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19.3: Coordination Compounds

&b Learning Objectives

o To know the most common structures observed for metal complexes.
o To predict the relative stabilities of metal complexes with different ligands

One of the most important properties of metallic elements is their ability to act as Lewis acids that form complexes with a variety
of Lewis bases. A metal complex consists of a central metal atom or ion that is bonded to one or more ligands (from the Latin
ligare, meaning “to bind”), which are ions or molecules that contain one or more pairs of electrons that can be shared with the
metal. Metal complexes can be neutral, such as Co(NH3)3Clz; positively charged, such as [Nd(H,0)9]>*; or negatively charged,
such as [UFg]*". Electrically charged metal complexes are sometimes called complex ions. A coordination compound contains one
or more metal complexes.

Coordination compounds are important for at least three reasons. First, most of the elements in the periodic table are metals, and
almost all metals form complexes, so metal complexes are a feature of the chemistry of more than half the elements. Second, many
industrial catalysts are metal complexes, and such catalysts are steadily becoming more important as a way to control reactivity.
For example, a mixture of a titanium complex and an organometallic compound of aluminum is the catalyst used to produce most
of the polyethylene and polypropylene “plastic” items we use every day. Finally, transition-metal complexes are essential in
biochemistry. Examples include hemoglobin, an iron complex that transports oxygen in our blood; cytochromes, iron complexes
that transfer electrons in our cells; and complexes of Fe, Zn, Cu, and Mo that are crucial components of certain enzymes, the
catalysts for all biological reactions.

History of the Coordination Compounds

Coordination compounds have been known and used since antiquity; probably the oldest is the deep blue pigment called Prussian
blue: KFe, (CN)6. The chemical nature of these substances, however, was unclear for a number of reasons. For example, many
compounds called “double salts” were known, such as AlF,-3KF, Fe(CN)2 -4KCN, and ZnCl, -2 CsCl, which were
combinations of simple salts in fixed and apparently arbitrary ratios. Why should AlF, -3 KF exist but not AlF,-4KF or
AlF,;-2KF? And why should a 3:1 KF:AlF3 mixture have different chemical and physical properties than either of its
components? Similarly, adducts of metal salts with neutral molecules such as ammonia were also known—for example,
CoCl, - 6 NH; , which was first prepared sometime before 1798. Like the double salts, the compositions of these adducts exhibited
fixed and apparently arbitrary ratios of the components. For example, CoCl, -6 NH;, CoCL -5NH,, CoCl, -4NH,, and
CoCl;-3NH; were all known and had very different properties, but despite all attempts, chemists could not prepare
CoCl; -2NH; or CoCl; - NH, .

Although the chemical composition of such compounds was readily established by existing analytical methods, their chemical
nature was puzzling and highly controversial. The major problem was that what we now call valence (i.e., the oxidation state) and
coordination number were thought to be identical. As a result, highly implausible (to modern eyes at least) structures were
proposed for such compounds, including the “Chattanooga choo-choo” model for CoCl;-4NH; shown here.
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The modern theory of coordination chemistry is based largely on the work of Alfred Werner (1866—1919; Nobel Prize in Chemistry
in 1913). In a series of careful experiments carried out in the late 1880s and early 1890s, he examined the properties of several
series of metal halide complexes with ammonia. For example, five different “adducts” of ammonia with PtCl, were known at the
time: PtCl,;nNH; (n = 2-6). Some of Werner’s original data on these compounds are shown in Table 19.3.1 The electrical
conductivity of aqueous solutions of these compounds was roughly proportional to the number of ions formed per mole, while the
number of chloride ions that could be precipitated as AgCl after adding Ag*(aq) was a measure of the number of “free” chloride
ions present. For example, Werner’s data on PtCl,-6NH; in Table 19.3.1 showed that all the chloride ions were present as free
chloride. In contrast, PtCl,-2NH;3 was a neutral molecule that contained no free chloride ions.
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Werner, the son of a factory worker, was born in Alsace. He developed an interest in chemistry at an early age, and he did his
first independent research experiments at age 18. While doing his military service in southern Germany, he attended a series of
chemistry lectures, and he subsequently received his PhD at the University of Zurich in Switzerland, where he was appointed
professor of chemistry at age 29. He won the Nobel Prize in Chemistry in 1913 for his work on coordination compounds,
which he performed as a graduate student and first presented at age 26. Apparently, Werner was so obsessed with solving the
riddle of the structure of coordination compounds that his brain continued to work on the problem even while he was asleep. In
1891, when he was only 25, he woke up in the middle of the night and, in only a few hours, had laid the foundation for modern
coordination chemistry.

