
6.4.1 https://chem.libretexts.org/@go/page/193791

6.4: Python Assignment

Molecular Similarity

� lecture06_Molecular Similarity.ipynb

Download the ipynb file and run your Jupyter notebook.
You can use the notebook you created in section 1.5 or the Jupyter hub at LibreText: https://jupyter.libretexts.org (see
your instructor if you do not have access to the hub).
This page is an html version of the above .ipynb file.

If you have questions on this assignment you should use this web page and the hypothes.is annotation to post a
question (or comment) to the 2019OLCCStu class group. Contact your instructor if you do not know how to access
the 2019OLCCStu group within the hypothes.is system.

Required Modules

Requests
RDKit

NOTE: This is a 2 week assignment

Objectives
Generete molecular fingerprints for a given molecule.
Evaluate structural similarity between molecules using different molecular fingerpints and similarity metrics.

Many useful documents/papers describe various aspects of molecular similarity, including molecular fingerprints and similarity
measures. Please read these if you need more details.

Getting Started with the RDKit in Python
(https://www.rdkit.org/docs/GettingStartedInPython.html#fingerprinting-and-molecular-similarity)

Fingerprint Generation, GraphSim Toolkit 2.4.2
(https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html)

Chemical Fingerprints
(https://docs.chemaxon.com/display/docs/Chemical+Fingerprints)

Extended-Connectivity Fingerprints
(https://doi.org/10.1021/ci100050t)

1. Fingerprint Generation
In [39]:

from rdkit import Chem

In [40]:

1-(1) MACCS keys

The MACCS key is a binary fingerprint (a string of 0's and 1's). Each bit position represents the presence (=1) or absence (=0) of a
pre-defined structural feature. The feature definitions for the MACCS keys are available at:
https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py

In [41]:

mol = Chem.MolFromSmiles('CC(C)C1=C(C(=C(N1CC[C@H](C[C@H](CC(=O)O)O)O)C2=CC=C(C=C2)F)C

 Downloadable Files

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/06%3A_Molecular_Similarity/6.04%3A_Python_Assignment
https://chem.libretexts.org/@api/deki/files/248177/lecture06-molecular-similarity.ipynb?revision=1
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics_OLCC_(2019)/1._Introduction/1.9%3A_Python_Assignment/2019OLCClecture01_Basics
https://jupyter.libretexts.org/
https://www.rdkit.org/docs/GettingStartedInPython.html#fingerprinting-and-molecular-similarity
https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html
https://docs.chemaxon.com/display/docs/Chemical+Fingerprints
https://doi.org/10.1021/ci100050t
https://github.com/rdkit/rdkit/blob/master/rdkit/Chem/MACCSkeys.py

6.4.2 https://chem.libretexts.org/@go/page/193791

from rdkit.Chem import MACCSkeys

fp = MACCSkeys.GenMACCSKeys(mol)

In [42]:

print(type(fp))

for i in range(len(fp)):

 print(fp[i], end='')

fp.ToBitString() # Alternative, easier way to convert it to a bitstring.

Out[42]:

In [43]:

len(fp)

Out[43]:

167

Note that the MACCS key is 166-bit-long, but RDKit generates a 167-bit-long fingerprint. It is because the index of a list/vector in
many programming languages (including python) begins at 0. To use the original numbering of the MACCS keys (1-166) (rather
than 0-165), the MACCS keys were implemented to be 167-bit-long, with Bit 0 being always zero. Because Bit 0 is set to OFF for
all compounds, it does not affect the evaluation of molecular similarity.

These are some methods that allow you to get some additional information on the MACCS Keys.

