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1.3: The Born-Oppenheimer Approximation
 One of the most important approximations relating to applying quantum mechanics to molecules and molecular ions is known as
the Born-Oppenheimer (BO) approximation. The basic idea behind this approximation involves realizing that in the full electrons-
plus-nuclei Hamiltonian operator introduced above

the time scales with which the electrons and nuclei move are usually quite different. In particular, the heavy nuclei (i.e., even a H
nucleus weighs nearly 2000 times what an electron weighs) move (i.e., vibrate and rotate) more slowly than do the lighter
electrons. For example, typical bond vibrational motions occur over time scales of ca.  s, molecular rotations require 
times as long, but electrons undergo periodic motions within their orbits on the  s timescale if they reside within core or
valence orbitals. Thus, we expect the electrons to be able to promptly “adjust” their motions to the much more slowly moving
nuclei.

This observation motivates us to consider solving the Schrödinger equation for the movement of the electrons in the presence of
fixed nuclei as a way to represent the fully adjusted state of the electrons at any fixed positions of the nuclei. Of course, we then
have to have a way to describe the differences between how the electrons and nuclei behave in the absence of this approximation
and how they move within the approximation. These differences give rise to so-called non-Born-Oppenheimer corrections,
radiationless transitions, surface hops, and non-adiabatic transitions, which we will deal with later.

It should be noted that this separation of time scales between fast electronic and slow vibration and rotation motions does not apply
as well to, for example, Rydberg states of atoms and molecules. As discussed earlier, in such states, the electron in the Rydberg
orbital has much lower speed and much larger radial extent than for typical core or valence orbitals. For this reason, corrections to
the BO model are usually more important to make when dealing with Rydberg states.

The electronic Hamiltonian that pertains to the motions of the electrons in the presence of clamped nuclei

produces as its eigenvalues through the equation

energies  that depend on where the nuclei are located (i.e., the { } coordinates). As its eigenfunctions, one obtains what
are called electronic wave functions { } which also depend on where the nuclei are located. The energies  are
what we usually call potential energy surfaces. An example of such a surface is shown in Figure 1.5.

Figure 1.5. Two dimensional potential energy surface showing local minima, transition states and paths connecting them.

This surface depends on two geometrical coordinates  and is a plot of one particular eigenvalue  vs. these two
coordinates.

Although this plot has more information on it than we shall discuss now, a few features are worth noting. There appear to be three
minima (i.e., points where the derivative of  with respect to both coordinates vanish and where the surface has positive
curvature). These points correspond, as we will see toward the end of this introductory material, to geometries of stable molecular
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structures. The surface also displays two first-order saddle points (labeled transition structures A and B) that connect the three
minima. These points have zero first derivative of  with respect to both coordinates but have one direction of negative curvature.
As we will show later, these points describe transition states that play crucial roles in the kinetics of transitions among the three
stable geometries.

Keep in mind that Figure 1.5 shows just one of the  surfaces; each molecule has a ground-state surface (i.e., the one that is
lowest in energy) as well as an infinite number of excited-state surfaces. Let’s now return to our discussion of the BO model and
ask what one does once one has such an energy surface in hand.

The motion of the nuclei are subsequently, within the BO model, assumed to obey a Schrödinger equation in which

defines a rotation-vibration Hamiltonian for the particular energy state  of interest. The rotational and vibrational energies and
wave functions belonging to each electronic state (i.e., for each value of the index  in ) are then found by solving a 
Hamiltonian.

This BO model forms the basis of much of how chemists view molecular structure and molecular spectroscopy. For example as
applied to formaldehyde , we speak of the singlet ground electronic state (with all electrons spin paired and occupying
the lowest energy orbitals) and its vibrational and rotational states as well as the  and  electronic states and their
vibrational and rotational levels. Although much more will be said about these concepts later in this text, the student should be
aware of the concepts of electronic energy surfaces (i.e., the { }) and the vibration-rotation states that belong to each such
surface.

