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2.7: Angular Momentum

Orbital Angular Momentum 

A particle moving with momentum p at a position r relative to some coordinate origin has so-called orbital angular momentum
equal to . The three components of this angular momentum vector in a Cartesian coordinate system located at the origin
mentioned above are given in terms of the Cartesian coordinates of  and  as follows:

Using the fundamental commutation relations among the Cartesian coordinates and the Cartesian momenta:

which are proven by considering quantities of the from

it can be shown that the above angular momentum operators obey the following set of commutation relations:

Although the components of  do not commute with one another, they can be shown to commute with the operator  defined by

This new operator is referred to as the square of the total angular momentum operator.

The commutation properties of the components of  allow us to conclude that complete sets of functions can be found that are
eigenfunctions of  and of one, but not more than one, component of . It is convention to select this one component as , and
to label the resulting simultaneous eigenstates of  and  as  according to the corresponding eigenvalues:

These eigenfunctions of  and of  will not, in general, be eigenfunctions of either  or of . This means that any
measurement of  or  will necessarily change the wave function if it begins as an eigenfunction of .

The above expressions for , , and  can be mapped into quantum mechanical operators by substituting , , and  as the

corresponding coordinate operators and , , and  for , , and , respectively. The resulting operators can

then be transformed into spherical coordinates the results of which are:

L = r ×p

r p

= x −y ,Lz py px (2.7.1)

= y −z ,Lx pz py (2.7.2)

= z −x .Ly px pz (2.7.3)

[ , ] = − = iℏ (j, k = x, y, z),qk pj qkpj pjqk δj,k (2.7.4)

(x − x)f = −iℏ[x − ] = iℏf ,px px
∂f

∂x

∂(xf)

∂x
(2.7.5)

[ , ] = iℏ ,Lx Ly Lz (2.7.6)

[ , ] = iℏ ,Ly Lz Lx (2.7.7)

[ , ] = iℏ .Lz Lx Ly (2.7.8)

L L2

= + + .L2 L2
x L2

y L2
z (2.7.9)

L

L2 L Lz

L2 Lz |l,m⟩

|l,m⟩ = l(l+1)|l,m⟩, l = 0, 1, 2, 3, . . . .L2 ℏ2 (2.7.10)

|l,m⟩ = ℏm|l,m⟩,m = ±l, ±(l−1), ±(l−2), . . . ±(l−(l−1)), 0.Lz (2.7.11)
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Properties of General Angular Momenta 

There are many types of angular momenta that one encounters in chemistry. Orbital angular momenta, such as that introduced
above, arise in electronic motion in atoms, in atom-atom and electron-atom collisions, and in rotational motion in molecules.
Intrinsic spin angular momentum is present in electrons,  and many other nuclei. In this Section, we will deal with
the behavior of any and all angular momenta and their corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular momentum. The Hamiltonian's interaction potentials present
in a particular species may or may not cause these individual angular momenta to be coupled to an appreciable extent (i.e., the
Hamiltonian may or may not contain terms that refer simultaneously to two or more of these angular momenta). For example, the 

 ion, which has a  ground electronic state (its electronic configuration is ) has electronic spin,
electronic orbital, and molecular rotational angular momenta. The full Hamiltonian  contains terms that couple the electronic spin
and orbital angular momenta, thereby causing them individually to not commute with .

In such cases, the eigenstates of the system can be labeled rigorously only by angular momentum quantum numbers  and 
belonging to the total angular momentum operators  and . The total angular momentum of a collection of individual angular
momenta is defined, component-by-component, as follows:

where  labels , , and , and  labels the constituents whose angular momenta couple to produce J.

For the remainder of this Section, we will study eigenfunction-eigenvalue relationships that are characteristic of all angular
momenta and which are consequences of the commutation relations among the angular momentum vector's three components. We
will also study how one combines eigenfunctions of two or more angular momenta { } to produce eigenfunctions of the total .

Consequences of the Commutation Relations 

Any set of three operators that obey

will be taken to define an angular momentum , whose square  commutes with all three of its components. It is
useful to also introduce two combinations of the three fundamental operators  and :

and to refer to them as raising and lowering operators for reasons that will be made clear below. These new operators can be shown
to obey the following commutation relations:

Using only the above commutation properties, it is possible to prove important properties of the eigenfunctions and eigenvalues of 
 and . Let us assume that we have found a set of simultaneous eigenfunctions of  and  ; the fact that these two operators

commute tells us that this is possible. Let us label the eigenvalues belonging to these functions:

in terms of the quantities  and . Although we certainly hint that these quantities must be related to certain  and 
quantum numbers, we have not yet proven this, although we will soon do so. For now, we view  and  simply as symbols
that represent the respective eigenvalues. Because both  and  are Hermitian, eigenfunctions belonging to different  or 

 quantum numbers must be orthogonal:

