LibreTextsw

3.8: Python Assignment

Compound vs Substance

@) Downloadable Files

[lecture04_Standardization

e Download the ipynb file and run your Jupyter notebook.

o You can use the notebook you created in section 1.5 or the Jupyter hub at LibreText: https:/jupyter.libretexts.org (see
your instructor if you do not have access to the hub).

o This page is an html version of the above .ipynb file.
= If you have questions on this assignment you should use this web page and the hypothes.is annotation to post a

question (or comment) to the 20190LCCStu class group. Contact your instructor if you do not know how to access
the 20190LCCStu group within the hypothes.is system.

Required Modules

e Requests

e RDKit

e time

e PIL(?)

e IPython.Display

Objectives

¢ Understand the difference between compounds and substances in PubChem's terminology.
e Learn how chemical structures are represented in a real world.

o Understand the disambiguity of name-structure associations.

e Learn how to draw chemical structures programmatically.

To use the python code in this lesson plan, RDKit must be installed on the system.

Many users can simply run the following code in the command prompt to install RDKit. (be sure you are in the OLCC
environment of conda)

conda install -c rdkit rdkit

Access to the full installation instructions can be found at the following link. https:/www.rdkit.org/docs/Install.htm

Structure Standardization

PubChem contains more than 200 millions chemical records submitted by hundreds of data contributors. These depositor-provided
records are archived in a database called "Substance" and each record in this database is called a substance. The records in the
Substance database are highly redundant, because different data contributors may submit information on the same chemical,
independently of each other. Therefore, PubChem extracts unique chemical structures from the Substance database through a
process called standardization (https://doi.org/10.1186/s13321-018-0293-8). These unique structures are stored in the Compound
database and individaual records in this database is called "compounds". To learn more about the PubChem compounds and
substances, please read this PubChem Blog post (https:/go.usa.gov/xVXct).

The code cells below demonstrates the effects of chemical structure standardization.
Step 1. Download a list of the SIDs associated with a given CID

First, let's get a list of SIDs that are associated CID 1174 (uracil).

In[1]:

@ 0 a @ 3.8.1 https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/03%3A_Database_Resources_in_Cheminformatics/3.08%3A_Python_Assignment
https://chem.libretexts.org/@api/deki/files/240427/lecture04-standardization.ipynb?revision=1
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/1._Introduction/1.9%3A_Python_Assignment/2019OLCClecture01_Basics
https://jupyter.libretexts.org/
https://www.rdkit.org/docs/Install.html
https://doi.org/10.1186/s13321-018-0293-8
https://go.usa.gov/xVXct

LibreTextsw

1| import requests

2

3| cid = 1174

4

5(url = "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/" + str(cid) +
"/sids/txt"

6| res = requests.get(url)

7| sids = res.text.split()

8| print(len(sids))

I 367

The above request returns 360+ substances, all of which are standardized to the same structure (CID 1174).

Step 2. Download the structure data for the SIDs

Now retrieve the depositor-provided structures for the returned substances.

In [2]:
01| import time
02
03| chunk_size = 50
04
05| if len(sids) % chunk_size == :
06 num_chunks = int(len(sids) / chunk_size)
07 | else
08 num_chunks = int(len(sids) / chunk_size) + 1
09
10| f = open("cid2sids-uracil.sdf", "w")
11
12| for i in range(num_chunks):
13
14 print("Processing chunk", i)
15
16 idx1 = chunk_size * i
17 idx2 = chunk_size * (i + 1)
18 str_sids = ",".join(sids[idx1:idx2])
19
20 url = "https://pubchem.ncbhi.nlm.nih.gov/rest/pug/substance/sid/" +
str_sids + "/record/sdf"
21 res = requests.get(url)
22
28 f.write(res.text)
24 time.sleep(0.2)
25
26| f.close()

Processing chunk @
Processing chunk 1

Processing chunk 7

Step 3. Convert the structures in the SDF file into the SMILES strings and identify unique SMILES and their frequencies.
In [3]:

https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/
https://pubchem.ncbi.nlm.nih.gov/rest/pug/substance/sid/

LibreTextsm

01| from rdkit import Chem

02

03 | unique_smiles_freq = dict()