In [44]:

print(fp.GetNumBits())

print(fp.GetNumOffBits())

print(fp.GetNumOnBits())

print(fp.ToBinary())

Exercise 1a: Generate the MACCS keys for the molecules represented by the following SMILES, and get the positions of the bits
set to ON in each of the three fingerprints. What fragments do these bit positions correspond to? (the bit definitions are available at

In [45]:

<class 'rdkit.DataStructs.cDataStructs.ExplicitBitVect'>

0010000000000100000000100100000000110000100101

'001000000000010000000010010000000011000010010

167

105

62

b'\xe0\xff\xff\xff\xa7\x00\x00\x00>\x00\x00\x00T\x14\x10\x04\x10\x00\x08\x04\x02\x02\x

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.3 https://chem.libretexts.org/@go/page/193791

smiles = ['C1=CC=CC=C1', # Benzene (Kekule)

 'c1ccccc1', # Benzene ("Aromatized" carbons)

 'C1CCCCC1'] # Cyclohexene

In [46]:

Write your code in this cell.

Write the fragment definition of the bits ON (one is already provided for you as an example).

- 118: ACH2CH2A > 1

1-(2) Circular Fingerprints

Circular fingerprints are hashed fingerprints. They are generated by exhaustively enumerating "circular" fragments (containing all
atoms within a given radius from each heavy atom of the molecule) and then hashing these fragments into a fixed-length bitstring.
(Here, the "radius" from an atom is measured by the number of bonds that separates two atoms).

Examples of circular fingerprints are the extended-connectivity fingerprint (ECFPs) and their variant called FCFPs (Functional-
Class Fingerprints), originally described in a paper by Rogers and Hahn (https://doi.org/10.1021/ci100050t). The RDKit
implementation of these fingerprints are called "Morgan Fingerprints"
(https://www.rdkit.org/docs/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints).

In [47]:

from rdkit.Chem import AllChem

fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024).ToBitString()

print(fp)

When comparing the RDK's Morgan fingerprints with the ECFP/FCFP fingerprints, it is important to remember that the name of
ECFP/FCFP fingerprints are suffixed with the diameter of the atom environments considered, while the Morgan Fingerprints take
a radius parameter (e.g., the second argument "2" of GetMorganFingerprintAsBitVect() in the above code cell). The Morgan
fingerprint generated above (with a radius of 2) is comparable to the ECFP4 fingerprint (with a diameter of 4).

Exercise 1b: For the moleculess below, generate the 512-bit-long Morgan Fingeprint comparable to the FCFP6 fingerprint.

Search for the compounds by name and get their SMILES strings.
Generate the molecular fingerprints from the SMILES strings.
Print the generated fingerprints.
To generate FCFP (not ECFP), read the following document: https://www.rdkit.org/docs/GettingStartedInPython.html#morgan-
fingerprints-circular-fingerprints

In [48]:

synonyms = ['diphenhydramine', 'cetirizine', 'fexofenadine', 'loratadine']

In [49]:

Write your code in this cell

1-(3) Path-Based Fingeprints

Path-based fingerprints are also hashed fingerprints. They are generated by enumerating linear fragments of a given length and
hashing them into a fixed-length bitstring. An example is the RDKit's topological fingeprint. As described in the RDK

01000000000000000000000000000100011000000000000000000100000000001000000000000000100000

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf
https://doi.org/10.1021/ci100050t
https://www.rdkit.org/docs/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints
https://www.rdkit.org/docs/GettingStartedInPython.html#morgan-fingerprints-circular-fingerprints

6.4.4 https://chem.libretexts.org/@go/page/193791

documentation (https://www.rdkit.org/docs/GettingStartedInPython.html#topological-fingerprints), while this fingerprint can be
generated using FingerprintMols.FingerprintMol(), it is recommended to use rdmolops.RDKFingerprint() to generate the
fingerprint using non-default parameter values.

In [50]:

from rdkit.Chem import rdmolops

fp = rdmolops.RDKFingerprint(mol, fpSize=2048, minPath=1, maxPath=7).ToBitString()

print(fp)

1-(4) PubChem Fingerprint

The PubChem Fingerprint is a 881-bit-long binary fingerprint (ftp://ftp.ncbi.nlm.nih.gov/pubchem/s...ngerprints.pdf). Similar to the
MACCS keys, it uses a pre-defined fragment dictionary. The PubChem fingerprint for each compound in PubChem can be
downloaded from PubChem. However, because they are base64-encoded, they should be decoded into binary bitstrings or
bitvectors.

