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2.10 Quantum Mechanics and The Atom

Skills to Develop
o To apply the results of quantum mechanics to chemistry.

The wavelike nature of subatomic particles such as the electron made it impossible to use the equations of classical physics to
describe the motion of electrons in atoms. Scientists needed a new approach that took the wave behavior of the electron into
account. In 1926, an Austrian physicist, Erwin Schrodinger (1887-1961; Nobel Prize in Physics, 1933), developed wave
mechanics, a mathematical technique that describes the relationship between the motion of a particle that exhibits wavelike
properties (such as an electron) and its allowed energies.

Erwin Schrédinger (1887—1961)

Schrodinger’s unconventional approach to atomic theory was typical of his unconventional approach to life. He was notorious
for his intense dislike of memorizing data and learning from books. When Hitler came to power in Germany, Schrodinger
escaped to Italy. He then worked at Princeton University in the United States but eventually moved to the Institute for Advanced
Studies in Dublin, Ireland, where he remained until his retirement in 1955.

Although quantum mechanics uses sophisticated mathematics, you do not need to understand the mathematical details to follow our
discussion of its general conclusions. We focus on the properties of the wavefunctions that are the solutions of Schrodinger’s
equations.

Wavefunctions

A wavefunction (V) is a mathematical function that relates the location of an electron at a given point in space (identified by x, y,
and z coordinates) to the amplitude of its wave, which corresponds to its energy. Thus each wavefunction is associated with a
particular energy E. The properties of wavefunctions derived from quantum mechanics are summarized here:

o A wavefunction uses three variables to describe the position of an electron. A fourth variable is usually required to fully
describe the location of objects in motion. Three specify the position in space (as with the Cartesian coordinates x, y, and z), and
one specifies the time at which the object is at the specified location. For example, if you were the captain of a ship trying to
intercept an enemy submarine, you would need to know its latitude, longitude, and depth, as well as the time at which it was
going to be at this position (Figure 6.5.1). For electrons, we can ignore the time dependence because we will be using standing
waves, which by definition do not change with time, to describe the position of an electron.

Longityge o Latitude

Figure 1: The Four Variables (Latitude, Longitude, Depth, and Time) required to precisely locate an object

o The square of the wavefunction at a given point is proportional to the probability of finding an electron at that point,
which leads to a distribution of probabilities in space. The square of the wavefunction (¥2) is proportional to the probability
of finding an electron at a given point. We use probabilities because, according to Heisenberg’s uncertainty principle, we cannot
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precisely specify the position of an electron. The probability of finding an electron at any point in space depends on several
factors, including the distance from the nucleus and, in many cases, the atomic equivalent of latitude and longitude. As one way
of graphically representing the probability distribution, the probability of finding an electron is indicated by the density of
colored dots, as shown for the ground state of the hydrogen atom in Figure 2.

o Each wavefunction is associated with a particular energy. As in Bohr’s model, the energy of an electron in an atom is
quantized; it can have only certain allowed values. The major difference between Bohr’s model and Schrédinger’s approach is
that Bohr had to impose the idea of quantization arbitrarily, whereas in Schrodinger’s approach, quantization is a natural
consequence of describing an electron as a standing wave.

Z axis

xy plane

q,Z

Distance from nucleus (r)

(a) (b)

Figure 2: Probability of Finding the Electron in the Ground State of the Hydrogen Atom at Different Points in Space. (a) The
density of the dots shows electron probability. (b) In this plot of W2 versus r for the ground state of the hydrogen atom, the electron
probability density is greatest at r = 0 (the nucleus) and falls off with increasing r. Because the line never actually reaches the
horizontal axis, the probability of finding the electron at very large values of r is very small but not zero.

Quantum Numbers

Schrodinger’s approach uses three quantum numbers (n, I, and m;) to specify any wavefunction. The quantum numbers provide
information about the spatial distribution of an electron. Although n can be any positive integer, only certain values of I and m; are
allowed for a given value of n.

