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1.2: The Schrödinger Equation and Its Components
It has been well established that electrons moving in atoms and molecules do not obey the classical Newton equations of motion.
People long ago tried to treat electronic motion classically, and found that features observed clearly in experimental measurements
simply were not consistent with such a treatment. Attempts were made to supplement the classical equations with conditions that could
be used to rationalize such observations. For example, early workers required that the angular momentum  be allowed to
assume only integer multiples of  (which is often abbreviated as ), which can be shown to be equivalent to the Bohr postulate 

. However, until scientists realized that a new set of laws, those of quantum mechanics, applied to light microscopic
particles, a wide gulf existed between laboratory observations of molecule-level phenomena and the equations used to describe such
behavior.

Quantum mechanics is cast in a language that is not familiar to most students of chemistry who are examining the subject for the first
time. Its mathematical content and how it relates to experimental measurements both require a great deal of effort to master. With these
thoughts in mind, i have organized this material in a manner that first provides a brief introduction to the two primary constructs of
quantum mechanics- operators and wave functions that obey a Schrödinger equation. Next, I demonstrate the application of these
constructs to several chemically relevant model problems. By learning the solutions of the Schrödinger equation for a few model
systems, the student can better appreciate the treatment of the fundamental postulates of quantum mechanics as well as their relation to
experimental measurement for which the wave functions of the known model problems offer important interpretations.

Operators 

Each physically measurable quantity has a corresponding operator. The eigenvalues of the operator tell the only values of the
corresponding physical property that can be observed in an experimental probe of that property. Some operators have a continuum of
eigenvalues, but others have only discrete quantized eigenvalues.

Any experimentally measurable physical quantity  (e.g., energy, dipole moment, orbital angular momentum, spin angular
momentum, linear momentum, kinetic energy) has a classical mechanical expression in terms of the Cartesian positions  and
momenta  of the particles that comprise the system of interest. Each such classical expression is assigned a corresponding
quantum mechanical operator  formed by replacing the  in the classical form by the differential operator

and leaving the coordinates  that appear in  untouched. If one is working with a classical quantity expressed in terms of curvilinear
coordinates, it is important that this quantity first be rewritten in Cartesian coordinates. The replacement of the Cartesian momenta by 

 can then be made and the resultant expression can be transformed back to the curvilinear coordinates if desired.

Example 1.2.1

For example, the classical kinetic energy of  particles (with masses ) moving in a potential field containing both quadratic and linear
coordinate-dependence can be written as

The quantum mechanical operator associated with this  is

Such an operator would occur when, for example, one describes the sum of the kinetic energies of a collection of particles (the first term) in
Eq. 1.3), plus the sum of "Hookes' Law" parabolic potentials (the second term in Eq. 1.3), and the interactions of the particles with an
externally applied field (the last term Eq. 1.3) whose potential energy varies linearly as the particles move away from their equilibrium
positions .

Let us try more examples. The sum of the -components of angular momenta (recall that vector angular momentum  is defined as 
 of a collection of  particles has the following classical expression
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and the corresponding operator is

If one transforms these Cartesian coordinates and derivatives into polar coordinates, the above expression reduces to

where  is the azimuthal angle of the  particle.

The -component of the dipole moment for a collection of  particles has a classical form of

for which the quantum operator is

where  is the charge on the  particle. Notice that in this case, classical and quantum forms are identical because  contains no
momentum operators.

Remember, the mapping from  to  is straightforward only in terms of Cartesian coordinates. To map a classical function , given
in terms of curvilinear coordinates (even if they are orthogonal), into its quantum operator is not at all straightforward. The mapping
can always be done in terms of Cartesian coordinates after which a transformation of the resulting coordinates and differential
operators to a curvilinear system can be performed.

The relationship of these quantum mechanical operators to experimental measurement lies in the eigenvalues of the quantum operators.
Each such operator has a corresponding eigenvalue equation

in which the  are called eigenfunctions and the (scalar numbers)  are called eigenvalues. All such eigenvalue equations are posed
in terms of a given operator (  in this case) and those functions  that  acts on to produce the function back again but multiplied
by a constant (the eigenvalue). Because the operator  usually contains differential operators (coming from the momentum), these
equations are differential equations. Their solutions  depend on the coordinates that  contains as differential operators. An example
will help clarify these points. The differential operator  acts on what functions (of ) to generate the same function back again but
multiplied by a constant? The answer is functions of the form  since

So, we say that  is an eigenfunction of  and  is the corresponding eigenvalue.

