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22.4: Partition Functions and Average Energies at High Temperatures

It is enlightening to find the integral approximations to the partition functions and average energies for our simple quantum-
mechanical models of translational, rotational, and vibrational motions. In doing so, however, it is important to remember that the
use of integrals to approximate Boltzmann-equation sums assumes that there are a large number of energy levels, ¢;, for which
€; < kT . If we select a high enough temperature, the energy levels for any motion will always satisfy this condition. The energy
levels for translational motion satisfy this condition even at sub-ambient temperatures. This is the reason that Maxwell’s derivation
of the probability density function for translational motion is successful.

Rotational motion is an intermediate case. At sub-ambient temperatures, the classical-mechanical derivation can be inadequate; at
ordinary temperatures, it is a good approximation. This can be seen by comparing the classical-theory prediction to experimental
values for diatomic molecules. For diatomic molecules, the classical model predicts a constant-volume heat capacity of 5k/2 from
3 degrees of translational and 2 degrees of rotational freedom. Since this does not include the contributions from vibrational
motions, constant-volume heat capacities for diatomic molecules must be greater than 5k/2 if both the translational and rotational
contributions are accounted for by the classical model. For diatomic molecules at 298 K, the experimental values are indeed
somewhat larger than 5k/2. (Hydrogen is an exception; its value is 2.47 k.)

Vibrational energies are usually so big that only a minor fraction of the molecules can be in higher vibrational levels at reasonable
temperatures. If we try to increase the temperature enough to make the high-temperature approximation describe vibrational
motions, most molecules decompose. Likewise, electronic partition functions must be evaluated from the defining equation.

The high-temperature limiting average energies can also be calculated from the Boltzmann equation and the appropriate quantum-
mechanical energies. Recall that we find the following quantum-mechanical energies for simple models of translational, rotational,
and vibrational motions:
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When we assume that the temperature is so high that many ¢; are small compared to kT, we find the following high-temperature
limiting partition functions for these motions:
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We can then calculate the average energy for each mode as
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and find
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where the last approximation assumes that hv/2 < kT'. In the limit as T — 0, the average energy of the vibrational mode
becomes just hv/2. This is just the energy of the lowest vibrational state, implying that all of the molecules are in the lowest
vibrational energy level at absolute zero.
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