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1

CHAPTER OVERVIEW

1: Introduction
Thermodynamics is a quantitative subject. It allows us to derive relations between the values of numerous physical quantities.
Some physical quantities, such as a mole fraction, are dimensionless; the value of one of these quantities is a pure number. Most
quantities, however, are not dimensionless and their values must include one or more units. This chapter reviews the SI system of
units, which are the preferred units in science applications. The chapter then discusses some useful mathematical manipulations of
physical quantities using quantity calculus, and certain general aspects of dimensional analysis.

1.1: Units
1.2: Quantity Calculus
1.3: Dimensional Analysis
1.4: Chapter 1 Problem
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1.1: Units
There is international agreement that the units used for physical quantities in science and technology should be those of the
International System of Units, or SI (standing for the French Système International d’Unités). The Physical Chemistry Division
of the International Union of Pure and Applied Chemistry, or IUPAC, produces a manual of recommended symbols and
terminology for physical quantities and units based on the SI. The manual has become known as the Green Book (from the color of
its cover) and is referred to here as the IUPAC Green Book. This e-book will, with a few exceptions, use symbols recommended in
the third edition (2007) of the IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in Physical Chemistry,
3rd edition. RSC Publishing, Cambridge, 2007). These symbols are listed for convenient reference in Appendices C and D.

Any of the symbols for units listed in Tables 1.1–1.3, except kg and , may be preceded by one of the prefix symbols of Table 1.4
to construct a decimal fraction or multiple of the unit. (The symbol g may be preceded by a prefix symbol to construct a fraction or
multiple of the gram.) The combination of prefix symbol and unit symbol is taken as a new symbol that can be raised to a power
without using parentheses, as in the following examples:

The physical quantity formally called amount of substance is a counting quantity for particles, such as atoms or molecules, or
for other chemical entities. The counting unit is invariably the mole, defined as the amount of substance containing as many
particles as the number of atoms in exactly  grams of pure carbon-12 nuclide, C. See Appendix A for the wording of the
official IUPAC definition. This definition is such that one mole of H O molecules, for example, has a mass of  grams
(where  is the relative molecular mass of H O) and contains  molecules (where 
is the Avogadro constant to six significant digits). The same statement can be made for any other substance if  is
replaced by the appropriate atomic mass or molecular mass value.

The symbol for amount of substance is . It is admittedly awkward to refer to (H O) as “the amount of substance of water.”
This e-book simply shortens “amount of substance” to amount. An alternative name suggested for  is “chemical amount.”
Thus, “the amount of water in the system” refers not to the mass or volume of water, but to the number of H O molecules in the
system expressed in a counting unit such as the mole.

This page titled 1.1: Units is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source content
that was edited to the style and standards of the LibreTexts platform.
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1.2: Quantity Calculus
This section gives examples of how we may manipulate physical quantities by the rules of algebra. The method is called quantity
calculus, although a better term might be “quantity algebra.”

Quantity calculus is based on the concept that a physical quantity, unless it is dimensionless, has a value equal to the product of a
numerical value (a pure number) and one or more units:

(If the quantity is dimensionless, it is equal to a pure number without units.) The physical property may be denoted by a symbol,
but the symbol does not imply a particular choice of units. For instance, this e-book uses the symbol  for density, but  can be
expressed in any units having the dimensions of mass divided by volume.

A simple example illustrates the use of quantity calculus. We may express the density of water at  to four significant digits in
SI base units by the equation

and in different density units by the equation

We may divide both sides of the last equation by  to obtain a new equation

Now the pure number  appearing in this equation is the number of grams in one cubic centimeter of water, so we may call
the ratio g cm  “the number of grams per cubic centimeter.” By the same reasoning, kg m  is the number of kilograms per
cubic meter. In general, a physical quantity divided by particular units for the physical quantity is a pure number representing the
number of those units.

Just as it would be incorrect to call  “the number of grams per cubic centimeter,” because that would refer to a
particular choice of units for , the common practice of calling  “the number of moles” is also strictly speaking
not correct. It is actually the ratio  that is the number of moles.

In a table, the ratio g cm  makes a convenient heading for a column of density values because the column can then show pure
numbers. Likewise, it is convenient to use g cm  as the label of a graph axis and to show pure numbers at the grid marks of the
axis. You will see many examples of this usage in the tables and figures in this e-book.

A major advantage of using SI base units and SI derived units is that they are coherent. That is, values of a physical quantity
expressed in different combinations of these units have the same numerical value.

For example, suppose we wish to evaluate the pressure of a gas according to the ideal gas equation

This is the first equation that, like many others to follow, shows conditions of validity in parentheses immediately below the
equation number at the right. Thus, Eq. 1.2.5 is valid for an ideal gas. In this equation, , , , and  are the symbols for the
physical quantities pressure, amount (amount of substance), thermodynamic temperature, and volume, respectively, and  is the
gas constant.

The calculation of  for  moles of an ideal gas at a temperature of  kelvins, in a volume of  cubic meters, is

The mole and kelvin units cancel, and we are left with units of J m , a combination of an SI derived unit (the joule) and an SI
base unit (the meter). The units J m  must have dimensions of pressure, but are not commonly used to express pressure.

To convert J m  to the SI derived unit of pressure, the pascal (Pa), we can use the following relations from Table 1.2:

physical quantity = numerical value × units (1.2.1)

ρ ρ

25 C∘

ρ = 9.970 × kg m102 −3 (1.2.2)

ρ = 0.9970 g cm−3 (1.2.3)

1 g cm−3

ρ/g cm = 0.9970−3 (1.2.4)

0.9970

ρ/ −3 ρ/ −3

ρ

ρ n

n/mol

ρ/ −3

ρ/ −3

p =
nRT

V
(1.2.5)

(ideal gas)

p n T V

R

p 5.000 298.15 4.000

p = = 3.099 × J m
(5.000 mol)(8.3145 J K mol )(298.15 K)−1 −1

4.000 m3
103 −3 (1.2.6)

−3

−3

−3
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When we divide both sides of the first relation by  and divide both sides of the second relation by , we obtain the two
new relations

The ratios in parentheses are conversion factors. When a physical quantity is multiplied by a conversion factor that, like these, is
equal to the pure number , the physical quantity changes its units but not its value. When we multiply Eq. 1.2.6 by both of these
conversion factors, all units cancel except Pa:

This example illustrates the fact that to calculate a physical quantity, we can simply enter into a calculator numerical values
expressed in SI units, and the result is the numerical value of the calculated quantity expressed in SI units. In other words, as long
as we use only SI base units and SI derived units (without prefixes), all conversion factors are unity.

Of course we do not have to limit the calculation to SI units. Suppose we wish to express the calculated pressure in torrs, a non-SI
unit. In this case, using a conversion factor obtained from the definition of the torr in Table 1.3, the calculation becomes

This page titled 1.2: Quantity Calculus is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

1 J = 1 N m 1 Pa = 1 N m−2 (1.2.7)

1 J 1 N m−2

1 = (1 N m/J) (1 Pa/N m ) = 1−2 (1.2.8)

1

p = (3.099 × J m ) ×(1 N m/J) ×(1 Pa/N m ) 103 −3 −2 = 3.099 × Pa103 (1.2.9)

p = (3.099 × Pa) ×(760 Torr/101, 325 Pa) 103 = 23.24 Torr (1.2.10)
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1.3: Dimensional Analysis
Sometimes you can catch an error in the form of an equation or expression, or in the dimensions of a quantity used for a
calculation, by checking for dimensional consistency. Here are some rules that must be satisfied:

In this e-book the differential of a function, such as , refers to an infinitesimal quantity. If one side of an equation is an
infinitesimal quantity, the other side must also be. Thus, the equation  (where  and  have the same
dimensions as ) makes mathematical sense, but  does not.

Derivatives, partial derivatives, and integrals have dimensions that we must take into account when determining the overall
dimensions of an expression that includes them. For instance:

Some examples of applying these principles are given here using symbols described in Sec. 1.2.

Example 1. Since the gas constant  may be expressed in units of J K  mol , it has dimensions of energy divided by
thermodynamic temperature and amount. Thus,  has dimensions of energy divided by amount, and  has dimensions
of energy. The products  and  appear frequently in thermodynamic expressions.

Example 3. Find the dimensions of the constants  and  in the van der Waals equation

Dimensional analysis tells us that, because  is subtracted from ,  has dimensions of volume and therefore  has
dimensions of volume/amount. Furthermore, since the right side of the equation is a difference of two terms, these terms
have the same dimensions as the left side, which is pressure. Therefore, the second term  has dimensions of
pressure, and  has dimensions of pressure  volume   amount .

Example 4. Consider an equation of the form

What are the SI units of ?  is dimensionless, so the left side of the equation has the dimensions of , and its SI units
are K . The SI units of the right side are therefore also K . Since  has the units J K  mol , the SI units of  are J K

 mol .

This page titled 1.3: Dimensional Analysis is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
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1.4: Chapter 1 Problem
1.1 
Consider the following equations for the pressure of a real gas. For each equation, find the dimensions of the constants  and  and
express these dimensions in SI units.

(a) The Dieterici equation:

(b) The Redlich–Kwong equation:

This page titled 1.4: Chapter 1 Problem is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

2: Systems and Their Properties
This chapter begins by explaining some basic terminology of thermodynamics. It discusses macroscopic properties of matter in
general and properties distinguishing different physical states of matter in particular. Virial equations of state of a pure gas are
introduced. The chapter goes on to discuss some basic macroscopic properties and their measurement. Finally, several important
concepts needed in later chapters are described: thermodynamic states and state functions, independent and dependent variables,
processes, and internal energy.

2.1: The System, Surroundings, and Boundary
2.2: Phases and Physical States of Matter
2.3: Some Basic Properties and Their Measurement
2.4: The State of the System
2.5: Processes and Paths
2.6: The Energy of the System
2.7: Chapter 2 Problems
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2.1: The System, Surroundings, and Boundary
Chemists are interested in systems containing matter—that which has mass and occupies physical space. Classical thermodynamics
looks at macroscopic aspects of matter. It deals with the properties of aggregates of vast numbers of microscopic particles
(molecules, atoms, and ions). The macroscopic viewpoint, in fact, treats matter as a continuous material medium rather than as the
collection of discrete microscopic particles we know are actually present. Although this e-book is an exposition of classical
thermodynamics, at times it will point out connections between macroscopic properties and molecular structure and behavior.

A thermodynamic system is any three-dimensional region of physical space on which we wish to focus our attention. Usually we
consider only one system at a time and call it simply “the system.” The rest of the physical universe constitutes the surroundings
of the system.

The boundary is the closed three-dimensional surface that encloses the system and separates it from the surroundings. The
boundary may (and usually does) coincide with real physical surfaces: the interface between two phases, the inner or outer surface
of the wall of a flask or other vessel, and so on. Alternatively, part or all of the boundary may be an imagined intangible surface in
space, unrelated to any physical structure. The size and shape of the system, as defined by its boundary, may change in time. In
short, our choice of the three-dimensional region that constitutes the system is arbitrary—but it is essential that we know exactly
what this choice is.

We usually think of the system as a part of the physical universe that we are able to influence only indirectly through its interaction
with the surroundings, and the surroundings as the part of the universe that we are able to directly manipulate with various physical
devices under our control. That is, we (the experimenters) are part of the surroundings, not the system.

For some purposes we may wish to treat the system as being divided into subsystems, or to treat the combination of two or more
systems as a supersystem.

If over the course of time matter is transferred in either direction across the boundary, the system is open; otherwise it is closed. If
the system is open, matter may pass through a stationary boundary, or the boundary may move through matter that is fixed in space.

If the boundary allows heat transfer between the system and surroundings, the boundary is diathermal. An adiabatic (Greek:
impassable) boundary, on the other hand, is a boundary that does not allow heat transfer. We can, in principle, ensure that the
boundary is adiabatic by surrounding the system with an adiabatic wall—one with perfect thermal insulation and a perfect radiation
shield.

An isolated system is one that exchanges no matter, heat, or work with the surroundings, so that the mass and total energy of the
system remain constant over time. (The energy in this definition of an isolated system is measured in a local reference frame, as
will be explained in Sec. 2.6.2.) A closed system with an adiabatic boundary, constrained to do no work and to have no work done
on it, is an isolated system.

The constraints required to prevent work usually involve forces between the system and surroundings. In that sense
a system may interact with the surroundings even though it is isolated. For instance, a gas contained within rigid,
thermally-insulated walls is an isolated system; the gas exerts a force on each wall, and the wall exerts an equal and
opposite force on the gas. An isolated system may also experience a constant external field, such as a gravitational
field.

The term body usually implies a system, or part of a system, whose mass and chemical composition are constant over time.

2.1.1 Extensive and intensive properties 

A quantitative property of a system describes some macroscopic feature that, although it may vary with time, has a particular value
at any given instant of time.

Table 2.1 lists the symbols of some of the properties discussed in this chapter and the SI units in which they may be expressed. A
much more complete table is found in Appendix C.

Most of the properties studied by thermodynamics may be classified as either extensive or intensive. We can distinguish these two
types of properties by the following considerations.

If we imagine the system to be divided by an imaginary surface into two parts, any property of the system that is the sum of the
property for the two parts is an extensive property. That is, an additive property is extensive. Examples are mass, volume, amount,
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energy, and the surface area of a solid.

Sometimes a more restricted definition of an extensive property is used: The property must be not only additive, but
also proportional to the mass or the amount when intensive properties remain constant. According to this definition,
mass, volume, amount, and energy are extensive, but surface area is not.

If we imagine a homogeneous region of space to be divided into two or more parts of arbitrary size, any property that has the same
value in each part and the whole is an intensive property; for example density, concentration, pressure (in a fluid), and
temperature. The value of an intensive property is the same everywhere in a homogeneous region, but may vary from point to point
in a heterogeneous region—it is a local property.

Since classical thermodynamics treats matter as a continuous medium, whereas matter actually contains discrete microscopic
particles, the value of an intensive property at a point is a statistical average of the behavior of many particles. For instance, the
density of a gas at one point in space is the average mass of a small volume element at that point, large enough to contain many
molecules, divided by the volume of that element.

Some properties are defined as the ratio of two extensive quantities. If both extensive quantities refer to a homogeneous region of
the system or to a small volume element, the ratio is an intensive property. For example concentration, defined as the ratio 

, is intensive. A mathematical derivative of one such extensive quantity with respect to another is also intensive.

A special case is an extensive quantity divided by the mass, giving an intensive specific quantity; for example

If the symbol for the extensive quantity is a capital letter, it is customary to use the corresponding lower-case letter as the symbol
for the specific quantity. Thus the symbol for specific volume is .

Another special case encountered frequently in this e-book is an extensive property for a pure, homogeneous substance divided by
the amount . The resulting intensive property is called, in general, a molar quantity or molar property. To symbolize a molar
quantity, this e-book follows the recommendation of the IUPAC: The symbol of the extensive quantity is followed by subscript m,
and optionally the identity of the substance is indicated either by a subscript or a formula in parentheses. Examples are

In the past, especially in the United States, molar quantities were commonly denoted with an overbar (e.g., ).
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2.2: Phases and Physical States of Matter
A phase is a region of the system in which each intensive property (such as temperature and pressure) has at each instant either the
same value throughout (a uniform or homogeneous phase), or else a value that varies continuously from one point to another.
Whenever this e-book mentions a phase, it is a uniform phase unless otherwise stated. Two different phases meet at an interface
surface, where intensive properties have a discontinuity or change over a small distance.

Some intensive properties (e.g., refractive index and polarizability) can have directional characteristics. A uniform phase may be
either isotropic, exhibiting the same values of these properties in all directions, or anisotropic, as in the case of some solids and
liquid crystals. A vacuum is a uniform phase of zero density.

Suppose we have to deal with a nonuniform region in which intensive properties vary continuously in space along one or more
directions—for example, a tall column of gas in a gravitational field whose density decreases with increasing altitude. There are
two ways we may treat such a nonuniform, continuous region: either as a single nonuniform phase, or else as an infinite number of
uniform phases, each of infinitesimal size in one or more dimensions.

2.2.1 Physical states of matter 
We are used to labeling phases by physical state, or state of aggregation. It is common to say that a phase is a solid if it is relatively
rigid, a liquid if it is easily deformed and relatively incompressible, and a gas if it is easily deformed and easily compressed. Since
these descriptions of responses to external forces differ only in degree, they are inadequate to classify intermediate cases.

The way in which  varies with  at different temperatures is shown for the case of carbon dioxide in Fig. 2.3(a).

A temperature at which the initial slope is zero is called the Boyle temperature, which for CO  is . Both  and  must be
zero at the Boyle temperature. At lower temperatures  and  are negative, and at higher temperatures they are positive—see Fig.
2.3(b). This kind of temperature dependence is typical for other gases. Experimentally, and also according to statistical mechanical
theory,  and  for a gas can be zero only at a single Boyle temperature.

The fact that at any temperature other than the Boyle temperature  is nonzero is significant since it means that in
the limit as  approaches zero at constant  and the gas approaches ideal-gas behavior, the difference between the
actual molar volume  and the ideal-gas molar volume  does not approach zero. Instead, 
approaches the nonzero value  (see Eq. 2.2.8). However, the ratio of the actual and ideal molar volumes, 

, approaches unity in this limit.

Virial equations of gas mixtures will be discussed in Sec. 9.3.4.

2.2.6 Solids 
A solid phase responds to a small applied stress by undergoing a small elastic deformation. When the stress is removed, the solid
returns to its initial shape and the properties return to those of the unstressed solid. Under these conditions of small stress, the solid
has an equation of state just as a fluid does, in which  is the pressure of a fluid surrounding the solid (the hydrostatic pressure) as
explained in Sec. 2.3.4. The stress is an additional independent variable. For example, the length of a metal spring that is elastically
deformed is a unique function of the temperature, the pressure of the surrounding air, and the stretching force.

If, however, the stress applied to the solid exceeds its elastic limit, the response is plastic deformation. This deformation persists
when the stress is removed, and the unstressed solid no longer has its original properties. Plastic deformation is a kind of hysteresis,
and is caused by such microscopic behavior as the slipping of crystal planes past one another in a crystal subjected to shear stress,
and conformational rearrangements about single bonds in a stretched macromolecular fiber. Properties of a solid under plastic
deformation depend on its past history and are not unique functions of a set of independent variables; an equation of state does not
exist.
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2.3: Some Basic Properties and Their Measurement
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2.4: The State of the System
The thermodynamic state of the system is an important and subtle concept. At each instant of time, the system is in some definite
state that we may describe with values of the macroscopic properties we consider to be relevant for our purposes. The values of
these properties at any given instant define the state at that instant. Whenever the value of any of these properties changes, the state
has changed. If we subsequently find that each of the relevant properties has the value it had at a certain previous instant, then the
system has returned to its previous state.

Do not confuse the state of the system with the kind of physical state or state of aggregation of a phase discussed in
Sec. 2.2.1. A change of state refers to a change in the state of the system, not necessarily to a phase transition.

2.4.1 State functions and independent variables 

The properties whose values at each instant depend only on the state of the system at that instant, and not on the past or future
history of the system, are called state functions (or state variables or state parameters). There may be other system properties that
we consider to be irrelevant to the state, such as the shape of the system, and these are not state functions.

Various conditions determine what states of a system are physically possible. If a uniform phase has an equation of state, property
values must be consistent with this equation. The system may have certain built-in or externally-imposed conditions or constraints
that keep some properties from changing with time. For instance, a closed system has constant mass; a system with a rigid
boundary has constant volume. We may know about other conditions that affect the properties during the time the system is under
observation.

We can define the state of the system with the values of a certain minimum number of state functions which we treat as the
independent variables. Once we have selected a set of independent variables, consistent with the physical nature of the system
and any conditions or constraints, we can treat all other state functions as dependent variables whose values depend on the
independent variables.

Whenever we adjust the independent variables to particular values, every other state function is a dependent variable that can have
only one definite, reproducible value. For example, in a single-phase system of a pure substance with , , and  as the
independent variables, the volume is determined by an equation of state in terms of , , and ; the mass is equal to ; the
molar volume is given by ; and the density is given by .

2.4.2 An example: state functions of a mixture 
The heat-conducting metal rod shown in Fig. 2.8 is a system in such a steady state. Each end of the rod is in thermal contact with a
heat reservoir (or thermal reservoir), which is a body or external system whose temperature remains constant and uniform when
there is heat transfer to or from it.

A heat reservoir can be a body that is so large that its temperature changes only imperceptibly during heat transfer; a thermostat
bath whose temperature can be controlled; or an external system of coexisting phases of a pure substance (e.g., ice and water) at
constant pressure.

The two heat reservoirs in the figure have different temperatures, causing a temperature gradient to form along the length of the rod
and energy to be transferred by heat from the warmer reservoir to the rod and from the rod to the cooler reservoir. Although the
properties of the steady state of the rod remain constant, the rod is clearly not in an equilibrium state because the temperature
gradient will quickly disappear when we isolate the rod by removing it from contact with the heat reservoirs.
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2.5: Processes and Paths
A process is a change in the state of the system over time, starting with a definite initial state and ending with a definite final state.
The process is defined by a path, which is the continuous sequence of consecutive states through which the system passes,
including the initial state, the intermediate states, and the final state. The process has a direction along the path. The path could be
described by a curve in an -dimensional space in which each coordinate axis represents one of the  independent variables.

This e-book takes the view that a thermodynamic process is defined by what happens within the system, in the three-dimensional
region up to and including the boundary, and by the forces exerted on the system by the surroundings and any external field.
Conditions and changes in the surroundings are not part of the process except insofar as they affect these forces. For example,
consider a process in which the system temperature decreases from  to . We could accomplish this temperature change
by placing the system in thermal contact with either a refrigerated thermostat bath or a mixture of ice and water. The process is the
same in both cases, but the surroundings are different.

Expansion is a process in which the system volume increases; in compression, the volume decreases.

Figure 2.9 Paths of three processes of a closed ideal-gas system with 
and  as the independent variables. (a) Isothermal expansion. (b)
Isobaric expansion. (c) Isochoric pressure reduction.

Paths for these processes of an ideal gas are shown in Fig. 2.9. An isothermal process is one in which the temperature of the
system remains uniform and constant. An isobaric or isopiestic process refers to uniform constant pressure, and an isochoric
process refers to constant volume.

An adiabatic process is one in which there is no heat transfer across any portion of the boundary. We may ensure that a process is
adiabatic either by using an adiabatic boundary or, if the boundary is diathermal, by continuously adjusting the external
temperature to eliminate a temperature gradient at the boundary.

Recall that a state function is a property whose value at each instant depends only on the state of the system at that instant. The
finite change of a state function  in a process is written . The notation  always has the meaning , where  is
the value in the initial state and  is the value in the final state. Therefore, the value of  depends only on the values of  and

. The change of a state function during a process depends only on the initial and final states of the system, not on the path of the
process.

An infinitesimal change of the state function  is written . The mathematical operation of summing an infinite number of
infinitesimal changes is integration, and the sum is an integral (see the brief calculus review in Appendix E). The sum of the
infinitesimal changes of  along a path is a definite integral equal to :

If  obeys this relation—that is, if its integral for given limits has the same value regardless of the path—it is called an exact
differential. The differential of a state function is always an exact differential.

A cyclic process is a process in which the state of the system changes and then returns to the initial state. In this case the integral of
 is written with a cyclic integral sign: . Since a state function  has the same initial and final values in a cyclic process, 
 is equal to  and the cyclic integral of  is zero:
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Heat ( ) and work ( ) are examples of quantities that are not state functions. They are not even properties of the system; instead
they are quantities of energy transferred across the boundary over a period of time. It would therefore be incorrect to write “ ” or
“ .” Instead, the values of  and  depend in general on the path and are called path functions.

This e-book uses the symbol  (the letter “d” with a bar through the stem) for an infinitesimal quantity of a path function. Thus, 
and  are infinitesimal quantities of heat and work. The sum of many infinitesimal quantities of a path function is not the
difference of two values of the path function; instead, the sum is the net quantity:

The infinitesimal quantities  and , because the values of their integrals depend on the path, are inexact differentials.

Chemical thermodynamicists often write these quantities as  and . Mathematicians, however, frown on using
the same notation for inexact and exact differentials. Other notations sometimes used to indicate that heat and work
are path functions are  and , and also  and .

There is a fundamental difference between a state function (such as temperature or volume) and a path function (such as heat or
work): The value of a state function refers to one instant of time; the value of a path function refers to an interval of time.

The difference between a state function and a path function in thermodynamics is analogous to the difference
between elevation and trail length in hiking up a mountain. Suppose a trailhead at the base of the mountain has
several trails to the summit. The hiker at each instant is at a definite elevation above sea level. During a climb from
the trailhead to the summit, the hiker’s change of elevation is independent of the trail used, but the trail length from
base to summit depends on the trail.

This page titled 2.5: Processes and Paths is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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2.6: The Energy of the System
A large part of classical thermodynamics is concerned with the energy of the system. The total energy of a system is an extensive
property whose value at any one instant cannot be measured in any practical way, but whose change is the focus of the first law of
thermodynamics (Chap. 3).

2.6.1 Energy and reference frames 
Classical thermodynamics ignores microscopic properties such as the behavior of individual atoms and molecules. Nevertheless, a
consideration of the classical mechanics of particles will help us to understand the sources of the potential and kinetic energy of a
thermodynamic system.

In classical mechanics, the energy of a collection of interacting point particles is the sum of the kinetic energy  of each
particle (where  is the particle’s mass and  is its velocity), and of various kinds of potential energies. The potential energies are
defined in such a way that if the particles are isolated from the rest of the universe, as the particles move and interact with one
another the total energy (kinetic plus potential) is constant over time. This principle of the conservation of energy also holds for
real atoms and molecules whose electronic, vibrational, and rotational energies, absent in point particles, are additional
contributions to the total energy.

The positions and velocities of particles must be measured in a specified system of coordinates called a reference frame. This e-
book will use reference frames with Cartesian axes. Since the kinetic energy of a particle is a function of velocity, the kinetic
energy depends on the choice of the reference frame. A particularly important kind is an inertial frame, one in which Newton’s
laws of motion are obeyed (see Sec. G.1 in Appendix G).

A reference frame whose axes are fixed relative to the earth’s surface is what this e-book will call a lab frame. A lab frame for all
practical purposes is inertial (Sec. G.10). It is in this kind of stationary frame that the laws of thermodynamics have been found by
experiment to be valid.

The energy  of a thermodynamic system is the sum of the energies of the particles contained in it and the potential energies of
interaction between these particles. Just as for an individual particle, the energy of the system depends on the reference frame in
which it is measured. The energy of the system may change during a process, but the principle of the conservation of energy
ensures that the sum of the energy of the system, the energy of the surroundings, and any energy shared by both, all measured in the
same reference frame, remains constant over time.

This e-book uses the symbol  for the energy of the system measured in a specified inertial frame. The system could be located
in a weightless environment in outer space, and the inertial frame could be one that is either fixed or moving at constant velocity
relative to local stars. Usually, however, the system is located in the earth’s gravitational field, and the appropriate inertial frame is
then an earth-fixed lab frame.

If during a process the system as a whole undergoes motion or rotation relative to the inertial frame, then  depends in part on
coordinates that are not properties of the system. In such situations  is not a state function, and we need the concept of internal
energy.

2.6.2 Internal energy 

The internal energy, , is the energy of the system measured in a reference frame that allows  to be a state function—that is, at
each instant the value of  depends only on the state of the system. This e-book will call a reference frame with this property a
local frame. A local frame may also be, but is not necessarily, an earth-fixed lab frame.

Here is a simple illustration of the distinction between the energy  of a system measured in a lab frame and the internal energy 
 measured in a local frame. Let the system be a fixed amount of water contained in a glass beaker. (The glass material of the

beaker is part of the surroundings.) We can define the state of this system by two independent variables: the temperature, , and
pressure, , of the water. The most convenient local frame in which to measure  in this case is a frame fixed with respect to the
beaker.

Section 3.1.1 will show that the relation between changes of the system energy and the internal energy in this example is 
, where  and  are the kinetic and potential energies of the system as a whole measured in

the lab frame.
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Our choice of the local frame used to define the internal energy  of any particular system during a given process is to some
extent arbitrary. Three possible choices are as follows.