As I will discuss in more detail shortly, the eigenvalues of the operator  tell us the only values of the physical property corresponding
to the operator  that can be observed in a laboratory measurement. Some  operators that we encounter possess eigenvalues that are
discrete or quantized. For such properties, laboratory measurement will result in only those discrete values. Other  operators have
eigenvalues that can take on a continuous range of values; for these properties, laboratory measurement can give any value in this
continuous range.

An important characteristic of the quantum mechanical operators formed as discussed above for any measurable property is the fact
that they are Hermitian. An operator  that acts on coordinates denoted  is Hermitian if
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or, equivalently,

for any functions  and . The operator corresponding to any power of the coordinate  itself is easy to show obeys this

identity, but what about the corresponding momentum operator ? Let’s take the left hand side of the above identity for

and rewrite it using integration by parts as follows:

If the functions  and  are assumed to vanish at , the right-hand side of this equation can be rewritten as

So,  is indeed a Hermitian operator. Moreover, using the fact that  and  are Hermitian, one can show that any operator 

formed using the rules described above is also Hermitian.

One thing you need to be aware of concerning the eigenfunctions of any Hermitian operator is that each pair of eigenfunctions  and 
 belonging to different eigenvalues display a property termed orthonormality. This property means that not only may  and 

each normalized so their probability densities integrate to unity

but they are also orthogonal to each other

where the complex conjugate * of the first function appears only when the  solutions contain imaginary components (e.g., the

functions , which eigenfunctions of the -component of angular momentum ). The orthogonality condition can be

viewed as similar to the condition of two vectors  and  being perpendicular, in which case their scalar (sometimes called dot)
product vanishes . I want you to keep this property in mind because you will soon see that it is a characteristic of all
eigenfunctions of any Hermitian operator.

It is common to write the integrals displaying the normalization and orthogonality conditions in the following so-called Dirac notation

and

where the  and  | symbols represent  and , respectively, and putting the two together in the  construct implies the integration
over the variables that y depends upon. The Hermitian character of an operator  means that this operator forms a Hermitian matrix
when placed between pairs of functions and the coordinates are integrated over. For example, the matrix representation of an operator 

 when acting on a set of functions denoted { } is:

For all of the operators formed following the rules stated earlier, one finds that these matrices have the following property:
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which makes the matrices what we call Hermitian. If the functions upon which F acts and F itself have no imaginary parts (i.e., are
real), then the matrices turn out to be symmetric:

The importance of the Hermiticity or symmetry of these matrices lies in the fact that it can be shown that such matrices have all real
(i.e., not complex) eigenvalues and have eigenvectors that are orthogonal (or, in the case of degenerate eigenvalues, can be chosen to
be orthogonal). Let’s see how these conditions follow from the Hermiticity property.

If the operator  has two eigenfunctions  and  having eigenvalues  and , respectively, then

Multiplying this equation on the left by  and integrating over the coordinates (denoted ) that  acts on gives

The Hermitian nature of  allows us to also write

which, because

gives

If  is not equal to , the only way the left-most and right-most terms in this equality can be equal is if

which means the two eigenfunctions are orthogonal. If the two eigenfunctions  and  have equal eigenvalues, the above derivation
can still be used to show that  and  are orthogonal to the other eigenfunctions { etc.} of  that have different eigenvalues.
For the eigenfunctions  and  that are degenerate (i.e., have equal eigenvalues), we cannot show that they are orthogonal (because
they need not be so). However, because any linear combination of these two functions is also an eigenfunction of  having the same
eigenvalue, we can always choose a combination that makes  and  orthogonal to one another.

Finally, for any given eigenfunction , we have

However, the Hermitian character of F allows us to rewrite the left hand side of this equation as

These two equations can only remain valid if

which means that  is a real number (i.e., has no imaginary part).

So, all quantum mechanical operators have real eigenvalues (this is good since these eigenvalues are what can be measured in any
experimental observation of that property) and can be assumed to have orthogonal eigenfunctions. It is important to keep these facts in
mind because we make use of them many times throughout this text.
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Wave functions 

The eigenfunctions of a quantum mechanical operator depend on the coordinates upon which the operator acts. The particular operator
that corresponds to the total energy of the system is called the Hamiltonian operator. The eigenfunctions of this particular operator are
called wave functions

A special case of an operator corresponding to a physically measurable quantity is the Hamiltonian operator  that relates to the total
energy of the system. The energy eigenstates of the system  are functions of the coordinates  that  depends on and of time t.
The function  gives the probability density for observing the coordinates at the values  at time . For a many-
particle system such as the  molecule, the wave function depends on many coordinates. For , it depends on the , , and 
(or , , and ) coordinates of the ten electrons and the , , and  (or , , and ) coordinates of the oxygen nucleus and of the two
protons; a total of thirty-nine coordinates appear in .

