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2.5: Hydrogenic Orbitals
The Hydrogenic atom problem forms the basis of much of our thinking about atomic structure. To solve the corresponding Schrödinger
equation requires separation of the , , and  variables.

The Schrödinger equation for a single particle of mass  moving in a central potential (one that depends only on the radial coordinate )
can be written as

or, introducing the short-hand notation :

This equation is not separable in Cartesian coordinates ( ) because of the way  and  appear together in the square root.
However, it is separable in spherical coordinates where it has the form 

Subtracting  from both sides of the equation and multiplying by - then moving the derivatives with respect to  to the right-hand
side, one obtains

Notice that, except for  itself, the right-hand side of this equation is a function of  only; it contains no  or  dependence. Let's call the
entire right hand side  to emphasize this fact.

To further separate the  and  dependence, we multiply by  and subtract the  derivative terms from both sides to obtain

Now we have separated the  dependence from the  and r dependence. We now introduce the procedure used to separate variables in
differential equations and assume y can be written as a function of  times a function of  and : . Dividing by , we
obtain

Now all of the  dependence is isolated on the left hand side; the right hand side contains only  and  dependence.

Whenever one has isolated the entire dependence on one variable as we have done above for the  dependence, one can easily see that
the left and right hand sides of the equation must equal a constant. For the above example, the left hand side contains no  or 
dependence and the right hand side contains no  dependence. Because the two sides are equal for all values of , , and , they both
must actually be independent of , , and  dependence; that is, they are constant. This again is what is done when one employs the
separations of variables method in partial differential equations.

For the above example, we therefore can set both sides equal to a so-called separation constant that we call . It will become clear
shortly why we have chosen to express the constant in the form of minus the square of an integer. You may recall that we studied this
same  - equation earlier and learned how the integer  arises via. the boundary condition that  and  represent identical
geometries.

The  Equation 

The resulting  equation reads (the “ symbol is used to represent second derivative)

This equation should be familiar because it is the equation that we treated much earlier when we discussed z-component of angular
momentum. So, its further analysis should also be familiar, but for completeness, I repeat much of it. The above equation has as its most
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general solution

Because the wave functions of quantum mechanics represent probability densities, they must be continuous and single-valued. The latter
condition, applied to our  function, means (n.b., we used this in our earlier discussion of z-component of angular momentum) that

or

This condition is satisfied only when the separation constant is equal to an integer . This provides another example of
the rule that quantization comes from the boundary conditions on the wave function. Here  is restricted to certain discrete values
because the wave function must be such that when you rotate through  about the z-axis, you must get back what you started with.

The  Equation 
Now returning to the equation in which the  dependence was isolated from the  and  dependence and rearranging the  terms to the
left-hand side, we have

In this equation we have separated the  and  terms, so we can further decompose the wave function by introducing ,
which yields

where a second separation constant, , has been introduced once the  and  dependent terms have been separated onto the right and
left hand sides, respectively.  
We now can write the  equation as 

 
where  is the integer introduced earlier. To solve this equation for , we make the substitutions  and , so 

, and  

The range of values for  was , so the range for  is . The equation for , when expressed in terms of  and ,
becomes

Now we can look for polynomial solutions for , because  is restricted to be less than unity in magnitude. If  = 0, we first let

and substitute into the differential equation to obtain

Equating like powers of  gives

Note that for large values of 
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Since the coefficients do not decrease with  for large , this series will diverge for  unless it truncates at finite order. This
truncation only happens if the separation constant  obeys , where  is an integer (you can see this from the recursion
relation giving  in terms of ; only for certain values of  will the numerator vanish ). So, once again, we see that a boundary
condition (i.e., that the wave function not diverge and thus be normalizable in this case) give rise to quantization. In this case, the values
of  are restricted to ; before, we saw that  is restricted to . 
Since the above recursion relation links every other coefficient, we can choose to solve for the even and odd functions separately.
Choosing  and then determining all of the even   in terms of this  , followed by rescaling all of these   to make the function
normalized generates an even solution. Choosing   and determining all of the odd   in like manner, generates an odd solution.  
For , the series truncates after one term and results in . For  the same thing applies and . For , 

, so one obtains , and so on. These polynomials are called Legendre polynomials and are denoted 

.  
For the more general case where , one can proceed as above to generate a polynomial solution for the  function. Doing so,
results in the following solutions: 

