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19.1: Distribution of Results for Multiple Trials with Two Possible Outcomes
Suppose that we have two coins, one minted in 2001 and one minted in 2002. Let the probabilities of getting a head and a tail in a
toss of the 2001 coin be  and , respectively. We assume that these outcomes exhaust the possibilities. From the laws of
probability, we have: . For the 2002 coin, we have . The product of these two probabilities
must also be unity. Expanding this product gives

This equation represents the probability of a trial in which we toss the 2001 coin first and the 2002 coin second. The individual
terms are the probabilities of the possible outcomes of such a trial. It is convenient to give a name to this latter representation of the
product; we will call it the expanded representation of the total probability sum.

Our procedure for multiplying two binomials generates a sum of four terms. Each term contains two factors. The first factor comes
from the first binomial; the second term comes from the second binomial. Each of the four terms corresponds to a combination of
an outcome from tossing the 2001 coin and an outcome from tossing the 2002 coin. Conversely, every possible combination of
outcomes from tossing the two coins is represented in the sum.  represents the probability of getting a head from tossing
the 2001 coin and a head from tossing the 2002 coin.  represents the probability of getting a head from tossing the 2001
coin and a tail from tossing the 2002 coin, etc. In short, there is a one-to-one correspondence between the terms in this sum and the
possible combinations of the outcomes of tossing these two coins.

This analysis depends on our ability to tell the two coins apart. For this, the mint date is sufficient. If we toss the two coins
simultaneously, the four possible outcomes remain the same. Moreover, if we distinguish the result of a first toss from the result of
a second toss, etc., we can generate the same outcomes by using a single coin. If we use a single coin, we can represent the possible
outcomes from two tosses by the ordered sequences , , , and , where the first symbol in each sequence is the result
of the first toss and the second symbol is the result of the second toss. The ordered sequences  and  differ only in the order
in which the symbols appear. We call such ordered sequences permutations.

Now let us consider a new problem. Suppose that we have two coin-like slugs that we can tell apart because we have scratched a “
” onto the surface of one and a “ ” onto the surface of the other. Suppose that we also have two cups, one marked “ ” and the

other marked “ .” We want to figure out how many different ways we can put the two slugs into the two cups. We can also
describe this as the problem of finding the number of ways we can assign two distinguishable slugs (objects) to two different cups
(categories). There are four such ways: Cup  contains slugs  and ; Cup  contains slug  and Cup  contains slug ; Cup 
contains slug  and Cup  contains slug ; Cup  contains slugs  and .

We note that, given all of the ordered sequences for tossing two coins, we can immediately generate all of the ways that two
distinguishable objects (numbered slugs) can be assigned to two categories (Cups  and ). For each ordered sequence, we assign
the first object to the category corresponding to the first symbol in the sequence, and we assign the second object to the category
corresponding to the second symbol in the sequence.

In short, there are one-to-one correspondences between the sequences of probability factors in the total probability sum, the
possible outcomes from tossing two distinguishable coins, the possible sequences of outcomes from two tosses of a single coin, and
the number of ways we can assign two distinguishable objects to two categories. (See Table 1.)

Table 1.

Problems Correspondences

Sequences of probability
factors in the total
probability sum
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Sequences from toss of a
single coin

Assignments of two
distinguishable objects
to two categories

Cup  holds slugs 1 &
2

Cup  holds slug 1 and
Cup  holds slug 2

Cup  holds slug 2 and
Cup  holds slug 1

Cup  holds slugs 1 & 2

If the probability of tossing a head is constant, we have  and . Note that we are not assuming
. If we do not care about the order in which the heads and tails appear, we can simplify our equation for the product of

probabilities to

 is the probability of tossing two heads,  is the probability of tossing one head and one tail, and  is the probability of
tossing two tails. We must multiply the -term by two, because there are two two-coin outcomes and correspondingly two
combinations,  and , that have the same probability, . Completely equivalently, we can say that the reason
for multiplying the -term by two is that there are two permutations,  and , which correspond to one head and one tail
in successive tosses of a single coin.

We have lavished considerable attention on four related but very simple problems. Now, we want to extend this analysis—first to
tosses of multiple coins and then to situations in which multiple outcomes are possible for each of many independent events.
Eventually we will find that understanding these problems enables us to build a model for the behavior of molecules that explains
the observations of classical thermodynamics.