04

05| suppl = Chem.SDMolSupplier('cid2sids-uracil.sdf"')

06

07 | for mol in suppl:

08

09 smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
10

11 unique_smiles_freq[smiles] = unique_smiles_freq.get(smiles,0) + 1
12

13| sorted_by freq = [(v, k) for k, v in unique_smiles_freq.items()]
14 | sorted_by_freq.sort(reverse=True)

15| for v, k in sorted_by_freq

16 print(v, k)

247 O=clcc[nH]c(=0)[nH]1
87 Oclccnc(0)ni1

12

7 O=clccnc(0)[nH]1

5 0=clnccc(0)[nH]1

5 0=clnc(0)cc[nH]1

4 0=clcc[nH]c(0)n1

The above output shows that the 360+ SIDs associated with CID 1174 are represented with six different SMILES strings. In
addition, 12 substance records that resulted in an "empty" SMILES strings, implying that the depositors of these substance records
did not provide structral information. You may want to what these 12 substances are, but the above code cell does not tell you what
they are. This can be done using the following code cell.

In [4]:
1| for mol in suppl:
2
g smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
4
5 if (smiles == "") :
6 print(mol.GetProp('PUBCHEM_SUBSTANCE_ID'), ":",

mol.GetProp('PUBCHEM_SUBS_AUTO_STRUCTURE'))

50608295 : Deposited Substance chemical structure was generated via Synonym "CID1174"
76715622 : Deposited Substance chemical structure was generated via Synonym(s) "uraci

384995482 : Deposited Substance chemical structure was generated via Synonym(s) "66-2

Sometimes a data depositor does not provide the structure of a chemical but its chemical synonym(s). In that case, PubChem uses
the chemical synonyms to assign a structure to this structure-less record. For example, SID 50608295 (one of the 12 structures
without SMILES strings in the above output) did not have a depositor-provided structure, but its depositor-provided synonyms
include "CID1174". Therefore, PubChem assigns SID 50608295 to CID 1174, although the depositor did not provide the structure
of SID 50608295. (Please check the structure and synonyms for SID 50608295 stored in the SDF file ("cid2sids-uracil.sdf")
generated in step 2).

@ 0 a @ 3.8.3 https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf

LibreTextsw

Step 4. Generate the structure images from the SMILES

Now we want to see what these SMILES strings look like, by drawing molecular structures from them.

In [5]:

from rdkit.Chem import Draw
for mysmiles in unique_smiles_freq.keys()
if mysmiles !'= ""

print(mysmiles)

©Co~Nouh~wNRE

display(img)

img = Draw.MolToImage(Chem.MolFromSmiles(mysmiles), size=(150, 150))

I O=clcc[nH]c(=0)[nH]1

~" “NH
Ué HH J\§u

I Oclccnc(0)n1

I 0=clnc(0)cc[nH]1

J @
HO \N \50

I 0=clnccc(0)[nH]1

I O=clccnc(0)[nH]1

https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf

LibreTextsw

You may want to write these molecule images in files, rather than displaying them on this Jupyter notebook.

In [6]:
01| from rdkit.Chem import Draw
02
03| index = 1
04
05| for mysmiles in unique_smiles_freq.keys()
06
07 if mysmiles !'= ""
08
09 filename = 'image' + str(index) +'.png'
10 Draw.MolToFile(Chem.MolFromSmiles(mysmiles), filename)
11 index += 1

You may also want to display all the images in a single figure.

In[7]:

1| from PIL import Image

In [8]:
01| images = []
02
03| for mysmiles in unique_smiles_freq.keys()
04
05 if mysmiles !'= ""
06
07 img = Draw.MolToImage(Chem.MolFromSmiles(mysmiles), size=(150, 150))
08 images.append(img)
09
10 | big_img = Image.new('RGB', (900,150)) # enought to arrange six 150x150 images
11
12| for i in range(0, len(images)):
13
14 #paste the image at location 1i,j:
15 big_img.paste(images[i], (i*150, 0))
16
17 | display(big_img)

https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf

LibreTextsw

T

In [9]:

n T L
|)\
D MH aH 04)\DH 04 =4

OH HO MH M OH

1| big_img.save('image_grid.png')

As shown these chemical images, the 360+ substances associated with CID 1174 (uracil) correspond to six tautomeric form of
uracil, which differ from each other in the position of "movable" hydrogen atoms. Compare these structures with their standardized
structure (CID 1174).

