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4.4: Point Group Symmetry
It is assumed that the reader has previously learned how symmetry arises in molecular shapes and structures and what symmetry
elements are (e.g., planes, axes of rotation, centers of inversion, etc.). We review and teach here only that material that is of direct
application to symmetry analysis of molecular orbitals and vibrations and rotations of molecules. We use a specific example, the
ammonia molecule, to introduce and illustrate the important aspects of point group symmetry because this example contains most
of the complexities that arise in any application of group theory to molecular problems.

The ammonia molecule  belongs, in its ground-state equilibrium geometry, to the  point group. Its symmetry
operations consist of two  rotations, ,  (rotations by 120° and 240°, respectively about an axis passing through the
nitrogen atom and lying perpendicular to the plane formed by the three hydrogen atoms), three vertical reflection operations, 

, , , and the identity operation. Corresponding to these six operations are symmetry elements: the three-fold rotation
axis,  and the three symmetry planes ,  and  that contain the three  bonds and the -axis (see Figure 4.3).

Figure 4.3 Ammonia Molecule and its Symmetry Elements

These six symmetry operations form a mathematical group. A group is defined as a set of objects satisfying four properties.

1. A combination rule is defined through which two group elements are combined to give a result that we call the product.
The product of two elements in the group must also be a member of the group (i.e., the group is closed under the
combination rule).

2. One special member of the group, when combined with any other member of the group, must leave the group member
unchanged (i.e., the group contains an identity element).

3. Every group member must have a reciprocal in the group. When any group member is combined with its reciprocal, the
product is the identity element.

4. The associative law must hold when combining three group members (i.e., (AB)C must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination rule is successive operation. The identity element
is the operation of doing nothing at all. The group properties can be demonstrated by forming a multiplication table. Let us
label the rows of the table by the first operation and the columns by the second operation. Note that this order is important
because most groups are not commutative. The  group multiplication table is as follows:

Note the reflection plane labels do not move. That is, although we start with  in the  plane,  in , and  in , if 
 moves due to the first symmetry operation,  remains fixed and a different H atom lies in the  plane.
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Matrices as Group Representations 

In using symmetry to help simplify molecular orbital (mo) or vibration/rotation energy-level identifications, the following strategy
is followed:

1. A set of  objects belonging to the constituent atoms (or molecular fragments, in a more general case) is introduced. These
objects are the orbitals of the individual atoms (or of the fragments) in the mo case; they are unit vectors along the Cartesian , 

, and  directions located on each of the atoms, and representing displacements along each of these directions, in the
vibration/rotation case.

2. Symmetry tools are used to combine these  objects into  new objects each of which belongs to a specific symmetry of the
point group. Because the Hamiltonian (electronic in the mo case and vibration/rotation in the latter case) commutes with the
symmetry operations of the point group, the matrix representation of H within the symmetry-adapted basis will be "block
diagonal". That is, objects of different symmetry will not interact; only interactions among those of the same symmetry need be
considered.

To illustrate such symmetry adaptation, consider symmetry adapting the  orbital of  and the three  orbitals of the three H
atoms. We begin by determining how these orbitals transform under the symmetry operations of the  point group. The act of
each of the six symmetry operations on the four atomic orbitals can be denoted as follows:

Here we are using the active view that a  rotation rotates the molecule by 120°. The equivalent passive view is that the  basis
functions are rotated -120°. In the  rotation,  ends up where  began, , ends up where  began and  ends up where 
began.

These transformations can be thought of in terms of a matrix multiplying a vector with elements . For example, if 
 is the representation matrix giving the  transformation, then the above action of  on the four basis orbitals can be

expressed as:

We can likewise write matrix representations for each of the symmetry operations of the  point group:
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It is easy to verify that a  rotation followed by a  reflection is equivalent to a  reflection alone. In other words

Note that this same relationship is carried by the matrices:

Likewise we can verify that  directly and we can notice that the matrices also show the same identity:

In fact, one finds that the six matrices, , when multiplied together in all 36 possible ways, obey the same multiplication
table as did the six symmetry operations. We say the matrices form a representation of the group because the matrices have all the
properties of the group.

