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7.4: Time Correlation Functions
One of the most active research areas in statistical mechanics involves the evaluation of so-called equilibrium time correlation functions such as
we encountered in Chapter 6. The correlation function  is defined in terms of two physical operators  and , a time dependence that is
carried by a Hamiltonian  via , and an equilibrium average over a Boltzmann population .

The quantum mechanical expression for  is

while the classical mechanical expression (here, we allow the  factor that occurs in the partition function shown in Section 7.1.2 to be
canceled out in the numerator and denominator for simplicity) is

where  and  are the values of all the coordinates and momenta of the system at  and  and  are their values, according to
Newtonian mechanics, at time .

As shown above, an example of a time correlation function that relates to molecular spectroscopy is the dipole-dipole correlation function that
we discussed in Chapter 6:

for which  and  are both the electric dipole interaction  between the photon's electric field whose direction is characterized by the
vector  and the molecule's dipole operator . The Fourier transform of this particular  relates to the absorption intensity for light of
frequency  :

It turns out that many physical properties (e.g., absorption line shapes, Raman scattering intensities) and transport coefficients (e.g., diffusion
coefficients, viscosity) can be expressed in terms of time-correlation functions. It is beyond the scope of this text to go much further in this
direction, so I will limit my discussion to the optical spectroscopy case at hand, which requires that we now discuss how the time-evolution
aspect of this problem is dealt with. The text Statistical Mechanics, D. A. McQuarrie, Harper and Row, New York (1977) has a nice treatment
of such other correlation functions, so the reader is directed to that text for further details.

The computation of correlation functions involves propagating either wave functions or classical trajectories which produce the q(t), 
values entering into the expression for . In the classical case, one carries out a large number of Newtonian trajectories with initial
coordinates  and momenta  chosen to represent the equilibrium condition of the -molecule system. For example, one could use the
MC method to select these variables employing  as the probability function for accepting or rejecting initial  and 

 values. In this case, the weighting function contains not just the potential energy but also the kinetic energy (and thus the total
Hamiltonian ) because now we need to also select proper initial values for the momenta. So, with many (e.g., M) selections of the initial 
and  variables of the -molecules being made, one would allow the Newton dynamics of each set of initial conditions to proceed. During
each such trajectory, one would monitor the initial value of the  property and the time progress of the  property. One
would then compute the MC average to obtain the correlation function:

Where the index  labels the  accepted configurations and momenta of the MC sampling.

In the quantum case, the time propagation is especially challenging and is somewhat beyond the scope of this text. However, I want to give you
some idea of the steps that are involved, realizing that this remains an area of very active research development. As noted in Section 1.3.6, it is
possible to time-propagate a wave function  that is known at  if one is able to expand  in terms of the eigenfunctions of the
Hamiltonian . However, for systems comprised of many molecules, which are most common in statistical mechanics studies, it is impossible
to compute (or realistically approximate) these eigenfunctions. Thus, it is not productive to try to express  in terms of these eigenfunctions.
Therefore, an entirely new set of tools has been introduced to handle time-propagation in the quantum case, and it is these new devices that I
now attempt to describe in a manner much like we saw in Section 1.3.6’s discussion of time propagation of wave functions.

To illustrate, consider the time propagation issue contained in the quantum definition of  shown above. One is faced with

1. propagating  from  up to time , using  and then acting with the operator 
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2. acting with the operator  on  and then propagating  from  up to time , using ;
3.  then requires that these two time-propagated functions be multiplied together and integrated over the coordinates that  depends on.

The  operator that also appears in the definition of  can be combined, for example, with the first time propagation step and
actually handled as part of the time propagation as follows:

The latter expression can be viewed as involving a propagation in complex time from  to . Although having a complex time
may seem unusual, as I will soon point out, it turns out that it can have a stabilizing influence on the success of these tools for computing
quantum correlation functions.

Much like we saw earlier in Section 1.3.6, so-called Feynman path integral techniques can be used to carry out the above time propagations.
One begins by dividing the time interval into  discrete steps (this can be the real time interval or the complex interval)

The number  will eventually be taken to be large, so each time step  has a small magnitude. This fact allows us to use
approximations to the exponential operator appearing in the propagator that are valid only for short time steps. For each of these short time
steps one then approximates the propagator in the most commonly used so-called split symmetric form:

Here,  and  are the potential and kinetic energy operators that appear in  = . It is possible to show that the above approximation is
valid up to terms of order . So, for short times (i.e., small ), these symmetric split operator approximation to the propagator should be
accurate.

The time evolved wave function  can then be expressed as

The potential  is (except when external magnetic fields are present) a function only of the coordinates  of the system, while the kinetic
term  is a function of the momenta  (assuming Cartesian coordinates are used). By making use of the completeness relations for
eigenstates of the coordinate operator

and inserting this identity  times (once between each combination of  factors), the expression
given above for  can be rewritten as follows:

Then, by using the analogous completeness identity for the momentum operator

one can write

Finally, by using the fact (recall this from Section 1.3.6) that the momentum eigenfunctions , when expressed as functions of coordinates 
are given by

the above integral becomes
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This integral over  can be carried out analytically to give

When substituted back into the multidimensional integral for , we obtain

or

Recall what we said earlier that the time correlation function was to be computed by:

1. propagating  from  up to time , using  and then acting with the operator B
2. acting with the operator  on  and then propagating  from  up to time , using  ;
3. multiplying together these two functions and integrating over the coordinates that  depends on.

So all of the effort described above would have to be expended for  taken to be  after which the result would be multiplied by the
operator B, as well as for  taken to be  to allow the quantum time correlation function  to be evaluated. These steps can be
performed, but they are very difficult to implement, so I will refer the student to Computer Simulations of Liquids, M. P. Allen and D. J.
Tildesley, Oxford U. Press, New York (1997) for further discussion on this topic.

