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20.6: The Most Probable Population Set at Constant N, V, and T
We are imagining that we can examine a collection of  distinguishable molecules and determine the energy of each molecule in
the collection at any particular instant. If we do so, we find the population set, , that characterizes the
system at that instant. In Section 3.9, we introduce the idea that the most probable population set, , or its
proxy, , is the best prediction we can make about the outcome of a future replication of
this measurement. In Section 20.2, we hypothesize that the properties of the system when it is characterized by the most probable
population set are indistinguishable from the properties of the system at equilibrium.

Now let us show that this hypothesis is implied by the central limit theorem. We suppose that the population set that characterizes
the system varies from instant to instant and that we can find this population set at any given instant. The population set that we
find at a particular instant comprises a random sample of  molecular energies. For this sample, we can find the average energy
from

The expected value of the molecular energy is

It is important that we remember that  and  are not the same thing. There is a distribution of  values, one  value for each of
the possible population sets . In contrast, when , , and  are fixed, the expected value, , is a
constant; the value of  is completely determined by the values of the variables that determine the state of the system and fix the
probabilities . If our theory is to be useful, the value of  must be the per-molecule energy that we observe for the macroscopic
system we are modeling.

According to the central limit theorem, the average energy of a randomly selected sample, , approaches the expected value for the
distribution, , as the number of molecules in the sample becomes arbitrarily large. In the present instance, we hypothesize that
the most probable population set, or its proxy, characterizes the equilibrium system. When  is sufficiently large, this hypothesis
implies that the probability of the  energy level is given by . Then the expected value of a molecular energy is

Since the central limit theorem asserts that  approaches  as  becomes arbitrarily large:

One way for the limit of this sum to be zero is for the limit of every individual term to be zero. If the  were arbitrary, this would
be the only way that the sum could always be zero. However, the  and the  are related, so we might think that the sum is zero
because of these relationships.

To see that the limit of every individual term must in fact be zero, we devise a new distribution. We assign a completely arbitrary
number, , to each energy level. Now the  energy level is associated with an  as well as an . We have an  distribution as
well as an energy distribution. We can immediately calculate the expected value of . It is

When we find the population set , we can calculate the corresponding average value of . It is
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The central limit theorem applies to any distribution. So, it certainly applies to the  distribution; the average value of 
approaches the expected value of  as  becomes arbitrarily large:

Now, because the  can be chosen completely arbitrarily, the only way that the limit of this sum can always be zero is that every
individual term becomes zero.

In the limit as , we find that

As the number of molecules in the equilibrium system becomes arbitrarily large, the fraction of the molecules in each energy level
at an arbitrarily selected instant approaches the fraction in that energy level in the equilibrium-characterizing most-probable
population set, . In other words, the only population sets that we have any significant chance of observing in a
large equilibrium system are population sets whose occupation fractions, , are all very close to those, , in the
equilibrium-characterizing population set. Estimating  as the ratio  gives essentially the same result whichever of these
population sets we use. Below, we see that the  and the  determine the thermodynamic properties of the system. Consequently,
when we calculate any observable property of the macroscopic system, each of these population sets gives the same result.

Since the only population sets that we have a significant chance of observing are those for which

we frequently say that we can ignore all but the most probable population set. What we have in mind is that the most probable
population set is the only one we need in order to calculate the macroscopic properties of the equilibrium system. We are incorrect,
however, if we allow ourselves to think that the most probable population set is necessarily much more probable than any of the
others. Nor does the fact that the  are all very close to the  mean that the  are all very close to the . Suppose that
the difference between the two ratios is . If , the difference between  and  is , which probably falls
outside the range of values that we usually understand by the words “very close.”

We develop a theory that includes a mathematical model for the probability that a molecule has any one of its quantum-
mechanically possible energies. It turns out that we are frequently interested in macroscopic systems in which the number of energy
levels greatly exceeds the number of molecules. For such systems, we find , and it is no longer possible to say that a
single most-probable population set, , describes the equilibrium state of the system. When it is very unlikely
that any energy level is occupied by more than one molecule, the probability of any population set in which any  is greater than
one becomes negligibly small. We can approximate the total probability sum as

However, the idea that the proxy, , describes the equilibrium state of the system remains
valid. In these circumstances, a great many population sets can have essentially identical properties; the properties calculated from
any of these are indistinguishable from each other and indistinguishable from the properties calculated from the proxy. Since the
equilibrium properties are fixed, the value of these extended products is fixed. For any of the population sets available to such a
system at equilibrium, we have

It follows that, for some constant, , we have

As it evolves, we see that the probability of finding a molecule in an energy level is the central feature of our theory.
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