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4.6: Time Dependent Perturbation Theory
When dealing with the effects of external perturbations (e.g., applied fields, collisions with other species), one needs to have a way
to estimate the probabilities and rates of transitions among states of the system of interest induced by these perturbations. Time-
dependent perturbation theory (TDPT) offers a framework within which such estimates can be achieved.

Derivation 
In deriving the working equations of TDPT, one begins with the time-dependent Schrödinger equation

in which  is the Hamiltonian for the system whose transitions are to be probed, and  is the perturbation caused by the
external field or the collision. The wave function that solves this equation is expanded in an order-by-order manner as in
conventional perturbation theory

Here  is the eigenfunction of  from which transitions to other eigenstates (denoted ) of  are being considered. Because, in
the absence of the external perturbation , the states of  are known to vary with time as , this component of the time
dependence of the total wave function is included in the above expansion. Then, the first-order correction  is expanded in terms
of the complete set of states { } after which the expansion coefficients { } become the unknowns to be solved for

It should be noted that this derivation treats the zeroth-order states {  and } as eigenfunctions of . However, in most

practical applications of TDPT, {  and } are not known exactly and, in fact, are usually approximated by using variational
or perturbative methods (e.g., to treat differences between HF mean-field and true Coulombic interactions among electrons). So,
the derivation of TDPT that we are pursuing assumes the {  and } are exact eigenfunctions. When the final TDPT working

equations are thus obtained, one usually substitutes perturbative or variational approximations to {  and } into these
equations.

Substituting the order-by-order expansion into the Schrödinger equation gives, for the left- and right-hand sides,

and

respectively, through first-order. Multiplying each of these equations on the left by the complex conjugate of a particular  and
integrating over the variables that  depends on produces the following equation for the unknown first-order coefficients
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The states and can be different electronic states, vibrational states, or rotational states. In Chapter 15 of my book Quantum
Mechanics in Chemistry referred to in Chapter 1, I treat each of these types of transitions in detail. In the present discussion, I will
limit myself to the general picture of TDPT, rather than focusing on any of these particular forms of spectroscopic transitions.

To proceed further, one needs to say something about how the perturbation  depends on time. In the most common application
of TDPT, the perturbation is assumed to consist of a term that depends on spatial variables (denoted ) multiplied by a time-
dependent factor of sinusoidal character. An example of such a perturbation is provided by the electric dipole potential

characterizing photons of frequency  interacting with the nuclei and electrons of a molecule.  is the
spatial part  and  is the time-dependence.

To allow for the possibility that photons over a range of frequencies may impinge on the molecules, we can proceed with the
derivation for photons of a given frequency  and, after obtaining our final result, average over a distribution of frequencies
characterized by a function  giving the number of photons with frequencies between  and . For perturbations that do
not vary in a sinusoidal manner (e.g., a perturbation arising from a collision with another molecule), the derivation follows a
different path at this point (application 3 below). Because spectroscopic time-dependent perturbations are extremely common in
chemistry, we will focus much of our attention to this class of perturbations in this Chapter.

To proceed deriving the working equations of TDPT, the above expression for  is inserted into the differential equation for the
expansion coefficients and the equation is integrated from an initial time  to a final time . These times describe when the
external perturbation is first turned on and when it is turned off, respectively. For example, a laser whose photon intensity profile is
described by  might be pulsed on from  to , and one wants to know what fraction of the molecules initially in  have
undergone transitions to each of the . Alternatively, the molecules may be flowing in a stream that passes through a laser light
source that is continually on, entering the laser beam at  and exiting from the laser beam at . In either case, the molecules would
be exposed to the photons from  until . The result of integrating the differential equation is

where the transition frequencies  are defined by

and  is the time interval .

Now, if the frequency  is close to one of the transition frequencies, the term with  in the denominator will be larger
than the term containing . Of course, if has a higher energy than , so one is studying stimulate emission spectroscopy, 

 will be negative, in which case the term containing  will dominate. In on-resonance absorption spectroscopy
conditions, the above expression for the first-order coefficients reduces to

The modulus squared of this quantity gives a measure of the probability of observing the system in state after being subjected to the
photons of frequency  for a length of time .
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The function  is plotted in Figure 4.4 for a given value of  as a function of . It is sharply peaked around 

, decays rapidly as  increases, and displays recurrences of smaller and smaller intensity when 
passes through multiples of .

Figure 4.4 Plot of  vs  for a given value of .

At larger values of , the main peak in the plot of this function becomes narrower and higher such that, in the  limit, the area
under this plot approaches :

The importance of this observation about the area under the plot shown in Figure 4.4 can be appreciated by returning to our result

and introducing the fact that the photon source used to induce the transitions being studied most likely is not perfectly
monochromatic. If it is characterized, as suggested earlier, by a distribution of frequencies  that is broader than the width of
the large central peak in Figure 4.4 (n.b., this will be true if the time duration  is long enough), then when we average over  to
obtain a result that directly relates to this kind of experiment, we obtain

We are allowed to write the integral over  as ranging from  to  because the function shown in Figure 4.4 is so sharply
peaked around  that extending the range of integration makes no difference. We are allowed to factor the  out of the
integral as f( ) by assuming the light source’s distribution function  is very smoothly varying (i.e., not changing much) in
the narrow range of frequencies around  where the function in Figure 4.4 is sharply peaked.

The result of this derivation of TDPT is the above expression for the average probability of observing a transition from state  to
state . This probability is seen to grow linearly with the time duration over which the system is exposed to the light source. Because
we carried out this derivation within first-order perturbation theory, we should trust this result only under conditions where the
effects of the perturbation are small. In the context of the example considered here, this means only for short times. That is, we
should view
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as expressing the short-time estimate of the probability of a transition from  to and

(obtained as ) as expressing the initial rate of such transitions within the first-order TDPT approximation.