I should point out that the  Cartesian coordinates { } used to describe the positions of the molecule’s  nuclei can be replaced
by 3 Cartesian coordinates  specifying the center of mass of the  nuclei and  other so-called internal
coordinates that can be used to describe the molecule’s orientation (these coordinates appear in the rotational kinetic energy) and its
bond lengths and angles (these coordinates appear in the vibrational kinetic and potential energies). When center-of-mass and
internal coordinates are used in place of the  Cartesian coordinates, the Born-Oppenheimer energy surfaces { } are seen
to depend only on the internal coordinates. Moreover, if the molecule’s energy does not depend on its orientation (e.g., if it is
moving freely in the gas phase), the { } will also not depend on the 3 orientational coordinates, but only on the 
vibrational coordinates.

Having been introduced to the concepts of operators, wave functions, the Hamiltonian and its Schrödinger equation, it is important
to now consider several examples of the applications of these concepts. The examples treated below were chosen to provide the
reader with valuable experience in solving the Schrödinger equation; they were also chosen because they form the most elementary
chemical models of electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and vibrations of
chemical bonds.

Your First Application of Quantum Mechanics- Motion of a Particle in One Dimension 

This is a very important problem whose solutions chemists use to model a wide variety of phenomena.

Let’s begin by examining the motion of a single particle of mass  in one direction which we will call  while under the influence

of a potential denoted . The classical expression for the total energy of such a system is , where  is the

momentum of the particle along the x-axis. To focus on specific examples, consider how this particle would move if  were of
the forms shown in Figure 1. 6, where the total energy  is denoted by the position of the horizontal line.

Figure 1. 6. Three characteristic potentials showing left and right classical turning points at energies denoted by the horizontal
lines.
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The Classical Probability Density 

I would like you to imagine what the probability density would be for this particle moving with total energy  and with 
varying as the above three plots illustrate. To conceptualize the probability density, imagine the particle to have a blinking lamp
attached to it and think of this lamp blinking say 100 times for each time it takes for the particle to complete a full transit from its
left turning point, to its right turning point and back to the former. The turning points  and  are the positions at which the
particle, if it were moving under Newton’s laws, would reverse direction (as the momentum changes sign) and turn around. These
positions can be found by asking where the momentum goes to zero:

These are the positions where all of the energy appears as potential energy  and correspond in the above figures to the
points where the dark horizontal lines touch the  plots as shown in the central plot.

The probability density at any value of  represents the fraction of time the particle spends at this value of  (i.e., within  and 
). Think of forming this density by allowing the blinking lamp attached to the particle to shed light on a photographic plate

that is exposed to this light for many oscillations of the particle between  and . Alternatively, one can express the probability 
 that the particle spends between  and  by dividing the spatial distance  by the velocity (p/m) of the particle at

the point :

Because  is constant throughout the particle’s motion,  will be small at  values where the particle is moving quickly (i.e.,
where  is low) and will be high where the particle moves slowly (where  is high). So, the photographic plate will show a bright
region where  is high (because the particle moves slowly in such regions) and less brightness where  is low. Note, however, that
as  approaches the classical turning points, the velocity approaches zero, so the above expression for  will approach infinity.
It does not mean the probability of finding the particle at the turning point is infinite; it means that the probability density is infinite
there. This divergence of  is a characteristic of the classical probability density that will be seen to be very different from the
quantum probability density.

The bottom line is that the probability densities anticipated by analyzing the classical Newtonian dynamics of this one particle
would appear as the histogram plots shown in Figure 1.7 illustrate.

Figure 1. 7 Classical probability plots for the three potentials shown

Where the particle has high kinetic energy (and thus lower ), it spends less time and  is small. Where the particle moves
slowly, it spends more time and  is larger. For the plot on the right,  is constant within the “box”, so the speed is
constant, hence  is constant for all  values within this one-dimensional box. I ask that you keep these plots in mind because
they are very different from what one finds when one solves the Schrödinger equation for this same problem. Also please keep in
mind that these plots represent what one expects if the particle were moving according to classical Newtonian dynamics (which we
know it is not!).

