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1.24: Molecular Vibrations
Vibrational motion in diatomic molecules is often discussed within the context of the simple harmonic oscillator in quantum
mechanics. A diatomic molecule has only a single bond that can vibrate; we say it has a single vibrational mode. As you may
expect, the vibrational motions of polyatomic molecules are much more complicated than those in a diatomic. Firstly, there are
more bonds that can vibrate; and secondly, in addition to stretching vibrations, the only type of vibration possible in a diatomic, we
can also have bending and torsional vibrational modes. Since changing one bond length in a polyatomic will often affect the length
of nearby bonds, we cannot consider the vibrational motion of each bond in isolation; instead we talk of normal modes involving
the concerted motion of groups of bonds. As a simple example, the normal modes of a linear triatomic molecule are shown below.

Once we know the symmetry of a molecule at its equilibrium structure, group theory allows us to predict the vibrational motions it
will undergo using exactly the same tools we used above to investigate molecular orbitals. Each vibrational mode transforms as one
of the irreducible representations of the molecule’s point group. Before moving on to an example, we will quickly review how to
determine the number of vibrational modes in a molecule.

Molecular degrees of freedom – determining the number of normal vibrational modes 
An atom can undergo only translational motion, and therefore has three degrees of freedom corresponding to motion along the , ,
and  Cartesian axes. Translational motion in any arbitrary direction can always be expressed in terms of components along these
three axes. When atoms combine to form molecules, each atom still has three degrees of freedom, so the molecule as a whole has 

 degrees of freedom, where  is the number of atoms in the molecule. However, the fact that each atom in a molecule is
bonded to one or more neighboring atoms severely hinders its translational motion, and also ties its motion to that of the atoms to
which it is attached. For these reasons, while it is entirely possible to describe molecular motions in terms of the translational
motions of individual atoms (we will come back to this in the next section), we are often more interested in the motions of the
molecule as a whole. These may be divided into three types: translational; rotational and vibrational.

Just as for an individual atom, the molecule as a whole has three degrees of translational freedom, leaving  degrees of
freedom in rotation and vibration.

The number of rotational degrees of freedom depends on the structure of the molecule. In general, there are three possible
rotational degrees of freedom, corresponding to rotation about the , , and  Cartesian axes. A non-linear polyatomic molecule
does indeed have three rotational degrees of freedom, leaving  degrees of freedom in vibration (i.e  vibrational
modes). In a linear molecule, the situation is a little different. It is generally accepted that to be classified as a true rotation, a
motion must change the position of one or more of the atoms. If we define the  axis as the molecular axis, we see that spinning the
molecule about the axis does not move any of the atoms from their original position, so this motion is not truly a rotation.
Consequently, a linear molecule has only two degrees of rotational freedom, corresponding to rotations about the  and  axis. This
type of molecule has  degrees of freedom left for vibration, or  vibrational modes.

In summary:

A linear molecule has  vibrational modes
A non-linear molecule has  vibrational modes.

Determining the Symmetries of Molecular Motions 
We mentioned above that the procedure for determining the normal vibrational modes of a polyatomic molecule is very similar to
that used in previous sections to construct molecular orbitals. In fact, virtually the only difference between these two applications
of group theory is the choice of basis set.

As we have already established, the motions of a molecule may be described in terms of the motions of each atom along the , 
and  axis. Consequently, it probably won’t come as too much of a surprise to discover that a very useful basis for describing
molecular motions comprises a set of  axes centered on each atom. This basis is usually known as the  Cartesian basis
(since there are  Cartesian axes,  axes for each of the  atoms in the molecule). Note that each molecule will have a different 

 Cartesian basis, just as every molecule has a different atomic orbital basis.
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Our first task in investigating motions of a particular molecule is to determine the characters of the matrix representatives for the 
 Cartesian basis under each of the symmetry operations in the molecular point group. We will use the  molecule, which has
 symmetry, as an example.

 has three atoms, so the  Cartesian basis will have  elements. The basis vectors are shown in the diagram below.

One way of determining the characters would be to construct all of the matrix representatives and take their traces. While you are
more than welcome to try this approach if you want some practice at constructing matrix representatives, there is an easier way.
Recall that we can also determine the character of a matrix representative under a particular symmetry operation by stepping
through the basis functions and applying the following rules:

i. Add  to the character if the basis function is unchanged by the symmetry operation;
ii. Add  to the character if the basis function changes sign under the symmetry operation;

iii. Add  to the character if the basis function moves when the symmetry operation is applied.

For , this gives us the following characters for the  Cartesian basis (check that you can obtain this result using the rules
above and the basis vectors as drawn in the figure):

There is an even quicker way to work out the characters of the  Cartesian basis if you have a character table in front of you. The
character for the Cartesian basis is simply the sum of the characters for the , , and  (or , , and ) functions listed in the
character table. To get the character for the  Cartesian basis, simply multiply this by the number of atoms in the molecule that
are unshifted by the symmetry operation.

The  character table is shown below.

 transforms as ,  as , and  as , so the characters for the Cartesian basis are

We multiply each of these by the number of unshifted atoms (  for the identity operation,  for ,  for  and  for ) to obtain
the characters for the  Cartesian basis.

Reassuringly, we obtain the same characters as we did previously. Which of the three methods you use to get to this point is up to
you.

