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2.8: Rotations of Molecules

Rotational Motion For Rigid Diatomic and Linear Polyatomic Molecules 

This Schrödinger equation relates to the rotation of diatomic and linear polyatomic molecules. It also arises when treating the
angular motions of electrons in any spherically symmetric potential.

A diatomic molecule with fixed bond length  rotating in the absence of any external potential is described by the following
Schrödinger equation:

or

where  is the square of the total angular momentum operator  expressed in polar coordinates above. The angles 
and  describe the orientation of the diatomic molecule's axis relative to a laboratory-fixed coordinate system, and  is the reduced

mass of the diatomic molecule . The differential operators can be seen to be exactly the same as those that arose in

the hydrogen-like-atom case discussed earlier in this Chapter. Therefore, the same spherical harmonics that served as the angular
parts of the wave function in the hydrogen-atom case now serve as the entire wave function for the so-called rigid rotor: 

. These are exactly the same functions as we plotted earlier when we graphed the , , and 
 orbitals. The energy eigenvalues corresponding to each such eigenfunction are given as:

and are independent of . Thus each energy level is labeled by  and is -fold degenerate (because  ranges from  to 
). Again, this is just like we saw when we looked at the hydrogen orbitals; the p orbitals are 3-fold degenerate and the d orbitals

are 5-fold degenerate. The so-called rotational constant  (defined as ) depends on the molecule's bond length and reduced

mass. Spacings between successive rotational levels (which are of spectroscopic relevance because, as shown in Chapter 6, angular
momentum selection rules often restrict the changes  in  that can occur upon photon absorption to 1,0, and -1) are given by

These energy spacings are of relevance to microwave spectroscopy which probes the rotational energy levels of molecules. In fact,
microwave spectroscopy offers the most direct way to determine molecular rotational constants and hence molecular bond lengths.

The rigid rotor provides the most commonly employed approximation to the rotational energies and wave functions of linear
molecules. As presented above, the model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise to
changes in , which are then reflected in changes in the rotational energy levels (i.e., there are different  values for different
vibrational levels). The coupling between rotational and vibrational motion gives rise to rotational  constants that depend on
vibrational state as well as dynamical couplings, called centrifugal distortions, which cause the total ro-vibrational energy of the
molecule to depend on rotational and vibrational quantum numbers in a non-separable manner.

Within this rigid rotor model, the absorption spectrum of a rigid diatomic molecule should display a series of peaks, each of which
corresponds to a specific  transition. The energies at which these peaks occur should grow linearly with  as shown
above. An example of such a progression of rotational lines is shown in the Figure 2.23.
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Figure 2.23. Typical rotational absorption profile showing intensity vs.  value of the absorbing level

The energies at which the rotational transitions occur appear to fit the  formula rather well. The intensities of
transitions from level  to level  vary strongly with  primarily because the population of molecules in the absorbing level
varies with . These populations  are given, when the system is at equilibrium at temperature , in terms of the degeneracy (

) of the Jth level and the energy of this level  by the Boltzmann formula:

where  is the rotational partition function:

For low values of , the degeneracy is low and the  factor is near unity. As  increases, the degeneracy
grows linearly but the  factor decreases more rapidly. As a result, there is a value of , given by taking the
derivative of  with respect to  and setting it equal to zero,

at which the intensity of the rotational transition is expected to reach its maximum. This behavior is clearly displayed in the above
figure.

The eigenfunctions belonging to these energy levels are the spherical harmonics  which are normalized according to

As noted above, these functions are identical to those that appear in the solution of the angular part of Hydrogenic atoms. The
above energy levels and eigenfunctions also apply to the rotation of rigid linear polyatomic molecules; the only difference is that
the moment of inertia I entering into the rotational energy expression, which is  for a diatomic, is given by

where ma is the mass of the  atom and  is its distance from the center of mass of the molecule to this atom.

Rotational Motions of Rigid Non-Linear Molecules 

The Rotational Kinetic Energy 

The classical rotational kinetic energy for a rigid polyatomic molecule is

where the  are the three principal moments of inertia of the molecule (the eigenvalues of the moment of inertia
tensor). This tensor has elements in a Cartesian coordinate system ( ), whose origin is located at the center of
mass of the molecule, that can be computed as:
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As discussed in more detail in R. N. Zare, Angular Momentum, John Wiley, New York (1988), the components of the
corresponding quantum mechanical angular momentum operators along the three principal axes are:

The angles , , and  are the Euler angles needed to specify the orientation of the rigid molecule relative to a laboratory-fixed
coordinate system. The corresponding square of the total angular momentum operator  can be obtained as

and the component along the lab - fixed  axis  is  as we saw much earlier in this text.

The Eigenfunctions and Eigenvalues for Special Cases 

Spherical Tops 

When the three principal moment of inertia values are identical, the molecule is termed a spherical top. In this case, the total
rotational energy can be expressed in terms of the total angular momentum operator 

As a result, the eigenfunctions of  are those of  and  as well as  both of which commute with  and with one another.
 is the component of  along the lab-fixed -axis and commutes with  because  and  act on

different angles. The energies associated with such eigenfunctions are

for all  (i.e.,  quantum numbers) ranging from  to  in unit steps and for all  (i.e.,  quantum numbers) ranging from 
 to . Each energy level is therefore  degenerate because there are  possible  values and  possible 

values for each .