Quantum Treatment 

To solve for the quantum mechanical wave functions and energies of this same kind of problem, we first write the Hamiltonian

operator as discussed above by replacing  by :
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We then try to find solutions  to  that obey certain conditions. These conditions are related to the fact that 
is supposed to be the probability density for finding the particle between  and . To keep things as simple as possible, let’s
focus on the box potential  shown in the right side of Figure 1. 7. This potential, expressed as a function of  is:  for 

 and for ;  for  between  and .

The fact that  is infinite for  and for , and that the total energy  must be finite, says that  must vanish in these two
regions (  for  and for ). This condition means that the particle cannot access regions of space where the potential
is infinite. The second condition that we make use of is that  must be continuous; this means that the probability of the particle
being at  cannot be discontinuously related to the probability of it being at a nearby point. It is also true that the spatial derivative 

 must be continuous except at points where the potential  has an infinite discontinuity like it does in the example shown on

the right in Figure 1.7. The continuity of  relates to continuity of momentum (recall,  is a momentum operator). When a

particle moves under, for example, one of the two potential shown on the left or middle of Figure 1.7, the potential smoothly
changes as kinetic and potential energy interchange during the periodic motion. In contrast, when moving under the potential on the
right of Figure 1.7, the potential undergoes a sudden change of direction when the particle hits either wall. So, even classically, the
particle’s momentum undergoes a discontinuity at such hard-wall turning points. These conditions of continuity of  (and its
spatial first derivative) and that  must vanish in regions of space where the potential is extremely high were postulated by the
pioneers of quantum mechanics so that the predictions of the quantum theory would be in line with experimental observations.

Energies and Wave functions 

The second-order differential equation

has two solutions (because it is a second order equation) in the region between  and  where :

and

where  is defined as

Hence, the most general solution is some combination of these two:

We could, alternatively use  and  as the two independent solutions (we do so later in Section 1.4 to illustrate)
because  and  can be rewritten in terms of  and ; that is, they span exactly the same space.

The fact that  must vanish at  (n.b.,  vanishes for  because  is infinite there and  is continuous, so it must
vanish at the point ) means that the weighting amplitude of the  term must vanish because  at .
That is,

The amplitude of the  term is not affected by the condition that  vanish at , since  itself vanishes at .
So, now we know that  is really of the form:

The condition that  also vanish at  (because it vanishes for  where  again is infinite) has two possible
implications. Either  or  must be such that . The option  would lead to an answer  that vanishes at all
values of  and thus a probability that vanishes everywhere. This is unacceptable because it would imply that the particle is never
observed anywhere.
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The other possibility is that . Let’s explore this answer because it offers the first example of energy quantization that
you have probably encountered. As you know, the sin function vanishes at integral multiples of . Hence  must be some
multiple of ; let’s call the integer  and write  (using the definition of ) in the form:

Solving this equation for the energy , we obtain:

This result says that the only energy values that are capable of giving a wave function  that will obey the above conditions are
these specific  values. In other words, not all energy values are allowed in the sense that they can produce  functions that are
continuous and vanish in regions where  is infinite. If one uses an energy  that is not one of the allowed values and
substitutes this  into , the resultant function will not vanish at . I hope the solution to this problem reminds you of
the violin string that we discussed earlier. Recall that the violin string being tied down at  and at  gave rise to
quantization of the wavelength just as the conditions that  be continuous at  and  gave energy quantization.

Substituting  into  gives

The value of A can be found by remembering that  is supposed to represent the probability density for finding the particle at .
Such probability densities are supposed to be normalized, meaning that their integral over all  values should amount to unity. So,
we can find A by requiring that

where the integral ranges from  to . Looking up the integral of  and solving the above equation for the so-
called normalization constant  gives

 and so

The values that  can take on are ; the choice  is unacceptable because it would produce a wave function 
 that vanishes at all .

