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16.7: Finding the Activity of a Solute from the Activity of the Solvent
We have seen that the activity of any component of an equilibrium system contains information about the activities of all the other
components. From

and the Gibbs-Duhem equation, we can find a general relationship among the activities. Substituting  and  into the Gibbs-
Duhem equation, we have, for a two-component solution,

Since  and , this simplifies to

or, dividing by ,

For simplicity, let us consider a system in which a non-volatile solute, , is dissolved in a volatile solvent, . Measuring the
pressure of the system and applying the equations that we developed in Section 16.1 for volatile component  to the volatile
solvent, , in the present system, we can determine the activity of the solvent, . Let us use mole fractions to measure
concentrations and take pure liquid  at its equilibrium vapor pressure as the activity standard state for both liquid- and gas-phase 

. When  is in its standard state, we have , , and . Then, since the solute is non-volatile, we can
determine the activity of the solvent, , from the pressure of the system. We have

Assuming that the integral makes a negligible contribution to the activity, we have

(solvent)

so that

(solvent)

Since the gas-phase concentration of  is immeasurably small, we must determine its activity indirectly. Let the standard state for
solute activity be the hypothetical pure liquid, , whose equilibrium vapor pressure is equal to the Henry’s law constant of
solute . (We can determine the solute’s activity without measuring its Henry’s law constant.) We have

where

(solute)
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Since we are able to measure the activity of the solvent, we can determine the activity of the solute from the relationship 
. Rearranging, we have

For two solutions in which the mole fractions of  are  and , and in which the activities of  and  are , , , and ,
we have

Graphically, the integral is the area under a plot of  versus , from  to .

Typically, we are interested in solutions for which . In the limit as the solution becomes very dilute, the activity, mole
fraction, and activity coefficient of the solvent, , all approach unity: , , and . The activity of the solute, 

, approaches the mole fraction of . As a matter of experience, the approach is asymptotic: as the mole fraction approaches zero, 
, the solute activity coefficient approaches unity, , and does so asymptotically, so that . For dilute

solutions,  and  asymptotically. In consequence,

Because the activity coefficient approaches a finite limit while the activity does not, we can express the solute’s activity most
simply by finding the solute’s activity coefficient. Since  and , we have

(Since , we have .) We can rearrange this to

As the solute concentration approaches zero,  becomes arbitrarily large. However, since , it
follows that

We see that the solvent activity coefficient also approaches unity asymptotically as the solute concentration goes to zero. The solute
activity coefficient at any  is then given by
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Figure 6. Graphical representation of  for the solute when  of the solvent is known.

As sketched in Figure 6, the latter integral is the area under a graph of  versus , between  and 
. Since  as , this integral must remain finite even though  as . This can

occur, because , as we observe above. Nevertheless, the fact that the integrand is unbounded can limit the
accuracy of the necessary integration. For accurate measurement of the solute activity coefficient, it is important to obtain solvent-
activity data at the lowest possible solute concentration.

The most desirable situation is to collect solvent-activity data down to solute concentrations at which the solvent activity

coefficient, , becomes unity. If  when the solute concentration is ,  can be evaluated with ,

rather than zero, as the lower limit of integration. In some cases,  may be known from some other measurement at a
particular concentration, ; if so, we can find  by carrying out the numerical integration between the limits  and 

.

If the measurement of  cannot be extended to values of  at which , we must find an empirical function, call it 
, that fits the experimental values of , for the smallest values of . (That is, the empirical function is 

.) The differential of  is then a mathematical model for  over the region of low solute
concentrations. Letting  be the smallest solute concentration for which the solvent activity can be determined, we can integrate,

using the function for  that we derive from this model, to estimate . Uncertainty about the accuracy of

the mathematical model becomes a significant source of uncertainty in the calculated values of .

Of course, if we can find an analytical function that provides a good mathematical model for all of the solvent-activity data, the
differential of this function can be used in the integral to evaluate  over the entire range of the experimental data. If
necessary, the evaluation of this integral can be accomplished using numerical methods.

It is essential that any empirical function, , have the correct mathematical properties over the concentration
range to which it is applied. If it is to be used to extend the integration to ,  must satisfy  and .
This is a significant condition. For example, consider the approximation

This model gives
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