Characters of Representations 
One important property of a matrix is the sum of its diagonal elements which is called the trace of the matrix  and is denoted 

:

So,  is called the trace or character of the matrix. In the above example

The importance of the characters of the symmetry operations lies in the fact that they do not depend on the specific basis used to
form the matrix. That is, they are invariant to a unitary or orthogonal transformation of the objects used to define the matrices. As a
result, they contain information about the symmetry operation itself and about the space spanned by the set of objects. The
significance of this observation for our symmetry adaptation process will become clear later.

Note that the characters of both rotations are the same as are the characters of all three reflections. Collections of operations having
identical characters are called classes. Each operation in a class of operations has the same character as other members of the class.
The character of a class depends on the space spanned by the basis of functions on which the symmetry operations act.

Another Basis and Another Representation 

Above we used  as a basis. If, alternatively, we use the one-dimensional basis consisting of the  orbital on the N-
atom, we obtain different characters, as we now demonstrate.

The act of the six symmetry operations on this  can be represented as follows:
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χ(E) = 4 (4.4.11)
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( , , , )SN S1 S2 S3 1s

SN

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/11582?pdf


4.4.4 https://chem.libretexts.org/@go/page/11582

We can represent this group of operations in this basis by the one-dimensional set of matrices:

Again we have

These six 1x1 matrices form another representation of the group. In this basis, each character is equal to unity. The representation
formed by allowing the six symmetry operations to act on the  N-atom orbital is clearly not the same as that formed when the
same six operations acted on the  basis. We now need to learn how to further analyze the information content of a
specific representation of the group formed when the symmetry operations act on any specific set of objects.

Reducible and Irreducible Representations 

Reducible Representations 

Note that every matrix in the four dimensional group representation labeled  has the so-called block diagonal form

This means that these  matrices are really a combination of two separate group representations (mathematically, it is called a
direct sum representation). We say that  is reducible into a one-dimensional representation  and a three-dimensional
representation formed by the 3x3 submatrices that we will call .

The characters of  are . Note that we would have obtained this  representation
directly if we had originally chosen to examine the basis  alone; also note that these characters are equal to those of 

 minus those of .

Change in Basis 

Now let us convert to a new basis that is a linear combination of the original  basis:

(Don't worry about how I constructed , , and  yet. As will be demonstrated later, we form them by using symmetry
projection operators defined below). We determine how the  basis functions behave under the group operations by allowing
the operations to act on the  and interpreting the results in terms of the . In particular,
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D(3) χ(E) = 3,χ(2 ) = 0,χ(3 ) = 1C3 σv D(3)
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So the matrix representations in the new  basis are:

Reduction of the Reducible Representation 

These six matrices can be verified to multiply just as the symmetry operations do; thus they form another three-dimensional
representation of the group. We see that in the  basis the matrices are block diagonal. This means that the space spanned by the 

 functions, which is the same space as the  span, forms a reducible representation that can be decomposed into a one
dimensional space and a two dimensional space (via formation of the  functions). Note that the characters (traces) of the matrices
are not changed by the change in bases.

The one-dimensional part of the above reducible three-dimensional representation is seen to be the same as the totally symmetric
representation we arrived at before, . The two-dimensional representation that is left can be shown to be irreducible; it has the
following matrix representations:

The characters can be obtained by summing diagonal elements:

Rotations as a Basis 

Another one-dimensional representation of the group can be obtained by taking rotation about the Z-axis (the  axis) as the object
on which the symmetry operations act:
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χ(E) = 2,χ(2 ) = −1,χ(3 ) = 0.C3 σv (4.4.36)
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In writing these relations, we use the fact that reflection reverses the sense of a rotation. The matrix representations corresponding
to this one-dimensional basis are:

These one-dimensional matrices can be shown to multiply together just like the symmetry operations of the  group. They form
an irreducible representation of the group (because it is one-dimensional, it cannot be further reduced). Note that this one-
dimensional representation is not identical to that found above for the  N-atom orbital, or the  function.

