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3.2: Normal Modes of Vibration

Having seen how one can use information about the gradients and Hessians on a Born-Oppenheimer surface to locate geometries
corresponding to stable species and transition states, let us now move on to see how this same data is used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy's dependence on the 3N Cartesian coordinates of its N atoms, the potential energy V' can
be expressed (approximately) in terms of a Taylor series expansion about any of the local minima. Of course, different local minima (i.e.,
different isomers) will have different values for the equilibrium coordinates and for the derivatives of the energy with respect to these
coordinates. The Taylor series expansion of the electronic energy is written as:

1
V(gk +Z < )qk+§ijijqu+... (3.2.1)
gk

Here,

e V/(0) is the energy at the current geometry,

ov
* gr. is the gradient of the energy along the g, coordinate,
qk
1%
e H;; = ——— is the second-derivative or Hessian matrix, and

0q;0qs.
o gz is the length of the “step” to be taken along this Cartesian direction.

If the geometry corresponds to a minimum or transition state, the gradient terms will all vanish, and the Hessian matrix will possess 3N —5
(for linear species) or 3N — 6 (for non-linear molecules) positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3 translational
and 2 or 3 rotational motions of the molecule) for a minimum and one negative eigenvalues and 3N —6 or 3N — 7 positive eigenvalues for a
transition state.

The Newton Equations of Motion for Vibration

The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate because only small displacements from the equilibrium
geometry are of interest), one has the so-called harmonic potential:

Vig) = Zq] kT (3.2.2)

The classical mechanical equations of motion for the 3N{qx} coordinates can be written in terms of the above potential energy and the
following kinetic energy function:

Zm]<dq7) , (3.2.3)

dg;
where —= is the time rate of change of the coordinate g; and m; is the mass of the atom on which the 4" Cartesian coordinate resides. The

Newton equations thus obtained are:
dzq]
mj— ZH’qu (3.2.4)

where the force along the 5% coordinate is given by minus the derivative of the potential V along this coordinate
Bq =Y Hjq (3.2.5)
J k

within the harmonic approximation. These classical equations can more compactly be expressed in terms of the time evolution of a set of so-
called mass-weighted Cartesian coordinates defined as:

zj =g/ (my) (3.2.6)
in terms of which the above Newton equations become
dzl‘j
= 7;H]’.’kwk (3.2.7)
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and the mass-weighted Hessian matrix elements are
) Hik

J’,k:—m'

The Harmonic Vibrational Energies and Normal Mode Eigenvectors

(3.2.8)

Assuming that the z; undergo some form of sinusoidal time evolution:
z;(t) = z;(0) cos(wt), (3.2.9)
and substituting this into the Newton equations produces a matrix eigenvalue equation:

wiry=) Hl xy (3.2.10)
k

in which the eigenvalues are the squares of the so-called normal mode vibrational frequencies and the eigenvectors give the amplitudes of
motion along each of the 3N mass-weighted Cartesian coordinates that belong to each mode. Hence, to perform a normal-mode analysis of a

molecule, one forms the mass-weighted Hessian matrix and then finds the 3N —5 or 3N —6 non-zero eigenvalues w? as well as the

J
corresponding eigenvectors mgj ).

It is useful to note that, if this same kind of analysis were performed at a geometry corresponding to a transition state, 3N —6 or 3N — 7 of
the w? values would be positive, but one of them would be negative. The eigenvector corresponding to the negative eigenvalue of the mass-
weighted Hessian points along a very important direction that we will discuss later; it is the direction of the so-called intrinsic reaction
coordinate (IRC). When reporting the eigenvalues w? at such a transition-state geometry, one often says that there is one imaginary frequency
because one of the w? values is negative; this value of w]2. characterizes the curvature of the energy surface along the IRC at the transition
state. The positive vibrational eigenvalues of transition-state geometries are used, as discussed in Chapter 8, to evaluate statistical mechanics
partition functions for reaction rates, and the negative w? value plays a role in determining the extent of tunneling through the barrier on the

reaction surface.
Within this harmonic treatment of vibrational motion, the total vibrational energy of the molecule is given as

3N—-50r6

1
E(v1,va,- VsN-50r6) = Z hwj(Vj+§> (3.2.11)
=1

asum of 3N —5 or 3N — 6 independent contributions one for each normal mode. The corresponding total vibrational wave function

3N-5o0r6

= H P (z19)) (3.2.12)

is a product of 3N —5 or 3N —6 harmonic oscillator functions 1/)1/j(m(j)) one for each normal mode. The energy gap between one
vibrational level and another in which one of the ; quantum numbers is increased by unity (i.e., for fundamental vibrational transitions) is

AEy, = vj+1=hw (3.2.13)

The harmonic model thus predicts that the "fundamental" (¥ =0 — v =1 ) and "hot band" (v =1 — v = 2 ) transitions should occur at the
same energy, and the overtone (v = 0 — v = 2 ) transitions should occur at exactly twice this energy.

