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14.11: Back to the Fugacity- the Fugacity of A Component of A Gas Mixture
In Chapter 11, we introduce the fugacity as an alternative measure of the difference between the Gibbs free energy of one mole of a
pure gas in its hypothetical ideal gas standard state and its Gibbs free energy in any other state at the same temperature. This
definition makes the fugacity of a gas an intensive function of pressure and temperature. At a fixed temperature, the state of one
mole of a pure gas is specified by its pressure, and the fugacity is a function of pressure only. Fugacity has the units of pressure.
Giving effect to our decision to let the fugacity of the gas be unity when the gas is in its hypothetical ideal gas standard state 

 and using the Gibbs free energy of formation for the gas in this state as the standard Gibbs free energy for fugacity, we
define the fugacity of a pure gas, , by the equation

For substance  in any system, the chemical potential is the partial molar free energy; that is, . Since the
Gibbs free energy of formation is defined for one mole of pure substance at a specified pressure and temperature, it is a partial
molar quantity. When we elect to use the hypothetical ideal gas at a pressure of one bar as the standard state for the Gibbs free
energy of formation of the gas, we also establish the Gibbs free energy of formation of the hypothetical ideal gas in its standard
state as the standard-state chemical potential; that is, . Hence, we can also express the fugacity of a gas by
the equation

or

(pure real gas)

For a mixture of real gases, we can extend the definition of fugacity in a natural way. We want the fugacity of a component gas to
measure the difference between its chemical potential in the mixture, , and its chemical potential in its standard state, , where
its standard state is the pure hypothetical ideal gas at one bar pressure. If gas  is a component of a constant-temperature mixed-
gas system, we have , where  is the partial molar volume of  in the system, and  is the pressure of the
system. Let us find  in a binary mixture that contains one mole of  and  moles of a second component, . Let the partial
molar volume of  be . The system volume is . The mole fractions of  and  are  and 
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Figure 1. Finding the Gibbs free energy of a real gas in a mixture.

To find the change in , we need a reversible process that takes one mole of  in its standard state to a mixture of one mole 
with  moles of , in which the pressure of the mixture is . The four-step process described in Figure 1 answers our
requirements: One mole of  and  moles of  are separately expanded from their hypothetical ideal gas standard states, at ,
to the arbitrary low pressures  and , respectively. For this expansion, the change in the Gibbs free energy of one mole
of , which remains in its hypothetical ideal gas state, is

Next, these low-pressure ideal gases are merged to form a mixture of one mole of  with  moles of  at the total pressure .
For this merging process, . Then, we suppose that the ideal gases become real gases in a mixture whose pressure is 

. Since this is merely a conceptual change, we have . Finally, we compress the mixture of real gases from  to
an arbitrary pressure, . Since the volume of the mixture is , the Gibbs free energy change for this compression
of the mixture is

We see that the Gibbs free energy change for the real-gas system is the sum of the Gibbs free energy changes for the components;
we have

For this process, we have

where we have added and subtracted the quantity

μA A A

nB B P

A nB B P o

xAP
∗ xBP

∗

A

= dP = dP = RT ln( )ΔexpsG
¯ ¯¯̄

A ∫
xAP

∗

P o

V¯ ¯¯̄ ⦁

A ∫
xAP

∗

P o

RT

P

xAP
∗

P o

A nB B P ∗

= 0ΔmergeG
¯ ¯¯̄

A

P ∗ = 0ΔconceptG
¯ ¯¯̄

A P ∗

 P V = +V
¯ ¯¯̄

A nBV
¯ ¯¯̄

B

= V dP = dP + dPΔcompGmixture ∫
P

P ∗
∫

P

P ∗
V
¯ ¯¯̄

A nB ∫
P

P ∗
V
¯ ¯¯̄

B

= dPΔcompG
¯ ¯¯̄

A ∫
P

P ∗
V
¯ ¯¯̄

A

−μA μo
A

 

 

