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6.1: Theoretical Treatment of Electronic Structure
In Chapter 5, I introduced you to the strategies that theory uses to interpret experimental data relating to such matters, and how and
why theory can also be used to simulate the behavior of molecules. In carrying out simulations, the Born-Oppenheimer electronic
energy  as a function of the  coordinates of the  atoms in the molecule plays a central role. It is on this landscape that
one searches for stable isomers and transition states, and it is the second derivative (Hessian) matrix of this function that provides
the harmonic vibrational frequencies of such isomers. In the present Chapter, I want to provide you with an introduction to the tools
that we use to solve the electronic Schrödinger equation to generate  and the electronic wave function . In essence,
this treatment will focus on orbitals of atoms and molecules and how we obtain and interpret them.

For an atom, one can approximate the orbitals by using the solutions of the hydrogenic Schrödinger equation discussed in Part 1 of
this text. Although such functions are not proper solutions to the actual -electron Schrödinger equation (believe it or not, no one
has ever solved exactly any such equation for ) of any atom, they can be used as perturbation or variational starting-point
approximations when one may be satisfied with qualitatively accurate answers. In particular, the solutions of this one-electron
hydrogenic problem form the qualitative basis for much of atomic and molecular orbital theory. As discussed in detail in Part 1,
these orbitals are labeled by , , and  quantum numbers for the bound states and by  and  quantum numbers and the energy 
for the continuum states.

Much as the particle-in-a-box orbitals are used to qualitatively describe -electrons in conjugated polyenes or electronic bands in
solids, these so-called hydrogen-like orbitals provide qualitative descriptions of orbitals of atoms with more than a single electron.
By introducing the concept of screening as a way to represent the repulsive interactions among the electrons of an atom, an
effective nuclear charge  can be used in place of  in the hydrogenic  and  formulas to generate approximate atomic
orbitals to be filled by electrons in a many-electron atom. For example, in the crudest approximation of a carbon atom, the two 
electrons experience the full nuclear attraction so  for them, whereas the  and  electrons are screened by the two 
electrons, so  for them. Within this approximation, one then occupies two  orbitals with , two  orbitals with 

 and two  orbitals with  in forming the full six-electron product wave function of the lowest-energy state of carbon

However, such approximate orbitals are not sufficiently accurate to be of use in quantitative simulations of atomic and molecular
structure. In particular, their energies do not properly follow the trends in atomic orbital (AO) energies that are taught in
introductory chemistry classes and that are shown pictorially in Figure 6.1.

Figure 6.1.1: Energies of Atomic Orbitals as Functions of Nuclear Charge for Neutral Atoms.

For example, the relative energies of the  and  orbitals are not adequately described in a model that treats electron repulsion
effects in terms of a simple screening factor. So, now it is time to examine how we can move beyond the screening model and take
the electron repulsion effects, which cause the inter-electronic couplings that render the Schrödinger equation insoluble, into
account in a more reliable manner.

Atomic Units 
The electronic Hamiltonian that appears throughout this text is commonly expressed in the literature and in other texts in so-called
atomic units (aus). In that form, it is written as follows:
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Atomic units are introduced to remove all of the h , e, and me factors from the Schrödinger equation.

To effect the unit transformation that results in the Hamiltonian appearing as above, one notes that the kinetic energy operator
scales as  whereas the Coulomb potentials scale as   and as . So, if each of the Cartesian coordinates of the electrons and
nuclei were expressed as a unit of length  multiplied by a dimensionless length factor, the kinetic energy operator would involve
terms of the form

, and the Coulomb potentials would appear as  and , with the  and  factors
now referring to the dimensionless coordinates. A factor of  (which has units of energy since a_0 has units of length) can then
be removed from the Coulomb and kinetic energies, after which the kinetic energy terms appear as  and the
potential energies appear as  and . Then, choosing  changes the kinetic energy terms into ; as
a result, the entire electronic Hamiltonian takes the form given above in which no , me, or  factors appear. The value of the so-
called Bohr radius  turns out to be 0.529 Å, and the so-called Hartree energy unit , which factors out of He, is
27.21 eV or 627.51 kcal/mol.
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