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4.1: Perturbation Theory
In most practical applications of quantum mechanics to molecular problems, one is faced with the harsh reality that the Schrödinger equation
pertinent to the problem at hand cannot be solved exactly. To illustrate how desperate this situation is, I note that neither of the following two
Schrödinger equations has ever been solved exactly (meaning analytically):

1. The Schrödinger equation for the two electrons moving about the He nucleus:

2. The Schrödinger equation for the two electrons moving in an  molecule even if the locations of the two nuclei (labeled A and B) are
held clamped as in the Born-Oppenheimer approximation:

These two problems are examples of what is called the “three-body problem” meaning solving for the behavior of three bodies moving relative
to one another. Motions of the sun, earth, and moon (even neglecting all the other planets and their moons) constitute another three-body
problem. None of these problems, even the classical Newton’s equation for the sun, earth, and moon, have ever been solved exactly. So, what
does one do when faced with trying to study real molecules using quantum mechanics?

There are two very powerful tools that one can use to “sneak up” on the solutions to the desired equations by first solving an easier model
problem and then using the solutions to this problem to approximate the solutions to the real Schrödinger problem of interest. For example, to
solve for the energies and wave functions of a boron atom, one could use hydrogenic  orbitals (but with ) and hydrogenic  and 
orbitals (with  to account for the screening of the full nuclear charge by the two  electrons) as a starting point. To solve for the
vibrational energies of a diatomic molecule whose energy vs. bond length  is known, one could use the Morse oscillator wave functions
and energies as starting points. But, once one has decided on a reasonable model to use, how does one connect this model to the real system of
interest? Perturbation theory and the variational method are the two tools that are most commonly used for this purpose, and it is these two
tools that are covered in this Chapter.

The perturbation theory approach provides a set of analytical expressions for generating a sequence of approximations to the true energy 
and true wave function . This set of equations is generated, for the most commonly employed perturbation method, Rayleigh-Schrödinger
perturbation theory (RSPT), as follows. First, one decomposes the true Hamiltonian  into a so-called zeroth-order part  (this is the
Hamiltonian of the model problem used to represent the real system) and the difference ( ), which is called the perturbation and
usually denoted :

It is common to associate with the perturbation  a strength parameter , which could, for example, be associated with the strength of the
electric field when the perturbation results from the interaction of the molecule of interest with an electric field. In such cases, it is usual to
write the decomposition of  as

A fundamental assumption of perturbation theory is that the wave functions and energies for the full Hamiltonian  can be expanded in a
Taylor series involving various powers of the perturbation parameter . Hence, one writes the energy  and the wave function  as zeroth-,
first-, second, etc, order pieces which form the unknowns in this method:

with  and  being proportional to . Next, one substitutes these expansions of ,  and  into . This produces one
equation whose right and left hand sides both contain terms of various “powers” in the perturbation . For example, terms of the form , 

, and   and   are all of third power (also called third order). Next, one equates the terms on the left and right sides that are of
the same order. This produces a set of equations, each containing all the terms of a given order. The zeroth, first, and second-order such
equations are given below:
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+V = +H (0)ψ(1) ψ(0) E (0)ψ(1) E (1)ψ(0) (4.1.8)

+V = + + .H (0)ψ(2) ψ(1) E (0)ψ(2) E (1)ψ(1) E (2)ψ(0) (4.1.9)
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It is straightforward to see that the nth order expression in this sequence of equations can be written as

The zeroth-order equation simply instructs us to solve the model Schrödinger equation to obtain the zeroth-order wave function  and its
zeroth-order energy . Since  is a Hermitian operator, it has a complete set of such eigenfunctions, which we label  and
{E^{(0)}_k}. One of these states will be the one we are interested in studying (e.g., we might be interested in the effect of an external electric
field on the  state of the hydrogen atom), but, as will become clear soon, we actually have to find the full set of { } and { } (e.g., we
need to also find the  etc. states of the hydrogen atom when studying the electric field’s effect on the  state).