One might wonder whether mass-weighted Cartesian coordinates would be better or more appropriate to use when locating minima and
transition states on Born-Oppenheimer energy surfaces. Although mass-weighted coordinates are indeed essential for evaluating harmonic
vibrational frequencies and, as we will see later, for tracing out so-called intrinsic reaction paths, their use produces the same minima and
transition states as one finds using coordinates that are mass-weighted. This is because the condition that all components of the gradient

OVZO

—-— 3.2.14
5 (3.2.14)

of the energy surface vanish at a minimum or at a transition state will automatically be obeyed when expressed in terms of mass-weighted
coordinates since

oV oV dz; OV

B_qj = 6_$] 24, = a—x]\/wj (3.2.15)

Notice that this means the geometries of all local minima and transition states on a given Born-Oppenheimer surface will be exactly the same
regardless of what isotopes appear in the molecule. For example, for the reactions

H—CN—H-NC (3.2.16)
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or
D-CN —D-NC (3.2.17)
H,C=0— Hy,+CO (3.2.18)

or
HDC =0 — HD+CO (3.2.19)

or
D,C =0 — Dy +CO (3.2.20)

the geometries of the reactants, products, and transition states (for each of the distinct reactions) will not depend on the identity of the
hydrogen isotopes. However, the harmonic vibrational frequencies will depend on the isotopes because the mass-weighted Hessian differs
from the Hessian expressed in terms of non-mass-weighted coordinates.

The Use of Symmetry

Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode harmonic frequencies and eigenvectors by exploiting molecular point group
symmetry. For molecules that possess symmetry at a particular stable geometry, the electronic potential V'(g;) displays symmetry with respect
to displacements of symmetry equivalent Cartesian coordinates. For example, consider the water molecule at its Cy, equilibrium geometry as
illustrated in Figure 3.2. A very small movement of the H>O molecule's left H atom in the positive « direction (Axy) produces the same
change in the potential V" as a correspondingly small displacement of the right H atom in the negative x direction

(—Azp). Similarly, movement of the left H in the positive y direction (Ayz,) produces an energy change identical to movement of the right H
in the positive y direction (Ayg).

Figure 3.2. Water molecule showing its two bond lengths and angle

The equivalence of the pairs of Cartesian coordinate displacements is a result of the fact that the displacement vectors are connected by the
point group operations of the Cy, group. In particular, reflection of Az, through the yz plane (the two planes are depicted in Figure 3.3)
produces —Az g, and reflection of Ayy, through this same plane yields Ayg.

Figure 3.3. Two planes of symmetry of the water molecule.

More generally, it is possible to combine sets of Cartesian displacement coordinates {g;} into so-called symmetry adapted coordinates {Qr,},
where the index I labels the irreducible representation in the appropriate point group and j labels the particular combination of that symmetry
(i.e., there may be more than one kind of displacement that has a given symmetry G). These symmetry-adapted coordinates can be formed by
applying the point group projection operators (that are treated in detail in Chapter 4) to the individual Cartesian displacement coordinates.

To illustrate, again consider the H,O molecule in the coordinate system described above. The 3N =9 mass-weighted Cartesian displacement
coordinates (Xr,Yr, ZL, Xo,Yo, Zo, XRr, Yr, Zg) can be symmetry adapted by applying the following four projection operators:

Py =1+0y,+0,4+Co (3.2.21)
P, =140y, —0,y—C> (3.2.22)
P, =1-0,.+0,—C (3.2.23)
P, =1-0,.—04+Cs (3.2.24)
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to each of the 9 original coordinates (the symbol s denotes reflection through a plane and C> means rotation about the molecule’s C5 axis). Of
course, one will not obtain 9 x 4 = 36 independent symmetry adapted coordinates in this manner; many identical combinations will arise, and
only 9 will be independent.