The Principal Quantum Number
The principal quantum number (n) tells the average relative distance of an electron from the nucleus:
n=12,3,4,... (1)

As n increases for a given atom, so does the average distance of an electron from the nucleus. A negatively charged electron that is,
on average, closer to the positively charged nucleus is attracted to the nucleus more strongly than an electron that is farther out in
space. This means that electrons with higher values of n are easier to remove from an atom. All wavefunctions that have the same
value of n are said to constitute a principal shell because those electrons have similar average distances from the nucleus. As you
will see, the principal quantum number n corresponds to the n used by Bohr to describe electron orbits and by Rydberg to describe
atomic energy levels.

The Azimuthal Quantum Number

The second quantum number is often called the azimuthal quantum number (l). The value of I describes the shape of the region
of space occupied by the electron. The allowed values of I depend on the value of n and can range from 0 ton — 1:

1=0,1,2,...,n—1 (2)
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For example, if n = 1, [ can be only 0; if n = 2, I can be 0 or 1; and so forth. For a given atom, all wavefunctions that have the same
values of both n and I form a subshell. The regions of space occupied by electrons in the same subshell usually have the same
shape, but they are oriented differently in space.

The Magnetic Quantum Number

The third quantum number is the magnetic quantum number (m;). The value of m; describes the orientation of the region in space
occupied by an electron with respect to an applied magnetic field. The allowed values of m; depend on the value of I: m; can range
from —I to I in integral steps:

my=-l,—l+1,...,0,...,01—1,1 (3)
For example, if I = 0, m; can be only 0; if I = 1, m; can be -1, 0, or +1; and if [ = 2, m; can be -2, -1, 0, +1, or +2.

Each wavefunction with an allowed combination of n, I, and m, values describes an atomic orbital, a particular spatial distribution
for an electron. For a given set of quantum numbers, each principal shell has a fixed number of subshells, and each subshell has a
fixed number of orbitals.

[ Examplel: n=4 Shell Structure

How many subshells and orbitals are contained within the principal shell with n = 4?
Given: value of n

Asked for: number of subshells and orbitals in the principal shell

Strategy:

A. Given n = 4, calculate the allowed values of I. From these allowed values, count the number of subshells.
B. For each allowed value of I, calculate the allowed values of m;. The sum of the number of orbitals in each subshell is the
number of orbitals in the principal shell.

Solution:

A We know that I can have all integral values from 0 to n — 1. If n = 4, then I can equal 0, 1, 2, or 3. Because the shell has four
values of I, it has four subshells, each of which will contain a different number of orbitals, depending on the allowed values of
mj.

B For | = 0, m; can be only 0, and thus the I = 0 subshell has only one orbital. For [ = 1, m; can be 0 or +1; thus the I = 1 subshell
has three orbitals. For [ = 2, m; can be 0, +1, or +2, so there are five orbitals in the I = 2 subshell. The last allowed value of I is I
= 3, for which m; can be 0, £1, £2, or 3, resulting in seven orbitals in the I = 3 subshell. The total number of orbitals in the n =
4 principal shell is the sum of the number of orbitals in each subshell and is equal to n? = 16

[ Exercise 1: n=3 Shell Structure

How many subshells and orbitals are in the principal shell with n = 3?

Answer

three subshells; nine orbitals

Rather than specifying all the values of n and [ every time we refer to a subshell or an orbital, chemists use an abbreviated system
with lowercase letters to denote the value of I for a particular subshell or orbital:

1= 0 1 2 3

Designation s p d f

The principal quantum number is named first, followed by the letter s, p, d, or f as appropriate. (These orbital designations are
derived from historical terms for corresponding spectroscopic characteristics: sharp, principle, diffuse, and fundamental.) A 1s
orbital hasn = 1 and I = 0; a 2p subshell has n =2 and I = 1 (and has three 2p orbitals, corresponding to m; = -1, 0, and +1); a 3d
subshell has n = 3 and I = 2 (and has five 3d orbitals, corresponding to m; = -2, —1, 0, +1, and +2); and so forth.