In the first-order equation, the unknowns are  and  (recall that  is assumed to be known because it is the difference between the
Hamiltonian one wants to solve and the model Hamiltonian ). To solve the first-order and higher-order equations, one expands each of the
corrections to the wave function  of interest in terms of the complete set of wave functions of the zeroth-order problem . As noted
earlier, this means that one must solve  not just for the zeroth-order state one is interested in (denoted  above), but
for all of the other zeroth-order states . For example, expanding  in this manner gives:

Now, the unknowns in the first-order equation become  and the expansion coefficients. To solve

one proceeds as follows:

1. First, one multiplies this equation on the left by the complex conjugate of the zeroth-order function for the state of interest  and
integrates over the variables on which the wave functions depend. This gives

The first and third terms cancel one another because , and the fourth term reduces to  because  is assumed to be
normalized. This allows the above equation to be written as

which is the RSPT expression for . It says the first-order correction to the energy  of the unperturbed state can be evaluated by
computing the average value of the perturbation with respect to the unperturbed wave function .

2. Returning to the first-order equation and multiplying on the left by the complex conjugate of one of the other zeroth-order functions gives

Using , the first term reduces to , and the fourth term vanishes because is orthogonal to  because these two functions are
different eigenfunctions of . This reduces the equation to

The unknown in this expression is , which is the expansion coefficient for the expansion of  in terms of the zeroth-order
functions { }. In RSPT, one assumes that the only contribution of  to the full wave function \psioccurs in zeroth-order; this is referred to as
assuming intermediate normalization of y. In other words,  because  and  for . So,
the coefficients  appearing in the above equation are all one needs to describe .

3. If the state of interest  is non-degenerate in zeroth-order (i.e., none of the other is equal to E^{(0)}), this equation can be solved for the
needed expansion coefficients

which allow the first-order wave function to be written as

where the index  is restricted such that  not equal the state  you are interested in.
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4. However, if one or more of the zeroth-order energies is equal to , an additional step needs to be taken before the above expression for 
 can be used. If one were to try to solve  without taking this extra step, the  values

for those states with  could not be determined because the first and third terms would cancel and the equation would read 
. The way RSPT deals with this paradox is realize that, within a set of  degenerate states, any  orthogonal combinations

of these states will also be degenerate. So RSPT assumes that one has already chosen the degenerate sets of zeroth-order states to make 
 for . This extra step is carried out in practice by forming the matrix representation of  in the original set of

degenerate zeroth-order states and then finding the unitary transformation among these states that diagonalizes this matrix. These transformed
states are then what one uses as and  in the RSPT expressions. This means that the paradoxical result  is indeed obeyed
by this choice of states, so one does not need to determine the coefficients  for belonging to the degenerate zeroth-order states (i.e.,
these coefficients can be assumed to be zero). The bottom line is that the expression

remains valid, but the summation index  is now restricted to exclude any members of the zeroth-order states that are degenerate with .

To obtain the expression for the second-order correction to the energy of the state of interest, one returns to

Multiplying on the left by the complex conjugate of  and integrating yields

The intermediate normalization condition causes the fourth term to vanish, and the first and third terms cancel one another. Recalling the fact
that  is normalized, the above equation reduces to

Substituting the expression obtained earlier for  allows  to be written as

where, as before, the sum over  is limited to states that are not degenerate with  in zeroth-order.

These are the fundamental working equations of Rayleigh-Schrödinger perturbation theory. They instruct us to compute the average value of
the perturbation taken over a probability distribution equal to  to obtain the first-order correction to the energy . They also tell us
how to compute the first-order correction to the wave function and the second-order energy in terms of integrals coupling  to other zeroth-
order states and denominators involving energy differences .

An analogous approach is used to solve the second- and higher-order equations. For example, the equation for the nth order energy and wave
functions reads:

The nth order energy is obtained by multiplying this equation on the left by  and integrating over the relevant coordinates (and using the
fact that  is normalized and the intermediate normalization condition  for all ):

This allows one to recursively solve for higher and higher energy corrections once the various lower-order wave functions  are obtained.
To obtain the expansion coefficients for the  expanded in terms of the zeroth-order states { }, one multiplies the above  order equation
on the left by (one of the zeroth-order states not equal to the state  of interest) and obtains

The last term on the right-hand side vanishes because and  are orthogonal. The terms containing the nth order expansion coefficients 
 can be brought to the left-hand side to produce the following equation for these unknowns:
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As long as the zeroth-order energy is not degenerate with  (or, that the zeroth-order states have been chosen as discussed earlier to cause
there to no contribution to  from such degenerate states), the above equation can be solved for the expansion coefficients ,
which then define .