It should be noted that the rate expression given above will not be valid if the time duration t of the perturbation does not obey 
; only when this condition is met an the function shown in Figure 4.4 be integrated to generate a probability prediction

that grows linearly with time. So, one has to be careful when using pulsed lasers of very short duration to not employ the simplified
rate expression given above (e.g., 1 eV corresponds to a frequency of ca. 2.4 x10  s , so to study an electronic transition of this
energy, one needs to use a light source of duration significantly longer than  s to make use of the simplified result).

The working equations of TDPT, given above, allow one to estimate (because this is a first-order theory) the rates of transitions
from one quantum state to another induced by a perturbation whose spatial dependence is characterized by  and whose time
dependence is sinusoidal. The same kind of coupling matrix elements  as we experienced in time-independent
PT govern the selection rules and intensities for these transitions, so there is no need to repeat how symmetry can be used to
analyze these integrals.

Before closing this treatment of TDPT, it is useful to address a few issues that were circumvented in the derivation presented
above.

Application 1: Coupling to a Continuum 

In some cases, one is interested in transitions from a particular initial state  into a manifold of states that exist in a
continuum having energies between  and . This occurs, for example, when treating photoionization of a neutral

or photodetachment of an anion; here the ejected electron exists in a continuum wave function whose density of states  is
given by the formulas discussed in Chapter 2. In such cases, the expression given above for the rate is modified by summing over
all final states having energies within  and . Returning to the earlier expression

using , and assuming the matrix elements  do not vary significantly within the narrow range
between and , one arrives at a rate expression of

which is much like we obtained earlier but now contains the density of states . In some experiments, one may not have only

a single state  that can absorb light of a given frequency w; in such a situation, attenuation of the light source at this

frequency can occur through absorptions from many initial states  into all possible final states whose energy differs from
that of the initial state by . In this case, the correct expression for the total rate of absorption of photons of energy is obtained by
averaging the above result over the probabilities  of the system being in various initial states (which we label ):

Here the  function guarantees that only states  and  whose energies differ by are permitted to enter the sum. The
nature of the initial-state probability  depends on what kind of experiment is being carried out.  might be a Boltzmann
distribution if the initial states are in thermal equilibrium, for example.
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Application 2: Experimental Oscillations 

In Figure 4.4 the function  is plotted for one value of  as a function of . There also appear in this figure,

dots that represent experimental data. These data were obtained by allowing a stream of  molecules to flow through a laser
beam of width  with the laser frequency tuned to . From the flow velocity  of the  stream and the laser beam width ,

one can determine the duration over which the molecules were exposed to the light source . After the molecules exited the

laser beam, they were probed to determine whether they were in an excited state. This experiment was repeated for various values
of the frequency . The population of excited states was then plotted as a function of  to obtain the data plotted in Figure 4.4. This
experiment is described in the text Molecules and Radiation, J. I. Steinfeld, MIT Press, Cambridge, Mass. (1981). This kind of
experiment provided direct proof of the oscillatory frequency dependence observed in the population of excited states as predicted
in our derivation of TDPT.

Application 3: Collisionally induced Transitions 
To give an example of how one proceeds in TDPT when the perturbation is not oscillatory in time, let us consider an atom located
at the origin of our coordinate system that experiences a collision with an ion of charge c whose trajectory is described in Figure
4.5.

Figure 4.5 An atom (at the origin ) undergoing a collision with an ion of charge  moving along the -axis with
constant velocity .

As an approximation, we assume

a. that the ion moves in a straight line: , characterized by an impact parameter  and a velocity  (this would
be appropriate if the ion were moving so fast that it would not be deflected by interactions with the atom),

b. that the perturbation caused by the ion on the electrons of the atom at the origin can be represented by

where  is the position of the ith electron in the atom and  is the position of the ion. The time dependence of the
perturbation arises from the motion of the ion along the -axis.

Writing the distance  as

and expanding in inverse powers of  we can express the ion-atom interaction potential as

The first term contains no factors dependent on the atom’s electronic coordinates, so it plays no role in causing electronic
transitions. In the second term, the factor  can be neglected compared to  the terms because the ion is assumed to be
somewhat distant from the atom’s valence electrons.

To derive an equation for the probability of the atom undergoing a transition from  to , one returns to the TDPT
expression
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and substitutes the above expression for the perturbation to obtain

This is the equation that must be solved to evaluate by integrating from  to  (representing the full collision with
the ion starting far to the left on the -axis and proceeding far to the right).

There are two limiting cases in which the solution is straightforward. First, if the time duration of the collision (i.e., the time over

which the ion is close to the atom)  is long compared to  where

then the integrand will oscillate repeatedly during the time  as a result of which the integral

will be vanishingly small. So, in this so-called adiabatic case (i.e., with the ion moving slowly relative to the oscillation frequency 

), electronic transitions should not be expected. In the other limit , the factor  will

remain approximately equal to unity, so the integration needed reduces to

The integral involving vanishes because  is odd and the remainder of the integrand is an even function of . The integral
involving  can be performed by trigonometric substitution (  so the denominator reduces to 

 and gives

This result suggests that the probability of a transition

should vary as the square of the ion’s charge and inversely with the speed of the collision. Of course, this result can not be trusted if

the speed  is too low because, then the condition  will not hold. This example shows how one must re-derive the

equations of TDPT when dealing with perturbations whose time-dependence is not sinusoidal.
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