If one is interested in what the probability distribution is for finding the corresponding momenta  at time , the wave function 

 has to first be written as a combination of the eigenfunctions of the momentum operators . Expressing  in this

manner is possible because the momentum operator is Hermitian and it can be shown that the eigenfunctions of any Hermitian operator
form a complete set of functions. The momentum operator’s eigenfunctions are

and they obey

These eigenfunctions can also be shown to be orthonormal.

Expanding  in terms of these normalized momentum eigenfunctions gives

We can find the expansion coefficients  by multiplying the above equation by the complex conjugate of another (labeled )
momentum eigenfunction and integrating over 

The quantities  then give the probability of finding momentum  at time .

In classical mechanics, the coordinates  and their corresponding momenta  are functions of time. The state of the system is then
described by specifying  and . In quantum mechanics, the concept that qj is known as a function of time is replaced by the
concept of the probability density for finding coordinate qj at a particular value at a particular time  or the probability
density  for finding momentum  at time .

The Hamiltonian eigenstates are especially important in chemistry because many of the tools that chemists use to study molecules
probe the energy states of the molecule. For example, most spectroscopic methods are designed to determine which energy state
(electronic, vibrational, rotational, nuclear sp_in, etc.) a molecule is in. However, there are other experimental measurements that
measure other properties (e.g., the -component of angular momentum or the total angular momentum).

As stated earlier, if the state of some molecular system is characterized by a wave function Y that happens to be an eigenfunction of a
quantum mechanical operator F, one can immediately say something about what the outcome will be if the physical property F
corresponding to the operator F is measured. In particular, since

where  is one of the eigenvalues of , we know that the value  will be observed if the property  is measured while the molecule
is described by the wave function . In fact, once a measurement of a physical quantity  has been carried out and a particular
eigenvalue  has been observed, the system's wave function  becomes the eigenfunction  that corresponds to that eigenvalue.
That is, the act of making the measurement causes the system's wave function to become the eigenfunction of the property that was
measured. This is what is meant when one hears that the act of making a measurement can change the state of the system in quantum
mechanics.

What happens if some other property G, whose quantum mechanical operator is  is measured in a case where we have already
determined ? We know from what was said earlier that some eigenvalue mk of the operator G will be observed in the
measurement. But, will the molecule's wave function remain, after G is measured, the eigenfunction  of , or will the
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measurement of G cause Y to be altered in a way that makes the molecule's state no longer an eigenfunction of ? It turns out that if
the two operators F and G obey the condition

then, when the property G is measured, the wave function  will remain unchanged. This property that the order of application
of the two operators does not matter is called commutation; that is, we say the two operators commute if they obey this property. Let us
see how this property leads to the conclusion about Y remaining unchanged if the two operators commute. In particular, we apply the
G operator to the above eigenvalue equation from which we concluded that :

Next, we use the commutation to re-write the left-hand side of this equation, and use the fact that  is a scalar number to thus obtain:

So, now we see that  itself is an eigenfunction of F having eigenvalue . So, unless there are more than one eigenfunction of F
corresponding to the eigenvalue  (i.e., unless this eigenvalue is degenerate),  must itself be proportional to . We write this
proportionality conclusion as

which means that  is also an eigenfunction of G. This, in turn, means that measuring the property G while the system is described by
the wave function  does not change the wave function; it remains .

If there are more than one function { } that are eigenfunctions of F having the same eigenvalue , then the relation 
 only allows us to conclude that  is some combination of these degenerate functions

Below, I offer some examples that i hope will clarify what these rules mean and how the relate to laboratory measurements.

In summary, when the operators corresponding to two physical properties commute, once one measures one of the properties (and thus
causes the system to be an eigenfunction of that operator), subsequent measurement of the second operator will (if the eigenvalue of
the first operator is not degenerate) produce a unique eigenvalue of the second operator and will not change the system wave function.
If either of the two properties is subsequently measured (even over and over, again), the wave function will remain unchanged and the
value observed for the property being measured will remain the same as the original eigenvalue observed.

