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25.2: Fermi-Dirac Statistics and the Fermi-Dirac Distribution Function
Let us consider the total probability sum for a system of particles that follows Fermi-Dirac statistics. As before, we let , ,…, 

,…. be the energies of the successive energy levels. We let , ,…, ,…. be the degeneracies of these levels. We let , 
,…, ,…. be the number of particles in all of the degenerate quantum states of a given energy level. The probability of finding

a particle in a quantum state depends on the number of particles in the system; we have  rather than . Consequently,
we cannot generate the total probability sum by expanding an equation like

However, we continue to assume:

1. A finite subset of the population sets available to the system accounts for nearly all of the probability when the system is held in
a constant-temperature environment.

2. Essentially the same finite subset of population sets accounts for nearly all of the probability when the system is isolated.
3. All of the microstates that have a given energy have the same probability. We let this probability be .

As before, the total probability sum will be of the form

Each such term reflects the fact that there are  ways to put  particles in the  quantum states of energy level ,
and  particles in the  quantum states of energy level , and, in general,  particles in the  quantum states of energy level 

. Unlike Boltzmann statistics, however, the probabilities are different for successive particles, so the coefficient  is different
from the polynomial coefficient, or thermodynamic probability, . Instead, we must discover the number of ways to put 
indistinguishable particles into the -fold degenerate quantum states of energy  when a given quantum state can contain at most
one particle.

These conditions can be satisfied only if . If we put  of the particles into quantum states of energy , there are

1.  ways to place the first particle, but only
2.  ways to place the second, and
3.  ways to place the third, and
4. …
5.  ways to place the last one of the  particles.

This means that there are

ways to place the  particles. Because the particles cannot be distinguished from one another, we must exclude assignments
which differ only by the way that the  particles are permuted. To do so, we must divide by . The number of ways to put 
indistinguishable particles into  quantum states with no more than one particle in a quantum state is

The number of ways to put indistinguishable Fermi-Dirac particles of the population set  into the available
energy states is

so that the total probability sum for a Fermi-Dirac system becomes

ϵ1 ϵ2

ϵi g1 g2 gi N1

N2 Ni

ρ ( , )Ni ϵi ρ ( )ϵi

1 = .( + +⋯ + +…)P1 P2 Pi
N

ρFD
MS,N ,E

1 = ( , )∑
{ }Ni

W FD Ni ϵi ρFD
MS,N ,E

( , )W FD Ni ϵi N1 g1 ϵ1

N2 g2 ϵ2 Ni gi

ϵi W FD

W Ni

gi ϵi

≥gi Ni Ni ϵi

gi

−1gi

−2gi

−( −1)gi Ni Ni

( ) ( −1) ( −2) … ( −( +1)) =gi gi gi gi Ni

= =
( ) ( −1) ( −2) … ( −( +1)) ( − ) … (1)gi gi gi gi Ni gi Ni

( − )!gi Ni

!gi

( − )!gi Ni

Ni

Ni !Ni Ni

gi

!gi

( − )! !gi Ni Ni

{ ,   , … ,   , …}N1 N2 Ni

( , ) = [ ]×[ ]×⋯ ×[ ]×⋯ = [ ]W FD Ni gi

!g1

( − )! !g1 N1 N1

!g2

( − )! !g2 N2 N2

!gi

( − )! !gi Ni Ni

∏
i=1

∞ !gi

( − )! !gi Ni Ni

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/151986?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/25%3A_Bose-Einstein_and_Fermi-Dirac_Statistics/25.02%3A_Fermi-Dirac_Statistics_and_the_Fermi-Dirac_Distribution_Function


25.2.2 https://chem.libretexts.org/@go/page/151986

To find the Fermi-Dirac distribution function, we seek the population set  for which  is a maximum,
subject to the constraints

and

The mnemonic function becomes

We seek the  for which  is an extremum; that is, the  satisfying

Solving for , we find

or, equivalently,

If  (or ), the Fermi-Dirac distribution function reduces to the Boltzmann distribution function. It is easy to
see that this is the case. From

and , we have

It follows that . With , we recognize that  is the Boltzmann distribution. For occupied energy levels, 
; otherwise, . This means that the Fermi-Dirac distribution simplifies to the Boltzmann

distribution whenever . We can illustrate that this is typically the case by considering the partition function for an ideal
gas.

Using the translational partition function for one mole of a monatomic ideal gas from Section 24.3, we have
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For an ideal gas of molecular weight  at  K and  bar, we find  and . Clearly, the
condition we assume in demonstrating that the Fermi-Dirac distribution simplifies to the Boltzmann distribution is satisfied by
molecular gases at ordinary temperatures. The value of  decreases as the temperature and the molecular weight decrease. To find 

 for a molecular gas, it is necessary to consider very low temperatures.

Nevertheless, the Fermi-Dirac distribution has important applications. The behavior of electrons in a conductor can be modeled on
the assumption that the electrons behave as a Fermi-Dirac gas whose energy levels are described by a particle-in-a-box model.

This page titled 25.2: Fermi-Dirac Statistics and the Fermi-Dirac Distribution Function is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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