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14.15: Problems
Problems

1. When we express the energy of a system as a function of entropy, volume, and composition, we have 
. Since  and  are extensive variables, we have . Find 

. From this result, show that

2. When we express the energy of a system as a function of pressure, temperature, and composition, we have 
. Because P and T are independent of , . Show that

3. From  and the result in problem 2, show that

Note that at constant pressure and temperature,

4. If pressure and temperature are constant,  and . Show that 
 follows from these relationships.

5. A solution contains  moles of component 1,  moles of component 2,  moles of component 3, etc. Let 
 The mole fraction of component  is . Show that

and, for ,

What are

and

if the solution has only two components?

6. For any extensive state function, , the arguments developed in this chapter lead, at constant  and ,
to the equations

and
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Where  is the partial molar quantity .

(a) Prove that 

(b) Prove that

(c) Prove that

7. The enthalpy of mixing is measured in a series of experiments in which solid solute, , dissolves to form an aqueous solution.
These enthalpy data are represented well by empirical equations ,  and

 with

Find , , , and  as functions of  and . Find , , , and  for a one molal solution at 209 K. What
is the value of

Notes

 We can make other assumptions. It is possible to describe an inhomogeneous system as a collection of many macroscopic,
approximately homogeneous regions.
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2 = + (T −273.15)α1 β11 β12

= + (T −273.15)α2 β21 β22

= 10.0 kJ β11 molal−1

= −0.14 kJ   β12 molal−2 K−1

= −3.00 kJ β21 molal−1

= −0.040 kJ   β22 molal−2 K−1
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