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25.2: Fermi-Dirac Statistics and the Fermi-Dirac Distribution Function

Let us consider the total probability sum for a system of particles that follows Fermi-Dirac statistics. As before, we let €}, €a,...,
€;,.... be the energies of the successive energy levels. We let g1, go,..., gi,.... be the degeneracies of these levels. We let Ny,
Na,..., Nj,.... be the number of particles in all of the degenerate quantum states of a given energy level. The probability of finding
a particle in a quantum state depends on the number of particles in the system; we have p (IV;, €;) rather than p (¢;). Consequently,
we cannot generate the total probability sum by expanding an equation like

1= (P+Py+-+P+..) N

However, we continue to assume:

1. A finite subset of the population sets available to the system accounts for nearly all of the probability when the system is held in
a constant-temperature environment.

2. Essentially the same finite subset of population sets accounts for nearly all of the probability when the system is isolated.

3. All of the microstates that have a given energy have the same probability. We let this probability be pﬂ% N.E

As before, the total probability sum will be of the form

1= Z WFD (Ni, Ei)pﬂg,N,E
{N:}

Each such term reflects the fact that there are WP (IV;, ¢;) ways to put Ny particles in the g; quantum states of energy level ¢,
and N, particles in the go quantum states of energy level €2, and, in general, IV; particles in the g; quantum states of energy level
€;. Unlike Boltzmann statistics, however, the probabilities are different for successive particles, so the coefficient WED s different
from the polynomial coefficient, or thermodynamic probability, W. Instead, we must discover the number of ways to put N;
indistinguishable particles into the g;-fold degenerate quantum states of energy €; when a given quantum state can contain at most
one particle.

These conditions can be satisfied only if g; > N; . If we put N; of the particles into quantum states of energy e;, there are

1. g; ways to place the first particle, but only

2. g; — 1 ways to place the second, and

3. gi —2 ways to place the third, and

4. ...

5. g; — (N; — 1) ways to place the last one of the N; particles.

This means that there are
(9:)(9i—1)(9i—2)... (g — (Vi +1)) =
(9:)(9i —1)(g:=2)... (g —(Ni+1))(gi —=Ny)...(1) g

(9i — Ni)! (9i — Ni)!
ways to place the IV; particles. Because the particles cannot be distinguished from one another, we must exclude assignments
which differ only by the way that the IV; particles are permuted. To do so, we must divide by N;!. The number of ways to put N;
indistinguishable particles into g; quantum states with no more than one particle in a quantum state is

gi!
(9i — Ni)!N;!
The number of ways to put indistinguishable Fermi-Dirac particles of the population set { N1, Na,..., N;,...}into the available

energy states is

W (N 90) = [(gl—?\lfll)!]\ﬁ!] - [(gz—?\zf:)!Nzl] S {#')'N'] o :f[ [(g+')'l\”}

i=1

so that the total probability sum for a Fermi-Dirac system becomes
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ad 9;! FD N;
1= 1T | o= | o (@)
% 1 L (g — No)IV;!
To find the Fermi-Dirac distribution function, we seek the population set { Ny, Na, ..., Nj,...} for which WP is a maximum,

subject to the constraints

N=) N
i=1
and
o0
E = Z N,-ei
i=1

The mnemonic function becomes

oo

FEP = "Ing! = [(g: = N:)In(gi = N;) —(g: — Ni)] = Y _ [NilnN; = Ni | + o
i=1 =1

i=1 %
E— i N,EZ]
i=1

We seek the le for which F,EP is an extremum; that is, the N i' satisfying

+ 8

FIP  gi—N; . N; .
0 :3 _9 L —|—ln(gi—Ni) —-1--L —InN; +1—a—f¢;
ON; gi_Ni. Ni.

7

- ln(gi —N.’) ~InN; —a— B

Solving for IV;', we find

__gie e s
T 14eae b
or, equivalently,
N, __ 1
Gi 1+ exebei

If1>> e “e P (or 1 < e*e®), the Fermi-Dirac distribution function reduces to the Boltzmann distribution function. It is easy to
see that this is the case. From
_ et et
b 14eae b '
— o8] *

and N =3, N;, we have

o0

N=e" Zgie_ﬁe" =e “z
i=1

It follows that e* = z/N . With 8 = 1/kT, we recognize that N, /N is the Boltzmann distribution. For occupied energy levels,
e P —eci /kT ~ 1 ; otherwise, e P4 = e %/¥T <1 . This means that the Fermi-Dirac distribution simplifies to the Boltzmann
distribution whenever 1 > e™. We can illustrate that this is typically the case by considering the partition function for an ideal
gas.

Using the translational partition function for one mole of a monatomic ideal gas from Section 24.3, we have
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For an ideal gas of molecular weight 40 at 300 K and 1 bar, we find e* =1.02 x 107 and e ® =9.77 x 107 . Clearly, the
condition we assume in demonstrating that the Fermi-Dirac distribution simplifies to the Boltzmann distribution is satisfied by
molecular gases at ordinary temperatures. The value of e® decreases as the temperature and the molecular weight decrease. To find
e® =~ 1 for a molecular gas, it is necessary to consider very low temperatures.

Nevertheless, the Fermi-Dirac distribution has important applications. The behavior of electrons in a conductor can be modeled on

the assumption that the electrons behave as a Fermi-Dirac gas whose energy levels are described by a particle-in-a-box model.

This page titled 25.2: Fermi-Dirac Statistics and the Fermi-Dirac Distribution Function is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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