We have found three distinct irreducible representations for the  symmetry group; two different one-dimensional and one
two dimensional representations. Are there any more? An important theorem of group theory shows that the number of
irreducible representations of a group is equal to the number of classes. Since there are three classes of operation (i.e., E, 
and ), we have found all the irreducible representations of the  point group. There are no more.

The irreducible representations have standard names; the first  (that arising from the  and  orbitals) is called , the
 arising from  is called  and  is called  (not to be confused with the identity operation E). We will see shortly

where to find and identify these names.

Thus, our original  representation was a combination of two  representations and one  representation. We say that 
 is a direct sum representation: . A consequence is that the characters of the combination representation 
 can be obtained by adding the characters of its constituent irreducible representations.

Decompose Reducible Representations in General 

Suppose you were given only the characters (4,1,2). How can you find out how many times , , and  appear when you
reduce  to its irreducible parts? You want to find a linear combination of the characters of ,  and  that add up (4,1,2).
You can treat the characters of matrices as vectors and take the dot product of  with 

The vector  is not normalized; hence to obtain the component of  along a unit vector in the 
 direction, one must divide by the norm of ; this norm is 6. The result is that the reducible

representation contains  components. Analogous projections in the  and  directions give components of 1 and 0,
respectively. In general, to determine the number  of times irreducible representation  appears in the reducible representation
with characters , one calculates

where  is the order of the group (i.e.. the number of operations in the group; six in our example) and  are the characters of
the  irreducible representation.

(E) = 1 ( ) = 1 ( ) = 1;D(1) D(1) C3 D(1) C 2
3 (4.4.39)

( ) = −1 ( ) = −1 ( ) = −1.D(1) σv D(1) σv" D(1) σv′ (4.4.40)
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(1, 1, 1, 1, 1, 1) (4, 1, 1, 2, 2, 2)
(1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

12/6 = 2A1 E A2

nΓ Γ
χred

nΓ = (R) (R),
1

g
∑
R

χΓ χred (4.4.43)

g (R)χΓ

Γth
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Commonly Used Bases 

We could take any set of functions as a basis for a group representation. Commonly used sets include: Cartesian displacement
coordinates  located on the atoms of a polyatomic molecule (their symmetry treatment is equivalent to that involved in
treating a set of p orbitals on the same atoms), quadratic functions such as d orbitals  as well as rotations
about the ,  and  axes. The transformation properties of these very commonly used bases are listed in the character tables shown
in Section 4.4.

Summary 

The basic idea of symmetry analysis is that any basis of orbitals, displacements, rotations, etc. transforms either as one of the
irreducible representations or as a direct sum (reducible) representation. Symmetry tools are used to first determine how the basis
transforms under action of the symmetry operations. They are then used to decompose the resultant representations into their
irreducible components.

More Examples 

The 2p Orbitals of Nitrogen 

For a function to transform according to a specific irreducible representation means that the function, when operated upon by a
point-group symmetry operator, yields a linear combination of the functions that transform according to that irreducible
representation. For example, a  orbital (  is the  axis of ) on the nitrogen atom belongs to the  representation
because it yields unity times itself when , , , ,  or the identity operation act on it. The factor of 1 means that  has 

 symmetry since the characters (the numbers listed opposite  and below  and  in the  character table shown in
Section 4.4) of all six symmetry operations are 1 for the  irreducible representation.

The  and  orbitals on the nitrogen atom transform as the  representation since , , , ,  and the identity
operation map  and  among one another. Specifically,

The 2x2 matrices, which indicate how each symmetry operation maps  and  into some combinations of  and , are the
representation matrices ( ) for that particular operation and for this particular irreducible representation (IR). For example,

This set of matrices have the same characters as the  matrices obtained earlier when the  displacement vectors were
analyzed, but the individual matrix elements are different because we used a different basis set (here  and  ; above it was 
and ). This illustrates the invariance of the trace to the specific representation; the trace only depends on the space spanned, not
on the specific manner in which it is spanned.

