
1.4.1 https://chem.libretexts.org/@go/page/11544

1.4: Free Particle Motions in More Dimensions
The number of dimensions depends on the number of particles and the number of spatial (and other) dimensions needed to characterize the
position and motion of each particle. The number of dimensions also affects the number of quantum numbers that may be used to label
eigenstates of the Hamiltonian.

Schrödinger Equation 
Consider an electron of mass m and charge  moving on a two-dimensional surface that defines the  plane (e.g., perhaps an electron is
constrained to the surface of a solid by a potential that binds it tightly to a narrow region in the -direction but allows it to roam freely over a
rectangular area in the  plane), and assume that the electron experiences a constant and not time-varying potential  at all points in this
plane. For example, if  is negative, it could reflect the binding energy of the electron relative to its energy in vacuum.

The pertinent time independent Schrödinger equation is:

The task at hand is to solve the above eigenvalue equation to determine the allowed energy states for this electron. Because there are no terms

in this equation that couple motion in the  and  directions (e.g., no terms of the form  or  or ), separation of variables can be

used to write  as a product . Substitution of this form into the Schrödinger equation, followed by collecting together all 
-dependent and all y-dependent terms, gives;

Since the first term contains no -dependence and the second contains no -dependence, and because the right side of the equation is
independent of both  and , both terms on the left must actually be constant (these two constants are denoted  and , respectively,
realizing that they have units of energy). This observation allows two separate Schrödinger equations to be written:

and

The total energy  can then be expressed in terms of these separate energies  and  from . Solutions to the  and 
 Schrödinger equations are easily seen to be:

Two independent solutions are obtained for each equation because the  and space Schrödinger equations are both second order
differential equations (i.e., a second order differential equation has two independent solutions).

Boundary Conditions 

The boundary conditions, not the Schrödinger equation, determine whether the eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the  plane, the energies  and  can assume any values; this means that the experimenter
can inject the electron onto the  plane with any total energy  and any components  and  along the two axes as long as

. In such a situation, one speaks of the energies along both coordinates as being in the continuum or not quantized.

In contrast, if the electron is constrained to remain within a fixed area in the  plane (e.g., a rectangular or circular region), then the situation
is qualitatively different. Constraining the electron to any such specified area gives rise to boundary conditions that impose additional
requirements on the above  and  functions. These constraints can arise, for example, if the potential  becomes very large for 
values outside the region, in which case, the probability of finding the electron outside the region is very small. Such a case might represent,
for example, a situation in which the molecular structure of the solid surface changes outside the enclosed region in a way that is highly
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repulsive to the electron (e.g., as in the case of molecular corrals on metal surfaces). This case could then represent a simple model of so-called
corrals in which the particle is constrained to a finite region of space.

For example, if motion is constrained to take place within a rectangular region defined by ; , then the continuity
property that all wave functions must obey (because of their interpretation as probability densities, which must be continuous) causes  to
vanish at 0 and at . That is, because  must vanish for  and must vanish for , and because  is continuous, it must vanish at 

 and at . Likewise,  must vanish at 0 and at . To implement these constraints for , one must linearly combine the

above two solutions and to achieve a function that vanishes at :

One is allowed to linearly combine solutions of the Schrödinger equation that have the same energy (i.e., are degenerate) because Schrödinger
equations are linear differential equations. An analogous process must be applied to  to achieve a function that vanishes at :

Further requiring  and  to vanish, respectively, at  and , respectively, gives equations that can be obeyed only if 
and  assume particular values:

These equations are equivalent (i.e., using ) to

Knowing that  vanishes at , for  (although the  function vanishes for , this function vanishes for all
 or , and is therefore unacceptable because it represents zero probability density at all points in space) one concludes that the energies 

and  can assume only values that obey:

or

and

and

It is important to stress that it is the imposition of boundary conditions, expressing the fact that the electron is spatially constrained, that gives
rise to quantized energies. In the absence of spatial confinement, or with confinement only at  or  or only at  or , quantized
energies would not be realized.

In this example, confinement of the electron to a finite interval along both the  and  coordinates yields energies that are quantized along
both axes. If the electron were confined along one coordinate (e.g., between ) but not along the other (i.e.,  is either restricted
to vanish only at  or at  or at neither point), then the total energy  lies in the continuum; its  component is quantized but 
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is not. Analogs of such cases arise, for example, for a triatomic molecule containing one strong and one weak bond. If the bond with the higher
dissociation energy is excited to a level that is not enough to break it but that is in excess of the dissociation energy of the weaker bond, one
has a situation that is especially interesting. In this case, one has two degenerate states

1. one with the strong bond having high internal energy and the weak bond having low energy ( ), and
2. a second with the strong bond having little energy and the weak bond having more than enough energy to rupture it ( ).

