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18.2: Quantized Energy - De Broglie's Hypothesis and the Schroedinger Equation
Subsequent to Planck’s proposal that energy is quantized, the introduction of two further concepts led to the theory of quantum
mechanics. The first was Einstein’s relativity theory, and his deduction from it of the equivalence of matter and energy. The
relativistic energy of a particle is given by

where  is the momentum and  is the mass of the particle when it is at rest. The second was de Broglie’s hypothesis that any
particle of mass  moving at velocity , behaves like a wave. De Broglie’s hypothesis is an independent postulate about the
structure of nature. In this respect, its status is the same as that of Newton’s laws or the laws of thermodynamics. Nonetheless, we
can construct a line of thought that is probably similar to de Broglie’s, recognizing that these are heuristic arguments and not
logical deductions.

We can suppose that de Broglie’s thinking went something as follows: Planck and Einstein have proposed that electromagnetic
radiation—a wave-like phenomenon—has the particle-like property that it comes in discrete lumps (photons). This means that
things we think of as waves can behave like particles. Conversely, the lump-like photons behave like waves. Is it possible that other
lump-like things can behave like waves? In particular is it possible that material particles might have wave-like properties? If a
material particle behaves like a wave, what wave-like properties should it exhibit?

Well, if we are going to call something a wave, it must have a wavelength, , a frequency, , and a propagation velocity, , and
these must be related by the equation . The velocity of propagation of light is conventionally given the symbol , so 

. The Planck-Einstein hypothesis says that the energy of a particle (photon) is . Einstein proposes that the
energy of a particle is given by . A photon travels at the speed of light. This is compatible with other relativistic
equations only if the rest mass of a photon is zero. Therefore, for a photon, we must have . Equating these energy
equations, we find that the momentum of a photon is

Now in a further exercise of imagination, we can suppose that this equation applies also to any mass moving with any velocity.
Then we can replace  with , and write

We interpret this to mean that any mass, , moving with velocity, , has a wavelength, , given by

This is de Broglie’s hypothesis. We have imagined that de Broglie found it by a series of imaginative—and not entirely logical—
guesses and suppositions. The illogical parts are the reason we call the result a hypothesis rather than a derivation, and the
originality of the guesses and suppositions is the reason de Broglie’s hypothesis was new. It is important physics, because it turns
out to be experimentally valid. Very small particles do exhibit wave-like properties, and de Broglie’s hypothesis correctly predicts
their wavelengths.

In a similar vein, we can imagine that Schrödinger followed a line of thought something like this: de Broglie proposes that any
moving particle behaves like a wave whose wavelength depends on its mass and velocity. If a particle behaves as a wave, it should
have another wave property; it should have an amplitude. In general, the amplitude of a wave depends on location and time, but we
are thinking about a rather particular kind of wave, a wave that—so to speak—stays where we put it. That is, our wave is supposed
to describe a particle, and particles do not dissipate themselves in all directions like the waves we get when we throw a rock in a
pond. We call a wave that stays put a standing wave; it is distinguished by the fact that its amplitude depends on location but not on
time.

Mathematically, the amplitude of any wave can be described as a sum of (possibly many) sine and cosine terms. A single sine term
describes a simple wave. If it is a standing wave, its amplitude depends only on distance, and its amplitude is the same for any two
points separated by one wavelength. Letting the amplitude be , this standing wave is described by , where 
is the location, expressed as a distance from the origin at . In this wave equation,  and  are parameters that fix the
maximum amplitude and the wavelength, respectively. Requiring the wavelength to be  means that . (Since  is a sine
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function, it repeats every time its argument increases by  radians. We require that  repeat every time its argument increases by 
 radians, which requires that .) Therefore, we have

and the wave equation must be

Equations, , that describe standing waves satisfy the differential equation

where  is a constant. In the present instance, we see that

From de Broglie’s hypothesis, we have , so that the constant  can be written as

Let  be the kinetic energy, , and let  be the potential energy of our wave-like particle. Then its energy is ,
and we have .

The constant  becomes

Making this substitution for , we find a differential equation that describes a standing wave, whose wavelength satisfies the de
Broglie equation. This is the time-independent Schrödinger equation in one dimension:

or

Often the latter equation is written as

where the expression in square brackets is called the Hamiltonian operator and abbreviated to , so that the Schrödinger equation
becomes simply, if cryptically,

If we know how the potential energy of a particle, , depends on its location, we can write down the Hamiltonian operator and the
Schrödinger equation that describe the wave properties of the particle. Then we need to find the wave equations that satisfy this
differential equation. This can be difficult even when the Schrödinger equation involves only one particle. When we write the
Schrödinger equation for a system containing multiple particles that interact with one another, as for example an atom containing
two or more electrons, analytical solutions become unattainable; only approximate solutions are possible. Fortunately, a great deal
can be done with approximate solutions.

The Schrödinger equation identifies the value of the wavefunction, , with the amplitude of the particle wave at the location x.
Unfortunately, there is no physical interpretation for ; that is, no measurable quantity corresponds to the value of . There
is, however, a physical interpretation for the product  or . [More accurately, the product , where 
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 is the complex conjugate of . In general,  is a complex variable.]  is the probability density function for the
particle whose wavefunction is . That is, the product  is the probability of finding the particle within a small
distance, , of the location . Since the particle must be somewhere, we also have
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