Table 19.3.1: Werner’s Data on Complexes of Ammonia with PtCl4

Number of Tons per Formula ~ Number of Cl™ Ions Precipitated

Complex Conductivity (chm™) Unit by Ag*
PtCly-6NH; 523 5 4
PtCly-5NH; 404 4 .
PtCl,-4NH; 299 3 2
PtCl;-3NH; 97 2 !
PtCl,2NH; 0 0 0

These data led Werner to postulate that metal ions have two different kinds of valence: (1) a primary valence (oxidation state) that
corresponds to the positive charge on the metal ion and (2) a secondary valence (coordination number) that is the total number of
ligand-metal bonds bound to the metal ion. If Pt had a primary valence of 4 and a secondary valence of 6, Werner could explain
the properties of the PtCl, - NH, adducts by the following reactions, where the metal complex is enclosed in square brackets:

[Pt(NH;)s]Cly — [Pt(NH;)s]* (aq) +4C1™ (aq)
[Pt(NH3)5Cl1|Cl3 — [Pt(NH;3)5C1** (aq) +3Cl~ (aq)
[Pt(NH;3),Cly]Cly — [Pt(NH3)4Cly]*" (aq) +2C1 (aq)
[Pt(NH3)3Cl3]C1 — [Pt(NH;)3Cls] " (aq) + Cl~ (aq)

[Pt(NH;3),Cly] — [Pt(NH3),ClLy]%(aq)

Further work showed that the two missing members of the series—[Pt(NH3)Cls]™ and [PtClg]>"—could be prepared as their mono-
and dipotassium salts, respectively. Similar studies established coordination numbers of 6 for Co>* and Cr** and 4 for Pt*" and
Pd*".

Werner’s studies on the analogous Co>" complexes also allowed him to propose a structural model for metal complexes with a
coordination number of 6. Thus he found that [Co(NH3)g]Cl3 (yellow) and [Co(NH3)sCI]Cl; (purple) were 1:3 and 1:2 electrolytes.
Unexpectedly, however, two different [Co(NH3)4Cl]Cl compounds were known: one was red, and the other was green (Figure
19.3.1a). Because both compounds had the same chemical composition and the same number of groups of the same kind attached
to the same metal, there had to be something different about the arrangement of the ligands around the metal ion. Werner’s key
insight was that the six ligands in [Co(NH3)4Cl>]ClI had to be arranged at the vertices of an octahedron because that was the only
structure consistent with the existence of two, and only two, arrangements of ligands (Figure 19.3.1h His conclusion was
corroborated by the existence of only two different forms of the next compound in the series: Co(NH3)3Cl3.
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Figure 19.3.1: Complexes with Different Arrangements of the Same Ligands Have Different Properties. The [Co(NH3)4Cl,]" ion
can have two different arrangements of the ligands, which results in different colors: if the two CI™ ligands are next to each other,
the complex is red (a), but if they are opposite each other, the complex is green (b).

v/ Example 19.3.1

In Werner’s time, many complexes of the general formula MA,B, were known, but no more than two different compounds
with the same composition had been prepared for any metal. To confirm Werner’s reasoning, calculate the maximum number
of different structures that are possible for six-coordinate MA,B, complexes with each of the three most symmetrical possible
structures: a hexagon, a trigonal prism, and an octahedron. What does the fact that no more than two forms of any MA,B,
complex were known tell you about the three-dimensional structures of these complexes?

Given: three possible structures and the number of different forms known for MA4B; complexes
Asked for: number of different arrangements of ligands for MA 4B, complex for each structure
Strategy:

Sketch each structure, place a B ligand at one vertex, and see how many different positions are available for the second B
ligand.

Solution

The three regular six-coordinate structures are shown here, with each coordination position numbered so that we can keep track
of the different arrangements of ligands. For each structure, all vertices are equivalent. We begin with a symmetrical MAg
complex and simply replace two of the A ligands in each structure to give an MA4B, complex:

Hexagon Trigonal prism Octahedron

For the hexagon, we place the first B ligand at position 1. There are now three possible places for the second B ligand: at
position 2 (or 6), position 3 (or 5), or position 4. These are the only possible arrangements. The (1, 2) and (1, 6) arrangements
are chemically identical because the two B ligands are adjacent to each other. The (1, 3) and (1, 5) arrangements are also
identical because in both cases the two B ligands are separated by an A ligand.

Turning to the trigonal prism, we place the first B ligand at position 1. Again, there are three possible choices for the second B
ligand: at position 2 or 3 on the same triangular face, position 4 (on the other triangular face but adjacent to 1), or position 5 or
6 (on the other triangular face but not adjacent to 1). The (1, 2) and (1, 3) arrangements are chemically identical, as are the (1,
5) and (1, 6) arrangements.

In the octahedron, however, if we place the first B ligand at position 1, then we have only two choices for the second B ligand:
at position 2 (or 3 or 4 or 5) or position 6. In the latter, the two B ligands are at opposite vertices of the octahedron, with the
metal lying directly between them. Although there are four possible arrangements for the former, they are chemically identical
because in all cases the two B ligands are adjacent to each other.
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The number of possible MA4B; arrangements for the three geometries is thus: hexagon, 3; trigonal prism, 3; and octahedron, 2.
The fact that only two different forms were known for all MA4B, complexes that had been prepared suggested that the correct
structure was the octahedron but did not prove it. For some reason one of the three arrangements possible for the other two
structures could have been less stable or harder to prepare and had simply not yet been synthesized. When combined with
analogous results for other types of complexes (e.g., MA3B3), however, the data were best explained by an octahedral structure
for six-coordinate metal complexes.