Although an experiment may prepare the molecule in a state that contains only the former component (i.e.,  with 
, ), coupling between the two degenerate functions (induced by terms in the Hamiltonian H that have been ignored in defining 

 and ) can cause the true wave function  to acquire a component of the second function as time evolves. In
such a case, one speaks of internal vibrational energy relaxation (IVR) giving rise to unimolecular decomposition of the molecule.

Energies and Wave Functions for Bound States 
For discrete energy levels, the energies are specified functions that depend on quantum numbers, one for each degree of freedom that is

quantized

Returning to the situation in which motion is constrained along both axes, the resultant total energies and wave functions (obtained by
inserting the quantum energy levels into the expressions for  and ) are as follows:

and

with  and .

The two  factors are included to guarantee that  is normalized:

Normalization allows  to be properly identified as a probability density for finding the electron at a point , .

Shown in Figure 1. 13 are plots of four such two dimensional wave functions for  and  values of (1,1), (2,1), (1.2) and (2,2), respectively.

Figure 1.13. Plots of the (1,1), (2,1), (1,2) and (2,2) wave functions

Note that the functions vanish on the boundaries of the box, and notice how the number of nodes (i.e., zeroes encountered as the wave function
oscillates from positive to negative) is related to the  and  quantum numbers and to the energy. This pattern of more nodes signifying
higher energy is one that we encounter again and again in quantum mechanics and is something the student should be able to use to guess the
relative energies of wave functions when their plots are at hand. Finally, you should also notice that, as in the one-dimensional box case, any
attempt to classically interpret the probabilities  corresponding to the above quantum wave functions will result in failure. As in the
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one-dimensional case, the classical  would be constant along slices of fixed  and varying  or slices of fixed  and varying  within
the box because the speed is constant there. However, the quantum  plots, at least for small quantum numbers, are not constant. For
large  and ny values, the quantum  plots will again, via the quantum-classical correspondence principle, approach the (constant)
classical  form except near the classical turning points (i.e., near the edges of the two-dimensional box).

If, instead of being confined to a rectangular corral, the electron were constrained to lie within a circle of radius R, the Schrödinger equation is
more favorably expressed in polar coordinates . Transforming the partial derivatives appearing in the Schrödinger equation

into polar coordinates and realizing that the potential depends on  but not on  gives

Again using separation of variables to substitute

into the Schrödinger equation and dividing by , we obtain

where  is the value of the potential inside the circular region. The first two terms on the left and the  on the right side contain no reference

to , so the quantity  must be independent of :

Moreover, because the coordinates  and  describe the same point in space,  must obey

The solutions to the above differential equation for  subject to the periodicity condition are

This means that the equation for the radial part of the wave function is

or

This differential equation is probably not familiar to you, but it turns out this is the equation obeyed by so-called Bessel functions. The Bessel
functions labeled  obey

so, our  function is

The full wave functions are then

where  is a normalization constant. The energy eigenvalues  cannot be expressed analytically as in the particle-in-a box system (where
we used knowledge of the zeros of the sin function to determine ). However, knowing that  must vanish at , we can use tables
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(for example, see Kreyszig, E. Advanced Engineering Mathematics, 8th ed.; John Wiley and Sons, Inc.: New York, 1999) that give the values
of  at which  vanishes to determine the set of eigenvalues associated with each value of the angular momentum quantum number . In
the table shown below, we list the first five values at which , , and  vanish.

Values of  at which  vanish for , and 

If we call the values at which  vanishes , then the energies are given as

From the ordering of the  values shown in the table above, we can see that the ordering of the energy levels will be , , , , ,
, and so forth, regardless of the size of the circle  or the mass of the particle .

The state with  has the same energy as that with ; likewise,  has the same energy as . So, all but the  states
are doubly degenerate; the only difference between such pairs of states is the sense of the angular momentum terms . These energy
levels depend on both the angular momentum quantum number , as well as the radial quantum number  and they depend upon  much like
the particle-in-a-box energies depend on the box length . In Figure 1.13a we show plots of the probability densities  for ,
and  and for , and  to illustrate how the number of radial nodes increases as  increases.

Figure 1.13a Plots of  for ;  (top); ;  (middle); and ;  (bottom). Taken from
Ellison, M. D. J. Chem. Educ. 2008, 85, 1282–1287.

The character of  also changes with . For , there is high amplitude for the particle being in the center of the circle, but for 
, there is no amplitude in the center. This is analogous to what one finds for atomic orbitals;  orbitals have non-zero amplitude at the

nucleus, but p, d, and higher orbitals do not.

