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6.5: Various Approaches to Electron Correlation
There are numerous procedures currently in use for determining the best Born-Oppenheimer electronic wave function that is
usually expressed in the form:

where  is a spin-and space- symmetry-adapted configuration state function (CSF) that consists of one or more determinants 
 combined to produce the desired symmetry. In all such wave functions, there are two kinds of parameters that

need to be determined- the CI coefficients and the LCAO-MO coefficients describing the fIk in terms of the AO basis functions.
The most commonly employed methods used to determine these parameters include:

The CI Method 
In this approach, the LCAO-MO coefficients are determined first usually via a single-configuration HF SCF calculation. The CI
coefficients are subsequently determined by making the expectation value  variationally stationary with  chosen
to be of the form

As with all such linear variational problems, this generates a matrix eigenvalue equation

to be solved for the optimum { } coefficients and for the optimal energy .

The CI wave function is most commonly constructed from spin- and spatial- symmetry adapted combinations of determinants
called configuration state functions (CSFs)  that include:

1. The so-called reference CSF that is the SCF wave function used to generate the molecular orbitals .
2. CSFs generated by carrying out single, double, triple, etc. level excitations (i.e., orbital replacements) relative to the reference

CSF. CI wave functions limited to include contributions through various levels of excitation are denoted S (singly), D (doubly),
SD (singly and doubly), SDT (singly, doubly, and triply) excited.

The orbitals from which electrons are removed can be restricted to focus attention on correlations among certain orbitals. For
example, if excitations out of core orbitals are excluded, one computes a total energy that contains no core correlation energy. The
number of CSFs included in the CI calculation can be large. CI wave functions including 5,000 to 50,000 CSFs are routine, and
functions with one to several billion CSFs are within the realm of practicality.

The need for such large CSF expansions can be appreciated by considering (i) that each electron pair requires at least two CSFs to

form the polarized orbital pairs discussed earlier in this Chapter, (ii) there are of the order of  electron pairs for a

molecule containing  electrons, hence (iii) the number of terms in the CI wave function scales as . For a molecule containing
ten electrons, there could be  terms in the CI expansion. This may be an over estimate of the number of CSFs
needed, but it demonstrates how rapidly the number of CSFs can grow with the number of electrons.

The Hamiltonian matrix elements  between pairs of CSFs are, in practice, evaluated in terms of one- and two- electron
integrals over the molecular orbitals. Prior to forming the  matrix elements, the one- and two- electron integrals, which can be
computed only for the atomic (e.g., STO or GTO) basis, must be transformed to the molecular orbital basis. This transformation
step requires computer resources proportional to the fifth power of the number of basis functions, and thus is one of the more
troublesome steps in most configuration interaction (and most other correlated) calculations.

To transform the two-electron integrals  from this AO basis to the MO basis, one proceeds as

follows:

1. First one utilizes the original AO-based integrals to form a partially transformed set of integrals
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This step requires of the order of  operations.

2. Next one takes the list  and carries out another so-called one-index transformation

3. This list  is then subjected to another one-index transformation to generate 

, after which

4.  is subjected to the fourth one-index transformation to form the final MO-based integral list 

. In total, these four transformation steps require  computer operations.

A variant of the CI method that is sometimes used is called the multi-configurational self-consistent field (MCSCF) method. To
derive the working equations of this approach, one minimizes the expectation value of the Hamiltonian for a trial wave function
consisting of a linear combination of CSFs

In carrying out this minimization process, one varies both the linear { } expansion coefficients and the LCAO-MO coefficients {
} describing those spin-orbitals that appear in any of the CSFs { }. This produces two sets of equations that need to be

solved:

1. A matrix eigenvalue equation

of the same form as arises in the CI method, and

2. equations that look very much like the HF equations

but in which the he matrix element is

Here  replaces the sum  that appears in the HF equations, with  depending on both the LCAO-MO
coefficients { } of the spin-orbitals and on the { } expansion coefficients. These equations are solved through a self-
consistent process in which initial { } coefficients are used to form the matrix and solve for the { } coefficients, after which
the  can be determined and the HF-like equations solved for a new set of { } coefficients, and so on until convergence is
reached.