The full x- and t- dependent wave functions are then given as

Notice that the spatial probability density  is not dependent on time and is equal to  because the complex
exponential disappears when  is formed. This means that the probability of finding the particle at various values of  is time-
independent.

Another thing I want you to notice is that, unlike the classical dynamics case, not all energy values  are allowed. In the
Newtonian dynamics situation,  could be specified and the particle’s momentum at any  value was then determined to within a
sign. In contrast, in quantum mechanics, one must determine, by solving the Schrödinger equation, what the allowed values of 

are. These  values are quantized, meaning that they occur only for discrete values  determined by a quantum

number , by the mass of the particle m, and by characteristics of the potential (  in this case).
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Probability Densities 

Let’s now look at some of the wave functions  and compare the probability densities  that they represent to the
classical probability densities discussed earlier. The  and  wave functions are shown in the top of Figure 1.8. The
corresponding quantum probability densities are shown below the wave functions in two formats (as  plots and shaded plots
that could relate to the flashing light way of monitoring the particle’s location that we discussed earlier).

Figure 1. 8. The two lowest wave functions and probability densities

A more complete set of wave functions (for  ranging from 1 to 7) are shown in Figure 1. 9.

Figure 1. 9. Seven lowest wave functions and energies

Notice that as the quantum number  increases, the energy  also increases (quadratically with  in this case) and the number of
nodes in  also increases. Also notice that the probability densities are very different from what we encountered earlier for the
classical case. For example, look at the  and  densities and compare them to the classical density illustrated in Figure
1.10.

Figure 1.10. Classical probability density for potential shown
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The classical density is easy to understand because we are familiar with classical dynamics. In this case, we say that  is
constant within the box because the fact that  is constant causes the kinetic energy and hence the speed of the particle to
remain constant, and this is true for any energy . In contrast, the  quantum wave function’s  plot is peaked in the
middle of the box and falls to zero at the walls. The  density  has two peaks (one to the left of the box midpoint, and one
to the right), a node at the box midpoint, and falls to zero at the walls. One thing that students often ask me is “how does the
particle get from being in the left peak to being in the right peak if it has zero chance of ever being at the midpoint where the node
is?” The difficulty with this question is that it is posed in a terminology that asks for a classical dynamics answer. That is, by asking
“how does the particle get...” one is demanding an answer that involves describing its motion (i.e., it moves from here at time  to
there at time ). Unfortunately, quantum mechanics does not deal with issues such as a particle’s trajectory (i.e., where it is at
various times) but only with its probability of being somewhere (i.e., ). The next section will treat such paradoxical issues even
further.

Classical and Quantum Probability Densities 
As just noted, it is tempting for most beginning students of quantum mechanics to attempt to interpret the quantum behavior of a
particle in classical terms. However, this adventure is full of danger and bound to fail because small light particles simply do not
move according to Newton’s laws. To illustrate, let’s try to understand what kind of (classical) motion would be consistent with the 

 or  quantum  plots shown in Figure 1. 8. However, as I hope you anticipate, this attempt at gaining classical
understanding of a quantum result will not work in that it will lead to nonsensical results. My point in leading you to attempt such a
classical understanding is to teach you that classical and quantum results are simply different and that you must resist the urge to
impose a classical understanding on quantum results at least until you understand under what circumstances classical and quantum
results should or should not be comparable.

For the  case in Figure 1.8, we note that  is highest at the box midpoint and vanishes at  and . In a classical

mechanics world, this would mean that the particle moves slowly near  and more quickly near  and . Because

the particle’s total energy  must remain constant as it moves, in regions where it moves slowly, the potential it experiences must
be high, and where it moves quickly,  must be small. This analysis (n.b., based on classical concepts) would lead us to conclude

that the   arises from the particle moving in a potential that is high near  and low as  approaches 0 or L.