Details about how to decode base64-encoded PubChem fingerprints is described on the last page of the PubChem Fingerprint
specification (ftp://ftp.ncbi.nlm.nih.gov/pubchem/s...ngerprints.pdf). Below is a user-defined function that decodes a PubChem
fingerprint into a bit string.

In [51]:

In [52]:

In [53]:

print(len(PCFP_BitString(pcfps)))

print(PCFP_BitString(pcfps))

The generated bitstring can be converted to a bitvector that can be used for molecular similarity computation in RDKit (to be
discussed in the next section).

In [54]:

from rdkit import DataStructs

bitvect = DataStructs.CreateFromBitString(PCFP_BitString(pcfps))

type(bitvect)

11011101111101010111110010111110101111011110100111111111110111001111111101101111011111

from base64 import b64decode

def PCFP_BitString(pcfp_base64) :

 pcfp_bitstring = "".join(["{:08b}".format(x) for x in b64decode(pcfp_base64)]

 return pcfp_bitstring

pcfps = 'AAADcYBgAAAAAAAAAAAAAAAAAAAAAAAAAAAwAAAAAAAAAAABAAAAGAAAAAAACACAEAAwAIAAAACAA

881

10000000011000

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf
https://www.rdkit.org/docs/GettingStartedInPython.html#topological-fingerprints
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf

6.4.5 https://chem.libretexts.org/@go/page/193791

Out[54]:

rdkit.DataStructs.cDataStructs.ExplicitBitVect

2. Computation of similarity scores
In [55]:

import requests

import time

In [56]:

cids = [54454, # Simvastatin (Zocor)

 54687, # Pravastatin (Pravachol)

 60823, # Atorvastatin (Lipitor)

 446155, # Fluvastatin (Lescol)

 446157, # Rosuvastatin (Crestor)

 5282452, # Pitavastatin (Livalo)

 97938126] # Lovastatin (Altoprev)

Let's get the SMILES strings from PubChem, generate Mol objects from them, and draw their chemical structures.

In [57]:

prolog = "https://pubchem.ncbi.nlm.nih.gov/rest/pug"

str_cid = ",".join([str(x) for x in cids])

url = prolog + "/compound/cid/" + str_cid + "/property/isomericsmiles/txt"

res = requests.get(url)

smiles = res.text.split()

In [58]:

Out[58]:

from rdkit import Chem

from rdkit.Chem import Draw

mols = [Chem.MolFromSmiles(x) for x in smiles]

Chem.Draw.MolsToGridImage(mols, molsPerRow=4, subImgSize=(200,200), legends=[str(x) fo

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.6 https://chem.libretexts.org/@go/page/193791

Now generate MACCS keys for each compound.

In [59]:

from rdkit import DataStructs

from rdkit.Chem import MACCSkeys

fps = [MACCSkeys.GenMACCSKeys(x) for x in mols]

Now let's compute the pair-wise similarity scores among them. To make higher scores easier to find, they are indicated with the "*"
character(s).

In [60]:

for i in range(0, len(fps)) :

 for j in range(i+1, len(fps)) :

 score = DataStructs.FingerprintSimilarity(fps[i], fps[j])

 print(cids[i], "vs.", cids[j], ":", round(score,3), end='')

 if (score >= 0.85):

 print(" ****")

 elif (score >= 0.75):

 print(" ***")

 elif (score >= 0.65):

 print(" **")

 elif (score >= 0.55):

 print(" *")

 else:

 print(" ")

54454 vs. 54687 : 0.812 ***

54454 vs. 60823 : 0.354

54454 vs. 446155 : 0.379

54454 vs. 446157 : 0.307

54454 vs. 5282452 : 0.4

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.7 https://chem.libretexts.org/@go/page/193791