@ 0 g @ a https://chem.libretexts.org/@go/page/142186



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/142186?pdf

LibreTextsw

We can summarize the relationships between the quantum numbers and the number of subshells and orbitals as follows (Table
6.5.1):

o Each principal shell has n subshells. For n = 1, only a single subshell is possible (1s); for n = 2, there are two subshells (2s and
2p); for n = 3, there are three subshells (3s, 3p, and 3d); and so forth. Every shell has an ns subshell, any shell with n > 2 also
has an np subshell, and any shell with n > 3 also has an nd subshell. Because a 2d subshell would require bothn =2 and I = 2,
which is not an allowed value of I for n = 2, a 2d subshell does not exist.

o FEach subshell has 21 + 1 orbitals. This means that all ns subshells contain a single s orbital, all np subshells contain three p
orbitals, all nd subshells contain five d orbitals, and all nf subshells contain seven f orbitals.

I Each principal shell has n subshells, and each subshell has 21 + 1 orbitals.

Table 1: Values of n, I, and ml through n = 4

n 1 Subshell Designation my Number of Orbitals in

——e T wnE ~® —8 ~+~grRQogmOoRNMCTHE Z

Subshell
1 0 1s 0 1 1
0 2s 0 1
2 4
1 2p -1,0,1 3
0 3s 0 1
3 1 3p -1,0,1 3 9
2 3d -2,-1,0,1,2 5
0 4s 0 1
1 4p -1,0,1 3 1
4
2 4d -2,-1,0,1,2 5
3 af -3,-2,-1,0,1,2,3 7

Skills to Develop
o To understand the 3D representation of electronic orbitals

An orbital is the quantum mechanical refinement of Bohr’s orbit. In contrast to his concept of a simple circular orbit with a fixed
radius, orbitals are mathematically derived regions of space with different probabilities of containing an electron.
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One way of representing electron probability distributions was illustrated previously for the 1s orbital of hydrogen. Because ¥
gives the probability of finding an electron in a given volume of space (such as a cubic picometer), a plot of W2 versus distance
from the nucleus (r) is a plot of the probability density. The 1s orbital is spherically symmetrical, so the probability of finding a 1s
electron at any given point depends only on its distance from the nucleus. The probability density is greatest at r = 0 (at the
nucleus) and decreases steadily with increasing distance. At very large values of r, the electron probability density is very small but
not zero.

In contrast, we can calculate the radial probability (the probability of finding a 1s electron at a distance r from the nucleus) by
adding together the probabilities of an electron being at all points on a series of x spherical shells of radius ry, ry, rs,..., ry - 1, I'y. In
effect, we are dividing the atom into very thin concentric shells, much like the layers of an onion (Figure 1a), and calculating the
probability of finding an electron on each spherical shell. Recall that the electron probability density is greatest at r = 0 (Figure 1b),
so the density of dots is greatest for the smallest spherical shells in part (a) in Figure 1. In contrast, the surface area of each
spherical shell is equal to 4mrZ, which increases very rapidly with increasing r (Figure 1¢). Because the surface area of the spherical
shells increases more rapidly with increasing r than the electron probability density decreases, the plot of radial probability has a
maximum at a particular distance (Figure 1d). Most important, when r is very small, the surface area of a spherical shell is so small
that the total probability of finding an electron close to the nucleus is very low; at the nucleus, the electron probability vanishes
(Figure 1d).

529 pm
(most probable radius
for the 1s electron)
o 1
= |
(b) Probability density i
C\L‘ :
Concentric spherical shells L |
I
(c) Spherical surface area I
Nk
Al
=
(a) 1s orbital imagined as an onion (d) Radial probability - —

Distance from nucleus (r)

Figure 1: Most Probable Radius for the Electron in the Ground State of the Hydrogen Atom. (a) Imagine dividing the atom’s total
volume into very thin concentric shells as shown in the onion drawing. (b) A plot of electron probability density ¥ versus r shows
that the electron probability density is greatest at r = 0 and falls off smoothly with increasing r. The density of the dots is therefore
greatest in the innermost shells of the onion. (c) The surface area of each shell, given by 4nr?, increases rapidly with increasing r.

(d) If we count the number of dots in each spherical shell, we obtain the total probability of finding the electron at a given value of

r. Because the surface area of each shell increases more rapidly with increasing r than the electron probability density decreases, a
plot of electron probability versus r (the radial probability) shows a peak. This peak corresponds to the most probable radius for

the electron, 52.9 pm, which is exactly the radius predicted by Bohr’s model of the hydrogen atom.

