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4.2: The Variational Method
Let us now turn to the other method that is used to solve Schrödinger equations approximately, the variational method. In this
approach, one must again have some reasonable wavefunction  that is used to approximate the true wavefunction. Within this
approximate wavefunction, one embeds one or more variables { } that one subsequently varies to achieve a minimum in the
energy of  computed as an expectation value of the true Hamiltonian :

The optimal values of the  parameters are determined by making

To achieve the desired energy minimum. We also should verify that the second derivative matrix

has all positive eigenvalues, otherwise one may not have found the minimum.

The theoretical basis underlying the variational method can be understood through the following derivation. Suppose that someone
knew the exact eigenstates (i.e., true  and true ) of the true Hamiltonian . These states obey

Because these true states form a complete set (it can be shown that the eigenfunctions of all the Hamiltonian operators we ever
encounter have this property), our so-called “trial wavefunction”  can, in principle, be expanded in terms of these :

Before proceeding further, allow me to overcome one likely misconception. What I am going through now is only a derivation of
the working formula of the variational method. The final formula will not require us to ever know the exact  or the exact ,
but we are allowed to use them as tools in our derivation because we know they exist even if we never know them.

With the above expansion of our trial function in terms of the exact eigenfunctions, let us now substitute this into the quantity

that the variational method instructs us to compute:

Using the fact that the  obey  and that the  are orthonormal

the above expression reduces to
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One of the basic properties of the kind of Hamiltonian we encounter is that they have a lowest-energy state. Sometimes we say they
are bounded from below, which means their energy states do not continue all the way to minus infinity. There are systems for
which this is not the case (we saw one earlier when studying the Stark effect), but we will now assume that we are not dealing with
such systems. This allows us to introduce the inequality  which says that all of the energies are higher than or equal to the
energy of the lowest state which we denote . Introducing this inequality into the above expression gives

This means that the variational energy, computed as

will lie above the true ground-state energy no matter what trial function  we use.

The significance of the above result that  is as follows. We are allowed to imbed into our trial wavefunction 
parameters that we can vary to make , computed as Equation  as low as possible because we know that we can never it
lower than the true ground-state energy. The philosophy then is to vary the parameters in  to render  as low as possible,
because the closer  is to  the “better” is our variational wavefunction. Let me now demonstrate how the variational method is
used in such a manner by solving an example problem.

Suppose you are given a trial wavefunction of the form:

to represent a two-electron ion of nuclear charge  and suppose that you are lucky enough that I have already evaluated the
variational energy expression (Equation , which I’ll call , for you and found

Now, let’s find the optimum value of the variational parameter  for an arbitrary nuclear charge  by setting . After
finding the optimal value of , we’ll then find the optimal energy by plugging this  into the above  expression.

Note that 0.3125 represents the shielding factor of one 1s electron to the other, reducing the optimal effective nuclear charge by
this amount (those familiar with Slater's Rules will not be surprised by this number). Now, using this optimal  in our energy
expression gives
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Since  is the Bohr radius 0.529 Å,  = 27.21 eV, or one atomic unit of energy. Is this energy any good? The total
energies of some two-electron atoms and ions have been experimentally determined to be as shown in Table  below.
Using our optimized expression for , let’s now calculate the estimated total energies of each of these atoms and ions as well
as the percent error in our estimate for each ion.

Table : Comparison of Experimental (true) total energies with predicted for select two-electron species.

Z Atom Experimental Calculated % Error

1 H -14.35 eV -12.86 eV 10.38%

2 He -78.98 eV -77.46 eV 1.92%

3 Li -198.02 eV -196.46 eV 0.79%

4 Be -371.5 eV -369.86 eV 0.44%

5 B -599.3 eV -597.66 eV 0.27%

6 C -881.6 eV -879.86 eV 0.19%

7 N -1218.3 eV -1216.48 eV 0.15%

8 O -1609.5 eV -1607.46 eV 0.13%

The energy errors are essentially constant over the range of , but produce a larger percentage error at small Z.

Aside: In 1928, when quantum mechanics was quite young, it was not known whether the isolated, gas-phase hydride ion, ,
was stable with respect to loss of an electron to form a hydrogen atom. Let’s compare our estimated total energy for  to the
ground state energy of a hydrogen atom and an isolated electron (which is known to be -13.60 eV). When we use our expression
for W and take , we obtain  eV, which is greater than -13.6 eV ( ), so this simple variational calculation
erroneously predicts  to be unstable. More complicated variational treatments give a ground state energy of  of -14.35 eV,
in agreement with experiment and agreeing that  is indeed stable with respect to electron detachment.
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