In [10]:
1| res =
requests.get('https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1174/proper
img = Draw.MolToImage(Chem.MolFromSmiles(res.text.rstrip()), size=(150, 150)
3| img
Out[10]:

u} \\\\KNH ¢D
MH \)

Alternatively, you can get the structure image of CID 1174 from PubChem.

In [11]:
from IPython.display import Image
2 | Image(url="https://pubchem.ncbhi.nlm.nih.gov/rest/pug/compound/cid/1174/record/PN
image_size=300x300"')
Out[11]:

Exercise 1a: The MolToSmiles() function used in Step 3 generates the canonical SMILES string by default. Read the RDKit
manual about the arguments available for this function (https:/www.rdkit.org/docs/source/rdkit. Chem.rdmolfiles.html) and write a
code that generates non-canonical SMILES strings for the 360+ substance records associated with uracil (CID 1174).

o Ignore/skip structure-less records using a conditional statement (i.e., an if statement).

https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf
https://www.rdkit.org/docs/source/rdkit.Chem.rdmolfiles.html
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1174/property/isomericsmiles/txt
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/1174/record/PNG?image_size=300x300

LibreTextsm

o Print the number of unique non-canonical SMILES.

e Print unique non-canonical SMILES, sorted by frequency.

o For a given molecule, there may be multiple ways to write SMILES strings: one of them is selected as the "canonical" SMILES
and all the others are considered as "non-canonical". However, for the purpose of this exercise, we want to generate only one
non-canonical SMILES for each record (because the function will return only one SMILES string (the canonical SMILES or
one of possible non-canonical SMILES)).

In[12]:

I # Write your code in this cell.

Exercise 1b: The RDKit function "MolsToGridImage()" allows you to draw a "grid image" that shows multiple structures. Read
the RDKit manual about "MolsToGridImage()" (https:/www.rdkit.org/docs/source/rdkit.Chem.Draw.html) and display the
structures represented by the unique non-canonical SMILES generated from Exercise 1a.

In [13]:

I # Write your code in this cell.

Exercise 1c: Retrieve the substance records associated with guanine (CID 135398634) and display unique structures generated
from them, by following these steps:

o Retrieve the SIDs associated CID 135398634

o Download the structure data for the retrieved SIDs (in SDF)

o Generate canonical SMILES strings from the structure data in the SDF file and identify unique canonical SMILES strings

o Draw the structures represented by the ungiue canonical SMILES strings in a single figure.

In [14]:

I # Write your code in this cell.

Exercise 1d: Retrieve the substance records whose synonym is "glucose" and display unique structures generated from them, by
following these steps:

¢ Retrieve the SIDs whose synonym is "glucose".

e Download the structure data for the retrieved SIDs (in SDF)

o Generate canonical SMILES strings from the structure data in the SDF file and identify unique canonical SMILES strings
o Draw the structures represented by the ungiue canonical SMILES strings in a single figure.

In [15]:

I # Write your code in this cell.

Exercise le: Retrieve the compound records associated with the SIDs retrieved in Exercise 1d and display unique structures
generated from them, by following these steps:

¢ Retrieve the CIDs associated with the SIDs whose name is "glucose", using a single PUG-REST request (i.e., using the list
conversion covered in the previous notebook, "lecture03-list-conversion.ipynb").

o Identify unique CIDs from the returned CIDs, using the set() function in python.

o Retrieve the isomeric SMILES for the unique CIDs through PUG-REST.

o Draw the structures represented by the returned SMILES strings in a single figure.

In [16]:

I # Write your code in this cell.

@ 0 a @ 3.8.7 https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf
https://www.rdkit.org/docs/source/rdkit.Chem.Draw.html

LibreTextsw

3.8: Python Assignment is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

https://chem.libretexts.org/@go/page/169647

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/169647?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/03%3A_Database_Resources_in_Cheminformatics/3.08%3A_Python_Assignment
https://creativecommons.org/licenses/by-nc-sa/4.0