For the hydrogen atom, the peak in the radial probability plot occurs at r = 0.529 A (52.9 pm), which is exactly the radius
calculated by Bohr for the n = 1 orbit. Thus the most probable radius obtained from quantum mechanics is identical to the radius
calculated by classical mechanics. In Bohr’s model, however, the electron was assumed to be at this distance 100% of the time,
whereas in the Schrédinger model, it is at this distance only some of the time. The difference between the two models is
attributable to the wavelike behavior of the electron and the Heisenberg uncertainty principle.
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Figure 2 compares the electron probability densities for the hydrogen 1s, 2s, and 3s orbitals. Note that all three are spherically
symmetrical. For the 2s and 3s orbitals, however (and for all other s orbitals as well), the electron probability density does not fall
off smoothly with increasing r. Instead, a series of minima and maxima are observed in the radial probability plots (Figure 2¢). The
minima correspond to spherical nodes (regions of zero electron probability), which alternate with spherical regions of nonzero
electron probability. The existence of these nodes is a consequence of changes of wave phase in the wavefunction ¥.

Nodes‘ ' Nodes

Node Node

1s 2s 3s 1s 2s
(a) Electron probability (b) Contour probability

25

3s

Electron probability (¥2r?)

Distance from nucleus (r)
(c) Radial probability

Figure 2: Probability Densities for the 1s, 2s, and 3s Orbitals of the Hydrogen Atom. (a) The electron probability density in any
plane that contains the nucleus is shown. Note the presence of circular regions, or nodes, where the probability density is zero. (b)
Contour surfaces enclose 90% of the electron probability, which illustrates the different sizes of the 1s, 2s, and 3s orbitals. The
cutaway drawings give partial views of the internal spherical nodes. The orange color corresponds to regions of space where the
phase of the wave function is positive, and the blue color corresponds to regions of space where the phase of the wave function is
negative. (c) In these plots of electron probability as a function of distance from the nucleus (r) in all directions (radial
probability), the most probable radius increases as n increases, but the 2s and 3s orbitals have regions of significant electron
probability at small values of r.

s Orbitals (1=0)
Three things happen to s orbitals as n increases (Figure 2):

1. They become larger, extending farther from the nucleus.

2. They contain more nodes. This is similar to a standing wave that has regions of significant amplitude separated by nodes, points
with zero amplitude.

3. For a given atom, the s orbitals also become higher in energy as n increases because of their increased distance from the
nucleus.
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Orbitals are generally drawn as three-dimensional surfaces that enclose 90% of the electron density, as was shown for the hydrogen
1s, 2s, and 3s orbitals in part (b) in Figure 2. Although such drawings show the relative sizes of the orbitals, they do not normally
show the spherical nodes in the 2s and 3s orbitals because the spherical nodes lie inside the 90% surface. Fortunately, the positions
of the spherical nodes are not important for chemical bonding.

p Orbitals (I=1)

Only s orbitals are spherically symmetrical. As the value of I increases, the number of orbitals in a given subshell increases, and the
shapes of the orbitals become more complex. Because the 2p subshell has [ = 1, with three values of m; (-1, 0, and +1), there are
three 2p orbitals.

Z axis

--xy nodal
plane

Figure 3: Electron Probability Distribution for a Hydrogen 2p Orbital. The nodal plane of zero electron density separates the two
lobes of the 2p orbital. As in Figure 2, the colors correspond to regions of space where the phase of the wave function is positive
(orange) and negative (blue).

The electron probability distribution for one of the hydrogen 2p orbitals is shown in Figure 3. Because this orbital has two lobes of
electron density arranged along the z axis, with an electron density of zero in the xy plane (i.e., the xy plane is a nodal plane), it is a
2p, orbital. As shown in Figure 4, the other two 2p orbitals have identical shapes, but they lie along the x axis (2p,) and y axis (
2p,), respectively. Note that each p orbital has just one nodal plane. In each case, the phase of the wave function for each of the 2p
orbitals is positive for the lobe that points along the positive axis and negative for the lobe that points along the negative axis. It is
important to emphasize that these signs correspond to the phase of the wave that describes the electron motion, not to positive or
negative charges.

