LibreTextsw

20.7: The Microstates of a Given Population Set

Thus far, we have considered only the probabilities associated with the assignments of distinguishable molecules to the allowed
energy levels. In Section 20.2, we introduce the hypothesis that all of the g; degenerate quantum states with energy ¢; are equally
probable, so that the probability that a molecule has energy ¢; is P; = P (¢;) = g;p (€;) . Making this substitution, the total
probability sum becomes
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For reasons that become clear later, W is traditionally called the thermodynamic probability. This name is somewhat unfortunate,
because W is distinctly different from an ordinary probability.

In Section 20.5, we note that PlN1 P2N2 PZ i is the probability that N; molecules occupy each of the energy levels ¢; and that
NU/(NyINy!...N;!...) is the number of combinations of distinguishable molecules that arise from the population set
{N1,Ns,...,Nj,...}. Now we observe that the extended product
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is the probability of any one assignment of the distinguishable molecules to quantum states such that N; molecules are in quantum
states whose energies are ¢;. Since a given molecule of energy ¢; can be in any of the g; degenerate quantum states, the probability
that it is in the energy level ¢; is g;-fold greater that the probability that it is in any one of these quantum states.

Microstates

We call a particular assignment of distinguishable molecules to the available quantum states a microstate. For any population set,
there are many combinations. When energy levels are degenerate, each combination gives rise to many microstates. The factor
p(e)Mp(e2)™ ... p(&)™ ....is the probability of any one microstate of the population set { Ny, Na, ..., N;,...}. Evidently,
the thermodynamic probability
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is the total number of microstates of that population set.

To see directly that the number of microstates is dictated by Equation 20.7.1, let us consider the number of ways we can assign NV
distinguishable molecules to the quantum states when the population set is { N7, N, ..., N;, ...} and energy level ¢; is g;-fold
degenerate. We begin by assigning the N; molecules in energy level €;. We can choose the first molecule from among any of the
N distinguishable molecules and can choose to place it in any of the g; quantum states whose energy is €;. The number of ways
we can make these choices is Ng;. We can choose the second molecule from among the N —1 remaining distinguishable
molecules. In Boltzmann statistics, we can place any number of molecules in any quantum state, so there are again g; quantum
states in which we can place the second molecule. The total number of ways we can place the second molecule is (N —1) g; .

The number of ways the first and second molecules can be chosen and placed is therefore N (N —1) g% . We find the number of
ways that successive molecules can be placed in the quantum states of energy €; by the same argument. The last molecule whose
energy is €; can be chosen from among the (N — Ny +1) remaining molecules and placed in any of the g; quantum states. The
total number of ways of placing the N; molecules in energy level €; is N (N —1) (N —2)...(N —N; +1) g{v !

This total includes all possible orders for placing every set of N7 distinguishable molecules into every possible set of quantum
states. However, the order doesn’t matter; the only thing that affects the state of the system is which molecules go into which
quantum state. (When we consider all of the ways our procedure puts all of the molecules into any of the quantum states, we find
that any assignment of molecules A, B, and C to any particular set of quantum states occurs six times. Selections in the orders A,
B,C; A,C,B; B,A,C; B,C,A; C,A,B; and C,B,A all put the same molecules in the same quantum states.) There are N;! orders
in which our procedure chooses the N7 molecules; to correct for this, we must divide by V!, so that the total number of
assignments we want to include in our count is

N(N—-1)(N-2)...(N =N, +1) g /Ny!

The first molecule that we assign to the second energy level can be chosen from among the N — N; remaining molecules and
placed into any of the g, quantum states whose energy is €;. The last one can be chosen from among the remaining
(N —N; —N;+1) molecules. The number of assignments of the N, molecules to go-fold degenerate quantum states whose
energy is € is

(N —Ny) (N =Ny —1)...(N—N; — Ny +1) gl / Ny!
When we consider the number of assignments of molecules to quantum states with energies €; and €5 we have
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Let the last energy level to contain any molecules be €,. The number of ways that the /V,, molecules can be assigned to the

quantum states with energy e, is N, (N,—1)...(1)gd*/N,! The total number of microstates for the population set
{N1, Ny, ..., N;,...}becomes

N(N-1)...(N-N)(N-N, —1)...
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When we consider Fermi-Dirac and Bose-Einstein statistics, it is no longer true that the molecules are distinguishable. For Fermi-
Dirac statistics, no more than one molecule can be assigned to a particular quantum state. For a given population set, Boltzmann,
Fermi-Dirac, and Bose-Einstein statistics produce different numbers of microstates.

It is helpful to have notation that enables us to specify different combinations and different microstates. If €; is the energy
associated with the wave equation that describes a particular molecule, it is convenient to say that the molecule is in energy level
€;; that is, its quantum state is one of those that has energy ¢;. Using capital letters to represent molecules, we indicate that
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molecule A is in energy level ¢; by writing €; (4). To indicate that A, B, and C are in ¢;, we write ¢; (4, B, C'). Similarly, to
indicate that molecules D and E are in €, we write e (D, E). For this system of five molecules, the assignment
€; (4, B,C) ¢, (D, E) represents one of the possible combinations. The order in which we present the molecules that have a given
energy is immaterial: ¢; (4, B, C) ¢, (D, E) and ¢; (C, B, A) €, (E, D) represent the same combination. When any one molecule
is distinguishable from others of the same substance, assignments in which a given molecule has different energies are physically
different and represent different combinations. The assignments ¢; (4, B,C) e, (D, E) and ¢; (D, B,C) ¢ (A, E) represent
different combinations. In Figure 2, we represent these assignments more schematically.

Any two assignments in which a particular molecule occupies different quantum states give rise to different microstates. If the 5
energy level is three-fold degenerate, a molecule in any of the quantum states 1), ;, 9, 5, or ¥, ; has energy ¢;. Let us write

Yi1 (A, B) vz (C) ¢y,1 (DE)

to indicate the microstate arising from the combination ¢; (4, B, C) € (D, E) in which molecules A and B occupy 1; 1, molecule
C occupies 1; 5, and molecules D and E occupy )y, ;. Then,

Vi1 (A, B) ;5 (C) g1 (DE)
Vi1 (B,C) g (A) Y1 (DE)
Vi1 (A) ;5 (B, C) ¢y, 1 (DE)

are three of the many microstates arising from the combination ¢; (4, B, C) ¢ (D, E). Figure 3 shows all of the microstates
possible for the population set {2, 1} when the quantum states of a molecule are 9, ;, ¥, 5, and ¥, ;.
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Figure 3. Microstates for {2,1} with quantum states ¥, ;, ¥;5, and ¥y ;.
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