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7.2: Monte Carlo Evaluation of Properties
A tool that has proven extremely powerful in statistical mechanics since computers became fast enough to permit simulations of
complex systems is the Monte Carlo (MC) method. This method allows one to evaluate the integrations appearing in the classical
partition function described above by generating a sequence of configurations (i.e., locations of all of the molecules in the system
as well as of all the internal coordinates of these molecules) and assigning a weighting factor to these configurations. By
introducing an especially efficient way to generate configurations that have high weighting, the MC method allows us to simulate
extremely complex systems that may contain millions of molecules.

To appreciate why it is useful to have a tool such as MC, let’s consider how one might write a computer program to evaluate the
classical partition function

For a system consisting of  Ar atoms in a box of volume  at temperature T. The classical Hamiltonian  consists of a sum
of kinetic and inter-atomic potential energies

The integration over the  momentum variables can be carried out analytically and allows  to be written as

The contribution to  provided by the integral over the coordinates is often called the configurational partition function

If the density of the  Ar atoms is high, as in a liquid or solid state, the potential  will depend on the  coordinates of the Ar
atoms in a manner that would not allow substantial further approximations to be made. One would thus be faced with evaluating an
integral over  spatial coordinates of a function that depends on all of these coordinates. If one were to discretize each of the 
coordinate axes using say  points along each axis, the numerical evaluation of this integral as a sum over the  coordinates
would require computational effort scaling as K3N. Even for 10 Ar atoms with each axis having  = 10 points, this is of the order
of 1030 computer operations. Clearly, such a straightforward evaluation of this classical integral would be foolish to undertake.

The MC procedure allows one to evaluate such high-dimensional integrals by

1. not dividing each of the  axes into  discrete points, but rather
2. selecting values of  for which the integrand  is non-negligible, while also
3. avoiding values of  for which the integrand  is small enough to neglect.

By then summing over only values of  that meet these criteria, the MC process can estimate the integral. Of course,
the magic lies in how one designs a rigorous and computationally efficient algorithm for selecting those  that meet
the criteria.

To illustrate how the MC process works, let us consider carrying out a MC simulation representative of liquid water at some
density r and temperature T. One begins by placing  water molecules in a box of volume  chosen such that  reproduces
the specified density. To effect the MC process, we must assume that the total (intramolecular and intermolecular) potential energy 

 of these  water molecules can be computed for any arrangement of the  molecules within the box and for any values of the
internal bond lengths and angles of the water molecules. Notice that, as we showed above when considering the Ar example, 
does not include the kinetic energy of the molecules; it is only the potential energy. Often, this energy  is expressed as a sum of
intra-molecular bond-stretching and bending contributions, one for each molecule, plus a pair-wise additive intermolecular
potential:

Q = ∫ exp(−H(q, p)/kT )dq dp
h−NM

N !
(7.2.1)

N V H(q, p)

H(p, q) = +V (q)∑
i=1

N p2
i

2m
(7.2.2)

3N Q

Q = ∫ exp[− ]d d ⋯ d
1

N !
( )

2πmkT

ℏ2

3N/2 V ( , , ⋯ , )q1 q2 q3N

kT
q1 q2 q3N−1 (7.2.3)

Q

= ∫ exp[− ]d d ⋯ dQconfig

V ( , , ⋯ , )q1 q2 q3N

kT
q1 q2 q3N−1 (7.2.4)

N V 3N

3N 3N

K 3N

K

3N K

, , ⋯q1 q2 q3N exp(−V /kT )

, , ⋯q1 q2 q3N exp(−V /kT )

, , ⋯q1 q2 q3N

, , ⋯q1 q2 q3N

N V N/V

V N N

V

V

V = + ,∑
J

V(internal)J ∑
J,K

V(intermolecular)J,K (7.2.5)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11596?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Theoretical_Chemistry_(Simons)/07%3A_Statistical_Mechanics/7.02%3A_Monte_Carlo_Evaluation_of_Properties


7.2.2 https://chem.libretexts.org/@go/page/11596

although the MC process does not require that one employ such a decomposition; the energy  could be computed in other ways, if
appropriate. For example,  might be evaluated as the Born-Oppenheimer energy if an ab initio electronic structure calculation on
the full -molecule system were feasible. The MC process does not depend on how  is computed, but, most commonly, it is
evaluated as shown above.

