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9.2: The Carnot Cycle for an Ideal Gas and the Entropy Concept
Historically, the steam engine was the first machine for converting heat into work that could be exploited on a large scale. The
steam engine played a major role in the industrial revolution and thus in the development of today’s technology-intensive economy.
It was important also in the development of the basic concepts of thermodynamics. A steam engine produces work when hot steam
under pressure is introduced into a cylinder, driving a piston outward. A shaft connects the piston to a flywheel. When the
connecting shaft reaches its greatest extension, the spent steam is vented to the atmosphere. Thereafter the flywheel drives the
piston inward.

The economic viability of the steam engine derives, in part, from the fact that the spent steam can be vented to the atmosphere at
the end of each cycle. However, this is not a necessary feature of heat engines. We can devise engines that alternately heat and cool
a captive working fluid to convert heat energy into mechanical work. Stirling engines are practical devices of this type. A Carnot
engine is a conceptual engine that exploits the response of a closed system to temperature changes. A Carnot engine extracts heat
from one reservoir at a fixed high temperature and discharges a lesser amount of heat into a second reservoir at a fixed lower
temperature. An amount of energy equal to the difference between these increments of heat energy appears in the surroundings as
work.

For one cycle of the Carnot engine, let the heat transferred to the system from the hot and cold reservoirs be  and  respectively.
We have  and . Let the net work done on the system be  and the net work that appears in the surroundings be 

. We have

, , and . For one cycle of the engine, , and since

it follows that . The energy input to the Carnot engine is , and the useful work that appears in the surroundings is 
. (The heat accepted by the low-temperature reservoir, , is a waste product, in the sense that it represents energy

that cannot be converted to mechanical work using this cycle. All feasible heat engines share this feature of the Carnot engine. In
contrast, a perpetual motion machine of the second kind converts its entire heat intake to work; no portion of its heat intake goes
unused.) The efficiency, , with which the Carnot engine converts the input energy, , to useful output energy, , is therefore,

We can generalize our consideration of heat engines to include any series of changes in which a closed system exchanges heat with
its surroundings at more than one temperature, delivers a positive quantity of work to the surroundings, and returns to its original
state. We use the Carnot cycle and the machine-based statement of the second law to analyze systems that deliver pressure–volume
work to the surroundings. We consider both reversible and irreversible systems. We begin by considering reversible Carnot cycles.
If any system reversibly traverses any closed path on a pressure–volume diagram, the area enclosed by the path represents the
pressure–volume work exchanged between the system and its surroundings. If the area is not zero, the system temperature changes
during the cycle. If the cycle is reversible, all of the heat transfers that occur must occur reversibly. We can apply our reasoning
about reversible cycles to any closed system containing any collection of chemical substances, so long as any phase changes
or chemical reactions that occur do so reversibly. This means that all phase and chemical changes that occur in the system must
adjust rapidly to the new equilibrium positions that are imposed on them as a system traverses a Carnot cycle reversibly.
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Figure 2. An ideal gas Carnot cycle. Note that the pressure axis is compressed: In P is plotted vs. V.

In Figure 2, we describe the operation of a reversible Carnot engine in which the working fluid is an ideal gas. We designate the
system’s initial pressure, volume, and temperature by , , and . From this initial state, we cause the ideal gas to undergo a
reversible isothermal expansion in which it absorbs a quantity of heat, , from a high-temperature heat reservoir at . We
designate the pressure, volume, and temperature at the end of this isothermal expansion as , , and . In a second step, we
reversibly and adiabatically expand the ideal gas until its temperature falls to that of the second, low-temperature, heat reservoir.
We designate the pressure, volume, and temperature at the end of this adiabatic expansion as , , and . We begin the return
portion of the cycle by reversibly and isothermally compressing the ideal gas at the temperature of the cold reservoir. We continue
this reversible isothermal compression until the ideal gas reaches the pressure and volume from which an adiabatic compression
will just return it to the initial state. We designate the pressure, volume, and temperature at the end of this isothermal compression
by , , and . During this step, the ideal gas gives up a quantity of heat, , to the low-temperature reservoir. Finally, we
reversibly and adiabatically compress the ideal gas to its original pressure, volume, and temperature.

For the high-temperature isothermal step, we have

and for the low-temperature isothermal step, we have

For the adiabatic expansion and compression, we have

The corresponding energy and work terms are

for the adiabatic expansion and

for the adiabatic compression. The heat-capacity integrals are the same except for the direction of integration; they sum to zero, and
we have . The net work done on the system is the sum of the work for these four steps, 

. The heat input occurs at the high-temperature reservoir, so that . The heat
discharge occurs at the low-temperature reservoir, so that .

For one cycle of the reversible, ideal-gas Carnot engine,
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Because the two adiabatic steps involve the same limiting temperatures, the energy of an ideal gas depends only on temperature,
and  for both steps, we see from Section 9.7-9.20 that

and

The integrals over  are the same except for the direction of integration. They sum to zero, so that 
 and

Using this result, the second equation for the reversible Carnot engine efficiency becomes

Equating our expressions for the efficiency of the reversible Carnot engine, we find

from which we have

Since there is no heat transfer in the adiabatic steps,  and we can write this sum as

If we divide the path around the cycle into a large number of very short segments, the limit of this sum as the  become very small
is

where the superscript “ ” serves as a reminder that the cycle must be traversed reversibly. Now, we can define a new function, ,
by the differential expression

In this expression,  is the incremental change in  that occurs when the system reversibly absorbs a small of increment of heat, 
, at a particular temperature, . For an ideal gas traversing a Carnot cycle, we have shown that

 is, of course, the entropy function described in our entropy-based statement of the second law.

We now want to see what the machine-based statement of the second law enables us to deduce about the properties of . Since the
change in  is zero when an ideal gas goes around a complete Carnot cycle, we can conjecture that  is a state function. Of course,
the fact that  around one particular cycle does not prove that  is a state function. If  is a state function, it must be true
that  around any cycle whatsoever. We now prove this for any reversible cycle.
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The proof has two steps. In the first, we show that  for a machine that uses any reversible system operating between
two constant-temperature heat reservoirs to convert heat to work. In the second step, we show that  for any system
that reversibly traverses any closed path.
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