The RSPT equations can be solved recursively to obtain even high-order energy and wave function corrections:

1.  and  and  are used to determine  and  as outlined above,
2.  is determined from  with , and the expansion coefficients of  { } are determined from the above

equation with ,
3.  (and higher ) are then determined from  and the expansion coefficients of  { } are determined

from the above equation with .
4. This process can then be continued to higher and higher order.

Although modern quantum mechanics uses high-order perturbation theory in some cases, much of what the student needs to know is contained
in the first- and second- order results to which I will therefore restrict our further attention. I recommend that students have in memory (their
own brain, not a computer) the equations for , , and  so they can make use of them even in qualitative applications of
perturbation theory as we will discuss later in this Chapter. But, first, let’s consider an example problem that illustrates how perturbation
theory is used in a more quantitative manner.

Example Problem 

As we discussed earlier, an electron moving in a quasi-linear conjugated bond framework can be modeled as a particle in a box. An externally

applied electric field of strength  interacts with the electron in a fashion that can described by adding the perturbation  to

the zeroth-order Hamiltonian. Here,  is the position of the electron in the box,  is the electron's charge, and  is the length of the box. The
perturbation potential varies in a linear fashion across the box, so it acts to pull the electron to one side of the box.

First, we will compute the first-order correction to the energy of the  state and the first-order wave function for the  state. In the
wave function calculation, we will only compute the contribution to  made by  (this is just an approximation to keep things simple in this
example). Let me now do all the steps needed to solve this part of the problem. Try to make sure you can do the algebra, but also make sure
you understand how we are using the first-order perturbation equations.

The zeroth-order wave functions and energies are given by

and

and the perturbation is

The first-order correction to the energy for the state having  and denote  is

The first integral can be evaluated using the following identity with :

The second integral can be evaluated using the following identity with 
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.

Making all of these appropriate substitutions we obtain:

This result, that the first-order correction to the energy vanishes, could have been foreseen. In the expression for , the

product  is an even function under reflection of  through the midpoint ; in fact, this is true for all of the particle-in-a-box

wave functions. On the other hand, the perturbation  is an odd function under reflection through . Thus, the integral 

 must vanish as its integrand is an odd function. This simple example illustrates how one can use symmetry to tell ahead of time
whether the integrals  and  contributing to the first-order and higher-order energies and wave functions will vanish.

The contribution to the first-order wave function made by the  state is given by

The two integrals in the numerator involve

and

Using the integral identities
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Making all of these appropriate substitutions we obtain: 

for the first-order wave function (actually, only the  contribution). So, the wave function through first order (i.e., the sum of the zeorth-
and first-order pieces) is

In Figure 4.1 we show the  and  zeroth-order functions as well as the superposition function formed when the zeroth-order 
and first-order  functions combine.

Figure 4.1  (blue) and  (red) particle-in-a-box zeroth-order functions (left) and the  perturbed function through first order
(right) arising from the electric field polarization.

Clearly, the external electric field acts to polarize the  wave function in a manner that moves its probability density toward the 

side of the box. The degree of polarization will depend on the strength of the applied electric field.

For such a polarized superposition wave function, there should be a net dipole moment induced in the system. We can evaluate this dipole
moment by computing the expectation value of the dipole moment operator:

with being the sum of our zeroth- and first-order wave functions. In computing this integral, we neglect the term proportional to  because
we are interested in only the term linear in  because this is what gives the dipole moment. Again, allow me to do the algebra and see if you
can follow.

where,

The first integral is zero (we discussed this earlier when we used symmetry to explain why this vanishes). The fourth integral is neglected
since it is proportional to  and we are interested in obtaining an expression for how the dipole varies linearly with . The second and third
integrals are identical and can be combined to give:

Substituting our earlier expressions for

and

= sin( )ψ(1) 32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.48)

n = 2

+ = sin( )+ sin( )ψ(0) ψ(1) 2

L

−−
√

πx

L

32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.49)

n = 1 n = 2 n = 1
n = 1

n = 1 n = 2 n = 1

n = 1 x >
L

2

= −e∫ (x− )ψdxμinduced ψ∗ L

2
(4.1.50)

E (2)

ε

= −e∫ (x− )ψdxμinduced ψ∗ L

2
(4.1.51)

ψ = +ψ(0) ψ(1) (4.1.52)