Is it possible to determine a numerical value for the internal energy of a system? The total energy of a body of mass  when
it is at rest is given by the Einstein relation , where  is the speed of light in vacuum. In principle, then, we could
calculate the internal energy  of a system at rest from its mass, and we could determine  for a process from the change
in mass. In practice, however, an absolute value of  calculated from a measured mass has too much uncertainty to be of
any practical use. For example, the typical uncertainty of the mass of an object measured with a microbalance, about 
(Table 2.2), would introduce the enormous uncertainty in energy of about  joules. Only values of the change  are
useful, and these values cannot be calculated from  because the change in mass during an ordinary chemical process is
much too small to be detected.

This page titled 2.6: The Energy of the System is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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2.7: Chapter 2 Problems
2.1 
Let  represent the quantity  with dimensions . Give a reason that  is or is not an extensive property. Give a reason
that  is or is not an intensive property.

2.2 
Calculate the relative uncertainty (the uncertainty divided by the value) for each of the measurement methods listed in Table 2.2,
using the typical values shown. For each of the five physical quantities listed, which measurement method has the smallest relative
uncertainty?

Table 2.5 Helium at a fixed temperature

2.3 
Table 2.5 lists data obtained from a constant-volume gas thermometer containing samples of varying amounts of helium maintained
at a certain fixed temperature  in the gas bulb (K. H. Berry, Metrologia, 15, 89–115, 1979). The molar volume  of each
sample was evaluated from its pressure in the bulb at a reference temperature of , corrected for gas nonideality with
the known value of the second virial coefficient at that temperature.

Use these data and Eq. 2.2.2 to evaluate  and the second virial coefficient of helium at temperature . (You can assume the third
and higher virial coefficients are negligible.)

2.4 
Discuss the proposition that, to a certain degree of approximation, a living organism is a steady-state system.

2.5 
The value of  for the formation of one mole of crystalline potassium iodide from its elements at  and  is .
Calculate  for this process. Comment on the feasibility of measuring this mass change.

This page titled 2.7: Chapter 2 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

3: The First Law
In science, a law is a statement or mathematical relation that concisely describes reproducible experimental observations. Classical
thermodynamics is built on a foundation of three laws, none of which can be derived from principles that are any more
fundamental. This chapter discusses theoretical aspects of the first law; gives examples of reversible and irreversible processes and
the heat and work that occur in them; and introduces the extensive state function heat capacity.

3.1: Heat, Work, and the First Law
3.2: Spontaneous, Reversible, and Irreversible Processes
3.3: Heat Transfer
3.4: Deformation Work
3.5: Applications of Expansion Work
3.6: Work in a Gravitational Field
3.7: Shaft Work
3.8: Electrical Work
3.9: Irreversible Work and Internal Friction
3.10: Reversible and Irreversible Processes- Generalities
3.11: Chapter 3 Problems
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3.1: Heat, Work, and the First Law
The box below gives two forms of the first law of thermodynamics.

The equation  is the differential form of the first law, and  is the integrated form.

The heat and work appearing in the first law are two different modes of energy transfer. They can be defined in a general way as
follows.

An infinitesimal quantity of energy transferred as heat at a surface element of the boundary is written , and a finite quantity is
written  (Sec. 2.5). To obtain the total finite heat for a process from  (Eq. 2.5.3), we must integrate over the total
boundary surface and the entire path of the process.

An infinitesimal quantity of work is , and a finite quantity is . To obtain  for a process, we integrate all kinds of
work over the entire path of the process.

The first-law equation  sets up a balance sheet for the energy of the system, measured in the local frame, by
equating its change during a process to the net quantity of energy transferred by means of heat and work. Note that the equation
applies only to a closed system. If the system is open, energy can also be brought across the boundary by the transport of matter.

An important part of the first law is the idea that heat and work are quantitative energy transfers. That is, when a certain
quantity of energy enters the system in the form of heat, the same quantity leaves the surroundings. When the surroundings
perform work on the system, the increase in the energy of the system is equal in magnitude to the decrease in the energy of the
surroundings. The principle of conservation of energy is obeyed: the total energy (the sum of the energies of the system and
surroundings) remains constant over time.

Strictly speaking, it is the sum of the energies of the system, the surroundings, and any potential energy shared
by both that is constant. The shared potential energy is usually negligible or essentially constant (Sec. G.5).

Heat transfer may occur by conduction, convection, or radiation. (Some thermodynamicists treat radiation as a separate
contribution to , in addition to  and .) We can reduce conduction with good thermal insulation at the boundary, we can
eliminate conduction and convection with a vacuum gap, and we can minimize radiation with highly reflective surfaces at both
sides of the vacuum gap. The only way to completely prevent heat during a process is to arrange conditions in the surroundings
so there is no temperature gradient at any part of the boundary. Under these conditions the process is adiabatic, and any energy
transfer in a closed system is then solely by means of work.

3.1.1 The concept of thermodynamic work
Appendix G gives a detailed analysis of energy and work based on the behavior of a collection of interacting particles moving
according to the principles of classical mechanics. The analysis shows how we should evaluate mechanical thermodynamic
work. Suppose the displacement responsible for the work comes from linear motion of a portion of the boundary in the  or 

 direction of the local frame. The differential and integrated forms of the work are then given by

(These equations are Eq. G.6.11 with a change of notation.) Here  is the component in the  direction of the force exerted
by the surroundings on the system at the moving portion of the boundary, and  is the infinitesimal displacement of the
boundary in the local frame. If the displacement is in the same direction as the force,  is positive; if the displacement is in the
opposite direction,  is negative.

The kind of force represented by  is a short-range contact force. Appendix G shows that the force exerted by a conservative
time-independent external field, such as a gravitational force, should not be included as part of . This is because the work
done by this kind of force causes changes of potential and kinetic energies that are equal and opposite in sign, with no net effect
on the internal energy (see Sec. 3.6).
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Newton’s third law of action and reaction says that a force exerted by the surroundings on the system is opposed by a force of
equal magnitude exerted in the opposite direction by the system on the surroundings. Thus the expressions in Eq. 3.1.1 can be
replaced by

where  is the component in the  direction of the contact force exerted by the system on the surroundings at the moving
portion of the boundary.

An alternative to using the expressions in Eqs. 3.1.1 or 3.1.2 for evaluating  is to imagine that the only effect
of the work on the system’s surroundings is a change in the elevation of a weight in the surroundings. The
weight must be one that is linked mechanically to the source of the force . Then, provided the local frame is
a stationary lab frame, the work is equal in magnitude and opposite in sign to the change in the weight’s
potential energy:  where  is the weight’s mass,  is the acceleration of free fall, and  is the
weight’s elevation in the lab frame. This interpretation of work can be helpful for seeing whether work occurs
and for deciding on its sign, but of course cannot be used to determine its value if the actual surroundings
include no such weight.

The procedure of evaluating  from the change of an external weight’s potential energy requires that this
change be the only mechanical effect of the process on the surroundings, a condition that in practice is met only
approximately. For example, Joule’s paddle-wheel experiment using two weights linked to the system by strings
and pulleys, described latter in Sec. 3.7.2, required corrections for (1) the kinetic energy gained by the weights
as they sank, (2) friction in the pulley bearings, and (3) elasticity of the strings (see Prob. 3.10).

In the first-law relation , the quantities , , and  are all measured in an arbitrary local frame. We can write an
analogous relation for measurements in a stationary lab frame:

Suppose the chosen local frame is not a lab frame, and we find it more convenient to measure the heat  and the work  in
a lab frame than to measure  and  in the local frame. What corrections are needed to find  and  in this case?

If the Cartesian axes of the local frame do not rotate relative to the lab frame, then the heat is the same in both frames: 
(Sec. G.7).

The expressions for  and  are the same as those for  and  in Eqs. 3.1.1 and 3.1.2, with  interpreted as the
displacement in the lab frame. There is an especially simple relation between  and  when the local frame is a center-of-
mass frame—one whose origin moves with the system’s center of mass and whose axes do not rotate relative to the lab frame
(Eq. G.8.12):

In this equation  is the mass of the system,  is the velocity of its center of mass in the lab frame,  is the acceleration of
free fall, and  is the height of the center of mass above an arbitrary zero of elevation in the lab frame. In typical
thermodynamic processes the quantities  and  change to only a negligible extent, if at all, so that usually to a good
approximation  is equal to .

When the local frame is a center-of-mass frame, we can combine the relations  and  with Eqs. 3.1.3 and
3.1.4 to obtain

where  and  are the kinetic and potential energies of the system as a whole in the lab frame.

A more general relation for  can be written for any local frame that has no rotational motion and whose origin has negligible
acceleration in the lab frame (Eq. G.7.3):

Here  is the elevation in the lab frame of the origin of the local frame.  is usually small or zero, so again  is
approximately equal to . The only kinds of processes for which we may need to use Eq. 3.1.4 or 3.1.6 to calculate a non-
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negligible difference between  and  are those in which massive parts of the system undergo substantial changes in
elevation in the lab frame.

Simple relations such as these between  and , and between  and , do not exist if the local frame has rotational motion
relative to a lab frame.

Hereafter in this e-book, thermodynamic work  will be called simply work. For all practical purposes you can assume the local
frames for most of the processes to be described are stationary lab frames. The discussion above shows that the values of heat
and work measured in these frames are usually the same, or practically the same, as if they were measured in a local frame
moving with the system’s center of mass. A notable exception is the local frame needed to treat the thermodynamic properties
of a liquid solution in a centrifuge cell. In this case the local frame is fixed in the spinning rotor of the centrifuge and has
rotational motion. This special case will be discussed in Sec. 9.8.2.

3.1.2 Work coefficients and work coordinates
If a process has only one kind of work, it can be expressed in the form

where  is a generalized force called a work coefficient and  is a generalized displacement called a work coordinate. The
work coefficient and work coordinate are conjugate variables. They are not necessarily actual forces and displacements. For
example, we shall see in Sec. 3.4.2 that reversible expansion work is given by ; in this case, the work coefficient
is  and the work coordinate is .

A process may have more than one kind of work, each with its own work coefficient and conjugate work coordinate. In this
case the work can be expressed as a sum over the different kinds labeled by the index :

3.1.3 Heat and work as path functions

Consider the apparatus shown in Fig. 3.1. The system consists of the water together with the immersed parts: stirring paddles
attached to a shaft (a paddle wheel) and an electrical resistor attached to wires. In equilibrium states of this system, the
temperature and pressure are uniform and the paddle wheel is stationary. The system is open to the atmosphere, so the pressure
is constrained to be constant. We may describe the equilibrium states of this system by a single independent variable, the
temperature . (The angular position of the shaft is irrelevant to the state and is not a state function for equilibrium states of this
system.)

Here are three experiments with different processes. Each process has the same initial state defined by , and each
has the same final state.

Although the paths in the three experiments are entirely different, the overall change of state is the same. In fact, a person
who observes only the initial and final states and has no knowledge of the intermediate states or the changes in the
surroundings will be ignorant of the path. Did the paddle wheel turn? Did an electric current pass through the resistor? How
much energy was transferred by work and how much by heat? The observer cannot tell from the change of state, because
heat and work are not state functions. The change of state depends on the sum of heat and work. This sum is the change in
the state function , as expressed by the integrated form of the first law, .

It follows from this discussion that neither heat nor work are quantities possessed by the system. A system at a given instant
does not have or contain a particular quantity of heat or a particular quantity of work. Instead, heat and work depend on the
path of a process occurring over a period of time. They are path functions.

3.1.4 Heat and heating
In everyday speech the noun heat is often used somewhat differently. Here are three statements with similar meanings that
could be misleading:

“Heat is transferred from a laboratory hot plate to a beaker of water.”
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“Heat flows from a warmer body to a cooler body.”

“To remove heat from a hot body, place it in cold water.”

Statements such as these may give the false impression that heat is like a substance that retains its identity as it moves from
one body to another. Actually heat, like work, does not exist as an entity once a process is completed. Nevertheless, the
wording of statements such as these is embedded in our everyday language, and no harm is done if we interpret them
correctly. This e-book, for conciseness, often refers to “heat transfer” and “heat flow,” instead of using the technically more
correct phrase “energy transfer by means of heat.”

Another common problem is failure to distinguish between thermodynamic “heat” and the process of “heating.” To heat a
system is to cause its temperature to increase. A heated system is one that has become warmer. This process of heating does
not necessarily involve thermodynamic heat; it can also be carried out with work as illustrated by experiments 1 and 2 of the
preceding section.

The notion of heat as an indestructible substance was the essence of the caloric theory. This theory was finally disproved by
the cannon-boring experiments of Benjamin Thompson (Count Rumford) in the late eighteenth century, and in a more
quantitative way by the measurement of the mechanical equivalent of heat by James Joule in the 1840s (see Sec. 3.7.2).

3.1.5 Heat capacity
The heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of heat transferred across the
boundary under specified conditions and the resulting infinitesimal temperature change:

Since  is a path function, the value of the heat capacity depends on the specified conditions, usually either constant volume
or constant pressure.  is the heat capacity at constant volume and  is the heat capacity at constant pressure. These are
extensive state functions that will be discussed more fully in Sec. 5.6.

3.1.6 Thermal energy
It is sometimes useful to use the concept of thermal energy. It can be defined as the kinetic energy of random translational
motions of atoms and molecules relative to the local frame, plus the vibrational and rotational energies of molecules. The
thermal energy of a body or phase depends on its temperature, and increases when the temperature increases. The thermal
energy of a system is a contribution to the internal energy.

It is important to understand that a change of the system’s thermal energy during a process is not necessarily the same as
energy transferred across the system boundary as heat. The two quantities are equal only if the system is closed and there is
no work, volume change, phase change, or chemical reaction. This is illustrated by the three experiments described in Sec.
3.1.3: the thermal energy change is the same in each experiment, but only in experiment 3 is the work negligible and the
thermal energy change equal to the heat.

This page titled 3.1: Heat, Work, and the First Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
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3.2: Spontaneous, Reversible, and Irreversible Processes
A spontaneous process is a process that can actually occur in a finite time period under the existing conditions. Any change over
time in the state of a system that we observe experimentally is a spontaneous process.

A spontaneous process is sometimes called a natural process, feasible process, possible process, allowed process, or real process.

3.2.1 Reversible processes 

A reversible process is an important concept in thermodynamics. This concept is needed for the chain of reasoning that will allow
us to define entropy changes in the next chapter, and will then lead on to the establishment of criteria for spontaneity and for
various kinds of equilibria.

Before reversible processes can be discussed, it is necessary to explain the meaning of the reverse of a process. If a particular
process takes the system from an initial state A through a continuous sequence of intermediate states to a final state B, then the
reverse of this process is a change over time from state B to state A with the same intermediate states occurring in the reverse time
sequence. To visualize the reverse of any process, imagine making a movie film of the events of the process. Each frame of the film
is a “snapshot” picture of the state at one instant. If you run the film backward through a movie projector, you see the reverse
process: the values of system properties such as  and  appear to change in reverse chronological order, and each velocity
changes sign.

The concept of a reversible process is not easy to describe or to grasp. Perhaps the most confusing aspect is that a reversible
process is not a process that ever actually occurs, but is only approached as a hypothetical limit. During a reversible process the
system passes through a continuous sequence of equilibrium states. These states are ones that can be approached, as closely as
desired, by the states of a spontaneous process carried out sufficiently slowly. As the spontaneous process is carried out more and
more slowly, it approaches the reversible limit. Thus, a reversible process is an idealized process with a sequence of equilibrium
states that are those of a spontaneous process in the limit of infinite slowness.

This e-book has many equations expressing relations among heat, work, and state functions during various kinds of reversible
processes. What is the use of an equation for a process that can never actually occur? The point is that the equation can describe a
spontaneous process to a high degree of accuracy, if the process is carried out slowly enough for the intermediate states to depart
only slightly from exact equilibrium states. For example, for many important spontaneous processes we will assume the
temperature and pressure are uniform throughout the system, which strictly speaking is an approximation.

A reversible process of a closed system, as used in this e-book, has all of the following characteristics:

We must imagine the reversible process to proceed at a finite rate, otherwise there would be no change of state over time. The
precise rate of the change is not important. Imagine a gas whose volume, temperature, and pressure are changing at some finite
rate while the temperature and pressure magically stay perfectly uniform throughout the system. This is an entirely imaginary
process, because there is no temperature or pressure gradient—no physical “driving force”—that would make the change tend
to occur in a particular direction. This imaginary process is a reversible process—one whose states of uniform temperature and
pressure are approached by the states of a real process as the real process takes place more and more slowly.

It is a good idea, whenever you see the word “reversible,” to think “in the reversible limit.” Thus a reversible process is a
process in the reversible limit, reversible work is work in the reversible limit, and so on.

3.2.2 Irreversible processes
An irreversible process is a spontaneous process whose reverse is neither spontaneous nor reversible. That is, the reverse of an
irreversible process can never actually occur and is impossible. If a movie is made of a spontaneous process, and the time
sequence of the events depicted by the film when it is run backward could not occur in reality, the spontaneous process is
irreversible.

A good example of a spontaneous, irreversible process is experiment 1 in Section 3.1.3, in which the sinking of an external
weight immersed in water causes a paddle wheel to rotate and the temperature of the water to increase. During this experiment
mechanical energy is dissipated into thermal energy. Suppose you insert a thermometer in the water and make a movie film of
the experiment. Then when you run the film backward in a projector, you will see the paddle wheel rotating in the direction that
raises the weight, and the water becoming cooler according to the thermometer. Clearly, this reverse process is impossible in the
real physical world, and the process occurring during the experiment is irreversible. It is not difficult to understand why it is
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irreversible when we consider events on the microscopic level: it is extremely unlikely that the H O molecules next to the
paddles would happen to move simultaneously over a period of time in the concerted motion needed to raise the weight.

3.2.3 Purely mechanical processes
There is a class of spontaneous processes that are also spontaneous in reverse; that is, spontaneous but not irreversible. These
are purely mechanical processes involving the motion of perfectly-elastic macroscopic bodies without friction, temperature
gradients, viscous flow, or other irreversible changes.

A simple example of a purely mechanical process and its reverse is shown in Fig. 3.2. The ball can move spontaneously in
either direction. Another example is a flywheel with frictionless bearings rotating in a vacuum.

A purely mechanical process proceeding at a finite rate is not reversible, for its states are not equilibrium states. Such a process
is an idealization, of a different kind than a reversible process, and is of little interest in chemistry. Later chapters of this e-book
will ignore such processes and will treat the terms spontaneous and irreversible as synonyms.

This page titled 3.2: Spontaneous, Reversible, and Irreversible Processes is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Heat Transfer
This section describes irreversible and reversible heat transfer. Keep in mind that when this e-book refers to heat transfer or heat
flow, energy is being transferred across the boundary on account of a temperature gradient at the boundary. The transfer is always
in the direction of decreasing temperature.

We may sometimes wish to treat the temperature as if it is discontinuous at the boundary, with different values on either side. The
transfer of energy is then from the warmer side to the cooler side. The temperature is not actually discontinuous; instead there is a
thin zone with a temperature gradient.

3.3.1 Heating and cooling 

As an illustration of irreversible heat transfer, consider a system that is a solid metal sphere. This spherical body is immersed in a
well-stirred water bath whose temperature we can control. The bath and the metal sphere are initially equilibrated at temperature 

, and we wish to raise the temperature of the sphere by one kelvin to a final uniform temperature .

One way to do this is to rapidly increase the external bath temperature to  and keep it at that temperature. The temperature
difference across the surface of the immersed sphere then causes a spontaneous flow of heat through the system boundary into the
sphere. It takes time for all parts of the sphere to reach the higher temperature, so a temporary internal temperature gradient is
established. Thermal energy flows spontaneously from the higher temperature at the boundary to the lower temperature in the
interior. Eventually the temperature in the sphere becomes uniform and equal to the bath temperature of .

Figure 3.3(a) graphically depicts temperatures within the sphere at different times during the heating process. Note the temperature
gradient in the intermediate states. Because of the gradient, these states cannot be characterized by a single value of the
temperature. If we were to suddenly isolate the system (the sphere) with a thermally-insulated jacket while it is in one of these
states, the state would change as the temperature gradient rapidly disappears. Thus, the intermediate states of the spontaneous
heating process are not equilibrium states, and the rapid heating process is not reversible.

To make the intermediate states more nearly uniform in temperature, with smaller temperature gradients, we can raise the
temperature of the bath at a slower rate. The sequence of states approached in the limit of infinite slowness is indicated in Fig.
3.3(b). In each intermediate state of this limiting sequence, the temperature is perfectly uniform throughout the sphere and is equal
to the external bath temperature. That is, each state has thermal equilibrium both internally and with respect to the surroundings. A
single temperature now suffices to define the state at each instant. Each state is an equilibrium state because it would have no
tendency to change if we isolated the system with thermal insulation. This limiting sequence of states is a reversible heating
process.

The reverse of the reversible heating process is a reversible cooling process in which the temperature is again uniform in each state.
The sequence of states of this reverse process is the limit of the spontaneous cooling process depicted in Fig. 3.3(c) as we decrease
the bath temperature more and more slowly.

In any real heating process occurring at a finite rate, the sphere’s temperature could not be perfectly uniform in intermediate states.
If we raise the bath temperature very slowly, however, the temperature in all parts of the sphere will be very close to that of the
bath. At any point in this very slow heating process, it would then take only a small decrease in the bath temperature to start a
cooling process; that is, the practically-reversible heating process would be reversed.

The important thing to note about the temperature gradients shown in Fig. 3.3(c) for the spontaneous cooling process is that none
resemble the gradients in Fig. 3.3(a) for the spontaneous heating process—the gradients are in opposite directions. It is physically
impossible for the sequence of states of either process to occur in the reverse chronological order, for that would have thermal
energy flowing in the wrong direction along the temperature gradient. These considerations show that a spontaneous heat transfer is
irreversible. Only in the reversible limits do the heating and cooling processes have the same intermediate states; these states have
no temperature gradients.

Although the spontaneous heating and cooling processes are irreversible, the energy transferred into the system during heating can
be fully recovered as energy transferred back to the surroundings during cooling, provided there is no irreversible work. This
recoverability of irreversible heat is in distinct contrast to the behavior of irreversible work.
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3.3.2 Spontaneous phase transitions 

Consider a different kind of system, one consisting of the liquid and solid phases of a pure substance. At a given pressure, this kind
of system can be in transfer equilibrium at only one temperature: for example, water and ice at  and . Suppose the
system is initially at this pressure and temperature. Heat transfer into the system will then cause a phase transition from solid to
liquid (Sec. 2.2.2). We can carry out the heat transfer by placing the system in thermal contact with an external water bath at a
higher temperature than the equilibrium temperature, which will cause a temperature gradient in the system and the melting of an
amount of solid proportional to the quantity of energy transferred.

The closer the external temperature is to the equilibrium temperature, the smaller are the temperature gradients and the closer are
the states of the system to equilibrium states. In the limit as the temperature difference approaches zero, the system passes through
a sequence of equilibrium states in which the temperature is uniform and constant, energy is transferred into the system by heat,
and the substance is transformed from solid to liquid. This idealized process is an equilibrium phase transition, and it is a reversible
process.

This page titled 3.3: Heat Transfer is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source
content that was edited to the style and standards of the LibreTexts platform.
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3.4: Deformation Work
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3.5: Applications of Expansion Work
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3.6: Work in a Gravitational Field
Figure 3.9 depicts a spherical body, such as a glass marble, immersed in a liquid or gas in the presence of an external gravitational
field. The vessel is stationary on a lab bench, and the local reference frame for work is a stationary lab frame. The variable  is the
body’s elevation above the bottom of the vessel. All displacements are parallel to the vertical  axis. From Eq. 3.1.1, the work is
given by  where  is the upward component of the net contact force exerted by the surroundings on the system at
the moving portion of the boundary. There is also a downward gravitational force on the body, but as explained in Sec. 3.1.1, this
force does not contribute to .

Consider first the simple process in Fig. 3.9(a) in which the body falls freely through the fluid. This process is clearly spontaneous.
Here are two choices for the definition of the system:

The buoyant force is a consequence of the pressure gradient that exists in the fluid in a gravitational field (see Sec. 8.1.4). We
ignore this gradient when we treat the fluid as a uniform phase.

Next, consider the arrangement in Fig. 3.9(b) in which the body is suspended by a thin string. The string is in the surroundings
and provides a means for the surroundings to exert an upward contact force on the system. As before, there are two appropriate
choices for the system:

When we compare Eqs. 3.6.3 and 3.6.5, we see that the work when the system is the body is greater by the quantity 
 than the work when the system is the combination of body and fluid, just as in the case of the freely-

falling body. The difference in the quantity of work is due to the different choices of the system boundary where contact
forces are exerted by the surroundings.

This page titled 3.6: Work in a Gravitational Field is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
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3.7: Shaft Work
Shaft work refers to energy transferred across the boundary by a rotating shaft.

The complete apparatus is depicted in Fig. 3.13. In use, two lead weights sank and caused the paddle wheel to rotate. Joule
evaluated the stirring work done on the system (the vessel, its contents, and the lid) from the change of the vertical position  of the
weights. To a first approximation, this work is the negative of the change of the weights’ potential energy:  where 
is the combined mass of the two weights. Joule made corrections for the kinetic energy gained by the weights, the friction in the
connecting strings and pulley bearings, the elasticity of the strings, and the heat gain from the air surrounding the system.

A typical experiment performed by Joule is described in Prob. 3.10. His results for the mechanical equivalent of heat, based on 40
such experiments at average temperatures in the range –  and expressed as the work needed to increase the temperature
of one gram of water by one kelvin, was . This value is close to the modern value of  for the “  calorie,” the
energy needed to raise the temperature of one gram of water from  to .

The thermochemical calorie (cal), often used as an energy unit in the older literature, is defined as . Thus 
.
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3.8: Electrical Work
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3.9: Irreversible Work and Internal Friction
Consider an irreversible adiabatic process of a closed system in which a work coordinate  changes at a finite rate along the path,
starting and ending with equilibrium states. For a given initial state and a given change , the work is found to be less positive or
more negative the more slowly is the rate of change of . The work is least positive or most negative in the reversible limit—that
is, the least work needs to be done on the system, or the most work can be done by the system on the surroundings. This minimal
work principle has already been illustrated in the sections of this chapter describing expansion work, work in a gravitational field,
and electrical work with a galvanic cell.

Let the work during an irreversible adiabatic process be , and the reversible adiabatic work for the same initial state and the
same value of  be .  is algebraically greater than , and we can treat the difference  as excess work 
that is positive for an irreversible process and zero for a reversible process.

Conceptually, we can attribute the excess work of an irreversible adiabatic process to internal friction that dissipates other forms of
energy into thermal energy within the system. Internal friction occurs only during a process with work that is irreversible . Internal
friction is not involved when, for example, a temperature gradient causes heat to flow spontaneously across the system boundary, or
an irreversible chemical reaction takes place spontaneously in a homogeneous phase. Nor is internal friction necessarily involved
when positive work increases the thermal energy: during an infinitely slow adiabatic compression of a gas, the temperature and
thermal energy increase but internal friction is absent—the process is reversible.

During a process with irreversible work, energy dissipation can be either partial or complete. Dissipative work, such as the stirring
work and electrical heating described in previous sections, is irreversible work with complete energy dissipation. The final
equilibrium state of an adiabatic process with dissipative work can also be reached by a path in which positive heat replaces the
dissipative work. This is a special case of the minimal work principle.

Figure 3.18 Cylinder and piston with internal sliding friction. The
dashed rectangle indicates the system boundary. P—piston; R—internal
rod attached to the piston; B—lubricated bushing fixed inside the
cylinder. A fixed amount of an ideal gas fills the remaining space inside
the cylinder.

As a model for work with partial energy dissipation, consider the gas-filled cylinder-and-piston device depicted in Fig. 3.18. This
device has an obvious source of internal friction in the form of a rod sliding through a bushing. The contact between the rod and
bushing is assumed to be lubricated to allow the piston to move at velocities infinitesimally close to zero. The system consists of
the contents of the cylinder to the left of the piston, including the gas, the rod, and the bushing; the piston and cylinder wall are in
the surroundings.