(x, y, z)
−xy, yz, xz, − , ,x2 y2 z2

x y z

2pz z C3 NH3 A1

C3 C 2
3 σv σv′ σv" 2pz

A1 A1 E, 2 ,C3 3σv C3v

A1

2px 2py E C3 C 2
3 σv σv′ σv"

2px 2py

( ) =( )( )C3
2px
2py

cos 120∘

sin120∘

−sin120∘

cos 120∘

2px
2py

(4.4.44)

( ) =( )( )C 2
3

2px
2py

cos 240∘

sin240∘

−sin240∘

cos 240∘

2px
2py

(4.4.45)

E( ) =( )( )
2px
2py

1

0

0

1

2px
2py

(4.4.46)

( ) =( )( )σv
2px
2py

−1

0

0

1

2px
2py

(4.4.47)

( ) = ( )σv′
2px
2py

⎛

⎝

1
2

3√

2

3√
2

− 1
2

⎞

⎠

2px
2py

(4.4.48)

( ) = ( ) .σv"
2px
2py

⎛

⎝

1
2

−
3√

2

−
3√

2

− 1
2

⎞

⎠

2px
2py

(4.4.49)

2px 2py 2px 2py
D(IR)

 = ( )
⎛

⎝

1
2

3√
2

3√

2

− 1
2

⎞

⎠
D(E) σv′ (4.4.50)

D(2) Ti
2px 2py T2

T3
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Short-Cut 

A short-cut device exists for evaluating the trace of such representation matrices (that is, for computing the characters). The
diagonal elements of the representation matrices are the projections along each orbital of the effect of the symmetry operation
acting on that orbital. For example, a diagonal element of the  matrix is the component of  along the  direction. More
rigorously, it

is . Thus, the character of the  matrix is the sum of  and . In general, the character 
 of any symmetry operation  can be computed by allowing  to operate on each orbital , then projecting  along  (i.e.,

forming , and summing these terms,

If these rules are applied to the  and  orbitals of nitrogen within the  point group, one obtains

This set of characters is the same as  above and agrees with those of the  representation for the  point group. Hence, 
and  belong to or transform as the  representation. This is why  is to the right of the row of characters for the 
representation in the  character table shown in Section 4.4. In similar fashion, the  character table (please refer to this table
now) states that  and  orbitals on nitrogen transform as E, as do  and , but  transforms as .

Earlier, we considered in some detail how the three  orbitals on the hydrogen atoms transform. Repeating this analysis using
the short-cut rule just described, the traces (characters) of the 3 x 3 representation matrices are computed by allowing  and 

 to operate on , , and  and then computing the component of the resulting function along the original function.
The resulting characters are  and , in agreement with what we
calculated before.

Using the orthogonality of characters taken as vectors we can reduce the above set of characters to . Hence, we say that our
orbital set of three  orbitals forms a reducible representation consisting of the sum of  and  IR's. This means that the three 

 orbitals can be combined to yield one orbital of  symmetry and a pair that transform according to the  representation.

Projector Operators: Symmetry Adapted Linear Combinations of Atomic Orbitals 
To generate the above  and  symmetry-adapted orbitals, we make use of so-called symmetry projection operators  and .
These operators are given in terms of linear combinations of products of characters times elementary symmetry operations as
follows:

where  ranges over , , ,  and  and the identity operation. The result of applying  to say  is

which is an (unnormalized) orbital having  symmetry. Clearly, this same  orbital would be generated by  acting on 
or . Hence, only one  orbital exists. Likewise,

which is one of the symmetry adapted orbitals having  symmetry. The other  orbital can be obtained by allowing  to act on 
 or :

C3 2C3 py 2py

∫ 2 2 dτp∗
yC3 py C3 ∫ 2 2 dτp∗

yC3 py ∫ 2 2 dτp∗
xC3 px

χ S S ϕi Sϕi ϕi

∫ S dτϕ∗
i ϕi

∫ S dτ = χ(S).∑
i

ϕ∗
i ϕi (4.4.51)

