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6.4: Deficiencies in the Single Determinant Model
To achieve reasonable chemical accuracy (e.g., ± 5 kcal/mole in EAs or IPs or bond energies) in electronic structure calculations, one can
not describe the wavefunction  in terms of a single determinant. The reason such a wavefunction is inadequate is because the spatial
probability density functions are not correlated. This means the probability of finding one electron at position r is independent of where the
other electrons are, which is absurd because the electrons’ mutual Coulomb repulsion causes them to avoid one another. This mutual
avoidance is what we call electron correlation because the electrons’ motions, as reflected in their spatial probability densities, are
correlated (i.e., inter-related). Let us consider a simple example to illustrate this problem with single determinant functions. The 

 determinant, when written as

can be multiplied by itself to produce the 2-electron spin- and spatial- probability density:

If we now integrate over the spins of the two electrons and make use of

and

we obtain the following spatial (i.e., with spin absent) probability density:

This probability, being a product of the probability density for finding one electron at r times the density of finding another electron at ,
clearly has no correlation in it. That is, the probability of finding one electron at r does not depend on where  the other electron is. This
product form for  is a direct result of the single-determinant form for y, so this form must be wrong if electron correlation is to be
accounted for.

Electron Correlation 

Now, we need to ask how  should be written if electron correlation effects are to be taken into account. As we now demonstrate, it turns
out that one can account for electron avoidance by taking  to be a combination of two or more determinants that differ by the promotion of
two electrons from one orbital to another orbital. For example, in describing the  bonding electron pair of an olefin or the  electron
pair in alkaline earth atoms, one mixes in doubly excited determinants of the form  or , respectively.

Briefly, the physical importance of such doubly-excited determinants can be made clear by using the following identity involving
determinants:

where

This identity is important to understand, so please make sure you can work through the algebra needed to prove it. It allows one to interpret
the combination of two determinants that differ from one another by a double promotion from one orbital  to another  as equivalent
to a singlet coupling (i.e., having  spin function) of two different orbitals  and  that comprise what are called
polarized orbital pairs. In the simplest embodiment of such a configuration interaction (CI) description of electron correlation, each electron
pair in the atom or molecule is correlated by mixing in a configuration state function (CSF) in which that electron pair is doubly excited to a
correlating orbital. A CSF is the minimum combination of determinants needed to express the proper spin eigenfunction for a given orbital
occupation.

In the olefin example mentioned above, the two non-orthogonal polarized orbital pairs involve mixing the p and p* orbitals to produce two
left-right polarized orbitals as depicted in Figure 6.1.9:
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Figure 6.1. 9: Left and Right Polarized Orbitals of an Olefin

In this case, one says that the  electron pair undergoes left-right correlation when the  determinant is mixed into the CI
wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the  and  orbitals (actually, one must mix in equal
amounts of , and  orbitals to preserve overall  symmetry in this case), and give rise to angular correlation of the electron pair.
Such a pair of polarized orbitals is shown in Figure 6.1.10.

Figure 6.1.10: Angularly Polarized Orbital Pairs

More specifically, the following four determinants are found to have the largest amplitudes in  for Be:

The fact that the latter three terms possess the same amplitude  is a result of the requirement that a state of  symmetry is desired. It can
be shown that this function is equivalent to:

where .

Here two electrons occupy the  orbital (with opposite,  and  spins), and are thus not being treated in a correlated manner, while the
other pair resides in /  polarized orbitals in a manner that instantaneously correlates their motions. These polarized orbital pairs 

 are formed by combining the  orbital with the  orbital in a ratio determined by .

This ratio  can be shown using perturbation theory to be proportional to the magnitude of the coupling  matrix
element between the two configurations involved and inversely proportional to the energy difference

between these configurations. In general, configurations that have similar Hamiltonian expectation values and that are coupled strongly give
rise to strongly mixed (i.e., with large  ratios) polarized orbital pairs.

II.Later in this Chapter, you will learn how to evaluate Hamiltonian matrix elements between pairs of antisymmetric wavefunctions. If you
are anxious to learn this now, go to the subsection entitled The Slater-Condon Rules and read that before returning here.

In each of the three equivalent terms in the alkaline earth wavefunction, one of the valence electrons moves in a  orbital polarized
in one direction while the other valence electron moves in the  orbital polarized in the opposite direction. For example, the first
term

describes one electron occupying a  polarized orbital while the other electron occupies the  orbital. The electrons thus
reduce their Coulomb repulsion by occupying different regions of space; in the SCF picture , both electrons reside in the same 
region of space. In this particular example, the electrons undergo angular correlation to avoid one another.

The use of doubly excited determinants is thus seen as a mechanism by which  can place electron pairs, which in the single-configuration
picture occupy the same orbital, into different regions of space (i.e., each one into a different member of the polarized orbital pair) thereby
lowering their mutual Coulomb repulsion. Such electron correlation effects are extremely important to include if one expects to achieve
chemically meaningful accuracy (i.e., ± 5 kcal/mole).
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Essential Configuration Interaction 

There are occasions in which the inclusion of two or more determinants in  is essential to obtaining even a qualitatively correct description
of the molecule’s electronic structure. In such cases, we say that we are including essential correlation effects. To illustrate, let us consider
the description of the two electrons in a single covalent bond between two atoms or fragments that we label X and Y. The fragment orbitals
from which the bonding  and antibonding  MOs are formed we will label  and , respectively.

