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7.5: Determining Whether an Expression is an Exact Differential
Since exact differentials have these important characteristics, it is valuable to know whether a given differential expression is exact
or not. That is, given a differential expression of the form

we would like to be able to determine whether  is exact or inexact. It turns out that there is a simple test for exactness:

The differential in the form of Equation  is exact if and only if

That is, this condition is necessary and sufficient for the existence of a function, , for which  and 
.

In §4 we demonstrate that the condition is necessary. Now we want to show that it is sufficient. That is, we want to demonstrate: If
Equation  hold, then there exists a , such that  and . To do this, we show how
to find a function, , that satisfies the given differential relationship. If we integrate  with respect to , we have

where  is a function only of ; it is the arbitrary constant in the integration with respect to , which we carry out with  held
constant.

To complete the proof, we must find a function  such that this  satisfies the conditions:

The validity of condition in Equation  follows immediately from the facts that the order of differentiation and integration can
be interchanged for a continuous function and that  is a function only of , so that .

To find  such that condition in Equation  is satisfied, we observe that

But since

this becomes

Hence, condition in Equation  is satisfied if and only if , so that  is simply an arbitrary constant.
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df = M (x, y)dx+ N (x, y)dy, (7.5.1)
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f (x, y) M (x, y) = (x, y)fx
N (x, y) = (x, y)fy
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N (x, y) = (x, y) ⇔fy
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7.5.5 dh (y)/dy = 0 h (y)
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