From Eq. 3.1.2, the energy transferred as work across the boundary of this system is

where  is the piston position and  is the component in the direction of increasing  of the force exerted by the system on the
surroundings at the moving boundary.

For convenience, we let  be the volume of the gas rather than that of the entire system. The relation between changes of  and 
is  where  is the cross-section area of the cylinder. With  replacing  as the work coordinate, Eq. 3.9.1 becomes
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Equation 3.9.2 shows that a plot of  as a function of  is an indicator diagram (Sec. 3.5.4), and that the work is equal to
the negative of the area under the curve of this plot.

We can write the force  as the sum of two contributions:

(This equation assumes that the gas pressure is uniform, and that a term for the acceleration of the rod is negligible.) Here  is the
gas pressure, and  is the force on the rod due to internal friction with sign opposite to that of the piston velocity .
Substitution of this expression for  in Eq. 3.9.2 gives

The first term on the right is the work of expanding or compressing the gas. The second term is the frictional work: 
. The frictional work is positive or zero, and represents the energy dissipated within the system by

internal sliding friction.

Consider the situation when the piston moves very slowly in one direction or the other. In the limit of infinite slowness  and 
 vanish, and the process is reversible with expansion work given by .

The situation is different when the piston moves at an appreciable finite rate. The frictional work  is then positive. As a result,
the irreversible work of expansion is less negative than the reversible work for the same volume increase, and the irreversible work
of compression is more positive than the reversible work for the same volume decrease. These effects of piston velocity on the
work are consistent with the minimal work principle.

The piston velocity, besides affecting the frictional force on the rod, has an effect on the force exerted by the gas on
the piston as described in Sec. 3.4.1. At large finite velocities, this latter effect tends to further decrease  during
expansion and increase it during compression, and so is an additional contribution to internal friction. If turbulent
flow is present within the system, that would also be a contribution.

Figure 3.19 Indicator diagrams for the system of Fig. 3.18. 
Solid curves:  for irreversible adiabatic volume changes at
finite rates in the directions indicated by the arrows. 
Dashed curves:  along a reversible adiabat. 
Open circles: initial and final equilibrium states. 
(a) Adiabatic expansion. 
(b) Adiabatic compression.
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Figure 3.19 shows indicator diagrams for adiabatic expansion and compression with internal friction. The solid curves are for
irreversible processes at finite rates, and the dashed curves are for reversible processes with the same initial states as the
irreversible processes. The areas under the curves confirm that the work for expansion is less negative along the irreversible path
than along the reversible path, and that for compression the work is more positive along the irreversible path than along the
reversible path.

Because of these differences in work, the final states of the irreversible processes have greater internal energies and higher
temperatures and pressures than the final states of the reversible processes with the same volume change, as can be seen from the
positions on the indicator diagrams of the points for the final equilibrium states. The overall change of state during the irreversible
expansion or compression is the same for a path in which the reversible adiabatic volume change is followed by positive heat at
constant volume. Since  must be the same for both paths, the heat has the same value as the excess work .
The excess work and frictional work are not equal, because the thermal energy released by frictional work increases the gas
pressure, making  less than  for expansion and greater than  for compression. There seems to be no general method by
which the energy dissipated by internal friction can be evaluated, and it would be even more difficult for an irreversible process
with both work and heat.

Figure 3.20 Adiabatic expansion work with internal friction for a fixed
magnitude of , as a function of the average rate of volume change.
The open circles indicate the reversible limits.

Figure 3.20 shows the effect of the rate of change of the volume on the adiabatic work for a fixed magnitude of the volume change.
Note that the work of expansion and the work of compression have opposite signs, and that it is only in the reversible limit that
they have the same magnitude. The figure resembles Fig. 3.17 for electrical work of a galvanic cell with the horizontal axis
reversed, and is typical of irreversible work with partial energy dissipation.

This page titled 3.9: Irreversible Work and Internal Friction is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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3.10: Reversible and Irreversible Processes- Generalities
This section summarizes some general characteristics of processes in closed systems. Some of these statements will be needed to
develop aspects of the second law in Chap. 4.

Table 3.1 lists general formulas for various kinds of work, including those that were described in detail in Secs. 3.4–3.8.
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3.11: Chapter 3 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

3.1 Assume you have a metal spring that obeys Hooke's law: , where  is the force exerted on the spring of length 
 is the length of the unstressed spring, and  is the spring constant. Find an expression for the work done on the spring when

you reversibly compress it from length  to a shorter length .

Figure 

3.2 The apparatus shown in Fig.  consists of fixed amounts of water and air and an incompressible solid glass sphere (a
marble), all enclosed in a rigid vessel resting on a lab bench. Assume the marble has an adiabatic outer layer so that its temperature
cannot change, and that the walls of the vessel are also adiabatic.

Initially the marble is suspended above the water. When released, it falls through the air into the water and comes to rest at the
bottom of the vessel, causing the water and air (but not the marble) to become slightly warmer. The process is complete when the
system returns to an equilibrium state. The system energy change during this process depends on the frame of reference and on how
the system is defined.  is the energy change in a lab frame, and  is the energy change in a specified local frame. 
For each of the following definitions of the system, give the sign (positive, negative, or zero) of both  and , and state
your reasoning. Take the local frame for each system to be a center-of-mass frame. 
(a) The system is the marble. 
(b) The system is the combination of water and air. 
(c) The system is the combination of water, air, and marble.

3.3 Figure  shows the initial state of an apparatus consisting of an ideal gas in a bulb, a stopcock, a porous plug, and a cylinder
containing a frictionless piston. The walls are diathermal, and the surroundings are at a constant temperature of  and a
constant pressure of .

Figure 

When the stopcock is opened, the gas diffuses slowly through the porous plug, and the piston moves slowly to the right. The
process ends when the pressures are equalized and the piston stops moving. The system is the gas. Assume that during the process
the temperature throughout the system differs only infinitesimally from  and the pressure on both sides of the piston differs
only infinitesimally from  bar.

(a) Which of these terms correctly describes the process: isothermal, isobaric, isochoric, reversible, irreversible? 
(b) Calculate  and . 
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3.4 Consider a horizontal cylinder-and-piston device similar to the one shown in Fig.  on page 72. The piston has mass . The
cylinder wall is diathermal and is in thermal contact with a heat reservoir of temperature . The system is an amount  of an
ideal gas confined in the cylinder by the piston.

The initial state of the system is an equilibrium state described by  and . There is a constant external pressure ,
equal to twice , that supplies a constant external force on the piston. When the piston is released, it begins to move to the left to
compress the gas. Make the idealized assumptions that (1) the piston moves with negligible friction; and (2) the gas remains
practically uniform (because the piston is massive and its motion is slow) and has a practically constant temperature 
(because temperature equilibration is rapid). 
(a) Describe the resulting process. 
(b) Describe how you could calculate  and  during the period needed for the piston velocity to become zero again. 
(c) Calculate  and  during this period for  gas at .

Figure 

3.5 This problem is designed to test the assertion on page 60 that for typical thermodynamic processes in which the elevation of the
center of mass changes, it is usually a good approximation to set  equal to . The cylinder shown in Fig.  on the
preceding page has a vertical orientation, so the elevation of the center of mass of the gas confined by the piston changes as the
piston slides up or down. The system is the gas. Assume the gas is nitrogen  at , and initially the vertical
length  of the gas column is one meter. Treat the nitrogen as an ideal gas, use a center-of-mass local frame, and take the center of
mass to be at the midpoint of the gas column. Find the difference between the values of  and , expressed as a percentage of 

, when the gas is expanded reversibly and isothermally to twice its initial volume.

Figure 

3.6 Figure  shows an ideal gas confined by a frictionless piston in a vertical cylinder. The system is the gas, and the boundary
is adiabatic. The downward force on the piston can be varied by changing the weight on top of it.

(a) Show that when the system is in an equilibrium state, the gas pressure is given by   where  is the combined mass
of the piston and weight,  is the acceleration of free fall, and  is the elevation of the piston shown in the figure.
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(b) Initially the combined mass of the piston and weight is , the piston is at height , and the system is in an equilibrium state
with conditions  and . The initial temperature is . Suppose that an additional weight is suddenly placed on the
piston, so that  increases from  to , causing the piston to sink and the gas to be compressed adiabatically and
spontaneously. Pressure gradients in the gas, a form of friction, eventually cause the piston to come to rest at a final position .
Find the final volume, , as a function of , and  (Assume that the heat capacity of the gas, , is independent of
temperature.) Hint: The potential energy of the surroundings changes by ; since the kinetic energy of the piston and
weights is zero at the beginning and end of the process, and the boundary is adiabatic, the internal energy of the gas must change by

.

(c) It might seem that by making the weight placed on the piston sufficiently large,  could be made as close to zero as desired.
Actually, however, this is not the case. Find expressions for  and  in the limit as  approaches infinity, and evaluate 
in this limit if the heat capacity is  (the value for an ideal monatomic gas at room temperature).

3.7 The solid curve in Fig.  shows the path of a reversible adiabatic expansion or compression of a fixed amount of an ideal gas.
Information about the gas is given in the figure caption. For compression along this path, starting at  and 

 and ending at , find the final temperature to  and the work.

Figure 

3.8 Figure  shows the initial state of an apparatus containing an ideal gas. When the stopcock is opened, gas passes into the
evacuated vessel. The system is the gas. Find , and  under the following conditions. 
(a) The vessels have adiabatic walls. 
(b) The vessels have diathermal walls in thermal contact with a water bath maintained at , and the final temperature in both
vessels is .

3.9 Consider a reversible process in which the shaft of system A in Fig.  makes one revolution in the direction of increasing .
Show that the gravitational work of the weight is the same as the shaft work given by . 
Table 3.2 Data for Problem 3.10. The values are from Joule's 1850 paper  and have been converted to SI units.
 Ref. [91], p. 67, experiment  
 Calculated from the masses and specific heat capacities of the materials.

3.10 This problem guides you through a calculation of the mechanical equivalent of heat using data from one of James Joule's
experiments with a paddle wheel apparatus (see Sec. 3.7.2). The experimental data are collected in Table 3.2.

In each of his experiments, Joule allowed the weights of the apparatus to sink to the floor twenty times from a height of about 
, using a crank to raise the weights before each descent (see Fig.  on page 89). The paddle wheel was engaged to the

weights through the roller and strings only while the weights descended. Each descent took about 26 seconds, and the entire
experiment lasted 35 minutes. Joule measured the water temperature with a sensitive mercury-in-glass thermometer at both the start
and finish of the experiment.

For the purposes of the calculations, define the system to be the combination of the vessel, its contents (including the paddle wheel
and water), and its lid. All energies are measured in a lab frame. Ignore the small quantity of expansion work occurring in the
experiment. It helps conceptually to think of the cellar room in which Joule set up his apparatus as being effectively isolated from
the rest of the universe; then the only surroundings you need to consider for the calculations are the part of the room outside the
system.

(a) Calculate the change of the gravitational potential energy  of the lead weights during each of the descents. For the
acceleration of free fall at Manchester, England (where Joule carried out the experiment) use the value . This
energy change represents a decrease in the energy of the surroundings, and would be equal in magnitude and opposite in sign to the
stirring work done on the system if there were no other changes in the surroundings.
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(b) Calculate the kinetic energy  of the descending weights just before they reached the floor. This represents an increase in the
energy of the surroundings. (This energy was dissipated into thermal energy in the surroundings when the weights came to rest on
the floor.)

(c) Joule found that during each descent of the weights, friction in the strings and pulleys decreased the quantity of work performed
on the system by . This quantity represents an increase in the thermal energy of the surroundings. Joule also considered the
slight stretching of the strings while the weights were suspended from them: when the weights came to rest on the floor, the tension
was relieved and the potential energy of the strings changed by . Find the total change in the energy of the surroundings
during the entire experiment from all the effects described to this point. Keep in mind that the weights descended 20 times during
the experiment.

(d) Data in Table  show that change of the temperature of the system during the experiment was 

 
The paddle wheel vessel had no thermal insulation, and the air temperature was slighter warmer, so during the experiment there
was a transfer of some heat into the system. From a correction procedure described by Joule, the temperature change that would
have occurred if the vessel had been insulated is estimated to be . 
Use this information together with your results from part (c) to evaluate the work needed to increase the temperature of one gram of
water by one kelvin. This is the "mechanical equivalent of heat" at the average temperature of the system during the experiment.
(As mentioned on p. 87 , Joule obtained the value  based on all 40 of his experiments.)

3.11 Refer to the apparatus depicted in Fig.  on page 61. Suppose the mass of the external weight is , the resistance
of the electrical resistor is , and the acceleration of free fall is . For how long a period of time will
the external cell need to operate, providing an electric potential difference , to cause the same change in the state of
the system as the change when the weight sinks  without electrical work? Assume both processes occur adiabatically.

This page titled 3.11: Chapter 3 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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1

CHAPTER OVERVIEW

4: The Second Law
The second law of thermodynamics concerns entropy and the spontaneity of processes. This chapter discusses theoretical aspects
and practical applications.

We have seen that the first law allows us to set up a balance sheet for energy changes during a process, but says nothing about why
some processes occur spontaneously and others are impossible. The laws of physics explain some spontaneous changes. For
instance, unbalanced forces on a body cause acceleration, and a temperature gradient at a diathermal boundary causes heat transfer.
But how can we predict whether a phase change, a transfer of solute from one solution phase to another, or a chemical reaction will
occur spontaneously under the existing conditions? The second law provides the principle we need to answer these and other
questions—a general criterion for spontaneity in a closed system.

4.1: Types of Processes
4.2: Statements of the Second Law
4.3: Concepts Developed with Carnot Engines
4.4: Derivation of the Mathematical Statement of the Second Law
4.5: Irreversible Processes
4.6: Applications
4.7: Summary
4.8: The Statistical Interpretation of Entropy
4.9: Chapter 4 Problems
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4.1: Types of Processes
Any conceivable process is either spontaneous, reversible, or impossible. These three possibilities were discussed in Sec. 3.2 and
are summarized below.

A spontaneous process is a real process that can actually take place in a finite time period.
A reversible process is an imaginary, idealized process in which the system passes through a continuous sequence of
equilibrium states. This sequence of states can be approached by a spontaneous process in the limit of infinite slowness, and so
also can the reverse sequence of states.
An impossible process is a change that cannot occur under the existing conditions, even in a limiting sense. It is also known as
an unnatural or disallowed process. Sometimes it is useful to describe a hypothetical impossible process that we can imagine
but that does not occur in reality. The second law of thermodynamics will presently be introduced with two such impossible
processes.

The spontaneous processes relevant to chemistry are irreversible. An irreversible process is a spontaneous process whose reverse is
an impossible process.

There is also the special category, of little interest to chemists, of purely mechanical processes. A purely mechanical process is a
spontaneous process whose reverse is also spontaneous.

It is true that reversible processes and purely mechanical processes are idealized processes that cannot occur in practice, but a
spontaneous process can be practically reversible if carried out sufficiently slowly, or practically purely mechanical if friction and
temperature gradients are negligible. In that sense, they are not impossible processes. This e-book will reserve the term
“impossible” for a process that cannot be approached by any spontaneous process, no matter how slowly or how carefully it is
carried out.
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4.2: Statements of the Second Law
A description of the mathematical statement of the second law is given in the box below.

The box includes three distinct parts. First, there is the assertion that a property called entropy, , is an extensive state function.

Second, there is an equation for calculating the entropy change of a closed system during a reversible change of state:  is equal
to . During a reversible process, the temperature usually has the same value  throughout the system, in which case we can
simply write . The equation  allows for the possibility that in an equilibrium state the system has phases
of different temperatures separated by internal adiabatic partitions.

Third, there is a criterion for spontaneity:  is greater than  during an irreversible change of state. The temperature  is a
thermodynamic temperature, which will be defined in Sec. 4.3.4.

Each of the three parts is an essential component of the second law, but is somewhat abstract. What fundamental principle, based
on experimental observation, may we take as the starting point to obtain them? Two principles are available, one associated with
Clausius and the other with Kelvin and Planck. Both principles are equivalent statements of the second law. Each asserts that a
certain kind of process is impossible, in agreement with common experience.

Next consider the impossible process shown in Fig. 4.2(a). A Joule paddle wheel rotates in a container of water as a weight rises.
As the weight gains potential energy, the water loses thermal energy and its temperature decreases. Energy is conserved, so there is
no violation of the first law. This process is just the reverse of the Joule paddle-wheel experiment (Sec. 3.7.2) and its impossibility
has already been discussed.

We might again attempt to use some sort of device operating in a cycle to accomplish the same overall process, as in Fig. 4.2(b). A
closed system that operates in a cycle and does net work on the surroundings is called a heat engine. The heat engine shown in Fig.
4.2(b) is a special one. During one cycle, a quantity of energy is transferred by heat from a heat reservoir to the engine, and the
engine performs an equal quantity of work on a weight, causing it to rise. At the end of the cycle, the engine has returned to its
initial state. This would be a very desirable engine, because it could convert thermal energy into an equal quantity of useful
mechanical work with no other effect on the surroundings. (This hypothetical process is called “perpetual motion of the second
kind.”) The engine could power a ship; it would use the ocean as a heat reservoir and require no fuel. Unfortunately, it is impossible
to construct such a heat engine!

The principle was expressed by William Thomson (Lord Kelvin) in 1852 as follows: “It is impossible by means of inanimate
material agency to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the
surrounding objects.” Max Planck in 1922 gave this statement: “It is impossible to construct an engine which will work in a
complete cycle, and produce no effect except the raising of a weight and the cooling of a heat-reservoir.” For the purposes of this
chapter, the principle can be reworded as follows.

Both the Clausius statement and the Kelvin–Planck statement assert that certain processes, although they do not violate the first
law, are nevertheless impossible.

These processes would not be impossible if we could control the trajectories of large numbers of individual
particles. Newton’s laws of motion are invariant to time reversal. Suppose we could measure the position and
velocity of each molecule of a macroscopic system in the final state of an irreversible process. Then, if we could
somehow arrange at one instant to place each molecule in the same position with its velocity reversed, and if the
molecules behaved classically, they would retrace their trajectories in reverse and we would observe the reverse
“impossible” process.

Carnot engines and Carnot cycles are admittedly outside the normal experience of chemists, and using them to
derive the mathematical statement of the second law may seem arcane. G. N. Lewis and M. Randall, in their
classic 1923 book Thermodynamics and the Free Energy of Chemical Substances, complained of the
presentation of “cyclical processes limping about eccentric and not quite completed cycles.” There seems,
however, to be no way to carry out a rigorous general derivation without invoking thermodynamic cycles. You
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may avoid the details by skipping Secs. 4.3–4.5. (Incidently, the cycles described in these sections are
complete!)

This page titled 4.2: Statements of the Second Law is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Concepts Developed with Carnot Engines

4.3.1 Carnot engines and Carnot cycles 

Could the efficiency of the Carnot engine be different from the efficiency the heat pump would have when run in reverse as a
Carnot engine? If so, either the supersystem is an impossible Clausius device as shown in Fig. 4.7(b), or the supersystem operated
in reverse (with the engine and heat pump switching roles) is an impossible Clausius device as shown in Fig. 4.7(d). We conclude
that all Carnot engines operating between the same two temperatures have the same efficiency.

This is a good place to pause and think about the meaning of this statement in light of the fact that the steps of a
Carnot engine, being reversible changes, cannot take place in a real system (Sec. 3.2). How can an engine operate
that is not real? The statement is an example of a common kind of thermodynamic shorthand. To express the same
idea more accurately, one could say that all heat engines (real systems) operating between the same two
temperatures have the same limiting efficiency, where the limit is the reversible limit approached as the steps of the
cycle are carried out more and more slowly. You should interpret any statement involving a reversible process in a
similar fashion: a reversible process is an idealized limiting process that can be approached but never quite reached
by a real system.

Thus, the efficiency of a Carnot engine must depend only on the values of  and  and not on the properties of the working
substance. Since the efficiency is given by , the ratio  must be a unique function of  and  only. To find this
function for temperatures on the ideal-gas temperature scale, it is simplest to choose as the working substance an ideal gas.

An ideal gas has the equation of state . Its internal energy change in a closed system is given by  (Eq.
3.5.3), where  (a function only of ) is the heat capacity at constant volume. Reversible expansion work is given by 

, which for an ideal gas becomes . Substituting these expressions for  and  in the first
law, , and solving for , we obtain

Dividing both sides by  gives

In the two adiabatic steps of the Carnot cycle,  is zero. We obtain a relation among the volumes of the four labeled states shown
in Fig. 4.3 by integrating Eq. 4.3.5 over these steps and setting the integrals equal to zero:

} Adding these two equations (the integrals shown with limits cancel) gives the relation

which we can rearrange to

We obtain expressions for the heat in the two isothermal steps by integrating Eq. 4.3.4 with  set equal to 0.

Tc Th

ϵ = 1 + /qc qh /qc qh Tc Th

pV = nRT dU = dTCV

CV T

dw = −p dV dw = −(nRT /V )dV dU dw
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(4.3.4)

(ideal gas, reversible
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nR ln = 0
VAVC

VBVD

(4.3.8)

ln( / ) = −ln( / )VB VA VD VC (4.3.9)
(ideal gas, Carnot cycle)

dT

Path A→B : = nR ln( / )qh Th VB VA (4.3.10)

Path C→D : = nR ln( / )qc Tc VD VC (4.3.11)
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The ratio of  and  obtained from these expressions is

By means of Eq. 4.3.9, this ratio becomes

Accordingly, the unique function of  and  we seek that is equal to  is the ratio . The efficiency, from Eq. 4.3.3, is
then given by

In Eqs. 4.3.13 and 4.3.14,  and  are temperatures on the ideal-gas scale. As we have seen, these equations must be valid for
any working substance; it is not necessary to specify as a condition of validity that the system is an ideal gas.

The ratio  is positive but less than one, so the efficiency is less than one as deduced earlier. This conclusion is an illustration
of the Kelvin–Planck statement of the second law: A heat engine cannot have an efficiency of unity—that is, it cannot in one cycle
convert all of the energy transferred by heat from a single heat reservoir into work. The example shown in Fig. 4.5, with ,
must have  (e.g.,  and ).

Keep in mind that a Carnot engine operates reversibly between two heat reservoirs. The expression of Eq. 4.3.14 gives the
efficiency of this kind of idealized heat engine only. If any part of the cycle is carried out irreversibly, dissipation of mechanical
energy will cause the efficiency to be lower than the theoretical value given by Eq. 4.3.14.

4.3.4 Thermodynamic temperature 
The negative ratio  for a Carnot cycle depends only on the temperatures of the two heat reservoirs. Kelvin (1848) proposed
that this ratio be used to establish an “absolute” temperature scale. The physical quantity now called thermodynamic temperature
is defined by the relation

That is, the ratio of the thermodynamic temperatures of two heat reservoirs is equal, by definition, to the ratio of the absolute
quantities of heat transferred in the isothermal steps of a Carnot cycle operating between these two temperatures. In principle, a
measurement of  during a Carnot cycle, combined with a defined value of the thermodynamic temperature of one of the heat
reservoirs, can establish the thermodynamic temperature of the other heat reservoir. This defined value is provided by the triple
point of H O; its thermodynamic temperature is defined as exactly  kelvins.

Just as measurements with a gas thermometer in the limit of zero pressure establish the ideal-gas temperature scale (Sec. 2.3.5), the
behavior of a heat engine in the reversible limit establishes the thermodynamic temperature scale. Note, however, that a reversible
Carnot engine used as a “thermometer” to measure thermodynamic temperature is only a theoretical concept and not a practical
instrument, since a completely-reversible process cannot occur in practice.

It is now possible to justify the statement in Sec. 2.3.5 that the ideal-gas temperature scale is proportional to the thermodynamic
temperature scale. Both Eq. 4.3.13 and Eq. 4.3.15 equate the ratio  to ; but whereas  and  refer in Eq. 4.3.13 to
the ideal-gas temperatures of the heat reservoirs, in Eq. 4.3.15 they refer to the thermodynamic temperatures. This means that the
ratio of the ideal-gas temperatures of two bodies is equal to the ratio of the thermodynamic temperatures of the same bodies, and
therefore the two scales are proportional to one another. The proportionality factor is arbitrary, but must be unity if the same unit
(e.g., kelvins) is used in both scales. Thus, as stated in Sec. 2.3.5, the two scales expressed in kelvins are identical.

This page titled 4.3: Concepts Developed with Carnot Engines is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

qc qh

= ×
qc

qh

Tc

Th

ln( / )VD VC

ln( / )VB VA

(4.3.12)

= −
qc

qh

Tc

Th
(4.3.13)

(Carnot cycle)

Tc Th /qc qh − /Tc Th

ϵ = 1 −
Tc

Th
(4.3.14)

(Carnot engine)

Tc Th

/Tc Th

ϵ = 1/4

/ = 3/4Tc Th = 300 KTc = 400 KTh

/qc qh

= −
Tc

Th

qc

qh
(4.3.15)

(Carnot cycle)

/qc qh

2 273.16

/Tc Th − /qc qh Tc Th

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20663?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/04%3A_The_Second_Law/4.03%3A_Concepts_Developed_with_Carnot_Engines
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/04%3A_The_Second_Law/4.03%3A_Concepts_Developed_with_Carnot_Engines?no-cache
https://www2.chem.umd.edu/thermobook


4.4.1 https://chem.libretexts.org/@go/page/20664

4.4: Derivation of the Mathematical Statement of the Second Law

4.4.1 The existence of the entropy function 

This section derives the existence and properties of the state function called entropy.

Consider an arbitrary cyclic process of a closed system. To avoid confusion, this system will be the “experimental system” and the
process will be the “experimental process” or “experimental cycle.” There are no restrictions on the contents of the experimental
system—it may have any degree of complexity whatsoever. The experimental process may involve more than one kind of work,
phase changes and reactions may occur, there may be temperature and pressure gradients, constraints and external fields may be
present, and so on. All parts of the process must be either irreversible or reversible, but not impossible.

Figure 4.8 Experimental system, Carnot engine (represented by a small
square box), and heat reservoir. The dashed lines indicate the boundary
of the supersystem. 
(a) Reversible heat transfer between heat reservoir and Carnot engine. 
(b) Heat transfer between Carnot engine and experimental system. 
The infinitesimal quantities  and  are positive for transfer in the
directions indicated by the arrows.

We imagine that the experimental cycle is carried out in a special way that allows us to apply the Kelvin–Planck statement of the
second law. The heat transferred across the boundary of the experimental system in each infinitesimal path element of the cycle is
exchanged with a hypothetical Carnot engine. The combination of the experimental system and the Carnot engine is a closed
supersystem (see Fig. 4.8). In the surroundings of the supersystem is a heat reservoir of arbitrary constant temperature . By
allowing the supersystem to exchange heat with only this single heat reservoir, we will be able to apply the Kelvin–Planck
statement to a cycle of the supersystem.

This procedure is similar to ones described by A. B. Pippard (Elements of Classical Thermodynamics for Advanced
Students of Physics, Cambridge University Press, Cambridge, 1966, Chap. 4); C. J. Adkins (Equilibrium
Thermodynamics, 3rd edition, Cambridge University Press, Cambridge, 1983, Chap. 5); and Peter T. Landsberg
(Thermodynamics and Statistical Mechanics, Dover Publications, Inc., New York, 1990, p. 53).

We assume that we are able to control changes of the work coordinates of the experimental system from the surroundings of the
supersystem. We are also able to control the Carnot engine from these surroundings, for example by moving the piston of a
cylinder-and-piston device containing the working substance. Thus the energy transferred by work across the boundary of the
experimental system, and the work required to operate the Carnot engine, is exchanged with the surroundings of the supersystem.

During each stage of the experimental process with nonzero heat, we allow the Carnot engine to undergo many infinitesimal Carnot
cycles with infinitesimal quantities of heat and work. In one of the isothermal steps of each Carnot cycle, the Carnot engine is in
thermal contact with the heat reservoir, as depicted in Fig. 4.8(a). In this step the Carnot engine has the same temperature as the
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heat reservoir, and reversibly exchanges heat  with it. The sign convention is that  is positive if heat is transferred in the
direction of the arrow, from the heat reservoir to the Carnot engine.