 
These functions are called Associated Legendre polynomials, and they constitute the solutions to the  problem for non-zero  values. 
The above  and  functions, when re-expressed in terms of  and , yield the full angular part of the wave function for any
centrosymmetric potential. These solutions are usually written as 
 

 
 
and are called spherical harmonics. They provide the angular solution of the  Schrödinger equation for any problem in which the
potential depends only on the radial coordinate. Such situations include all one-electron atoms and ions (e.g., , , , etc.), the
rotational motion of a diatomic molecule (where the potential depends only on bond length ), the motion of a nucleon in a spherically
symmetrical box (as occurs in the shell model of nuclei), and the scattering of two atoms (where the potential depends only on
interatomic distance). 
The  functions possess varying number of angular nodes, which, as noted earlier, give clear signatures of the angular or rotational
energy content of the wave function. These angular nodes originate in the oscillatory nature of the Legendre and associated Legendre
polynomials ; the higher  is, the more sign changes occur within the polynomial.

The  Equation 
Let us now turn our attention to the radial equation, which is the only place that the explicit form of the potential appears. Using our
earlier results for the equation obeyed by the  function and specifying  to be the Coulomb potential appropriate for an electron
in the field of a nucleus of charge , yields:

We can simplify things considerably if we choose rescaled length and energy units because doing so removes the factors that depend on 
, , and . We introduce a new radial coordinate  and  quantity  as follows:

Notice that if  is negative, as it will be for bound states (i.e., those states with energy below that of a free electron infinitely far from
the nucleus and with zero kinetic energy),  and  are real. On the other hand, if  is positive, as it will be for states that lie in the
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continuum,  and  will be imaginary. These two cases will give rise to qualitatively different behavior in the solutions of the radial
equation developed below.

We now define a function  such that  and substitute  for  to obtain:

The differential operator terms can be recast in several ways using

The strategy that we now follow is characteristic of solving second order differential equations. We will examine the equation for  at
large and small  values. Having found solutions at these limits, we will use a power series in  to interpolate between these two limits.

Let us begin by examining the solution of the above equation at small values of  to see how the radial functions behave at small . As 

, the term  will dominate over . Neglecting these other two terms, we find that, for small values of  (or ),

the solution should behave like  and because the function must be normalizable, we must have . Since  can be any non-negative
integer, this suggests the following more general form for : 

 
This form will insure that the function is normalizable since  as  for all , as long as  is a real quantity. If  is
imaginary, such a form may not be normalized (see below for further consequences). 
Turning now to the behavior of  for large , we make the substitution of  into the above equation and keep only the terms with the
largest power of  (i.e., the  term) and we allow the derivatives in the above differential equation to act on . Upon so
doing, we obtain the equation 

 

which leads us to conclude that the exponent in the large-  behavior of S is .  

Having found the small-  and large-  behaviors of , we can take  to have the following form to interpolate between large and
small r-values: 

 
where the function  is expanded in an infinite power series in  as . Again substituting this expression for  into the
above equation we obtain 

 
and then substituting the power series expansion of  and solving for the ak's we arrive at a recursion relation for the ak coefficients: 

 

For large , the ratio of expansion coefficients reaches the limit , which, when substituted into , gives the same

behavior as the power series expansion of . Because the power series expansion of  describes a function that behaves like   for
large , the resulting  function would not be normalizable because the efactor would be overwhelmed by this  dependence.
Hence, the series expansion of  must truncate in order to achieve a normalizable  function. Notice that if  is imaginary, as it will be
if  is in the continuum, the argument that the series must truncate to avoid an exponentially diverging function no longer applies. Thus,
we see a key difference between bound (with  real) and continuum (with r imaginary) states. In the former case, the boundary condition
of non-divergence arises; in the latter, it does not because  does not diverge if  is imaginary.
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To truncate at a polynomial of order , we must have . This implies that the quantity s introduced previously is
restricted to , which is certainly an integer; let us call this integer . If we label states in order of increasing 

, we see that doing so is consistent with specifying a maximum order ( ) in the  polynomial  after
which the  value can run from , in steps of unity up to .

Substituting the integer  for , we find that the energy levels are quantized because  is quantized (equal to ):

and the scaled distance turns out to be

Here, the length  is the so-called Bohr radius , which turns out to be 0.529 Å; it appears once the above E-expression is

substituted into the equation for . Using the recursion equation to solve for the polynomial's coefficients  for any choice of  and 
quantum numbers generates a so-called Laguerre polynomial; . They contain powers of  from zero through , and
they have  sign changes as the radial coordinate ranges from zero to infinity. It is these sign changes in the Laguerre
polynomials that cause the radial parts of the hydrogenic wave functions to have  nodes. For example,  orbitals have no
radial nodes, but 4d orbitals have one; and, as shown in Figure 2.16,  orbitals have one while  orbitals have two. Once again, the
higher the number of nodes, the higher the energy in the radial direction.

