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7.6: The Chain Rule and the Divide-through Rule
If we have  while  and  are functions of another variable, , the chain rule states that

If  and  are functions of variables  and ; that is,  and , the chain rule for partial derivatives is

A useful mnemonic recognizes that these equations can be generated from the total differential by “dividing through” by . We
must specify that the “new” partial derivatives are taken with  held constant. This is sometimes called the divide-through rule.

The divide-through rule is a reliable expedient for generating new relationships among partial derivatives. As a further example,
dividing by  and specifying that any other variable is to be held constant produces a valid equation. Letting w be the variable
held constant, we obtain

where we recognize that . The result is just the chain rule for  when  and ; that
is, when .

If we require that  remain constant while  and  vary, we can use the divide-though rule to obtain another useful
relationship from the total differential. If  is constant, . This can only be true if there is a relationship between 

 and . To find this relationship we use the divide-through rule to find  when . Dividing

by , and stipulating that  is constant, we find

Since  and , we have

In Chapter 10, we find that the divide-through rule is a convenient way to generate thermodynamic relationships.
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