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16.1: Solutions Whose Components are in Equilibrium with Their Own Gases
One way to find activities is to find the composition and pressure of the gas phase that is in equilibrium with the solution. If the
gases are not ideal, we also need experimental data on the partial molar volumes of the components in the gas phase. Collecting
such data is feasible for solutions of volatile molecular liquids. For solutions of electrolytes or other non-volatile components, other
methods are required.

Figure 1. Equilibrium mole fractions in gas and liquid phases.

The curves sketched in Figure 1 describe a system containing components  and . The mole fractions in the solution and the
mole fractions in the gas are related in a non-linear way. Let the mole fractions in the gas be  and ; let those in the solution be

 and . We have  and . At equilibrium, both phases are at the same pressure, .

We imagine obtaining the data we need about this system by preparing many mixtures of  and . Beginning with an entirely
liquid system at some applied pressure, we slowly decrease the applied pressure until the applied pressure becomes equal to the
equilibrium pressure, , and the liquid begins to vaporize. Figure 2 shows this system schematically.

Figure 2. Liquid-gas equilibrium for a solution.

We determine the compositions of the gas and liquid phases by chemical analysis; for each system, we determine , , , ,
and . From these data we can develop empirical equations that express , , and as functions of ; that is, we have 

, , and . Finally, we can find the value of the products  and . Figure 3 illustrates
a possible function  and the products , and , when the gas-phase mole fractions depend on  as shown in
Figure 1.
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Figure 3. Equilibrium pressures over a solution.

With the hypothetical ideal gas standard state as the standard state for  in the gas phase, we see in Section 14.11 that the chemical
potential of  in the gas phase is

(any gas; activity standard state is HIG )

where  is the partial molar volume and  is the mole fraction of  in the gaseous mixture. The fugacity and activity of 
in the gas phase are given by

and the standard state chemical potential is

We want to express the chemical potential of  in the liquid solution using the properties of the solution. To do so, we introduce
the chemical activity of component . We write  to represent the activity of  in a solution at pressure  and in
which the composition is specified by the mole fractions  and . If it suits our purposes, we are free to choose a standard state
for the activity of  in the liquid solution that is different from the standard state we choose for  in the gas phase. For reasons that
become apparent below, it is often useful to choose the standard state for the activity of  in the liquid solution to be pure liquid 

at its equilibrium vapor pressure, . We represent the chemical potential of  in this standard state by . Note that this

state is not identical to the standard state for the pure liquid, for which the pressure is one bar and the chemical potential is 
. The chemical potential and the activity of A in the solution are related by

(any solution; activity standard state for  in solution is pure liquid  at its equilibrium vapor pressure)

Since the system is at equilibrium, we have

Equating our equations for these quantities, we find
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This equation gives the activity of  in a liquid solution whose state is specified by the liquid-phase mole fraction . In particular,
it must give the activity of  in the “solution” for which  and ; of course, this “solution” is pure liquid . At
equilibrium with pure liquid , the gas phase contains pure gaseous ; therefore, we have  and . The gas-phase

partial molar volume is that for the pure gas, . Moreover, this “solution” is the standard state for the activity of component 
, for which the activity of  is unity; that is,

. Making these substitutions into our equation for  and rearranging, we

find

Substituting this result into our general equation for  we find a completely general function for the activity of
component .

(any solution;  is the mole fraction in the gas; the standard state for  in solution is the pure liquid at its equilibrium vapor
pressure)

In such a system, the roles of solute and solvent are interchangeable. Interchanging the labels “ ” and “B” gives an equation for
the activity of component .

As circumstances warrant, several approximations can be applied to this result. When the partial molar volume of  in the gas, 
, is not available, some approximation is required. Perhaps the least drastic approximation is that introduced in Section

14.11. We equate the unknown partial molar volume to the partial molar volume of the pure real gas at the same system pressure.

Setting , we have

Other approximations lead to greater simplifications. In the following sections, we discuss several. All of them assume that the
components behave ideally in the gas phase. In this case, the integrals in our general equation for  vanish.
Then,

(solution;  is the mole fraction in the ideal gas that is at equilibrium with the solution)

Our general result gives the activity of component  in solution using the mole fraction of its own vapor in the equilibrium system.
When we have an empirical function, , that relates the mole fraction in the gas to that in the solution, we can make
this substitution and express the activity of  in the solution using its concentration in the solution. In the next several sections, we
develop some basic methods for finding .
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