A similar analysis of the  plot for  would lead us to conclude that the particle for which this is the correct  must

experience a potential that is high midway between  and , high midway between  and , and low near 

 and near  and . These conclusions are crazy because we know that the potential  for which we solved the

Schrödinger equation to generate both of the wave functions (and both probability densities) is constant between  and .
That is, we know the same  applies to the particle moving in the  and  states, whereas the classical motion
analysis offered above suggests that  is different for these two cases.

What is wrong with our attempt to understand the quantum  plots? The mistake we made was in attempting to apply the
equations and concepts of classical dynamics to a  plot that did not arise from classical motion. simply put, one cannot ask
how the particle is moving (i.e., what is its speed at various positions) when the particle is undergoing quantum dynamics. Most
students, when first experiencing quantum wave functions and quantum probabilities, try to think of the particle moving in a
classical way that is consistent with the quantum . This attempt to retain a degree of classical understanding of the particle’s
movement is almost always met with frustration, as I illustrated with the above example and will illustrate later in other cases.

Continuing with this first example of how one solves the Schrödinger equation and how one thinks of the quantized  values and
wave functions , let me offer a little more optimistic note than offered in the preceding discussion. If we examine the  plot
shown in Figure 1.9 for , and think of the corresponding , we note that the  plot would look something
like that shown in Figure 1. 11.
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Figure 1.11. Quantum probability density for  showing seven peaks and six nodes

It would have seven maxima separated by six nodes. If we were to plot  for a very large  value such as , we would
find a  plot having 55 maxima separated by 54 nodes, with the maxima separated approximately by distances of (1/55L). Such
a plot, when viewed in a coarse-grained sense (i.e., focusing with somewhat blurred vision on the positions and heights of the
maxima) looks very much like the classical  plot in which  is constant for all . Another way to look at the difference
between the low-n and high-n quantum probability distributions is reflected in the so-called local de Broglie wavelength

It can be shown that the classical and quantum probabilities will be similar in regions of space where

This inequality will be true when  is much larger than , which is consistent with the view that high quantum states behave
classically, but it will not hold when  is only slightly above  (i.e., for low-energy quantum states and for any quantum state near
classical turning points) or when  is smaller than  (i.e., in classically forbidden regions).

In summary, it is a general result of quantum mechanics that the quantum  distributions for large quantum numbers take on the
form of the classical  for the same potential  that was used to solve the Schrödinger equation except near turning points and
in classically forbidden regions. It is also true that, at any specified energy, classical and quantum results agree better when one is
dealing with heavy particles than for light particles. For example, a given energy  corresponds to a higher  quantum number in

the particle-in-a-box formula  for a heavier particle than for a lighter particle. Hence, heavier particles, moving with a

given energy , have more classical probability distributions.

To gain perspective about this matter, in the table shown below, I give the energy levels  in kcal mol  for a particle

whose mass is 1, 2000, 20,000, or 200,000 times an electron’s mass constrained to move within a one-dimensional region of length 
 (in Bohr units denoted ; 1  =0.529 Å).

Energies  (kcal mol ) for various  and  combinations

m = 1 m

L = 1 a L = 10 a L = 100 a L = 1000 a

m = 1 m 3.1 x10 n 3.1 x10 n 3.1 x10 n 3.1 x10 n

m = 2000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

m = 20,000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

m = 200,000 m 1.5 x10 n 1.5 x10 n 1.5 x10 n 1.5 x10 n

Clearly, for electrons, even when free to roam over 50-500 nanometers (e.g.,  or ), one does not need to
access a very high quantum state to reach 1 kcal mol  of energy (e.g.,  would be adequate for ). Recall, it is high
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quantum states where one expects the classical and quantum spatial probability distribution to be similar. So, when treating
electrons, one is probably (nearly) always going to have to make use of quantum mechanics and one will not be able to rely on
classical mechanics.