Let’s examine a few more easy problems that can be solved analytically to some degree. This will help illustrate how boundary conditions
generate quantization and how the number of quantum numbers depends on the dimensionality of the problem. When considering a particle of
mass  moving in three dimensions but constrained to remain within a sphere of radius R, we replace the three Cartesian coordinates  and

 by the spherical coordinates , , and . Doing so, changes the Schrödinger equation’s kinetic energy terms into what we show below

Taking the potential to be  (a constant) for , and infinite for , we can again use separation of variables to progress in
solving this three dimensional differential equation. We substitute

into the Schrödinger equation and taking into account that the so-called spherical harmonic functions  obey the following:

This reduces the Schrödinger equation to an equation for the radial function :

Again, this equation is probably not familiar to you, but it can be recast in a way that makes it equivalent to the equation obeyed by so-called
spherical Bessel functions

by taking
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The result is that the wave functions for this problem reduce to

where  is a normalization constant. The energies are determined by requiring 

to vanish at , which is analogous to insisting that the spherical Bessel function vanish at  in the earlier problem we studied. The
values of  at which  vanish again can be found in various tabulations, including that cited earlier. Several of these values are
tabulated below for illustration.

Values of  at which  vanish for , and 

n=1 n=2 n=3 n=4

L=0 3.142 6.283 9.425 12.566

L=1 4.493 7.725 10.904 14.066

L=2 5.763 9.095 12.323 15.515

L=3 6.988 10.417 13.698 16.924

L=4 8.183 11.705 15.040 18.301

From the values of , one finds the energies from

Again, we see how the energy depends on the size of the constraining region (characterized by ) very much in the same way as in the earlier
systems. We also see that  depends on the angular momentum quantum number  (much as it did in the preceding example) and on the mass
of the particle. However, the energy ordering of these levels is different from what we have seen earlier as reflected in the ordering of the 
values shown in the above table. The energies appear in the order (  ;  ;  ;  ;  ; 

 , and so on, and this is true for any size sphere  and any particle mass m.

If, instead of being constrained to move within a spherical volume, the particle is constrained to move on the surface of a sphere or radius ,
the variable  is fixed (at ) and the Schrödinger equation becomes

Using

we can see that the wave functions are the spherical harmonics and the energies are given by

Note that the energies depend on  but not on the  quantum number. So, each state belonging to level  is  fold degenerate because 
 ranges from  to .

Finally, if instead of being constrained to move within a circle of radius R, the particle were constrained to move on the surface of the circle,
the two-dimensional Schrödinger equation treated earlier would reduce to

The solutions are the familiar functions
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with 

and the energies are

Note that the quantization of energy arises because the angular momentum is quantized to be ; this condition arose, in turn, by the condition
that

As with the case of a particle moving within the circular region, the states with  are doubly degenerate; the difference between pairs of
such states reflecting the sense of their angular momentum.

These model problems will be seen in Chapter 2 to be very useful representations of situations that arise when an electron is constrained within
or on the surface of various nanoscopic particles. For now, they were discussed to illustrate how separations of variables can sometimes be
used to decompose the Schrödinger equation into one-dimensional ordinary differential equations and to show how it is the boundary
conditions (either constraining  to vanish at certain distances or insisting that  be periodic when appropriate) that produce the quantization.
It is important to note that it is when a particle is spatially constrained (e.g., when its wave function was forced to vanish at two locations 

 and ) that quantized energy levels result. When the particle is not so spatially trapped, its energy will not be quantized. You will
see this behavior over and over as we explore other models for electronic, vibrational, and rotational motions in molecules.

Quantized Action Can Also be Used to Derive Energy Levels 
There is another approach that can be used to find energy levels and is especially straightforward to use for systems whose Schrödinger
equations are separable. The so-called classical action (denoted ) of a particle moving with momentum p along a path leading from initial
coordinate  at initial time  to a final coordinate  at time  is defined by:

Here, the momentum vector p contains the momenta along all coordinates of the system, and the coordinate vector  likewise contains the
coordinates along all such degrees of freedom. For example, in the two-dimensional particle-in-a-box problem considered above, 
has two components as does , and the action integral is:

In computing such actions, it is essential to keep in mind the sign of the momentum as the particle moves from its initial to its final positions.
The examples given below will help clarify these matters and will show how to apply the idea.

For systems for which the Hamiltonian is separable, the action integral decomposes into a sum of such integrals, one for each degree of
freedom. In the two-dimensional example, the additivity of H:

means that  and  can be independently solved for in terms of the potentials  and  as well as the energies  and  associated
with each separate degree of freedom:

the signs on  and  must be chosen to properly reflect the motion that the particle is actually undergoing at any instant of time. Substituting
these expressions into the action integral yields:

n = 0, ±1, ±2, …

= + .En

n2ℏ2

2mR2
V0 (1.4.48)

nh

ψ(θ) = ψ(q+2π). (1.4.49)

n > 0

y y

x = 0 x = Lx

S

qi ti qf tf

S = p ⋅ dq.∫
;qf tf

;qi ti

(1.4.50)

q

q = (x, y)
p = ( , )px py

S = ( dx+ dy).∫
; ;xf yf tf

; ;xi yi ti

px py (1.4.51)