Several spin- and spatial- symmetry adapted 2-electron determinants (i.e., CSFs) can be formed by placing two electrons into the  and 
orbitals. For example, to describe the singlet determinant corresponding to the closed-shell  orbital occupancy, a single Slater determinant

suffices. An analogous expression for the  determinant is given by

Also, the  component of the triplet state having  orbital occupancy can be written as a single Slater determinant:

as can the  component of the triplet state

However, to describe the singlet and  triplet states belonging to the  occupancy, two determinants are needed:

is the singlet and

is the triplet (note, you can obtain this  triplet by applying  to the  triplet). In each case, the spin
quantum number , its z-axis projection , and the  quantum number are given in the conventional  term symbol notation.

As the distance  between the X and Y fragments is changed from near its equilibrium value of  and approaches infinity, the energies of
the  and  orbitals vary in a manner well known to chemists as depicted in Figure 6.1.11 if X and Y are identical.

Figure 6.1.11: Orbital Correlation Diagram Showing Two - Type Orbitals Combining to Form a Bonding and an Antibonding Molecular
Orbital.

If X and Y are not identical, the  and  orbitals still combine to form a bonding  and an antibonding  orbital. The energies of these
orbitals, for R values ranging from near  to , are depicted in Figure 6.1.12 for the case in which X is more electronegative than
Y.
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Figure 6.1.12: Orbital Correlation Diagram For - Type Orbitals in the Heteronuclear Case

The energy variation in these orbital energies gives rise to variations in the energies of the six determinants listed above. As , the
determinants’ energies are difficult to intuit because the  and  orbitals become degenerate (in the homonuclear case) or nearly so (in the 

 case). To pursue this point and arrive at an energy ordering for the determinants that is appropriate to the  region, it is
useful to express each such function in terms of the fragment orbitals  and  that comprise  and . To do so, the LCAO-MO
expressions for  and ,

and

are substituted into the Slater determinant definitions given above. Here  and  are the normalization constants. The parameter  is 1.0
in the homonuclear case and deviates from 1.0 in relation to the  and  orbital energy difference (if  lies below , then ; if 
lies above , ).

Let us examine the  case to keep the analysis as simple as possible. The process of substituting the above expressions for  and 
into the Slater determinants that define the singlet and triplet functions can be illustrated as follows for the  case:

The first two of these atomic-orbital-based Slater determinants (  and ) are called ionic because they describe atomic
orbital occupancies, which are appropriate to the  region that correspond to  and  valence bond structures,
while  and  are called "covalent" because they correspond to  structures.

In similar fashion, the remaining five determinant functions may be expressed in terms of fragment-orbital-based Slater determinants. In so
doing, use is made of the antisymmetry of the Slater determinants (e.g., ), which implies that any determinant in
which two or more spin-orbitals are identical vanishes . The result of decomposing the MO-based determinants
into their fragment-orbital components is as follows:

These decompositions of the six valence determinants into fragment-orbital or valence bond components allow the  energies of
these states to specified. For example, the fact that both  and  contain 50% ionic and 50% covalent structures implies that, as 

, both of their energies will approach the average of the covalent and ionic atomic energies 
. The  energy approaches the purely ionic value  as . The

energies of  and  all approach the purely covalent value  as .

The behaviors of the energies of the six valence determinants as  varies are depicted in Figure 6.1.13 for situations in which the homolytic
bond cleavage is energetically favored (i.e., for which ).
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Figure 6.1. 13: Configuration Correlation Diagram Showing How the Determinants’ Energies Vary With .

It is essential to realize that the energies of the determinants do not represent the energies of the true electronic states. For -values at which
the determinant energies are separated widely, the true state energies are rather well approximated by individual determinant energies; such
is the case near Re for the  state.

However, at large , the situation is very different, and it is in such cases that what we term essential configuration interaction occurs.
Specifically, for the  example, the  and  determinants undergo essential CI coupling to form a pair of states of  symmetry
(the  CSF cannot partake in this CI mixing because it is of ungerade symmetry; the  states can not mix because they are of triplet
spin symmetry). The CI mixing of the  and  determinants is described in terms of a 2x2 secular problem

The diagonal entries are the determinants’ energies depicted in Figure 6.1.13. The off-diagonal coupling matrix elements can be expressed
in terms of an exchange integral between the  and  orbitals:

Later in this Chapter, you will learn how to evaluate Hamiltonian matrix elements between pairs of antisymmetric wavefunctions and to
express them in terms of one- and two-electron integrals. If you are anxious to learn this now, go to the subsection entitled the Slater-
Condon Rules and read that before returning here.

At , where the  and  determinants are degenerate, the two solutions to the above CI matrix eigenvalue problem are:

with respective amplitudes for the  and  CSFs given by

The first solution thus has

which, when decomposed into atomic orbital components, yields

The other root has

So, we see that  and , which both contain 50% ionic and 50% covalent parts, combine to produce  which is purely covalent and 
 which is purely ionic.

The above essential CI mixing of  and  as  qualitatively alters the energy diagrams shown above. Descriptions of the
resulting valence singlet and triplet S states are given in Figure 6.1.14 for homonuclear situations in which covalent products lie below the
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ionic fragments.

Figure 6.1.14: State Correlation Diagram Showing How the Energies of the States, Comprised of Combinations of Determinants, vary with 
.
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