Why are the multidimensional integrals of the form shown above called path integrals? Because the sequence of positions 
describes a path connecting  to . By integrating over all of the intermediate positions  for any given  and  one is
integrating over all paths that connect  to . Further insight into the meaning of the above is gained by first realizing that

is the finite-difference representation, within the  discrete time steps of length dt, of the integral of Tdt over the jth time step, and that

is the representation of the integral of  over the jth time step. So, for any particular path (i.e., any specific set of 
values), the sum over all such terms

represents the integral over all time from  until  of the so-called Lagrangian :

This time integral of the Lagrangian is called the action  in classical mechanics (recall that in Chapter 1, we used quantization of the action
in the particle-in-a-box problem). Hence, the N-dimensional integral in terms of which  is expressed can be written as

Here, the notation "all paths" is realized in the earlier version of this equation by dividing the time axis from  to  into  equal
divisions, and denoting the coordinates of the system at the jth time step by . By then allowing each  to assume all possible values (i.e.,
integrating over all possible values of  using, for example, the Monte-Carlo method discussed earlier), one visits all possible paths that begin
at  at  and end at  at . By forming the classical action 
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for each path and then summing  over all paths and multiplying by , one is able to form .

The difficult step in implementing this Feynman path integral method in practice involves how one identifies all paths connecting ,  to 
, . Each path contributes an additive term involving the complex exponential of the quantity

Because the time variable  appearing in each action component can be complex (recall that, in one of the time evolutions,  is really 
), the exponentials of these action components can have both real and imaginary parts. The real parts, which arise from the 

, cause the exponential terms to be damped (i.e., to undergo exponential decay), but the imaginary parts give rise (in ) to
oscillations. The sum of many, many (actually, an infinite number of) oscillatory

terms is extremely difficult to evaluate because of the tendency of contributions from one path to cancel those of another path. The practical
evaluation of such sums remains a very active research subject.

The most commonly employed approximation to this sum involves finding the path(s) for which the action

is smallest because such paths produce the lowest-frequency oscillations in , and thus may be less subject to cancelation by
contributions from other paths.

The path(s) that minimize the action  are, in fact, the classical paths. That is, they are the paths that the system whose quantum wave function
is being propagated would follow if the system were undergoing classical Newtonian mechanics subject to the conditions that the system be at 

 at  and at  at . In this so-called semi-classical approximation to the propagation of the initial wave function using Feynman
path integrals, one finds all classical paths that connect  at  and at  at , and one evaluates the action  for each such path. One
then applies the formula

but includes in the sum only the contribution from the classical path(s). In this way, one obtains an approximate quantum propagated wave
function via a procedure that requires knowledge of only classical propagation paths.

Clearly, the quantum propagation of wave functions, even within the semi-classical approximation discussed above, is a rather complicated
affair. However, keep in mind the alternative that one would face in evaluating, for example, spectroscopic line shapes if one adopted a time-
independent approach. One would have to know the energies and wave functions of a system comprised of many interacting molecules. This
knowledge is simply not accessible for any but the simplest molecules. For this reason, the time-dependent framework in which one propagates
classical trajectories or uses path-integral techniques to propagate initial wave functions offers the most feasible way to evaluate the correlation
functions that ultimately produce spectral line shapes and other time correlation functions for complex molecules in condensed media.

Before finishing this Section, it might help if I showed how one obtains the result that classical paths are those that make the action integral 
 minimum. This provides the student with an introduction to the subject called calculus of variations or functional analysis, which

most students reading this text have probably not studied in a class. First, let’s clarify what a functional is. A function  depends on one or
more variables x that take on scalar values; that is, given a scalar number ,  produces the value of the function  at this value of . A
functional  is a function of the function  if, given the function ,  acts on it to produce a value. In more general functionals,  might
depend not only of f, but on various derivatives of . Let’s consider an example. Suppose one has a functional of the form

meaning that the functional involves an integral from  through  of an integrand that may contain (i) the variable  explicitly, (ii) the
function , and (iii) the derivative of this function with respect to the variable . This is the kind of integral one encounters when evaluating
the action integral

where the function  is the coordinate  that evolves from  to . The task at hand is to determine that function  for which
this integral is a minimum.
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We solve this problem proceeding much as one would do if one had to minimize a function of a variable; we differentiate with respect to the
variable and set the derivative to zero. However, in our case, we have a function of a function, not a function of a variable; so how do we carry
out the derivative? We assume that the function  that minimizes  is known, and we express any function that differs a little bit from the
correct  as

where is a scalar quantity used to suggest that  and differ by only a small amount and is a function that obeys

this is how we guarantee that we are only considering paths that connect to the proper  at  and  at . By considering all possible
functions that obey these conditions, we have in a parameterization of all paths that begin (at ) and end (at tf) where the exact path  does
but differ by a small amount from . Substituting into

gives

The terms in the integrand are then expanded in powers of the  parameter

and substituted into the integral for . Collecting terms of each power of  allows this integral to be written as

The condition that S(e) be stable with respect to variations in  can be expressed as

which is equivalent to requiring that the terms linear in  in the above expansion for  vanish

Next, we use integration by parts to rewrite the first term involving as a term involving instead

Because the function vanishes at  and , the first term vanishes, so this identity can be used to rewrite the condition that the terms in 
that are linear in  vanish as

Because this result is supposed to be valid for any function that vanishes at  and tf, the factor multiplying in the above integral must itself
vanish

This shows that the path  that makes  stationary is the path that obeys Newton’s equations- the classical path. I urge the student reader to
study this example of the use of functional analysis because this mathematical device is an important tool too master.
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