
4.6.1 https://chem.libretexts.org/@go/page/170165

4.6: Python Assignments

Structure Search

� lecture05_Structure_Search.ipynb

Download the ipynb file and run your Jupyter notebook.
You can use the notebook you created in section 1.5 or the Jupyter hub at LibreText: https://jupyter.libretexts.org (see
your instructor if you do not have access to the hub).
This page is an html version of the above .ipynb file.

If you have questions on this assignment you should use this web page and the hypothes.is annotation to post a
question (or comment) to the 2019OLCCStu class group. Contact your instructor if you do not know how to access
the 2019OLCCStu group within the hypothes.is system.

Required Modules

Requests
RDKit
time
io

NOTE: This is a 2 week assignment

Objectives
Learn various types of structure searches including identity search, similarity search, substructure and super structure searches.
Learn the optional parameters available for each search type.

Using PUG-REST, one can perform various types of structure searches (https://bit.ly/2lPznCo), including:

identity search
similarity search
super/substructure search
molecular formula search

As explained in a PubChem paper (https://bit.ly/2kirxky), whereas structure search can be performed in either an 'asynchronous' or
'synchronous' way, it is highly recommended to use the synchronous approach.
The synchronous searches are invoked by using the keywords prefixed with ‘fast’, such as fastidenity, fastsimilarity_2d,
fastsimilarity_3d, fastsubstructure, fastsuperstructure, and fastformula.

Note: To use the python code in this lesson plan, RDKit must be installed on the system.

Many users can simply run the following code to install RDKit.

conda install -c rdkit rdkit

Access to the full installation instructions can be found at the following link. https://www.rdkit.org/docs/Install.html

PUG-REST allows you to search the PubChem Compound database for molecules identical to the query molecule. PubChem's
identity search supports different contexts of chemical identity, which the user can specify using the optional parameter,
"identity_type". Here are some commonly-used chemical identity contexts.

same_connectivity: returns compounds with the same atom connectivity as the query molecule, ignoring stereochemistry and
isotope information.
same_isotope: returns compounds with the same isotopes (as well as the same atom connectivity) as the query molecule.
Stereochemistry will be ignored.
same_stereo: returns compounds with the same stereochemistry (as well as the same atom connectivity) as the query molecule.
Isotope information will be ignored.

 Downloadable Files

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/04%3A_Searching_Databases_for_Chemical_Information/4.06%3A_Python_Assignments
https://chem.libretexts.org/@api/deki/files/240428/lecture05-structure-search.ipynb?revision=1
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/1._Introduction/1.9%3A_Python_Assignment/2019OLCClecture01_Basics
https://jupyter.libretexts.org/
https://bit.ly/2lPznCo
https://bit.ly/2kirxky
https://www.rdkit.org/docs/Install.html

4.6.2 https://chem.libretexts.org/@go/page/170165

same_stereo_isotope: returns compounds with the same stereochemistry AND isotope information (as well as the same atom
connectivity). This is the default.

The following code cell demonstrates how these different contexts of chemical sameness affects identity search in PubChem.

In [1]:

Identity_type: same_stereo_isotope

24726 "C(/C=C/Cl)Cl"

01 import requests
02 import time
03 import io
04
05 from rdkit import Chem
06 from rdkit.Chem import Draw
07
08 prolog = "https://pubchem.ncbi.nlm.nih.gov/rest/pug"
09
10 mydata = { 'smiles' : 'C(/C=C/Cl)Cl' }
11 options = ['same_stereo_isotope', # This is the default
12 'same_stereo',
13 'same_isotope',
14 'same_connectivity']
15
16 for myoption in (options) :
17
18 print("#### Identity_type:", myoption)
19
20 url = prolog + '/compound/fastidentity/smiles/property/isomericsmiles/csv?

identity_type=' + myoption
21 res = requests.post(url, data=mydata)
22
23 mycids = []
24 mysmiles = []
25
26 file = io.StringIO(res.text)
27 file.readline() # Skip the first line (column heads)
28
29 for line in file :
30
31 (cid_tmp, smiles_tmp) = line.rstrip().split(',')
32 print(cid_tmp, smiles_tmp)
33
34 mycids.append(cid_tmp)
35 mysmiles.append(smiles_tmp.replace('"',""))
36
37 mols = []
38
39 for x in mysmiles :
40
41 mol = Chem.MolFromSmiles(x)
42 Chem.FindPotentialStereoBonds(mol) # Identify potential stereo

bonds!
43 mols.append(mol)
44
45 img = Draw.MolsToGridImage(mols, molsPerRow=3, subImgSize=(200,200),

legends=mycids)
46 display(img)
47
48 time.sleep(0.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://pubchem.ncbi.nlm.nih.gov/rest/pug