However, if the two operators do not commute, one simply cannot reach the above conclusions. In such cases, measurement of the
property corresponding to the first operator will lead to one of the eigenvalues of that operator and cause the system wave function to
become the corresponding eigenfunction. However, subsequent measurement of the second operator will produce an eigenvalue of that
operator, but the system wave function will be changed to become an eigenfunction of the second operator and thus no longer the
eigenfunction of the first.

I think an example will help clarify this discussion. Let us consider the following orbital angular momentum operators for  particles
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It turns out that the operator  can be shown to commute with any one of , , or , but , , or  do not commute with one
another (we will discuss these operators in considerably more detail in Chapter 2 section 2.7; for now, please accept these statements).

Let us assume a measurement of  is carried out and one obtains the value . Thus far, all one knows is that the system can be
described by a wave function that is some combination of , , , , etc. angular momentum functions  having different 

-values but all having 

but one does not know the amplitudes  telling how much a given -value contributes to . One can express  as such a linear
combination because the Hermitian quantum mechanical operators formed as described above can be shown to possess complete sets
of eigenfunctions; this means that any function (of the appropriate variables) can be written as a linear combination of these
eigenfunctions as done above.

If one subsequently carries out a measurement of , the fact that  and  commute means that this second measurement will not
alter the fact that  contains only contributions with , but it will result in observing only one specific -value. The probability
of observing any particular -value will be given by . Once this measurement is realized, the wave function will contain only
terms having that specific -value and . For example, if  is found, we know the wave function has  and , so
we know it is a F-symmetry function with , but we don’t know any more. That is, we don’t know if it is an  etc. F-
function.

What now happens if we make a measurement of  when the system is in the ,  state (recall, this  is a value of the
 component of angular momentum)? Because  and  commute, the measurement of  will not alter the fact that  contains

only  components. However, because  and  do not commute, we can not assume that  is still an eigenfunction of  ; it
will be a combination of eigenfunctions of  having  but having -values between -3 and 3, with m now referring to the
eigenvalue of  (no longer to )

When  is measured, the value  will be found with probability , after which the wave function will be the 
eigenfunction of  and  (and no longer an eigenfunction of )

I understand that these rules of quantum mechanics can be confusing, but I assure you they are based on laboratory observations about
how atoms, ions, and molecules behave when subjected to state-specific measurements. So, I urge you to get used to the fact that
quantum mechanics has rules and behaviors that may be new to you but need to be mastered by you.

The Schrödinger Equation 
This equation is an eigenvalue equation for the energy or Hamiltonian operator; its eigenvalues provide the only allowed energy levels
of the system

The Time-Dependent Equation 

If the Hamiltonian operator contains the time variable explicitly, one must solve the time-dependent Schrödinger equation

Before moving deeper into understanding what quantum mechanics means, it is useful to learn how the wave functions  are found by
applying the basic equation of quantum mechanics, the Schrödinger equation, to a few exactly soluble model problems. Knowing the
solutions to these 'easy' yet chemically very relevant models will then facilitate learning more of the details about the structure of
quantum mechanics.

The Schrödinger equation is a differential equation depending on time and on all of the spatial coordinates necessary to describe the
system at hand (thirty-nine for the  example cited above). It is usually written

where  is the unknown wavefunction and  is the operator corresponding to the total energy of the system. This Hermitian
operator is called the Hamiltonian and is formed, as stated above, by first writing down the classical mechanical expression for the
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total energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing all classical momenta  by their

quantum mechanical operators .

For the  example used above, the classical mechanical energy of all thirteen particles is

where the indices  and  are used to label the ten electrons whose thirty Cartesian coordinates and thirty Cartesian momenta are { }
and { }, and  and  label the three nuclei whose charges are denoted  and whose nine Cartesian coordinates and nine Cartesian
momenta are { } and { }. The electron and nuclear masses are denoted  and , respectively. The corresponding Hamiltonian
operator is

where , , and  denote the distances between electron pairs, electrons and nuclei, and nuclear pairs, respectively.

Notice that  is a second order differential operator in the space of the thirty-nine Cartesian coordinates that describe the positions of
the ten electrons and three nuclei. It is a second order operator because the momenta appear in the kinetic energy as  and , and the

quantum mechanical operator for each momentum  is of first order.