= RT ln[ ]
(P )fA

( )fA HIGo

= + + +ΔexpsG
¯ ¯¯̄

A ΔmergeG
¯ ¯¯̄

A ΔconceptG
¯ ¯¯̄

A ΔcompG
¯ ¯¯̄

A

= RT ln[ ]+ dP − dP + dP
xAP ∗

P o
∫

P

P ∗
V¯ ¯¯̄

A ∫
P

P ∗

RT

P
∫

P

P ∗

RT

P

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/152679?pdf


14.11.3 https://chem.libretexts.org/@go/page/152679

Dividing by  and evaluating the last integral, we find

 is a finite pressure arbitrarily near zero. At very low pressures, real gas  behaves as an ideal gas; hence, at very low pressures,
the partial molar volume of the real gas is well approximated by the partial molar volume of pure gas . That is, we have 

, and

where the approximation becomes exact in the limit as . Simplifying the natural logarithm terms and expanding the
integral, we obtain

Defining the fugacity coefficient for  in this mixture, , by

and recalling that , we use this result to find

This differs from the corresponding relationship for the fugacity of a pure gas only in that the partial molar volume is that of gas 
in a mixture with other gases. This is a trifling difference in principle, but a major difference in practice. To find the fugacity of
pure , we use the partial molar volume of the pure gas, which is readily calculated from any empirical pure-gas equation of state.
However, to experimentally obtain the partial molar volume of gas  in a gas mixture, we must collect pressure–volume–
temperature data as a function of the composition of the system. If we contemplate creating a catalog of such data for the mixtures
of even a modest number of compounds, we see that an enormous amount of data must be collected. Just the number of systems
involving only binary mixtures is large. For  compounds, there are  binary mixtures—each of which would have to
be studied at many compositions in order to develop good values for the partial molar volumes.

Fortunately, practical experience shows that a simple approximation often gives satisfactory results. In this approximation, we
assume that the partial molar volume of gas —present at mole fraction  in a system whose pressure is — is equal to the
partial molar volume of the pure gas at the same pressure. That is, for a binary mixture of gases  and , we assume

In this approximation, we have

dP∫
P

P ∗

RT

P

RT

−μA μo
A

RT

 

= ln[ ]
(P )fA

( )fA HIGo

= ln   +ln   −ln + ( − ) dP +lnP −lnxA P ∗ P o ∫
P

P ∗

V
¯ ¯¯̄

A

RT

1

P
P ∗

P ∗ A

A

≈V¯ ¯¯̄
A V ⦁

A

¯ ¯¯̄¯̄

( − ) dP∫
P ∗

0

V
¯ ¯¯̄

A

RT

1

P

 

≈ − dP∫
P ∗

0

⎛

⎝
⎜

V
⦁
A

¯ ¯¯̄¯̄

RT

1

P

⎞

⎠
⎟

≈ 0

→ 0P ∗

−μA μo
A

RT

 

 

= ln[ ]
(P )fA

( )fA HIGo

= ln + ( − ) dP − ( − ) dP
PxA

P o
∫

P

0

V
¯ ¯¯̄

A

RT

1

P
∫

P ∗

0

V
¯ ¯¯̄

A

RT

1

P

= ln + ( − ) dP
PxA

P o
∫

P

0

V
¯ ¯¯̄

A

RT

1

P

A γA

=γA
(P )fA

PxA

( ) =fA HIGo P o

ln   = ln( ) =   ( − )dPγA
(P )fA

PxA
∫

P

0

V
¯ ¯¯̄

A

RT

1

P

A

A

A

N N(N −1)/2

A xA P

A B

(P , , ) = (P )V¯ ¯¯̄
A xA xB V ⦁

A

¯ ¯¯̄¯̄

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/152679?pdf


14.11.4 https://chem.libretexts.org/@go/page/152679

and

We make the same assumption for gas . From Euler’s theorem on homogeneous functions, we have .
Therefore, in this approximation, we have

The last sum is the Amagat’s law representation of the molar volume of the gas mixture. We see that our approximation is
equivalent to assuming that the system obeys Amagat’s law. Physically, this assumes that the gas mixture is an ideal (gaseous)
solution. We discuss ideal solutions in Chapter 16. In an ideal solution, the intermolecular interactions between an  molecule and
a  molecule are assumed to have the same effect as the interactions between two  molecules or between two  molecules. This
differs from the ideal-gas assumption; there is no effect from the interactions between any two ideal-gas molecules.
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