54454 vs. 97938126 : 0.867 ****

54687 vs. 60823 : 0.387

54687 vs. 446155 : 0.397

54687 vs. 446157 : 0.287

54687 vs. 5282452 : 0.421

54687 vs. 97938126 : 0.8 ***

60823 vs. 446155 : 0.662 **

60823 vs. 446157 : 0.535

60823 vs. 5282452 : 0.507

60823 vs. 97938126 : 0.365

446155 vs. 446157 : 0.526

446155 vs. 5282452 : 0.735 **

446155 vs. 97938126 : 0.393

446157 vs. 5282452 : 0.473

446157 vs. 97938126 : 0.298

5282452 vs. 97938126 : 0.444

By default, the similarity score is generated using the Tanimoto equation. RDKit also supports other similarity metrics, including
Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky. The definition of these metrics is available at the
LibreTexts page (https://bit.ly/2kx9NCd).

In [61]:

Tanimoto : 0.8125

Dice : 0.8966

Cosine : 0.8971

Sokal : 0.6842

McConnaughey: 0.7952

The Tversky score is an asymmetric similarity measure, and its computation requires the weightings of the two molecules being
compared.

In [62]:

for i in range(0,11) :

 alpha = round(i * 0.1, 1)

 beta = round(1 - alpha, 1)

 print("(alpha, beta) = (", alpha, ",", beta, ") : ", end='')

 print(round(DataStructs.TverskySimilarity(fps[0], fps[1], alpha, beta), 4))

(alpha, beta) = (0.0 , 1.0) : 0.9286

(alpha, beta) = (0.1 , 0.9) : 0.922

print("Tanimoto :", round(DataStructs.TanimotoSimilarity(fps[0], fps[1]), 4))

print("Dice :", round(DataStructs.DiceSimilarity(fps[0], fps[1]), 4))

print("Cosine :", round(DataStructs.CosineSimilarity(fps[0], fps[1]), 4))

print("Sokal :", round(DataStructs.SokalSimilarity(fps[0], fps[1]), 4))

print("McConnaughey:", round(DataStructs.McConnaugheySimilarity(fps[0], fps[1]), 4))

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf
https://bit.ly/2kx9NCd

6.4.8 https://chem.libretexts.org/@go/page/193791

(alpha, beta) = (0.2 , 0.8) : 0.9155

(alpha, beta) = (0.3 , 0.7) : 0.9091

(alpha, beta) = (0.4 , 0.6) : 0.9028

(alpha, beta) = (0.5 , 0.5) : 0.8966

(alpha, beta) = (0.6 , 0.4) : 0.8904

(alpha, beta) = (0.7 , 0.3) : 0.8844

(alpha, beta) = (0.8 , 0.2) : 0.8784

(alpha, beta) = (0.9 , 0.1) : 0.8725

(alpha, beta) = (1.0 , 0.0) : 0.8667

Exercise 2a: Compute the Tanimoto similarity scores between the seven compounds used in this section, using the PubChem
fingerprints

Download the PubChem Fingerprint for the seven CIDs.
Convert the downloaded fingerprints into bit vectors.
Compute the pair-wise Tanimoto scores using the bit vectors.

In [63]:

Write your code in this cell

3. Interpretation of similarity scores
Using molecular fingeprints. we can compute the similarity scores between molecules. However, how should these scores be
interpreted? For example, the Tanimoto score between CID 60823 and CID 446155 is computed to be 0.662, but does it mean that
the two compounds are similar? How similar is similar? The following analysis would help answer these questions.

Step 1. Randomly select 1,000 compounds from PubChem and download their SMILES strings.