For light nuclei, with masses near 2000 times the electron’s mass, if the particle is constrained to a small distance range (e.g., 1-10 
), again even low quantum states will have energies in excess of 1 kcal mol . Only when free to move over of 100 to 1000 

does 1 kcal mol  correspond to relatively large quantum numbers for which one expects near-classical behavior. The data shown in
the above table can also be used to estimate when quantum behavior such as Bose-Einstein condensation can be expected. When
constrained to 100 , particles in the 1 amu mass range have translational energies in the  cal mol  range. Realizing that 

 cal mol  K , this means that translational temperatures near 0.1 K would be needed to cause these particles to occupy
their  ground state.

In contrast, particles with masses in the range of 100 amu, even when constrained

to distances of ca. 5 Å, require  to exceed ca. 10 before having 1 kcal mol  of translational energy. When constrained to 50 Å, 1
kcal mol  requires  to exceed 1000. So, heavy particles will, even at low energies, behave classically except if they are
constrained to very short distances.

We will encounter this so-called quantum-classical correspondence principal again when we examine other model problems. It is
an important property of solutions to the Schrödinger equation because it is what allows us to bridge the gap between using the
Schrödinger equation to treat small light particles and the Newton equations for macroscopic (big, heavy) systems.

Time Propagation of Wave functions 

For a particle in a box system that exists in an eigenstate  having an energy , the time-

dependent wave function is

that can be generated by applying the so-called time evolution operator  to the wave function at :

where an explicit form for  is:

The function  has a spatial probability density that does not depend on time because

since . However, it is possible to prepare systems (even in real laboratory settings) in states that

are not single eigenstates; we call such states superposition states. For example, consider a particle moving along the x- axis within
the box potential but in a state whose wave function at some initial time  is

This is a superposition of the  and  eigenstates. The probability density associated with this function is

The  and  components, the superposition , and the probability density at  are shown in the first three panels of
Figure 1.12.
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Figure 1.12. The  and  wave functions (upper left), their superposition (upper right), and the  (bottom left) and
time-evolved (bottom right) probability densities of the superposition

It should be noted that the probability density associated with this superposition state is not symmetric about the  midpoint

even though the  and  component wave functions and densities are. Such a density describes the particle localized more
strongly in the large-x region of the box than in the small-x region at .

Now, let’s consider the superposition wave function and its density at later times. Applying the time evolution operator 

 to  generates this time-evolved function at time t:

The spatial probability density associated with this  is:

At , this function clearly reduces to that written earlier for . Notice that as time evolves, this density changes because

of the ) factor it contains. In particular, note that as  moves through a period of time , the cos

factor changes sign. That is, for , the  factor is ; for , the cos factor is ; for , it returns to

. The result of this time-variation in the cos factor is that  changes in form from that shown in the bottom left panel of

Figure 1. 12 to that shown in the bottom right panel (at ) and then back to the form in the bottom left panel (at 

). One can interpret this time variation as describing the particle’s probability density (not its classical position!),

initially localized toward the right side of the box, moving to the left and then back to the right. Of course, this time evolution will
continue over more and more cycles as time evolves further.

This example illustrates once again the difficulty with attempting to localize particles that are being described by quantum wave

functions. For example, a particle that is characterized by the eigenstate  is more likely to be detected near 

than near  or  because the square of this function is large near . A particle in the state  is most

likely to be found near  and , but not near , , or . The issue of how the particle in the latter state
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moves from being near  to  is not something quantum mechanics deals with. Quantum mechanics does not allow us

to follow the particle’s trajectory which is what we need to know when we ask how it moves from one place to another.
Nevertheless, superposition wave functions can offer, to some extent, the opportunity to follow the motion of the particle.

For example, the superposition state written above as

 has a probability amplitude that changes with time as shown in Figure 1.12.

Moreover, this amplitude’s major peak does move from side to side within the box as time evolves. So, in this case, we can say
with what frequency the major peak moves back and forth. In a sense, this allows us to follow the particle’s movements, but only to
the extent that we are satisfied with ascribing its location to the position of the major peak in its probability distribution. That is, we
can not really follow its precise location, but we can follow the location of where it is very likely to be found. However, notice that

the time it takes the particle to move from right to left  is dependent upon the energy difference between the two

states contributing to the superposition state, not to the energy of either of these states, which is very different from what would
expect if the particle were moving classically.