= −e ( + (x− ) ( + )dxμinduced ∫
L

0
ψ(0) ψ(1))∗ L

2
ψ(0) ψ(1) (4.1.53)

= −e  (x− ) dx−e  (x− ) dx∫
L

0
ψ(0)∗ L

2
ψ(0) ∫

L

0
ψ(1)∗ L

2
ψ(0) (4.1.54)

= −e (x− ) dx−e (x− ) dx∫
L

0
ψ(0)∗ L

2
ψ(1) ∫

L

0
ψ(1)∗ L

2
ψ(1) (4.1.55)

E (2) ε

= −2e (x− ) dx μinduced ∫
L

0
ψ(0)∗ L

2
ψ(1) (4.1.56)

= sin( )ψ(0) 2

L

πx

L
(4.1.57)
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we obtain:

These integrals are familiar from what we did to compute ; doing them we finally obtain:

Now. Let’s compute the polarizability, , of the electron in the  state of the box, and try to understand physically why a should depend
as it does upon the length of the box . To compute the polarizability, we need to know that

Using our induced moment result above, we then find

Notice that this finding suggests that the larger the box (i.e., the length of the conjugated molecule), the more polarizable the electron density.
This result also suggests that the polarizability of conjugated polyenes should vary non-linearly with the length of the conjugated chain.

Other Examples 
Let’s consider a few more examples of how perturbation theory is used in chemistry, either quantitatively (i.e., to actually compute changes in
energies and wave functions) or qualitatively (i.e., to interpret or anticipate how changes might alter energies or other properties).

The Stark effect 

When a molecule is exposed to an electric field , its electrons and nuclei experience a perturbation

where  is the charge of the  nucleus whose position is ,  is the position of the  electron, and  is the unit of charge. The effect of
this perturbation on the energies is termed the Stark effect. The first-order change to the energy of this molecule is evaluated by calculating

where  is the unperturbed wave function of the molecule (i.e., the wave function in the absence of the electric field). The quantity inside the
integral is the electric dipole operator, so this integral is the dipole moment of the molecule in the absence of the field. For species that possess
no dipole moment (e.g., non-degenerate states of atoms and centro-symmetric molecules), this first-order energy vanishes. It vanishes in the
two specific cases mentioned because  is either even or odd under the inversion symmetry, but the product  is even, and the dipole
operator is odd, so the integrand is odd and thus the integral vanishes.

If one is dealing with a degenerate state of a centro-symmetric system, things are different. For example, the  and  states of the hydrogen
atom are degenerate, so, to apply perturbation theory one has to choose specific combinations that diagonalize the perturbation. This means
one needs to first form the 2x2 matrix

where  is taken to be the direction of the electric field. The diagonal elements of this matrix vanish due to parity symmetry, so the two
eigenvalues are equal to

These are the two first-order (because they are linear in  and thus linear in ) energies.

So, in such degenerate cases, one can obtain linear Stark effects. The two corrected zeroth-order wave functions corresponding to these two
shifted energies are

= sin( )ψ(1) 32m eεL3

27ℏ2π4

2

L

−−
√

2πx

L
(4.1.58)

= −2e sin( )(x− ) sin( ) dxμinduced

32m eεL3

27ℏ2π4

2

L
∫

L

0

πx

L

L

2

2πx

L
(4.1.59)

= −2e ( )( ) =μinduced

32m eεL3

27ℏ2π4

2

L

−8L2

9π2

m εL4e2

ℏ2π6

210

35
(4.1.60)

α n = 1
L

α = .( )
∂μ

∂ε ε=0

(4.1.61)

α = =( )
∂μ

∂ε ε=0

mL4e2

ℏ2π6

210

35
(4.1.62)

E

V = E ⋅ (e −e )∑
n

ZnRn ∑
i

ri (4.1.63)

Zn nth Rn ri ith e

= ⟨ |V |ψ⟩ = E ⋅ ⟨ψ|e −e |ψE (1) ψ∗ ∑
n

ZnRn ∑
i

ri (4.1.64)

ψ

ψ ψψ∗

2s 2p

( )
⟨2s|V |2s⟩

⟨2 |V |2s⟩pz

⟨2s|V |2 ⟩pz

⟨2  |V |2 ⟩ pz pz
(4.1.65)

z

= ±2⟨2s|V |2 ⟩.E
(1)
± pz (4.1.66)

V
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and correspond to orbitals polarized into or away from the electric field.