H = + = +  +V (x) +V (y)Hx Hy

p2
x

2m

p2
y

2m
(1.4.52)

= − +V (x) −  +V (y)
ℏ2

2m

∂2

∂x2

ℏ2

2m

∂2

∂y2
(1.4.53)

px py V (x) V (y) Ex Ey

= ±px 2m( −V (x))Ex

− −−−−−−−−−−−
√ (1.4.54)

= ± ;py 2m( −V (y))Ey

− −−−−−−−−−−−
√ (1.4.55)

px py

S = +Sx Sy (1.4.56)

=  ± dx+  ± dy.∫
;xf tf

;xi ti

2m( −V (x))Ex

− −−−−−−−−−−−
√ ∫

;yf tf

;yi ti

2m( −V (y))Ey

− −−−−−−−−−−−
√ (1.4.57)
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The relationship between these classical action integrals and the existence of quantized energy levels has been shown to involve equating the
classical action for motion that is periodic between a left and right turning point, as for a classical particle undergoing periodic vibrational
motion, to the following multiple of Planck's constant:

where the quantization index  ranges from 0 to  in steps of unity. Alternatively, for motion in a closed angular path, as for a particle
moving on a circular or elliptical path, the action quantization condition reads:

where again  ranges from 0 to  in steps of unity.

When action-quantization as described above is applied to the so-called harmonic oscillator problem (this serves as the simplest reasonable
model for vibration of a diatomic molecule AB) that we will study in quantum form later, one expresses the total energy as the sum of kinetic
and potential energies

where

is the reduced mass of the AB diatomic molecule,  is the force constant describing the bond between A and B,  is the bond-length
displacement, and p is the momentum associated with the bond length. The quantized action requirement then reads

This integral is carried out between  and  the left and right turning points of the oscillatory motion and back again to
form a closed path. Carrying out this integral and equating it to  gives the following expression for the energy :

If the quantum number  is allowed to assume integer values ranging from , 1, 2, to infinity, these energy levels agree with the full
quantum treatment’s results that we will obtain later.

For an example of applying this approach to a problem involving motion along a closed loop, let’s consider the free (i.e., with no potential
affecting its angular motion) rotation of a diatomic molecule AB having fixed bond length R. The rotational energy can be written as

where is the momentum associated with rotation and  is the reduced mass of the AB molecule. Solving for and inserting this into the action-
quantization equation appropriate for motion along a closed loop gives

Solving for the energy  then gives

which is exactly the same result as we obtained earlier when solving the Schrödinger equation for the motion of a particle moving on a circle.

Now, let’s apply action quantization to each of the independent coordinates of the two-dimensional particle in a box problem. The two separate
action quantization conditions read:

= qdq = (n+ )h,Sclosed ∫
;qf tf

;qi ti

1

2
(1.4.58)

n ∞

=  pdq = nh,Sclosed ∫
;qf tf

;qi ti

(1.4.59)

n ∞

E = +
p2

2m

k

2
x2 (1.4.60)

m =
mAmB

+mA mB

(1.4.61)

k x

(n+ )h = ∫ pdx = ∫ dx.
1

2
2μ(E−k/2 )x2
− −−−−−−−−−−−

√ (1.4.62)

x = − 2E/k
− −−−

√ 2E/k
− −−−

√
(n+ )h1

2
E

E = (n+ )( π) .
1

2
ℏ2 k

μ

−−

√ (1.4.63)

n n = 0

E =
p2
ϕ

2μR2
(1.4.64)

m

dϕ =  dϕ = (2π) = nh.∫
ϕ=2π

ϕ=0
pϕ ∫

ϕ=2π

ϕ=0
2μ ER2
− −−−−−

√ 2μ ER2
− −−−−−

√ (1.4.65)

E

E = = ,
(nh)2

(2π 2μ)2 R2

n2h2

2μR2
(1.4.66)

( + )h = dx+ − dxnx

1

2
∫

x=Lx

x=0
2m( −V (x))Ex

− −−−−−−−−−−−
√ ∫

x=0

x=Lx

2m( −V (x))Ex

− −−−−−−−−−−−
√ (1.4.67)
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Notice that the sign of the momenta are positive in each of the first integrals appearing above (because the particle is moving from  to 
, and analogously for -motion, and thus has positive momentum) and negative in each of the second integrals (because the motion is

from  to  (and analogously for -motion) and thus the particle has negative momentum). Within the region bounded by 
, the potential is constant and can be taken as zero (this just gives our reference point for total energy). Using this

fact, and reversing the upper and lower limits, and thus the sign, in the second integrals above, one obtains:

Solving for  and , one finds:

