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18.14: The Group 8A Elements

To understand the trends in properties and reactivity of the group 18 elements: the noble gases.

The noble gases were all isolated for the first time within a period of only five years at the end of the 19th century. Their very
existence was not suspected until the 18th century, when early work on the composition of air suggested that it contained small
amounts of gases in addition to oxygen, nitrogen, carbon dioxide, and water vapor. Helium was the first of the noble gases to be
identified, when the existence of this previously unknown element on the sun was demonstrated by new spectral lines seen during a
solar eclipse in 1868. Actual samples of helium were not obtained until almost 30 years later, however. In the 1890s, the English
physicist J. W. Strutt (Lord Rayleigh) carefully measured the density of the gas that remained after he had removed all O , CO ,
and water vapor from air and showed that this residual gas was slightly denser than pure N  obtained by the thermal decomposition
of ammonium nitrite. In 1894, he and the Scottish chemist William Ramsay announced the isolation of a new “substance” (not
necessarily a new element) from the residual nitrogen gas. Because they could not force this substance to decompose or react with
anything, they named it argon (Ar), from the Greek argos, meaning “lazy.” Because the measured molar mass of argon was 39.9
g/mol, Ramsay speculated that it was a member of a new group of elements located on the right side of the periodic table between
the halogens and the alkali metals. He also suggested that these elements should have a preferred valence of 0, intermediate
between the +1 of the alkali metals and the −1 of the halogens.

Lord Rayleigh was one of the few members of British higher nobility to be recognized as an outstanding scientist. Throughout
his youth, his education was repeatedly interrupted by his frail health, and he was not expected to reach maturity. In 1861 he
entered Trinity College, Cambridge, where he excelled at mathematics. A severe attack of rheumatic fever took him abroad,
but in 1873 he succeeded to the barony and was compelled to devote his time to the management of his estates. After leaving
the entire management to his younger brother, Lord Rayleigh was able to devote his time to science. He was a recipient of
honorary science and law degrees from Cambridge University.

Born and educated in Glasgow, Scotland, Ramsay was expected to study for the Calvanist ministry. Instead, he became
interested in chemistry while reading about the manufacture of gunpowder. Ramsay earned his PhD in organic chemistry at the
University of Tübingen in Germany in 1872. When he returned to England, his interests turned first to physical chemistry and
then to inorganic chemistry. He is best known for his work on the oxides of nitrogen and for the discovery of the noble gases
with Lord Rayleigh.

In 1895, Ramsey was able to obtain a terrestrial sample of helium for the first time. Then, in a single year (1898), he discovered the
next three noble gases: krypton (Kr), from the Greek kryptos, meaning “hidden,” was identified by its orange and green emission
lines; neon (Ne), from the Greek neos, meaning “new,” had bright red emission lines; and xenon (Xe), from the Greek xenos,
meaning “strange,” had deep blue emission lines. The last noble gas was discovered in 1900 by the German chemist Friedrich
Dorn, who was investigating radioactivity in the air around the newly discovered radioactive elements radium and polonium. The
element was named radon (Rn), and Ramsay succeeded in obtaining enough radon in 1908 to measure its density (and thus its
atomic mass). For their discovery of the noble gases, Rayleigh was awarded the Nobel Prize in Physics and Ramsay the Nobel
Prize in Chemistry in 1904. Because helium has the lowest boiling point of any substance known (4.2 K), it is used primarily as a
cryogenic liquid. Helium and argon are both much less soluble in water (and therefore in blood) than N , so scuba divers often use
gas mixtures that contain these gases, rather than N , to minimize the likelihood of the “bends,” the painful and potentially fatal
formation of bubbles of N (g) that can occur when a diver returns to the surface too rapidly.

Preparation and General Properties of the Group 18 Elements

Fractional distillation of liquid air is the only source of all the noble gases except helium. Although helium is the second most
abundant element in the universe (after hydrogen), the helium originally present in Earth’s atmosphere was lost into space long ago
because of its low molecular mass and resulting high mean velocity. Natural gas often contains relatively high concentrations of
helium (up to 7%), however, and it is the only practical terrestrial source.
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The elements of group 18 all have closed-shell valence electron configurations, either ns np  or 1s  for He. Consistent with
periodic trends in atomic properties, these elements have high ionization energies that decrease smoothly down the group. From
their electron affinities, the data in Table  indicate that the noble gases are unlikely to form compounds in negative
oxidation states. A potent oxidant is needed to oxidize noble gases and form compounds in positive oxidation states. Like the
heavier halogens, xenon and perhaps krypton should form covalent compounds with F, O, and possibly Cl, in which they have even
formal oxidation states (+2, +4, +6, and possibly +8). These predictions actually summarize the chemistry observed for these
elements.

