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4.2: Probability Density Functions for Velocity Components in Spherical Coordinates

We introduce the idea of a three-dimensional probability-density function by showing how to find it from data referred to a
Cartesian coordinates system. The probability density associated with a particular molecular velocity is just a number—a number
that depends only on the velocity. Given a velocity, the probability density associated with that velocity must be independent of our
choice of coordinate system. We can express the three-dimensional probability density using any coordinate system. We turn now
to expressing velocities and probability density functions using spherical coordinates.

Just as we did for the Cartesian velocity components, we deduce the cumulative probability functions f, (v), fg (9), and f,, (¢) for
the spherical-coordinate components. Our deduction of f, (v) from the experimental data uses v-values that are associated with all
possible values of 6 and ¢. Corresponding statements apply to our deductions of fy (f), and f, (¢). We also obtain their
derivatives, the probability-density functions df, (v)/dv, dfs (6)/d6, and df,, (#)/ds. From the properties of probability-density
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Let v/ be the arbitrarily small increment of volume in velocity space in which the v-, -, and ¢-components of velocity lie between
vandv+dv, 0 and +df, and ¢ and ¢ + dyp . Then the probability that the velocity of a randomly selected molecule lies within

v/ is
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is not a three-dimensional probability density function. This is most immediately appreciated by recognizing that dvdfdy is not an
incremental “volume” in velocity space. That is, v/ # dvd@dp

functions, we have

Note that the product

We let p (v, 0, ) be the probability-density function for the velocity vector in spherical coordinates. When v, 6, and ¢ specify the
velocity, p (v, 6, ) is the probability per unit volume at that velocity. We want to use p (v, 8, ¢) to express the probability that an
arbitrarily selected molecule has a velocity vector whose magnitude lies between v and v+ dv , while its #-component lies between
0 and 6+df, and its p-component lies between ¢ and ¢ +dp . This is just p (v, 6, ¢) times the velocity-space “volume”
included by these ranges of v, 6, and (.

When we change from Cartesian coordinates, v = (vz,vy,vz), to spherical coordinates, v = (v,0, ), the transformation is
v, = vsinf cose , v, =vsinf sinp , v, =vcosh . (See Figure 1.) As sketched in Figure 2, an incremental increase in each of the
coordinates of the point specified by the vector (v, 6, ¢) advances the vector to the point (v+ dv, 0+ df, ¢ +dp) . When dv, db,
and dy are arbitrarily small, these two points specify the diagonally opposite corners of a rectangular parallelepiped, whose edges
have the lengths dv, vdf, and wvsinf dp . The volume of this parallelepiped is v?sinf dvdfdy . Hence, the differential volume
elementdifferential volume element in Cartesian coordinates, dv,dvy,dv, , becomes v2sinf dvdfdp in spherical coordinates.
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Mathematically, this conversion is obtained using the absolute value of the Jacobian, J ( b
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) , of the transformation. That is,
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where the Jacobian is a determinate of partial derivatives
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Since the differential unit of volume in spherical coordinates is v*sinf dudfd¢ , the probability that the velocity components lie
within the indicated ranges is

dP (v1) = p (v, 0, p) v?sinf dvdfdp

We can develop the next step in Maxwell’s argument by taking his assumption to mean that the three-dimensional probability
density function is expressible as a product of three one-dimensional functions. That is, we take Maxwell’s assumption to assert the
existence of independent functions p, (v), p, (6), and p,, () such that p (v, 0, ) = p, (v) p, (6) p,, (¢) . The probability that the
v-, 0-, and p-components of velocity lie between v and v+ dv, 6 and 8+ df , and ¢ and ¢ + dy becomes
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Since v, 6, and ¢ are independent, it follows that
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Moreover, the assumption that velocity is independent of direction means that p, (¢) must actually be independent of 6; that is,
Py (6) must be a constant. We let this constant be ay; s0 py (6) = oy . By the same argument, we set p,, (¢) = o, . Each of these

probability-density functions must be normalized. This means that
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from which we see that py (§) = ap =1/2 and p,, (p) = o, =1/2. It is important to recognize that, while p, (v), p, (v,), and
p,, (v.) are probability density functions, p, () and p, (v) are not. (However, p,, (¢) is a probability density function.) We can see
this by noting that, if p, (#) were a probability density, its integral over all possible values of 6 (0 < 6 < 7) would be one. Instead,

we find
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Similarly, when we find p, (v), we can show explicitly that
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Our notation now allows us to express the probability that an arbitrarily selected molecule has a velocity vector whose magnitude

lies between v and v+ dv , while its #-component lies between 6 and 8+ d# , and its p-component lies between ¢ and ¢ + dp
using three equivalent representations of the probability density function:

1
dP (v) = p (v, 0, p) v*sinfdvdfde — p, (v) py (6) Py () v*sinfdvdfdp = (4—71_) p, (v) v*sind dvdfdep

The three-dimensional probability-density function in spherical coordinates is
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p (v, 0,0) = p, (v) py (6) p, () = Pv4 E:’)

This shows explicitly that p (v, 8, ¢) is independent of 6 and ¢; if the speed is independent of direction, the probability density
function that describes velocity must be independent of the coordinates, 8 and ¢, that specify its direction.
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