These are not the same quantized energy levels that arose when the wave function boundary conditions were matched at ,  and 

, . In the Schrödinger equation approach, the energy expressions did not have the +  factor that appears in the above action-

based result. It turns out that, for potentials that are defined in a piecewise manner, as the particle-in-a-box potential is (i.e., the potential
undergoes an infinite jump at  and ), the action quantization condition has to be modified. An example of how and why one has to
make this modification is given in a paper from Prof. Bill Miller’s group (J. E. Adams and W. H. Miller, J. Chem. Phys. 67, 5775-5778
(1977)), but I will not discuss it further here because its details are beyond the level of this text. Suffice it to say that for periodic motion

between two turning points on a smooth (i.e., non-piecewise) potential,  is the correct action quantization value. For angular motion

on a closed loop, nh is the proper value. But, for periodic motion between turning points on a piecewise potential, the modifications discussed
in the above reference must be applied to cause action quantization to reproduce the correct quantum result.

The use of action quantization as illustrated above has become a very important tool. It has allowed scientists to make great progress toward
bridging the gap between classical and quantum descriptions of molecular dynamics. In particular, by using classical concepts such as
trajectories and then imposing quantized-action conditions, people have been able to develop so-called semi-classical models of molecular
dynamics. In such models, one is able to retain a great deal of classical understanding while building in quantum effects such as energy
quantization, zero-point energies, and interferences. Both at my Theory Page web site and from papers accessed on the web site of Professor
William H. Miller, one of the pioneers of semi-classical theory as applied to chemistry, you can learn more about this subject.

Before leaving this section, it is worth discussing a bit more the energy and angular momentum quantization that occurs when treating free
one-dimensional rotational motion of a particle on a circle or a linear rigid molecule constrained to lie on a plane. When we used action
quantization to address this kind of problem, we obtained quantized energies

which, through the energy expression given in terms of angular momentum

implies that the angular momentum itself is quantized

This is the same result we obtain when we seek eigenfunctions and eigenvalues the quantum mechanics  angular momentum operator. As
we showed earlier, this operator, when computed as the -component of , can be written in polar  coordinates as

( + )h = dy+ − dy.ny

1

2
∫

y=Ly

y=0
2m( −V (y))Ey

− −−−−−−−−−−−
√ ∫

y=0

y=Ly

2m( −V (y))Ey

− −−−−−−−−−−−
√ (1.4.68)

x = 0
x = Lx y

x = Lx x = 0 y

0 ≤ x ≤ ; 0 ≤ y ≤Lx Ly

( + )h = 2 dx = 2nx

1

2
∫

x=Lx

x=0
2mEx
− −−−−

√ 2mEx
− −−−−

√ Lx (1.4.69)

( + )h = 2 dy = 2 .ny

1

2
∫

y=Ly

y=0
2mEy

− −−−−
√ 2mEy

− −−−−
√ Ly (1.4.70)

Ex Ey

=Ex

[( + )hnx

1

2
]2

8mL2
x

(1.4.71)

= .Ey

[( + )hny

1

2
]2

8mL2
y

(1.4.72)

x = 0 x = Lx

y = 0 y = Ly

1

2

x = 0 x = L

(n+ )h
1

2

E =
n2h2

2μR2
(1.4.73)

E = ,
p2
ϕ

2μR2
(1.4.74)

= ±nh.pϕ (1.4.75)

Lz

z R×p (r, θ,ϕ)

= −iℏ .Lz

d

dϕ
(1.4.76)
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The eigenfunctions of this operator have the form , and the eigenvalues are a h. Because geometries with azimuthal angles equal to 
or equal to  are exactly the same geometries, the function  should be exactly the same as . This can only be
the case if a is an integer. Thus, one concludes that only integral multiples of h can be allowed values of the -component of angular
momentum.

Experimentally, one measures the -component of an angular momentum by placing the system possessing the angular momentum in a
magnetic field of strength B and observing how many -component energy states arise. This splitting in energy levels is termed the Zeeman
effect. For example, a boron atom with one unpaired electron its  orbital has one unit of orbital angular momentum, so one finds three
separate -component values which are usually denoted  and . Another example is offered by the scandium atom with
one unpaired electron in a d orbital; this atom’s states split into five ( ) -component states. In each case, one finds 
values of the  quantum number, and, because L is an integer,  is an odd integer. Both of these observations are consistent with the
expectation that only integer values can occur for  eigenvalues as obtained from action quantization and from the boundary condition 

.