If we extend our analysis to tossing  coins, which we label coins , , etc., we find:

We write each of the product terms in this expanded representation of the total-probability sum with the second index, , increasing
from  to  as we read through the factors, , from left to right. Just as for tossing only two coins:

1. Each product term is a sequence of probability factors that appears in the total probability sum.
2. Each product term corresponds to a possible outcome from tossing n coins that are distinguished from one another by

identification numbers.
3. Each product term is equivalent to a possible outcome from repeated tosses of a single coin: the  factor is  or 

according as the  toss produces a head or a tail.
4. Each product term is equivalent to a possible assignment of n distinguishable objects to the two categories  and .

In Section 3.9, we introduce the term population set to denote a set of numbers that represents a possible combination of outcomes.
Here the possible combinations of outcomes are the numbers of heads and tails. If in five tosses we obtain  heads and  tails, we
say that this group of outcomes belongs to the population set . If in  tosses, we obtain  heads and  tails, this group of
outcomes belongs to the population set . For five tosses, the possible population sets are , , , , 

, and . Beginning in the next chapter, we focus on the energy levels that are available to a set of particles and on the
number of particles that has each of the available energies. Then the number of particles, , that have energy  is the population
of the -energy level. The set of all such numbers is the energy-level population set for the set of particles.

If we cannot distinguish one coin from another, the sequence  becomes . We say that 
is distinguishable from  because the tails-outcome appears in the second position in  and in the third
position in . We say that  and are indistinguishable, because both become 

. In general, many terms in the expanded form of the total probability sum belong to the population set corresponding
to  heads and  tails. Each such term corresponds to a distinguishable permutation of  heads and  tails and the
corresponding distinguishable permutation of  and  terms.

We use the notation  to denote the number of terms in the expanded form of the total probability sum in which there are
 heads and  tails.  is also the number of distinguishable permutations of  heads and  tails or of  P -

terms and  P -terms. The principal goal of our analysis is to find a general formula for . To do so, we make use of
the fact that  is also the number of ways that we can assign  objects (coins) to two categories (heads or tails) in such a
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way that  objects are in one category (heads) and  objects are in the other category (tails). We also call  the
number of combinations possible for distinguishable coins in the population set .

The importance of  is evident when we recognize that, if we do not care about the sequence (permutation) in which a
particular number of heads and tails occurs, we can represent the total-probability sum in a much compressed form:

In this representation, there are  terms in the total-probability sum that have  and . These are the terms

…

Each of these terms represents the probability that  heads and one tail will occur in the order shown. Each of these terms has
the same value. Each of these terms is a distinguishable permutation of   terms and one  term. Each of these terms
corresponds to a combination in which one of n numbered slugs is assigned to Cup , while the remaining  numbered slugs
are assigned to Cup . It is easy to see that there are  such terms, because each term is the product of  probabilities, and the tail
can occur at any of the  positions in the product. If we do not care about the order in which heads and tails occur and are
interested only in the value of the sum of these  terms, we can replace these  terms by the one term . We see that 

 is the probability of tossing  heads and one tail, irrespective of which toss produces the tail.

There is another way to show that there must be  terms in the total-probability sum in which there are  heads and one tail.
This method relies on the fact that the number of such terms is the same as the number of combinations in which n distinguishable
things are assigned to two categories, with  of the things in one category and the remaining thing in the other category, 

. This method is a little more complicated, but it offers the great advantage that it can be generalized.

The new method requires that we think about all of the permutations we can create by reordering the results from any particular
series of  tosses. To see what we have in mind when we say all of the permutations, let  represent the probability of toss
number , where for the moment we do not care whether the outcome was a head or a tail. When we say all of the permutations,
we mean the number of different ways we can order (permute) n different values . It is important to recognize that one and
only one of these permutations is a term in the total-probability sum, specifically:

in which the values of the second subscript are in numerical order. When we set out to construct all of these permutations, we see
that there are  ways to choose the toss to put first and  ways to choose the toss to put second, so there are  ways to
choose the first two tosses. There are  ways to choose the third toss, so there are  ways to choose the first
three tosses. Continuing in this way through all  tosses, we see that the total number of ways to order the results of n tosses is 

Next, we need to think about the number of ways we can permute  values  if  of them are , ,…, …, 
 and one of them is , and we always keep the one factor  in the same position. By the argument above,

there are  ways to permute the values  in a set containing  members. So for every term (product of factors )
that occurs in the total-probability sum, there are  other products (other permutations of the same factors) that differ only
in the order in which the  appear. The single tail outcome occupies the same position in each of these permutations. If the 
factor in the term in the total probability sum is , then  is the  factor in each of the  permutations of this term.
This is an important point, let us repeat it in slightly different words: For every term that occurs in the total-probability sum, there
are  permutations of the same factors that leave the heads positions occupied by heads and the tails position occupied by
tails.
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Equivalently, for every assignment of  distinguishable objects to one of two categories, there are  permutations of
these objects. There are  such assignments. Accordingly, there are a total of  permutations of the 

 distinguishable objects. Since we also know that the total number of permutations of n distinguishable objects is , we have

so that

which is the same result that we obtained by our first and more obvious method.