Table : Selected Properties of the Group 18 Elements

Property Helium Neon Argon Krypton Xenon Radon

*The configuration shown does not include filled d and f subshells. This is the normal boiling point of He. Solid He does not exist at 1
atm pressure, so no melting point can be given.

atomic symbol He Ne Ar Kr Xe Rn

atomic number 2 10 18 36 54 86

atomic mass
(amu)

4.00 20.18 39.95 83.80 131.29 222

valence electron
configuration*

1s 2s 2p 3s 3p 4s 4p 5s 5p 6s 6p

triple
point/boiling
point (°C)

—/−269
−249 (at 43
kPa)/−246

−189 (at 69
kPa)/−189

−157/−153
−112 (at 81.6

kPa)/−108
−71/−62

density (g/L) at
25°C

0.16 0.83 1.63 3.43 5.37 9.07

atomic radius
(pm)

31 38 71 88 108 120

first ionization
energy (kJ/mol)

2372 2081 1521 1351 1170 1037

normal oxidation
state(s)

0 0 0 0 (+2)
0 (+2, +4, +6,

+8)
0 (+2)

electron affinity
(kJ/mol)

> 0 > 0 > 0 > 0 > 0 > 0

electronegativity — — — — 2.6 —

product of
reaction with O

none none none none

not directly with
oxygen, but 

 can be
formed by
Equation 

.

none

type of oxide — — — — acidic —

product of
reaction with N

none none none none none none

product of
reaction with X

none none none KrF
XeF , XeF ,

XeF
RnF

2 6 2
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Property Helium Neon Argon Krypton Xenon Radon

*The configuration shown does not include filled d and f subshells. This is the normal boiling point of He. Solid He does not exist at 1
atm pressure, so no melting point can be given.

product of
reaction with H

none none none none none none

Reactions and Compounds of the Noble Gases
For many years, it was thought that the only compounds the noble gases could form were clathrates. Clathrates are solid
compounds in which a gas, the guest, occupies holes in a lattice formed by a less volatile, chemically dissimilar substance, the host
(Figure ).

Figure : The Structure of Xenon Hydrate, a Clathrate. Small gaseous atoms or molecules such as Xe or CH  can occupy
cavities in a lattice of hydrogen-bonded water molecules to produce a stable structure with a fixed stoichiometry (in this case,
Xe·5.75H O). (The hydrogen atoms of the water molecules have been omitted for clarity.) Warming the solid hydrate or decreasing
the pressure of the gas causes it to collapse, with the evolution of gas and the formation of liquid water.

Because clathrate formation does not involve the formation of chemical bonds between the guest (Xe) and the host molecules
(H O, in the case of xenon hydrate), the guest molecules are immediately released when the clathrate is melted or dissolved.

In addition to the noble gases, many other species form stable clathrates. One of the most interesting is methane hydrate, large
deposits of which occur naturally at the bottom of the oceans. It is estimated that the amount of methane in such deposits could
have a major impact on the world’s energy needs later in this century.

Figure : “Burning snowballs.” Like xenon, methane (CH ) forms a crystalline clathrate with water: methane hydrate.
When the solid is warmed, methane is released and can be ignited to give what appears to be burning snow. (left) Structure of a
gas hydrate (methane clathrate) block embedded in the sediment of hydrate ridge, off Oregon, USA (CC-SA-BY-3.0
Wusel007) (middle) A ball-and-stick model of methane hydrate showing the central methane molecule surrounded by a "cage"
of water molecules. Other hydrocarbon molecules such as pentane and ethane can occupy the central position in this structure.
(United States Department of Energy image). (Right): A burning specimen of methane hydrate ice (United States Geological
Survey image).

The widely held belief in the intrinsic lack of reactivity of the noble gases was challenged when Neil Bartlett, a British professor of
chemistry at the University of British Columbia, showed that PtF , a compound used in the Manhattan Project, could oxidize O .
Because the ionization energy of xenon (1170 kJ/mol) is actually lower than that of O , Bartlett recognized that PtF  should also be
able to oxidize xenon. When he mixed colorless xenon gas with deep red PtF  vapor, yellow-orange crystals immediately formed
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(Figure ). Although Bartlett initially postulated that they were , it is now generally agreed that the reaction also
involves the transfer of a fluorine atom to xenon to give the  ion:

Figure : The Synthesis of the First Chemical Compound of Xenon. (a) An apparatus containing platinum hexafluoride, the
red vapor at the bottom left, and xenon, the colorless gas in the small tube at the upper right. (b) When the glass seal separating the
two gases is broken and the gases are allowed to mix, a bright yellow solid is formed, which is best described as XeF PtF .