However, it has been observed that some species do not possess 3 or 5 or 7 or 9 -component states but an even number of such states. In
particular, electrons, protons, or neutrons are observed to have only two -component eigenvalues. This also is observed in, for example, the
Boron atom mentioned above, if one examines the further splittings of the  (m = -1, 0, and 1) levels caused by the magnetic field’s action on
the unpaired electron’s spin. Because, as we discuss later in this text, all angular momenta have -component eigenvalues that are separated
from one another by unit multiples of h, one is forced to conclude that these three fundamental building-block particles (electrons, protons, and

neutrons) have -component eigenvalues of  and . The appearance of half-integral angular momenta is not consistent with the action-

quantization result or the observation made earlier that  and  correspond to exactly the same physical point in coordinate space,
which, in turn, implies that only full-integer angular momenta are possible.

The resolution of the above paradox (i.e., how can half-integer angular momenta exist?) involves realizing that some angular momenta
correspond not to the  angular momenta of a physical mass rotating, but, instead, are intrinsic properties of certain particles. That is, the
intrinsic angular momenta of electrons, protons, and neutrons can not be viewed as arising from rotation of some mass that comprises these

particles. Instead, such intrinsic angular momenta are fundamental built in characteristics of these particles. For example, the two  and 

 angular momentum states of an electron, usually denoted a and b, respectively, are two internal states of the electron that are degenerate

in the absence of a magnetic field but which represent two distinct states of the electron. Analogously, a proton has  and  states, as do

neutrons. All such half-integral angular momentum states cannot be accounted for using classical mechanics but are known to arise in quantum
mechanics. This means that, when we teach introductory chemistry to young students, it is not correct to say that the up and down (a and b)
spin states of an electron can be viewed in terms of the electron’s mass spinning clockwise or counterclockwise around some axis. Such
spinning-mass angular momenta can only possess integer values; half-integer angular momenta cannot and should not be described in terms of
spinning masses.

Action Can Also be Used to Generate Wave Functions 

Action integrals computed from classical descriptions of motion on potential energy surfaces can also be used to generate approximate
quantum wave functions. So doing offers yet another avenue for making connection between the classical and quantum worlds. To see how
such a connection can arise directly from the Schrödinger equation, we begin with the time-independent Schrödinger equation for a single
particle of mass  moving on a potential  that depends on the particle’s position coordinates :

Then, we express the complex wave function as a constant real amplitude A multiplied by a complex phase which we write as:

Substituting this expression for into the Schrödinger equation gives an equation for :

This equation contains both real and imaginary components (n.b.,  itself is complex). It is usually solved by assuming  can be

expanded in a power series in the variable . This expansion is motivated by noting that if the  factor in the above equation is

neglected, the resulting equation

exp(iaϕ) ϕ

ϕ+2π exp(iaϕ) exp(ia(ϕ+2π))
z

z

z

2π
z m = −1,m = 0, m = 1

m = −2, −1, 0, 1, 2 z 2L+1
m 2L+1

Lz

exp(iaϕ) = exp(ia(ϕ+2π))

z

z

2π
z

z ℏ
1

2
− ℏ

1

2
ϕ ϕ+2π

R×p

ℏ
1

2

− ℏ
1

2

ℏ
1

2
− ℏ

1

2

m V (r) r

EΨ(r) = − Ψ(r) +V (r)Ψ(r).
ℏ2

2m
∇2 (1.4.77)

Ψ(r) = A exp(iW (r)/ℏ). (1.4.78)

W

E = V + − iℏ .
(∇W )2

2m

W∇2

2m
(1.4.79)

W W (r)

ℏ iℏ
W∇2

2m

0 = V −E+
(∇W )2

2m
(1.4.80)
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would make sense if  were equal to the classical momentum of the particle. So, taking the  limit of the equation for 
appears to reduce this quantum mechanics equation to a classical result in which .

So, substituting

into the above equation for  and gathering together all terms of a given power in produces equations for the various , the first two
of which read:

and

To simplify further discussion of this so-called semi-classical wave function theory, let us restrict attention to the case in which there is only
one spatial coordinate. For the two- or three-dimensional cases,  and  are vector quantities, and the solution of these equations is
considerably more complicated, especially if the potential  can not be separated into additive contributions from each of the variables.
When there is only one spatial coordinate, and are scalar quantities.

The first equation can be solved for  and gives two independent solutions (i.e., those corresponding to the ± sign):

each of which will be real when  (i.e., in classically allowed regions of space) and imaginary when  (i.e., in classically
forbidden regions). Notice that  contains an integrand equal to the classical momentum .

The equation for  can also be solved:

So, through first-order in , the semi-classical wave functions are

These pairs of wave functions are often expressed as

in regions of space where , and

in the classically forbidden regions where . Notice that the wave functions in the classically allowed regions have probability densities
given by

which is exactly the classical probability density we discussed earlier in this Chapter. The probability is inversely proportional to the speed of
the particle at location r, and has the same singularity as the classical probability at turning points (where ). In contrast, the probability
densities in regions where  either grow or decay exponentially within these classically forbidden regions.

