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25.3: Bose-Einstein Statistics and the Bose-Einstein Distribution Function
For particles that follow Bose-Einstein statistics, we let the probability of a microstate of energy  in an -particle system be 

. For an isolated system of Bose-Einstein particles, the total probability sum is

We need to find , the number of ways to assign indistinguishable particles to the quantum states, if any number of
particles can occupy the same quantum state.

We begin by considering the number of ways that  particles can be assigned to the  quantum states associated with the energy
level . We see that the fewest number of quantum states that can be used is one; we can put all of the particles into one quantum
state. At the other extreme, we cannot use more than the  quantum states that we use when we give each particle its own
quantum state. We can view this problem as finding the number of way we can draw as many as  boxes around  points. Let us
create a scheme for drawing such boxes. Suppose we have a linear frame on which there is a row of locations. Each location can
hold one particle. The frame is closed at both ends. Between each successive pair of particle-holding locations, there is a slot, into
which a wall can be inserted. This frame is sketched in Figure 1.

Figure 1. Scheme to assign Bose-Einstein particles to degenerate energy levels.

When we insert  walls into these slots, the frame contains  boxes. We want to be able to insert the walls so that the 
particles are distributed among the  boxes in such a way that we can have any desired number of particles in any desired number
of boxes. (Of course, placement of the walls is subject to the constraints that we use at most  boxes and exactly  particles.) We
can achieve this by constructing the frame to have  particle-holding locations. To see this, we think about the case
that requires the largest number of particle-holding locations. This is the case in which all  particles are in one box. (See Figure
2.) For this case, we need  occupied locations and  unoccupied locations.

Figure 2. Maximum size frame for  particles in  locations.

Now we consider the number of ways that we can insert  walls into the  slots. The first wall can go into any
of  slots. The second can go into any of  or  slots. The last wall can go into any
of  or  slots. The total number of ways of inserting the  walls is therefore
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This total is greater than the answer we seek, because it includes all permutations of the walls. It does not matter whether the first,
the second, or the last wall occupies a given slot. Therefore, the expression we have obtained over-counts the quantity we seek by
the factor , which is the number of ways of permuting the  walls. We have therefore that the  particles can be
assigned to  quantum states in

ways, and hence

so that the total probability sum for a Bose-Einstein system becomes (via Equation ):

To find the Bose-Einstein distribution function, we seek the population set  for which  is a maximum,
subject to the constraints

and

The mnemonic function is

We seek the  for which  is an extremum; that is, the  satisfying

Solving for , we find
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where the last expression takes advantage of the fact that  is usually a very large number, so the error introduced by replacing 
 by  is usually negligible. If , the Bose-Einstein distribution function reduces to the Boltzmann distribution

function. As we find in Section 25.2, this is always the case for a molecular gas at ambient temperatures.

Notes
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