular interactions . The  factor arises from the integration over all of the translational
coordinates if  is absent. The other factor

contains all the effects of intermolecular interactions and reduces to unity if the potential  vanishes. If, as the example considered here assumes,  only depends on the
positions of the centers of mass of the molecules (i.e., not on molecular orientations or internal geometries), the  partition function can be written in terms of the
molecular translational, rotational, and vibrational partition functions shown earlier:

Because all of the equations that relate thermodynamic properties to partition functions contain , all such properties will decompose into a sum of two parts, one coming
from  and one coming from . The latter contains all the effects of the intermolecular interactions. This means that, in this classical mechanics case, all the
thermodynamic equations can be written as an ideal component plus a part that arises from the intermolecular forces. Again, the Statistical Mechanics text by McQuarrie is a
good source for reading more details on these topics.

Equilibrium Constants in Terms of Partition Functions 
One of the most important and useful applications of statistical thermodynamics arises in the relation giving the equilibrium constant of a chemical reaction or for a physical
transformation (e.g., adsorption of molecules onto a metal surface or sublimation of molecules from a crystal) in terms of molecular partition functions. Specifically, for any
chemical or physical equilibrium (e.g., the former could be the  equilibrium; the latter could be ), one can relate the equilibrium
constant (expressed in terms of numbers of molecules per unit volume or per unit area, depending on whether species undergo translational motion in 3 or 2 dimensions) in
terms of the partition functions of these molecules. For example, in the hypothetical chemical equilibrium , the equilibrium constant  can be written, if the
species can be treated as having negligibly weak intermolecular potentials, as:

Here,  is the partition function for molecules of type  confined to volume  at temperature . As another example consider the isomerization reaction involving the normal
(N) and zwitterionic (Z) forms of arginine that were discussed in Chapter 5. Here, the pertinent equilibrium constant would be:

So, if one can evaluate the partition functions  for reactant and product molecules in terms of the translational, electronic, vibrational, and rotational energy levels of these
species, one can express the equilibrium constant in terms of these molecule-level properties.

Notice that the above equilibrium constant expressions equate ratios of species concentrations (in, numbers of molecules per unit volume) to ratios of corresponding partition
functions per unit volume. Because partition functions are a count of the number of quantum states available to the system (i.e., the average density of quantum states), this
means that we equate species number densities to quantum state densities when we use the above expressions for the equilibrium constant. In other words, statistical mechanics
produces equilibrium constants related to numbers of molecules (i.e., number densities) not molar or molal concentrations.
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