2px 2py C3v

χ(E) = 2,χ( ) = χ( ) = −1,χ( ) = χ( ) = χ( ) = 0.C3 C 2
3 σv σv" σv′ (4.4.52)

D(2) E C3v 2px
2py E (x, y) E

C3v C3v

d −x2 y2 dxy dxy dyz dz2 A1

1sH
E, 2 ,C3

3σv 1sH1
1sH2

1sH3

χ(E) = 3,χ( ) = χ( ) = 0,C3 C 2
3 χ( ) = χ( ) = χ( ) = 1σv σv′ σv"

+EA1

1sH A1 E

1sH A1 E

A1 E PE PA1

= (S)SPA1 ∑
S

χA (4.4.53)

= (S)S,PE ∑
S

χE (4.4.54)

S C3 C 2
3 σv σv′ σv" PA1

1sH1

1 = 1 +1 +1 +1 +1 +1PA1
sH1

sH1
sH2

sH3
sH2

sH3
sH1

= 2(1 +1 +1 ) = ,sH1 sH2 sH3 ϕA1

(4.4.55)

A1 ϕA1
PA1

1sH2

1sH3 A1

1 = 2 ⋅ 1 −1 −1 ≡PE sH1
sH1

sH2
sH3

ϕE,1 (4.4.56)

E E PE

1sH2 1sH3

1 = 2 ⋅ 1 −1 −1 ≡PE sH2
sH2

sH1
sH3

ϕE,2 (4.4.57)

1 = 2 ⋅ 1 −1 −1 = .PE sH3
sH3

sH1
sH2

ϕE,3 (4.4.58)
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It might seem as though three orbitals having  symmetry were generated, but only two of these are really independent functions.
For example,  is related to  and  as follows:

Thus, only  and  are needed to span the two-dimensional space of the  representation. If we include  in our set of
orbitals and require our orbitals to be orthogonal, then we must find numbers  and  such that  is orthogonal
to . A straightforward calculation gives  or  which agrees with what we used earlier to
construct the  functions in terms of the  functions.

Summary 

Let us now summarize what we have learned thus far about point group symmetry. Any given set of atomic orbitals { }, atom-
centered displacements, or rotations can be used as a basis for the symmetry operations of the point group of the molecule. The
characters  belonging to the operations  of this point group within any such space can be found by summing the integrals
over all the atomic orbitals (or corresponding unit vector atomic displacements or rotations). The resultant characters will, in
general, be reducible to a combination of the characters of the irreducible representations . To decompose the characters 

 of the reducible representation to a sum of characters  of the irreducible representation

it is necessary to determine how many times, , the  irreducible representation occurs in the reducible representation. The
expression for  is

in which  is the order of the point group- the total number of symmetry operations in the group (e.g.,  for ).

For example, the reducible representation , and  formed by the three  orbitals discussed above
can be decomposed as follows:

These equations state that the three  orbitals can be combined to give one  orbital and, since  is degenerate, one pair of 
orbitals, as established above. With knowledge of the , the symmetry-adapted orbitals can be formed by allowing the projectors

to operate on each of the primitive atomic orbitals. How this is carried out was illustrated for the  orbitals in our earlier
discussion. These tools allow a symmetry decomposition of any set of atomic orbitals into appropriate symmetry-adapted orbitals.

