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6.2: Orbitals

Hartree Description 

The energies and wave functions within the most commonly used theories of atomic structure are assumed to arise as solutions of a
Schrödinger equation whose Hamiltonian  possess three kinds of energies:

1. Kinetic energy, whose average value is computed by taking the expectation value of the kinetic energy operator  with

respect to any particular solution  to the Schrödinger equation:

2. Coulombic attraction energy with the nucleus of charge :

3. Coulomb repulsion energies with all of the  other electrons, which are assumed to occupy other atomic orbitals (AOs)
denoted , with this energy computed as

The Dirac notation  is used to represent the six-dimensional Coulomb integral

that describes the Coulomb repulsion between the charge density  for the electron in  and the charge density 
for the electron in . Of course, the sum over  must be limited to exclude  to avoid counting a “self-interaction” of the
electron in orbital  with itself.

The total energy  of the orbital , is the sum of the above three contributions:

This treatment of the electrons and their orbitals is referred to as the Hartree-level of theory. As stated above, when screened
hydrogenic AOs are used to approximate the  and  orbitals, the resultant  values do not produce accurate predictions. For
example, the negative of  should approximate the ionization energy for removal of an electron from the AO . Such ionization
potentials (IP s) can be measured, and the measured values do not agree well with the theoretical values when a crude screening
approximation is made for the AO s.

LCAO-Expansion 

To improve upon the use of screened hydrogenic AOs, it is most common to approximate each of the Hartree AOs { } as a linear
combination of so-called basis AOs { }:

using what is termed the linear-combination-of-atomic-orbitals (LCAO) expansion. In this equation, the expansion coefficients {
} are the variables that are to be determined by solving the Schrödinger equation

After substituting the LCAO expansion for  into this Schrödinger equation, multiplying on the left by one of the basis AOs ,
and then integrating over the coordinates of the electron in , one obtains
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This is a matrix eigenvalue equation in which the  and { } appear as eigenvalues and eigenvectors. The matrices 
and  are called the Hamiltonian and overlap matrices, respectively. An explicit expression for the former is obtained by
introducing the earlier definition of he:

An important thing to notice about the form of the matrix Hartree equations is that to compute the Hamiltonian matrix, one must
know the LCAO coefficients { } of the orbitals which the electrons occupy. On the other hand, these LCAO coefficients are
supposed to be found by solving the Hartree matrix eigenvalue equations. This paradox leads to the need to solve these equations
iteratively in a so-called self-consistent field (SCF) technique. In the SCF process, one inputs an initial approximation to the {

} coefficients. This then allows one to form the Hamiltonian matrix defined above. The Hartree matrix equations

are then solved for new { } coefficients and for the orbital energies { }. The new LCAO coefficients of those orbitals that are
occupied are then used to form a new Hamiltonian matrix, after which the Hartree equations are again solved for another
generation of LCAO coefficients and orbital energies. This process is continued until the orbital energies and LCAO coefficients
obtained in successive iterations do not differ appreciably. Upon such convergence, one says that a self-consistent field has been
realized because the { } coefficients are used to form a Coulomb field potential that details the electron-electron interactions.

Basis Sets 

Slater-type orbitals and Gaussian-type orbitals 

As noted above, it is possible to use the screened hydrogenic orbitals as the { }. However, much effort has been expended at
developing alternative sets of functions to use as basis orbitals. The result of this effort has been to produce two kinds of functions
that currently are widely used. The basis orbitals commonly used in the LCAO process fall into two primary classes:

1. Slater-type orbitals (STOs)

are characterized by quantum numbers , , and  and exponents (which characterize the orbital’s radial size) . The symbol 
 denotes the normalization constant.

2. Cartesian Gaussian-type orbitals (GTOs)

are characterized by quantum numbers , , and , which detail the angular shape and direction of the orbital, and exponents 
which govern the radial size.

For both types of AOs, the coordinates , , and  refer to the position of the electron relative to a set of axes attached to the
nucleus on which the basis orbital is located. Note that Slater-type orbitals (STO's) are similar to hydrogenic orbitals in the region
close to the nucleus. Specifically, they have a non-zero slope near the nucleus

In contrast, GTOs, have zero slope near  because
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We say that STOs display a cusp at  that is characteristic of the hydrogenic solutions, whereas GTOs do not. Although STOs
have the proper cusp behavior near nuclei, they are used primarily for atomic and linear-molecule calculations because the multi-
center integrals

which arise in polyatomic-molecule calculations (we will discuss these integrals later in this Chapter) cannot efficiently be
evaluated when STOs are employed. In contrast, such integrals can routinely be computed when GTOs are used. This fundamental
advantage of GTOs has lead to the dominance of these functions in molecular quantum chemistry.

To overcome the primary weakness of GTO functions (i.e., their radial derivatives vanish at the nucleus), it is common to combine
two, three, or more GTOs, with combination coefficients which are fixed and not treated as LCAO parameters, into new functions
called contracted GTOs (CGTOs). Typically, a series of radially tight, medium, and loose GTOs are multiplied by contraction
coefficients and summed to produce a CGTO that approximates the proper cusp at the nuclear center (although no such
combination of GTOs can exactly produce such a cusp because each GTO has zero slope at .