, , ,H 1 H 2 C 13

NH− P2 1 2 3 2 2s2 s2 s2 p2
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H

H

j m

J2 Jz

= (i),Jk ∑
i

Jk (2.7.16)

k x y z i

J(i) J

[ , ] = iℏ ,Jx Jy Jz (2.7.17)

[ , ] = iℏ ,Jy Jz Jx (2.7.18)

[ , ] = iℏ ,Jz Jx Jy (2.7.19)

J = + +J2 J2
x J2

y J2
z

Jx Jy

= ± i ,J± Jx Jy (2.7.20)

[ , ] = 0,J2 J± (2.7.21)

[ , ] = ±ℏ .Jz J± J± (2.7.22)

J2 Jz J2 Jz

|j,m⟩ = f(j,m)|j,m⟩,J2 ℏ2 (2.7.23)

|j,m⟩ = ℏm|j,m⟩,Jz (2.7.24)

m f(j,m) j m

f(j,m) m

J2 Jz f(j,m)
m

⟨j,m| , ⟩ = .j′ m′ δm,m′δj,j′ (2.7.25)
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We now prove several identities that are needed to discover the information about the eigenvalues and eigenfunctions of general
angular momenta that we are after. Later in this Section, the essential results are summarized.

There is a Maximum and a Minimum Eigenvalue for  

Because all of the components of  are Hermitian, and because the scalar product of any function with itself is positive semi-
definite, the following identity holds:

However,  is equal to , so this inequality implies that

which, in turn, implies that  must be less than or equal to . Hence, for any value of the total angular momentum
eigenvalue , the z-projection eigenvalue ( ) must have a maximum and a minimum value and both of these must be less than or
equal to the total angular momentum squared eigenvalue .

The Raising and Lowering Operators Change the  Eigenvalue but not the  Eigenvalue When Acting on  

Applying the commutation relations obeyed by  to  yields another useful result:

Now, using the fact that  is an eigenstate of  and of , these identities give

These equations prove that the functions  must either themselves be eigenfunctions of  and , with eigenvalues 
 and , respectively, or  must equal zero. In the former case, we see that  acting on  generates

a new eigenstate with the same  eigenvalue as but with one unit of h higher or lower in  eigenvalue. It is for this reason
that we call  raising and lowering operators. Notice that, although  is indeed an eigenfunction of  with eigenvalue

,  is not identical to ; it is only proportional to :

Explicit expressions for these  coefficients will be obtained below. Notice also that because the , and hence 
, have the same  eigenvalue as  (in fact, sequential application of  can be used to show that all , for all 

, have this same  eigenvalue), the  eigenvalue  must be independent of m. For this reason,  can be labeled by one
quantum number j.

iii. The  Eigenvalues are Related to the Maximum and Minimum  Eigenvalues, Which are Related to One
Another 

Earlier, we showed that there exists a maximum and a minimum value for m, for any given total angular momentum. It is when one
reaches these limiting cases that  applies. In particular,

Applying the following identities:

respectively, to  and  gives

Jz

J

⟨j,m| + |j,m⟩ = ⟨ ⟨j,m| |j,m⟩+ ⟨ ⟨j,m| |j,m⟩ ≥ 0.J2
x J2

y Jx Jx Jy Jy (2.7.26)

+J2
x J2

y −J2 J2
z

⟨j,m| − |j,m⟩ = f(j,m) − ≥ 0,J2 J2
z ℏ2 m2 (2.7.27)

m2 f(j,m)
f m

f

Jz J2 |j,m⟩

J± |j,m⟩

|j,m⟩− |j,m⟩ = ±ℏ |j,m⟩,JzJ± J±Jz J± (2.7.28)

|j,m⟩− |j,m⟩ = 0.J2J± J±J2 (2.7.29)

|j,m⟩ J2 Jz

|j,m⟩ = (mℏ ±ℏ) |j,m⟩ = h(m±1)|j,m⟩,JzJ± J± (2.7.30)

|j,m⟩ = f(j,m) |j,m⟩.J2J± ℏ2 J± (2.7.31)

|j,m⟩J± J2 Jz

f(j,m)ℏ2 ℏ(m+1) |j,m⟩J± J± |j,m⟩

J2 |j,m⟩ Jz

J± |j,m⟩J± Jz

(m±1)ℏ |j,m⟩J± |j,m±1⟩ |j,m±1⟩

|j,m⟩ = |j,m±1⟩.J± C±
j,m (2.7.32)

C±
j,m |j,m⟩J±

|j,m±1⟩ J2 |j,m⟩ J± |j, ⟩m′

m′ J2 J2 f(j,m) f

J2 Jz

|j,m⟩ = 0J±

|j, ⟩ = 0,J+ mmax (2.7.33)

|j, ⟩ = 0.J− mmin (2.7.34)