Perturbation Theory 
This method uses the single-configuration SCF process to determine a set of orbitals { }. Then, with a zeroth-order Hamiltonian
equal to the sum of the  electrons’ Fock operators , perturbation theory is used to determine the CI amplitudes
for the other CSFs. The Møller-Plesset perturbation (MPPT) procedure is a special case in which the above sum of Fock operators
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is used to define . The amplitude for the reference CSF is taken as unity and the other CSFs' amplitudes are determined by using
 as the perturbation. This perturbation is the difference between the true Coulomb interactions among the electrons and the

mean-field approximation to those interactions:

where  and  are the Coulomb and exchange operators defined earlier in this Chapter and the sum over  runs over the  spin-
orbitals that are occupied in the Hartree-Fock wave function that forms the zeroth-order approximation to .

In the MPPT method, once the reference CSF is chosen and the SCF orbitals belonging to this CSF are determined, the wave
function  and energy  are determined in an order-by-order manner as is the case in the RSPT discussed in Chapter 3. In fact,
MPPT is just RSPT with the above fluctuation potential as the perturbation. The perturbation equations determine what CSFs to
include through any particular order. This is one of the primary strengths of this technique; it does not require one to make further
choices, in contrast to the CI treatment where one needs to choose which CSFs to include.

For example, the first-order wave function correction  is:

where the SCF orbital energies are denoted  and  represents a CSF that is doubly excited (  and  are replaced by  and
) relative to the SCF wave function . The denominators  arise from  because each of these

zeroth-order energies is the sum of the orbital energies for all spin-orbitals occupied. The excited CSFs  are the zeroth-order
wave functions other than the reference CSF. Only doubly excited CSFs contribute to the first-order wave function; the fact that the
contributions from singly excited configurations vanish in  is known at the Brillouin theorem.

The Brillouin theorem can be proven by considering Hamiltonian matrix elements coupling the reference CSF  to singly-excited
CSFs Fim. The rules for evaluating all such matrix elements are called Slater-Condon rules and are given later in this Chapter. If
you don’t know them, this would be a good time to go read the subsection on these rules before returning here. From the Slater-
Condon rules, we know that the matrix elements in question are given by

Here, the factor  simply permutes the coordinates  and  to generate the exchange integral. The sum of two electron integrals
on the right-hand side above can be extended to include the terms arising from  because vanishes. As a result, the entire right-
hand side can be seen to reduce to the matrix element of the Fock operator :

The matrix elements vanish because the spin-orbitals are eigenfunctions of  and are orthogonal to each other.

The MPPT energy  is given through second order as in RSPT by

and again only contains contributions from the doubly excited CSFs. Both  and  are expressed in terms of two-electron integrals
 (that are sometimes denoted ) coupling the virtual spin-orbitals  and  to the spin-orbitals from which

electrons were excited  and  as well as the orbital energy differences  accompanying such excitations.
Clearly, major contributions to the correlation energy are made by double excitations into virtual orbitals  with large 

 integrals and small orbital energy gaps . In higher order corrections, contributions from CSFs
that are singly, triply, etc. excited relative to the HF reference function  appear, and additional contributions from the doubly
excited CSFs also enter. The various orders of MPPT are usually denoted MPn (e.g., MP2 means second-order MPPT).
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The Coupled-Cluster Method 

As noted above, when the Hartree-Fock wave function  is used as the zeroth-order starting point in a perturbation expansion, the
first (and presumably most important) corrections to this function are the doubly-excited determinants. In early studies of CI
treatments of electron correlation, it was observed that double excitations had the largest  coefficients (after the SCF wave
function, which has the very largest ). Moreover, in CI studies that included single, double, triple, and quadruple level
excitations relative to the dominant SCF determinant, it was observed that quadruple excitations had the next largest  amplitudes
after the double excitations. And, very importantly, it was observed that the amplitudes  of the quadruply excited CSFs 

  could be very closely approximated as products of the amplitudes   of the doubly excited CSFs  and . This
observation prompted workers to suggest that a more compact and efficient expansion of the correlated wave function might be
realized by writing  as:

where  is the SCF determinant and the operator  appearing in the exponential is taken to be a sum of operators

that create single ( ), double ( ), etc. level excited CSFs when acting on . As I show below, this so-called coupled-cluster (CC)
form for  then has the characteristic that the dominant contributions from quadruple excitations have coefficients nearly equal to
the products of the coefficients of their constituent double excitations.