In the other isothermal step of the Carnot cycle, the Carnot engine is in thermal contact with the experimental system at a portion of
the system’s boundary. as depicted in Fig. 4.8(b). The Carnot engine now has the same temperature, , as the experimental system
at this part of the boundary, and exchanges heat with it. The heat  is positive if the transfer is into the experimental system.

The relation between temperatures and heats in the isothermal steps of a Carnot cycle is given by Eq. 4.3.15. From this relation we
obtain, for one infinitesimal Carnot cycle, the relation , or

After many infinitesimal Carnot cycles, the experimental cycle is complete, the experimental system has returned to its initial state,
and the Carnot engine has returned to its initial state in thermal contact with the heat reservoir. Integration of Eq. 4.4.1 around the
experimental cycle gives the net heat entering the supersystem during the process:

The integration here is over each path element of the experimental process and over each surface element of the boundary of the
experimental system.

Keep in mind that the value of the cyclic integral  depends only on the path of the experimental cycle, that this process can
be reversible or irreversible, and that  is a positive constant.

In this experimental cycle, could the net heat  transferred to the supersystem be positive? If so, the net work would be negative
(to make the internal energy change zero) and the supersystem would have converted heat from a single heat reservoir completely
into work, a process the Kelvin–Planck statement of the second law says is impossible. Therefore it is impossible for  to be
positive, and from Eq. 4.4.2 we obtain the relation

This relation is known as the Clausius inequality. It is valid only if the integration is taken around a cyclic path in a direction with
nothing but reversible and irreversible changes—the path must not include an impossible change, such as the reverse of an
irreversible change. The Clausius inequality says that if a cyclic path meets this specification, it is impossible for the cyclic integral

 to be positive.

If the entire experimental cycle is adiabatic (which is only possible if the process is reversible), the Carnot engine is not needed and
Eq. 4.4.3 can be replaced by .

Next let us investigate a reversible nonadiabatic process of the closed experimental system. Starting with a particular equilibrium
state A, we carry out a reversible process in which there is a net flow of heat into the system, and in which  is either positive or
zero in each path element. The final state of this process is equilibrium state B. If each infinitesimal quantity of heat  is positive
or zero during the process, then the integral  must be positive. In this case the Clausius inequality tells us that if the
system completes a cycle by returning from state B back to state A by a different path, the integral  for this second path
must be negative. Therefore the change B A cannot be carried out by any adiabatic process.

Any reversible process can be carried out in reverse. Thus, by reversing the reversible nonadiabatic process, it is possible to change
the state from B to A by a reversible process with a net flow of heat out of the system and with  either negative or zero in each
element of the reverse path. In contrast, the absence of an adiabatic path from B to A means that it is impossible to carry out the
change A B by a reversible adiabatic process.

The general rule, then, is that whenever equilibrium state A of a closed system can be changed to equilibrium state B by a
reversible process with finite “one-way” heat (i.e., the flow of heat is either entirely into the system or else entirely out of it), it is
impossible for the system to change from either of these states to the other by a reversible adiabatic process.

A simple example will relate this rule to experience. We can increase the temperature of a liquid by allowing heat to
flow reversibly into the liquid. It is impossible to duplicate this change of state by a reversible process without heat—
that is, by using some kind of reversible work. The reason is that reversible work involves the change of a work
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coordinate that brings the system to a different final state. There is nothing in the rule that says we can’t increase the
temperature irreversibly without heat, as we can for instance with stirring work.

States A and B can be arbitrarily close. We conclude that every equilibrium state of a closed system has other equilibrium states
infinitesimally close to it that are inaccessible by a reversible adiabatic process. This is Carathéodory’s principle of adiabatic
inaccessibility. (Constantin Carathéodory in 1909 combined this principle with a mathematical theorem Carathéodory’s theorem

to deduce the existence of the entropy function. The derivation outlined here avoids the complexities of that mathematical
treatment and leads to the same results.)

Next let us consider the reversible adiabatic processes that are possible. To carry out a reversible adiabatic process, starting at an
initial equilibrium state, we use an adiabatic boundary and slowly vary one or more of the work coordinates. A certain final
temperature will result. It is helpful in visualizing this process to think of an -dimensional space in which each axis represents
one of the  independent variables needed to describe an equilibrium state. A point in this space represents an equilibrium state,
and the path of a reversible process can be represented as a curve in this space.

A suitable set of independent variables for equilibrium states of a closed system of uniform temperature consists of the temperature 
 and each of the work coordinates (Sec. 3.10). We can vary the work coordinates independently while keeping the boundary

adiabatic, so the paths for possible reversible adiabatic processes can connect any arbitrary combinations of work coordinate
values.

There is, however, the additional dimension of temperature in the -dimensional space. Do the paths for possible reversible
adiabatic processes, starting from a common initial point, lie in a volume in the -dimensional space? Or do they fall on a surface
described by  as a function of the work coordinates? If the paths lie in a volume, then every point in a volume element
surrounding the initial point must be accessible from the initial point by a reversible adiabatic path. This accessibility is precisely
what Carathéodory’s principle of adiabatic inaccessibility denies. Therefore, the paths for all possible reversible adiabatic processes
with a common initial state must lie on a unique surface. This is an -dimensional hypersurface in the -dimensional
space, or a curve if  is . One of these surfaces or curves will be referred to as a reversible adiabatic surface.

Now consider the initial and final states of a reversible process with one-way heat (i.e., each nonzero infinitesimal quantity of heat 
 has the same sign). Since we have seen that it is impossible for there to be a reversible adiabatic path between these states, the

points for these states must lie on different reversible adiabatic surfaces that do not intersect anywhere in the -dimensional space.
Consequently, there is an infinite number of nonintersecting reversible adiabatic surfaces filling the -dimensional space. (To
visualize this for , think of a flexed stack of paper sheets; each sheet represents a different reversible adiabatic surface in
three-dimensional space.) A reversible, nonadiabatic process with one-way heat is represented by a path beginning at a point on
one reversible adiabatic surface and ending at a point on a different surface. If  is positive, the final surface lies on one side of the
initial surface, and if  is negative, the final surface is on the opposite side.

4.4.2 Using reversible processes to define the entropy 

The existence of reversible adiabatic surfaces is the justification for defining a new state function , the entropy.  is specified to
have the same value everywhere on one of these surfaces, and a different, unique value on each different surface. In other words,
the reversible adiabatic surfaces are surfaces of constant entropy in the -dimensional space. The fact that the surfaces fill this
space without intersecting ensures that  is a state function for equilibrium states, because any point in this space represents an
equilibrium state and also lies on a single reversible adiabatic surface with a definite value of .
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Figure 4.9 A family of reversible adiabatic curves (two-dimensional
reversible adiabatic surfaces) for an ideal gas with  and  as
independent variables. A reversible adiabatic process moves the state of
the system along a curve, whereas a reversible process with positive heat
moves the state from one curve to another above and to the right. The
curves are calculated for  and . Adjacent
curves differ in entropy by .

We know the entropy function must exist, because the reversible adiabatic surfaces exist. For instance, Fig. 4.9 shows a family of
these surfaces for a closed system of a pure substance in a single phase. In this system,  is equal to 2, and the surfaces are two-
dimensional curves. Each curve is a contour of constant . At this stage in the derivation, our assignment of values of  to the
different curves is entirely arbitrary.

How can we assign a unique value of  to each reversible adiabatic surface? We can order the values by letting a reversible process
with positive one-way heat, which moves the point for the state to a new surface, correspond to an increase in the value of .
Negative one-way heat will then correspond to decreasing . We can assign an arbitrary value to the entropy on one particular
reversible adiabatic surface. (The third law of thermodynamics is used for this purpose—see Sec. 6.1.) Then all that is needed to
assign a value of  to each equilibrium state is a formula for evaluating the difference in the entropies of any two surfaces.

Figure 4.10 Reversible paths in –  space. The thin curves are
reversible adiabatic surfaces.  
(a) Two paths connecting the same pair of reversible adiabatic surfaces.  
(b) A cyclic path.

Consider a reversible process with positive one-way heat that changes the system from state A to state B. The path for this process
must move the system from a reversible adiabatic surface of a certain entropy to a different surface of greater entropy. An example
is the path A B in Fig. 4.10(a). (The adiabatic surfaces in this figure are actually two-dimensional curves.) As before, we combine
the experimental system with a Carnot engine to form a supersystem that exchanges heat with a single heat reservoir of constant
temperature . The net heat entering the supersystem, found by integrating Eq. 4.4.1, is

and it is positive.

Suppose the same experimental system undergoes a second reversible process, not necessarily with one-way heat, along a different
path connecting the same pair of reversible adiabatic surfaces. This could be path C D in Fig. 4.10(a). The net heat entering the
supersystem during this second process is :

V T

n = 1 mol = (3/2)RCV,m

1 J K−1

N

S S

S

S

S

S

V T

→

Tres

=q ′ Tres ∫
B

A

dq

Tb
(4.4.4)

→

q ′′

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20664?pdf


4.4.5 https://chem.libretexts.org/@go/page/20664

We can then devise a cycle of the supersystem in which the experimental system undergoes the reversible path A B D C A,
as shown in Fig. 4.10(b). Step A B is the first process described above, step D C is the reverse of the second process described
above, and steps B D and C A are reversible and adiabatic. The net heat entering the supersystem in the cycle is . In the
reverse cycle the net heat is . In both of these cycles the heat is exchanged with a single heat reservoir; therefore, according
to the Kelvin–Planck statement, neither cycle can have positive net heat. Therefore  and  must be equal, and Eqs. 4.4.4 and
4.4.5 then show the integral  has the same value when evaluated along either of the reversible paths from the lower to the
higher entropy surface.

Note that since the second path (C D) does not necessarily have one-way heat, it can take the experimental system through any
sequence of intermediate entropy values, provided it starts at the lower entropy surface and ends at the higher. Furthermore, since
the path is reversible, it can be carried out in reverse resulting in reversal of the signs of  and .

It should now be apparent that a satisfactory formula for defining the entropy change of a reversible process in a closed system is

This formula satisfies the necessary requirements: it makes the value of  positive if the process has positive one-way heat,
negative if the process has negative one-way heat, and zero if the process is adiabatic. It gives the same value of  for any
reversible change between the same two reversible adiabatic surfaces, and it makes the sum of the  values of several
consecutive reversible processes equal to  for the overall process.

In Eq. 4.4.6,  is the entropy change when the system changes from one arbitrary equilibrium state to another. If the change is an
infinitesimal path element of a reversible process, the equation becomes

It is common to see this equation written in the form , where  denotes an infinitesimal quantity of heat in a
reversible process.

In Eq. 4.4.7, the quantity  is called an integrating factor for , a factor that makes the product  be the
infinitesimal change of a state function. The quantity , where  is any nonzero constant, would also be a
satisfactory integrating factor; so the definition of entropy, using , is actually one of an infinite number of
possible choices for assigning values to the reversible adiabatic surfaces.

4.4.3 Some properties of the entropy 

It is not difficult to show that the entropy of a closed system in an equilibrium state is an extensive property. Suppose a system of
uniform temperature  is divided into two closed subsystems A and B. When a reversible infinitesimal change occurs, the entropy
changes of the subsystems are  and  and of the system . But  is the sum of  and 

, which gives . Thus, the entropy changes are additive, so that entropy must be extensive: .
(The argument is not quite complete, because we have not shown that when each subsystem has an entropy of zero, so does the
entire system. The zero of entropy will be discussed in Sec. 6.1.)

How can we evaluate the entropy of a particular equilibrium state of the system? We must assign an arbitrary value to one state and
then evaluate the entropy change along a reversible path from this state to the state of interest using .

We may need to evaluate the entropy of a nonequilibrium state. To do this, we imagine imposing hypothetical internal constraints
that change the nonequilibrium state to a constrained equilibrium state with the same internal structure. Some examples of such
internal constraints were given in Sec. 2.4.4, and include rigid adiabatic partitions between phases of different temperature and
pressure, semipermeable membranes to prevent transfer of certain species between adjacent phases, and inhibitors to prevent
chemical reactions.
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We assume that we can, in principle, impose or remove such constraints reversibly without heat, so there is no entropy change. If
the nonequilibrium state includes macroscopic internal motion, the imposition of internal constraints involves negative reversible
work to bring moving regions of the system to rest. This concept amounts to defining the entropy of a state with macroscopic
internal motion to be the same as the entropy of a state with the same internal structure but without the motion, i.e., the same state
frozen in time. By this definition,  for a purely mechanical process (Sec. 3.2.3) is zero.

If the system is nonuniform over its extent, the internal constraints will partition it into practically-uniform regions whose entropy
is additive. The entropy of the nonequilibrium state is then found from  using a reversible path that changes the
system from an equilibrium state of known entropy to the constrained equilibrium state with the same entropy as the state of
interest. This procedure allows every possible state (at least conceptually) to have a definite value of .

This page titled 4.4: Derivation of the Mathematical Statement of the Second Law is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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4.5: Irreversible Processes
We know that during a reversible process of a closed system, each infinitesimal entropy change  is equal to  and the finite
change  is equal to the integral —but what can we say about  and  for an irreversible process?

The derivation of this section will show that for an infinitesimal irreversible change of a closed system,  is greater than ,
and for an entire process  is greater than . That is, the equalities that apply to a reversible process are replaced, for an
irreversible process, by inequalities.

The derivation begins with irreversible processes that are adiabatic, and is then extended to irreversible processes in general.

4.5.1 Irreversible adiabatic processes 
Consider an arbitrary irreversible adiabatic process of a closed system starting with a particular initial state A. The final state B
depends on the path of this process. We wish to investigate the sign of the entropy change . Our reasoning will depend on
whether or not there is work during the process.

If there is work along any infinitesimal path element of the irreversible adiabatic process ( ), we know from experience that
this work would be different if the work coordinate or coordinates were changing at a different rate, because energy dissipation
from internal friction would then be different. In the limit of infinite slowness, an adiabatic process with initial state A and the same
change of work coordinates would become reversible, and the net work and final internal energy would differ from those of the
irreversible process. Because the final state of the reversible adiabatic process is different from B, there is no reversible adiabatic
path with work between states A and B.

All states of a reversible process, including the initial and final states, must be equilibrium states. There is therefore
a conceptual difficulty in considering reversible paths between two states if either of these states are nonequilibrium
states. In such a case we will assume that the state has been replaced by a constrained equilibrium state of the same
entropy as described in Sec. 4.4.3.

If, on the other hand, there is no work along any infinitesimal path element of the irreversible adiabatic process ( ), the
process is taking place at constant internal energy  in an isolated system. A reversible limit cannot be reached without heat or
work (Sec. 3.2.1). Thus any reversible adiabatic change from state A would require work, causing a change of  and preventing
the system from reaching state B by any reversible adiabatic path.

So regardless of whether or not an irreversible adiabatic process A B involves work, there is no reversible adiabatic path between
A and B. The only reversible paths between these states must be nonadiabatic. It follows that the entropy change , given by
the value of  integrated over a reversible path from A to B, cannot be zero.

Next we ask whether  could be negative. In each infinitesimal path element of the irreversible adiabatic process A B, 
is zero and the integral  along the path of this process is zero. Suppose the system completes a cycle by returning along
a different, reversible path from state B back to state A. The Clausius inequality (Eq. 4.4.3) tells us that in this case the integral 

 along the reversible path cannot be positive. But this integral for the reversible path is equal to , so 
cannot be negative.

We conclude that because the entropy change of the irreversible adiabatic process A B cannot be zero, and it cannot be negative,
it must be positive.

In this derivation, the initial state A is arbitrary and the final state B is reached by an irreversible adiabatic process. If the two states
are only infinitesimally different, then the change is infinitesimal. Thus for an infinitesimal change that is irreversible and
adiabatic,  must be positive.

4.5.2 Irreversible processes in general 
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Figure 4.11 Supersystem including the experimental system, a Carnot
engine (square box), and a heat reservoir. The dashed rectangle indicates
the boundary of the supersystem.

To treat an irreversible process of a closed system that is nonadiabatic, we proceed as follows. As in Sec. 4.4.1, we use a Carnot
engine for heat transfer across the boundary of the experimental system. We move the boundary of the supersystem of Fig. 4.8 so
that the supersystem now includes the experimental system, the Carnot engine, and a heat reservoir of constant temperature , as
depicted in Fig. 4.11. During an irreversible change of the experimental system, the Carnot engine undergoes many infinitesimal
cycles. During each cycle, the Carnot engine exchanges heat  at temperature  with the heat reservoir and heat  at
temperature  with the experimental system, as indicated in the figure. We use the sign convention that  is positive if heat is
transferred to the Carnot engine, and  is positive if heat is transferred to the experimental system, in the directions of the arrows
in the figure.

The supersystem exchanges work, but not heat, with its surroundings. During one infinitesimal cycle of the Carnot engine, the net
entropy change of the Carnot engine is zero, the entropy change of the experimental system is , the heat transferred between the
Carnot engine and the experimental system is , and the heat transferred between the heat reservoir and the Carnot engine is given
by  (Eq. 4.4.1). The heat transfer between the heat reservoir and Carnot engine is reversible, so the entropy
change of the heat reservoir is

The entropy change of the supersystem is the sum of the entropy changes of its parts:

The process within the supersystem is adiabatic and includes an irreversible change within the experimental system, so according
to the conclusions of Sec. 4.5.1,  is positive. Equation 4.5.2 then shows that , the infinitesimal entropy change during the
irreversible change of the experimental system, must be greater than :

This relation includes the case of an irreversible adiabatic change, because it shows that if  is zero,  is greater than zero.

By integrating both sides of Eq. 4.5.3 between the initial and final states of the irreversible process, we obtain a relation for the
finite entropy change corresponding to many infinitesimal cycles of the Carnot engine:

This page titled 4.5: Irreversible Processes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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4.6: Applications
The lengthy derivation in Secs. 4.3–4.5 is based on the Kelvin–Planck statement describing the impossibility of converting
completely into work the energy transferred into the system by heat from a single heat reservoir. The derivation has now given us
all parts of the mathematical statement of the second law shown in the box in Sec. 4.2. The mathematical statement includes an
equality, , that applies to an infinitesimal reversible change, and an inequality, , that applies to an
infinitesimal irreversible change. It is convenient to combine the equality and inequality in a single relation that is a general
mathematical statement of the second law:

The inequality refers to an irreversible change and the equality to a reversible change, as indicated by the notation  in the
conditions of validity. The integrated form of this relation is

During a reversible process, the states are equilibrium states and the temperature is usually uniform throughout the system. The
only exception is if the system happens to have internal adiabatic partitions that allow phases of different temperatures in an
equilibrium state. When the process is reversible and the temperature is uniform, we can replace  by .

The rest of Sec. 4.6 will apply Eqs. 4.6.1 and 4.6.2 to various reversible and irreversible processes.

4.6.1 Reversible heating 

The definition of the heat capacity  of a closed system is given by Eq. 3.1.9: . For reversible heating or cooling of a
homogeneous phase,  is equal to  and we can write

where  should be replaced by  if the volume is constant, or by  if the pressure is constant (Sec. 3.1.5). If the heat capacity
has a constant value over the temperature range from  to , the equation becomes

Heating increases the entropy, and cooling decreases it.

4.6.2 Reversible expansion of an ideal gas 
When the volume of an ideal gas, or of any other fluid, is changed reversibly and adiabatically, there is of course no entropy
change.

When the volume of an ideal gas is changed reversibly and isothermally, there is expansion work given by 
(Eq. 3.5.1). Since the internal energy of an ideal gas is constant at constant temperature, there must be heat of equal magnitude and
opposite sign: . The entropy change is therefore

Isothermal expansion increases the entropy, and isothermal compression decreases it.

Since the change of a state function depends only on the initial and final states, Eq. 4.6.5 gives a valid expression for  of an
ideal gas under the less stringent condition ; it is not necessary for the intermediate states to be equilibrium states of the
same temperature.
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4.6.3 Spontaneous changes in an isolated system 

An isolated system is one that exchanges no matter or energy with its surroundings. Any change of state of an isolated system that
actually occurs is spontaneous, and arises solely from conditions within the system, uninfluenced by changes in the surroundings—
the process occurs by itself, of its own accord. The initial state and the intermediate states of the process must be nonequilibrium
states, because by definition an equilibrium state would not change over time in the isolated system.

Unless the spontaneous change is purely mechanical, it is irreversible. According to the second law, during an infinitesimal change
that is irreversible and adiabatic, the entropy increases. For the isolated system, we can therefore write

In later chapters, the inequality of Eq. 4.6.6 will turn out to be one of the most useful for deriving conditions for spontaneity and
equilibrium in chemical systems: The entropy of an isolated system continuously increases during a spontaneous, irreversible
process until it reaches a maximum value at equilibrium.

If we treat the universe as an isolated system (although cosmology provides no assurance that this is a valid concept), we can say
that as spontaneous changes occur in the universe, its entropy continuously increases. Clausius summarized the first and second
laws in a famous statement: Die Energie der Welt ist constant; die Entropie der Welt strebt einem Maximum zu (the energy of the
universe is constant; the entropy of the universe strives toward a maximum).

4.6.4 Internal heat flow in an isolated system 
Suppose the system is a solid body whose temperature initially is nonuniform. Provided there are no internal adiabatic partitions,
the initial state is a nonequilibrium state lacking internal thermal equilibrium. If the system is surrounded by thermal insulation, and
volume changes are negligible, this is an isolated system. There will be a spontaneous, irreversible internal redistribution of thermal
energy that eventually brings the system to a final equilibrium state of uniform temperature.

In order to be able to specify internal temperatures at any instant, we treat the system as an assembly of phases, each having a
uniform temperature that can vary with time. To describe a region that has a continuous temperature gradient, we approximate the
region with a very large number of very small phases or parcels, each having a temperature infinitesimally different from its
neighbors.

We use Greek letters to label the phases. The temperature of phase  at any given instant is . We can treat each phase as a
subsystem with a boundary across which there can be energy transfer in the form of heat. Let  represent an infinitesimal
quantity of heat transferred during an infinitesimal interval of time to phase  from phase . The heat transfer, if any, is to the
cooler from the warmer phase. If phases  and  are in thermal contact and  is less than , then  is positive; if the phases
are in thermal contact and  is greater than ,  is negative; and if neither of these conditions is satisfied,  is zero.

To evaluate the entropy change, we need a reversible path from the initial to the final state. The net quantity of heat transferred to
phase  during an infinitesimal time interval is . The entropy change of phase  is the same as it would be for
the reversible transfer of this heat from a heat reservoir of temperature : . The entropy change of the entire
system along the reversible path is found by summing over all phases:

There is also the condition of quantitative energy transfer, , which we use to rewrite Eq. 4.6.7 in the form

Consider an individual term of the sum on the right side of Eq. 4.6.8 that has a nonzero value of  due to finite heat transfer
between phases  and . If  is less than , then both  and  are positive. If, on the other hand,  is
greater than , both  and  are negative. Thus each term of the sum is either zero or positive, and as long as
phases of different temperature are present,  is positive.

This derivation shows that during a spontaneous thermal equilibration process in an isolated system, starting with any initial
distribution of the internal temperatures, the entropy continuously increases until the system reaches a state of thermal equilibrium

dS > 0 (4.6.6)
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with a single uniform temperature throughout. The result agrees with Eq. 4.6.6. Harvey S. Leff (Am. J. Phys., 45, 252–254, 1977)
obtains the same result by a more complicated derivation.

4.6.5 Free expansion of a gas 

Consider the free expansion of a gas shown in Fig. 3.8. The system is the gas. Assume that the vessel walls are rigid and adiabatic,
so that the system is isolated. When the stopcock between the two vessels is opened, the gas expands irreversibly into the vacuum
without heat or work and at constant internal energy. To carry out the same change of state reversibly, we confine the gas at its
initial volume and temperature in a cylinder-and-piston device and use the piston to expand the gas adiabatically with negative
work. Positive heat is then needed to return the internal energy reversibly to its initial value. Because the reversible path has
positive heat, the entropy change is positive.

This is an example of an irreversible process in an isolated system for which a reversible path between the initial and final states
has both heat and work.

4.6.6 Adiabatic process with work 

In general (Sec. 3.10), an adiabatic process with a given initial equilibrium state and a given change of a work coordinate has the
least positive or most negative work in the reversible limit. Consider an irreversible adiabatic process with work . The same
change of state can be accomplished reversibly by the following two steps: (1) a reversible adiabatic change of the work coordinate
with work , followed by (2) reversible transfer of heat  with no further change of the work coordinate. Since  is
algebraically less than ,  must be positive in order to make  the same in the irreversible and reversible paths. The
positive heat increases the entropy along the reversible path, and consequently the irreversible adiabatic process has a positive
entropy change. This conclusion agrees with the second-law inequality of Eq. 4.6.1.

This page titled 4.6: Applications is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source
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4.7: Summary
Some of the important terms and definitions discussed in this chapter are as follows.

The derivation of the mathematical statement of the second law shows that during a reversible process of a closed system, the
infinitesimal quantity  equals the infinitesimal change of a state function called the entropy, . Here  is heat
transferred at the boundary where the temperature is .

In each infinitesimal path element of a process of a closed system,  is equal to  if the process is reversible, and is
greater than  if the process is irreversible, as summarized by the relation .

The second law establishes no general relation between entropy changes and heat in an open system, or for an impossible
process. The entropy of an open system may increase or decrease depending on whether matter enters or leaves. It is possible to
imagine different impossible processes in which  is less than, equal to, and greater than .

This page titled 4.7: Summary is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source
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4.8: The Statistical Interpretation of Entropy
Because entropy is such an important state function, it is natural to seek a description of its meaning on the microscopic level.

Entropy is sometimes said to be a measure of “disorder.” According to this idea, the entropy increases whenever a closed system
becomes more disordered on a microscopic scale. This description of entropy as a measure of disorder is highly misleading. It does
not explain why entropy is increased by reversible heating at constant volume or pressure, or why it increases during the reversible
isothermal expansion of an ideal gas. Nor does it seem to agree with the freezing of a supercooled liquid or the formation of
crystalline solute in a supersaturated solution; these processes can take place spontaneously in an isolated system, yet are
accompanied by an apparent decrease of disorder.

Thus we should not interpret entropy as a measure of disorder. We must look elsewhere for a satisfactory microscopic
interpretation of entropy.

A rigorous interpretation is provided by the discipline of statistical mechanics, which derives a precise expression for entropy
based on the behavior of macroscopic amounts of microscopic particles. Suppose we focus our attention on a particular
macroscopic equilibrium state. Over a period of time, while the system is in this equilibrium state, the system at each instant is in a
microstate, or stationary quantum state, with a definite energy. The microstate is one that is accessible to the system—that is, one
whose wave function is compatible with the system’s volume and with any other conditions and constraints imposed on the system.
The system, while in the equilibrium state, continually jumps from one accessible microstate to another, and the macroscopic state
functions described by classical thermodynamics are time averages of these microstates.

The fundamental assumption of statistical mechanics is that accessible microstates of equal energy are equally probable, so that the
system while in an equilibrium state spends an equal fraction of its time in each such microstate. The statistical entropy of the
equilibrium state then turns out to be given by the equation

where  is the Boltzmann constant ,  is the number of accessible microstates, and  is a constant.

In the case of an equilibrium state of a perfectly-isolated system of constant internal energy , the accessible microstates are the
ones that are compatible with the constraints and whose energies all have the same value, equal to the value of .

It is more realistic to treat an equilibrium state with the assumption the system is in thermal equilibrium with an external constant-
temperature heat reservoir. The internal energy then fluctuates over time with extremely small deviations from the average value 

, and the accessible microstates are the ones with energies close to this average value. In the language of statistical mechanics,
the results for an isolated system are derived with a microcanonical ensemble, and for a system of constant temperature with a
canonical ensemble.