The Stark effect example offers a good chance to explain a fundamental problem with applying perturbation theory. One of the basic
assumptions of perturbation theory is that the unperturbed and perturbed Hamiltonians are both bounded from below (i.e., have a discrete
lowest eigenvalues) and allow each eigenvalue of the unperturbed Hamiltonian to be connected to a unique eigenvalue of the perturbed
Hamiltonian. Considering the example just discussed, we can see that these assumptions are not met for the Stark perturbation.

Consider the potential that an electron experiences within an atom or molecule close to a nucleus of charge . It is of the form (in atomic units
where the energy is given in Hartrees (1 H = 27.21 eV) and distances in Bohr units (1 Bohr = 0.529 Å))

where the first term is the Coulomb potential acting to attract the electron to the nucleus and the second is the electron-field potential assuming
the field is directed along the -direction. In Figure 4.2 a we show this potential for a given value of the angle .

Figure 4.2 a Potential experienced by valence electron showing attraction to a nucleus located at the origin (the deep well) and the potential
due to the applied electric field.

Along directions for which  is negative (to the right in Figure 4.2 a), this potential becomes large and positive as the distance  of the
electron from the nucleus increases; for bound states such as the  and  states discussed earlier, such regions are classically forbidden and
the wave function exponentially decays in this direction. However, in directions along which  is positive, the potential is negative and
strongly attractive for small-r (i.e., near the nucleus), then passes through a maximum (e.g., near  in Figure 4.2 a) at

where

(ca. – 1 eV in Figure 4.2 a) and then decreases monotonically as r increases. In fact, this potential approaches  as  approaches  as we
see in the left portion of Figure 4.2 a.

The bottom line is that the total potential with the electric field present violates the assumptions on which perturbation theory is based.
However, it turns out that perturbation theory can be used in such cases under certain conditions. For example as applied to the Stark effect for
the degenerate  and  levels of a hydrogenic atom (i.e., a one-electron system with nuclear charge ), if the energy of the  and  states
lies far below the maximum in the potential , perturbation theory can be used. We know the energies of hydrogenic ions vary with 
and with the principal quantum number  as

So, as long as

the zeroth-order energy of the state will like below the barrier on the potential surface. Because the wave function can penetrate this barrier,
this state will no longer be a true bound state; it will be a metastable resonance state (recall, we studied such states in Chapter 1 where we
learned about tunneling). However, if the zeroth-order energy lies far below the barrier, the extent of tunneling through the barrier will be
small, so the state will have a long lifetime. In such cases, we can use perturbation theory to describe the effects of the applied electric field on
the energies and wave functions of such metastable states, but we must realize that we are only allowed to do so in the limit of weak fields and

= [2s∓2 ]ψ
(0)
±

1

2
–

√
pz (4.1.67)

Z

V (r, θ,ϕ) = − −eEr cosθ
Z

r
(4.1.68)

z θ

cosθ r

2s 2p
cosθ
x = −2

=rmax
Z

eE cosθ

− −−−−−−
√ (4.1.69)

V ( ) = −2rmax eE cosθ
− −−−−−

√ (4.1.70)

−∞ r ∞

2s 2p Z 2s 2p
V ( )rmax Z

n

(Z) = = auE (n) −13.6eV

n2Z2

−1

2n2Z2
(4.1.71)

≪ −2
−1

2n2Z2
eE cosθ
− −−−−−

√ (4.1.72)
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for states that lie significantly below the barrier. In this case, perturbation theory describes the changes in the energy and wave function in
regions of space where the zeroth-order wave function is bound, but does not describe at all the asymptotic part of the wave function where the
electron is unbound.

Another example of Stark effects in degenerate cases arises when considering how polar diatomic molecules’ rotational energies are altered by
an electric field. The zeroth-order wave functions appropriate to such cases are given by

where the spherical harmonic  is the rotational wave function,  is the vibrational function for level , and  is the
electronic wave function. The diagonal elements of the electric-dipole operator

vanish because the vibrationally averaged dipole moment, which arises as

is a vector quantity whose component along the electric field is  (again taking the field to lie along the -direction). Thinking of 
 as , so  is , the integrals

because  is an even function of  (i.e. ,of ). Because the angular dependence of the perturbation (i.e., ) has no -
dependence, matrix elements of the form

also vanish. This means that if one were to form the  matrix representation of  for the  degenerate states 
belonging to a given , all of its elements would be zero. Thus the rotational energies of polar diatomic (or rigid linear polyatomic) molecules
have no first-order Stark splittings.