The independent combinations of a; symmetry (normalized to produce vectors of unit length) are

1
Qa1 = E[XL — Xg] (3.2.25)
1
Qa2 = E[YL +Yg] (3.2.26)
Qa3 = Yo (3.2.27)
Those of by symmetry are
1
Qb1 = E[XL + Xg] (3.2.28)
1
Qp, 2 = 7 (Y —Yg] (3.2.29)
@s,3 = [Xol, (3.2.30)
and the combinations
1
Qp1 = E[ZL + Zg] (3.2.31)
Qs, 2 =[Zo] (3.2.32)
are of by symmetry, whereas
1
Qa1 = —= 21 — Zg] (3.2.33)

)

is of ay symmetry.

Point Group Symmetry of the Harmonic Potential
These nine symmetry-adapted coordinates Qr; are expressed as unitary transformations of the original mass-weighted Cartesian coordinates:
Qr; = Cr,;, X}, (3.2.34)
These transformation coefficients ijyk can be used to carry out a unitary transformation of the 9x9 mass-weighted Hessian matrix. In so
doing, we need only form blocks
Hy, = Cr, HyymemgCr,, (3.2.35)
kK
within which the symmetries of the two modes are identical. The off-diagonal elements
Hpypy = Z Crj Hy /My Cry, (3.2.36)
kK

vanish because the potential V(g;) (and the full vibrational Hamiltonian H =T +V ) commutes with the Cpy point group symmetry
operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be subdivided into two 3x3 matrix problems (of a; and by symmetry),
one 2x2 matrix of b; symmetry and one 1x1 matrix of a; symmetry. For example, the a; symmetry block His formed as follows:

777’—1/262_‘/777,—1/2 mol/2 9’V o2 1 o*v m_l/z-
= = 0 S T dzpdep M B 9zpoyo M 1 L 0
2 2 5 3
\{— \1/— 2 PV g L120%V i) L1 OV Ly \/; \(
Lo Lo | e g || L o] @237
V2 V2 R 5 7

12 OV Ly app 0V 120V
0 0 1 my ' ———my my ' ———my my "t —my 0 0 1

| OyoOzy, OyoOzg ay?, ]
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The by, b; and ay blocks are formed in a similar manner. The eigenvalues of each of these blocks provide the squares of the harmonic
vibrational frequencies, the eigenvectors provide the coefficients {CFM} of the j normal mode of symmetry I' in terms of the mass-
weighted Cartesian coordinates { X }. The relationship X = gx+/(my) can then be used to express these coefficients in terms of the original
Cartesian coordinates {qz}.

Regardless of whether symmetry is used to block diagonalize the mass-weighted Hessian, six (for non-linear molecules) or five (for linear
species) of the eigenvalues will equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3 translations and 2 or 3
rotations of the molecule. For example, when expressed in terms of the original (i.e., non-mass-weighted) Cartesian coordinates

%[mL +zg+ 0] (3.2.38)
%[yL +yr +yol (3.2.39)
%[ZL +2m+ 20] (3.2.40)

are three translation eigenvectors of by, a; and b; symmetry, and

%(ZL ) (3.2.41)

is a rotation (about the y-axis in the Figure 3.2) of ay symmetry. This rotation vector can be generated by applying the a, projection operator
to zy, or to zg. The other two rotations are of b; and b, symmetry and involve spinning of the molecule about the z- and z- axes of the Figure
3.2, respectively.

So, of the 9 Cartesian displacements, 3 are of a; symmetry, 3 of b, 2 of b, and 1 of ay. Of these, there are three translations (a;, b2, and b;)
and three rotations (by, by, and a2). This leaves two vibrations of a; and one of by symmetry. For the H>O example treated here, the three
non-zero eigenvalues of the mass-weighted Hessian are therefore of aj, bs, and a; symmetry. They describe the symmetric and asymmetric
stretch vibrations and the bending mode, respectively as illustrated in Figure 3.4.

Figure 3.4: Symmetric and asymmetric stretch modes and bending mode of water

The method of vibrational analysis presented here can work for any polyatomic molecule. One knows the mass-weighted Hessian and then
computes the non-zero eigenvalues, which then provide the squares of the normal modes’ harmonic vibrational frequencies. Point group
symmetry can be used to block diagonalize this Hessian and to label the vibrational modes according to symmetry as we show in Figure 3.5
for the C F; molecule in tetrahedral symmetry.

Figure 3.5. Symmetries of vibrations of methane
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