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6.8: High-End Methods for Treating Electron Correlation
Although their detailed treatment is beyond the scope of this text, it is important to appreciate that new approaches are always
under development in all areas of theoretical chemistry. In this Section, I want to introduce you to two tools that are proving to
offer high precision in the treatment of electron correlation energies. These are the so-called quantum Quantum Monte-Carlo and
r1,2- approaches to this problem. Both methods currently are used when one wishes to obtain the absolute highest precision in an
electronic structure calculation. The computational requirements of both of these methods are very high, so, at present, they can
only be used on species containing fewer than ca. 100 electrons. However, with the power and speed of computers growing as fast
as they are, it is likely that these high-end methods will be more and more widely used as time goes by.

Quantum Monte-Carlo 
In this method, one first re-writes the time dependent Schrödinger equation

for negative imaginary values of the time variable  (i.e., one simply replaces  by ). This gives

which is analogous to the well-known diffusion equation

The re-written Schrödinger equation can be viewed as a diffusion equation in the  spatial coordinates of the  electrons with a
diffusion coefficient  that is related to the electrons' mass me by

The so-called source and sink term  in the diffusion equation is related to the electron-nuclear and electron-electron Coulomb
potential energies denoted V:

In regions of space where  is large and negative (i.e., where the potential is highly attractive),  is large and negative, so  is
large and positive. This causes the concentration  of the diffusing material to accumulate in such regions. Likewise, where  is
positive,  will decrease. Clearly by recognizing  as the concentration variable in this analogy, one understands that  will
accumulate where  is negative and will decay where  is positive, as one expects.

So far, we see that the trick of taking  to be negative and imaginary causes the electronic Schrödinger equation to look like a -
dimensional diffusion equation. Why is this useful and why does this trick work? It is useful because, as we see in Chapter 7 of this
text, Monte-Carlo methods are highly efficient tools for solving certain equations; it turns out that the diffusion equation is one
such case. So, the Quantum Monte-Carlo approach can be used to solve the imaginary-time Schrödinger equation even for systems
containing many electrons. But, what does this imaginary time mean?

To understand the imaginary time trick, let us recall that any wave function 
(e.g., the trial wave function with which one begins to use Monte-Carlo methods to propagate the diffusing  function)  can be
written in terms of the exact eigenfunctions { } of the Hamiltonian

as follows:
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If the Monte-Carlo method can, in fact be used to propagate forward in time such a function but with , then it will, in
principle, generate the following function at such an imaginary time:

As  increases, the relative amplitudes { } of all states but the lowest state (i.e., that with smallest ) will
decay compared to the amplitude  of the lowest state. So, the time-propagated wave function will, at long enough
t, be dominated by its lowest-energy component. In this way, the quantum Monte-Carlo propagation method can generate a wave
function in  dimensions that approaches the ground-state wave function.

It has turned out that this approach, which tackles the -electron correlation problem head-on, has proven to yield highly accurate
energies and wave functions that display the proper cusps near nuclei as well as the negative cusps (i.e., the wave function
vanishes) whenever two electrons' coordinates approach one another. Finally, it turns out that by using a starting function  of a
given symmetry and nodal structure, this method can be extended to converge to the lowest-energy state of the chosen symmetry
and nodal structure. So, the method can be used on excited states also. In Chapter 7 of this text, you will learn how the Monte-Carlo
tools can be used to simulate the behavior of many-body systems (e.g., the -electron system we just discussed) in a highly
efficient and easily parallellized manner.

 Method 

In this approach to electron correlation, one employs a trial variational wave function that contains components that depend
explicitly on the inter-electron distances . By so doing, one does not rely on the polarized orbital pair approach introduced
earlier in this Chapter to represent all of the correlations among the electrons. An example of such an explicitly correlated wave
function is:

which consists of an antisymmetrized product of  spin-orbitals multiplied by a factor that is symmetric under interchange of any
pair of electrons and contains the electron-electron distances in addition to a single variational parameter . Such a trial function is
said to contain linear-  correlation factors. Of course, it is possible to write many other forms for such an explicitly correlated
trial function. For example, one could use:

as a trial function. Both the linear and the exponential forms have been used in developing this tool of quantum chemistry. Because
the integrals that must be evaluated when one computes the Hamiltonian expectation value  are most computationally
feasible (albeit still very taxing) when the linear form is used, this particular parameterization is currently the most widely used.
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