There will, however, be second-order Stark splittings, in which case we need to examine the terms that arise in the formula

For a zeroth-order state , only certain other zeroth-order states will have non-vanishing coupling matrix elements . These non-zero
integrals are governed by , which can be shown to be

of course, if , the term  does not occur. The limitation that  must equal  arises, as above, because the perturbation
contains no terms dependent on the variable . The limitation that  comes from a combination of three conditions

i. angular momentum coupling, which you learned about in Chapter 2, tells us that , which happens to be proportional to , can
couple to  to generate terms having , , or  for their  quantum number but only  for their  quantum number,

ii. the , , and  factors arising from the product  must match  for the integral not to vanish because 
,

iii. finally, the  terms will vanish because of the inversion symmetry (  is odd under inversion but  is even).

Using the fact that the perturbation is , these two non-zero matrix elements can be used to express the second-order energy
for the  level as

where  is Planck’s constant and  is the rotational constant for the molecule

ψ = (θ,ϕ) (R) (r|R)YJ,M χν ψe (4.1.73)

(θ,ϕ)YJ,M (R)χν ν (r|R)ψe

⟨ (θ,ϕ) (R) (r|R)|V | (θ,ϕ) (R) (r|R)⟩YJ,M χν ψe YJ,M χν ψe (4.1.74)

⟨μ⟩ = ⟨ (R) (r|R)|e −e | (R) (r|R)⟩χν ψe ∑
n

ZnRn ∑
i

ri χν ψe (4.1.75)

⟨μ⟩ cos(θ) z

cos(θ) x sin(θ)dθ dx

⟨ (θ,ϕ)| cosθ| (θ,ϕ)⟩ = ∫ (θ,ϕ) cosθ (θ,ϕ) sinθdθdϕ = ∫ (θ,ϕ)x (θ,ϕ)dxdϕ = 0YJ,M YJ,M Y ∗
J,M YJ,M Y ∗

J,M YJ,M (4.1.76)

|YJ,M |2 x cos(θ) cosθ ϕ

∫  (θ,ϕ) cosθ (θ,ϕ) sinθdθdϕ = 0Y ∗
J,M YJ,M (4.1.77)

(2J +1) ×(2J +1) V 2J +1 YJ,M

J

=E (2) ∑
J

|⟨ |V |ps ⟩ψ(0) i(0) |2

−E (0) E
(0)
J

(4.1.78)

YJ,M

⟨ | cosθ| ⟩ =  for  = J +1;  for  = J −1;YJ,M Y ,J ′ M ′

(J +1 −)2 M 2

(2J +1)(2J +3)

− −−−−−−−−−−−−−

√ δM,M ′ J ′ −J 2 M 2

(2J −1)(2J +1)

− −−−−−−−−−−−−−

√ δM,M ′ J ′ (4.1.79)

J = 0 = J −1J ′ M M ′

ϕ = J ±1J ′

cosθ (θ,ϕ)Y1,0

YJ,M J +1 J J −1 J 2 M Jz
J +1 J J −1 cosθYJ,M YJ,M ′

⟨ | ⟩ =YJ,M Y ,J ′ M ′ δJ,J ′ δM,M ′

J = J ′ cosθ |YJ,M |2

E⟨μ⟩ cos(theta)
J,M

E = ⟨μ +E
2 ⟩2

⎡

⎣

⎢⎢⎢⎢

(J +1 −)2 M 2

(2J +1)(2J +3)

−2B(J +1)

−J 2 M 2

(2J −1)(2J +1)

2BJ

⎤

⎦

⎥⎥⎥⎥
(4.1.80)

h B
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for a diatomic molecule of reduced mass  and equilibrium bond length .