Subsequent work showed that xenon reacts directly with fluorine under relatively mild conditions to give XeF , XeF , or XeF ,
depending on conditions; one such reaction is as follows:

The ionization energies of helium, neon, and argon are so high (Table ) that no stable compounds of these elements are
known. The ionization energies of krypton and xenon are lower but still very high; consequently only highly electronegative
elements (F, O, and Cl) can form stable compounds with xenon and krypton without being oxidized themselves. Xenon reacts
directly with only two elements: F  and Cl . Although  and  can be prepared directly from the elements, they are
substantially less stable than the xenon fluorides.

The ionization energies of helium, neon, and argon are so high that no stable compounds
of these elements are known.

Because halides of the noble gases are powerful oxidants and fluorinating agents, they decompose rapidly after contact with trace
amounts of water, and they react violently with organic compounds or other reductants. The xenon fluorides are also Lewis acids;
they react with the fluoride ion, the only Lewis base that is not oxidized immediately on contact, to form anionic complexes. For
example, reacting cesium fluoride with XeF  produces CsXeF , which gives Cs XeF  when heated:

The  ion contains eight-coordinate xenon and has the square antiprismatic structure, which is essentially identical to that of
the IF  ion. Cs XeF  is surprisingly stable for a polyatomic ion that contains xenon in the +6 oxidation state, decomposing only at
temperatures greater than 300°C. Major factors in the stability of Cs XeF  are almost certainly the formation of a stable ionic
lattice and the high coordination number of xenon, which protects the central atom from attack by other species. (Recall from that
this latter effect is responsible for the extreme stability of SF .)
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For a previously “inert” gas, xenon has a surprisingly high affinity for oxygen, presumably because of π bonding between  and 
. Consequently, xenon forms an extensive series of oxides and oxoanion salts. For example, hydrolysis of either  or 

produces , an explosive white solid:

Treating a solution of XeO  with ozone, a strong oxidant, results in further oxidation of xenon to give either XeO , a colorless,
explosive gas, or the surprisingly stable perxenate ion (XeO ), both of which contain xenon in its highest possible oxidation state
(+8). The chemistry of the xenon halides and oxides is best understood by analogy to the corresponding compounds of iodine. For
example, XeO  is isoelectronic with the iodate ion (IO ), and XeF  is isoelectronic with the IF  ion.

Xenon has a high affinity for both fluorine and oxygen.
Because the ionization energy of radon is less than that of xenon, in principle radon should be able to form an even greater variety
of chemical compounds than xenon. Unfortunately, however, radon is so radioactive that its chemistry has not been extensively
explored.

On a virtual planet similar to Earth, at least one isotope of radon is not radioactive. A scientist explored its chemistry and
presented her major conclusions in a trailblazing paper on radon compounds, focusing on the kinds of compounds formed and
their stoichiometries. Based on periodic trends, how did she summarize the chemistry of radon?

Given: nonradioactive isotope of radon

Asked for: summary of its chemistry

Strategy:

Based on the position of radon in the periodic table and periodic trends in atomic properties, thermodynamics, and kinetics,
predict the most likely reactions and compounds of radon.

Solution

We expect radon to be significantly easier to oxidize than xenon. Based on its position in the periodic table, however, we also
expect its bonds to other atoms to be weaker than those formed by xenon. Radon should be more difficult to oxidize to its
highest possible oxidation state (+8) than xenon because of the inert-pair effect. Consequently, radon should form an extensive
series of fluorides, including RnF , RnF , RnF , and possibly RnF  (due to its large radius). The ion RnF  should also exist.
We expect radon to form a series of oxides similar to those of xenon, including RnO  and possibly RnO . The biggest surprise
in radon chemistry is likely to be the existence of stable chlorides, such as RnCl  and possibly even RnCl .

Predict the stoichiometry of the product formed by reacting XeF  with a 1:1 stoichiometric amount of KF and propose a
reasonable structure for the anion.

Answer

; the xenon atom in XeF  has 16 valence electrons, which according to the valence-shell electron-pair repulsion
model could give either a square antiprismatic structure with one fluorine atom missing or a pentagonal bipyramid if the 5s
electrons behave like an inert pair that does not participate in bonding.

Summary
The noble gases are characterized by their high ionization energies and low electron affinities. Potent oxidants are needed to
oxidize the noble gases to form compounds in positive oxidation states. The noble gases have a closed-shell valence electron
configuration. The ionization energies of the noble gases decrease with increasing atomic number. Only highly electronegative
elements can form stable compounds with the noble gases in positive oxidation states without being oxidized themselves. Xenon
has a high affinity for both fluorine and oxygen, which form stable compounds that contain xenon in even oxidation states up to +8.
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