In any practical calculation, this sum of  operators would be truncated to keep the calculation practical. For example, if
excitation operators higher than  were neglected, then one would use . However, even when  is so truncated,
the resultant  would contain excitations of higher order. For example, using the truncation just introduced, we would have

This function contains single excitations (in ), double excitations (in  and in ), triple excitations (in , , 
, and ), and quadruple excitations in a variety of terms including  and , as well as even higher level

excitations. By the design of this wave function, the quandruple excitations  will have amplitudes given as products of the
amplitudes of the double excitations  just as were found by earlier CI workers to be most important. Hence, in CC theory, we
say that quadruple excitations include unlinked products of double excitations arising from the  product; the quadruple
excitations arising from  would involve linked terms and would have amplitudes that are not products of double-excitation
amplitudes.

After writing  in terms of an exponential operator, one is faced with determining the amplitudes of the various single, double, etc.
excitations generated by the  operator acting on . This is done by writing the Schrödinger equation as:

and then multiplying on the left by  to obtain:

The CC energy is then calculated by multiplying this equation on the left by  and integrating over the coordinates of all the
electrons:

In practice, the combination of operators appearing in this expression is rewritten and dealt with as follows:

this so-called Baker-Campbell-Hausdorf expansion of the exponential operators can be shown truncate exactly after the fourth
power term shown here. So, once the various operators and their amplitudes that comprise  are known,  is computed using the
above expression that involves various powers of the  operators.
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The equations used to find the amplitudes (e.g., those of the  operator , where the  are the amplitudes and 
 are the excitation operators that promote two electrons from  and  into  and ) of the various excitation level are

obtained by multiplying the above Schrödinger equation on the left by an excited determinant of that level and integrating. For
example, the equation for the double-excitations is:

The zero arises from the right-hand side of  and the fact that ; that is, the determinants
are orthonormal. The number of such equations is equal to the number of doubly excited determinants , which is equal to the
number of unknown  amplitudes. So, the above quartic equations must be solved to determine the amplitudes appearing in the
various  operators. Then, as noted above, once these amplitudes are known, the energy  can be computed using the earlier
quartic equation. Having to solve many coupled quartic equations is one of the most severe computational challenges of CC theory.

Clearly, the CC method contains additional complexity as a result of the exponential expansion form of the wave function  and
the resulting coupled quartic equations that need to be solved to determine the  amplitudes. However, it is this way of writing 
that allows us to automatically build in the fact that products of double excitations are the dominant contributors to quadruple
excitations (and  is the dominant component of six-fold excitations, not ). In fact, the CC method is today one of the
most accurate tools we have for calculating molecular electronic energies and wave functions.

The Density Functional Method 
These approaches provide alternatives to the conventional tools of quantum chemistry, which move beyond the single-
configuration picture by adding to the wave function more configurations (i.e., excited determinants) whose amplitudes they each
determine in their own way. As noted earlier, these conventional approaches can lead to a very large number of CSFs in the
correlated wave function, and, as a result, a need for extraordinary computer resources.

The density functional approaches are different. Here one solves a set of orbital-level equations

in which the orbitals { } feel potentials due to the nuclear centers (having charges ), Coulombic interaction with the total
electron density , and a so-called exchange-correlation potential denoted . The particular electronic state for which the
calculation is being performed is specified by forming a corresponding density  that, in turn, is often expressed as a sum of
squares of occupied orbitals multiplied by orbitial occupation numbers. Before going further in describing how DFT calculations
are carried out, let us examine the origins underlying this theory.

The so-called Hohenberg-Kohn theorem states that the ground-state electron density  of the atom or molecule or ion of interest
uniquely determines the potential  in the molecule’s electronic Hamiltonian (i.e., the positions and charges of the system’s
nuclei)

and, because H determines all of the energies and wave functions of the system, the ground-state density  therefore determines
all properties of the system.

One proof of this theorem proceeds as follows:

a.  determines the number of electrons  because .
b. Assume that there are two distinct potentials (aside from an additive constant that simply shifts the zero of total energy) 

and  which, when used in  and , respectively, to solve for a ground state produce ,  and ,  that have
the same one-electron density: .

c. If we think of  as trial variational wave function for the Hamiltonian , we know that 
.

d. Similarly, taking  as a trial function for the  Hamiltonian, one finds that .
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a clear contradiction unless the electronic state of interest is degenerate.

