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2.3: Densities of States in 1, 2, and 3 dimensions
When a large number of neighboring orbitals overlap, bands are formed. However, the natures of these bands, their energy

patterns, and their densities of states are very different in different dimensions.

Before leaving our discussion of bands of orbitals and orbital energies in solids, I want to address a bit more the issue of the density
of electronic states and what determines the energy range into which orbitals of a given band will split. First, let’s recall the energy
expression for the 1 and 2- dimensional electron in a box case, and let’s generalize it to three dimensions. The general result is

where the sum over  runs over the number of dimensions (1, 2, or 3), and  is the length of the box along the jth direction. For
one dimension, one observes a pattern of energy levels that grows with increasing , and whose spacing between neighboring
energy levels also grows as a result of which the state density decreases with increasing . However, in 2 and 3 dimensions, the
pattern of energy level spacing displays a qualitatively different character, especially at high quantum number.

Consider first the 3-dimensional case and, for simplicity, let’s use a box that has equal length sides . In this case, the total energy 

 is  times . The latter quantity can be thought of as the square of the length of a vector  having three

components , , . Now think of three Cartesian axes labeled , , and  and view a sphere of radius  in this space. The

volume of the 1/8 th sphere having positive values of , , and   and having radius  is . Because each cube

having unit length along the , , and  axes corresponds to a single quantum wave function and its energy, the total number 

 of quantum states with positive , , and  and with energy between zero and  is

The number of quantum states with energies between  and  is , which gives the density  of states near

energy :

Notice that this state density increases as  increases. This means that, in the 3-dimensional case, the number of quantum states per
unit energy grows; in other words, the spacing between neighboring state energies decreases, very unlike the 1-dimensioal case
where the spacing between neighboring states grows as  and thus  grows. This growth in state density in the 3-dimensional case
is a result of the degeneracies and near-degeneracies that occur. For example, the states with , ,   = 2,1,1 and 1, 1, 2, and 1,
2, 1 are degenerate, and those with , ,   = 5, 3, 1 or 5, 1, 3 or 1, 3, 5 or 1, 5, 3 or 3, 1, 5 or 3, 5, 1 are degenerate and nearly
degenerate to those having quantum numbers 4, 4, 1 or 1, 4, 4, or 4, 1, 4.

In the 2-dimensional case, degeneracies also occur and cause the density of states to possess an -dependence that differs from the
1- or 3-dimensional case. In this situation

, we think of states having energy , but with . The total number of states having energy between

zero and  is

So, the density of states between  and  is
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That is, in this 2-dimensional case, the number of states per unit energy is constant for high  values (where the analysis above
applies best).

This kind of analysis for the 1-dimensional case gives

so, the state density between  and  is:

which clearly shows the widening spacing, and thus lower state density, as one goes to higher energies.

These findings about densities of states in 1-, 2-, and 3- dimensions are important because, in various problems one encounters in
studying electronic states of extended systems such as solids, chains, and surfaces, one needs to know how the number of states
available at a given total energy  varies with . A similar situation occurs when describing the translational states of an electron
or a photo ejected from an atom or molecule into the vacuum; here the 3-dimensional density of states applies. Clearly, the state
density depends upon the dimensionality of the problem, and this fact is what I want the students reading this text to keep in mind.

Before closing this Section, it is useful to overview how the various particle-in-box models can be used as qualitative descriptions
for various chemical systems.

1a. The one-dimensional box model is most commonly used to model electronic orbitals in delocalized linear polyenes.

1b. The electron-on-a-circle model is used to describe orbitals in a conjugated cyclic ring such as in benzene.

2a. The rectangular box model can be used to model electrons moving within thin layers of metal deposited on a substrate or to
model electrons in aromatic sheets such as graphene shown below in Figure 2.8a.

Figure 2.8a Depiction of the aromatic rings of graphene extending in two dimensions.

2b. The particle-within-a-circle model can describe states of electrons (or other light particles requiring quantum treatment)
constrained within a circular corral.

2c. The particle-on-a-sphere’s surface model can describe states of electrons delocalized over the surface of fullerene-type species
such as shown in the upper right of Figure 2.8b.
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Figure 2.8b Fullerene (upper right) and tubes of rolled up graphenes (lower three).

3a. The particle-in-a-sphere model, as discussed earlier, is often used to treat electronic orbitals of quasi-spherical nano-clusters
composed of metallic atoms.

3b. The particle-in-a-cube model is often used to describe the bands of electronic orbitals that arise in three-dimensional crystals
constructed from metallic atoms.

In all of these models, the potential , which is constant in the region where the electron is confined, controls the energies of all
the quantum states relative to that of a free electron (i.e., an electron in vacuum with no kinetic energy).

For some dimensionalities and geometries, it may be necessary to invoke more than one of these models to qualitatively describe
the quantum states of systems for which the valence electrons are highly delocalized (e.g., metallic clusters and conjugated
organics). For example, for electrons residing on the surface of any of the three graphene tubes shown in Figure 2.8b, one expects
quantum states (i) labeled with an angular momentum quantum number and characterizing the electrons’ angular motions about the
long axis of the tube, but also (ii) labeled by a long-axis quantum number characterizing the electron’s energy component along the
tube’s long axis. For a three-dimensional tube-shaped nanoparticle composed of metallic atoms, one expects the quantum states to
be (i) labeled with an angular momentum quantum number and a radial quantum number characterizing the electrons’ angular
motions about the long axis of the tube and its radial (Bessel function) character, but again also (ii) labeled by a long-axis quantum
number characterizing the electron’s energy component along the tube’s long axis.
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