In [64]:

import random

random.seed(0)

cid_max = 138962044 # The maximum CID in PubChem as of September 2019

cids = []

for x in range(1000):

 cids.append(random.randint(1, cid_max + 1))

chunk_size = 100

if len(cids) % chunk_size == 0 :

 num_chunks = int(len(cids) / chunk_size)

else :

 num_chunks = int(len(cids) / chunk_size) + 1

smiles = []

for i in range(num_chunks):

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.9 https://chem.libretexts.org/@go/page/193791

 if (i == 0):

 print("Processing chunk ", end='')

 print(i, end=' ')

 idx1 = chunk_size * i

 idx2 = chunk_size * (i + 1)

 str_cids = ",".join([str(x) for x in cids[idx1:idx2]])

 url = prolog + "/compound/cid/" + str_cids + "/property/isomericsmiles/txt"

 res = requests.get(url)

 if (res.status_code == 200) :

 smiles.extend(res.text.split())

 else :

 print("Chunk", i, "Failed to get SMILES.")

 time.sleep(0.2)

print("Done!")

print("# Number of SMILES : ", len(smiles))

Processing chunk 0 1 2 3 4 5 6 7 8 9 Done!

Number of SMILES : 1000

Step 2. Generate the MACCSKeys for each compound.

In [65]:

from rdkit import Chem

mols = [Chem.MolFromSmiles(x) for x in smiles if x != None]

fps = [MACCSkeys.GenMACCSKeys(x) for x in mols if x != None]

print("# Number of compounds:", len(mols))

print("# Number of fingerprints:", len(fps))

Number of compounds: 1000

Number of fingerprints: 1000

In [66]:

Run this cell if the number of compounds != the number of fingerprints.

#if (len(cids) != len(fps)):

print("SMILES at index", mols.index(None), ":", smiles[mols.index(None)])

Step 3. Compute the Tanimoto scores between compounds.

In [67]:

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.10 https://chem.libretexts.org/@go/page/193791

print("# The number of compound pairs:", (len(fps) * (len(fps) - 1))/2)

The number of compound pairs: 499500.0

In [68]:

scores = []

for i in range(0, len(fps)) :

 if (i == 0) :

 print("Processing compound ", end='')

 if (i % 100 == 0) :

 print(i, end=' ')

 for j in range(i+1, len(fps)) :

 scores.append(DataStructs.FingerprintSimilarity(fps[i], fps[j]))

print("Done!")

print("# Number of scores : ", len(scores))

Processing compound 0 100 200 300 400 500 600 700 800 900 Done!

Number of scores : 499500

Step 4. Generate a histogram that shows the distribution of the pair-wise scores.

In [69]:

import matplotlib.pyplot as plt

%matplotlib inline

In [70]:

mybins = [x * 0.01 for x in range(101)]

fig = plt.figure(figsize=(8,4), dpi=300)

plt.subplot(1, 2, 1)

plt.title("Distribution")

plt.hist(scores, bins=mybins)

plt.subplot(1, 2, 2)

plt.title("Cumulative Distribution")

plt.hist(scores, bins=mybins, density=True, cumulative=1)

plt.plot([0,1],[0.95,0.95]);

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.11 https://chem.libretexts.org/@go/page/193791

In [71]:

for i in range(21) :

 thresh = i / 20

 num_similar_pairs = len([x for x in scores if x >= thresh])

 prob = num_similar_pairs / len(scores) * 100

 print("%.3f %8d (%8.4f %%)" % (thresh, num_similar_pairs, round(prob,4)))

0.000 499500 (100.0000 %)

0.050 497010 (99.5015 %)

0.100 488714 (97.8406 %)

0.150 469193 (93.9325 %)

0.200 435672 (87.2216 %)

0.250 385198 (77.1167 %)

0.300 318637 (63.7912 %)

0.350 245621 (49.1734 %)

0.400 175158 (35.0667 %)

0.450 111668 (22.3560 %)

0.500 66599 (13.3331 %)

0.550 32209 (6.4482 %)

0.600 13897 (2.7822 %)

0.650 4668 (0.9345 %)

