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6.8: Gibbs' Phase Rule
Gibbs found an important relationship among the number of chemical constituents, the number of phases present, and the number
of intensive variables that must be specified in order to characterize an equilibrium system. This number is called the number of
degrees of freedom available to the system and is given the symbol . By specifying  intensive variables, we can specify the
state of the system—except for the amount of each phase. The number of chemical constituents is called the number of
components and is given the symbol . The number of components is the smallest number of pure chemical compounds that we
can use to prepare the equilibrium system so that it contains an arbitrary amount of each phase. The number of phases is given the
symbol . The relationship that Gibbs found between , , and  is called Gibbs’ phase rule or just the phase rule. The phase
rule applies to equilibrium systems in which any component can move freely between any two phases in which that component is
present.

We suppose that the state of the system is a continuous function of its state functions. If , intensive, independent variables, , 
, …, , are sufficient to specify the state of an equilibrium system, then , , …,  specify an

incrementally different equilibrium state of the same system. This means that the number of degrees of freedom is also the number
of intensive variables that can be varied independently while the system changes reversibly—subject to the condition that there is
no change in either the number or kinds of phases present. Moreover, if we keep the system’s intensive variables constant, we can
change the size of any phase without changing the nature of the system. This means that Gibb’s phase rule applies to any
equilibrium system, whether it is open or closed.

A system containing only liquid water contains one component and one phase. By adjusting the temperature and pressure of this
system, we can arrive at a state in which both liquid and solid are present. For present purposes, we think of this as a second
system. Since the second system can be prepared using only liquid water (or, for that matter, only ice) it too contains only one
component. However, since it contains both liquid and solid phases, the second system contains two phases. We see that the
number of components required to prepare a system in such a way that it contains an arbitrary amount of each phase is not affected
by phase equilibria. However, the number of componentsnumber of components is affected by chemical equilibria and by any other
stoichiometric constraints that we impose on the system. The number of components is equal to the number of chemical substances
present in the system, less the number of stoichiometric relationship among these substances.

Let us consider an aqueous system containing dissolved acetic acid, ethanol, and ethyl acetate. For this system to be at equilibrium,
the esterification reaction

must be at equilibrium. In general we can prepare a system like this by mixing any three substances chosen from the set: acetic
acid, ethanol, ethyl acetate, and water. Hence, there are three components. The esterification reaction, or its reverse, then produces
an equilibrium concentration of the fourth substance. However, there is a special case with only two components. Suppose that we
require that the equilibrium concentrations of ethanol and acetic acid be exactly equal. In this case, we can prepare the system by
mixing ethyl acetate and water. Then the stoichiometry of the reaction assures that the concentration condition will be met; indeed,
this is the only way that the equal-concentration condition can be met exactly.

In this example, there are four chemical substances. The esterification reaction places one stoichiometric constraint on the amounts
of these substances that can be present at equilibrium, which means that we can change only three concentrations independently.
The existence of this constraint reduces the number of components from four to three. An additional stipulation that the product
concentrations be equal is a second stoichiometric constraint that reduces the number of independent components to two.

If we have a one-phase system at equilibrium, we see that the pressure, the temperature, and the  component-concentrations
constitute a set of variables that must be related by an equation of state. If we specify all but one of these variables, the remaining
variable is determined, and can be calculated from the equation of state. There are  variables, but the existence of the
equation of state means that only  of them can be changed independently. Evidently, the number of degrees of freedom for a
one-phase system is .

To find the number of degrees of freedom when  such phases are in equilibrium with one another requires a similar but more
extensive analysis. We first consider the number of intensive variables that are required to describe completely a system that
contains  components and  phases, if the phases are not at equilibrium with one another. (Remember that the description we
seek is complete except for a specification of the absolute amount of each phase present. For the characterization of equilibrium
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that we seek, these amounts are arbitrary.) In this case, each phase is a subsystem in its own right. Each phase can have a pressure,
a temperature, and a

concentration for each component. Each of these properties can have a value that is independent of its value in any other phase.
There are  variables for each phase or  variables for all  phases. Table 1 displays these variables.

1 2 …

Pressure …

Temperature …

Component 1 …

Component 2 …

… … … … …

Component C …

If the system is at equilibrium, there are numerous relationships among these  variables. We want to know how many
independent relationships there are among them. Each such relationship decreases by one the number of independent intensive
variables that are needed to specify the state of the system when all of the phases are at equilibrium. Let us count these
relationships.

The pressure must be the same in each phase. That is, , , …, , , …, , etc. Since 
 and  implies that , etc., there are only  independent equations that relate these pressures to one

another.
The temperature must be the same in each phase. As for the pressure, there are  independent relationships among the
temperature values.
The concentration of species  in phase 1 must be in equilibrium with the concentration of species  in phase 2, and so forth.
We can write an equation for phase equilibrium involving the concentration of  in any two phases; for example,

(In Chapter 14, we will find that this requirement can be stated more rigorously using a thermodynamic function that we call the
chemical potential. At equilibrium, the chemical potential of species  must be the same in each phase.) For the  phases, there
are again  independent relationships among the component-  concentration values. This is true for each of the 
components, so the total number of independent relationships among the concentrations is .

While every component need not be present in each phase, there must be a finite amount of each phase present. Each phase must
have a non-zero volume. To express this requirement using intensive variables, we can say that the sum of the concentrations in
each phase must be greater than zero. For phase 1, we must have

and so on for each of the  phases. There are  such relationships that are independent of one another.

If we subtract, from the total number of relevant relationships, the number of independent relationships that must be satisfied at
equilibrium, we find Gibbs’ phase rule: There are

independent relationships or degrees of freedom needed to describe the equilibrium system containing  components and 
phases.

A component may not be present in some particular phase. If this is the case, the total number of relationships is one less than the
number that we used above to derive the phase rule. The number of equilibrium constraints is also one less than the number we
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used. Consequently, the absence of a component from any particular phase has no effect on the number of degrees of freedom
available to the system at equilibrium.
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