The eigenfunctions  of ,  and  , are given in terms of the set of so-called rotation matrices :

which obey

These  functions are proportional to the spherical harmonics  multiplied by , which reflects its c-
dependence.

= − (for K ≠ ).IK,K ′ ∑
j

mjRK,jR ,jK ′ K ′ (2.8.12)

= −iℏ cosχ[cotθ − ]− iℏ sinχJa

∂

∂χ

1

sinθ

∂

∂ϕ

∂

∂θ
(2.8.13)

= iℏ sinχ[cotθ − ]− iℏ cosχJb

∂

∂χ

1

sinθ

∂

∂ϕ

∂

∂θ
(2.8.14)

= −iℏ .Jc

∂

∂χ
(2.8.15)

θ ϕ χ

J
2

= + +J
2

J
2
a J

2
b J

2
c (2.8.16)

= − − cotθ + [ + −2 cosθ ] ,ℏ2 ∂2

∂θ2
ℏ2 ∂

∂θ
ℏ2 1

θsin2

∂2

∂ϕ2

∂2

∂χ2

∂2

∂ϕ∂χ
(2.8.17)

Z JZ −iℏ∂/∂ϕ

J
2

= .Hrot
J

2

2I
(2.8.18)

Hrot J
2 Ja JZ J

2

JZ J Z Ja = −iℏ∂/∂ϕJZ = −iℏ∂/∂χJa

E(J,K,M) = ,
 J(J +1)ℏ2

2I 2
(2.8.19)

K Ja −J J M JZ
−J J (2J +1)2 2J +1 K 2J +1 M

J

|J,M ,K⟩ J
2 JZ Ja DJ,M,K

|J,M ,K⟩ = (θ,ϕ,χ)
2J +1

8π2

− −−−−−
√ D∗

J,M,K (2.8.20)

|J,M ,K⟩ = J(J +1)|J,M ,K⟩,J
2 ℏ2 (2.8.21)

|J,M ,K⟩ = ℏK|J,M ,K⟩,Ja (2.8.22)

|J,M ,K⟩ = ℏM |J,M ,K⟩.JZ (2.8.23)

DJ,M,K (θ,ϕ)YJ,M exp(iKχ)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17182?pdf


2.8.4 https://chem.libretexts.org/@go/page/17182

Symmetric Tops 

Molecules for which two of the three principal moments of inertia are equal are called symmetric tops. Those for which the unique
moment of inertia is smaller than the other two are termed prolate symmetric tops; if the unique moment of inertia is larger than the
others, the molecule is an oblate symmetric top. An American football is prolate, and a Frisbee is oblate.

Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can be written in terms of the total rotational angular
momentum operator  and the component of angular momentum along the axis with the unique principal moment of inertia:

Here, the moment of inertia I denotes that moment that is common to two directions; that is, I is the non-unique moment of inertia.
As a result, the eigenfunctions of  are those of  and  or  (and of ), and the corresponding energy levels are:

for prolate tops

for oblate tops, again for  and  (i.e.,  or  and  quantum numbers, respectively) ranging from   to  in unit steps.
Since the energy now depends on  , these levels are only    degenerate due to the   different  values that arise for
each  value. Notice that for prolate tops, because  is smaller than  , the energies increase with increasing  for given . In
contrast, for oblate tops, since  is larger than , the energies decrease with  for given . The eigenfunctions  are the
same rotation matrix functions as arise for the spherical-top case, so they do not require any further discussion at this time.

iii. Asymmetric Tops 

The rotational eigenfunctions and energy levels of a molecule for which all three principal moments of inertia are distinct (a so-
called asymmetric top) cannot analytically be expressed in terms of the angular momentum eigenstates and the  and 
quantum numbers. In fact, no one has ever solved the corresponding Schrödinger equation for this case. However, given the three
principal moments of inertia , , and , a matrix representation of each of the three contributions to the rotational Hamiltonian

can be formed within a basis set of the { } rotation-matrix functions discussed earlier. This matrix will not be diagonal
because the  functions are not eigenfunctions of the asymmetric top . However, the matrix can be formed in this
basis and subsequently brought to diagonal form by finding its eigenvectors { } and its eigenvalues { }. The vector
coefficients express the asymmetric top eigenstates as

Because the total angular momentum  still commutes with , each such eigenstate will contain only one  value, and hence 
 can also be labeled by a  quantum number:

To form the only non-zero matrix elements of  within the  basis, one can use the following properties of the
rotation-matrix functions (see, for example, R. N. Zare, Angular Momentum, John Wiley, New York (1988)):
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Each of the elements of , , and  must, of course, be multiplied, respectively, by ,  , and   and summed together

to form the matrix representation of . The diagonalization of this matrix then provides the asymmetric top energies and wave
functions.
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