Metropolis Monte Carlo 

In each step of the MC process, this potential energy  is evaluated for the current positions of the  water molecules. In its most
common and straightforward implementation known as the Metropolis Monte-Carlo process, a single water molecule is then
chosen at random and one of its internal (bond lengths or angle) or external (position or orientation) coordinates is selected at
random. This one coordinate (q) is then altered by a small amount ( ) and the potential energy  is evaluated at the
new configuration ( ). The amount  by which coordinates are varied is usually chosen to make the fraction of MC steps that
are accepted (by following the procedure detailed below) approximately 50%. This has been shown to optimize the performance of
the MC algorithm.

In implementing the MC process, it is usually important to consider carefully how one defines the coordinates  that will be used to
generate the MC steps. For example, in the case of  Ar atoms discussed earlier, it might be acceptable to use the  Cartesian
coordinates of the  atoms. However, for the water example, it would be very inefficient to employ the  Cartesian coordinates
of the  water molecules. Displacement of, for example, one of the  atoms along the x-axis while keeping all other coordinates
fixed would alter the intramolecular O-H bond energy and the H-O-H bending energy as well as the intermolecular hydrogen
bonding energies to neighboring water molecules. The intramolecular energy changes would likely be far in excess of  unless a
very small coordinate change  were employed. Because it is important to the efficiency of the MC process to make displacements

 that produce ca. 50% acceptance, it is better, for the water case, to make use of coordinates such as the center of mass and
orientation coordinates of the water molecules (for which larger displacements produce energy changes within a few ) and
smaller displacements of the O-H stretching and H-O-H bending coordinates (to keep the energy change within a few ).

Another point to make about how the MC process is often used is that, when the inter-molecular energy is pair wise additive,
evaluation of the energy change  accompanying the change in  requires computational effort that is
proportional to the number  of molecules in the system because only those factors , with  or  equal to the
single molecule that is displaced need be computed. This is why pair wise additive forms for  are often employed.

Let us now return to how the MC process is implemented. If the energy change  is negative (i.e., if the potential energy is
lowered by the coordinate displacement), the change in coordinate  is allowed to occur and the resulting new configuration is
counted among the MC-accepted configurations. On the other hand, if  is positive, the move from  to  is not simply
rejected (to do so would produce an algorithm directed toward finding a minimum on the energy landscape, which is not the goal).
Instead, the quantity  is used to compute the probability for accepting this energy-increasing move. In
particular, a random number between, for example, 0.000 and 1.000 is selected. If the random number is greater than  (expressed
in the same decimal format), then the move is rejected. If the random number is less than , the move is accepted and the new
location is included among the set of MC-accepted configurations. Then, new water molecule and its internal or external coordinate
are chosen at random and the entire process is repeated.

In this manner, one generates a sequence of MC-accepted moves representing a series of configurations for the system of  water
molecules. Sometimes this series of configurations is called a Monte Carlo trajectory, but it is important to realize that there is no
dynamics or time information in this series. This set of configurations has been shown to be properly representative of the
geometries that the system will experience as it moves around at equilibrium at the specified temperature  (n.b.,  is the only way
that information about the molecules' kinetic energy enters the MC process), but no time or dynamical attributes are contained in it.

As the series of accepted steps is generated, one can keep track of various geometrical and energetic data for each accepted
configuration. For example, one can monitor the distances R among all pairs of oxygen atoms in the water system being discussed
and then average this data over all of the accepted steps to generate an oxygen-oxygen radial distribution function  as shown
in Figure 7.3. Alternatively, one might accumulate the intermolecular interaction energies between pairs of water molecules and
average this over all accepted configurations to extract the cohesive energy of the liquid water.
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Figure 7.3. Radial distribution functions between pairs of Oxygen atoms in H2O at three different temperatures.

The MC procedure also allows us to compute the equilibrium average of any property  that depends on the coordinates of the
 molecules. Such an average would be written in terms of the normalized coordinate probability distribution function  as:

The denominator in the definition of  is, of course, proportional to the coordinate-contribution to the partition function . In
the MC process, this average is computed by forming the following sum over the M MC-accepted configurations :

In most MC simulations, millions of accepted steps contribute to the above averages. At first glance, it may seem that such a large
number of steps represent an extreme computational burden. However, recall that straightforward discretization of the  axes
produced a result whose effort scaled as , which is unfeasible even for small numbers of molecules

So, why do MC simulations work when the straightforward way fails? That is, how can one handle thousands or millions of
coordinates when the above analysis would suggest that performing an integral over so many coordinates would require 
computations? The main thing to understand is that the -site discretization of the  coordinates is a stupid way to perform the
above integral because there are many (in fact, most) coordinate values where the value of the quantity A whose average one wants
multiplied by  is negligible. On the other hand, the MC algorithm is designed to select (as accepted steps) those
coordinates for which  is non-negligible. So, it avoids configurations that are stupid and focuses on those for which the
probability factor is largest. This is why the MC method works!

