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9.15: Entropy and Spontaneous Change
In a reversible process, the changes that occur in the system are imposed by the surroundings; reversible change occurs only
because the system responds to changes in the conditions imposed on it by its surroundings. A reversible process is driven by the
surroundings. In contrast, a spontaneous process is driven by the system. Nevertheless, when a spontaneous process occurs under
some specific set of imposed conditions (specific values of the temperature and pressure, for example) the system’s equilibrium
state depends on these conditions. To specify a particular spontaneous change, we must specify enough constraints to fix the final
state of the system.

To see these points from a slightly different perspective, let us consider a closed reversible system in which only pressure–volume
work is possible. Duhem’s theorem asserts that a change in the state of this system can be specified by specifying the changes in
some pair of state functions, say  and . If the imposed values of  and  are constant at their eventual equilibrium values, but
the system is changing, the system cannot be on a Gibbsian equilibrium manifold. We say that the system is undergoing a
spontaneous change at constant  and .

This description is a figure of speech in that the system’s  and  values do not necessarily attain the imposed values and become
constant until equilibrium is reached. An example is in order: A system whose original pressure and temperature are  and  can
undergo a spontaneous change while the surroundings impose a constant pressure, , and the system is immersed in
constant temperature bath at . The pressure and temperature of the system may be indeterminate as the process occurs, but
the equilibrium pressure and temperature must be  and .

If the surroundings operate to impose particular values of  and  on the system, then the position at which the system
eventually reaches equilibrium is determined by these values. The same equilibrium state is reached for any choice of
surroundings that imposes the same values of  and  on the system at the time that the system reaches equilibrium. For every
additional form of non-pressure–volume work that affects the system, we must specify the value of one additional variable in order
to specify a unique equilibrium state.

The entropy changes that occur in the system and its surroundings during a spontaneous process have predictive value. However,
our definitions do not enable us to find the entropy change for a spontaneous process, and the temperature of the system may not
have a meaningful value. On the other hand, we can always carry out the process so that the temperature of the surroundings is
known at every point in the process. Indeed, if the system is in thermal contact with its surroundings as the process occurs, we
cannot specify the conditions under which the process occurs without specifying the temperature of the surroundings along this
path.

Figure 9 describes a spontaneous process whose path can be specified by the values of thermodynamic variable  and the
temperature of the surroundings, , as a function of time, . Let us denote the curve that describes this path as . We can divide
this path into short intervals. Let  denote a short segment of this path along which the temperature of the surroundings is
approximately constant. For our present purposes, the temperature of the system, , is irrelevant; since the process is spontaneous,
the temperature of the system may have no meaningful value within the interval . As the system traverses segment , it accepts
a quantity of heat, , from the surroundings, which are at temperature . The heat exchanged by the surroundings within  is 

. Below, we show that it is always possible to carry out the process in such a way that the change in the surroundings
occurs reversibly. Then

and since , it follows that

This is the Clausius inequality. It plays a central role in the thermodynamics of spontaneous processes. When we make the
intervals  arbitrarily short, we have
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Δ >Sk

qk

T̂ k

Ck

d >Sk

dqk

T̂ k

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/152090?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/09%3A_The_Second_Law_-_Entropy_and_Spontaneous_Change/9.15%3A_Entropy_and_Spontaneous_Change


9.15.2 https://chem.libretexts.org/@go/page/152090

To demonstrate that we can measure the entropy change in the surroundings during a spontaneous process, let us use a conceptual
device to transfer the heat, , that must be exchanged from the surroundings at temperature,  to the system. As sketched in
Figure 10, we imagine a very small, reversible, ideal-gas Carnot engine, whose high-temperature reservoir is also very small. We
suppose that the Carnot engine delivers a very small heat increment  to the high temperature reservoir in every cycle. While the
system is within , we maintain the Carnot engine’s high temperature reservoir at , and allow heat  to pass from the high
temperature reservoir to the system. The high temperature reservoir is the only part of the surroundings that is in thermal contact
with the system;  is the only heat exchanged by the system while it is within .

Figure 10. Using a reversible Carnot engine to exchange heat with a spontaneously changing system.

To maintain the high temperature reservoir at  we operate the Carnot engine for a large integral number of cycles, , such that 
, and do so at a rate that just matches the rate at which heat passes from the high-temperature reservoir to the system.

When the system passes from path-segment  to path-segment , we alter the steps in the reversible Carnot cycle to maintain
the high-temperature reservoir at the new surroundings temperature, . The low-temperature heat reservoir for this Carnot
engine is always at the constant temperature . Let the heat delivered from the high-temperature reservoir to the Carnot engine
within  be . We have . Let the heat delivered from the low-temperature reservoir to the Carnot engine within 

 be . Let the heat delivered to the low-temperature reservoir within  be . We have . Since the Carnot
engine is reversible, we have

and

so that

While the system is within , it receives an increment of heat  from the high temperature reservoir. Simultaneously, three
components in the surroundings also exchange heat. Let the entropy changes in the high-temperature reservoir, the Carnot engine,

and the low-temperature reservoir be , , and , respectively. The high temperature reservoir

receives heat  from the Carnot engine and delivers the same quantity of heat to the system. The net heat accepted by the high

temperature reservoir is zero. No change occurs in the high-temperature reservoir. We have . The reversible Carnot
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engine completes an integral number of cycles, so that . The low temperature reservoir accepts heat ,

at the fixed temperature , during the reversible operation of the Carnot engine, so that

The entropy change in the surroundings as the system passes through  is

so that, as we observed above,

Since  can be any part of path C, and  can be made arbitrarily short, we have for every increment of any spontaneous process
occurring in a closed system that can exchange heat with its surroundings, , and

If the temperature of the surroundings is constant between any two points A and B on curve C, we can integrate over this interval to
obtain  and

For an adiabatic process, . For any arbitrarily small increment of an adiabatic process, . It follows that  and 
 for any spontaneous adiabatic process.
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