4.6.3 https://chem.libretexts.org/@go/page/170165

Identity_type: same_stereo

24726 "C(/C=C/Cl)Cl"

102602172 "[2H]/C(=C(/[2H])\Cl)/C([2H])([2H])Cl"

Identity_type: same_isotope

24726 "C(/C=C/Cl)Cl"

24883 "C(C=CCl)Cl"

5280970 "C(/C=C\Cl)Cl"

Identity_type: same_connectivity

24726 "C(/C=C/Cl)Cl"

24883 "C(C=CCl)Cl"

5280970 "C(/C=C\Cl)Cl"

102602172 "[2H]/C(=C(/[2H])\Cl)/C([2H])([2H])Cl"

131875718 "[2H]C(=C([2H])Cl)C([2H])([2H])Cl"

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf

4.6.4 https://chem.libretexts.org/@go/page/170165

Exercise 1a: Find compounds that has the same atom connectivity and isotope information as the query molecule.

In [2]:

For each compound returned from the search, retrieve the following information.

CID
Isomeric SMILES string
chemical synonyms (for simplicity, print only the five synonyms that first occur in the name list retrieved for each compound)
Structure image

In [3]:

Write your code in this cell.

Similarity search
PubChem supports 2-dimensional (2-D) and 3-dimensional (3-D) similarity searches. Because molecular similarity is not a
measurable physical observable but a subjective concept, many approaches have been developed to evaluate it. Detailed discussion
on how PubChem quantifyies molecular similarity, read the following LibreTexts page:

Searching PubChem Using a Non-Textual Query (https://bit.ly/2lPznCo)

The code cell below demonstrates how to perform 2-D and 3-D similarity searches.

In [4]:

Number of CIDs: 29

['9875401', '6433119', '11524901', '68152323', '25190310', '25164166', '123868009', '5

1 query = "CC1=CN=C(C(=C1OC)C)C[S@](=O)C2=NC3=C(N2)C=C(C=C3)OC"

1 mydata = { 'smiles' : "C1COCC(=O)N1C2=CC=C(C=C2)N3C[C@@H]
(OC3=O)CNC(=O)C4=CC=C(S4)Cl" }

2 url = prolog + "/compound/fastsimilarity_2d/smiles/cids/txt?Threshold=99"
3 res = requests.post(url,data=mydata)
4 cids = res.text.split()
5
6 print("# Number of CIDs:", len(cids))
7 print(cids)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://bit.ly/2lPznCo

4.6.5 https://chem.libretexts.org/@go/page/170165

It is worth mentioning that the parameter name "Threshold" is case-sensitive. If "threshold" is used (rather than "Threshold"), it
will be ignored and the default value (0.90) will be used for the parameter. [As a matter of fact, all optional parameter names in
PUG-REST are case-sensitive.]

In [5]:

Number of CIDs: 165 vs. 763

It is possible to run 3-D similarity search using PUG-REST. However, because 3-D similarity search takes much longer than 2-D
similarity search, it often exceeds the 30-second time limit and returns a time-out error, especially when the query molecule is big.

In addition, for 3-D similarity search, it is not possible to adjust the similarity threshold (that is, the optional "Threshold" parameter
does not work). 3-D similarity search uses a shape-Tanimoto (ST) of >=0.80 and a color-Tanimoto (CT) of >=0.50 as a similarity
threshold. Read the libreTexts page for more details (https://bit.ly/2lPznCo).

In [6]:

21424

Exercise 2a: Perform 2-D similarity search with the following query, using a threshold of 0.80 and find the macromolecule targets
of the assays in which the returned compounds were tested. You will need to take these steps.

Run 2-D similarity search using the SMILES string as a query (with Threshold=80).
Retrieve the AIDs in which any of the returned CIDs was tested "active".
Retrieve the gene symbols of the targets for the returned AIDs.

In [7]:

In [8]:

Write your code in this cell.