? Exercise 19.3.1

Determine the maximum number of structures that are possible for a four-coordinate MA,B, complex with either a square
planar or a tetrahedral symmetrical structure.

Answer

square planar, 2; tetrahedral, 1

Structures of Metal Complexes

The coordination numbers of metal ions in metal complexes can range from 2 to at least 9. In general, the differences in energy
between different arrangements of ligands are greatest for complexes with low coordination numbers and decrease as the
coordination number increases. Usually only one or two structures are possible for complexes with low coordination numbers,
whereas several different energetically equivalent structures are possible for complexes with high coordination numbers (n > 6).
The following presents the most commonly encountered structures for coordination numbers 2-9. Many of these structures should
be familiar to you from our discussion of the valence-shell electron-pair repulsion (VSEPR) model because they correspond to the
lowest-energy arrangements of n electron pairs around a central atom.

Compounds with low coordination numbers exhibit the greatest differences in energy
between different arrangements of ligands.

Coordination Number 2

Although it is rare for most metals, this coordination number is surprisingly common for d'° metal ions, especially Cu*, Ag*, Au®,
and Hg?". An example is the [Au(CN),]” ion, which is used to extract gold from its ores. As expected based on VSEPR
considerations, these complexes have the linear L-M-L structure shown here.

o—@ o

Linear ML,

Coordination Number 3

Although it is also rare, this coordination number is encountered with d'® metal ions such as Cu* and Hg?". Among the few known
examples is the Hgl3™ ion. Three-coordinate complexes almost always have the trigonal planar structure expected from the VSEPR
model.

Trigonal planar ML;

Coordination Number 4

Two common structures are observed for four-coordinate metal complexes: tetrahedral and square planar. The tetrahedral structure
is observed for all four-coordinate complexes of nontransition metals, such as [BeF,]%7, and d' ions, such as [ZnCl4]%". It is also
found for four-coordinate complexes of the first-row transition metals, especially those with halide ligands (e.g., [FeCls]™ and
[FeCl4]?"). In contrast, square planar structures are routinely observed for four-coordinate complexes of second- and third-row
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transition metals with d® electron configurations, such as Rh* and Pd?*, and they are also encountered in some complexes of Ni**
and Cu?".

Tetrahedral and square planar ML,

Coordination Number 5

This coordination number is less common than 4 and 6, but it is still found frequently in two different structures: trigonal
bipyramidal and square pyramidal. Because the energies of these structures are usually rather similar for most ligands, many five-
coordinate complexes have distorted structures that lie somewhere between the two extremes.

Trigonal bipyramidal and
square pyramidal ML

Coordination Number 6

This coordination number is by far the most common. The six ligands are almost always at the vertices of an octahedron or a
distorted octahedron. The only other six-coordinate structure is the trigonal prism, which is very uncommon in simple metal

complexes.

Octahedral and trigonal prismatic MLg

Coordination Number 7

This relatively uncommon coordination number is generally encountered for only large metals (such as the second- and third-row
transition metals, lanthanides, and actinides). At least three different structures are known, two of which are derived from an
octahedron or a trigonal prism by adding a ligand to one face of the polyhedron to give a “capped” octahedron or trigonal prism. By
far the most common, however, is the pentagonal bipyramid.
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Pentagonal bipyramidal ML;

Coordination Number 8

This coordination number is relatively common for larger metal ions. The simplest structure is the cube, which is rare because it
does not minimize interligand repulsive interactions. Common structures are the square antiprism and the dodecahedron, both of
which can be generated from the cube.

Square antiprismatic and
trigonal dodecahedral MLg

Coordination Number 9

This coordination number is found in larger metal ions, and the most common structure is the tricapped trigonal prism, as in
[Nd(H,0)e]**.

Tricapped trigonal prismatic MLo

Key Takeaways

¢ Coordination compounds are a major feature of the chemistry of over half the elements.

o Coordination compounds have important roles as industrial catalysts in controlling reactivity, and they are essential in
biochemical processes.

Summary

Transition metals form metal complexes, polyatomic species in which a metal ion is bound to one or more ligands, which are
groups bound to a metal ion. Complex ions are electrically charged metal complexes, and a coordination compound contains one or
more metal complexes. Metal complexes with low coordination numbers generally have only one or two possible structures,
whereas those with coordination numbers greater than six can have several different structures. Coordination numbers of two and
three are common for d'© metal ions. Tetrahedral and square planar complexes have a coordination number of four; trigonal
bipyramidal and square pyramidal complexes have a coordination number of five; and octahedral complexes have a coordination
number of six. At least three structures are known for a coordination number of seven, which is generally found for only large
metal ions. Coordination numbers of eight and nine are also found for larger metal ions.
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o 24.1: Werner’s Theory of Coordination Compounds by Anonymous is licensed CC BY-NC-SA 4.0.
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