These are important observation that I hope the student will keep fresh in mind. They are also important ingredients in modern
quantum dynamics in which localized wave packets, which are similar to superposed eigenstates discussed above, are used to detail
the position and speed of a particle’s main probability density peak.

The above example illustrates how one time-evolves a wave function that is expressed as a linear combination (i.e., superposition)
of eigenstates of the problem at hand. There is a large amount of current effort in the theoretical chemistry community aimed at

developing efficient approximations to the  evolution operator that do not require  to be explicitly written as

a sum of eigenstates. This is important because, for most systems of direct relevance to molecules, one can not solve for the
eigenstates; it is simply too difficult to do so. You can find a significantly more detailed treatment of the research-level treatment of
this subject in my Theory Page web site and my QMIC textbook. However, let’s spend a little time on a brief introduction to what
is involved.

The problem is to express , where  is some initial wave function but not an eigenstate, in a manner that

does not require one to first find the eigenstates { } of  and to expand  in terms of these eigenstates:

after which the desired function is written as

The basic idea is to break the operator  into its kinetic  and potential  energy components and to realize that the differential
operators appear in  only. The importance of this observation lies in the fact that  and  do not commute which means that 
is not equal to  (n.b., recall that for two quantities to commute means that their order of appearance does not matter). Why do
they not commute? Because  contains second derivatives with respect to the coordinates {q_j} that  depends on, so, for

example,  is not equal to . The fact that  and  do not commute is important because the most

obvious attempt to approximate  is to write this single exponential in terms of  and .

However, the identity

is not fully valid as one can see by expanding all three of the above exponential factors as  and

noting that the two sides of the above equation only agree if one can assume that , which, as we noted, is not true.
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In most modern approaches to time propagation, one divides the time interval  into many (i.e.,  of them) small time slices 
. One then expresses the evolution operator as a product of  short-time propagators (the student should by now be

familiar with the fact that , , and  are operators, so, from now on I will no longer necessarily use bold lettering for these
quantities):

If one can then develop an efficient means of propagating for a short time , one can then do so over and over again  times to
achieve the desired full-time propagation.

It can be shown that the exponential operator involving  can better be approximated in terms of the  and  exponential
operators as follows:

So, if one can be satisfied with propagating for very short time intervals (so that the  term can be neglected), one can indeed use

as an approximation for the propagator . It can also be shown that the so-called split short-time expression

provides an even more accurate representation of the short-time propagator (because expansions of the left- and right-hand sides
agree to higher orders in ).

To progress further, one then expresses  acting on  in terms of the eigenfunctions of the kinetic

energy operator . Note that these eigenfunctions do not depend on the nature of the potential V, so this step is valid for any and all

potentials. The eigenfunctions of  are the momentum eigenfunctions that we discussed earlier

and they obey the following orthogonality

and completeness relations

Writing  as

and using the above expression for  gives:

Then inserting the explicit expressions for  and  in terms of
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gives

Now, allowing  to act on  produces

The integral over  above can be carried out analytically and gives

So, the final expression for the short-time propagated wave function is:

which is the working equation one uses to compute  knowing . Notice that all one needs to know to apply this formula
is the potential  at each point in space. One does not need to know any of the eigenfunctions of the Hamiltonian to apply this
method. This is especially attractive when dealing with very large molecules or molecules in condensed media where it is
essentially impossible to determine any of the eigenstates and where the energy spacings between eigenstates is extremely small.
However, one does have to use this formula over and over again to propagate the initial wave function through many small time
steps  to achieve full propagation for the desired time interval .

Because this type of time propagation technique is a very active area of research in the theory community, it is likely to continue to
be refined and improved. Further discussion of it is beyond the scope of this book, so I will not go further into this direction. The
web site of Professor Nancy Makri provides access to further information about the quantum time propagation research area.
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