Hence, there cannot be two distinct potentials  and  that give the same non-degenerate ground-state . So, the ground-state
density  uniquely determines  and , and thus H. Furthermore, because the eigenfunctions of  determine all properties of
the ground state, then , in principle, determines all such properties. This means that even the kinetic energy and the electron-
electron interaction energy of the ground-state are determined by . It is easy to see that  gives the
average value of the electron-nuclear (plus any additional one-electron additive potential) interaction in terms of the ground-state
density . However, how are the kinetic energy  and the electron-electron interaction  energy expressed in terms of r?

There is another point of view that I find sheds even more light on why it makes sense that the ground-state electron density 
contains all the information needed to determine all properties. It was shown many years ago, by examining the mathematical
character of the Schrödinger equation, that the ground-state wave function  has certain so-called cusps in the neighborhoods
of the nuclear centers . In particular  must obey

That is, the derivative or slope of the natural logarithm of the true ground-state wave function must be as any of the electrons’
positions approach the nucleus of charge  residing at position . Because the ground-state electron density can be expressed in
terms of the ground-state wave function as

it can be shown that the ground-state density also displays cusps at the nuclear centers as .

where me is the electron mass and e is the unit of charge. So, imagine that you knew the true ground-state density at all points in
space. You could integrate the density over all space

to determine how many electrons the system has. Then, you could explore over all space to find points at which the density had
sharp points characterized by non-zero derivatives in the natural logarithm of the density. The positions  of such points specify
the nuclear centers, and by measuring the slopes in  at each location, one could determine the charges of these nuclei
through

This demonstrates why the ground-state density is all one needs to fully determine the locations and charges of the nuclei as well as
the number of electrons and thus the entire Hamiltonian .

The main difficulty with DFT is that the Hohenberg-Kohn theorem shows the values of , , , etc. are all unique functionals of
the ground-state  (i.e., that they can, in principle, be determined once  is given), but it does not tell us what these functional
relations are.

To see how it might make sense that a property such as the kinetic energy, whose operator  involves derivatives, can
be related to the electron density, consider a simple system of  non-interacting electrons moving in a three-dimensional cubic box
potential. The energy states of such electrons are known to be

where  is the length of the box along the three axes, and , , and  are the quantum numbers describing the state. We can
view  as defining the squared radius of a sphere in three dimensions, and we realize that the density of
quantum states in this space is one state per unit volume in the , ,  space. Because , , and  must be positive integers,
the volume covering all states with energy less than or equal to a specified energy  is 1/8 the volume of the
sphere of radius :

Since there is one state per unit of such volume,  is also the number of states with energy less than or equal to , and is called
the integrated density of states. The number of states  with energy between  and , the density of states, is the
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derivative of :

If we calculate the total energy for these non-interacting  electrons that doubly occupy all states having energies up to the so-
called Fermi energy (i.e., the energy of the highest occupied molecular orbital HOMO), we obtain the ground-state energy:

The total number of electrons  can be expressed as

which can be solved for  in terms of  to then express  in terms of  instead of in terms of :

This gives the total energy, which is also the kinetic energy in this case because the potential energy is zero within the box and

because the electrons are assumed to have no interactions among themselves, in terms of the electron density . It

therefore may be plausible to express kinetic energies in terms of electron densities , but it is still by no means clear how to do
so for real atoms and molecules with electron-nuclear and electron-electron interactions operative.

In one of the earliest DFT models, the Thomas-Fermi theory, the kinetic energy of an atom or molecule is approximated using the
above kind of treatment on a local level. That is, for each volume element in  space, one assumes the expression given above to be
valid, and then one integrates over all  to compute the total kinetic energy:

where the last equality simply defines the  constant. Ignoring the correlation and exchange contributions to the total energy, this 
 is combined with the electron-nuclear  and Coulombic electron-electron potential energies to give the Thomas-Fermi total

energy:

This expression is an example of how  is given as a local density functional approximation (LDA). The term local means that
the energy is given as a functional (i.e., a function of ) which depends only on  at points in space but not on  at more than
one point in space or on spatial derivatives of .

Unfortunately, the Thomas-Fermi energy functional does not produce results that are of sufficiently high accuracy to be of great use
in chemistry. What is missing in this theory are the exchange energy and the electronic correlation energy. Moreover, the kinetic
energy is treated only in the approximate manner described earlier (i.e., for non-interacting electrons within a spatially uniform
potential).