= − −ℏ ,J−J+ J2 J2
z Jz (2.7.35)

= − +ℏ ,J+J− J2 J2
z Jz (2.7.36)

|j, ⟩mmax |j, ⟩mmin

{f(j, ) − − } = 0,ℏ2 mmax m2
max mmax (2.7.37)
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which immediately gives the  eigenvalue  and  in terms of  or :

So, we now know the  eigenvalues for  and . However, we earlier showed that and  have the
same  eigenvalue (when we treated the effect of  on ) and that the  eigenvalue is independent of m. If we therefore
define the quantum number  to be , we see that the  eigenvalues are given by

We also see that

from which it follows that

The  Quantum Number Can Be Integer or Half-Integer 

The fact that the -values run from  to  in unit steps (because of the property of the  operators), there clearly can be only
integer or half-integer values for . In the former case, the  quantum number runs over 

;

in the latter,  runs over . Only integer and half-integer values can range

from  to  in steps of unity. Species whose intrinsic angular momenta are integers are known as Bosons and those with half-
integer spin are called Fermions.

More on  

Using the above results for the effect of  acting on  and the fact that  and  are adjoints of one another (two operators 
 and  are adjoints if , for all  and all ) allows us to write:

where  is the proportionality constant between  and the normalized function

. Likewise, the effect of  can be expressed as

where  is the proportionality constant between  and the normalized . Thus, we can solve for  after
which the effect of  on  is given by:

Summary 
The above results apply to any angular momentum operators. The essential findings can be summarized as follows:

(i)  and  have complete sets of simultaneous eigenfunctions. We label these eigenfunctions ; they are orthonormal
in both their m- and j-type indices:

(ii) These  eigenfunctions obey:

{f(j, ) − + } = 0,ℏ2 mmin m2
min

mmin (2.7.38)

J2 f(j, )mmax f(j, )mmin mmax mmin

f(j, ) = ( +1),mmax mmax mmax (2.7.39)

f(j, ) = ( −1).mmin mmin mmin (2.7.40)

J2 |j, ⟩mmax |j, ⟩mmin |j,m⟩ |j,m−1⟩

J2 J± |j,m⟩ J2

j mmax J2

|j,m⟩ = j(j+1)|j,m⟩.J2 ℏ2 (2.7.41)

f(j,m) = j(j+1) = ( +1) = ( −1),mmax mmax mmin mmin (2.7.42)

= − .mmin mmax (2.7.43)

j

m j −j J±

j m

−j, −j+1, −j+2, . . . , −j+(j−1), 0, 1, 2, . . . j

m −j, −j+1, −j+2, . . . −j+(j− ), , , . . . j
1

2

1

2

3

2
j −j

|j,m⟩J±

J± |j,m⟩ J+ J−

F G ⟨ψ|F|χ⟩ = ⟨Gψ|χ⟩ ψ χ

⟨j,m| |j,m⟩ = ⟨j,m|( − −ℏ )|j,m⟩J−J+ J2 J2
z Jz (2.7.44)

= j(j+1) −m(m+1) = ⟨ ⟨j,m| |j,m⟩ = ( ,ℏ2 J+ J+ C+
j,m)2 (2.7.45)

C+
j,m |j,m⟩J+

|j,m+1⟩ J−

⟨j,m| |j,m⟩ = ⟨j,m|( − +ℏ )|j,m⟩J+J− J2 J2
z Jz (2.7.46)

= j(j+1) −m(m−1) = ⟨ ⟨j,m| |j,m⟩ = ( ,ℏ2 J− J− C−
j,m)2 (2.7.47)

C−
j,m |j,m⟩J− |j,m−1⟩ C±

j,m

J± |j,m⟩

|j,m⟩ = h |j,m±1⟩.J± j(j+1)–m(m±1)
− −−−−−−−−−−−−−−

√ (2.7.48)

J2 Jz |j,m⟩

⟨j,m| , ⟩ = .j′ m′ δm,m′δj,j′ (2.7.49)

|j,m⟩
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(iii) The raising and lowering operators  act on  to yield functions that are eigenfunctions of  with the same
eigenvalue as  and eigenfunctions of  with eigenvalue of  :

(iv) When  acts on the extremal states  or , respectively, the result is zero.

The results given above are, as stated, general. Any and all angular momenta have quantum mechanical operators that obey these
equations. It is convention to designate specific kinds of angular momenta by specific letters; however, it should be kept in mind
that no matter what letters are used, there are operators corresponding to , , and  that obey relations as specified above, and
there are eigenfunctions and eigenvalues that have all of the properties obtained above. For electronic or collisional orbital angular
momenta, it is common to use  and  ; for electron spin, S2 and Sz are used; for nuclear spin I2 and Iz are most common; and
for molecular rotational angular momentum, N2 and Nz are most common (although sometimes  and  may be used).
Whenever two or more angular momenta are combined or coupled to produce a total angular momentum, the latter is designated by

 and .