A change  of the statistical entropy function given by Eq. 4.8.1 is the same as the change  of the macroscopic second-law
entropy, because the derivation of Eq. 4.8.1 is based on the macroscopic relation  with  and 

 given by statistical theory. If the integration constant  is set equal to zero,  becomes the third-law entropy  to be
described in Chap. 6.

Equation 4.8.1 shows that a reversible process in which entropy increases is accompanied by an increase in the number of
accessible microstates of equal, or nearly equal, internal energies. This interpretation of entropy increase has been described as the
spreading and sharing of energy (Harvey S. Leff, Am. J. Phys., 64, 1261–1271, 1996) and as the dispersal of energy (Frank L.
Lambert, J. Chem. Educ., 79, 1241–1246, 2002). It has even been proposed that entropy should be thought of as a “spreading
function” with its symbol  suggesting spreading (Frank L. Lambert and Harvey S. Leff, J. Chem. Educ., 86, 94–98, 2009). The
symbol  for entropy seems originally to have been an arbitrary choice by Clausius.
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4.9: Chapter 4 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I. 
4.1 Explain why an electric refrigerator, which transfers energy by means of heat from the cold food storage compartment to the
warmer air in the room, is not an impossible "Clausius device."

4.2 A system consisting of a fixed amount of an ideal gas is maintained in thermal equilibrium with a heat reservoir at temperature 
. The system is subjected to the following isothermal cycle:

1. The gas, initially in an equilibrium state with volume , is allowed to expand into a vacuum and reach a new equilibrium state
of volume .

2. The gas is reversibly compressed from  to . 
For this cycle, find expressions or values for , and 

4.3 In an irreversible isothermal process of a closed system: 
(a) Is it possible for  to be negative? 
(b) Is it possible for  to be less than  ?

4.4 Suppose you have two blocks of copper, each of heat capacity . Initially one block has a uniform temperature
of  and the other . Calculate the entropy change that occurs when you place the two blocks in thermal contact
with one another and surround them with perfect thermal insulation. Is the sign of  consistent with the second law? (Assume the
process occurs at constant volume.)

4.5 Refer to the apparatus shown in Figs.  on page 101 and  on page 103 and described in Probs.  and 3.8. For both
systems, evaluate  for the process that results from opening the stopcock. Also evaluate  for both processes (for the
apparatus in Fig. 3.26, assume the vessels have adiabatic walls). Are your results consistent with the mathematical statement of the
second law? 
Figure 4.13

Figure 

4.6 Figure  shows the walls of a rigid thermally-insulated box (cross hatching). The system is the contents of this box. In the
box is a paddle wheel immersed in a container of water, connected by a cord and pulley to a weight of mass . The weight rests on
a stop located a distance  above the bottom of the box. Assume the heat capacity of the system, , is independent of
temperature. Initially the system is in an equilibrium state at temperature .

When the stop is removed, the weight irreversibly sinks to the bottom of the box, causing the paddle wheel to rotate in the water.
Eventually the system reaches a final equilibrium state with thermal equilibrium. Describe a reversible process with the same
entropy change as this irreversible process, and derive a formula for  in terms of , and .
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CHAPTER OVERVIEW

5: Thermodynamic Potentials
This chapter begins with a discussion of mathematical properties of the total differential of a dependent variable. Three extensive
state functions with dimensions of energy are introduced: enthalpy, Helmholtz energy, and Gibbs energy. These functions, together
with internal energy, are called thermodynamic potentials. (The term thermodynamic potential should not be confused with the
chemical potential, , to be introduced in Sec. 5.2.) Some formal mathematical manipulations of the four thermodynamic potentials
are described that lead to expressions for heat capacities, surface work, and criteria for spontaneity in closed systems.

5.1: Total Differential of a Dependent Variable
5.2: Total Differential of the Internal Energy
5.3: Enthalpy, Helmholtz Energy, and Gibbs Energy
5.4: Closed Systems
5.5: Open Systems
5.6: Expressions for Heat Capacity
5.7: Surface Work
5.8: Criteria for Spontaneity
5.9: Chapter 5 Problems
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5.1: Total Differential of a Dependent Variable
Recall from Sec. 2.4.1 that the state of the system at each instant is defined by a certain minimum number of state functions, the
independent variables. State functions not treated as independent variables are dependent variables. Infinitesimal changes in any of
the independent variables will, in general, cause an infinitesimal change in each dependent variable.

A dependent variable is a function of the independent variables. The total differential of a dependent variable is an expression for
the infinitesimal change of the variable in terms of the infinitesimal changes of the independent variables. As explained in Sec. F.2
of Appendix F, the expression can be written as a sum of terms, one for each independent variable. Each term is the product of a
partial derivative with respect to one of the independent variables and the infinitesimal change of that independent variable. For
example, if the system has two independent variables, and we take these to be  and , the expression for the total differential of
the pressure is

Thus, in the case of a fixed amount of an ideal gas with pressure given by , the total differential of the pressure can be
written

This page titled 5.1: Total Differential of a Dependent Variable is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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5.2: Total Differential of the Internal Energy
For a closed system undergoing processes in which the only kind of work is expansion work, the first law becomes 

. Since it will often be useful to make a distinction between expansion work and other kinds of
work, this e-book will sometimes write the first law in the form

where  is nonexpansion work—that is, any thermodynamic work that is not expansion work.

Consider a closed system of one chemical component (e.g., a pure substance) in a single homogeneous phase. The only kind of
work is expansion work, with  as the work variable. This kind of system has two independent variables (Sec. 2.4.3). During a
reversible process in this system, the heat is , the work is , and an infinitesimal internal energy change is
given by

In the conditions of validity shown next to this equation,  means there is one component (  is the number of components) and
 means there is one phase (  is the number of phases).

The appearance of the intensive variables  and  in Eq. 5.2.2 implies, of course, that the temperature and pressure are uniform
throughout the system during the process. If they were not uniform, the phase would not be homogeneous and there would be more
than two independent variables. The temperature and pressure are strictly uniform only if the process is reversible; it is not
necessary to include “reversible” as one of the conditions of validity.

A real process approaches a reversible process in the limit of infinite slowness. For all practical purposes, therefore, we may apply
Eq. 5.2.2 to a process obeying the conditions of validity and taking place so slowly that the temperature and pressure remain
essentially uniform—that is, for a process in which the system stays very close to thermal and mechanical equilibrium.

Because the system under consideration has two independent variables, Eq. 5.2.2 is an expression for the total differential of 
with  and  as the independent variables. In general, an expression for the differential  of a state function  is a total
differential if

1. Note that the work coordinate of any kind of dissipative work—work without a reversible limit—cannot appear in the
expression for a total differential, because it is not a state function (Sec. 3.10).

As explained in Appendix F, we may identify the coefficient of each term in an expression for the total differential of a state
function as a partial derivative of the function. We identify the coefficients on the right side of Eq. 5.2.2 as follows:

The quantity given by the third partial derivative, , is represented by the symbol  (mu). This quantity is an
intensive state function called the chemical potential.

With these substitutions, Eq. 5.2.4 becomes

and this is a valid expression for the total differential of  under the given conditions.

If a system contains a mixture of  different substances in a single phase, and the system is open so that the amount of each
substance can vary independently, there are  independent variables and the total differential of  can be written

dU = dq +dw = dq − dVpb

dU = dq − dV +dpb w′ (5.2.1)
(closed system)

dw′

V

dq = T dS dw = −p dV

dU = T dS −p dV (5.2.2)
(closed system, C=1,

P =1, d =0)w′

C=1 C

P =1 P

T p

U

S V dX X

T = −p =( )
∂U

∂S V

( )
∂U

∂V S

(5.2.3)

(∂U/∂n)S,V μ

dU = T dS −p dV +μ dn (5.2.5)
(pure substance,

P =1, d =0)w′

U

s

2 +s U

dU = T dS −p dV + d∑
i=1

s

μi ni (5.2.6)
(open system,
P =1, d =0)w′
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The coefficient  is the chemical potential of substance . We identify it as the partial derivative .

The term  on the right side of Eq. 5.2.6 is the reversible work. However, the term  does not equal
the reversible heat as it would if the system were closed. This is because the entropy change  is partly due to
the entropy of the matter transferred across the boundary. It follows that the remaining term, 
(sometimes called the “chemical work”), should not be interpreted as the energy brought into the system by the
transfer of matter.

Suppose that in addition to expansion work, other kinds of reversible work are possible. Each work coordinate adds an
additional independent variable. Thus, for a closed system of one component in one phase, with reversible nonexpansion work
given by , the total differential of  becomes

This page titled 5.2: Total Differential of the Internal Energy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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5.3: Enthalpy, Helmholtz Energy, and Gibbs Energy
For the moment we shall confine our attention to closed systems with one component in one phase. The total differential of the
internal energy in such a system is given by Eq. 5.2.2: . The independent variables in this equation,  and ,
are called the natural variables of .

In the laboratory, entropy and volume may not be the most convenient variables to measure and control. Entropy is especially
inconvenient, as its value cannot be measured directly. The way to change the independent variables is to make Legendre
transforms, as explained in Sec. F.4 in Appendix F.

A Legendre transform of a dependent variable is made by subtracting one or more products of conjugate variables. In the total
differential ,  and  are conjugates (that is, they comprise a conjugate pair), and  and  are conjugates.
Thus the products that can be subtracted from  are either  or , or both. Three Legendre transforms of the internal energy
are possible, defined as follows:

These definitions are used whether or not the system has only two independent variables.

The enthalpy, Helmholtz energy, and Gibbs energy are important functions used extensively in thermodynamics. They are state
functions (because the quantities used to define them are state functions) and are extensive (because , , and  are extensive). If
temperature or pressure are not uniform in the system, we can apply the definitions to constituent phases, or to subsystems small
enough to be essentially uniform, and sum over the phases or subsystems.

Alternative names for the Helmholtz energy are Helmholtz function, Helmholtz free energy, and work function.
Alternative names for the Gibbs energy are Gibbs function and Gibbs free energy. Both the Helmholtz energy and
Gibbs energy have been called simply free energy, and the symbol  has been used for both. The nomenclature in
this e-book follows the recommendations of the IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and
Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007).

Expressions for infinitesimal changes of , , and  are obtained by applying the rules of differentiation to their defining
equations:

These expressions for , , and  are general expressions for any system or phase with uniform  and . They are not total
differentials of , , and , as the variables in the differentials in each expression are not independent.

A useful property of the enthalpy in a closed system can be found by replacing  in Eq. 5.3.4 by the first law expression 
, to obtain . Thus, in a process at constant pressure ( ) with expansion work only

( ), we have

The enthalpy change under these conditions is equal to the heat. The integrated form of this relation is , or

Equation 5.3.7 is analogous to the following relation involving the internal energy, obtained from the first law:

dU = T dS −p dV S V

U

dU = T dS −p dV T S −p V

U T S −pV

Enthalpy H U +pV=
def

(5.3.1)

Helmholtz energy A U −T S=
def

(5.3.2)

Gibbs energy G U −T S +pV = H −T S=
def

(5.3.3)

U S V

F

H A G

dH = dU +p dV +V dp (5.3.4)

dA = dU −T dS −S dT (5.3.5)

dG = dU −T dS −S dT +p dV +V dp (5.3.6)

dH dA dG T p

H A G

dU

dq −p dV +dw′ dH = dq +V dp +dw′ dp = 0

d =0w′

dH = dq (5.3.7)
(closed system, constant p,

d =0)w′

∫dH = ∫dq

ΔH = q (5.3.8)
(closed system, constant p,

=0)w′
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That is, in a process at constant volume with expansion work only, the internal energy change is equal to the heat.
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dU = dq (5.3.9)
(closed system, constant V ,

d =0)w′
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5.4: Closed Systems
In order to find expressions for the total differentials of , , and  in a closed system with one component in one phase, we must
replace  in Eqs. 5.3.4–5.3.6 with

to obtain

Equations 5.4.1–5.4.4 are sometimes called the Gibbs equations. They are expressions for the total differentials of the
thermodynamic potentials , , , and  in closed systems of one component in one phase with expansion work only. Each
equation shows how the dependent variable on the left side varies as a function of changes in two independent variables (the
natural variables of the dependent variable) on the right side.

By identifying the coefficients on the right side of Eqs. 5.4.1–5.4.4, we obtain the following relations (which again are valid for a
closed system of one component in one phase with expansion work only):

from Eq. 5.4.1:

from Eq. 5.4.2:

from Eq. 5.4.3:

from Eq. 5.4.4:

This e-book now uses for the first time an extremely useful mathematical tool called the reciprocity relation of a total differential
(Sec. F.2). Suppose the independent variables are  and  and the total differential of a dependent state function  is given by

where  and  are functions of  and . Then the reciprocity relation is

H A G

dU

dU = T dS −p dV (5.4.1)

dH = T dS +V dp (5.4.2)

dA = −S dT −p dV (5.4.3)

dG = −S dT +V dp (5.4.4)

U H A G

= T( )
∂U

∂S V

(5.4.5)

= −p( )
∂U

∂V S

(5.4.6)

= T( )
∂H

∂S p

(5.4.7)

= V( )
∂H

∂p S

(5.4.8)

= −S( )
∂A

∂T V

(5.4.9)

= −p( )
∂A

∂V T

(5.4.10)

= −S( )
∂G

∂T p

(5.4.11)

= V( )
∂G

∂p T

(5.4.12)

x y f

df = a dx +b dy (5.4.13)

a b x y

=( )
∂a

∂y x

( )
∂b

∂x y

(5.4.14)
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The reciprocity relations obtained from the Gibbs equations (Eqs. 5.4.1–5.4.4) are called Maxwell relations (again valid for a
closed system with , , and ):

from Eq. 5.4.1:

from Eq. 5.4.2:

from Eq. 5.4.3:

from Eq. 5.4.4:
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∂S V
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∂p S
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∂V

∂S p

(5.4.16)

=( )
∂S

∂V T
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∂p

∂T V

(5.4.17)

− =( )
∂S
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5.5: Open Systems
An open system of one substance in one phase, with expansion work only, has three independent variables. The total differential of 

 is given by Eq. 5.2.5:

In this open system the natural variables of  are , , and . Substituting this expression for  into the expressions for , 
, and  given by Eqs. 5.3.4–5.3.6, we obtain the following total differentials:

Note that these are the same as the four Gibbs equations (Eqs. 5.4.1–5.4.4) with the addition of a term  to allow for a change in
the amount of substance.

Identification of the coefficient of the last term on the right side of each of these equations shows that the chemical potential can be
equated to four different partial derivatives:

All four of these partial derivatives must have the same value for a given state of the system; the value, of course, depends on what
that state is.

The last partial derivative on the right side of Eq. 5.5.5, , is especially interesting because it is the rate at which the
Gibbs energy increases with the amount of substance added to a system whose intensive properties remain constant. Thus,  is
revealed to be equal to , the molar Gibbs energy of the substance.

Suppose the system contains several substances or species in a single phase (a mixture) whose amounts can be varied
independently. We again assume the only work is expansion work. Then, making use of Eq. 5.2.6, we find the total differentials of
the thermodynamic potentials are given by

The independent variables on the right side of each of these equations are the natural variables of the corresponding
thermodynamic potential. Section F.4 shows that all of the information contained in an algebraic expression for a state function is
preserved in a Legendre transform of the function. What this means for the thermodynamic potentials is that an expression for any
one of them, as a function of its natural variables, can be converted to an expression for each of the other thermodynamic potentials
as a function of its natural variables.

Willard Gibbs, after whom the Gibbs energy is named, called Eqs. 5.5.6–5.5.9 the fundamental equations of thermodynamics,
because from any single one of them not only the other thermodynamic potentials but also all thermal, mechanical, and chemical
properties of the system can be deduced (J. Willard Gibbs, in Henry Andrews Bumstead and Ralph Gibbs Van Name, editors, The
Scientific Papers of J. Willard Gibbs, Vol. I, Ox Bow Press, Woodbridge, Connecticut, 1993, p. 86). Problem 5.4 illustrates this
useful application of the total differential of a thermodynamic potential.

In Eqs. 5.5.6–5.5.9, the coefficient  is the chemical potential of species . The equations show that  can be equated to four
different partial derivatives, similar to the equalities shown in Eq. 5.5.5 for a pure substance:

U

dU = T dS −p dV +μ dn (5.5.1)

U S V n dU dH

dA dG

dH = T dS +V dp +μ dn (5.5.2)

dA = −S dT −p dV +μ dn (5.5.3)

dG = −S dT +V dp +μ dn (5.5.4)

μ dn

μ = = = =( )
∂U

∂n S,V

( )
∂H

∂n S,p

( )
∂A

∂n T ,V

( )
∂G

∂n T ,p

(5.5.5)

(∂G/∂n)T ,p

μ

Gm

dU = T dS −p dV + d∑
i

μi ni (5.5.6)

dH = T dS +V dp + d∑
i

μi ni (5.5.7)

dA = −S dT −p dV + d∑
i

μi ni (5.5.8)

dG = −S dT +V dp + d∑
i

μi ni (5.5.9)

μi i μi
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The partial derivative  is called the partial molar Gibbs energy of species , another name for the chemical
potential as will be discussed in Sec. 9.2.6.

This page titled 5.5: Open Systems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source
content that was edited to the style and standards of the LibreTexts platform.
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5.6: Expressions for Heat Capacity
As explained in Sec. 3.1.5, the heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of heat
transferred across the boundary under specified conditions and the resulting infinitesimal temperature change: 

. The heat capacities of isochoric (constant volume) and isobaric (constant pressure) processes are of
particular interest.

The heat capacity at constant volume, , is the ratio  for a process in a closed constant-volume system with no
nonexpansion work—that is, no work at all. The first law shows that under these conditions the internal energy change equals the
heat:  (Eq. 5.3.9). We can replace  by  and write  as a partial derivative:

If the closed system has more than two independent variables, additional conditions are needed to define 
unambiguously. For instance, if the system is a gas mixture in which reaction can occur, we might specify that the
system remains in reaction equilibrium as  changes at constant .

Equation 5.6.1 does not require the condition , because all quantities appearing in the equation are state
functions whose relations to one another are fixed by the nature of the system and not by the path. Thus, if heat
transfer into the system at constant  causes  to increase at a certain rate with respect to , and this rate is
defined as , the performance of electrical work on the system at constant  will cause the same rate of increase
of  with respect to  and can equally well be used to evaluate .

Note that  is a state function whose value depends on the state of the system—that is, on , , and any additional independent
variables.  is an extensive property: the combination of two identical phases has twice the value of  that one of the phases has
by itself.

For a phase containing a pure substance, the molar heat capacity at constant volume is defined by .  is an
intensive property.

If the system is an ideal gas, its internal energy depends only on , regardless of whether  is constant, and Eq. 5.6.1 can be
simplified to

Thus the internal energy change of an ideal gas is given by , as mentioned earlier in Sec. 3.5.3.

The heat capacity at constant pressure, , is the ratio  for a process in a closed system with a constant, uniform pressure
and with expansion work only. Under these conditions, the heat  is equal to the enthalpy change  (Eq. 5.3.7), and we obtain a
relation analogous to Eq. 5.6.1:

 is an extensive state function. For a phase containing a pure substance, the molar heat capacity at constant pressure is 
, an intensive property.

Since the enthalpy of a fixed amount of an ideal gas depends only on  (Prob. 5.1), we can write a relation analogous to Eq. 5.6.2:

This page titled 5.6: Expressions for Heat Capacity is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
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heat capacity dq/ dT=
def

CV dq/ dT

dU = dq dq dU CV

=CV ( )
∂U

∂T V

(5.6.1)
(closed system)
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U T CV

CV T V

CV CV
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dU
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(5.6.2)

(closed system, ideal gas)

dU = dTCV

Cp dq/ dT

dq dH

=Cp ( )
∂H

∂T p

(5.6.3)
(closed system)
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T
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dH
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(closed system, ideal gas)
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5.7: Surface Work
Sometimes we need more than the usual two independent variables to describe an equilibrium state of a closed system of one
substance in one phase. This is the case when, in addition to expansion work, another kind of work is possible. The total differential
of  is then given by  (Eq. 5.2.7), where  represents the nonexpansion work .

A good example of this situation is surface work in a system in which surface area is relevant to the description of the state.

A liquid–gas interface behaves somewhat like a stretched membrane. The upper and lower surfaces of the liquid film in the device
depicted in Fig. 5.1 exert a force  on the sliding rod, tending to pull it in the direction that reduces the surface area. We can
measure the force by determining the opposing force  needed to prevent the rod from moving. This force is found to be
proportional to the length of the rod and independent of the rod position . The force also depends on the temperature and pressure.

The surface tension or interfacial tension, , is the force exerted by an interfacial surface per unit length. The film shown in Fig.
5.1 has two surfaces, so we have  where  is the rod length.

To increase the surface area of the film by a practically-reversible process, we slowly pull the rod to the right in the  direction.
The system is the liquid. The  component of the force exerted by the system on the surroundings at the moving boundary, , is
equal to  (  is positive and  is negative). The displacement of the rod results in surface work given by Eq. 3.1.2: 

. The increase in surface area, , is , so the surface work is  where  is the work
coefficient and  is the work coordinate. Equation 5.2.7 becomes

Substitution into Eq. 5.3.6 gives

which is the total differential of  with , , and  as the independent variables. Identifying the coefficient of the last term on the
right side as a partial derivative, we find the following expression for the surface tension:

That is, the surface tension is not only a force per unit length, but also a Gibbs energy per unit area.

From Eq. 5.7.2, we obtain the reciprocity relation

It is valid to replace the partial derivative on the left side by  because  is independent of . Thus, the variation of
surface tension with temperature tells us how the entropy of the liquid varies with surface area.
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content that was edited to the style and standards of the LibreTexts platform.

U dU = T dS −p dV +Y dX Y dX dw′

F

Fext

x

γ

γ = F /2l l

+x

x F sys
x

−F F F sys
x

d = − dx = 2γl dxw′ F sys
x dAs 2l dx d = γ dw′ As γ

As

dU = T dS −p dV +γ dAs (5.7.1)

dG = −S dT +V dp +γ dAs (5.7.2)

G T p As

γ =( )
∂G

∂As T ,p

(5.7.3)

= −( )
∂γ

∂T p,As

( )
∂S

∂As T ,p

(5.7.4)

(∂γ/∂T )p γ As

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20437?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/05%3A_Thermodynamic_Potentials/5.07%3A_Surface_Work
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/05%3A_Thermodynamic_Potentials/5.07%3A_Surface_Work
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/05%3A_Thermodynamic_Potentials/5.07%3A_Surface_Work?no-cache
https://www2.chem.umd.edu/thermobook


5.8.1 https://chem.libretexts.org/@go/page/20443

5.8: Criteria for Spontaneity
In this section we combine the first and second laws in order to derive some general relations for changes during a reversible or
irreversible process of a closed system. The temperature and pressure will be assumed to be practically uniform during the process,
even if the process is irreversible. For example, the volume might be changing at a finite rate but very slowly, or there might be a
spontaneous homogeneous reaction in a mixture of uniform temperature and pressure.

The second law states that  is equal to  if the process is reversible, and is greater than  if the process is irreversible:

or

The inequalities in these relations refer to an irreversible process and the equalities to a reversible process, as indicated by the
notation .

When we substitute  from Eq. 5.8.2 into the first law in the form , where  is nonexpansion work, we
obtain the relation

We substitute this relation for  into the differentials of enthalpy, Helmholtz energy, and Gibbs energy given by Eqs. 5.3.4–5.3.6
to obtain three more relations:

The last two of these relations provide valuable criteria for spontaneity under common laboratory conditions. Equation 5.8.5 shows
that during a spontaneous irreversible change at constant temperature and volume,  is less than . If the only work is
expansion work (i.e.,  is zero), the Helmholtz energy decreases during a spontaneous process at constant  and  and has its
minimum value when the system reaches an equilibrium state.

Equation 5.8.6 is especially useful. From it, we can conclude the following:

Ben-Amotz and Honig (J. Chem. Phys., 118, 5932–5936, 2003; J. Chem. Educ., 83, 132–137, 2006) developed a “rectification”
procedure that simplifies the mathematical manipulation of inequalities. Following this procedure, we can write

where  is an excess entropy function that is positive for an irreversible change and zero for a reversible change ( ).
Solving for  gives the expression  that, when substituted in the first law expression 

, produces

The equality of this equation is equivalent to the combined equality and inequality of Eq. 5.8.3. Then by substitution of this
expression for  into Eqs. 5.3.4–5.3.6, we obtain equalities equivalent to Eqs. 5.8.4–5.8.6, for example

Equation 5.8.9 tells us that during a process at constant  and , with expansion work only ( ),  has the same sign as 
: negative for an irreversible change and zero for a reversible change.

dS dq/T dq/T

dS ≥ dq/T (5.8.1)
( , closed system) irrev

 rev

dq ≤ T dS (5.8.2)
( , closed system) irrev

 rev

 irrev
 rev

dq dU = dq −p dV +dw′ dw′

dU ≤ T dS −p dV +dw′ (5.8.3)
( , closed system) irrev

 rev

dU

dH ≤ T dS +V dp +dw′ (5.8.4)
( , closed system) irrev

 rev

dA ≤ −S dT −p dV +dw′ (5.8.5)
( , closed system) irrev

 rev

dG ≤ −S dT +V dp +dw′ (5.8.6)
( , closed system) irrev

 rev

dA dw′

dw′ T V

dS = dq/T +dθ (5.8.7)

dθ dθ ≥ 0

dq dq = T dS −T dθ

dU = dq −p dV +dw′

dU = T dS −p dV +d −T dθw′ (5.8.8)

dU

dG = −S dT +V dp +d −T dθw′ (5.8.9)
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5.9: Chapter 5 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

5.1 
Show that the enthalpy of a fixed amount of an ideal gas depends only on the temperature.

5.2 
From concepts in this chapter, show that the heat capacities  and  of a fixed amount of an ideal gas are functions only of .

5.3 
During the reversible expansion of a fixed amount of an ideal gas, each increment of heat is given by the expression 

 (Eq. 4.3.4).

(a) A necessary and sufficient condition for this expression to be an exact differential is that the reciprocity relation must be
satisfied for the independent variables  and  (see Appendix F). Apply this test to show that the expression is not an exact
differential, and that heat therefore is not a state function.

(b) By the same method, show that the entropy increment during the reversible expansion, given by the expression , is
an exact differential, so that entropy is a state function.

5.4

This problem illustrates how an expression for one of the thermodynamic potentials as a function of its natural variables contains
the information needed to obtain expressions for the other thermodynamic potentials and many other state functions.

From statistical mechanical theory, a simple model for a hypothetical “hard-sphere” liquid (spherical molecules of finite size
without attractive intermolecular forces) gives the following expression for the Helmholtz energy with its natural variables , ,
and  as the independent variables:

Here , , and  are constants. Derive expressions for the following state functions of this hypothetical liquid as functions of , ,
and .

(a) The entropy, 

(b) The pressure, 

(c) The chemical potential, 

(d) The internal energy, 

(e) The enthalpy, 

(f) The Gibbs energy, 

(g) The heat capacity at constant volume, 

(h) The heat capacity at constant pressure,  (hint: use the expression for  to solve for  as a function of , , and ; then use 
)

5.6 
Use the data in Table 5.1 to evaluate  at , which is the rate at which the entropy changes with the area of the air–
water interface at this temperature.

5.7 
When an ordinary rubber band is hung from a clamp and stretched with constant downward force  by a weight attached to the
bottom end, gentle heating is observed to cause the rubber band to contract in length. To keep the length  of the rubber band
constant during heating,  must be increased. The stretching work is given by . From this information, find the sign of
the partial derivative ; then predict whether stretching of the rubber band will cause a heating or a cooling effect.

(Hint: make a Legendre transform of  whose total differential has the independent variables needed for the partial derivative, and
write a reciprocity relation.)

CV Cp T

dq = dT +(nRT /V )dVCV

T V

dS = dq/T

T V

n

A = −nRT ln[c ( −b)]−nRT +naT 3/2 V

n
(5.9.1)
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You can check your prediction experimentally by touching a rubber band to the side of your face before and after you rapidly
stretch it.
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1

CHAPTER OVERVIEW

6: The Third Law and Cryogenics
The third law of thermodynamics concerns the entropy of perfectly-ordered crystals at zero kelvins.

