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21.2: Lagrange's Method of Undetermined Multipliers
Lagrange’s method of undetermined multipliers is a method for finding the minimum or maximum value of a function subject to
one or more constraints. A simple example serves to clarify the general problem. Consider the function

where  is a constant. This function is a surface of revolution, which is tangent to the plane  at . The point of
tangency is the minimum value of . At any other point in the -plane,  is greater than . If either  or  becomes
arbitrarily large,  does also. If we project a contour of constant  onto the -plane, the projection is a circle of radius

Suppose that we introduce an additional condition; we require . Then we ask for the smallest value of  consistent with
this constraint. In the -plane the constraint is a line of slope  and intercept . A plane that includes this line and is parallel to
the -axis intersects the function . As sketched in Figure 1, this intersection is a curve. Far away from the origin, the value of  at
which the intersection occurs is large. Nearer the origin, the value of  is smaller, and there is some  at which it is a
minimum. Our objective is to find this minimum.

Figure 1: A surface and a constraint equation.

There is a straightforward solution of this problem; we can substitute the constraint equation for  into the equation for , making 
a function of only one variable, . We have

To find the minimum, we equate the derivative to zero, giving

so that the minimum occurs at , y , and

Solving such problems by elimination of variables can become difficult. Lagrange’s method of undetermined multipliers is a
general method, which is usually easy to apply and which is readily extended to cases in which there are multiple constraints. We
can see how Lagrange’s method arises by thinking further about our particular example. We can imagine that we “walk” along the
constraint line in the -plane and measure the  that is directly overhead as we progress. The problem is to find the minimum
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value of  that we encounter as we proceed along the line. This perspective highlights the central feature of the problem: While it is
formally a problem in three dimensions ( , , and ), the introduction of the constraint makes it a two-dimensional problem. We
can think of one dimension as a displacement along the line , from some arbitrary starting point on the line. The other
dimension is the perpendicular distance from the -plane to the intersection with the surface .

The relevant part of the -plane is just the one-dimensional constraint line. We can recognize this by parameterizing the line. Let 
measure location on the line relative to some initial point at which . Then we have  and  and

The point we seek is the one at which .

Now let us examine a somewhat more general problem. We want a general way to find the values  that minimize (or
maximize) a function  subject to a constraint of the form , where  is a constant. As in our example, this
constraint requires a solution in which  are on a particular line. If we parameterize this problem, we have

and

Because  is a constant, . The solution we seek is the point at which  is an extremum. At this point, 
. Therefore, at the point we seek, we have

and

We can multiply either of these equations by any factor, and the product will be zero. We multiply  by  (where ) and
subtract the result from . Then, at the point we seek,

Since we can choose  and  any way we please, we can insure that  and  at the solution point. If we
do so, the terms in parentheses must be zero at the solution point.

Conversely, setting

and

is sufficient to insure that

Since , these conditions insure that . This means that, if we can find a set  satisfying

and
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and

then the values of  and  must be those make  an extremum, subject to the constraint that . We have not shown
that the set  exists, but we have shown that if it exists, it is the desired solution.

A useful mnemonic simplifies the task of generating the family of equations that we need to use Lagrange’s method. The
mnemonic calls upon us to form a new function, which is a sum of the function whose extremum we seek and a series of additional
terms. There is one additional term for each constraint equation. We generate this term by putting the constraint equation in the
form  and multiplying by an undetermined parameter. For the case we just considered, the mnemonic function is

We can generate the set of equations that describe the solution set, , by equating the partial derivatives of  with
respect to , , and  to zero. That is, the solution set satisfies the simultaneous equations

and

If there are multiple constraint equations, , , and , then the mnemonic
function is

and the simultaneous equations that represent the constrained extremum are

,
,
,
, and
.

To illustrate the use of the mnemonic, let us return to the example with which we began. The mnemonic equation is

so that

and

which yield , y , and .

This page titled 21.2: Lagrange's Method of Undetermined Multipliers is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.

= 0( −λ )
∂h

∂y

∂g

∂y x

c−g (x, y) = 0

x y h (x, y) c = g (x, y)

{x, y,λ}

c−g (x, y) = 0

= h (x, y) +λ (c−g (x, y))Fmn

{x, y,λ} Fmn

x y λ

= 0
∂Fmn

∂x

= 0
∂Fmn

∂y

= 0
∂Fmn

∂λ

− (x, y) = 0cλ gλ − (x, y) = 0cα gα − (x, y) = 0cβ gβ

= h (x, y) +λ ( − (x, y)) +α ( − (x, y)) +β ( − (x, y))Fmn cλ gλ cα gα cβ gβ

∂ /∂x = 0Fmn

∂ /∂y = 0Fmn

∂ /∂λ = 0Fmn

∂ /∂α = 0Fmn

∂ /∂β = 0Fmn

=  exp( + )+λ (1 −x−y)Fmn z0 x2 y2

= 2x  exp( + )−λ = 0,
∂Fmn

∂x
z0 x2 y2

= 2y  exp( + )−λ = 0
∂Fmn

∂y
z0 x2 y2

= 1 −x−y = 0
∂Fmn

∂λ

x = 1/2 = 1/2 λ =  exp(1/2)z0

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/151957?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/21%3A_The_Boltzmann_Distribution_Function/21.02%3A_Lagrange's_Method_of_Undetermined_Multipliers
https://creativecommons.org/licenses/by-sa/4.0
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278

