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22.3: Probability Density Functions from the Energies of Classical-mechanical
Models
Guided by our development of the Maxwell-Boltzmann probability density function for molecular velocities, we could postulate
that similar probability density functions apply to other energies derived from classical-mechanical models for molecular motion.
We will see that this can indeed be done. The results correspond to the results that we get from the Boltzmann equation, where we
assume for both derivations that many energy levels satisfy . The essential point is that, at a sufficiently high temperature,
the behavior predicted by the quantum mechanical model and that predicted from classical mechanics converge. This high-
temperature approximation is a good one for translational motions but a very poor one for vibrational motions. These results further
illuminate the differences between the classical-mechanical and the quantum-mechanical models for the behavior of molecules.

Let us look at how we can generate probability density functions based on the energies of classical-mechanical models for
molecular motions. In the classical mechanical model, a particle moving in one dimension with velocity  has kinetic energy

. From the discussion above, if many velocities satisfy , we can postulate a probability density function of the
form

where  is fixed by the condition

Evidently, this postulate assumes that each velocity constitutes a quantum state and that the degeneracy is the same for all
velocities. This assumption is successful for one-dimensional translation, but not for translational motion in two or three
dimensions. The definite integral is given in Appendix D. We find

and

With , this is the same as the result that we obtain in Section 4.4. With  in hand, we can calculate the average
energy associated with the motion of a gas molecule in one dimension

This definite integral is also given in Appendix D. We find

We see that we can obtain the average kinetic energy for one degree of translational motion by a simple argument that uses
classical-mechanical energies in the Boltzmann equation. We can make the same argument for each of the other two degrees of
translational motion. We conclude that each degree of translational freedom contributes  to the average energy of a gas
molecule. For three degrees of translational freedom, the total contribution is , which is the result that we first obtained in
Section 2.10.

Now let us consider a classical-mechanical model for a rigid molecule rotating in a plane. The classical kinetic energy is 
, where  is the molecule’s moment of inertia about the axis of rotation, and  is the angular rotation rate. This has

the same form as the translational kinetic energy, so if we assume  and a probability density function of the form

finding  and  follows exactly as before, and the average rotational kinetic energy is

ϵ ≪ kT

v

m /2v2 kT ≫ m /2v2

=  exp( )
df

dv
Btrans

−mv2

2kT

Btrans

( ) dv= exp( )dv= 1∫
∞

−∞

df

dv
Btrans ∫

∞

−∞

−mv2

2kT

=Btrans (m/2πkT )1/2

= exp( )
df

dv
( )

m

2πkT

1/2 −mv2

2kT

m/kT = λ Btrans

⟨ϵ⟩ = ( )( ) dv= exp( )dv∫
∞

−∞

mv2

2

df

dv
( )

m3

8πkT

1/2

∫
∞

−∞
v2 −mv2

2kT

⟨ ⟩ =ϵtrans
kT

2

kT/2

3kT/2

= I /2ϵrot ω2 I ω

kT ≫ I /2ω2

= exp( )
df

dω
Brot 

−Iω2

2kT

Brot  ⟨ ⟩ϵrot 

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/151965?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/22%3A_Some_Basic_Applications_of_Statistical_Thermodynamics/22.03%3A_Probability_Density_Functions_from_the_Energies_of_Classical-mechanical_Models
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/04%3A_The_Distribution_of_Gas_Velocities/4.04%3A_The_Probability-density_Function_for_Gas_Velocities_in_One_Dimension
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/02%3A_Gas_Laws/2.10%3A_Deriving_Boyle's_Law_from_Newtonian_Mechanics


22.3.2 https://chem.libretexts.org/@go/page/151965

for a molecule with one degree of rotational freedom.

For a classical harmonic oscillator, the vibrational energy has both kinetic and potential energy components. They are  and 
 where  is the oscillator’s instantaneous velocity,  is its instantaneous location, and  is the force constant. Both of these

have the same form as the translational kinetic energy equation. If we can assume that , that , and that
the probability density functions are

and

the same arguments show that the average kinetic energy and the average potential energy are both :

and

so that the average total vibrational energy is

In summary, because the energy for translational motion in one dimension, the energy for rotational motion about one axis, the
energy for vibrational kinetic energy in one dimension, and the energy for vibrational potential energy in one dimension all have
the same form ( ) each of these modes can contribute  to the average energy of a molecule. For translation and
rotation, the total is  for each degree of translational or rotational freedom. For vibration, because there is both a kinetic and a
potential energy contribution, the total is  per degree of vibrational freedom.

Let us illustrate this for the particular case of a non-linear, triatomic molecule. From our discussion in Section 18.4, we see that
there are three degrees of translational freedom, three degrees of rotational freedom, and three degrees of vibrational freedom. The
contributions to the average molecular energy are

 from translation
 from rotation

 from vibration
 in total

Since the heat capacity is

each translational degree of freedom can contribute  to the heat capacity. Each rotational degree of freedom can also contribute 
 to the heat capacity. Each vibrational degree of freedom can contribute  to the heat capacity. It is important to remember that

these results represent upper limits for real molecules. These limits are realized at high temperatures, or more precisely, at
temperatures where many energy levels, , satisfy 
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