When a chemical reaction or phase transition is studied at low temperatures, and all substances are pure crystals presumed to be
perfectly ordered, the entropy change is found to approach zero as the temperature approaches zero kelvins:

Equation 6.0.1 is the mathematical statement of the Nernst heat theorem or third law of thermodynamics. It is true in general only
if each reactant and product is a pure crystal with identical unit cells arranged in perfect spatial order.

Nernst preferred to avoid the use of the entropy function and to use in its place the partial derivative 
(Eq. 5.4.9). The original 1906 version of his heat theorem was in the form  (William H.
Cropper, J. Chem. Educ., 64, 3–8, 1987).

6.1: The Zero of Entropy
6.2: Molar Entropies
6.3: Cryogenics
6.4: Chapter 6 Problem

This page titled 6: The Third Law and Cryogenics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

ΔS = 0lim
T→0

(6.0.1)
(pure, perfectly-ordered crystals)

−(∂A/∂T )V
(∂ΔA/∂T =0limT→0 )V
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6.1: The Zero of Entropy
There is no theoretical relation between the entropies of different chemical elements. We can arbitrarily choose the entropy of every
pure crystalline element to be zero at zero kelvins. Then the experimental observation expressed by Eq. 6.0.1 requires that the
entropy of every pure crystalline compound also be zero at zero kelvins, in order that the entropy change for the formation of a
compound from its elements will be zero at this temperature.

A classic statement of the third law principle appears in the 1923 book Thermodynamics and the Free Energy of Chemical
Substances by G. N. Lewis and M. Randall (McGraw-Hill, New York, p. 448):

“If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temperature: every
substance has a finite positive entropy, but at the absolute zero of temperature the entropy may become zero, and
does so become in the case of perfect crystalline substances.”

According to this principle, every substance (element or compound) in a pure, perfectly-ordered crystal at , at any pressure, has
a molar entropy of zero:

This convention establishes a scale of absolute entropies at temperatures above zero kelvins called third-law entropies, as
explained in Sec. 6.2.

The entropy becomes independent of pressure as  approaches zero kelvins. This behavior can be deduced from the
relation  (Table 7.1) combined with the experimental observation that the cubic expansion
coefficient  approaches zero as  approaches zero kelvins.
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source content that was edited to the style and standards of the LibreTexts platform.
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6.2: Molar Entropies
With the convention that the entropy of a pure, perfectly-ordered crystalline solid at zero kelvins is zero, we can establish the third-
law value of the molar entropy of a pure substance at any temperature and pressure. Absolute values of  are what are usually
tabulated for calculational use.

6.2.1 Third-law molar entropies 
Suppose we wish to evaluate the entropy of an amount  of a pure substance at a certain temperature  and a certain pressure. The
same substance, in a perfectly-ordered crystal at zero kelvins and the same pressure, has an entropy of zero. The entropy at the

temperature and pressure of interest, then, is the entropy change  of a reversible heating process at constant
pressure that converts the perfectly-ordered crystal at zero kelvins to the state of interest.

Consider a reversible isobaric heating process of a pure substance while it exists in a single phase. The definition of heat capacity
as  (Eq. 3.1.9) allows us to substitute  for , where  is the heat capacity of the phase at constant pressure.

If the substance in the state of interest is a liquid or gas, or a crystal of a different form than the perfectly-ordered crystal present at
zero kelvins, the heating process will include one or more equilibrium phase transitions under conditions where two phases are in
equilibrium at the same temperature and pressure (Sec. 2.2.2). For example, a reversible heating process at a pressure above the
triple point that transforms the crystal at  to a gas may involve transitions from one crystal form to another, and also melting and
vaporization transitions.

Each such reversible phase transition requires positive heat . Because the pressure is constant, the heat is equal to the enthalpy
change (Eq. 5.3.8). The ratio  is called the molar heat or molar enthalpy of the transition,  (see Sec. 8.3.1). Because the
phase transition is reversible, the entropy change during the transition is given by  where  is the transition
temperature.

With these considerations, we can write the following expression for the entropy change of the entire heating process:

The resulting operational equation for the calculation of the molar entropy of the substance at the temperature and pressure of
interest is

where  is the molar heat capacity at constant pressure. The summation is over each equilibrium phase transition
occurring during the heating process.

Since  is positive at all temperatures above zero kelvins, and  is positive for all transitions occurring during a reversible
heating process, the molar entropy of a substance is positive at all temperatures above zero kelvins.

The heat capacity and transition enthalpy data required to evaluate  using Eq. 6.2.2 come from calorimetry. The calorimeter
can be cooled to about  with liquid hydrogen, but it is difficult to make measurements below this temperature. Statistical
mechanical theory may be used to approximate the part of the integral in Eq. 6.2.2 between zero kelvins and the lowest temperature
at which a value of  can be measured. The appropriate formula for nonmagnetic nonmetals comes from the Debye theory for
the lattice vibration of a monatomic crystal. This theory predicts that at low temperatures (from  to about ), the molar heat
capacity at constant volume is proportional to : , where  is a constant. For a solid, the molar heat capacities at
constant volume and at constant pressure are practically equal. Thus for the integral on the right side of Eq. 6.2.2 we can, to a good
approximation, write

where  is the lowest temperature at which  is measured. The first term on the right side of Eq. 6.2.3 is

Sm

n T ′

ΔS = dq/T∫
T ′

0

dq/ dT dTCp dq Cp

0 K

qtrs

/nqtrs HΔtrs

S = /nΔtrs qtrs Ttrs Ttrs

ΔS = dT +∑∫
T ′

0

Cp

T

n HΔtrs

Ttrs
(6.2.1)

( ) = = dT +∑Sm T ′ ΔS

n
∫

T ′

0

Cp,m

T

HΔtrs

Ttrs
(6.2.2)

(pure substance,
constant p)

= /nCp,m Cp

Cp,m HΔtrs

( )Sm T ′

10 K

Cp,m

0 K 30 K

T 3 = aCV,m T 3 a

dT = a dT + dT∫
T ′

0

Cp,m

T
∫

T ′′

0

T
2 ∫

T ′

T ′′

Cp,m

T
(6.2.3)

T ′′ Cp,m

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20659?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/06%3A_The_Third_Law_and_Cryogenics/6.02%3A_Molar_Entropies


6.2.2 https://chem.libretexts.org/@go/page/20659

But  is the value of  at , so Eq. 6.2.2 becomes

In the case of a metal, statistical mechanical theory predicts an electronic contribution to the molar heat capacity,
proportional to  at low temperature, that should be added to the Debye  term: . The error in
using Eq. 6.2.5, which ignores the electronic term, is usually negligible if the heat capacity measurements are made
down to about .

We may evaluate the integral on the right side of Eq. 6.2.5 by numerical integration. We need the area under the curve of 
plotted as a function of  between some low temperature, , and the temperature  at which the molar entropy is to be
evaluated. Since the integral may be written in the form

we may also evaluate the integral from the area under a curve of  plotted as a function of .

Ideally, the molar entropy values obtained by the calorimetric (third-law) method for a gas should agree closely with the values
calculated from spectroscopic data. Table 6.1 shows that for some substances this agreement is not present. The table lists values of

 for ideal gases at  evaluated by both the calorimetric and spectroscopic methods. The quantity  in the last column
is the difference between the two  values, and is called the molar residual entropy.

In the case of HCl, the experimental value of the residual entropy is comparable to its uncertainty, indicating good agreement
between the calorimetric and spectroscopic methods. This agreement is typical of most substances, particularly those like HCl
whose molecules are polar and asymmetric with a large energetic advantage of forming perfectly-ordered crystals.

The other substances listed in Table 6.1 have residual entropies that are greater than zero within the uncertainty of the data. What is
the meaning of this discrepancy between the calorimetric and spectroscopic results? We can assume that the true values of  at 

 are the spectroscopic values, because their calculation assumes the solid has only one microstate at , with an entropy
of zero, and takes into account all of the possible accessible microstates of the ideal gas. The calorimetric values, on the other hand,
are based on Eq. 6.2.2 which assumes the solid becomes a perfectly-ordered crystal as the temperature approaches .

The calorimetric values in Table 6.1 were calculated as follows. Measurements of heat capacities and heats of
transition were used in Eq. 6.2.2 to find the third-law value of  for the vapor at the boiling point of the substance
at . This calculated value for the gas was corrected to that for the ideal gas at  and adjusted to 

 with spectroscopic data.

The conventional explanation of a nonzero residual entropy is the presence of random rotational orientations of molecules in the
solid at the lowest temperature at which the heat capacity can be measured, so that the crystals are not perfectly ordered. The
random structure is established as the crystals form from the liquid, and becomes frozen into the crystals as the temperature is
lowered below the freezing point. This tends to happen with almost-symmetric molecules with small dipole moments which in the
crystal can have random rotational orientations of practically equal energy. In the case of solid H O it is the arrangement of
intermolecular hydrogen bonds that is random. Crystal imperfections such as dislocations can also contribute to the residual
entropy. If such crystal imperfection is present at the lowest experimental temperature, the calorimetric value of  for the gas at 

 is the molar entropy increase for the change at  from the imperfectly-ordered solid at  to the ideal gas at 
, and the residual entropy  is the molar entropy of this imperfectly-ordered solid.

This page titled 6.2: Molar Entropies is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
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6.3: Cryogenics
The field of cryogenics involves the production of very low temperatures, and the study of the behavior of matter at these
temperatures. These low temperatures are needed to evaluate third-law entropies using calorimetric measurements. There are some
additional interesting thermodynamic applications.

6.3.1 Joule–Thomson expansion 
A gas can be cooled by expanding it adiabatically with a piston (Sec. 3.5.3), and a liquid can be cooled by pumping on its vapor to
cause evaporation (vaporization). An evaporation procedure with a refrigerant fluid is what produces the cooling in an ordinary
kitchen refrigerator.

For further cooling of a fluid, a common procedure is to use a continuous throttling process in which the fluid is forced to flow
through a porous plug, valve, or other constriction that causes an abrupt drop in pressure. A slow continuous adiabatic throttling of
a gas is called the Joule–Thomson experiment, or Joule–Kelvin experiment, after the two scientists who collaborated between
1852 and 1862 to design and analyze this procedure. (William Thomson later became Lord Kelvin.)

Figure 6.3 illustrates the principle of the technique. The solid curve shows the temperature dependence of the entropy of a
paramagnetic solid in the absence of an applied magnetic field, and the dashed curve is for the solid in a constant, finite magnetic
field. The temperature range shown is from  to approximately . At , the magnetic dipoles are perfectly ordered. The
increase of  shown by the solid curve between  and  is due almost entirely to increasing disorder in the orientations of the
magnetic dipoles as heat enters the system.

Path A represents the process that occurs when the paramagnetic solid, surrounded by gaseous helium in thermal contact with
liquid helium that has been cooled to about , is slowly moved into a strong magnetic field. The process is isothermal
magnetization, which partially orients the magnetic dipoles and reduces the entropy. During this process there is heat transfer to the
liquid helium, which partially boils away. In path B, the thermal contact between the solid and the liquid helium has been broken
by pumping away the gas surrounding the solid, and the sample is slowly moved away from the magnetic field. This step is a
reversible adiabatic demagnetization. Because the process is reversible and adiabatic, the entropy change is zero, which brings the
state of the solid to a lower temperature as shown.

The sign of  is of interest because it tells us the sign of the temperature change during a reversible adiabatic
demagnetization (path B of Fig. 6.3). To change the independent variables in Eq. 6.3.4 to , , and , we define the Legendre
transform

(  is sometimes called the magnetic enthalpy.) From Eqs. 6.3.4 and 6.3.5 we obtain the total differential

From it we find the reciprocity relation

According to Curie’s law of magnetization, the magnetic dipole moment  of a paramagnetic phase at constant magnetic flux
density  is proportional to . This law applies when  is small, but even if  is not small  decreases with increasing .
To increase the temperature of a phase at constant , we allow heat to enter the system, and  then increases. Thus, 

 is negative and, according to Eq. 6.3.7,  must be positive. Adiabatic demagnetization is a constant-
entropy process in which  decreases, and therefore the temperature also decreases.

We can find the sign of the entropy change during the isothermal magnetization process shown as path A in Fig. 6.3. In order to use

, , and  as the independent variables, we define the Legendre transform . Its total differential is

From this total differential, we obtain the reciprocity relation
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Since  at constant  decreases with increasing , as explained above, we see that the entropy change during isothermal
magnetization is negative.

By repeatedly carrying out a procedure of isothermal magnetization and adiabatic demagnetization, starting each stage at the
temperature produced by the previous stage, it has been possible to attain a temperature as low as . The temperature can
be reduced still further, down to 16 microkelvins, by using adiabatic nuclear demagnetization. However, as is evident from the
figure, if in accordance with the third law both of the entropy curves come together at the absolute zero of the kelvin scale, then it
is not possible to attain a temperature of zero kelvins in a finite number of stages of adiabatic demagnetization. This conclusion is
called the principle of the unattainability of absolute zero.

This page titled 6.3: Cryogenics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source
content that was edited to the style and standards of the LibreTexts platform.
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6.4: Chapter 6 Problem
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

6.1 
Calculate the molar entropy of carbon disulfide at  and  from the heat capacity data for the solid in Table 6.2 and the
following data for . At the melting point, , the molar enthalpy of fusion is . The
molar heat capacity of the liquid in the range 161–300 K is described by , where the constants have the values 

 and .

This page titled 6.4: Chapter 6 Problem is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

25.00 C∘ 1 bar

p = 1 bar 161.11 K H = 4.39 × J molΔfus 103 −1

= a +bTCp,m

a = 74.6 J K  mol−1 −1 b = 0.0034 J K  mol−2 −1
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1

CHAPTER OVERVIEW

7: Pure Substances in Single Phases
This chapter applies concepts introduced in earlier chapters to the simplest kind of system, one consisting of a pure substance or a
single component in a single phase. The system has three independent variables if it is open, and two if it is closed. Relations
among various properties of a single phase are derived, including temperature, pressure, and volume. The important concepts of
standard states and chemical potential are introduced.

7.1: Volume Properties
7.2: Internal Pressure
7.3: Thermal Properties
7.4: Heating at Constant Volume or Pressure
7.5: Partial Derivatives with Respect to \(T\), \(p\), and \(V\)
7.6: Isothermal Pressure Changes
7.7: Standard States of Pure Substances
7.8: Chemical Potential and Fugacity
7.9: Standard Molar Quantities of a Gas
7.10: Chapter 7 Problems
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7.1: Volume Properties
Two volume properties of a closed system are defined as follows:

The cubic expansion coefficient is also called the coefficient of thermal expansion and the expansivity coefficient.
Other symbols for the isothermal compressibility are  and .

These definitions show that  is the fractional volume increase per unit temperature increase at constant pressure, and  is the
fractional volume decrease per unit pressure increase at constant temperature. Both quantities are intensive properties. Most
substances have positive values of , and all substances have positive values of , because a pressure increase at constant
temperature requires a volume decrease.

The cubic expansion coefficient is not always positive.  is negative for liquid water below its temperature of
maximum density, . The crystalline ceramics zirconium tungstate (ZrW O ) and hafnium tungstate (HfW
O ) have the remarkable behavior of contracting uniformly and continuously in all three dimensions when they

are heated from  to about ;  is negative throughout this very wide temperature range (T. A. Mary et
al, Science, 272, 90–92, 1996). The intermetallic compound YbGaGe has been found to have a value of  that is
practically zero in the range –  (James R. Salvador et al, Nature, 425, 702–705, 2003).

If an amount  of a substance is in a single phase, we can divide the numerator and denominator of the right sides of Eqs. 7.1.1 and
7.1.2 by  to obtain the alternative expressions

where  is the molar volume.  in the conditions of validity is the number of phases. Note that only intensive properties appear
in Eqs. 7.1.3 and 7.1.4; the amount of the substance is irrelevant. Figures 7.1 and 7.2 show the temperature variation of  and 
for several substances.

If we choose  and  as the independent variables of the closed system, the total differential of  is given by

With the substitutions  (from Eq. 7.1.1) and  (from Eq. 7.1.2), the expression for the total
differential of  becomes

To find how  varies with  in a closed system kept at constant volume, we set  equal to zero in Eq. 7.1.6: 
, or . Since  under the condition of constant volume is the partial derivative 

, we have the general relation

cubic expansion coefficient α =
def 1

V
( )

∂V

∂T p

(7.1.1)

isothermal compressibility −κT =
def 1

V
( )

∂V

∂p T

(7.1.2)

β γT

α κT

α κT

α

3.98 C∘
2 8

2 8

0.3 K 1050 K α

α

100 300 K

n

n

α =
1

Vm
( )

∂Vm

∂T p

(7.1.3)
(pure substance, P =1)

= −κT

1

Vm
( )

∂Vm

∂p T

(7.1.4)
(pure substance, P =1)

Vm P

α κT

T p V

dV = dT + dp( )
∂V

∂T p

( )
∂V

∂p T

(7.1.5)

(∂V /∂T = αV)p (∂V /∂p = − V)T κT

V

dV = αV dT − V dpκT (7.1.6)
(closed system,

C=1, P =1)

p T dV

0 = αV dT − V dpκT dp/ dT = α/κT dp/ dT

(∂p/∂T )V

=( )
∂p

∂T V

α

κT

(7.1.7)
(closed system,

C=1, P =1)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20426?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/07%3A_Pure_Substances_in_Single_Phases/7.01%3A_Volume_Properties


7.1.2 https://chem.libretexts.org/@go/page/20426

This page titled 7.1: Volume Properties is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20426?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/07%3A_Pure_Substances_in_Single_Phases/7.01%3A_Volume_Properties
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/07%3A_Pure_Substances_in_Single_Phases/7.01%3A_Volume_Properties?no-cache
https://www2.chem.umd.edu/thermobook


7.2.1 https://chem.libretexts.org/@go/page/20427

7.2: Internal Pressure
The partial derivative  applied to a fluid phase in a closed system is called the internal pressure. (Note that  and 
have dimensions of energy; therefore,  has dimensions of pressure.)

To relate the internal pressure to other properties, we divide Eq. 5.2.2 by : . Then we impose a
condition of constant : . When we make a substitution for  from the Maxwell relation
of Eq. 5.4.17, we obtain

This equation is sometimes called the “thermodynamic equation of state” of the fluid.

For an ideal-gas phase, we can write  and then

Making this substitution in Eq. 7.2.1 gives us

showing that the internal pressure of an ideal gas is zero.

In Sec. 3.5.1, an ideal gas was defined as a gas (1) that obeys the ideal gas equation, and (2) for which  in a closed
system depends only on . Equation 7.2.3, derived from the first part of this definition, expresses the second part. It
thus appears that the second part of the definition is redundant, and that we could define an ideal gas simply as a gas
obeying the ideal gas equation. This argument is valid only if we assume the ideal-gas temperature is the same as
the thermodynamic temperature (Secs. 2.3.5 and 4.3.4) since this assumption is required to derive Eq. 7.2.3.
Without this assumption, we can’t define an ideal gas solely by , where  is the ideal gas temperature.

Here is a simplified interpretation of the significance of the internal pressure. When the volume of a fluid increases, the average
distance between molecules increases and the potential energy due to intermolecular forces changes. If attractive forces dominate,
as they usually do unless the fluid is highly compressed, expansion causes the potential energy to increase. The internal energy is
the sum of the potential energy and thermal energy. The internal pressure, , is the rate at which the internal energy
changes with volume at constant temperature. At constant temperature, the thermal energy is constant so that the internal pressure
is the rate at which just the potential energy changes with volume. Thus, the internal pressure is a measure of the strength of the
intermolecular forces and is positive if attractive forces dominate. (These attractive intermolecular forces are the cohesive forces
that can allow a negative pressure to exist in a liquid; see Sec. 2.3.4.) In an ideal gas, intermolecular forces are absent and therefore
the internal pressure of an ideal gas is zero.

With the substitution  (Eq. 7.1.7), Eq. 7.2.1 becomes

The internal pressure of a liquid at  is typically much larger than  (see Prob. 7.6). Equation 7.2.4 shows that, in this
situation, the internal pressure is approximately equal to .
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7.3: Thermal Properties
For convenience in derivations to follow, expressions from Chap. 5 are repeated here that apply to processes in a closed system in
the absence of nonexpansion work (i.e., đ  ). For a process at constant volume we have  

and for a process at constant pressure we have  

A closed system of one component in a single phase has only two independent variables. In such a system, the partial derivatives
above are complete and unambiguous definitions of  and  because they are expressed with two independent variables-  and 

 for , and  and  for . As mentioned on page 146, additional conditions would have to be specified to define  for a
more complicated system; the same is true for .

For a closed system of an ideal gas we have 5 

7.3.1 The relation between  and  

The value of  for a substance is greater than . The derivation is simple in the case of a fixed amount of an ideal gas.
Using substitutions from Eq. 7.3.3, we write

Division by  to obtain molar quantities and rearrangement then gives

For any phase in general, we proceed as follows. First we write

Then we write the total differential of  with  and  as independent variables and identify one of the coefficients as  :

When we divide both sides of the preceding equation by  and impose a condition of constant , we obtain

Substitution of this expression for  in the equation for  yields

Finally we set the partial derivative  (the internal pressure) equal to  (Eq. 7.2.4) and  equal to 
 to obtain

and divide by  to obtain molar quantities:
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Since the quantity  must be positive,  is greater than .

7.3.2 The measurement of heat capacities 
The most accurate method of evaluating the heat capacity of a phase is by measuring the temperature change resulting from heating
with electrical work. The procedure in general is called calorimetry, and the apparatus containing the phase of interest and the
electric heater is a calorimeter. The principles of three commonly-used types of calorimeters with electrical heating are described
below.

Adiabatic calorimeters 

An adiabatic calorimeter is designed to have negligible heat flow to or from its surroundings. The calorimeter contains the phase of
interest, kept at either constant volume or constant pressure, and also an electric heater and a temperature-measuring device such as
a platinum resistance thermometer, thermistor, or quartz crystal oscillator. The contents may be stirred to ensure temperature
uniformity.

To minimize conduction and convection, the calorimeter usually is surrounded by a jacket separated by an air gap or an evacuated
space. The outer surface of the calorimeter and inner surface of the jacket may be polished to minimize radiation emission from
these surfaces. These measures, however, are not sufficient to ensure a completely adiabatic boundary, because energy can be
transferred by heat along the mounting hardware and through the electrical leads. Therefore, the temperature of the jacket, or of an
outer metal shield, is adjusted throughout the course of the experiment so as to be as close as possible to the varying temperature of
the calorimeter. This goal is most easily achieved when the temperature change is slow.

To make a heat capacity measurement, a constant electric current is passed through the heater circuit for a known period of time.
The system is the calorimeter and its contents. The electrical work  performed on the system by the heater circuit is calculated
from the integrated form of Eq.  on page 91: , where  is the electric current,  is the electric resistance, and

 is the time interval. We assume the boundary is adiabatic and write the first law in the form

where  is expansion work and  is any continuous mechanical work from stirring (the subscript "cont" stands for
continuous). If electrical work is done on the system by a

Figure : Typical heating curve of an adiabatic calorimet

thermometer using an external electrical circuit, such as a platinum resistance thermometer, this work is included in .

Consider first an adiabatic calorimeter in which the heating process is carried out at constant volume. There is no expansion work,
and Eq.  becomes

(constant  )

An example of a measured heating curve (temperature  as a function of time  ) is shown in Fig. 7.3. We select two points on the
heating curve, indicated in the figure by open circles. Time  is at or shortly before the instant the heater circuit is closed and

= +Cp, m CV, m
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(7.3.11)
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electrical heating begins, and time  is after the heater circuit has been opened and the slope of the curve has become essentially
constant.

In the time periods before  and after , the temperature may exhibit a slow rate of increase due to the continuous work 
from stirring and temperature measurement. If this work is performed at a constant rate throughout the course of the experiment,
the slope is constant and the same in both time periods as shown in the figure.

The relation between the slope and the rate of work is given by a quantity called the energy equivalent, . The energy equivalent is
the heat capacity of the calorimeter under the conditions of an experiment. The heat capacity of a constant-volume calorimeter is
given by  (Eq. 5.6.1). Thus, at times before  or after , when đ  is zero and  equals , the slope  of
the heating curve is given by

The rate of the continuous work is therefore . This rate is constant throughout the experiment. In the time interval
from  to , the total quantity of continuous work is , where  is the slope of the heating curve measured
outside this time interval.

To find the energy equivalent, we integrate Eq.  between the two points on the curve:

(constant  )

Then the average heat capacity between temperatures  and  is

Solving for , we obtain

The value of the denominator on the right side is indicated by the vertical line in Fig. 7.3. It is the temperature change that would
have been observed if the same quantity of electrical work had been performed without the continuous work.

Next, consider the heating process in a calorimeter at constant pressure. In this case the enthalpy change is given by 
 which, with substitution from Eq. 7.3.12, becomes

 
(constant  )

We follow the same procedure as for the constant-volume calorimeter, using Eq.  in place of Eq.  and equating the
energy equivalent  to , the heat capacity of the calorimeter at constant pressure (Eq. 5.6.3). We obtain the relation

 
(constant  )

in place of Eq.  and end up again with the expression of Eq.  for .

The value of  calculated from Eq.  is an average value for the temperature interval from  to , and we can identify this
value with the heat capacity at the temperature of the midpoint of the interval. By taking the difference of values of  measured
with and without the phase of interest present in the calorimeter, we obtain  or  for the phase alone.

It may seem paradoxical that we can use an adiabatic process, one without heat, to evaluate a quantity defined by heat (heat
capacity  ). The explanation is that energy transferred into the adiabatic calorimeter as electrical work, and dissipated
completely to thermal energy, substitutes for the heat that would be needed for the same change of state without electrical work.
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Isothermal-jacket calorimeters 

A second common type of calorimeter is similar in construction to an adiabatic calorimeter, except that the surrounding jacket is
maintained at constant temperature. It is sometimes called an isoperibol calorimeter. A correction is made for heat transfer resulting
from the difference in temperature across the gap separating the jacket from the outer surface of the calorimeter. It is important in
making this correction that the outer surface have a uniform temperature without "hot spots."

Assume the outer surface of the calorimeter has a uniform temperature  that varies with time, the jacket temperature has a
constant value , and convection has been eliminated by evacuating the gap. Then heat transfer is by conduction and radiation,
and its rate

Figure  Typical heating curve of an isothermal-jacket calorimeter

is given by Newton's law of cooling

where  is a constant (the thermal conductance). Heat flows from a warmer to a cooler body, so đ  is positive if  is less than 
 and negative if  is greater than .

The possible kinds of work are the same as for the adiabatic calorimeter: expansion work , intermittent work  done by
the heater circuit, and continuous work . By combining the first law and Eq. 7.3.20, we obtain the following relation for the
rate at which the internal energy changes:

For heating at constant volume , this relation becomes

(constant  )

An example of a heating curve is shown in Fig. 7.4. In contrast to the curve of Fig. , the slopes are different before and after the
heating interval due to changed rate of heat flow. Times  and  are before and after the heater circuit is closed. In any time
interval before time  or after time , the system behaves as if it is approaching a steady state of constant temperature  (called
the convergence temperature), which it would eventually reach if the experiment were continued without closing the heater circuit. 

 is greater than  because of the energy transferred to the system by stirring and electrical temperature measurement. By
setting  and  equal to zero and  equal to  in Eq. 7.3.22, we obtain đ  We assume d

 is constant. Substituting this expression into Eq.  gives us a general expression for the rate at which  changes in
terms of the unknown quantities  and  :
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This relation is valid throughout the experiment, not only while the heater circuit is closed. If we multiply by  and integrate from 
 to , we obtain the internal energy change in the time interval from  to  :

 
(constant  )

All the intermittent work  is performed in this time interval.

The derivation of Eq.  is a general one. The equation can be applied also to a isothermal-jacket calorimeter in which a
reaction is occurring. Section  will mention the use of this equation for an internal energy correction of a reaction calorimeter
with an isothermal jacket.