Before considering other concepts and group-theoretical machinery, it should once again be stressed that these same tools can be
used in symmetry analysis of the translational, vibrational and rotational motions of a molecule. The twelve motions of  (three
translations, three rotations, six vibrations) can be described in terms of combinations of displacements of each of the four atoms in
each of three  directions. Hence, unit vectors placed on each atom directed in the , , and  directions form a basis for
action by the operations { } of the point group. In the case of , the characters of the resultant 12 x 12 representation matrices
form a reducible representation in the  point group: , . For
example under , the  and  atoms are interchanged, so unit vectors on either one will not contribute to the trace. Unit z-
vectors on  and  remain unchanged as well as the corresponding y-vectors. However, the x-vectors on  and  are reversed
in sign. The total character for  the  and  atoms are interchanged, so unit vectors on either one will not contribute to the

E

ϕE,3 ϕE,1 ϕE,2

= −( + ).ϕE,3 ϕE,1 ϕE,2 (4.4.59)

ϕE,1 ϕE,2 E ϕE,1

a b = a +bϕ′
E ϕE,2 ϕE,3

:= 0ϕE,1 a = −b = a(1 −1 )ϕ′
E sH2 sH3

Ti Sj

ϕi

χ(S) S

(S)χi

χ(S) (S)χi

χ(S) = (S),∑
i

niχi (4.4.60)

ni ith

ni

= χ(S) (S)ni

1

g
∑
S

χi (4.4.61)

g g = 6 C3v

χ(E) = 3,χ( ) = 0C3 χ( ) = 1σv 1sH

= (3 ⋅ 1 +2 ⋅ 0 ⋅ 1 = 3 ⋅ 1 ⋅ 1) = 1,nA1

1

6
(4.4.62)

= (3 ⋅ 1 +2 ⋅ 0 ⋅ 1 = 3 ⋅ 1 ⋅ −1) = 0,nA2

1

6
(4.4.63)

= (3 ⋅ 2 +2 ⋅ 0 ⋅ −1 = 3 ⋅ 1 ⋅ 0) = 1.nE

1

6
(4.4.64)

1sH A1 E E

ni

= (S)SPi ∑
i

χi (4.4.65)

1sH

NH3

(x, y, z) x y z

S NH3

C2v χ(E) = 12,χ( ) = χ( ) = 0C3 C 2
3 χ( ) = χ( ) = χ( ) = 2σv σv′ σv"

σv H2 H3

N H1 N H1

σv′ H2 H3
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trace. Unit z-vectors on  and  remain unchanged as well as the corresponding y-vectors. However, the x-vectors on  and 
are reversed in sign. The total character for  is thus . This representation can be decomposed as follows:

From the information on the right side of the  character table, translations of all four atoms in the ,  and  directions
transform as  and , respectively, whereas rotations about the , , and  axes transform as  and E.
Hence, of the twelve motions, three translations have  and  symmetry and three rotations have  and  symmetry. This
leaves six vibrations, of which two have  symmetry, none have  symmetry, and two (pairs) have  symmetry. We could
obtain symmetry-adapted vibrational and rotational bases by allowing symmetry projection operators of the irreducible
representation symmetries to operate on various elementary Cartesian  atomic displacement vectors centered on the four
atoms.

Direct Product Representations 

Direct Products in N-Electron Wave functions 

We now turn to the symmetry analysis of orbital products. Such knowledge is important because one is routinely faced with
constructing symmetry-adapted -electron configurations that consist of products of  individual spin orbitals, one for each
electron. A point-group symmetry operator S, when acting on such a product of orbitals, gives the product of  acting on each of
the individual orbitals

For example, reflection of an -orbital product through the  plane in  applies the reflection operation to all  electrons.

Just as the individual orbitals formed a basis for action of the point-group operators, the configurations ( -orbital products) form a
basis for the action of these same point-group operators. Hence, the various electronic configurations can be treated as functions on
which  operates, and the machinery illustrated earlier for decomposing orbital symmetry can then be used to carry out a symmetry
analysis of configurations.

Another shortcut makes this task easier. Since the symmetry adapted individual orbitals { } transform according to
irreducible representations, the representation matrices for the -term products shown above consist of products of the matrices
belonging to each . This matrix product is not a simple product but what is called a direct product. To compute the characters of
the direct product matrices, one multiplies the characters of the individual matrices of the irreducible representations of the 
orbitals that appear in the electron configuration. The direct-product representation formed by the orbital products can therefore be
symmetry-analyzed (reduced) using the same tools as we used earlier.

