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1.15: Reduction of representations II
By making maximum use of molecular symmetry, we often greatly simplify problems involving molecular properties. For example, the
formation of chemical bonds is strongly dependent on the atomic orbitals involved having the correct symmetries. To make full use of group
theory in the applications we will be considering, we need to develop a little more ‘machinery’. Specifically, given a basis set (of atomic
orbitals, for example) we need to find out:

1. How to determine the irreducible representations spanned by the basis functions
2. How to construct linear combinations of the original basis functions that transform as a given irreducible representation/symmetry species.

It turns out that both of these problems can be solved using something called the ‘Great Orthogonality Theorem’ (GOT for short). The GOT
summarizes a number of orthogonality relationships implicit in matrix representations of symmetry groups, and may be derived in a somewhat
qualitative fashion by considering these relationships in turn.

Some of you might find the next section a little hard going. In it, we will derive two important expressions that we can use to achieve the
two goals we have set out above. It is not important that you understand every step in these derivations; they have mainly been included
just so you can see where the equations come from. However, you will need to understand how to use the results. Hopefully you will not
find this too difficult once we’ve worked through a few examples.

General concepts of Orthogonality 
You are probably already familiar with the geometric concept of orthogonality. Two vectors are orthogonal if their dot product (i.e. the
projection of one vector onto the other) is zero. An example of a pair of orthogonal vectors is provided by the  and  Cartesian unit vectors.

 A consequence of the orthogonality of  and  is that any general vector in the  plane may be written as a linear combination of these two
basis vectors.

Mathematical functions may also be orthogonal. Two functions,  and , are defined to be orthogonal if the integral over their
product is equal to zero i.e.

This simply means that there must be ‘no overlap’ between orthogonal functions, which is the same as the orthogonality requirement for
vectors, above. In the same way as for vectors, any general function may be written as a linear combination of a suitably chosen set of
orthogonal basis functions. For example, the Legendre polynomials  form an orthogonal basis set for functions of one variable .

Orthogonality relationships in Group Theory 
The irreducible representations of a point group satisfy a number of orthogonality relationships:

1. If corresponding matrix elements in all of the matrix representatives of an irreducible representation are squared and added together, the
result is equal to the order of the group divided by the dimensionality of the irreducible representation. i.e.
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where  labels the irreducible representation,  and  label the row and column position within the irreducible representation,  is the order of
the group, and  is the order of the irreducible representation. e.g. The order of the group  is 6. If we apply the above operation to the first

element in the 2x2 ( ) irreducible representation derived in Section 12, the result should be equal to  =  = 3. Carrying out this operation

gives:

2. If instead of summing the squares of matrix elements in an irreducible representation, we sum the product of two different elements from
within each matrix, the result is equal to zero. i.e.

where  and/or . E.g. if we perform this operation using the two elements in the first row of the 2D irreducible representation used
in 1, we get:

3. If we sum the product of two elements from the matrices of two different irreducible representations  and , the result is equal to zero. i.e.

where there is now no restriction on the values of the indices , , ,  (apart from the rather obvious restriction that they must be less than or
equal to the dimensions of the irreducible representation). e.g. Performing this operation on the first elements of the  and  irreducible
representations we derived for  gives:

We can combine these three results into one general equation, the Great Orthogonality Theorem .

For most applications we do not actually need the full Great Orthogonality Theorem. A little mathematical trickery transforms Equation 
 into the ‘Little Orthogonality Theorem’ (or LOT), which is expressed in terms of the characters of the irreducible representations

rather than the irreducible representations themselves.

Since the characters for two symmetry operations in the same class are the same, we can also rewrite the sum over symmetry operations as a
sum over classes.

where  is the number of symmetry operations in class .

In all of the examples we’ve considered so far, the characters have been real. However, this is not necessarily true for all point groups, so to
make the above equations completely general we need to include the possibility of imaginary characters. In this case we have:

where  is the complex conjugate of . Equation  is of course identical to Equation  when all the characters are real.

Using the LOT to Determine the Irreducible Representations Spanned by a Basis 
In Section  we discovered that we can often carry out a similarity transform on a general matrix representation so that all the representatives
end up in the same block diagonal form. When this is possible, each set of submatrices also forms a valid matrix representation of the group. If
none of the submatrices can be reduced further by carrying out another similarity transform, they are said to form an irreducible representation
of the point group. An important property of matrix representatives is that their character is invariant under a similarity transform. This means
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that the character of the original representatives must be equal to the sum of the characters of the irreducible representations into which the
representation is reduced. e.g. if we consider the representative for the  symmetry operation in our  example, we have:

It follows that we can write the characters for a general representation  in terms of the characters of the irreducible representations 
into which it can be reduced.

where the coefficients  in the sum are the number of times each irreducible representation appears in the representation. This means that in
order to determine the irreducible representations spanned by a given basis. all we have to do is determine the coefficients  in the above
equation. This is where the Little Orthogonality Theorem comes in handy. If we take the LOT in the form of Equation , and multiply
each side through by , we get

Summing both sides of the above equation over  gives

We can use Equation  to simplify the left hand side of this equation. Also, the sum on the right hand side reduces to  because 
is only non-zero (and equal to ) when  = 

Dividing both sides through by  (the order of the group), gives us an expression for the coefficients  in terms of the characters  of the
original representation and the characters  of the  irreducible representation.

We can of course write this as a sum over classes rather than a sum over symmetry operations.

As an example, in Section  we showed that the matrix representatives we derived for the  group could be reduced into two irreducible
representations of  symmetry and one of  symmetry. i.e.  = 2  + . We could have obtained the same result using Equation ).
The characters for our original representation and for the irreducible representations of the  point group ( ,  and ) are given in the
table below.

From Equation , the number of times each irreducible representation occurs for our chosen basis  is therefore

i.e. Our basis is spanned by  + , as we found before.
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The  appearing in Equation  are called Dirac delta functions. They are equal to  if  =  and  otherwise.

This page titled 1.15: Reduction of representations II is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Claire Vallance via
source content that was edited to the style and standards of the LibreTexts platform.
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