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22.4: Partition Functions and Average Energies at High Temperatures
It is enlightening to find the integral approximations to the partition functions and average energies for our simple quantum-
mechanical models of translational, rotational, and vibrational motions. In doing so, however, it is important to remember that the
use of integrals to approximate Boltzmann-equation sums assumes that there are a large number of energy levels, , for which 

. If we select a high enough temperature, the energy levels for any motion will always satisfy this condition. The energy
levels for translational motion satisfy this condition even at sub-ambient temperatures. This is the reason that Maxwell’s derivation
of the probability density function for translational motion is successful.

Rotational motion is an intermediate case. At sub-ambient temperatures, the classical-mechanical derivation can be inadequate; at
ordinary temperatures, it is a good approximation. This can be seen by comparing the classical-theory prediction to experimental
values for diatomic molecules. For diatomic molecules, the classical model predicts a constant-volume heat capacity of  from 

 degrees of translational and  degrees of rotational freedom. Since this does not include the contributions from vibrational
motions, constant-volume heat capacities for diatomic molecules must be greater than  if both the translational and rotational
contributions are accounted for by the classical model. For diatomic molecules at  K, the experimental values are indeed
somewhat larger than . (Hydrogen is an exception; its value is .)

Vibrational energies are usually so big that only a minor fraction of the molecules can be in higher vibrational levels at reasonable
temperatures. If we try to increase the temperature enough to make the high-temperature approximation describe vibrational
motions, most molecules decompose. Likewise, electronic partition functions must be evaluated from the defining equation.

The high-temperature limiting average energies can also be calculated from the Boltzmann equation and the appropriate quantum-
mechanical energies. Recall that we find the following quantum-mechanical energies for simple models of translational, rotational,
and vibrational motions:

Translation

(  Derived for a particle in a box)

Rotation

(  Derived for rotation about one axis—each energy level is doubly degenerate)

Vibration

(  Derived for simple harmonic motion in one dimension)

When we assume that the temperature is so high that many  are small compared to , we find the following high-temperature
limiting partition functions for these motions:

We can then calculate the average energy for each mode as
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and find

where the last approximation assumes that . In the limit as , the average energy of the vibrational mode
becomes just . This is just the energy of the lowest vibrational state, implying that all of the molecules are in the lowest
vibrational energy level at absolute zero.

This page titled 22.4: Partition Functions and Average Energies at High Temperatures is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.

⟨ϵ⟩ = exp( )  dnz
−1 ∫

∞

0

ϵn
−ϵn

kT

⟨ ⟩ϵtranslation

⟨ ⟩ϵrotation

⟨ ⟩ϵvibration

= ( )  exp( ) dnz
−1
translation∫

∞

0

n
2
h

2

8mℓ2

−n
2
h

2

8m kTℓ2

=
kT

2

= 2( )  exp( ) dmz
−1
rotation∫

∞

0

m
2
h

2

8 Iπ2

−m
2
h

2

8 IkTπ2

=
kT

2

= × hν(n+ )  exp( (n+ )) dnz
−1
vibration ∫

∞

0

1

2

−hν

kT

1

2

= kT +
hν

2

≈ kT

hν/2 ≪ kT T → 0

hν/2

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/151966?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/22%3A_Some_Basic_Applications_of_Statistical_Thermodynamics/22.04%3A_Partition_Functions_and_Average_Energies_at_High_Temperatures
https://creativecommons.org/licenses/by-sa/4.0
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278