We now have the characters for the molecular motions (described by the  Cartesian basis) under each symmetry operation. At
this point, we want to separate these characters into contributions from translation, rotation, and vibration. This turns out to be a
very straightforward task. We can read the characters for the translational and rotational modes directly from the character table,
and we obtain the characters for the vibrations simply by subtracting these from the  Cartesian characters we’ve just
determined. The characters for the translations are the same as those for . We find the characters for the rotations by adding
together the characters for , , and  from the character table (or just  and  if the molecule is linear). For , we
have:
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The characters in the final row are the sums of the characters for all of the molecular vibrations. We can find out the symmetries of
the individual vibrations by using the reduction equation (Equation (15.20)) to determine the contribution from each irreducible
representation.

In many cases you won’t even need to use the equation, and can work out which irreducible representations are contributing just by
inspection of the character table. In the present case, the only combination of irreducible representations that can give the required
values for  is . As an exercise, you should make sure you are also able to obtain this result using the reduction
equation.

So far this may all seem a little abstract, and you probably want to know is what the vibrations of  actually look like. For a
molecule with only three atoms, it is fairly easy to identify the possible vibrational modes and to assign them to the appropriate
irreducible representation.

For a larger molecule, the problem may become much more complex, and in that case we can generate the SALCs of the 
Cartesian basis, which will tell us the atomic displacements associated with each vibrational mode. We will do this now for .

Atomic displacements using the 3N Cartesian basis 
As before, we generate the SALCs of each symmetry by applying the appropriate projection operator to each of the basis functions
(or in this case, basis vectors)  in turn.

In this case we have  basis vectors, which we will label , , , , , , , , , describing the displacements of
the two  atoms and the  atom along Cartesian axes. For the SALCs of  symmetry, applying the projection operator to each
basis vector in turn gives (check that you can obtain this result):

We see that the motion characteristic of an  vibration (which we have identified as the symmetric stretch and the bending
vibration) may be summarized as follows:

i.  - the two hydrogen atoms move in opposite directions along the  axis.
ii.  - the two hydrogen atoms move in the same direction along the  axis.

iii.  - the oxygen atom moves along the  axis.
iv. There is no motion of any of the atoms in the  direction.

The asymmetric stretch has  symmetry, and applying the projection operator in this case gives:
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In this vibrational mode, the two  atoms move in the same direction along the  axis and in opposite directions along the  axis.

We have now shown how group theory may be used together with the  Cartesian basis to identify the symmetries of the
translational, rotational and vibrational modes of motion of a molecule, and also to determine the atomic displacements associated
with each vibrational mode.

Molecular vibrations using internal coordinates 
While it was fairly straightforward to investigate the atomic displacements associated with each vibrational mode of  using the

 Cartesian basis, this procedure becomes more complicated for larger molecules. Also, we are often more interested in how
bond lengths and angles change in a vibration, rather than in the Cartesian displacements of the individual atoms. If we are only
interested in looking at molecular vibrations, we can use a different procedure from that described above, and start from a basis of
internal coordinates. Internal coordinates are simply a set of bond lengths and bond angles, which we can use as a basis for
generating representations and, eventually, SALCs. Since bond lengths and angles do not change during translational or rotational
motion, no information will be obtained on these types of motion.

For , the three internal coordinates of interest are the two  bond lengths, which we will label  and , and the  bond
angle, which we will label . If we wanted to, we could separate our basis into two different bases, one consisting only of bond
lengths, to describe stretching vibrations, and one consisting of only bond angles, to describe bending vibrations. However, the
current example is simple enough to treat all the basis functions together.

As usual, our first step is to work out the characters of the matrix representatives for this basis under each symmetry operation. The
effects of the various transformations on our chosen basis, and the characters of the corresponding representatives, are:

These are the same characters as we found before using the  Cartesian basis, and as before, we can see by inspection of the
character table that the representation may be reduced down to the sum of irreducible representations . We can now work
out the symmetry adapted linear combinations of our new basis set to see how the bond lengths and angle change as  vibrates
in each of the three vibrational modes.

Again, we will use the projection operator  applied to each basis function in turn.

Firstly, the  vibrations:

From these SALCs, we can identify  (and , which is identical) with the symmetric stretch, in which both bond lengths change
in phase with each other, and  with the bend.

Now for the  vibration:
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 and  are not linearly independent, and either one may be chosen to describe the asymmetric stretch, in which one bond
lengthens as the other shortens.

Note: When using internal coordinates, it is important that all of the coordinates in the basis are linearly independent. If this is the
case then the number of internal coordinates in the basis will be the same as the number of vibrational modes (  or ,
depending on whether the molecule is linear or non-linear). This requirement is satisfied in the  example above. For a less
straightforward example, consider the methane molecule, . It might appear that we could choose a basis made up of the four 

-  bond lengths and the six - -  bond angles. However, this would give us  basis functions, and  has only 
vibrational modes. This is due to the fact that the bond angles are not all independent of each other. It can be tricky to come up with
the appropriate internal coordinate basis to describe all of the molecular motions, but all is not lost. Even if you can’t work out the
appropriate bond angles to choose, you can always take a basis of bond lengths to investigate the stretching vibrations of a
molecule. If you want to know the symmetries of the bending vibrations, you can use the  Cartesian basis method to determine
the symmetries of all of the vibrational modes and compare these with the stretching mode symmetries to identify the bending
modes.
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