The average value of the energy equivalent in the temperature range  to  is

Solving for , we obtain

The value of  is known from , where  is the time interval during which the heater circuit is closed. The
integral can be evaluated numerically once  is known. 
For heating at constant pressure,  is equal to , and we can write

 
(constant  )

which is analogous to Eq. 7.3.22. By the procedure described above for the case of constant , we obtain

 
(constant  )

At constant , the energy equivalent is equal to , and the final expression for  is the same as that given by
Eq. 7.3.26.

To obtain values of  and  for use in Eq. 7.3.26, we need the slopes of the heating curve in time intervals (rating periods) just
before  and just after . Consider the case of constant volume. In these intervals,  is zero and  equals 

 (from Eq. 7.3.23). The heat capacity at constant volume is . The slope  in general is then given by

Applying this relation to the points at times  and , we have the following simultaneous equations in the unknowns  and  : 
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Finally,  is given by 

 
When the pressure is constant, this procedure yields the same relations for , and 

Continuous-flow calorimeters 

A flow calorimeter is a third type of calorimeter used to measure the heat capacity of a fluid phase. The gas or liquid flows through
a tube at a known constant rate past an electrical heater of known constant power input. After a steady state has been achieved in
the tube, the temperature increase  at the heater is measured.

If  is the rate at which electrical work is performed (the electric power) and  is the mass flow rate, then in
time interval  a quantity  of work is performed on an amount  of the
fluid (where  is the molar mass). If heat flow is negligible, the molar heat capacity of the substance is given by

To correct for the effects of heat flow,  is usually measured over a range of flow rates and the results extrapolated to infinite
flow rate.

7.3.3 Typical values 

Figure 7.5 Temperature dependence of molar heat capacity at constant
pressure ( ) of H O, N , and C(graphite).

Figure 7.5 shows the temperature dependence of  for several substances. The discontinuities seen at certain temperatures
occur at equilibrium phase transitions. At these temperatures the heat capacity is in effect infinite, since the phase transition of a
pure substance involves finite heat with zero temperature change.

This page titled 7.3: Thermal Properties is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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7.4: Heating at Constant Volume or Pressure
Consider the process of changing the temperature of a phase at constant volume.

Keeping the volume exactly constant while increasing the temperature is not as simple as it may sound. Most solids
expand when heated, unless we arrange to increase the external pressure at the same time. If we use solid walls to
contain a fluid phase, the container volume will change with temperature. For practical purposes, these volume
changes are usually negligible.

The rate of change of internal energy with  at constant  is the heat capacity at constant volume:  (Eq. 7.3.1).
Accordingly, an infinitesimal change of  is given by

and the finite change of  between temperatures  and  is

Three comments, relevant to these and other equations in this chapter, are in order:

1. 
2. If, at a fixed volume and over the temperature range  to , the value of  is essentially constant (i.e., independent of ),

Eq. 7.4.2 becomes

An infinitesimal entropy change during a reversible process in a closed system is given according to the second law by 
. At constant volume,  is equal to  which in turn equals . Therefore, the entropy change is

Integration yields the finite change

If  is treated as constant, Eq. 7.4.7 becomes

(More general versions of the two preceding equations have already been given in Sec. 4.6.1.)

We may derive relations for a temperature change at constant pressure by the same methods. From  (Eq.
7.3.2), we obtain

If  is treated as constant, Eq. 7.4.9 becomes
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C=1, P =1, constant p)

Cp
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From  and Eq. 7.3.2 we obtain for the entropy change at constant pressure

Integration gives

or, with  treated as constant,

 is positive, so heating a phase at constant pressure causes  and  to increase.

The Gibbs energy changes according to  (Eq. 5.4.11), so heating at constant pressure causes  to decrease.
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ΔH = ( − )Cp T2 T1 (7.4.10)
(closed system, C=1,

P =1, constant p and  )Cp

dS = dq/T

dS = dT
Cp

T
(7.4.11)

(closed system,
C=1, P =1, constant p)

ΔS = dT∫
T2

T1

Cp

T
(7.4.12)

(closed system,
C=1, P =1, constant p)

Cp

ΔS = lnCp

T2

T1
(7.4.13)

(closed system, C=1,
P =1, constant p and  )Cp

Cp H S

(∂G/∂T = −S)p G
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7.5: Partial Derivatives with Respect to T T , p p , and V V

7.5.1 Tables of partial derivatives 

The tables in this section collect useful expressions for partial derivatives of the eight state functions , , , , , , , and 
in a closed, single-phase system. Each derivative is taken with respect to one of the three easily-controlled variables , , or 
while another of these variables is held constant. We have already seen some of these expressions, and the derivations of the others
are indicated below.

We can use these partial derivatives (1) for writing an expression for the total differential of any of the eight quantities, and (2) for
expressing the finite change in one of these quantities as an integral under conditions of constant , , or . For instance, given the
expressions

we may write the total differential of , taking  and  as the independent variables, as

Furthermore, the first expression is equivalent to the differential form

provided  is constant; we can integrate this equation to obtain the finite change  under isobaric conditions as shown in Eq.
7.4.12.

Both general expressions and expressions valid for an ideal gas are given in Tables 7.1, 7.2, and 7.3.

We may derive the general expressions as follows. We are considering differentiation with respect only to , , and 
. Expressions for , , and  come from Eqs. 7.1.1, 7.1.2, and 7.1.7 and are shown

as functions of  and . The reciprocal of each of these three expressions provides the expression for another
partial derivative from the general relation

This procedure gives us expressions for the six partial derivatives of , , and .

The remaining expressions are for partial derivatives of , , , , and . We obtain the expression for 
 from Eq. 7.3.1, for  from Eq. 7.2.4, for  from Eq. 7.3.2, for  from

Eq. 5.4.9, for  from Eq. 5.4.10, for  from Eq. 5.4.12, for  from Eq. 5.4.11, for 
 from Eq. 7.4.6, for  from Eq. 7.4.11, and for  from Eq. 5.4.18.

We can transform each of these partial derivatives, and others derived in later steps, to two other partial derivatives
with the same variable held constant and the variable of differentiation changed. The transformation involves
multiplying by an appropriate partial derivative of , , or . For instance, from the partial derivative 

, we obtain

The remaining partial derivatives can be found by differentiating , , , and 
 and making appropriate substitutions. Whenever a partial derivative appears in a derived expression,

it is replaced with an expression derived in an earlier step. The expressions derived by these steps constitute the full
set shown in Tables 7.1, 7.2, and 7.3.

Bridgman devised a simple method to obtain expressions for these and many other partial derivatives from a
relatively small set of formulas (Phys. Rev., 3, 273–281, 1914; The Thermodynamics of Electrical Phenomena in

T p V U H A G S

T p V

T p V

= and = −αV( )
∂S

∂T p

Cp

T
( )

∂S

∂p T

(7.5.1)

S T p

dS = dT −αV dp
Cp

T
(7.5.2)

dS = dT
Cp

T
(7.5.3)

p ΔS

T p

V (∂V /∂T )p (∂V /∂p)T (∂p/∂T )V

α κT

(∂y/∂x =)z

1

(∂x/∂y)z

(7.5.4)

T p V

U H A G S

(∂U/∂T )V (∂U/∂V )T (∂H/∂T )p (∂A/∂T )V

(∂A/∂V )T (∂G/∂p)T (∂G/∂T )p

(∂S/∂T )V (∂S/∂T )p (∂S/∂p)T

T p V

(∂U/∂V = (αT / ) −p)T κT

= =( −p) (− V ) = (−αT + p) V( )
∂U

∂p T

( )
∂U

∂V T

( )
∂V

∂p T

αT

κT

κT κT (7.5.5)

U = H −pV H = U +pV A = U −T S

G = H −T S
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Metals and a Condensed Collection of Thermodynamic Formulas, Dover, New York, 1961, p. 199–241).

7.5.2 The Joule–Thomson coefficient 

The Joule–Thomson coefficient of a gas was defined in Eq. 6.3.3 by . It can be evaluated with measurements of 
 and  during adiabatic throttling processes as described in Sec. 6.3.1.

To relate  to other properties of the gas, we write the total differential of the enthalpy of a closed, single-phase system in the
form

and divide both sides by :

Next we impose a condition of constant ; the ratio  becomes a partial derivative:

Rearrangement gives

The left side of this equation is the Joule–Thomson coefficient. An expression for the partial derivative  is given in
Table 7.1, and the partial derivative  is the heat capacity at constant pressure (Eq. 5.6.3). These substitutions give us the
desired relation
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= (∂T /∂pμJT )H

T p

μJT

dH = dT + dp( )
∂H

∂T p

( )
∂H

∂p T

(7.5.6)

dp

= +
dH

dp
( )

∂H

∂T p

dT

dp
( )

∂H

∂p T

(7.5.7)

H dT / dp

0 = +( )
∂H

∂T p

( )
∂T

∂p H

( )
∂H

∂p T

(7.5.8)

= −( )
∂T

∂p H

(∂H/∂p)T

(∂H/∂T )p

(7.5.9)

(∂H/∂p)T

(∂H/∂T )p

= =μJT

(αT −1)V

Cp

(αT −1)Vm

Cp,m
(7.5.10)

T p V
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7.6: Isothermal Pressure Changes
In various applications, we will need expressions for the effect of changing the pressure at constant temperature on the internal
energy, enthalpy, entropy, and Gibbs energy of a phase. We obtain the expressions by integrating expressions found in Table 7.1.
For example,  is given by . The results are listed in the second column of Table 7.4.

7.6.1 Ideal gases 
Simplifications result when the phase is an ideal gas. In this case, we can make the substitutions , , and 

, resulting in the expressions in the third column of Table 7.4.

The expressions in the third column of Table 7.4 may be summarized by the statement that, when an ideal gas expands
isothermally, the internal energy and enthalpy stay constant, the entropy increases, and the Helmholtz energy and Gibbs energy
decrease.

7.6.2 Condensed phases 
Solids, and liquids under conditions of temperature and pressure not close to the critical point, are much less compressible than
gases. Typically the isothermal compressibility, , of a liquid or solid at room temperature and atmospheric pressure is no greater
than  (see Fig. 7.2), whereas an ideal gas under these conditions has . Consequently, it is
frequently valid to treat  for a liquid or solid as essentially constant during a pressure change at constant temperature. Because 
is small, the product  for a liquid or solid is usually much smaller than the product . Furthermore,  for liquids and solids
does not change rapidly with  as it does for gases, and neither does .

With the approximations that , , and  are constant during an isothermal pressure change, and that  is negligible compared
with , we obtain the expressions in the last column of Table 7.4.

This page titled 7.6: Isothermal Pressure Changes is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
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V = nRT /p α = 1/T

= 1/pκT

κT
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V κT

pκT αT κT
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7.7: Standard States of Pure Substances
It is often useful to refer to a reference pressure, the standard pressure, denoted . The standard pressure has an arbitrary but
constant value in any given application. Until 1982, chemists used a standard pressure of  ( ). The IUPAC
now recommends the value  (exactly ). This e-book uses the latter value unless stated otherwise. (Note that there
is no defined standard temperature.)

A superscript degree symbol ( ) denotes a standard quantity or standard-state conditions. An alternative symbol for this purpose,
used extensively outside the U.S., is a superscript Plimsoll mark ( ). (The Plimsoll mark is named after the British merchant
Samuel Plimsoll, at whose instigation Parliament passed an act in 1875 requiring the symbol to be placed on the hulls of cargo
ships to indicate the maximum depth for safe loading.)

A standard state of a pure substance is a particular reference state appropriate for the kind of phase and is described by intensive
variables. This e-book follows the recommendations of the IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and
Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, p. 61–62) for various standard states.

Section 9.7 will introduce additional standard states for constituents of mixtures.

This page titled 7.7: Standard States of Pure Substances is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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7.8: Chemical Potential and Fugacity
The chemical potential, , of a pure substance has as one of its definitions (Sec. 5.5)

That is,  is equal to the molar Gibbs energy of the substance at a given temperature and pressure. (Section 9.2.6 will introduce a
more general definition of chemical potential that applies also to a constituent of a mixture.) The chemical potential is an intensive
state function.

The total differential of the Gibbs energy of a fixed amount of a pure substance in a single phase, with  and  as independent
variables, is  (Eq. 5.4.4). Dividing both sides of this equation by  gives the total differential of the chemical
potential with these same independent variables:

(Since all quantities in this equation are intensive, it is not necessary to specify a closed system; the amount of the substance in the
system is irrelevant.)

We identify the coefficients of the terms on the right side of Eq. 7.8.2 as the partial derivatives

and

Since  is positive, Eq. 7.8.4 shows that the chemical potential increases with increasing pressure in an isothermal process.

The standard chemical potential, , of a pure substance in a given phase and at a given temperature is the chemical potential of
the substance when it is in the standard state of the phase at this temperature and the standard pressure .

There is no way we can evaluate the absolute value of  at a given temperature and pressure, or of  at the same temperature—at
least not to any useful degree of precision. The values of  and  include the molar internal energy whose absolute value can only
be calculated from the Einstein relation; see Sec. 2.6.2. We can however measure or calculate the difference . The general
procedure is to integrate  (Eq. 7.8.2 with  set equal to zero) from the standard state at pressure  to the
experimental state at pressure :

7.8.1 Gases 
For the standard chemical potential of a gas, this e-book will usually use the notation  to emphasize the choice of a gas
standard state.

An ideal gas is in its standard state at a given temperature when its pressure is the standard pressure. We find the relation of the
chemical potential of an ideal gas to its pressure and its standard chemical potential at the same temperature by setting  equal to 

 in Eq. 7.8.5: . The general relation for  as a function of , then, is

This function is shown as the dashed curve in Fig. 7.6.

If a gas is not an ideal gas, its standard state is a hypothetical state. The fugacity, , of a real gas (a gas that is not necessarily an
ideal gas) is defined by an equation with the same form as Eq. 7.8.6:

μ

μ ==
def

Gm
G

n
(7.8.1)

(pure substance)

μ

T p

dG = −S dT +V dp n

dμ = − dT + dpSm Vm (7.8.2)
(pure substance, P =1)

= −( )
∂μ

∂T p

Sm (7.8.3)
(pure substance, P =1)

=( )
∂μ

∂p T

Vm (7.8.4)
(pure substance, P =1)

Vm

μ∘

p∘

μ μ∘

μ μ∘

μ −μ∘

dμ = dpVm dT p∘

p′

μ( ) − = dpp′ μ∘ ∫
p′

p∘

Vm (7.8.5)
(constant T )

(g)μ∘

Vm

RT /p μ( ) − = (RT /p)dp = RT ln( / )p′ μ∘ ∫ p′

p∘ p′ p∘ μ p

μ = (g) +RT lnμ∘ p

p∘
(7.8.6)

(pure ideal gas, constant T )
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or

Note that fugacity has the dimensions of pressure. Fugacity is a kind of effective pressure. Specifically, it is the pressure that the
hypothetical ideal gas (the gas with intermolecular forces “turned off” ) would need to have in order for its chemical potential at the
given temperature to be the same as the chemical potential of the real gas (see point C in Fig. 7.6). If the gas is an ideal gas, its
fugacity is equal to its pressure.

To evaluate the fugacity of a real gas at a given  and , we must relate the chemical potential to the pressure–volume behavior.
Let  be the chemical potential and  be the fugacity at the pressure  of interest; let  be the chemical potential and  be the
fugacity of the same gas at some low pressure  (all at the same temperature). Then we use Eq. 7.8.5 to write 

 and , from which we obtain

By integrating  from pressure  to pressure , we obtain

Equating the two expressions for  and dividing by  gives

In principle, we could use the integral on the right side of Eq. 7.8.11 to evaluate  by choosing the lower integration limit  to be
such a low pressure that the gas behaves as an ideal gas and replacing  by . However, because the integrand  becomes
very large at low pressure, the integral is difficult to evaluate. We avoid this difficulty by subtracting from the preceding equation
the identity

which is simply the result of integrating the function  from  to . The result is

Now we take the limit of both sides of Eq. 7.8.13 as  approaches zero. In this limit, the gas at pressure  approaches ideal-gas
behavior,  approaches , and the ratio  approaches :

The integrand  of this integral approaches zero at low pressure, making it feasible to evaluate the integral from
experimental data.

The fugacity coefficient  of a gas is defined by

The fugacity coefficient at pressure  is then given by Eq. 7.8.14:

μ = (g) +RT lnμ∘ f

p∘
(7.8.7)

(pure gas)

f exp[ ]=
def

p∘ μ − (g)μ∘

RT
(7.8.8)

(pure gas)

T p

μ′ f ′ p′ μ′′ f ′′

p′′

− (g) = RT ln( / )μ′ μ∘ f ′ p∘ − (g) = RT ln( / )μ′′ μ∘ f ′′ p∘

− = RT lnμ′ μ′′ f ′

f ′′
(7.8.9)

dμ = dpVm p′′ p′

− = dμ = dpμ′ μ′′ ∫
μ′

μ′′

∫
p′

p′′

Vm (7.8.10)

−μ′ μ′′ RT

ln = dp
f ′

f ′′
∫

p′

p′′

Vm

RT
(7.8.11)

f ′ p′′

f ′′ p′′ /RTVm

ln =
p′

p′′
∫

p′

p′′

dp

p
(7.8.12)

1/p p′′ p′

ln = ( − )dp
f ′p′′

f ′′p′
∫

p′

p′′

Vm

RT

1

p
(7.8.13)

p′′ p′′

f ′′ p′′ /f ′p′′ f ′′p′ /f ′ p′

ln = ( − )dp
f ′

p′
∫

p′

0

Vm

RT

1

p
(7.8.14)

( /RT −1/p)Vm

ϕ

ϕ or f = ϕp=
def f

p
(7.8.15)

(pure gas)
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The isothermal behavior of real gases at low to moderate pressures (up to at least ) is usually adequately described by a two-
term equation of state of the form given in Eq. 2.2.8:

Here  is the second virial coefficient, a function of . With this equation of state, Eq. 7.8.16 becomes

For a real gas at temperature  and pressure , Eq. 7.8.16 or 7.8.18 allows us to evaluate the fugacity coefficient from an
experimental equation of state or a second virial coefficient. We can then find the fugacity from .

As we will see in Sec. 9.7, the dimensionless ratio  is an example of an activity coefficient and the
dimensionless ratio  is an example of an activity.

7.8.2 Liquids and solids 

The dependence of the chemical potential on pressure at constant temperature is given by Eq. 7.8.5. With an approximation of zero
compressibility, this becomes
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(pure gas, constant T )

1 bar

≈ +BVm
RT

p
(7.8.17)

B T

lnϕ ≈
Bp

RT
(7.8.18)

T p

f = ϕp

ϕ = f/p

f/p∘

μ ≈ + (p − )μ∘ Vm p∘ (7.8.19)
(pure liquid or solid,

constant T )
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7.9: Standard Molar Quantities of a Gas
A standard molar quantity of a substance is the molar quantity in the standard state at the temperature of interest. We have seen
(Sec. 7.7) that the standard state of a pure liquid or solid is a real state, so any standard molar quantity of a pure liquid or solid is
simply the molar quantity evaluated at the standard pressure and the temperature of interest.

The standard state of a gas, however, is a hypothetical state in which the gas behaves ideally at the standard pressure without
influence of intermolecular forces. The properties of the gas in this standard state are those of an ideal gas. We would like to be
able to relate molar properties of the real gas at a given temperature and pressure to the molar properties in the standard state at the
same temperature.

We begin by using Eq. 7.8.7 to write an expression for the chemical potential of the real gas at pressure :

We then substitute from Eq. 7.8.14 to obtain a relation between the chemical potential, the standard chemical potential, and
measurable properties, all at the same temperature:

Note that this expression for  is not what we would obtain by simply integrating  from  to , because the real gas
is not necessarily in its standard state of ideal-gas behavior at a pressure of .

Recall that the chemical potential  of a pure substance is also its molar Gibbs energy . The standard chemical
potential  of the gas is the standard molar Gibbs energy, . Therefore Eq. 7.9.2 can be rewritten in the form

The middle column of Table 7.5 contains an expression for  taken from this equation. This expression contains all
the information needed to find a relation between any other molar property and its standard molar value in terms of measurable
properties. The way this can be done is as follows.

The relation between the chemical potential of a pure substance and its molar entropy is given by Eq. 7.8.3:

The standard molar entropy of the gas is found from Eq. 7.9.4 by changing  to :

By substituting the expression for  given by Eq. 7.9.2 into Eq. 7.9.4 and comparing the result with Eq. 7.9.5, we obtain

The expression for  in the middle column of Table 7.5 comes from this equation. The equation, together with a value
of  for a real gas obtained by the calorimetric method described in Sec. 6.2.1, can be used to evaluate .

Now we can use the expressions for  and  to find expressions for molar quantities such as  and  relative to the
respective standard molar quantities. The general procedure for a molar quantity  is to write an expression for  as a function
of  and  and an analogous expression for  as a function of  and . Substitutions for  and  from Eqs.
7.9.3 and 7.9.6 are then made in the expression for , and the difference  taken.

For example, the expression for  in the middle column Table 7.5 was derived as follows. The equation defining the
Gibbs energy, , was divided by the amount  and rearranged to

p′

μ( )p′ = (g) +RT ln  μ∘ f( )p′

p∘
= (g) +RT ln +RT lnμ∘ p′

p∘

f( )p′

p′
(7.9.1)

μ( ) = (g) +RT ln + ( − )dpp′ μ∘ p′

p∘
∫

p′

0
Vm

RT

p
(7.9.2)

(pure gas)

μ dμ = dpVm p∘ p′

1 bar

μ = G/nGm

(g)μ∘ (g)G∘
m

( ) = (g) +RT ln + ( − )dpGm p′ G∘
m

p′

p∘
∫

p′

0

Vm
RT

p
(7.9.3)

( ) − (g)Gm p′ G∘
m

= −Sm ( )
∂μ

∂T p

(7.9.4)

μ (g)μ∘

(g) = −S∘
m ( )

∂ (g)μ∘

∂T p

(7.9.5)

μ

( ) = (g) −R ln − [ − ]dpSm p′ S∘
m

p′

p∘
∫

p′

0

( )
∂Vm

∂T p

R

p
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The standard-state version of this relation is

where from the ideal gas law  can be replaced by . Substitutions from Eqs. 7.9.3 and 7.9.6 were made in Eq. 7.9.7 and
the expression for  in Eq. 7.9.8 was subtracted, resulting in the expression in the table.

For a real gas at low to moderate pressures, we can approximate  by  where  is the second virial coefficient (Eq.
7.8.17). Equation 7.9.2 then becomes

The expressions in the last column of Table 7.5 use this equation of state. We can see what the expressions look like if the gas is
ideal simply by setting  equal to zero. They show that when the pressure of an ideal gas increases at constant temperature, 
and  increase,  decreases, and , , and  are unaffected.

This page titled 7.9: Standard Molar Quantities of a Gas is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

= +T −pUm Gm Sm Vm (7.9.7)

(g) = (g) +T (g) − (g)U ∘
m G∘

m S∘
m p∘V ∘

m (7.9.8)
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7.10: Chapter 7 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I. 
7.1 Derive the following relations from the definitions of , and  : 

7.2 Use equations in this chapter to derive the following expressions for an ideal gas: 

7.3 For a gas with the simple equation of state 

 
(Eq. 2.2.8), where  is the second virial coefficient (a function of  ), find expressions for , , and  in terms of  and other state functions.

7.4 Show that when the virial equation  (Eq. 2.2.3) adequately represents the equation of state of a real gas, the Joule-Thomson coefficient is given by 

 
Note that the limiting value at low pressure, , is not necessarily equal to zero even though the equation of state approaches that of an ideal gas in this limit.

7.5 The quantity  is called the Joule coefficient. James Joule attempted to evaluate this quantity by measuring the temperature change accompanying the expansion of air into a vacuum -
the "Joule experiment." Write an expression for the total differential of  with  and  as independent variables, and by a procedure similar to that used in Sec. 7.5.2 show that the Joule coefficient is
equal to 

7.6  data for several organic liquids were measured by Gibson and Loeffler.  The following formulas describe the results for aniline. 
Molar volume as a function of temperature at  bar  : 

 
where the parameters have the values 

 
Molar volume as a function of pressure at  (1-1000 bar): 

 
where the parameter values are 

(a) Use these formulas to evaluate , and  (the internal pressure) for aniline at  and  bar.

(b) Estimate the pressure increase if the temperature of a fixed amount of aniline is increased by  at constant volume.

7.7 (a) From the total differential of  with  and  as independent variables, derive the relation  
(b) Evaluate  for liquid aniline at  and 1 bar using data in Prob. 

7.8 (a) From the total differential of  with  and  as independent variables, derive the relation . 
(b) Use this relation to estimate the value of  for benzene at  and 500 bar, given that the value of  is  at  and 1 bar. (Use information from Fig.  on page 168.)

7.9 Certain equations of state supposed to be applicable to nonpolar liquids and gases are of the form , where  is a function of the molar volume only and  is a constant. 
(a) Show that the van der Waals equation of state  (where  and  are constants) is of this form. 
(b) Show that any fluid with an equation of state of this form has an internal pressure equal to .

7.10 Suppose that the molar heat capacity at constant pressure of a substance has a temperature dependence given by , where , and  are constants. Consider the heating of
an amount  of the substance from  to  at constant pressure. Find expressions for  and  for this process in terms of , and .

7.11 At , the molar heat capacity at constant pressure of aluminum is given by 

 
where the constants have the values 

 
Calculate the quantity of electrical work needed to heat  of aluminum from  to  at  in an adiabatic enclosure.

7.12 The temperature dependence of the standard molar heat capacity of gaseous carbon dioxide in the temperature range  is given by 

 
where the constants have the values 

 
Calculate the enthalpy and entropy changes when one mole of  is heated at 1 bar from  to . You can assume that at this pressure  is practically equal to .

α,κT ρ

α = − =
1

ρ
( )

∂ρ

∂T p

κT
1

ρ
( )

∂ρ

∂p T

(7.10.1)

α = 1/T = 1/pκT (7.10.2)

= +BVm
RT

p
(7.10.3)

B T α κT (∂ /∂V )Um T dB/dT

p = RT (1 + p+ +⋯)Vm Bp Cpp
2

=μJT

R [ d /dT +(d /dT )p+⋯]T 2 Bp Cp

Cp, m
(7.10.4)

R ( d /dT ) /T 2 Bp Cp, m

(∂T/∂V )U
U T V

p−αT/κT

CV

(7.10.5)

p−V −T 11

p = 1 (298 −358 K)

= a+bT +c +dVm T 2 T 3 (7.10.6)

a = 69.287 cm3  mol−1

b = 0.08852 cm3  K−1  mol−1

c = −1.0443 ×10−4  cm3  K−2  mol−1

d = 1.940 ×10−7  cm3  K−3  mol−1
(7.10.7)

T = 298.15 K

= e−f ln(g+p/ bar )Vm (7.10.8)

e = 156.812 f = 8.5834 g = 2006.6 cm3  mol−1  cm3  mol−1 (7.10.9)

α, , (∂p/∂TκT )V (∂U/∂V )T T = 298.15 K p = 1.000

0.10 K

H T p = −T(∂ /∂p)Cp, m T ( /∂ )∂2Vm T 2
p

(∂ /∂p)Cp, m T
300.0 K 7.6.

V T p (∂α/∂p = −)T (∂ /∂T )κT p

α C25∘ α 1.2 ×10−3  K−1 C25∘ 7.2

p = Tf ( ) −a/Vm V 2
m f ( )Vm a

(p+a/ ) ( −b) = RTV 2
m Vm a b

a/V 2
m

= a+bT +cCp, m T 2 a, b c

n T1 T2 ΔH ΔS a, b, c,n,T1 T2

p = 1 atm

= a+bTCp, m (7.10.10)

a = 20.67 J b = 0.01238 K−1  mol−1 JK−2  mol−1 (7.10.11)

2.000 mol 300.00 K 400.00 K 1 atm

298 K−2000 K

= a+bT +C ∘
p, m

c

T 2
(7.10.12)

a = 44.2 b = 8.8 ×  J c = −8.6 ×  J KJK−1  mol−1 10−3  K−2  mol−1 105  mol−1 (7.10.13)

CO2 300.00 K 800.00 K Cp, m C ∘
p, m
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7.13 This problem concerns gaseous carbon dioxide. At , the relation between  and  at pressures up to at least 100 bar is given to good accuracy by a virial equation of state truncated

at the second virial coefficient, . In the temperature range  the dependence of  on temperature is given by 

 
where the constants have the values 

(a) From information in Prob. 7.12, calculate the standard molar heat capacity at constant pressure, , at .