Although most calculations on molecules are now performed using Gaussian orbitals, it should be noted that other basis sets can be
used as long as they span enough of the regions of space (radial and angular) where significant electron density resides. In fact, it is
possible to use plane wave orbitals of the form

where  is a normalization constant and , , and  are quantum numbers detailing the momenta or wavelength of the orbital
along the , , and  Cartesian directions. The advantage to using such simple orbitals is that the integrals one must perform are
much easier to handle with such functions. The disadvantage is that one must use many such functions to accurately describe
sharply peaked charge distributions of, for example, inner-shell core orbitals while still retaining enough flexibility to also describe
the much smoother electron density in the valence regions. Much effort has been devoted to developing and tabulating in widely
available locations sets of STO or GTO basis orbitals for main-group elements and transition metals. This ongoing effort is aimed
at providing standard basis set libraries which:

1. Yield predictable chemical accuracy in the resultant energies.
2. Are cost effective to use in practical calculations.
3. Are relatively transferable so that a given atom's basis is flexible enough to be used for that atom in various bonding

environments (e.g., hybridization and degree of ionization).

Fundamental Core and Valence Basis 

In constructing an atomic orbital basis, one can choose from among several classes of functions. First, the size and nature of the
primary core and valence basis must be specified. Within this category, the following choices are common:

1. A minimal basis in which the number of CGTO orbitals is equal to the number of core and valence atomic orbitals in the atom.
2. A double-zeta (DZ) basis in which twice as many CGTOs are used as there are core and valence atomic orbitals. The use of

more basis functions is motivated by a desire to provide additional variational flexibility so the LCAO process can generate
molecular orbitals of variable diffuseness as the local electronegativity of the atom varies. A valence double-zeta (VDZ) basis
has only one CGTO to represent the inner-shell orbitals, but uses two sets of CGTOs to describe the valence orbitals.

3. A triple-zeta (TZ) basis in which three times as many CGTOs are used as the number of core and valence atomic orbitals (of
course, there are quadruple-zeta and higher-zeta bases also). Moreover, there are VTZ bases that treat the inner-shell orbitals
with one CGTO and the valence orbitals with three CGTOs.

Optimization of the orbital exponents (z’s or a's) and the GTO-to-CGTO contraction coefficients for the kind of bases described
above has undergone considerable growth in recent years. The theory group at the Pacific Northwest National Labs (PNNL) offer a
world wide web site from which one can find (and even download in a form prepared for input to any of several commonly used
electronic structure codes) a wide variety of Gaussian atomic basis sets. This site can be accessed here. Professor Kirk Peterson at
Washington State University is involved in the PNNL basis set development project, but he also hosts his own basis set site.

Polarization Functions 

One usually enhances any core and valence basis set with a set of so-called polarization functions. They are functions of one higher
angular momentum than appears in the atom's valence orbital space (e.g., -functions for C, N, and O and -functions for H), and
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they have exponents (  or ) which cause their radial sizes to be similar to the sizes of the valence orbitals ( i.e., the polarization 
orbitals of the H atom are similar in size to the  orbital rather than to the  valence orbital of hydrogen). Thus, they are not
orbitals which describe the atom's valence orbital with one higher l-value; such higher-l valence orbitals would be radially more
diffuse.

A primary purpose of polarization functions is to give additional angular flexibility to the LCAO process in forming bonding
orbitals between pairs of valence atomic orbitals. This is illustrated in Figure 6.1.2 where polarization dp orbitals on C and O are
seen to contribute to formation of the bonding  orbital of a carbonyl group by allowing polarization of the carbon atom's  orbital
toward the right and of the oxygen atom's  orbital toward the left.

Figure 6.1.2 Oxygen and Carbon Form a  Bond That Uses the Polarization Functions on Each Atom

Polarization functions are essential in strained ring compounds such as cyclopropane because they provide the angular flexibility
needed to direct the electron density into regions between bonded atoms, but they are also important in unstrained compounds
when high accuracy is required.

Diffuse Functions 

When dealing with anions or Rydberg states, one must further augment the AO basis set by adding so-called diffuse basis orbitals.
The valence and polarization functions described above do not provide enough radial flexibility to adequately describe either of
these cases. The PNNL web site data base cited above offers a good source for obtaining diffuse functions appropriate to a variety
of atoms as does the site of Prof. Kirk Peterson.

Once one has specified an atomic orbital basis for each atom in the molecule, the LCAO-MO procedure can be used to determine
the  coefficients that describe the occupied and virtual (i.e., unoccupied) orbitals. It is important to keep in mind that the basis
orbitals are not themselves the SCF orbitals of the isolated atoms; even the proper atomic orbitals are combinations (with atomic
values for the  coefficients) of the basis functions. The LCAO-MO-SCF process itself determines the magnitudes and signs of
the . In particular, it is alternations in the signs of these coefficients allow radial nodes to form.
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