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2.9: Vibrations of Molecules
This Schrödinger equation forms the basis for our thinking about bond stretching and angle bending vibrations as well as

collective vibrations in solids called phonons.

The radial motion of a diatomic molecule in its lowest ( ) rotational level can be described by the following Schrödinger
equation:

where  is the reduced mass  of the two atoms. If the molecule is rotating, then the above Schrödinger equation has

an additional term  on its left-hand side. Thus, each rotational state (labeled by the rotational quantum number
) has its own vibrational Schrödinger equation and thus its own set of vibrational energy levels and wave functions. It is common

to examine the  vibrational problem and then to use the vibrational levels of this state as approximations to the vibrational
levels of states with non-zero  values (treating the vibration-rotation coupling via perturbation theory). Let us thus focus on the 

 situation.

By substituting  into this equation, one obtains an equation for  in which the differential operators appear to be less

complicated:

This equation is exactly the same as the equation seen earlier in this text for the radial motion of the electron in the hydrogen-like
atoms except that the reduced mass m replaces the electron mass m and the potential  is not the Coulomb potential.

If the vibrational potential is approximated as a quadratic function of the bond displacement  expanded about the
equilibrium bond length  where  has its minimum:

the resulting harmonic-oscillator equation can be solved exactly. Because the potential  grows without bound as  approaches 
or , only bound-state solutions exist for this model problem. That is, the motion is confined by the nature of the potential, so no
continuum states exist in which the two atoms bound together by the potential are dissociated into two separate atoms.

In solving the radial differential equation for this potential, the large-r behavior is first examined. For large-r, the equation reads:

where  is the bond displacement away from equilibrium. Defining  and  as a new scaled radial

coordinate, and realizing that

allows the larger Schrödinger equation to be written as:

which has the solution

The general solution to the radial equation is then expressed as this large-r solution multiplied by a power series in the  variable:
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where the  are coefficients to be determined. Substituting this expression into the full radial equation generates a set of recursion
equations for the   amplitudes. As in the solution of the hydrogen-like radial equation, the series described by these coefficients
is divergent unless the energy  happens to equal specific values. It is this requirement that the wave function not diverge so it can
be normalized that yields energy quantization. The energies of the states that arise by imposing this non-divergence condition are
given by:

and the eigenfunctions are given in terms of the so-called Hermite polynomials  as follows:

where . Within this harmonic approximation to the potential, the vibrational energy levels are evenly spaced:

In experimental data such evenly spaced energy level patterns are seldom seen; most commonly, one finds spacings 
that decrease as the quantum number  increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the Hermite functions  are odd or even functions of  (depending on whether n is odd or even), the wave functions
yn(x) are odd or even. This splitting of the solutions into two distinct classes is an example of the effect of symmetry; in this case,
the symmetry is caused by the symmetry of the harmonic potential with respect to reflection through the origin along the -axis
(i.e., changing  to ). Throughout this text, many symmetries arise; in each case, symmetry properties of the potential cause the
solutions of the Schrödinger equation to be decomposed into various symmetry groupings. Such symmetry decompositions are of
great use because they provide additional quantum numbers (i.e., symmetry labels) by which the wave functions and energies can
be labeled.

The basic idea underlying how such symmetries split the solutions of the Schrödinger equation into different classes relates to the
fact that a symmetry operator (e.g., the reflection plane in the above example) commutes with the Hamiltonian. That is, the
symmetry operator  obeys

So  leaves  unchanged as it acts on  (this allows us to pass  through  in the above equation). Any operator that leaves the
Hamiltonian (i.e., the energy) unchanged is called a symmetry operator.

If you have never learned about how point group symmetry can be used to help simplify the solution of the Schrödinger equation,
this would be a good time to interrupt your reading and go to Chapter 4 and read the material there.

The harmonic oscillator energies and wave functions comprise the simplest reasonable model for vibrational motion. Vibrations of
a polyatomic molecule are often characterized in terms of individual bond-stretching and angle-bending motions, each of which is,
in turn, approximated harmonically. This results in a total vibrational wave function that is written as a product of functions, one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of anharmonicity (i.e., non-uniform energy level
spacings) and lack of bond dissociation, result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as ), the major shortcomings of the harmonic
oscillator picture can be overcome. The so-called Morse potential (see Figure 2.24)
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is often used in this regard. In this form, the potential is zero at , the equilibrium bond length and is equal to  as .
Sometimes, the potential is written as

so it vanishes as  and is equal to  at . The latter form is reflected in Figure 2.24.

Figure 2.24. Morse potential energy as a function of bond length

In the Morse potential function,  is the bond dissociation energy,  is the equilibrium bond length, and  is a constant that
characterizes the steepness of the potential and thus affects the vibrational frequencies. The advantage of using the Morse potential
to improve upon harmonic-oscillator-level predictions is that its energy levels and wave functions are also known exactly. The
energies are given in terms of the parameters of the potential as follows:

where the force constant is given in terms of the Morse potential’s parameters by . The Morse potential supports both
bound states (those lying below the dissociation threshold for which vibration is confined by an outer turning point) and continuum
states lying above the dissociation threshold (for which there is no outer turning point and thus the no spatial confinement). Its

degree of anharmonicity is governed by the ratio of the harmonic energy  to the dissociation energy .

The energy spacing between vibrational levels  and  are given by

These spacings decrease until  reaches the value  at which

after which the series of bound Morse levels ceases to exist (i.e., the Morse potential has only a finite number of bound states) and

the Morse energy level expression shown above should no longer be used. It is also useful to note that, if  becomes too

small (i.e., < 1.0 in the Morse model), the potential may not be deep enough to support any bound levels. It is true that some
attractive potentials do not have a large enough  value to have any bound states, and this is important to keep in mind. So, bound
states are to be expected when there is a potential well (and thus the possibility of inner- and outer- turning points for the classical
motion within this well) but only if this well is deep enough.

The eigenfunctions of the harmonic and Morse potentials display nodal character analogous to what we have seen earlier in the
particle-in-boxes model problems. Namely, as the energy of the vibrational state increases, the number of nodes in the vibrational
wave function also increases. The state having vibrational quantum number  has  nodes. I hope that by now the student is getting
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used to seeing the number of nodes increase as the quantum number and hence the energy grows. As the quantum number  grows,
not only does the wave function have more nodes, but its probability distribution becomes more and more like the classical spatial
probability, as expected. In particular for large- , the quantum and classical probabilities are similar and are large near the outer
turning point where the classical velocity is low. They also have large amplitudes near the inner turning point, but this amplitude is
rather narrow because the Morse potential drops off strongly to the right of this turning point; in contrast, to the left of the outer
turning point, the potential decreases more slowly, so the large amplitudes persist over longer ranges near this turning point.
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