Coupling of Angular Momenta 
If the Hamiltonian under study contains terms that couple two or more angular momenta , then only the components of the
total angular momentum  and the total  will commute with . It is therefore essential to label the quantum states of
the system by the eigenvalues of  and  and to construct variational trial or model wave functions that are eigenfunctions of
these total angular momentum operators. The problem of angular momentum coupling has to do with how to combine
eigenfunctions of the uncoupled angular momentum operators, which are given as simple products of the eigenfunctions of the
individual angular momenta , to form eigenfunctions of  and .

Eigenfunctions of  

Because the individual elements of  are formed additively, but  is not, it is straightforward to form eigenstates of

simple products of the form  are eigenfunctions of :

and have  eigenvalues equal to the sum of the individual  eigenvalues. Hence, to form an eigenfunction with specified  and
 eigenvalues, one must combine only those product states  whose  sum is equal to the specified  value.

Eigenfunctions of ; the Clebsch-Gordon Series 

The task is then reduced to forming eigenfunctions , given particular values for the { } quantum numbers. When coupling
pairs of angular momenta {  and  }, the total angular momentum states can be written, according to what we
determined above, as

where the coefficients  are called vector coupling coefficients (because angular momentum coupling is viewed much like
adding two vectors  and  to produce another vector ), and where the sum over  and  is restricted to those terms for which 

. It is more common to express the vector coupling or so-called Clebsch-Gordon (CG) coefficients as 
 and to view them as elements of a matrix whose columns are labeled by the coupled-state  quantum

numbers and whose rows are labeled by the quantum numbers characterizing the uncoupled product basis . It turns out
that this matrix can be shown to be unitary so that the CG coefficients obey:

|j,m⟩ = j(j+1)|j,m⟩, {j=  integer or half-integer},J2 ℏ2 (2.7.50)

|j,m⟩ = ℏm|j,m⟩, {m = −j,  in steps of 1 to  +j}.Jz (2.7.51)

J± |j,m⟩ J2

|j,m⟩ Jz (m±1)ℏ

|j,m⟩ = ℏ |j,m±1⟩.J± j(j+1) −m(m±1)
− −−−−−−−−−−−−−−−

√ (2.7.52)

J± |j, j⟩ |j, −j⟩

J2 Jz J±

L2 Lz

J2 Jz

J2 Jz

J(i)

J = J(i)∑i J2 H

Jz J2

| , ⟩∏i ji mi J2 Jz

Jz

J J2

= (i);Jz ∑
i

Jz (2.7.53)

| , ⟩∏i ji mi Jz

| , ⟩ = (k) | , ⟩ = ℏ | , ⟩,Jz∏
i

ji mi ∑
k

Jz ∏
i

ji mi ∑
k

mk∏
i

ji mi (2.7.54)

Jz ℏmk J

M | , ⟩∏i ji mi ℏmi M

J2

|J,M⟩ ji
|j,m⟩ | , ⟩j′ m′

|J,M⟩ = |j,m⟩| , ⟩,∑
m,m′

CJ,M
j,m; ,j′ m′ j′ m′ (2.7.55)

C
J,M
j,m; ,j′ m′

j j′ J m m′

m+ = Mm′

⟨j,m; |J,M⟩j′m′ J,M
j,m; ,j′ m′
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and

This unitarity of the CG coefficient matrix allows the inverse of the relation giving coupled functions in terms of the product
functions:

to be written as:

This result expresses the product functions in terms of the coupled angular momentum functions.

Generation of the Clebsch-Gordon Coefficients 

The Clebsch-Gordon coefficients can be generated in a systematic manner; however, they can also be looked up in books where
they have been tabulated (e.g., see Table 2.4 of R. N. Zare, Angular Momentum, John Wiley, New York (1988)). Here, we will
demonstrate the technique by which the CG coefficients can be obtained, but we will do so for rather limited cases and refer the
reader to more extensive tabulations for more cases.

The strategy we take is to generate the  state (i.e., the state with maximum -value) and to then use  to generate 
, after which the state  (i.e., the state with one lower  value) is constructed by finding a combination of

the product states in terms of which  is expressed (because both  and  have the same 
-value ) which is orthogonal to  (because  and  are eigenfunctions of the

Hermitian operator  corresponding to different eigenvalues, they must be orthogonal). This same process is then used to generate
 and (by orthogonality construction) , and so on.