Before moving on to another example, it is useful to point out some common threads that occur in many applications of perturbation theory
and that will also be common to variational calculations that we discuss later in this Chapter. Once one has identified the specific zeroth-order
state  of interest, one proceeds as follows:

i. The first-order energy  is evaluated. In doing so, one should first make use of any symmetry (point group symmetry
is treated later in this Chapter) such as inversion, angular momentum, spin, etc., to determine whether this expectation value will vanish by
symmetry, in which case, we don’t bother to consider this matrix element any more. We used this earlier when considering , 

, and  to conclude that certain first-order energies are zero.
ii. If  vanishes (so the lowest-order effect is in second order) or if we want to examine higher-order corrections, we consider evaluating 

. Before doing so explicitly, we think about whether symmetry will limit the matrix elements  entering into the
expression for . For example, in the case just studied, we saw that only other zeroth-order states having  or 
gave non-vanishing matrix elements. In addition, because  contains energy denominators ( ), we may choose to limit our
calculation to those other zeroth-order states whose energies are close to our state of interest; this assumes that such states will contribute a
dominant amount to the sum

.

You will encounter many times when reading literature articles in which perturbation theory is employed situations in which researchers have
focused attention on zeroth-order states that are close in energy to the state of interest and that have the correct symmetry to couple strongly
(i.e., have substantial ) to that state.

Electron-electron Coulomb repulsion 

In one of the most elementary pictures of atomic electronic structure, one uses nuclear charge screening concepts to partially account for
electron-electron interactions. For example, in 1s 2s  Li, one might posit a zeroth-order wave function consisting of a product

in which two electrons occupy a  orbital and one electron occupies a  orbital. To find a reasonable form for the radial parts of these two
orbitals, one could express each of them as a linear combination of (i) one orbital having hydrogenic  form with a nuclear charge of 3 and
(ii) a second orbital of  form but with a nuclear charge of 1 (to account for the screening of the  nucleus by the two inner-shell 
electrons)

where the index i labels the  and  orbitals to be determined. Next, one could determine the  and  expansion coefficients by requiring
the fi to be approximate eigenfunctions of the Hamiltonian

that would be appropriate for an electron attracted to the Li nucleus but not experiencing any repulsions with other electrons. This would result
in the following equation for the expansion coefficients:

This 2x2 matrix eigenvalue problem can be solved for the  and  coefficients and for the energies  of the  and  orbitals. The lower-
energy solution will have , and will be this model’s description of the  orbital. The higher-energy solution will have 
and is the approximation to the  orbital.

Using these  and  orbitals and the 3-electron wave function they form

as a zeroth-order approximation, how do we then proceed to apply perturbation theory? The full three-electron Hamiltonian

B =
h

8 μπ2 r2
e

(4.1.81)

μ re

ψ(0)

= ⟨ |V | ⟩E (1) ψ(0) ψ(0)

⟨2s| cosθ|2s⟩
⟨2 | cosθ|2 ⟩pσ pσ ⟨ | cosθ| ⟩YJ,M YJ,M

E (1)

E (2) ⟨ |V n⟩ψ(0) ψ(0)

E (2) = J +1J ′ J‘= J −1

E (2) −E (0) E
(0)
n

⟨ |V ⟩ψ(0) ψ
(0)
n

2 1

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.82)

1s 2s
1s

2s Z = 3 1s

(r) = (r) + (r)ϕi Ciχ1s,Z=1 Diχ2s,Z=3 (4.1.83)

1s 2s Ci Di

h = −
1

2
∇2 3

r
(4.1.84)

( )( )
⟨ (r)| − − | (r)⟩χ1s,Z=1

1
2

∇2 3
r
χ1s,Z=1

⟨ (r)| − − | (r)⟩χ1s,Z=1
1
2

∇2 3
r χ2s,Z=3

⟨ (r)| − − | (r)⟩χ1s,Z=1
1
2

∇2 3
r
χ2s,Z=3

⟨ (r)| − − | (r)⟩χ2s,Z=3
1
2

∇2 3
r χ2s,Z=3

C

D

=( )( ) .
⟨ (r)| (r)⟩χ1s,Z=1 χ1s,Z=1

⟨ (r)| (r)⟩χ1s,Z=1 χ2s,Z=3

⟨ (r)| (r)⟩χ1s,Z=1 χ2s,Z=3

⟨ (r)| (r)⟩ χ2s,Z=3 χ2s,Z=3

C

D

(4.1.85)

Ci Di Ei 1s 2s
|C| > |D| 1s |D| > |C|

2s

1s 2s

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.86)

H = [ − ]+∑
i=1

3 1

2
∇2

i

3

ri
∑
i<j=1

3 1

ri,j
(4.1.87)
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can be decomposed into a zeroth-order part

and a perturbation

The zeroth-order energy of the wave function

is

where each of the  are the energies obtained by solving the 2x2 matrix eigenvalue equation shown earlier. The first-order energy of this
state can be written as

with the Coulomb interaction integrals being defined as

To carry out the 3-electron integral appearing in , one proceeds as follows. For the integral

one integrates over the 3 spin variables using ,  and ) and then integrates over the coordinate of the third electron
using  to obtain

which is . The two  integrals arise when carrying out similar integration for the terms arising from (  ) and ( ).