Substructure/Superstructure search
When a chemical structure occurs as a part of a bigger chemical structure, the former is called a substructure and the latter is
referred to as a superstructure (https://bit.ly/2lPznCo). PUG-REST supports both substructure and superstructure searches. For

1 url1 = prolog + "/compound/fastsimilarity_2d/smiles/cids/txt?Threshold=95"
2 url2 = prolog + "/compound/fastsimilarity_2d/smiles/cids/txt?threshold=95" #

"threshold=95" is ignored.
3
4 res1 = requests.post(url1,data=mydata)
5 res2 = requests.post(url2,data=mydata)
6 cids1 = res1.text.split()
7 cids2 = res2.text.split()
8
9 print("# Number of CIDs:", len(cids1), "vs.", len(cids2))

1 mydata = { 'smiles' : 'CC(=O)OC1=CC=CC=C1C(=O)O'}
2 url = prolog + "/compound/fastsimilarity_3d/smiles/cids/txt"
3 res = requests.post(url, data=mydata)
4 cids = res.text.split()
5 print(len(cids))

1 query='[C@@H]23C(=O)[C@H](N)C(C)[C@H](CCC1=COC=C1)[C@@]2(C)CCCC3(C)C'

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://bit.ly/2lPznCo
https://bit.ly/2lPznCo

4.6.6 https://chem.libretexts.org/@go/page/170165

example, below is an example for substructure search using the core structure of antibiotic drugs called cephalosporins as a query
(https://en.Wikipedia.org/wiki/Cephalosporin).

In [9]:

Number of CIDs: 21810

An important thing to remember about substructure search is that, if the query structure is not specific enough (that is, not big
enough), it will return too many hits for the PubChem server can handle. For example, if you perform substructure search using the
"C-C" as a query, it will give you an error, because PubChem has ~96 million (organic) compounds with more than two carbon
atoms and most of them will have the "C-C" unit. Therefore, if you get an "time-out" error while doing substructure search,
consider providing more specific structure as an input query.

Exercise 3a: Below is the SMILES string for a HCV (Hepatitis C Virus) drug (Sovaldi). Perform substructure search using this
SMILES string as a query, identify compounds that are mentioned in patent documents, and create a list of the patent documents
that mentioning them.

Use the default options for substructure search.
Use the "XRefs" operation to retrieve Patent IDs associated with the returned compounds.
For simplicity, ignore the CID-Patent ID mapping. (That is, no need to track which CID is associated with which patent
document.)

In [10]:

In [11]:

Write your code in this cell.

Molecular formula search

Strictly speaking, molecular formula search is not structure search, but its PUG-REST request URL is constructed in a similar way
to structure searches like identity, similarity, and substructure/superstructure searches.

In [12]:

1 query = 'C12(SCC(=C(N1C([C@H]2NC(=O)[*])=O)C(=O)O[H])[*])[H]'
2
3 mydata = { 'smiles' : query }
4 url = prolog + "/compound/fastsubstructure/smiles/cids/txt?Stereo=exact"
5 res = requests.post(url, data=mydata)
6 cids = res.text.split()
7
8 print("# Number of CIDs:", len(cids))
9 #print(cids)

1 query="C[C@@H](C(=O)OC(C)C)N[P@](=O)(OC[C@@H]1[C@H]([C@@]([C@@H]
(O1)N2C=CC(=O)NC2=O)(C)F)O)OC3=CC=CC=C3"

1 query = 'C22H28FN3O6S' # Molecular formula for Crestor (Rosuvastatin: CID
446157)

2
3 url = prolog + "/compound/fastformula/"+ query + "/cids/txt"
4 res = requests.get(url)
5 cids = res.text.split()
6 print("# Number of CIDs:", len(cids))
7 #print(cids)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://en.wikipedia.org/wiki/Cephalosporin

4.6.7 https://chem.libretexts.org/@go/page/170165

Number of CIDs: 179

It is possible to allow other elements to be present in addition to those specified by the query formula, as shown in the following
example.

In [13]:

Number of CIDs: 200

Exercise 4a: The general molecular formula for alcohols is CnH(2n+2)OCnH(2n+2)O [for example, CH4O (methanol), C2H6O
(ethanol), C3H8O (propanol), etc]. Run molecular formula search using this general formula for n=1 through 20 and retrieve the
XLogP values of the returned compounds for each value of n. Print the minimum and maximum XLogP values for each n value.

In [14]:

Write your code in this cell.

4.6: Python Assignments is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

1 url = prolog + "/compound/fastformula/"+ query + "/cids/txt?
AllowOtherElements=true"

2 res = requests.get(url)
3 cids = res.text.split()
4 print("# Number of CIDs:", len(cids))
5 #print(cids)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/170165?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/04%3A_Searching_Databases_for_Chemical_Information/4.06%3A_Python_Assignments
https://creativecommons.org/licenses/by-nc-sa/4.0

