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6.6: The Slater-Condon Rules
To form Hamiltonian matrix elements  between any pair of Slater determinants constructed from spin-orbitals that are orthonormal, one
uses the so-called Slater-Condon rules. These rules express all non-vanishing matrix elements involving either one- or two- electron operators.
One-electron operators are additive and appear as

two-electron operators are pairwise additive and appear as

The Slater-Condon rules give the matrix elements between two determinants

and

for any quantum mechanical operator that is a sum of one- and two- electron operators ( ). It expresses these matrix elements in terms of
one-and two-electron integrals involving the spin-orbitals that appear in  and  and the operators  and .

As a first step in applying these rules, one must examine  and  and determine by how many (if any) spin-orbitals  and  differ. In so
doing, one may have to reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with those in the other
determinant; it is essential to keep track of the number of permutations ( ) that one makes in achieving maximal coincidence. The results of
the Slater-Condon rules given below are then multiplied by  to obtain the matrix elements between the original  and . The final
result does not depend on whether one chooses to permute  or  to determine .

The Hamiltonian is, of course, a specific example of such an operator that contains both one- and two-electron components; the electric dipole
operator  and the electronic kinetic energy  are examples of one-electron operators (for which one takes ); the
electron-electron coulomb interaction  is a two-electron operator (for which one takes ).

The two Slater determinants whose matrix elements are to be determined can be written as

where the spin-orbitals { } and { } appear in the first and second determinants, respectively, and the operators  and  describe the
permutations of the spin-orbitals appearing in these two determinants. The factors  and  are the signs associated with these
permutations as discussed earlier in Section 6.1.1. Any matrix element involving one- and two-electron operators

needs to be expressed in terms of integrals involving the spin-orbitals in the two determinants and the one- and two-electron operators.

To simplify the above expression, which contains  terms in its two summations, one proceeds as follows:

a. Use is made of the identity  to move the permutation operator  to just before the ( )

b. Because  and  contain sums over all  electrons in a symmetric fashion, any permutation  acting on  leaves these sums
unchanged. So,  commutes with  and with . This allows the above quantity to be rewritten as
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c. For any permutation operator , the operator  is just another permutation operator. Moreover, for any , the set of all operators 
runs over all  permutations, and the sign associated with the operator  is the sign belonging to  times the sign associated with , 

. So, the double sum (i.e., over  and over ) appearing in the above expression for the general matrix element of  contains 
 identical sums over the single operator  of the sign of this operator  multiplied by the effect of this operator on the spin-orbital

product on the right-hand side

By assumption, as explained earlier, the two Slater determinants have been compared and arranged in an order of maximal coincidence and
the factor  needed to bring them into maximal coincidence has been determined. So, let us begin by assuming that the two
determinants differ by three spin-orbitals and let us first consider the terms arising from the identity permutation  (i.e., the
permutation that alters none of the spin-orbitals’ labels). These terms will involve integrals of the form

where the three-spin orbitals that differ in the two determinants appear in positions , , and . In these -dimensional (3 spatial and 1 spin
coordinate for each of  electrons) integrals:

a. Integrals of the form (for all , , or )

and (for all i and , , or )

vanish because the spin-orbitals appearing in positions , , and  in the two determinants are orthogonal to one another. For the -operator,
even integrals with , , or  vanish because there are still two spin-orbital mismatches at the other two locations among , , and . For
the -operator, even integrals with  or , , or  vanish because two mismatches remain; and even with both  and , , or , the
integrals vanish because one spin-orbital mismatch remains. The main observation to make is that, even for , if there are three spin-
orbital differences, neither the  nor  operator gives rise to any non-vanishing results.

b. If we now consider any other permutation , the situation does not improve because any permutation cannot alter the fact that three spin-
orbital mismatches do not generate any non-vanishing results.

If there are only two spin-orbital mismatches (say in locations  and ), the integrals we need to evaluate are of the form

and

c. Again, beginning with , we can conclude that all of the integrals involving the -operator (i.e., , , and ) vanish
because the two spin-orbital mismatch is too much even for  or  to overcome; at least one spin-orbital orthogonality integral
remains. For the -operator, the only non-vanishing result arises from the  and  term .

d. The only other permutation that generates another non-vanishing result is the permutation that interchanges  and , and it produces 

, where the negative sign arises from the  factor. All other permutations would interchange other spin-orbitals and thus generate
orthogonality integrals involving other electrons’ coordinates.