The States With Maximum and Minimum M-Values 

We begin with the state  having the highest -value. This state must be formed by taking the highest  and the highest 
values (i.e.,  and ), and is given by:

Only this one product is needed because only the one term with m=j and m'=j' contributes to the sum in the above CG series. The
state

with the minimum -value is also given as a single product state. Notice that these states have -values given as ;
since this is the maximum -value, it must be that the -value corresponding to this state is .

States With One Lower M-Value But the Same  Value 

Applying  to , and expressing  as the sum of lowering operators for the two individual angular momenta:

gives

⟨j,m; |J,M ⟨j,m; | , ⟩ =∑
m,m′

j′m′ ⟩∗ j′m′ J ′ M ′ δj,j′δm,m′ (2.7.56)

⟨j,n; |J,M⟩⟨j,m; |J,M = .∑
J,M

j′n′ j′m′ ⟩∗ δn,mδ ,n′ m′ (2.7.57)

|J,M⟩ = ⟨j,m; |J,M⟩|j,m⟩| , ⟩∑
m,m′

j′m′ j′ m′ (2.7.58)

|j,m⟩| , ⟩ = ⟨j,m; |J,M |J,M⟩j′ m′ ∑
J,M

j′m′ ⟩∗ (2.7.59)

= ⟨J,M |j,m; ⟩|J,M⟩.∑
J,M

j′m′ (2.7.60)

|J, J⟩ M J−

|J, J −1⟩ |J −1, J −1⟩ J−

|J −1, J −1⟩ |J −1, J −1⟩ |J −1, J −1⟩

M M = J −1 |J, J −1⟩ |J −1, J −1⟩ |J, J −1⟩

J2

|J, J −2⟩|J −1, J −2⟩ |J −2, J −2⟩

|J, J⟩ M m m′

m = j =m′ j′

|J, J⟩ = |j, j⟩| ⟩.j′j′ (2.7.61)

|J, −J⟩ = |j, −j⟩| , − ⟩j′ j′ (2.7.62)

M M ±(j+ )j′

M J J = j+j′

J−

J− |J, J⟩ J−

= (1) + (2)J− J− J− (2.7.63)

|J, J⟩ = ℏ |J, J −1⟩J− J(j+1) −J(j−1)
− −−−−−−−−−−−−−−

√ (2.7.64)

= ( (1) + (2))|j, j⟩| ⟩J− J− j′j′ (2.7.65)
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This result expresses  as follows:

that is, the  state, which has , is formed from the two product states  and  that
have this same -value.

iii. States With One Lower  Value 

To find the state  that has the same -value as the one found above but one lower  value, we must construct
another combination of the two product states with  (i.e.,  and ) that is orthogonal to the
combination representing ; after doing so, we must scale the resulting function so it is properly normalized. In this case,
the desired function is:

It is straightforward to show that this function is indeed orthogonal to .

States With Even One Lower  Value 

Having expressed  and  in terms of   and , we are now prepared to carry on
with this stepwise process to generate the states ,  and  as combinations of the product
states with . These product states are , , and . Notice that there are
precisely as many product states whose  values add up to the desired -value as there are total angular momentum states
that must be constructed (there are three of each in this case).

The steps needed to find the state  are analogous to those taken above:

a. One first applies  to  and to  to obtain  and , respectively as combinations
of , , and .

b. One then constructs  as a linear combination of the , , and 
that is orthogonal to the combinations found for  and .

Once  is obtained, it is then possible to move on to form , , and  by applying 
 to the three states obtained in the preceding application of the process, and to then form  as the combination of 

, , ,  that is orthogonal to the combinations obtained for 
, , and .

Again notice that there are precisely the correct number of product states (four here) as there are total angular momentum states to
be formed. In fact, the product states and the total angular momentum states are equal in number and are both members of
orthonormal function sets (because , , , and  as well as  and  are Hermitian operators which have
complete sets of orthonormal eigenfunctions). This is why the CG coefficient matrix is unitary; because it maps one set of
orthonormal functions to another, with both sets containing the same number of functions.

Example 
Example 1

Let us consider an example in which the spin and orbital angular momenta of the Si atom in its  ground state can be coupled to
produce various  states. In this case, the specific values for  and  are  and . We could, of course take 

 and , but the final wave functions obtained would span the same space as those we are about to determine.
The state with highest -value is the  state, which can be represented by the product of an  spin function
(representing ) and a  spatial function (representing ), where the first function corresponds to the
first open-shell orbital and the second function to the second open-shell orbital. Thus, the maximum -value is  and
corresponds to a state with :

= ℏ |j, j−1⟩| , ⟩+ℏ |j, j⟩| , −1⟩.j(j+1) −j(j−1)
− −−−−−−−−−−−−−

√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′
− −−−−−−−−−−−−−−−

√ j′ j′ (2.7.66)

|J, J −1⟩

|J, J −1⟩ = ;
|j, j−1⟩| , ⟩+ |j, j⟩| , −1⟩j(j+1) −j(j−1)