X

2p,

Figure 4 The Three Equivalent 2p Orbitals of the Hydrogen Atom

The surfaces shown enclose 90% of the total electron probability for the 2p,, 2py, and 2p, orbitals. Each orbital is oriented along the
axis indicated by the subscript and a nodal plane that is perpendicular to that axis bisects each 2p orbital. The phase of the wave
function is positive (orange) in the region of space where x, y, or z is positive and negative (blue) where x, y, or z is negative. Just
as with the s orbitals, the size and complexity of the p orbitals for any atom increase as the principal quantum number n increases.
The shapes of the 90% probability surfaces of the 3p, 4p, and higher-energy p orbitals are, however, essentially the same as those
shown in Figure 4.
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d Orbitals (I1=2)

Subshells with I = 2 have five d orbitals; the first principal shell to have a d subshell corresponds to n = 3. The five d orbitals have
m; values of -2, -1, 0, +1, and +2.

3dX2_y2

Figure 5: The Five Equivalent 3d Orbitals of the Hydrogen Atom. The surfaces shown enclose 90% of the total electron
probability for the five hydrogen 3d orbitals. Four of the five 3d orbitals consist of four lobes arranged in a plane that is
intersected by two perpendicular nodal planes. These four orbitals have the same shape but different orientations. The fifth 3d
orbital, 3d ,», has a distinct shape even though it is mathematically equivalent to the others. The phase of the wave function for the
different lobes is indicated by color: orange for positive and blue for negative.

The hydrogen 3d orbitals, shown in Figure 5, have more complex shapes than the 2p orbitals. All five 3d orbitals contain two nodal
surfaces, as compared to one for each p orbital and zero for each s orbital. In three of the d orbitals, the lobes of electron density are
oriented between the x and y, x and z, and y and z planes; these orbitals are referred to as the 3dy, \)3d_{xz}\), and 3d, orbitals,
respectively. A fourth d orbital has lobes lying along the x and y axes; this is the 3d,2_,2 orbital. The fifth 3d orbital, called the
3d.» orbital, has a unique shape: it looks like a 2p, orbital combined with an additional doughnut of electron probability lying in
the xy plane. Despite its peculiar shape, the 3d,. orbital is mathematically equivalent to the other four and has the same energy. In
contrast to p orbitals, the phase of the wave function for d orbitals is the same for opposite pairs of lobes. As shown in Figure 5, the
phase of the wave function is positive for the two lobes of the dz? orbital that lie along the z axis, whereas the phase of the wave
function is negative for the doughnut of electron density in the xy plane. Like the s and p orbitals, as n increases, the size of the d
orbitals increases, but the overall shapes remain similar to those depicted in Figure 5.

f Orbitals (I=3)

Principal shells with n = 4 can have subshells with [ = 3 and m, values of -3, -2, —1, 0, +1, +2, and +3. These subshells consist of
seven f orbitals. Each f orbital has three nodal surfaces, so their shapes are complex. Because f orbitals are not particularly
important for our purposes, we do not discuss them further, and orbitals with higher values of [ are not discussed at all.

Orbital Energies

Although we have discussed the shapes of orbitals, we have said little about their comparative energies. We begin our discussion of
orbital energies by considering atoms or ions with only a single electron (such as H or He™).

The relative energies of the atomic orbitals with n < 4 for a hydrogen atom are plotted in Figure 6; note that the orbital energies
depend on only the principal quantum number n. Consequently, the energies of the 2s and 2p orbitals of hydrogen are the same; the
energies of the 3s, 3p, and 3d orbitals are the same; and so forth. Quantum mechanics predicts that in the hydrogen atom, all
orbitals with the same value of n (e.g., the three 2p orbitals) are degenerate, meaning that they have the same energy. The orbital
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energies obtained for hydrogen using quantum mechanics are exactly the same as the allowed energies calculated by Bohr. In
contrast to Bohr’s model, however, which allowed only one orbit for each energy level, quantum mechanics predicts that there are
4 orbitals with different electron density distributions in the n = 2 principal shell (one 2s and three 2p orbitals), 9 in the n = 3
principal shell, and 16 in the n = 4 principal shell.The different values of I and m; for the individual orbitals within a given principal
shell are not important for understanding the emission or absorption spectra of the hydrogen atom under most conditions, but they
do explain the splittings of the main lines that are observed when hydrogen atoms are placed in a magnetic field. Figure 6 shows
that the energy levels become closer and closer together as the value of n increases, as expected because of the 1/n®> dependence of
orbital energies.

