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1.20: Calculating Orbital Energies and Expansion Coefficients
Calculation of the orbital energies and expansion coefficients is based on the variation principle, which states that any approximate
wavefunction must have a higher energy than the true wavefunction. This follows directly from the fairly common-sense idea that
in general any system tries to minimize its energy. If an ‘approximate’ wavefunction had a lower energy than the ‘true’
wavefunction, we would expect the system to try and adopt this ‘approximate’ lower energy state, rather than the ‘true’ state. That
all approximations to the true wavefunction must have a higher energy than the true wavefunction is the only scenario that makes
physical sense. A mathematical proof of the variation principle is given in the Appendix.

We apply the variation principle as follows:

Molecular energy levels, or orbital energies, are eigenvalues of the molecular Hamiltonian . Using a standard result from
quantum mechanics, it follows that the energy  of a molecular orbital  is

If the true wavefunction has the lowest energy, then to find the closest approximation we can to the true wavefunction, all we have
to do is find the coefficients in our expansion of SALCs that minimize the energy in the above expressions. In practice, we
substitute our wavefunction and minimize the resulting expression with respect to the coefficients. To show how this is done, we’ll
use our  wavefunction of  symmetry from the previous section. Substituting into Equation  gives:

If we now define a Hamiltonian matrix element  =  and an overlap integral  =  and note that  =  and 
 = , this simplifies to

To get this into a simpler form for carrying out the energy minimization, we multiply both sides through by the denominator to give

Now we need to minimize the energy with respect to  and , i.e., we require

and

If we differentiate the above equation through separately by  and  and apply this condition, we will end up with two equations
in the two unknowns  and , which we can solve to determine the coefficients and the energy.

Differentiating Equation  with respect to  (via the product rule of differentiation) gives

Differentiating Equation  with respect to  gives
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Because

the first term on the left hand side of both equations is zero, leaving us with

These are normally rewritten slightly, in the form

Equations  are known as the secular equations and are the set of equations we need to solve to determine , , and . In
the general case (derived in the Appendix), when our wavefunction is a linear combination of  SALCs (i.e. ) we
get  equations in  unknowns, with the  equation given by

Note that we can use any basis functions we like together with the linear variation method described here to construct approximate
molecular orbitals and determine their energies, but choosing to use SALCs simplifies things considerably when the number of
basis functions is large. An arbitrary set of  basis functions leads to a set of  equations in  unknowns, which must be solved
simultaneously. Converting the basis into a set of SALCs separates the equations into several smaller sets of secular equations, one
for each irreducible representation, which can be solved independently. It is usually easier to solve several sets of secular equations
of lower dimensionality than one set of higher dimensionality.
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