Dirac was able to address the exchange energy for the uniform electron gas (  Coulomb interacting electrons moving in a uniform
positive background charge whose magnitude balances the total charge of the  electrons). If the exact expression for the
exchange energy of the uniform electron gas is applied on a local level, one obtains the commonly used Dirac local density
approximation to the exchange energy:

with . Adding this exchange energy to the Thomas-Fermi total energy  gives the so-called Thomas-
Fermi-Dirac (TFD) energy functional.

Φ

g(E) = = .
dΦ

dE

π

4
( )

8meL
2

ℏ2

3/2

E
−−

√ (6.5.32)
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ρ(x, y, z) =
N

L3

ρ(r)

r

r

[ρ] = ∫ [ρ(r) r = ∫ [ρ(r) r,TTF
3ℏ2

10me

( )
3

8π

2/3

]5/3d3 CF ]5/3d3 (6.5.36)

CF

T V

[ρ] = ∫ [ρ(r) r+∫ V (r)ρ(r) r+ /2 ∫ r ,E0,TF CF ]5/3d3 d3 e2 ρ(r)ρ( )r
′

|r− |r′
d3 d3r′ (6.5.37)
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Because electron densities vary rather strongly spatially near the nuclei, corrections to the above approximations to  and 
 are needed. One of the more commonly used so-called gradient-corrected approximations is that invented by Becke, and

referred to as the Becke88 exchange functional:

where , and  is a parameter chosen so that the above exchange energy can best reproduce the known exchange
energies of specific electronic states of the inert gas atoms (Becke finds  to equal 0.0042). A common gradient correction to the
earlier local kinetic energy functional  is called the Weizsacker correction and is given by

Although the above discussion suggests how one might compute the ground-state energy once the ground-state density  is
given, one still needs to know how to obtain . Kohn and Sham (KS) introduced a set of so-called KS orbitals obeying the
following equation:

where the so-called exchange-correlation potential  could be obtained by functional differentiation if the
exchange-correlation energy functional  were known. KS also showed that the KS orbitals { } could be used to compute
the density  by simply adding up the orbital densities multiplied by orbital occupancies :

(here  or 2 is the occupation number of the orbital  in the state being studied) and that the kinetic energy should be
calculated as

The same investigations of the idealized uniform electron gas that identified the Dirac exchange functional found that the
correlation energy (per electron) could also be written exactly as a function of the electron density  of the system for this model
system, but only in two limiting cases- the high-density limit (large ) and the low-density limit. There still exists no exact
expression for the correlation energy even for the uniform electron gas that is valid at arbitrary values of . Therefore, much work
has been devoted to creating efficient and accurate interpolation formulas connecting the low- and high- density uniform electron
gas. One such expression is

where

is the correlation energy per electron. Here , ,  and , 
, , , and . The parameter  is how the density  enters since  is

equal to ; that is,  is the radius of a sphere whose volume is the effective volume occupied by one electron.

A reasonable approximation to the full  would contain the Dirac (and perhaps gradient corrected) exchange functional plus
the above , but there are many alternative approximations to the exchange-correlation energy functional. Currently, many
workers are doing their best to cook up functionals for the correlation and exchange energies, but no one has yet invented
functionals that are so reliable that most workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows:

T [ρ]
Eex,Dirac

(Becke88) = [ρ] −γ ∫ dr,Eex Eex,Dirac
x2r4/3

1 +6γx (x)sinh−1
(6.5.39)

x = |∇ρ|r−4/3 γ

γ

T [ρ]

δ = ∫ dr.TWeizsacker
1
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ℏ

me

|∇ρ(r)|
2

ρ(r)
(6.5.40)

ρ(r)
ρ

− +V (r) + ∫ d + (r) = ,
ℏ2

2m
∇2 e2 ρ( )r

′

|r− |r′
r′ Uxc ϕJ εjϕj (6.5.41)

U (r) = d [ρ]/dρ(r)xc Exc

[ρ]Exc ϕJ

ρ nj
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nj ϕJ |
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(6.5.42)
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j

nj ϕJ
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ρ
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1. An atomic orbital basis is chosen in terms of which the KS orbitals are to be expanded. Most commonly, this is a Gaussian basis
or a plane-wave basis.