For example, if one is interested in knowing the symmetry of an orbital product of the form  (note: lower case letters are
used to denote the symmetry of electronic orbitals, whereas capital letters are reserved to label the overall configuration’s
symmetry) in  symmetry, the following procedure is used. For each of the six symmetry operations in the  point group, the
product of the characters associated with each of the six spin orbitals (orbital multiplied by á or â spin) is formed

In the specific case considered here, , , and . Notice that the contributions of any doubly
occupied non-degenerate orbitals (e.g., , and ) to these direct product characters  are unity because for all operators 

 for any one-dimensional irreducible representation. As a result, only the singly occupied or degenerate orbitals need
to be considered when forming the characters of the reducible direct-product representation . For this example this means that
the direct-product characters can be determined from the characters  of the two active (i.e., non-closed-shell) orbitals - the 
orbitals. That is, .

N H1 N H1

σv 4 −2 = 2

= (1 ⋅ 1 ⋅ 12 +2 ⋅ 1 ⋅ 0 +3 ⋅ 1 ⋅ 2) = 3,nA1

1

6
(4.4.66)

= (1 ⋅ 1 ⋅ 12 +2 ⋅ 1 ⋅ 0 +3 ⋅ −1 ⋅ 2) = 1,nA2

1

6
(4.4.67)

= (1 ⋅ 2 ⋅ 12 +2 ⋅ −1 ⋅ 0 +3 ⋅ 0 ⋅ 2) = 4.nE

1

6
(4.4.68)

C3v z x y

(z)A1 E(x, y) z( )Rz x( )Rx y( )Ry A2

A1 E A2 E

A1 A2 E

(x, y, z)

N N

S

S( . . . ) = (S )(S )(S ). . . (S ).ϕ1ϕ2ϕ3 ϕN ϕ1 ϕ2 ϕ3 ϕN (4.4.69)

N σv NH3 N

N

S

, i = 1, . . . ,Mϕi

N

ϕi

N

a2
1a

2
2e

2

C3v C2v

χ(S) = (S) = ( (S) ( (S) ( (S) .∏
j

χj χA1 )2 χA2 )2 χE )2 (4.4.70)

χ(E) = 4 χ(2 ) = 1C3 χ(3 ) = 0σv
a2

1 a2
2 χ(S)

( (S) = 1χk )2

χ(S)
(S)χE e2

χ(S) = (S) ⋅ (S)χE χE
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From the direct-product characters  belonging to a particular electronic configuration (e.g., ), one must still decompose
this list of characters into a sum of irreducible characters. For the example at hand, the direct-product characters  decompose
into one , one , and one  representation. This means that the  configuration contains , , and  symmetry elements.
Projection operators analogous to those introduced earlier for orbitals can be used to form symmetry-adapted orbital products from
the individual basis orbital products of the form , where  and  denote the occupation (1 or 0) of the two degenerate
orbitals  and . In Appendix III of Electronic Spectra and Electronic Structure of Polyatomic Molecules , G. Herzberg, Van
Nostrand Reinhold Co., New York, N.Y. (1966) the resolution of direct products among various representations within many point
groups are tabulated.

When dealing with indistinguishable particles such as electrons, it is also necessary to further project the resulting orbital products
to make them antisymmetric (for Fermions) or symmetric (for Bosons) with respect to interchange of any pair of particles. This
step reduces the set of -electron states that can arise. For example, in the above  configuration case, only , , and 
states arise; the , , and  possibilities disappear when the antisymmetry projector is applied. In contrast, for an 
configuration, all states arise even after the wave function has been made antisymmetric. The steps involved in combining the point
group symmetry with permutational antisymmetry are illustrated in Chapter 6 of this text as well as in Chapter 10 of my QMIC
text.

Direct Products in Selection Rules 

Two states  and  that are eigenfunctions of a Hamiltonian  in the absence of some external perturbation (e.g.,
electromagnetic field or static electric field or potential due to surrounding ligands) can be "coupled" by the perturbation  only if
the symmetries of  and of the two wave functions obey a so-called selection rule. In particular, only if the coupling integral

is non-vanishing will the two states be coupled by .