Let’s see how these semi-classical wave functions can be applied to some of the model problems we discussed earlier. For the one dimensional
particle-in-a-box problem, the two exponentially growing and decaying functions are not needed because in the regions  and , the
wave function can be taken to vanish. Within the region , there are two independent wave functions

∇W (r) ℏ → 0 W (r)
∇W (r) = p(r)

W (r) = (r) +h (r) + (r) +⋯W0 W1 ℏ2W2 (1.4.81)

W (r) (r)Wn

0 = 2m(V −E) +(∇W0)2 (1.4.82)

0 = 2∇ ⋅ ∇ − i .W0 W1 ∇2W0 (1.4.83)

∇W0 ∇W1

V (r)

(r)W0

(r) = ±∫ ,W0 2m(E−V ( ))dr′ r′
− −−−−−−−−−−−−−

√ (1.4.84)

E > V (r) E < V (r)

(r)W0 p(r) = 2m(E−V (r))
− −−−−−−−−−−

√

(r)W1

(r) = ln[ ].W1
i

2
2m(E−V (r))
− −−−−−−−−−−

√ (1.4.85)

ℏ

Ψ(r) = A exp(±  d ) exp( i ln[ ] ).
i

ℏ
∫

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ iℏ

2h
2m(E−V (r))
− −−−−−−−−−−

√ (1.4.86)

= A exp(±  d )
1

2m(E−V (r))
− −−−−−−−−−−

√
− −−−−−−−−−−−−

√

i

ℏ
∫

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ (1.4.87)

Ψ = A exp(±  d )
1

2m(E−V (r))
− −−−−−−−−−−√

− −−−−−−−−−−−−
√

i

ℏ
∫

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ (1.4.88)

E > V

Ψ = A exp(±  d )
1

2m(−E+V (r))
− −−−−−−−−−−−−√

− −−−−−−−−−−−−−−
√

i

ℏ
∫

r

2m(−E+V ( ))r′
− −−−−−−−−−−−−

√ r′ (1.4.89)

V > E

Ψ =Ψ∗ A2

2m(E−V (r))
− −−−−−−−−−−

√
(1.4.90)

V = E

V > E

R < 0 R > L

0 ≤ r ≤ L
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and the potential  is constant (let’s call the potential in this region ). So, the integration appearing in these two wave functions can be
carried out to give

We can combine these two functions to generate a function that will vanish at  (as it must for this particle-in-a-box problem):

We can then use the condition that  must also vanish at  to obtain an equation that specifies the energies  that are allowed:

which means that

These energies are exactly the same as we found when we solved the Schrödinger equation for this model problem.

It is informative to note that these semi-classical wave functions, which are not exact because they were obtained by retaining only terms up to
the first power of , were able to generate quantum nodal patterns (i.e., interferences) and quantized energy levels even though they contained
classical concepts such as the momentum at various positions in space. It was by superimposing two functions having the same energy that
nodal patterns were obtained.

Let’s now consider what happens when we apply the semi-classical wave function to the harmonic oscillator problem also discussed earlier. In
this case, there are two classical turning points  and  at which . The semi-classical wave functions appropriate to the three
regions (two classically forbidden and one classically allowed) are:

The first two decay exponentially within the two classically forbidden regions. The third is a combination of the two independent solutions
within the classically allowed region, with the amplitudes of the two solutions defined by the coefficients  and . The amplitudes  and 

 multiply the wave functions in the two classically forbidden regions, and all four amplitudes as well as the energy  must be determined
by (i) normalizing the total wave function to obey

and (2) by matching the wave functions  and  and their first derivatives at , and the wave functions  and  and their first
derivatives at .

Before addressing how this wave function matching might be accomplished, let me point out an interesting property of the factor entering into
the exponential of the semi-classical wave function. We first use the two expressions

and

Ψ = A exp(± d ),
1

2m(E−V (r))
− −−−−−−−−−−√

− −−−−−−−−−−−−
√

i

ℏ
∫

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ (1.4.91)

V ( )r′ V0

Ψ = A exp(± ).
1

2m(E−V (r))
− −−−−−−−−−−√

− −−−−−−−−−−−−
√

ir

ℏ
2m(E− )V0

− −−−−−−−−−
√ (1.4.92)

R = 0

Ψ = A[exp( )−exp(− )] .
1

2m(E−V (r))
− −−−−−−−−−−√

− −−−−−−−−−−−−
√

ir

ℏ
2m(E− )V0

− −−−−−−−−−
√

ir

ℏ
2m(E− )V0

− −−−−−−−−−
√ (1.4.93)

Ψ R = L E

0 = [exp( )−exp(− )] = 2i sin( ),
iL

ℏ
2m(E− )V0

− −−−−−−−−−
√

iL

ℏ
2m(E− )V0

− −−−−−−−−−
√

L

ℏ
2m(E− )V0

− −−−−−−−−−
√ (1.4.94)