2. Some initial guess is made for the LCAO-KS expansion coefficients  of the occupied KS orbitals.
3. The density is computed as

. Often,  itself is expanded in an atomic orbital basis, which need not be the same as the basis used for the , and the
expansion coefficients of  are computed in terms of those of the this new basis. It is also common to use an atomic orbital
basis to expand , which, together with , is needed to evaluate the exchange-correlation functional’s contribution to .

4. The current iteration’s density is used in the KS equations to determine the Hamiltonian

whose new eigenfunctions { } and eigenvalues { } are found by solving the KS equations.
5. These new  are used to compute a new density, which, in turn, is used to solve a new set of KS equations. This process is

continued until convergence is reached (i.e., until the  used to determine the current iteration’s  are the same  that arise as
solutions on the next iteration.

6. Once the converged  is determined, the energy can be computed using the earlier expression

Energy Difference Methods 
In addition to the methods discussed above for treating the energies and wave functions as solutions to the electronic Schrödinger
equation, there exists a family of tools that allow one to compute energy differences directly rather than by finding the energies of
pairs of states and subsequently subtracting them. Various energy differences can be so computed: differences between two
electronic states of the same molecule (i.e., electronic excitation energies ), differences between energy states of a molecule and
the cation or anion formed by removing or adding an electron (i.e., ionization potentials (IPs) and electron affinities (EAs)). In the
early 1970s, the author developed one such tool for computing EAs (J. Simons, and W. D. Smith, Theory of Electron Affinities of
Small Molecules, J. Chem. Phys., 58, 4899-4907 (1973)) and he called this the equations of motion (EOM) method. Throughout
much of the 1970s and 1980s, his group advanced and applied this tool to their studies of molecular EAs and electron-molecule
interactions.

Because of space limitations, we will not be able to elaborate much in great detail on these methods. However, it is important to
stress that:

1. These so-called EOM or Greens function or propagator methods utilize essentially the same input information (e.g., atomic
orbital basis sets) and perform many of the same computational steps (e.g., evaluation of one- and two- electron integrals,
formation of a set of mean-field molecular orbitals, transformation of integrals to the MO basis, etc.) as do the other techniques
discussed earlier.

2. These methods are now rather routinely used when , IP, or EA information is sought.

The basic ideas underlying most if not all of the energy-difference methods are:

1. One forms a reference wave function  (this can be of the SCF, MPn, CI, CC, DFT, etc. variety); the energy differences are
computed relative to the energy of this function.

2. One expresses the final-state wave function  (i.e., that describing the excited, cation, or anion state) in terms of an operator 
acting on the reference : . Clearly, the  operator must be one that removes or adds an electron when one is
attempting to compute IPs or EAs, respectively.

3. One writes equations which  and  are expected to obey. For example, in the early development of these methods, the
Schrödinger equation itself was assumed to be obeyed, so  and  are the two equations.

4. One combines  with the equations that  and  obey to obtain an equation that  must obey. In the above example,
one (a) uses  in the Schrödinger equation for , (b) allows  to act from the left on the Schrödinger equation for ,

: =Cj,a ϕJ ∑a Cj,aχa

ρ(r) = | (r)∑
j

nj ϕJ |2 (6.5.46)
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and (c) subtracts the resulting two equations to achieve , or, in commutator form 
.

5. One can, for example, express  in terms of a superposition of configurations  whose amplitudes  have been
determined from a CI or MPn calculation and express  in terms of operators { } that cause single-, double-, etc. level
excitations (for the IP (EA) cases,  is given in terms of operators that remove (add), remove and singly excite (add and singly
excite, etc.) electrons): .

6. Substituting the expansions for  and for  into the equation of motion (EOM)

, and then projecting the resulting equation on the left against a set of functions (e.g., { }) gives a
matrix eigenvalue-eigenvector equation

to be solved for the  operator coefficients and the excitation (or IP or EA) energies . Such are the working equations of the
EOM (or Greens function or propagator) methods.

In recent years, these methods have been greatly expanded and have reached a degree of reliability where they now offer some of
the most accurate tools for studying excited and ionized states. In particular, the use of time dependent variational principles have
allowed a much more rigorous development of equations for energy differences and non-linear response properties. In addition, the
extension of the EOM theory to include coupled-cluster reference functions now allows one to compute excitation and ionization
energies using some of the most accurate ab initio tools.

6.5: Various Approaches to Electron Correlation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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