Figure 2.16. Plots of the probability densities  of the radial parts of the  and  orbitals

Let me again remind you about the danger of trying to understand quantum wave functions or probabilities in terms of classical
dynamics. What kind of potential  would give rise to, for example, the   plot shown above? Classical mechanics suggests
that  should be large where the particle moves slowly and small where it moves quickly. So, the   plot suggests that the radial
speed of the electron has three regions where it is low (i.e., where the peaks in  are) and two regions where it is very large (i.e., where
the nodes are). This, in turn, suggests that the radial potential  experienced by the  electron is high in three regions (near peaks in
P) and low in two regions. Of course, this conclusion about the form of  is nonsense and again illustrates how one must not be
drawn into trying to think of the classical motion of the particle, especially for quantum states with small quantum number. In fact, the
low quantum number states of such one-electron atoms and ions have their radial  plots focused in regions of r-space where the
potential  is most attractive (i.e., largest in magnitude).

Finally, we note that the energy quantization does not arise for states lying in the continuum because the condition that the expansion of 
 terminate does not arise. The solutions of the radial equation appropriate to these scattering states (which relate to the scattering

motion of an electron in the field of a nucleus of charge ) are a bit outside the scope of this text, so we will not treat them further here.

To review, separation of variables has been used to solve the full  Schrödinger equation for one electron moving about a nucleus of
charge . The  and  solutions are the spherical harmonics . The bound-state radial solutions
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depend on the  and  quantum numbers and are given in terms of the Laguerre polynomials.

Summary 

To summarize, the quantum numbers  and  arise through boundary conditions requiring that  be normalizable (i.e., not diverge)
and . The radial equation, which is the only place the potential energy enters, is found to possess both bound-states
(i.e., states whose energies lie below the asymptote at which the potential vanishes and the kinetic energy is zero) and continuum states
lying energetically above this asymptote. The former states are spatially confined by the potential, but the latter are not. The resulting
hydrogenic wave functions (angular and radial) and energies are summarized on pp. 133-136 in the text by L. Pauling and E. B. Wilson
for  up to and including 6 and  up to 5 (i.e, for  and  orbitals).

There are both bound and continuum solutions to the radial Schrödinger equation for the attractive coulomb potential because, at
energies below the asymptote, the potential confines the particle between  and an outer classical turning point, whereas at energies
above the asymptote, the particle is no longer confined by an outer turning point (see Figure 2.17). This provides yet another example of
how quantized states arise when the potential spatially confines the particle, but continuum states arise when the particle is not spatially
confined.

 
Figure 2.17: Radial Potential for Hydrogenic Atoms and Bound and Continuum Orbital Energies.

The solutions of this one-electron problem form the qualitative basis for much of atomic and molecular orbital theory. For this reason,
the reader is encouraged to gain a firmer understanding of the nature of the radial and angular parts of these wave functions. The orbitals
that result are labeled by , , and  quantum numbers for the bound states and by  and  quantum numbers and the energy  for the
continuum states. Much as the particle-in-a-box orbitals are used to qualitatively describe p- electrons in conjugated polyenes, these so-
called hydrogen-like orbitals provide qualitative descriptions of orbitals of atoms with more than a single electron. By introducing the
concept of screening as a way to represent the repulsive interactions among the electrons of an atom, an effective nuclear charge  can
be used in place of  in the  and  to generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For
example, in the crudest approximation of a carbon atom, the two  electrons experience the full nuclear attraction so  for them,
whereas the  and  electrons are screened by the two  electrons, so  for them. Within this approximation, one then
occupies two  orbitals with , two  orbitals with  and two  orbitals with  in forming the full six-electron wave
function of the lowest-energy state of carbon. It should be noted that the use of screened nuclear charges as just discussed is different
from the use of a quantum defect parameter d as discussed regarding Rydberg orbitals in Chapter 1. The  screened charge for
carbon’s  and  orbitals is attempting to represent the effect of the inner-shell  electrons on the  and  orbitals. The
modification of the principal quantum number made by replacing  by  represents the penetration of the orbital with nominal
quantum number  inside its inner-shells.
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