A
4s 4p 4d 4f
n=4 M | T
n=3 M EHEEEE
3s 3p 3d
n=2"1R
2s 2p
>
2
)
o3
(VE)
n=1 N
1s

Figure 6: Orbital Energy Level Diagram for the Hydrogen Atom with a single electron. Each box corresponds to one orbital. Note
that the difference in energy between orbitals decreases rapidly with increasing values of n.

The energies of the orbitals in any species with only one electron can be calculated by a minor variation of Bohr’s equation, which
can be extended to other single-electron species by incorporating the nuclear charge Z (the number of protons in the nucleus):

ZZ
E= —;Rhc 4)

In general, both energy and radius decrease as the nuclear charge increases. Thus the most stable orbitals (those with the lowest
energy) are those closest to the nucleus. For example, in the ground state of the hydrogen atom, the single electron is in the 1s
orbital, whereas in the first excited state, the atom has absorbed energy and the electron has been promoted to one of the n = 2
orbitals. In ions with only a single electron, the energy of a given orbital depends on only n, and all subshells within a principal
shell, such as the p,, py, and p, orbitals, are degenerate.

Summary

There is a relationship between the locations of electrons in atoms and molecules and their energies that is described by quantum
mechanics. Because of wave—particle duality, scientists must deal with the probability of an electron being at a particular point in
space. To do so required the development of quantum mechanics, which uses wavefunctions (¥) to describe the mathematical
relationship between the location of electrons in atoms and molecules and their energies. Wavefunctions have four important
properties:

1. the wavefunction uses three variables (Cartesian axes x, y, and z) to describe the position of an electron;

2. the probability of finding an electron at a given point is proportional to the square of the wavefunction at that point, leading to a
distribution of probabilities in space that is often portrayed as an electron density plot;

3. describing electron distributions as standing waves leads naturally to the existence of sets of quantum numbers characteristic
of each wavefunction; and
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4. each spatial distribution of the electron described by a wavefunction with a given set of quantum numbers has a particular
energy.

Quantum numbers provide important information about the energy and spatial distribution of an electron. The principal quantum
number n can be any positive integer; as n increases for an atom, the average distance of the electron from the nucleus also
increases. All wavefunctions with the same value of n constitute a principal shell in which the electrons have similar average
distances from the nucleus. The azimuthal quantum number I can have integral values between 0 and n — 1; it describes the
shape of the electron distribution. wavefunctions that have the same values of both n and I constitute a subshell, corresponding to
electron distributions that usually differ in orientation rather than in shape or average distance from the nucleus. The magnetic
quantum number m; can have 2] + 1 integral values, ranging from —I to +I, and describes the orientation of the electron
distribution. Each wavefunction with a given set of values of n, I, and m,; describes a particular spatial distribution of an electron in
an atom, an atomic orbital.

The four chemically important types of atomic orbital correspond to values of £ =0, 1, 2, and 3. Orbitals with £ = 0 are s orbitals
and are spherically symmetrical, with the greatest probability of finding the electron occurring at the nucleus. All orbitals with
values of n > 1 and ell = 0 contain one or more nodes. Orbitals with £ =1 are p orbitals and contain a nodal plane that includes
the nucleus, giving rise to a dumbbell shape. Orbitals with £ = 2 are d orbitals and have more complex shapes with at least two
nodal surfaces. Orbitals with £ = 3 are f orbitals, which are still more complex.

Because its average distance from the nucleus determines the energy of an electron, each atomic orbital with a given set of quantum
numbers has a particular energy associated with it, the orbital energy.

Z2
FE = ——2RhC
n

In atoms or ions with only a single electron, all orbitals with the same value of n have the same energy (they are degenerate), and
the energies of the principal shells increase smoothly as n increases. An atom or ion with the electron(s) in the lowest-energy
orbital(s) is said to be in its ground state, whereas an atom or ion in which one or more electrons occupy higher-energy orbitals is
said to be in an excited state.
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