So, through first order, the energy of the Li atom at this level of treatment is given by

The factor  contains the contributions from the kinetic energy and electron-nuclear Coulomb potential. The  terms
describe the Coulombic repulsions among the three electrons. Each of the Coulomb integrals  can be interpreted as being equal to the
Coulombic interaction between electrons (one at location ; the other at ) averaged over the positions of these two electrons with their spatial
probability distributions being given by  and , respectively.

Although the example just considered is rather primitive, it introduces a point of view that characterizes one of the most commonly employed
models for treating atomic and molecular electronic structure- the Hartree-Fock (HF) mean-field model, which we will discuss more in
Chapter 6. In the HF model, one uses as a zeroth-order Hamiltonian

consisting of a sum of one-electron terms containing the kinetic energy, the Coulomb attraction to the nucleus (I use the Li atom as an example
here), and a potential . This potential, which is written in terms of Coulomb integrals similar to those we discussed earlier as well as
so-called exchange integrals that we will discuss in Chapter 6, is designed to approximate the interaction of an electron at location  with the
other electrons in the atom or molecule. Because  is one-electron additive, its eigenfunctions consist of products of eigenfunctions of the
operator

= [ − ]H (0) ∑
i=1

3
1

2
∇2

i

3

ri
(4.1.88)

V = ∑
i<j=1

3 1

ri,j
(4.1.89)

ψ = ( )α(1) ( )β(2) ( )α(3)ϕ1s r1 ϕ1s r2 ϕ2s r3 (4.1.90)

= 2 +E (0) E1s E2s (4.1.91)

Ens

= ⟨ ( )α(1) ( )β(2) ( )α(3)|V | ( )α(1) ( )β(2) ( )α(3)⟩ +2E (1) ϕ1s r1 ϕ1s r2 ϕ2s r3 ϕ1s r1 ϕ1s r2 ϕ2s r3 J1s,1s J1s,2s (4.1.92)

= ∫ (r) (r) (r) (r)drdJa,b ϕ∗
a ϕa

1

|r− |r′
ϕ∗
b

ϕb r′ (4.1.93)

E (1)

∫ [ ( )α(1) ( )β(2) ( )α(3) ( )α(1) ( )β(2) ( )α(3)d d dϕ1s r1 ϕ1s r2 ϕ2s r3 ]∗
1

r1,2
ϕ1s r1 ϕ1s r2 ϕ2s r3 r1 r2 r3 (4.1.94)

⟨a|a⟩ = 1 ⟨a|b⟩ = 0 ⟨b|b⟩ = 1
⟨ |  ⟩ = 1ϕ2s ϕ2s

∫ [ ( ) ( )  ( ) ( ) d d dϕ1s r1 ϕ1s r2 ]∗
1

r1,2
ϕ1s r1 ϕ1s r2 r1 r2 r3 (4.1.95)

J1s,1s J1s,2s 1/r1,3 1/r2,3

+ = 2 + + +2 .E (0) E (1) E1s E2s J1s,1s J1s,2s (4.1.96)

2 +E1s E2s +2J1s,1s J1s,2s

Ji,j
r r

′

| (r)ϕi |2 | ( )ϕj r′ |2

= [ − + ( )]H (0) ∑
i=1

3 1

2
∇2

i

3

ri
VHF ri (4.1.97)

( )VHF ri

ri

H (0)

= − + (r)h(0) 1

2
∇2 3

r
VHF (4.1.98)
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 offers an approximation to the true  Coulomb interactions expressed in terms of a “smeared-out” electron distribution
interacting with the electron at ri. Perturbation theory is then used to treat the effect of the perturbation

on the zeroth-order states. We say that the perturbation, often called the fluctuation potential, corrects for the difference between the
instantaneous Coulomb interactions among the  electrons and the mean-field (average) interactions.
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