E = + .V0
n2π2ℏ2

2mL2
(1.4.95)

ℏ

r1 r2 E = V (r)

= exp(−  d ), r ≥ .Ψ1
1

2m(−E+V (r))
− −−−−−−−−−−−−

√
− −−−−−−−−−−−−−−

√
A1

1

ℏ
∫

r

r2

2m(−E+V ( ))r′
− −−−−−−−−−−−−

√ r′ r2 (1.4.96)

= exp(  d ), r ≤ .Ψ2
1

2m(−E+V (r))
− −−−−−−−−−−−−

√
− −−−−−−−−−−−−−−

√
A2

1

ℏ
∫

r

r1

2m(−E+V ( ))r′
− −−−−−−−−−−−−

√ r′ r1 (1.4.97)

= [ exp(  d )− exp(−  d )] ,Ψ3
1

2m(E−V (r))
− −−−−−−−−−−

√
− −−−−−−−−−−−−

√
A3

i

ℏ
∫

r

r1

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′ A3′

i

ℏ
∫

r2

r

2m(E−V ( ))r′
− −−−−−−−−−−−

√ r′

≤ r ≤ .r1 r2

(1.4.98)

A3 A3′ A1

A2 E

Ψdr = 1∫
∞

−∞
Ψ∗ (1.4.99)

Ψ1 Ψ3 R = r1 Ψ2 Ψ3

R = r2

= ±
dW0

dr
2m(E−V (r))
− −−−−−−−−−−

√ (1.4.100)
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given above for the first two components of  and then make use of the harmonic form of 

Next, we evaluate the integral of  for a closed classical path in which the system moves from the left turning point

to the right turning point

and back again to the left turning point. The contribution from integrating  along this closed path is (n.b., the + sign is used for the first

part of the path because the particle has positive momentum, and the – sign applies to the return part of the path when the particle has negative
momentum):

which is exactly the action integral we treated earlier in this Chapter when we computed for the classical harmonic oscillator. The contribution

from integrating  along this closed path can be evaluated by first writing

The integral from  to  of this quantity can be carried out (using the substitution ) as

The evaluation of the integral remaining on the right-hand side can be done using contour integration (undergraduate students may not have
encountered this subject within complex variable theory; I refer them to pp. 367-377 Methods of Theoretical Physics, P. M. Morse and H.
Feshabach, McGraw-Hill, New York (1953) or p. 113 Applied Complex Variables, J. W. Dettman, Macmillan Co. New York (1965)). The

basic equation from contour integration says that an integral of the form , where  is a singularity, is equal to . Our

integral has singularities at  and at , so there are two such contributions. The net result is that our integral reduces to

So, the contribution to the integral of  arising from  to  is equal to . The integral from  back to  gives another factor or 

. Combining the integral of  and the integral of  (multiplied by because ) gives the following final

result

If the original Bohr quantization is applied to the integral of  along a closed classical path:

our result above then says that

=
dW1

dr

i
d 2m(E−V )

− −−−−−−−−
√

dr

2 2m(E−V )
− −−−−−−−−

√
(1.4.101)

W (r) V (r)

V (r) = k .
1

2
r2 (1.4.102)
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= −r1
2E

k

− −−
√ (1.4.103)
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r1
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1

2
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r1

r2

2m(E− k )
1

2
r2
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dr
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∫
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∫ dz
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(z−a)
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dW

dr

W = nh,n = 1, 2, 3, ⋯ (1.4.110)
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which is the same as

This means that the  factor that arises in the action quantization condition for periodic motions between two turning points can be viewed as

arising from the first quantum correction (i.e., the term first order in ) to the semi-classical wave function. Recall that equating this classical

action integral to  gave the correct (i.e., quantum) energies for this harmonic oscillator problem.

We have seen how a semi-classical wave function can be defined, what its spatial probability density is, how it can build in interference (to
achieve proper nodal patterns), and how quantizing its action can give the correct allowed energy levels. However, there is one issue we have
not fully addressed. To solve for the coefficients  multiplying the semi-classical wave functions in the classically allowed and
forbidden regions, the wave functions  and  and their first derivatives must be matched at , and the wave functions  and  and
their first derivatives must be matched at  = . Unfortunately, the details of this matching process are rather complicated and require
examining in more detail the nature of the wave functions near the classical turning points where each of , , and  contain factors of

the form  in their denominators. It should be clear that matching functions and their derivatives that contain such

singularities pose special challenges. I will not go further into this matter here; rather, I refer the interested reader to pp. 268-279 of Quantum
Mechanics, 3rd Ed., L. I. Schiff, McGraw-Hill, New York (1968) for a good treatment of this so-called WKB approach to the matching issue.
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∫ p(r)dr = (n+ )h.
1

2
(1.4.112)
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