The standard Metropolis variant of the MC procedure was described above where its rules for accepting or rejecting trial coordinate
displacements  were given. There are several other ways of defining rules for accepting or rejecting trial MC coordinate
displacements, some of which involve using information about the forces acting on the coordinates, all of which can be shown to
generate a series of MC-accepted configurations consistent with an equilibrium system. The book Computer Simulations of
Liquids, M. P. Allen and D. J. Tildesley, Oxford U. Press, New York (1997) provides good descriptions of these alternatives to the
Metropolis MC method, so I will not go further into these approaches here.

Umbrella Sampling 

It turns out that the MC procedure as outlined above is a highly efficient method for computing multidimensional integrals of the
form

where  is a normalized (positive) probability distribution and  is any property that depends on the multidimensional
variable q.

There are, however, cases where this conventional MC approach needs to be modified by using so-called umbrella sampling. To
illustrate how this is done and why it is needed, suppose that one wanted to use the MC process to compute an average, with 

 as the weighting factor, of a function  that is large whenever two or more molecules have high (i.e., repulsive)
intermolecular potentials. For example, one could have
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Such a function could, for example, be used to monitor when pairs of molecules, with center-of-mass coordinates RJ and RI,
approach closely enough to undergo a reaction that requires them to surmount a high inter-molecular barrier.

The problem with using conventional MC methods to compute

in such cases is that

1. i.  favors those coordinates for which the total potential energy  is low. So, coordinates with high 

 are very infrequently accepted.
2. ii. However,  is designed to identify events in which pairs of molecules approach closely and thus have high  values.

So, there is a competition between  and  that renders the MC procedure ineffective in such cases because the average one
wants to compute involves the product  which is small for most values of q.

What is done to overcome this competition is to introduce a so-called umbrella weighting function  that

1. i. attains it largest values where  is large, and
2. ii. is positive and takes on values between 0 and 1 so it can be used as shown below to define a proper probability weighting

function.

One then replaces  in the MC algorithm by the product  and uses this as a weighting function. To see how this
replacement works, we re-write the average that needs to be computed as follows:

The interpretation of the last identity is that  can be computed by

1. i. using the MC process to evaluate the average of ( ) but with a probability weighting factor of 
to accept or reject coordinate changes, and

2. ii. also using the MC process to evaluate the average of ( (q)) again with  as the weighting factor, and
finally

3. iii. taking the average of ( ) divided by the average of ( ) to obtain the final result.

The secret to the success of umbrella sampling is that the product

 causes the MC process to emphasize in its acceptance and rejection procedure coordinates for which both 
 and  (and hence ) are significant. Of course, the tradeoff is that the quantities (  and ) whose averages one

computes using  as the MC weighting function are themselves susceptible to being very small at coordinates 
where the weighting function is large. Let’s consider some examples of when and how one might want to use umbrella sampling
techniques.

Suppose one has one system for which the evaluation of the partition function (and thus all thermodynamic properties) can be
carried out with reasonable computational effort and another similar system (i.e., one whose potential does not differ much from
the first) for which this task is very difficult. Let’s call the potential function of the first system  and that of the second system 

. The latter system’s partition function can be written as follows
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where  is the partition function of the first system and is the ensemble average of the quantity taken with respect to the ensemble
appropriate to the first system. This result suggests that one can form the ratio of the partition functions ( ) by computing the
ensemble average of using the first system’s weighting function in the MC process. Likewise, to compute, for second system, the
average value of any property  that depends only on the coordinates of the particles, one can proceed as follows

where is the ensemble average of the quantity  taken with respect to the ensemble appropriate to the first system. Using the result
derived earlier for the ratio ( ), this expression for  can be rewritten as

In this form, we are instructed to form the average of  for the second system by

1. a. forming the ensemble average of using the weighting function for the first system,
2. b. forming the ensemble average of using the weighting function for the first system, and
3. c. taking the ratio of these two averages.

This is exactly what the umbrella sampling device tells us to do if we were to choose as the umbrella function

In this example, the umbrella is related to the difference in the potential energies of the two systems whose relationship we wish to
exploit.

Under what circumstances would this kind of approach be useful? Suppose one were interested in performing a MC average of a
property for a system whose energy landscape  has many local minima separated by large energy barriers, and suppose it was
important to sample configurations characterizing the many local minima in the sampling. A straightforward MC calculation using 

 as the weighting function would likely fail because a sequence of coordinate displacements from near one local
minimum to another local minimum would have very little chance of being accepted in the MC process because the barriers are
very high. As a result, the MC average would likely generate configurations representative of only the system’s equilibrium
existence near one local minimum rather than representative of its exploration of the full energy landscape.