The Schrödinger equation for the  example at hand then reads

The Hamiltonian in this case contains  nowhere. An example of a case where  does contain  occurs, for example, when the an
oscillating electric field  along the -axis interacts with the electrons and nuclei and a term

is added to the Hamiltonian. Here,  and  denote the  coordinates of the  nucleus and the  electron, respectively.

The Time-Independent Equation 

If the Hamiltonian operator does not contain the time variable explicitly, one can solve the time-independent Schrödinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not contain terms that are explicitly time dependent (e.g.,
interactions with time varying external electric or magnetic fields would add to the above classical energy expression time dependent
terms), the separations of variables techniques can be used to reduce the Schrödinger equation to a time-independent equation. In such
cases,  is not explicitly time dependent, so one can assume that  is of the form (n.b., this step is an example of the use of the
separations of variables method to solve a differential equation)

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Dividing by  then gives

Since  is only a function of time , and  is only a function of the spatial coordinates { }, and because the left hand and
right hand sides must be equal for all values of t and of { }, both the left and right hand sides must equal a constant. If this constant is
called E, the two equations that are embodied in this separated Schrödinger equation read as follows:
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Xa xj x ath jth

H Ψ( , t)qj

Ψ( , t) = Ψ( )F (t).qj qj (1.14)

Ψ( )iℏ = F (t)HΨ( ).qJ
∂F

∂t
qJ (1.14)

Ψ( )F (t)qJ

(iℏ ) = (HΨ( )).F −1 ∂F

∂t
Ψ−1 qJ (1.14)
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The first of these equations is called the time-independent Schrödinger equation; it is an eigenvalue equation in which one is asked to
find functions that yield a constant multiple of themselves when acted on by the Hamiltonian operator. Such functions are called
eigenfunctions of  and the corresponding constants are called eigenvalues of . For example, if  were of the form 

, then functions of the form  would be eigenfunctions because

In this case,    is the eigenvalue. In this example, the Hamiltonian contains the square of an angular momentum operator (recall

earlier that we showed the -component of angular momentum  for a single particle is to equal ).

When the Schrödinger equation can be separated to generate a time-independent equation describing the spatial coordinate dependence
of the wave function, the eigenvalue  must be returned to the equation determining  to find the time dependent part of the wave
function. By solving

once  is known, one obtains

and the full wave function can be written as

For the above example, the time dependence is expressed by

In such cases, the spatial probability density  does not depend upon time because the product 
reduces to unity.

In summary, whenever the Hamiltonian does not depend on time explicitly, one can solve the time-independent Schrödinger equation
first and then obtain the time dependence as  once the energy  is known. In the case of molecular structure theory, it is
a quite daunting task even to approximately solve the full Schrödinger equation because it is a partial differential equation depending
on all of the coordinates of the electrons and nuclei in the molecule. For this reason, there are various approximations that one usually
implements when attempting to study molecular structure using quantum mechanics.

It should be noted that it is possible to prepare in the laboratory, even when the Hamiltonian contains no explicit time dependence,
wave functions that are time dependent and that have time-dependent spatial probability densities. For example, one can prepare a state
of the Hydrogen atom that is a superposition of the  and  wave functions

where the two eigenstates obey

and

When  does not contain  explicitly, it is possible to then express  in terms of  as follows:

HΨ( ) = EΨ( ),qJ qJ (1.14)
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(1.14)
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F (t) = exp(−iEt/ℏ), (1.14)

Ψ( , t) = Ψ( ) exp(−iEt/ℏ).qj qj (1.14)

F (t) = exp(− it ).
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2s 2pz

Ψ(r, t = 0) = (r) + (r)C1ψ2s C2ψ2pz (1.14)

H (r) = (r)ψ2s E2sψ2s (1.14)

H (r) = (r).ψ2pz E2pzψ2pz (1.14)
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This function, which is a superposition of  and  functions, does indeed obey the full time-dependent Schrödinger equation 

. The probability of observing the system in the  state if a measurement capable of making this determination were

carried out is

and the probability of finding it in the  state is

both of which are independent of time. This does not mean that  or the spatial probability density  describes is time-independent
because the product

contains cross terms that depend on time.

It is important to note that applying  to such a superposition state in the manner shown above, which then produces a
superposition of states each of whose amplitudes carries its own time dependence, only works when  has no time dependence. If 

were time-dependent,  acting on  would contain an additional factor involving  as a result of

which one would not have .
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