If there is only one spin-orbital mismatch (say in location ), the integrals we need to evaluate are of the form

and

e. Again beginning with , the only non-vanishing contribution from the -operator is . For all other
permutations, the -operator produces no non-vanishing contributions because these permutations generate orthogonality integrals. For the 

-operator and , the only non-vanishing contributions are

Q PQ Q PQ

N ! PQ P Q

(−1)p+q P Q F +G

N ! PQ (−1)p+q

⟨|F +G ⟩ = N !|
′ 1

N !
−−

√

(−1 ⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|F +G|PQ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩∑
P,Q

)p+q ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N

(6.6.10)

(−1)Np

PQ = E

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯ (N)|F +G|PQ (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯  (N)⟩ϕ1 ϕ2 ϕk ϕn ϕj ϕN ϕ′
1 ϕ′

2 ϕ′
k

ϕ′
n ϕ′

j ϕ′
N (6.6.11)

k n j 4N
N

i ≠ k n j

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯ (N)|f(i)| (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯  (N)⟩ϕ1 ϕ2 ϕk ϕn ϕj ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
j ϕ′

N (6.6.12)

l ≠ k n j

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯ (N)|g(i, l)| (1) (2) ⋯ (k) ⋯ (n) ⋯ (j) ⋯  (N)⟩ϕ1 ϕ2 ϕk ϕn ϕj ϕN ϕ′
1

ϕ′
2

ϕ′
k

ϕ′
n ϕ′

j ϕ′
N

(6.6.13)

k n j F

i = k n j k n j

G i l = k n j i l = k n j

PQ = E

F G

PQ

k n

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|f(i)|PQ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N (6.6.14)

⟨ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)|g(i, l)|PQ (1) (2) ⋯ (k) ⋯ (n) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕn ϕN ϕ′
1 ϕ′

2 ϕ′
k ϕ′

n ϕ′
N (6.6.15)

PQ = E F ϕ(i) ϕ(k) ϕ(n)
ϕ(k) ϕ(n)

G i = k l = n ⟨ (k) (n)|g(k,n)| (k) (n)⟩ϕk ϕn ϕ′
k ϕ′

n

k n

−⟨ (k) (n)|g(k,n)| (k) (n)⟩ϕk ϕn ϕ′
n ϕ′

k

(−1)p+q

k

⟨ (1) (2) ⋯ (k) ⋯ (N)|f(i)|PQ (1) (2) ⋯ (k) ⋯ (N)⟩ϕ1 ϕ2 ϕk ϕN ϕ′
1 ϕ′

2 ϕ′
k

ϕ′
N

(6.6.16)

⟨ (1) (2) ⋯ (k) ⋯ (N)|g(i, l)|PQ (1) (2) ⋯ (k) ⋯ (N)⟩.ϕ1 ϕ2 ϕk ϕN ϕ′
1 ϕ′

2 ϕ′
k

ϕ′
N

(6.6.17)

PQ = E F ⟨ (k)|f(k)| (k)⟩ϕk ϕ′
k

F

G PQ = E

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/162851?pdf


6.6.3 https://chem.libretexts.org/@go/page/162851

where the sum over  runs over all of the spin-orbitals that are common to both of the two determinants.

f. Among all other permutations, the only one that produces a non-vanishing result are those that permute the spin-orbital in the kth location
with another spin-orbital, and they produce

The minus sign arises from the  factor associated with this pair wise permutation operator.

Finally, if there is no mismatch (i.e., the two determinants are identical), then

g. The identity permutation generates

from the -operator and

from the -operator.

h. The permutation that interchanges spin-orbitals in the kth and jth location produces

The summations over  and  appearing above can, alternatively, be written as

and

So, in summary, once maximal coincidence has been achieved, the Slater-Condon (SC) rules provide the following prescriptions for
evaluating the matrix elements of any operator  containing a one-electron part  and a two-electron part 

.:

i. If  and  are identical, then

where the sums over  and  run over all spin-orbitals in  ;
ii. If  and  differ by a single spin-orbital mismatch (  ),

where the sum over  runs over all spin-orbitals in  except ;
iii. If  and  differ by two spin-orbitals (  and ),

(note that the  contribution vanishes in this case);
iv. If  and  differ by three or more spin orbitals, then

v.  or the identity operator , the matrix elements  if  and  differ by one or more spin-orbitals (i.e., the Slater determinants are
orthonormal if their spin-orbitals are).

In these expressions,
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is used to denote the one-electron integral

and

(or, in short hand notation,  ) represents the two-electron integral

The notation  introduced above gives the two-electron integrals for the  operator in the so-called Dirac notation, in which the 
and  indices label the spin-orbitals that refer to the coordinates  and the  and l indices label the spin-orbitals referring to coordinates . The
 and  denote  and  (with  and  being the  or  spin functions).

If the operators  and  do not contain any electron spin operators, then the spin integrations implicit in these integrals (all of the  are spin-
orbitals, so each  is accompanied by an  or  spin function and each  involves the adjoint of one of the  or  spin functions) can be
carried out using , , , , thereby yielding integrals over spatial orbitals.
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