However, if one could identify those regions of coordinate space at which high barriers occur and construct a function  that is
large and positive only in those regions, one could then use

as the umbrella function and compute averages for the system having potential  in terms of ensemble averages for a modified
system whose potential  is

In Figure 7. 3a, I illustrate how the original and modified potential landscapes differ in regions between two local minima.

Figure 7.3 a. Qualitative depiction of the potential  for a system having a large barrier and for the umbrella-modified system with
potential .

The MC-accepted coordinates generated using the modified potential  would sample the various local minima and thus the
entire landscape in a much more efficient manner because they would not be trapped by the large energy barriers. By using these
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MC-accepted coordinates, one can then estimate the average value of a property  appropriate to the potential  having the large
barriers by making use of the identity.

The above umbrella strategy could be useful in generating a good sampling of configurations characteristic of the many local
minima, which would be especially beneficial if the quantity  emphasized those configurations. This would be the case, for
example, if  measured the intramolecular and nearest-neighbor oxygen-hydrogen interatomic distances in a MC simulation of
liquid water. On the other hand, if one wanted to use as  a measure of the energy needed for a  ion to undergo, in a 1 M
aqueous solution of NaCl, a change in coordination number from 6 to 5 as illustrated in Figure 7.3 b, one would need a sampling
that is accurate both near the local minima corresponding to the 5- and 6-coordinate and the transition-state structures.

Figure 7.3 b Qualitative depiction of 5- and 6-coordinate  ion in water and of the energy profile connecting these two
structures.

Using an umbrella function similar to that discussed earlier to simply lower the barrier connecting the two  ion structures may
not be sufficient. Although this would allow one to sample both local minima, its sampling of structures near the transition state
would be questionable if the quantity  by which the barrier is lowered (to allow MC steps moving over the barrier to be
accepted with non-negligible probability) is large. In such cases, it is wise to employ a series of umbrellas to connect the local
minima to the transition states.

Assuming that one has knowledge of the energies and local solvation geometries characterizing the two local minima and the
transition state as well as a reasonable guess or approximation of the intrinsic reaction path (refer back to Section 3.3 of Chapter 3)
connecting these structures, one proceeds as follows to generate a series of so-called windows within each of which the free energy 

 of the solvated  ion is evaluated.

1. 1. Using the full potential  of the system to constitute the unaltered weighting function , one multiplies this by
an umbrella function

 
to form the umbrella-altered weighting function . In U(q), s(q) is the value of the value of the intrinsic
reaction coordinate IRC evaluated for the current geometry of the system q,  is the value of the IRC characterizing the first
window, and d is the width of this window. The first window could, for example, correspond to geometries near the 6-
coordinate local minimum of the solvated  ion structure. The width of each window d should be chosen so that the energy
variation within the window is no more than a 1-2 kT; in this way, the MC process will have a good (i.e., ca. 50%) acceptance
fraction and the configurations generated will allow for energy fluctuations uphill toward the TS of about this amount.

2. 2. As the MC process is performed using the above  weighting, one constructs a histogram  for how
often the system reaches various values s along the IRC. Of course, the severe weighting caused by  will not allow the
system to realize any value of s outside of the window .

3. 3. One then creates a second window that connects to the first window (i.e., with ) and repeats the MC
sampling using
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to generate a second histogram  for how often the system reaches various values of s along the IRC within the second
window.

4. 4. This process is repeated at a series of connected windows 

whose centers  range from the 6-coordinate  ion ( ), through the transition state ( ), and to the 5-coordinate 
ion ( ).

After performing this series of  umbrella-altered samplings, one has in hand a series of  histograms {
}. Within the  window,  gives the relative probability of the system being at a point s along

the IRC. To generate the normalized absolute probability function P(s) expressing the probability of being at a point s, one can
proceed as follows:

1. Because the first and second windows are connected at the point , one can scale  (i.e., multiply it by a
constant) to match  at this common point to produce a new  function

This new function describes exactly the same relative probability within the second window, but, unlike , it connects
smoothly to .

2. Because the second and third windows are connected at the point , one can scale  to match at this
common point to produce a new function

3. This process of scaling  to match at  is repeated until the final window connecting  to 
. Upon completing this series of connections, one has in hand a continuous probability function , which can be

normalized

In this way, one can compute the probability of accessing the TS, , and the free energy profile

at any point along the IRC. It is by using a series of connected windows, within each of which the MC process samples structures
whose energies can fluctuate by 1-2 , that one generates a smooth connection from low-energy to high-energy (e.g., TS)
geometries.
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