− −−−−−−−−−−−−−
√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′− −−−−−−−−−−−−−−−

√ j′ j′

J(J +1) −J(J −1)
− −−−−−−−−−−−−−−−√

(2.7.67)

|J, J −1⟩ M = J −1 |j, j−1⟩| , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

M

J−

|J −1, J −1⟩ M J−

M = J −1 |j, j−1⟩| , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

|J, J −1⟩

|J −1, J −1⟩ = .
|j, j⟩| , −1⟩− |j, j−1⟩| , ⟩j(j+1) −j(j−1)

− −−−−−−−−−−−−−
√ j′ j′ ( +1) − ( −1)j′ j′ j′ j′

− −−−−−−−−−−−−−−−
√ j′ j′

J(J +1) −J(J −1)
− −−−−−−−−−−−−−−−√

(2.7.68)

|J, J −1⟩

J−

|J, J −1⟩ |J −1, J −1⟩ |j, j−1⟩ | , ⟩j′ j′ |j, j⟩| , −1⟩j′ j′

|J, J −2⟩ |J −1, J −2⟩ |J −2, J −2⟩

M = J −2 |j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

m+m′ M

|J −2, J −2⟩

J− |J −1, J −1⟩ |J, J −1⟩ |J −1, J −2⟩ |J, J −2⟩

|j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

|J −2, J −2⟩ |j, j−2⟩| , ⟩j′ j′ |j, j⟩| , −2⟩j′ j′ |j, j−1⟩| , −1⟩j′ j′

|J −1, J −2⟩ |J, J −2⟩

|J −2, J −2⟩ |J, J −3⟩ |J −1, J −3⟩ |J −2, J −3⟩

J− |J −3, J −3⟩

|j, j−3⟩| , ⟩j′ j′ |j, j⟩| , −3⟩j′ j′ |j, j−2⟩| , −1⟩j′ j′ |j, j−1⟩| , −2⟩j′ j′

|J, J −3⟩ |J −1, J −3⟩ |J −2, J −3⟩

(1)J2 (1)Jz (2)J2 (2)Jz J2 Jz

P3

3PJ j j′ j = S = 1 = L = 1j′

j = L = 1 = S = 1j′

M P( = 1, = 1)(3 Ms ML αα

S = 1, = 1Ms 3 3p1 p0 L = 1, = 1ML

M M = 2

J = 2

J = 2, M = 2⟩ = |2, 2⟩ = αα3 3 .p1 p0 (2.7.69)
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Clearly, the state  would be given as .
The states  and  with one lower -value are obtained by applying  to  as follows:

To apply  or  to , one must realize that each of these operators is, in turn, a sum of lowering operators for each of the
two open-shell electrons:

The result above can therefore be continued as

So, the function  is given by

which can be rewritten as:

Writing the result in this way makes it clear that  is a combination of the product states  (the
terms containing  and  (the terms containing 

).
There is a good chance that some readers have noticed that some of the terms in the  function would violate the Pauli exclusion
principle. In particular, the term  places two electrons into the same orbitals and with the same spin. Indeed, this electronic
function would indeed violate the Pauli principle, and it should not be allowed to contribute to the final Si  wave functions we are
trying to form. The full resolution of how to deal with this paradox is given in the following Subsection, but for now let me say the
following:
(i) Once you have learned that all of the spin-orbital product functions shown for  (e.g., , , and 

) represent Slater determinants (we deal with this in the next Subsection) that are antisymmetric with respect to permutation
of any pair of electrons, you will understand that the Slater determinant corresponding to  vanishes.
(ii) If, instead of considering the  configuration of Si, we wanted to generate wave functions for the    states of Si,
the same analysis as shown above would pertain, except that now the  state would have a contribution from . This
contribution does not violate the Pauli principle, and its Slater determinant does not vanish.
So, for the remainder of this treatment of the  states of Si, don’t worry about terms arising that violate the Pauli principle; they will
not contribute because their Slater determinants will vanish.
To form the other function with , the  state, we must find another combination of  and 

 that is orthogonal to  and is normalized. Since

we immediately see that the requisite function is

|2, −2⟩ ββ3 3p−1 p0

|2, 1⟩ |1, 1⟩ M = +J− S− L− |2, 2⟩

|2, 2⟩ = ℏ |2, 1⟩ = ℏ |2, 1⟩J− J(J + 1) −M(M − 1)
− −−−−−−−−−−−−−−−−−

√ 2(3) − 2(1)
− −−−−−−−−

√ (2.7.70)

= ( + )αα3 3 .S− L− p1 p0 (2.7.71)

S− L− αα3 3p1 p0

= (1) + (2),S− S− S− (2.7.72)

