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16.7: Finding the Activity of a Solute from the Activity of the Solvent

We have seen that the activity of any component of an equilibrium system contains information about the activities of all the other
components. From

dp=—SdT +V P+ RTdna

and the Gibbs-Duhem equation, we can find a general relationship among the activities. Substituting du 4 and dug into the Gibbs-
Duhem equation, we have, for a two-component solution,

—SdT +VdP =nydp, +npdug

— g (—§AdT+I7AP+RlendA) tnp (—§BdT+I73P+RTd1n&B )
=— (nAEA +n3,§3) dT + (nAf/:A +n3173> dP +nysRTdlnay +ngRTdlnag

Since S = nAgA +n3§3 and V = nAVA +ngV g, this simplifies to

0 =nydlna, +npdlnap
or, dividing by ng +np,

0 =ysdlnay +ypdlnap

For simplicity, let us consider a system in which a non-volatile solute, A, is dissolved in a volatile solvent, B. Measuring the
pressure of the system and applying the equations that we developed in Section 16.1 for volatile component A to the volatile
solvent, B, in the present system, we can determine the activity of the solvent, B. Let us use mole fractions to measure
concentrations and take pure liquid B at its equilibrium vapor pressure as the activity standard state for both liquid- and gas-phase

B. When B is in its standard state, we have z, =0,z =1, and V 5 (9) = V 5 (g) . Then, since the solute is non-volatile, we can
determine the activity of the solvent, B, from the pressure of the system. We have

p(v
p _/ B(g)_l dP
P

Py

ln[aB (Pa yAvyB)] = RTIn RT P

s
Assuming that the integral makes a negligible contribution to the activity, we have

_ N P
ap (P,ya,yp) =ap =yp78 (P,ya,yp) = —
P,

B
(solvent)
so that
v8 (P,y4,YB) =B = r -
yp Py
(solvent)

Since the gas-phase concentration of A is immeasurably small, we must determine its activity indirectly. Let the standard state for
solute activity be the hypothetical pure liquid, y4 = 1, whose equilibrium vapor pressure is equal to the Henry’s law constant of
solute A. (We can determine the solute’s activity without measuring its Henry’s law constant.) We have

pa (P,ya,ys) =y (Hyp £,x,4) +RTInfas (P,ya,ys))
where
aa(P,ya,yB) = a4 =yava

(solute)
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Since we are able to measure the activity of the solvent, we can determine the activity of the solute from the relationship

0 =yadlnas +ypdlnap . Rearranging, we have

1-y,
Yya

diniy =—2Zdinag (

) dlnag
Yya

For two solutions in which the mole fractions of A are y4 and yﬁ, and in which the activities of A and B are ay4, ap, dﬁ, and &ﬁ,

a Ya 1—
1n“—i:—/ ( yA)daniB
al vl Ya

Graphically, the integral is the area under a plot of —(1 —y4)/ya versus lnag , from yﬁ toya.

we have

Typically, we are interested in solutions for which y4 < yp. In the limit as the solution becomes very dilute, the activity, mole
fraction, and activity coefficient of the solvent, B, all approach unity: ag — 1, yg — 1, and yg — 1. The activity of the solute,
A, approaches the mole fraction of A. As a matter of experience, the approach is asymptotic: as the mole fraction approaches zero,
y4 — 0, the solute activity coefficient approaches unity, 4 — 1, and does so asymptotically, so that a4 — y, . For dilute
solutions, Ind 4 — —oo and In-y4 — 0 asymptotically. In consequence,

lim (dlny, ) =0
y1—0
Because the activity coefficient approaches a finite limit while the activity does not, we can express the solute’s activity most
simply by finding the solute’s activity coefficient. Since a4 =yav4 and ag =ypys = (1 —ya) B , we have
0 =yydlna, +ypdlnap
=yadlnysva +ypdinypyp =yadlnys +yadlnys +ypdlnyg +ypdlnys
= (dya +dyp) +yadinys +ypdlnyp =yadlnys +ypdlnyp
(Since y4 +yp =1, we have dy4 +dyg = 0 .) We can rearrange this to

1—
dlnyy =— ( yA) dlnvg
Ya

As the solute concentration approaches zero, (1 —y4)/ya becomes arbitrarily large. However, since lim, o (dlnys) =0, it
follows that

lim dlnyg =0

ya—0

We see that the solvent activity coefficient also approaches unity asymptotically as the solute concentration goes to zero. The solute
activity coefficient at any y4 > 0 is then given by

Ya

ataya () s )] [ - ( L—us ) d1nfys (v.)

0 Ya
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Figure 6. Graphical representation of In -y for the solute when  of the solvent is known.
As sketched in Figure 6, the latter integral is the area under a graph of — (1 —y4)/ya versus In[yg (y4)] , between y4 =0 and
ya. Since y4 (ya) — 1 as y4 — 0, this integral must remain finite even though — (1 —y4)/ya — —oo as ya4 — 0. This can
occur, because lim,,_,o dlnyp =0, as we observe above. Nevertheless, the fact that the integrand is unbounded can limit the
accuracy of the necessary integration. For accurate measurement of the solute activity coefficient, it is important to obtain solvent-
activity data at the lowest possible solute concentration.

The most desirable situation is to collect solvent-activity data down to solute concentrations at which the solvent activity
coefficient, yg, becomes unity. If vg (yf) =1 when the solute concentration is yﬁ, In[y4 (ya)] can be evaluated with yﬁ,

rather than zero, as the lower limit of integration. In some cases, In [’YA (yﬁ)] may be known from some other measurement at a
particular concentration, yﬁ; if so, we can find In[v4 (y4)] by carrying out the numerical integration between the limits yﬁ and
Ya.

If the measurement of g cannot be extended to values of y4 at which yp (y4) =1, we must find an empirical function, call it
f(ya), that fits the experimental values of In[yp (y4)], for the smallest values of y4. (That is, the empirical function is
f(ya)=1In[yp (ya)] .) The differential of f (y4) is then a mathematical model for dln[yg (y4)] over the region of low solute
concentrations. Letting yff be the smallest solute concentration for which the solvent activity can be determined, we can integrate,

using the function for dln[yg (y4)] that we derive from this model, to estimate 1n {'yB (yj)} . Uncertainty about the accuracy of
the mathematical model becomes a significant source of uncertainty in the calculated values of 4.

Of course, if we can find an analytical function that provides a good mathematical model for all of the solvent-activity data, the
differential of this function can be used in the integral to evaluate In[y, (y4)] over the entire range of the experimental data. If
necessary, the evaluation of this integral can be accomplished using numerical methods.

It is essential that any empirical function, f (y4) =1n[yp (y4)] , have the correct mathematical properties over the concentration
range to which it is applied. If it is to be used to extend the integration to y4 =0, f (y4) must satisfy f(0) =0 and df (0) =0.
This is a significant condition. For example, consider the approximation

f(ya) =In[yp (ya)] = cpyy®

This model gives

dinfya (ya)] ap-2
———=— = —(1—-y4)cgzapy,”®
dyA ( ) BYBYy
and
. dlnfy, (y4)] _
hm _—— = 0
ya—0 dya
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requires ap > 2.
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