The distinguishable objects within a category in a particular assignment can be permuted. We give these within-category
permutations another name; we call them indistinguishable permutations. (This terminology reflects our intended application,
which is to find the number of ways  identical molecules can be assigned to a set of energy levels. We can tell two isolated
molecules of the same substance apart only if they have different energies. We can distinguish molecules in different energy levels
from one another. We cannot distinguish two molecules in the same energy level from one another. Two different permutations of
the molecules within any one energy level are indistinguishable from one another.) For every term in the expanded representation
of the total probability sum, indistinguishable permutations can be obtained by exchanging  factors with one another, or by
exchanging  factors with one another, but not by exchanging  factors with  factors. That is, heads are exchanged with
heads; tails are exchanged with tails; but heads are not exchanged with tails.

Now we can consider the general case. We let  be the number of terms in the total-probability sum in which there are 
 heads and  tails. We want to find the value of . Let’s suppose that one of the terms with  heads and  tails is

where there are  indices in the set  and  indices in the set . There are  ways to order the
heads outcomes and  ways to order the tails outcomes. So, there are  possible ways to order  heads and  tails
outcomes. This is true for any sequence in which there are  heads and  tails; there will always be  permutations of 
heads and  tails, whatever the order in which the heads and tails appear. This is also true for every term in the total-probability
sum that contains  heads factors and  tails factors. The number of such terms is . For every such term, there are 

 permutations of the same factors that leave the heads positions occupied by heads and the tails positions occupied by tails.

Accordingly, there are a total of  permutations of the  distinguishable objects. The total number of
permutations of n distinguishable objects is , so that

and

Equivalently, we can construct a sum of terms, , in which the terms are all of the  permutations of  factors for  heads
and  factors for  tails. The value of each term in  is . So we have

 contains all  of the -valued terms that appear in the total-probability sum. For each of these -
valued terms there are  indistinguishable permutations that leave heads positions occupied by heads and tails positions
occupied by tails.  will also contain all of the  permutations of each of these -valued terms. That is, every term in

 is either a term in the expanded representation of the total probability sum or an indistinguishable permutation of such a term. It
follows that  is also given by

Equating these equations for R, we have
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and, again,

In summary: The total number of permutations is  The number of combinations of  distinguishable things in which  of them
are assigned to category  and  are assigned to category  is . (Every combination is a distinguishable
permutation.) The number of indistinguishable permutations of the objects in each such combination is . The relationship
among these quantities is

total number of permutations = (number of distinguishable combinations)  (number of indistinguishable permutations for
each distinguishable combination)

We noted earlier that  is the formula for the binomial coefficients. If we do not care about the order in which the heads
and tails arise, the probability of tossing  tails and  heads is

and the sum of such terms for all  possible values of  in the interval  is the total probability for all possible
outcomes from  tosses of a coin. This total probability must be unity. That is, we have

For an unbiased coin, , and , for all . This means that the probability of tossing  heads
and  tails is proportional to  where the proportionality constant is . The probability of  heads and 
tails is the same as the probability of  heads and  tails.

Nothing in our development of the equation for the total probability requires that we set , and in fact, the binomial
probability relationship applies to any situation in which there are repeated trials, where each trial has two possible outcomes, and
where the probability of each outcome is constant. If , the symmetry observed for tossing coins does not apply, because

This condition corresponds to a biased coin.

Another example is provided by a spinner mounted at the center of a circle painted on a horizontal surface. Suppose that a pie-
shaped section accounting for  of the circle’s area is painted white and the rest is painted black. If the spinner’s stopping point
is unbiased, it will stop in the white zone with probability  and in the black zone with probability . After 
spins, the probability of  white outcomes and  black outcomes is

After  spins, the sum of the probabilities for all possible combinations of white and black outcomes is
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