= (1) + (2).L− L− L− (2.7.73)

( + )αα3 3 = ℏ βα3 3S− L− p1 p0 ( )− (− )
1

2

3

2

1

2

1

2

− −−−−−−−−−−−−−−
√ p1 p0 (2.7.74)

+ℏ αβ3 3( )− (− )
1

2

3

2

1

2

1

2

− −−−−−−−−−−−−−−
√ p1 p0 (2.7.75)

+ℏ αα3 31(2) − 1(0)
− −−−−−−−−

√ p0 p0 (2.7.76)

+ℏ αα3 3 .1(2) − 0(−1)
− −−−−−−−−−

√ p1 p−1 (2.7.77)

|2, 1⟩

|2, 1⟩ = [βα3 3 + ab3 3 + αα3 3 + αα3 3 ],
1

2
p1 p0 p1 p0 2

–
√ p0 p0 2

–
√ p1 p−1 (2.7.78)

|2, 1⟩ = [(βα+ ab 3 + αα(3 3 + 3 3 )].
1

2
)3p1 p0 2

–
√ p0 p0 p1 p−1 (2.7.79)

|2, 1⟩ |S = 1, = 0⟩|L = 1, = 1⟩MS ML

|S = 1, = 0⟩ = (α β +βα ))MS
1

2√
|S = 1, = 1⟩|L = 1, = 0⟩MS ML

|S = 1, = 1⟩ = ααMS

|2, 1⟩

αα3 3p0 p0
3PJ

|2, 1⟩ αα3 3p0 p0 (βα+α β  3)3p1 p0

αα3 3p1 p−1

αα3 3p0 p0

3 3s2 p2 3 3 4s2 p1 p1 3PJ

|2, 1⟩ αα3 4p0 p0

3PJ

M = 1 |1, 1⟩ |S = 1, = 0⟩|L = 1, = 1⟩MS ML

|S = 1, = 1⟩|L = 1, = 0⟩MS ML |2, 1⟩

|2, 1⟩ = [|S = 1, = 0⟩|L = 1, = 1⟩ + |S = 1, = 1⟩|L = 1, = 0⟩],
1

2
–√

MS ML MS ML (2.7.80)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/17177?pdf


2.7.9 https://chem.libretexts.org/@go/page/17177

In the spin-orbital notation used above, this state is:

Thus far, we have found the  states with  and .
To find the  states with ; and  we must once again apply the  tool. In particular, we
apply  to  to obtain  and we apply  to  to obtain , each of which will be expressed in terms of 

, , and . The  state
is then constructed to be a combination of these same product states which is orthogonal to  and to . The results are as
follows:

where, in all cases, a short hand notation has been used in which the  product stated have been represented by their
quantum numbers with the spin function always appearing first in the product. To finally express all three of these new functions in
terms of spin-orbital products it is necessary to give the  products with  in terms of these products. For the spin
functions, we have:

For the orbital product function, we have:

Coupling Angular Momenta of Equivalent Electrons 

If equivalent angular momenta are coupled (e.g., to couple the orbital angular momenta of a  or  configuration), there is a tool
one can use to determine which of the term symbols violate the Pauli principle. To carry out this step, one forms all possible unique
(determinental) product states with non-negative  and  values and arranges them into groups according to their  and 
values. For example, the “boxes” appropriate to the  orbital occupancy that we considered earlier for Si are shown below:

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

There is no need to form the corresponding states with negative  or negative  values because they are simply "mirror
images" of those listed above. For example, the state with  and  is , which can be obtained from the 

|1, 1⟩ = [|S = 1, = 0⟩|L = 1, = 1⟩ − |S = 1, = 1⟩|L = 1, = 0⟩].
1

2
–√

MS ML MS ML (2.7.81)

|1, 1⟩ = .
(βα+ ab 3 − αα(3 3 + 3 3 ))3p1 p0 2

–√ p0 p0 p1 p−1

2
(2.7.82)

3PJ J = 2, M = 2; J = 2, M = 1; J = 1, M = 1
3PJ J = 2, M = 0; J = 1, M = 0 J = 0, M = 0, J−

J− |2, 1⟩ |2, 0⟩ J− |1, 1⟩ |1, 0⟩

|S = 1, = 0⟩|L = 1, = 0⟩MS ML |S = 1, = 1⟩|L = 1, = −1⟩MS ML |S = 1, = −1⟩|L = 1, = 1⟩MS ML |0, 0⟩

|2, 0⟩ |1, 0⟩

|J = 2, M = 0⟩ = [2|1, 0⟩|1, 0⟩ + |1, 1⟩|1, −1⟩ + |1, −1⟩|1, 1⟩],
1

6
–√

(2.7.83)