The role of symmetry in determining whether such integrals are non-zero can be demonstrated by noting that the integrand,
considered as a whole, must contain a component that is invariant under all of the group operations (i.e., belongs to the totally
symmetric representation of the group) if the integral is to not vanish. In terms of the projectors introduced above we must have

not vanish. Here the subscript  denotes the totally symmetric representation of whatever point group applies. The symmetry of
the product  is, according to what was covered earlier, given by the direct product of the symmetries of  of  and of .
So, the conclusion is that the integral will vanish unless this triple direct product contains, when it is reduced to its irreducible
components, a component of the totally symmetric representation.

Another way to state the above result, and a way this is more often used in practice, is that the integral  will vanish
unless the symmetry of the direct product  matches the symmetry of . Only when these symmetries match will the triple
direct product contain a non-zero component of the totally symmetric representation. This is very much the same as what we saw
earlier in this Chapter when we discussed how angular momentum coupling could limit which states contribute to the second-order
perturbation theory energy. The angular momenta of  and of , when coupled, must have a component that matches the angular
momentum of .

To see how this result is used, consider the integral that arises in formulating the interaction of electromagnetic radiation with a
molecule within the electric-dipole approximation:

Here,  is the vector giving, together with , the unit charge, the quantum mechanical dipole moment operator

where  and  are the charge and position of the nth nucleus and  is the position of the j  electron. Now, consider evaluating
this integral for the singlet  transition in formaldehyde. Here, the closed-shell ground state is of  symmetry and the
singlet excited state, which involves promoting an electron from the non-bonding  lone pair orbital on the Oxygen atom into the

χ(S) a2
1a

2
2e

2

χ(S)
A1 A2 E e2 A1 A2 E

a2
1a

2
2e

m
x e

m′

y m m′

ex ey

N e2 3A2
1A1 E1

E3 3A1
1A2 e1e′1

ψa ψb Ho

V

V

∫ V dτ =ψ∗
a ψb Va,b (4.4.71)

V

(S)S[ S ]∑
S

χA ψ∗
a ψb (4.4.72)

A

Vψ∗
a ψb ψ∗

a V ψb

∫ V τψa ψb

V ψb ψ∗
a

V ψb

ψa

∫ r dτψ∗
a ψb (4.4.73)

r e

r = e −e ,∑
n

ZnRn ∑
i

ri (4.4.74)

Zn Rn rj
th

n → π∗ 1A1

b2
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anti-bonding   orbital on the CO moiety, is of  symmetry ( ). The direct product of the two wave function
symmetries thus contains only  symmetry. The three components ( , , and ) of the dipole operator have, respectively, , ,
and  symmetry. Thus, the triple direct products give rise to the following possibilities:

There is no component of  symmetry in the triple direct product, so the integral vanishes. The alternative way of reaching this
same conclusion is to notice that the direct product of the symmetries of the   orbital and the  lone pair orbital is 

), which does not match the symmetry of any component of the dipole operator. Either route allows us to conclude
that the  excitation in formaldehyde is electric dipole forbidden.

Overview 
We have shown how to make a symmetry decomposition of a basis of atomic orbitals (or Cartesian displacements or orbital
products) into irreducible representation components. This tool is very helpful when studying spectroscopy and when constructing
the orbital correlation diagrams that form the basis of the Woodward-Hoffmann rules that play useful roles in predicting whether
chemical reactions will have energy barriers in excess of thermodynamic barriers. We also learned how to form the direct-product
symmetries that arise when considering configurations consisting of products of symmetry-adapted spin orbitals. Finally, we
learned how the direct product analysis allows one to determine whether or not integrals of products of wave functions with
operators between them vanish. This tool is of utmost importance in determining selection rules in spectroscopy and for
determining the effects of external perturbations on the states of the species under investigation.
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