0.700 1351 (0.2705 %)

0.750 355 (0.0711 %)

0.800 76 (0.0152 %)

0.850 24 (0.0048 %)

0.900 6 (0.0012 %)

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.12 https://chem.libretexts.org/@go/page/193791

0.950 1 (0.0002 %)

1.000 0 (0.0000 %)

In [72]:

print("Average:", sum(scores)/len(scores))

Average: 0.3488195436976387

From the distribution of the similarity scores among 1,000 compounds, we observe the following:

If you randomly select two compounds from PubChem, the similarity score between them (computed using the Tanimoto
equation and MACCS keys) is ~0.35 on average.
About %5 of randomly selected compound pairs have a similarity score greater than 0.55.
About %1 of randomly selected compound pairs have a similarity score greater than 0.65.

If two compounds have a Tanimoto score of 0.35, it is close to the avaerage Tanimoto score between randomly selected compounds
and there is a 50% chance that you will get a score of 0.35 or greater just by selecting two compounds from PubChem. Therefore, it
is reasonable to consider the two compounds are not similar.

The Tanimoto index may have a value ranging from 0 (for no similarity) to 1 (for identical molecules) and the midpoint of this
value range is 0.5. Because of this, a Tanimoto score of 0.55 may not sound great enough to consider two compounds to be similar.
However, according to the score distribution curve generated here, only ~5% of randomly selected compound pairs will have a
score greater than this.

In the previous section, we computed the similarity scores between some cholesterol-lowering drugs, and CID 60823 and CID
446155 had a Tanimoto score of 0.662. Based on the score distribution curve generated in the second section, we can say that the
probablilty of two randomly selected compounds from PubChem having a Tanimoto score greater than 0.662 is less than 1%.

The following code cell demonstrates how to find an appropriate similarity score threshold above which a given percentage of the
compound pairs will be considered to be similar to each other.

In [73]:

scores.sort() # Sort the scores in an increasing order.

In [74]:

to find a threshold for top 3% compound pairs (i.e., 97% percentile)

print("# total compound pairs: ", len(scores))

print("# 95% of compound pairs: ", len(scores) * 0.97)

print("# score at 95% percentile:", scores[round(len(scores) * 0.97)])

total compound pairs: 499500

95% of compound pairs: 484515.0

score at 95% percentile: 0.5945945945945946

Exercise 3a: In this exercise, we want to generate the distribution of the similarity scores among 1,000 compounds randomly
selected from PubChem, using different molecular fingeprints and similarity metrics.
For molecular fingerprints, use the following:

PubChem Fingerprint
MACCS keys
Morgan Fingerprint (ECFP4 analogue, 1024-bit-long)

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf

6.4.13 https://chem.libretexts.org/@go/page/193791

For similarity metrics, use the following:

Tanimoto similarity
Dice similarity
Cosine similarity

As a result, a total of 9 distribution curves need to be generated.

Here are additional instructions to follow:

When generating the histograms, bin the scores from 0 to 1 with an increment of 0.01.
For each distribution curve, determine the similarity score threshold so that 1% of the compound pairs have a similarity score
greater than or equal to this threshold.
Use RDKit to generate the MACCS keys and Morgan fingerprint and download the PubChem fingerprints from PubChem.
For reproducibility, use random.seed(2019) before you generate random CIDs.

Step 1: Generate 1,000 random CIDs, download the isomeric SMILES for them, and create the RDKit mol objects from the
downloaded SMILES strings.

In [75]:

Write your code in this cell

Step 2: Generate the fingerprints, compute the similarity scores, determine similarity thresholds, and make histograms.

In [76]:

Write your code in this cell

In []:

6.4: Python Assignment is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

https://libretexts.org/
https://chem.libretexts.org/@go/page/193791?pdf
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/06%3A_Molecular_Similarity/6.04%3A_Python_Assignment
https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/06%3A_Molecular_Similarity/6.04%3A_Python_Assignment?no-cache