|J = 1, M = 0⟩ = [|1, 1⟩|1, −1⟩ − |1, −1⟩|1, 1⟩],
1

2
–

√
(2.7.84)

|J = 0, M = 0⟩ = [|1, 0⟩|1, 0⟩ − |1, 1⟩|1, −1⟩ − |1, −1⟩|1, 1⟩],
1

3
–√

(2.7.85)

|S, ⟩|L, ⟩MS ML

|S, ⟩|L, ⟩MS ML M = 0

|S = 1, = 1⟩ = αα,MS (2.7.86)

|S = 1, = 0⟩ = (αβ+ βα).MS

1

2
–

√
(2.7.87)

|S = 1, = −1⟩ = ββ.MS (2.7.88)

|L = 1, = 1⟩ = 3 3 ,ML p1 p0 (2.7.89)

|L = 1, = 0⟩ = (3 3 + 3 3 ),ML

1

2
–

√
p0 p0 p1 p−1 (2.7.90)

|L = 1, = −1⟩ = 3 3 .ML p0 p−1 (2.7.91)

p2 d3

ML MS ML MS

p2

S L

1 0 1 -1

1 1 1 0 0 1

1 -1

-1 1

0 0

ML MS

= −1ML = −1MS | β β|p−1 p0
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 state  by replacing a by b and replacing  by .

Given the box entries, one can identify those term symbols that arise by applying the following procedure over and over until all
entries have been accounted for:

i. One identifies the highest  value (this gives a value of the total spin quantum number that arises, ) in the box. For the
above example, the answer is .

ii. For all product states of this  value, one identifies the highest  value (this gives a value of the total orbital angular
momentum, , that can arise for this ). For the above example, the highest  within the  states is  (not 

), hence .
iii. Knowing an  combination, one knows the first term symbol that arises from this configuration. In the  example, this is 

.
iv. Because the level with this  and  quantum numbers contains  states with  and  quantum numbers

running from  to  and from  to , respectively, one must remove from the original box this number of product states.
To do so, one simply erases from the box one entry with each such  and  value. Actually, since the box need only show
those entries with non-negative  and  values, only these entries need be explicitly deleted. In the  example, this
amounts to deleting nine product states with ,  values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

v. After deleting these entries, one returns to step 1 and carries out the process again. For the  example, the box after deleting
the first nine product states looks as follows (those that appear in italics should be viewed as already deleted in counting all of
the  states):

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

It should be emphasized that the process of deleting or crossing off entries in various  boxes involves only counting how
many states there are; by no means do we identify the particular  wave functions when we cross out any particular
entry in a box. For example, when the  product is deleted from the  box in accounting for the states in
the  level, we do not claim that  itself is a member of the  level; the product state could just as well been
eliminated when accounting for the  states.

Returning to the  example at hand, after the  term symbol's states have been accounted for, the highest  value is 0 (hence
there is an  state), and within this  value, the highest  value is 2 (hence there is an  state). This means there is a 

 level with five states having . Deleting five appropriate entries from the above box (again denoting
deletions by italics) leaves the following box:

M  M 2 1 0

1 |p α  p α | |p α p α|

0 |p α p β| |p α p β |, |p α p β|
|p α p β |,
|p αp β|,
|p α p β |

The only remaining entry, which thus has the highest  and  values, has  and . Thus there is also a  level
in the  configuration.

Thus, unlike the non-equivalent  case, in which  and  levels arise, only the  and  arise in
the  situation. This "box method" is useful to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can determine all possible couplings of the equivalent
angular momenta using this method and then use the simpler vector coupling method to add the non-equivalent angular momenta to
each of these coupled angular momenta. For example, the  configuration can be handled by vector coupling (using the

= 1, = 1ML MS | α α|p1 p0 p1 p−1

MS S

S = 1
MS ML

L S ML = 1MS = 1ML

= 2ML L = 1
S,L p2

P3

L S (2L+1)(2S+1) ML MS

−L L −S S

ML MS

ML MS P3

ML MS

p2

P3

S L

1 0 1 -1

1 1 1 0 0 1

1 -1

-1 1

0 0

,ML MS

L,S, ,ML MS

| α β|p1 p0 = 1, = 0ML MS

P3 | α β|p1 p0 P3 | α β|p0 p1

P3

p2 P3 MS

S = 0 MS ML L = 2
D1 = 2, 1, 0, −1, −2ML

S L

1 0 1 -1

1 1 1 0 0 1

1 -1

-1 1

0 0

MS ML = 0MS = 0ML S1

p2

3 4p1 p1 P P D D S,3 ,1 ,3 ,1 ,3 S1 P D,3 ,1 S1

p2

p2d1
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straightforward non-equivalent procedure)  (the d orbital) and  (the third electron's spin) to each of  and 

arising from the configuration. The result is  and .
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