(b) Estimate the value of  under the conditions  and  bar.

7.14 A chemist, needing to determine the specific heat capacity of a certain liquid but not having an electrically heated calorimeter at her disposal, used the following simple procedure known as drop
calorimetry. She placed  of the liquid in a thermally insulated container equipped with a lid and a thermometer. After recording the initial temperature of the liquid, , she removed a 

-g block of aluminum metal from a boiling water bath at  and quickly immersed it in the liquid in the container. After the contents of the container had become thermally equilibrated,
she recorded a final temperature of . She calculated the specific heat capacity  of the liquid from these data, making use of the molar mass of aluminum  and
the formula for the molar heat capacity of aluminum given in Prob. 

(a) From these data, find the specific heat capacity of the liquid under the assumption that its value does not vary with temperature. Hint: Treat the temperature equilibration process as adiabatic and
isobaric , and equate  to the sum of the enthalpy changes in the two phases.

(b) Show that the value obtained in part (a) is actually an average value of  over the temperature range between the initial and final temperatures of the liquid given by 

7.15 Suppose a gas has the virial equation of state , where  and  depend only on , and higher powers of  can be ignored. 
(a) Derive an expression for the fugacity coefficient, , of this gas as a function of . 
(b) For  at , the virial coefficients have the values  bar  and . Evaluate the fugacity  at  and  bar.

7.16 Table  on the next page lists values of the molar volume of gaseous  at  and 12 pressures. 
(a) Evaluate the fugacity coefficient and fugacity of  at  and 200 bar. 
(b) Show that the second virial coefficient  in the virial equation of state,  , is given by 

 
where the limit is taken at constant . Then evaluate  for  at .

Table 7.6 Molar volume of  at 

 
 based on data in Ref. [75]
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400 K p Vm

B 300 K−800 K B

B = + T + +a′ b′ c′T 2 d′T 3 (7.10.14)

= −521a′  cm3  mol−1

= 2.08b′  cm3  K−1  mol−1

= −2.89 ×c′ 10−3  cm3  K−2  mol−1

= 1.397 ×d′ 10−6  cm3  K−3  mol−1
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p = RT (1 + p+ )Vm Bp Cpp
2 Bp Cp T p

ϕ p

( g)CO2 C0.00∘ = −6.67 ×Bp 10−3 −1 = −3.4 ×Cp 10−5bar−2 f C0.00∘ p = 20.0

7.6 OH2 C400.00∘
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T B O(g)H2 C400.00∘

O(g)H2 400.00∘Ca

\begin{tabular}{cccc}  
\hline\(p / 10^{5} \mathrm{~Pa}\) & \(V_{\mathrm{m}} / 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\) & \(p / 10^{5} \mathrm{~Pa}\) & \(V_{\mathrm{m}} / 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\) \\  
\hline 1 & \(55.896\) & 100 & \(0.47575\) \\  
10 & \(5.5231\) & 120 & \(0.37976\) \\  
20 & \(2.7237\) & 140 & \(0.31020\) \\  
40 & \(1.3224\) & 160 & \(0.25699\) \\  
60 & \(0.85374\) & 180 & \(0.21447\) \\  
80 & \(0.61817\) & 200 & \(0.17918\) \\  
\hline  
\end{tabular}
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CHAPTER OVERVIEW

8: Phase Transitions and Equilibria of Pure Substances
A system of two or more phases of a single substance, in the absence of internal constraints, is in an equilibrium state when each
phase has the same temperature, the same pressure, and the same chemical potential. This chapter describes the derivation and
consequences of this simple principle, the general appearance of phase diagrams of single-substance systems, and quantitative
aspects of the equilibrium phase transitions of these systems.

8.1: Phase Equilibria
8.2: Phase Diagrams of Pure Substances
8.3: Phase Transitions
8.4: Coexistence Curves
8.5: Chapter 8 Problems

This page titled 8: Phase Transitions and Equilibria of Pure Substances is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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8.1: Phase Equilibria

8.1.1 Equilibrium conditions 

If the state of an isolated system is an equilibrium state, this state does not change over time (Sec. 2.4.4). We expect an isolated
system that is not in an equilibrium state to undergo a spontaneous, irreversible process and eventually to reach an equilibrium
state. Just how rapidly this process occurs is a matter of kinetics, not thermodynamics. During this irreversible adiabatic process,
the entropy increases until it reaches a maximum in the equilibrium state.

A general procedure will now be introduced for finding conditions for equilibrium with given constraints. The procedure is applied
to phase equilibria of single-substance, multiphase systems in the next section, to transfer equilibria in multicomponent, multiphase
systems in Sec. 9.2.7, and to reaction equilibria in Sec. 11.7.3.

The procedure has five steps:

1. In this section we consider a system of a single substance in two or more uniform phases with distinctly different intensive
properties. For instance, one phase might be a liquid and another a gas. We assume the phases are not separated by internal
partitions, so that there is no constraint preventing the transfer of matter and energy among the phases. (A tall column of gas in
a gravitational field is a different kind of system in which intensive properties of an equilibrium state vary continuously with
elevation; this case will be discussed in Sec. 8.1.4.)

Phase  will be the reference phase. Since internal energy is extensive, we can write  and 
. We assume any changes are slow enough to allow each phase to be practically uniform at all

times. Treating each phase as an open subsystem with expansion work only, we use the relation 
(Eq. 5.2.5) to replace each  term:

This is an expression for the total differential of  when there are no constraints.

In an isolated system, an equilibrium state cannot change spontaneously to a different state. Once the isolated system has
reached an equilibrium state, an imagined finite change of any of the independent variables consistent with the constraints (a so-
called virtual displacement) corresponds to an impossible process with an entropy decrease. Thus, the equilibrium state has the
maximum entropy that is possible for the isolated system. In order for  to be a maximum,  must be zero for an infinitesimal
change of any of the independent variables of the isolated system.

This requirement is satisfied in the case of the multiphase system only if the coefficient of each term in the sums on the right
side of Eq. 8.1.6 is zero. Therefore, in an equilibrium state the temperature of each phase is equal to the temperature  of the
reference phase, the pressure of each phase is equal to , and the chemical potential in each phase is equal to . That is, at
equilibrium the temperature, pressure, and chemical potential are uniform throughout the system. These are, respectively, the
conditions described in Sec. 2.4.4 of thermal equilibrium, mechanical equilibrium, and transfer equilibrium. These conditions
must hold in order for a multiphase system of a pure substance without internal partitions to be in an equilibrium state,
regardless of the process by which the system attains that state.

8.1.3 Simple derivation of equilibrium conditions
Here is a simpler, less formal derivation of the three equilibrium conditions in a multiphase system of a single substance.

It is intuitively obvious that, unless there are special constraints (such as internal partitions), an equilibrium state must have
thermal and mechanical equilibrium. A temperature difference between two phases would cause a spontaneous transfer of heat
from the warmer to the cooler phase; a pressure difference would cause spontaneous flow of matter.

When some of the substance is transferred from one phase to another under conditions of constant  and , the intensive
properties of each phase remains the same including the chemical potential. The chemical potential of a pure phase is the Gibbs
energy per amount of substance in the phase. We know that in a closed system of constant  and  with expansion work only,
the total Gibbs energy decreases during a spontaneous process and is constant during a reversible process (Eq. 5.8.6). The Gibbs
energy will decrease only if there is a transfer of substance from a phase of higher chemical potential to a phase of lower

α′ U = +U α′
∑α≠α′ U α

dU = d + dU α′
∑α≠α′ U α

dU = T dS −p dV +μ dn

dU α

dU = ( d − d + d ) + ( d − d + d )T α′

Sα′

pα′

V α′

μα′

nα′

∑
α≠α′

T α Sα pα V α μα nα (8.1.1)
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chemical potential, and this will be a spontaneous change. No spontaneous transfer is possible if both phases have the same
chemical potential, so this is a condition for an equilibrium state.

8.1.4 Tall column of gas in a gravitational field
The earth’s gravitational field is an example of an external force field that acts on a system placed in it. Usually we ignore its
effects on the state of the system. If, however, the system’s vertical extent is considerable we must take the presence of the field
into account to explain, for example, why gas pressure varies with elevation in an equilibrium state.

A tall column of gas whose intensive properties are a function of elevation may be treated as an infinite number of uniform
phases, each of infinitesimal vertical height. We can approximate this system with a vertical stack of many slab-shaped gas
phases, each thin enough to be practically uniform in its intensive properties, as depicted in Fig. 8.1. The system can be isolated
from the surroundings by confining the gas in a rigid adiabatic container. In order to be able to associate each of the thin slab-
shaped phases with a definite constant elevation, we specify that the volume of each phase is constant so that in the rigid
container the vertical thickness of a phase cannot change.

We can use the phase of lowest elevation as the reference phase , as indicated in the figure. We repeat the derivation of Sec.
8.1.2 with one change: for each phase  the volume change  is set equal to zero. Then the second sum on the right side of
Eq. 8.1.6, with terms proportional to , drops out and we are left with

In the equilibrium state of the isolated system,  is equal to zero for an infinitesimal change of any of the independent
variables. In this state, therefore, the coefficient of each term in the sums on the right side of Eq. 8.1.7 must be zero. We
conclude that in an equilibrium state of a tall column of a pure gas, the temperature and chemical potential are uniform
throughout. The equation, however, gives us no information about pressure.

We will use this result to derive an expression for the dependence of the fugacity  on elevation in an equilibrium state. We pick
an arbitrary position such as the earth’s surface for a reference elevation at which  is zero, and define the standard chemical
potential  as the chemical potential of the gas under standard state conditions at this reference elevation. At , the
chemical potential and fugacity are related by Eq. 7.8.7 which we write in the following form, indicating the elevation in
parentheses:

Imagine a small sample of gas of mass  that is initially at elevation . The vertical extent of this sample should be small
enough for the variation of the gravitational force field within the sample to be negligible. The gravitational work needed to
raise the gas to an arbitrary elevation  is  (Sec. 3.6). We assume this process is carried out reversibly at constant
volume and without heat, so that there is no change in , , , , or . The internal energy  of the gas must increase by 

, where  is the molar mass. Then, because the Gibbs energy  depends on  according to 
,  must also increase by .

The chemical potential  is the molar Gibbs energy . During the elevation process,  remains the same and  increases by 
:

From Eqs. 8.1.8 and 8.1.9, we can deduce the following general relation between chemical potential, fugacity, and elevation:

Compare this relation with the equation that defines the fugacity when the effect of a gravitational field is negligible: 
 (Eq. 7.8.7). The additional term  is needed when the vertical extent of the gas is considerable.

α′

α dV α

dV α

dS = d + d∑
α≠α′

−T α′
T α

T α′ Sα ∑
α≠α′

−μα′
μα

T α′ nα (8.1.7)

dS

f

h

(g)μ∘ h=0

μ(0) = (g) +RT lnμ∘ f(0)

p∘
(8.1.8)

m h=0

h = mghw′

T p V S f U

mgh = nMgh M G U

G = U −T S +pV G nMgh

μ G/n f μ

Mgh

μ(h) = μ(0) +Mgh (8.1.9)
(f(h)=f(0) )

μ(h) = (g) +RT ln +Mghμ∘ f(h)

p∘
(8.1.10)

(pure gas in
gravitational field)

μ = (g) +RT ln(f/ )μ∘ p∘ Mgh

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20607?pdf


8.1.3 https://chem.libretexts.org/@go/page/20607

Some thermodynamicists call the expression on the right side of Eq. 8.1.10 the “total chemical potential” or
“gravitochemical potential” and reserve the term “chemical potential” for the function .
With these definitions, in an equilibrium state the “total chemical potential” is the same at all elevations and the
“chemical potential” decreases with increasing elevation.

This e-book instead defines the chemical potential  of a pure substance at any elevation as the molar Gibbs
energy at that elevation, as recommended in a 2001 IUPAC technical report (Robert A. Alberty, Pure Appl.
Chem., 73, 1349–1380, 2001). When the chemical potential is defined in this way, it has the same value at all
elevations in an equilibrium state.

We know that in the equilibrium state of the gas column, the chemical potential  has the same value at each elevation .
Equation 8.1.10 shows that in order for this to be possible, the fugacity must decrease with increasing elevation. By equating
expressions from Eq. 8.1.10 for  at an arbitrary elevation , and for  at the reference elevation, we obtain

Solving for  gives

If we treat the gas as ideal, so that the fugacity equals the pressure, this equation becomes

Equation 8.1.13 is the barometric formula for a pure ideal gas. It shows that in the equilibrium state of a tall column of an ideal
gas, the pressure decreases exponentially with increasing elevation.

This derivation of the barometric formula has introduced a method that will be used in Sec. 9.8.1 for dealing with mixtures in a
gravitational field. There is, however, a shorter derivation based on Newton’s second law and not involving the chemical
potential. Consider one of the thin slab-shaped phases of Fig. 8.1. Let the density of the phase be , the area of each horizontal
face be , and the thickness of the slab be . The mass of the phase is then . The pressure difference between the
top and bottom of the phase is . Three vertical forces act on the phase: an upward force  at its lower face, a downward
force  at its upper face, and a downward gravitational force . If the phase is at rest, the net
vertical force is zero: , or . In the limit as the number of phases becomes infinite
and  and  become infinitesimal, this becomes

Equation 8.1.14 is a general relation between changes in elevation and hydrostatic pressure in any fluid. To apply it to an ideal
gas, we replace the density by  and rearrange to . Treating  and 
as constants, we integrate from  to an arbitrary elevation  and obtain the same result as Eq. 8.1.13.

8.1.5 The pressure in a liquid droplet
The equilibrium shape of a small liquid droplet surrounded by vapor of the same substance, when the effects of gravity and
other external forces are negligible, is spherical. This is the result of the surface tension of the liquid–gas interface which acts to
minimize the ratio of surface to volume. The interface acts somewhat like the stretched membrane of an inflated balloon,
resulting in a greater pressure inside the droplet than the pressure of the vapor in equilibrium with it.

We can derive the pressure difference by considering a closed system containing a spherical liquid droplet and surrounding
vapor. We treat both phases as open subsystems. An infinitesimal change  of the internal energy is the sum of contributions
from the liquid and gas phases and from the surface work , where  is the surface tension of the liquid–gas interface and 

 is the surface area of the droplet (Sec. 5.7):
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Note that Eq. 8.1.15 is not an expression for the total differential of , because  and  are not independent variables. A
derivation by a procedure similar to the one used in Sec. 8.1.2 shows that at equilibrium the liquid and gas have equal
temperatures and equal chemical potentials, and the pressure in the droplet is greater than the gas pressure by an amount that
depends on :

Equation 8.1.16 is the Laplace equation. The pressure difference is significant if  is small, and decreases as  increases. The
limit  represents the flat surface of bulk liquid with  equal to .

The derivation of Eq. 8.1.16 is left as an exercise (Prob. 8.1). The Laplace equation is valid also for a liquid droplet in which the
liquid and the surrounding gas may both be mixtures (Prob. 9.3).

The Laplace equation can also be applied to the pressure in a gas bubble surrounded by liquid. In this case the liquid and gas
phases switch roles, and the equation becomes .

8.1.6 The number of independent variables

From this point on in this e-book, unless stated otherwise, the discussions of multiphase systems will implicitly assume the
existence of thermal, mechanical, and transfer equilibrium. Equations will not explicitly show these equilibria as a condition of
validity.

In the rest of this chapter, we shall assume the state of each phase can be described by the usual variables: temperature,
pressure, and amount. That is, variables such as elevation in a gravitational field, interface surface area, and extent of stretching
of a solid, are not relevant.

How many of the usual variables of an open multiphase one-substance equilibrium system are independent? To find out, we go
through the following argument. In the absence of any kind of equilibrium, we could treat phase  as having the three
independent variables , , and , and likewise for every other phase. A system of  phases without thermal, mechanical,
or transfer equilibrium would then have  independent variables.

We must decide how to count the number of phases. It is usually of no thermodynamic significance whether a
phase, with particular values of its intensive properties, is contiguous. For instance, splitting a crystal into
several pieces is not usually considered to change the number of phases or the state of the system, provided the
increased surface area makes no significant contribution to properties such as internal energy. Thus, the number
of phases  refers to the number of different kinds of phases.

Each independent relation resulting from equilibrium imposes a restriction on the system and reduces the number of
independent variables by one. A two-phase system with thermal equilibrium has the single relation . For a three-phase
system, there are two such relations that are independent, for instance  and . (The additional relation 

 is not independent since we may deduce it from the other two.) In general, thermal equilibrium gives 
independent relations among temperatures.

By the same reasoning, mechanical equilibrium involves  independent relations among pressures, and transfer
equilibrium involves  independent relations among chemical potentials.

The total number of independent relations for equilibrium is , which we subtract from  (the number of independent
variables in the absence of equilibrium) to obtain the number of independent variables in the equilibrium system: 

. Thus, an open single-substance system with any number of phases has at equilibrium three independent
variables. For example, in equilibrium states of a two-phase system we may vary , , and  independently, in which case 
is a dependent variable; for a given value of , the value of  is the one that allows both phases to have the same chemical
potential.

8.1.7 The Gibbs phase rule for a pure substance
The complete description of the state of a system must include the value of an extensive variable of each phase (e.g., the
volume, mass, or amount) in order to specify how much of the phase is present. For an equilibrium system of  phases with a
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total of  independent variables, we may choose the remaining  variables to be intensive. The number of these intensive
independent variables is called the number of degrees of freedom or variance, , of the system:

The application of the phase rule to multicomponent systems will be taken up in Sec. 13.1. Equation 8.1.17 is a
special case, for , of the more general Gibbs phase rule .

We may interpret the variance  in either of two ways:

A system with two degrees of freedom is called bivariant, one with one degree of freedom is univariant, and one with no
degrees of freedom is invariant. For a system of a pure substance, these three cases correspond to one, two, and three phases
respectively. For instance, a system of liquid and gaseous H O (and no other substances) is univariant (

); we are able to independently vary only one intensive property, such as , while the liquid and
gas remain in equilibrium.

This page titled 8.1: Phase Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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8.2: Phase Diagrams of Pure Substances
A phase diagram is a two-dimensional map showing which phase or phases are able to exist in an equilibrium state under given
conditions. This chapter describes pressure–volume and pressure–temperature phase diagrams for a single substance, and Chap. 13
will describe numerous types of phase diagrams for multicomponent systems.

8.2.1 Features of phase diagrams 
Two-dimensional phase diagrams for a single-substance system can be generated as projections of a three-dimensional surface in a
coordinate system with Cartesian axes , , and . A point on the three-dimensional surface corresponds to a physically-
realizable combination of values, for an equilibrium state of the system containing a total amount  of the substance, of the
variables , , and .

The concepts needed to interpret single-substance phase diagrams will be illustrated with carbon dioxide.

Figure 8.2 Relations among , , and  for carbon dioxide (based
on data in NIST Chemistry WebBook and in S. Angus, B. Armstrong,
and K. M. de Reuck, International Thermodynamic Tables of the Fluid
State, Vol. 3, Carbon Dioxide, Pergamon Press, Oxford, 1976). Areas
are labeled with the stable phase or phases (scf stands for supercritical
fluid). The open circle indicates the critical point. 
(a) Three-dimensional – –  surface. The dashed curve is the
critical isotherm at , and the dotted curve is a portion of
the critical isobar at . 
(b) Pressure–volume phase diagram (projection of the surface onto the 

–  plane). 
(c) Pressure–temperature phase diagram (projection of the surface onto
the –  plane).
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Figure 8.3 Three-dimensional – –  surface for CO , magnified
along the  axis compared to Fig. 8.2. The open circle is the critical
point, the dashed curve is the critical isotherm, and the dotted curve is a
portion of the critical isobar.

Three-dimensional surfaces for carbon dioxide are shown at two different scales in Fig. 8.2 and in Fig. 8.3. In these figures, some
areas of the surface are labeled with a single physical state: solid, liquid, gas, or supercritical fluid. A point in one of these areas
corresponds to an equilibrium state of the system containing a single phase of the labeled physical state. The shape of the surface in
this one-phase area gives the equation of state of the phase (i.e., the dependence of one of the variables on the other two). A point
in an area labeled with two physical states corresponds to two coexisting phases. The triple line is the locus of points for all
possible equilibrium systems of three coexisting phases, which in this case are solid, liquid, and gas. A point on the triple line can
also correspond to just one or two phases.

The two-dimensional projections shown in Figs. 8.2(b) and 8.2(c) are pressure–volume and pressure–temperature phase diagrams.
Because all phases of a multiphase equilibrium system have the same temperature and pressure (assuming there are no constraints
such as internal adiabatic partitions), the projection of each two-phase area onto the pressure–temperature diagram is a curve, called
a coexistence curve or phase boundary, and the projection of the triple line is a point, called a triple point.

How may we use a phase diagram? The two axes represent values of two independent variables, such as  and  or  and .
For given values of these variables, we place a point on the diagram at the intersection of the corresponding coordinates; this is the
system point. Then depending on whether the system point falls in an area or on a coexistence curve, the diagram tells us the
number and kinds of phases that can be present in the equilibrium system.

If the system point falls within an area labeled with the physical state of a single phase, only that one kind of phase can be present
in the equilibrium system. A system containing a pure substance in a single phase is bivariant ( ), so we may vary
two intensive properties independently. That is, the system point may move independently along two coordinates (  and , or 
and ) and still remain in the one-phase area of the phase diagram. When  and  refer to a single phase, the variable  is the
molar volume  in the phase.

If the system point falls in an area of the pressure–volume phase diagram labeled with symbols for two phases, these two phases
coexist in equilibrium. The phases have the same pressure and different molar volumes. To find the molar volumes of the
individual phases, we draw a horizontal line of constant pressure, called a tie line, through the system point and extending from one
edge of the area to the other. The horizontal position of each end of the tie line, where it terminates at the boundary with a one-
phase area, gives the molar volume in that phase in the two-phase system. For an example of a tie line, see Fig. 8.9.

The triple line on the pressure–volume diagram represents the range of values of  in which three phases (solid, liquid, and gas)
can coexist at equilibrium.

Helium is the only substance lacking a solid–liquid–gas triple line. When a system containing the coexisting liquid
and gas of He is cooled to , a triple point is reached in which the third phase is a liquid called He-II, which
has the unique property of superfluidity. It is only at high pressures (  or greater) that solid helium can exist.
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A three-phase one-component system is invariant ( ); there is only one temperature (the triple-point temperature 
) and one pressure (the triple-point pressure ) at which the three phases can coexist. The values of  and  are unique to

each substance, and are shown by the position of the triple point on the pressure–temperature phase diagram. The molar volumes in
the three coexisting phases are given by the values of  at the three points on the pressure–volume diagram where the triple line
touches a one-phase area. These points are at the two ends and an intermediate position of the triple line. If the system point is at
either end of the triple line, only the one phase of corresponding molar volume at temperature  and pressure  can be present.
When the system point is on the triple line anywhere between the two ends, either two or three phases can be present. If the system
point is at the position on the triple line corresponding to the phase of intermediate molar volume, there might be only that one
phase present.

Figure 8.4 High-pressure pressure–temperature phase diagram of H O
(based on data in D. Eisenberg and W. Kauzmann, The Structure and
Properties of Water, Oxford University Press, New York, 1969, Table
3.5, and Carl W. F. T. Pistorius et al, J. Chem. Phys., 38, 600–602,
1963). The roman numerals designate seven forms of ice.

At high pressures, a substance may have additional triple points for two solid phases and the liquid, or for three solid phases. This
is illustrated by the pressure–temperature phase diagram of H O in Fig. 8.4, which extends to pressures up to . (On this
scale, the liquid–gas coexistence curve lies too close to the horizontal axis to be visible.) The diagram shows seven different solid
phases of H O differing in crystal structure and designated ice I, ice II, and so on. Ice I is the ordinary form of ice, stable below 

. On the diagram are four triple points for two solids and the liquid and three triple points for three solids. Each triple point is
invariant. Note how H O can exist as solid ice VI or ice VII above its standard melting point of  if the pressure is high
enough (“hot ice” ).

8.2.2 Two-phase equilibrium 
A system containing two phases of a pure substance in equilibrium is univariant. Both phases have the same values of  and of ,
but these values are not independent because of the requirement that the phases have equal chemical potentials. We may vary only
one intensive variable of a pure substance (such as  or ) independently while two phases coexist in equilibrium.

Figure 8.5 An isoteniscope. The liquid to be investigated is placed in
the vessel and U-tube, as indicated by shading, and maintained at a fixed
temperature in the bath. The pressure in the side tube is reduced until the
liquid boils gently and its vapor sweeps out the air. The pressure is
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adjusted until the liquid level is the same in both limbs of the U-tube;
the vapor pressure of the liquid is then equal to the pressure in the side
tube, which can be measured with a manometer.

At a given temperature, the pressure at which solid and gas or liquid and gas are in equilibrium is called the vapor pressure or
saturation vapor pressure of the solid or liquid. The vapor pressure of a solid is sometimes called the sublimation pressure. We
may measure the vapor pressure of a liquid at a fixed temperature with a simple device called an isoteniscope (Fig. 8.5).

In a system of more than one substance, vapor pressure can refer to the partial pressure of a substance in a gas
mixture equilibrated with a solid or liquid of that substance. The effect of total pressure on vapor pressure will be
discussed in Sec. 12.8.1. This e-book refers to the saturation vapor pressure of a liquid when it is necessary to
indicate that it is the pure liquid and pure gas phases that are in equilibrium at the same pressure.

At a given pressure, the melting point or freezing point is the temperature at which solid and liquid are in equilibrium, the boiling
point or saturation temperature is the temperature at which liquid and gas are in equilibrium, and the sublimation temperature
or sublimation point is the temperature at which solid and gas are in equilibrium.

Figure 8.6 Pressure–temperature phase diagram of H O. (Based on data
in NIST Chemistry WebBook.)

The relation between temperature and pressure in a system with two phases in equilibrium is shown by the coexistence curve
separating the two one-phase areas on the pressure–temperature diagram (see Fig. 8.6). Consider the liquid–gas curve. If we think
of  as the independent variable, the curve is a vapor-pressure curve showing how the vapor pressure of the liquid varies with
temperature. If, however,  is the independent variable, then the curve is a boiling-point curve showing the dependence of the
boiling point on pressure.

The normal melting point or boiling point refers to a pressure of one atmosphere, and the standard melting point or boiling point
refers to the standard pressure. Thus, the normal boiling point of water ( ) is the boiling point at ; this temperature is
also known as the steam point. The standard boiling point of water ( ) is the boiling point at the slightly lower pressure of 

.

Coexistence curves will be discussed further in Sec. 8.4.

8.2.3 The critical point 

Every substance has a certain temperature, the critical temperature, above which only one fluid phase can exist at any volume and
pressure (Sec. 2.2.3). The critical point is the point on a phase diagram corresponding to liquid–gas coexistence at the critical
temperature, and the critical pressure is the pressure at this point.
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Figure 8.7 Glass bulb filled with CO  at a value of  close to the
critical value, viewed at four different temperatures. The three balls have
densities less than, approximately equal to, and greater than the critical
density. (Photos by permission of the photographer; they appeared in Jan
V. Sengers and Anneke Levelt Sengers, Chem. Eng. News, June 10,
104–118, 1968.) 
(a) Supercritical fluid at a temperature above the critical temperature.  
(b) Intense opalescence just above the critical temperature.  
(c) Meniscus formation slightly below the critical temperature; liquid
and gas of nearly the same density.  
(d) Temperature well below the critical temperature; liquid and gas of
greatly different densities.

To observe the critical point of a substance experimentally, we can evacuate a glass vessel, introduce an amount of the substance
such that  is approximately equal to the molar volume at the critical point, seal the vessel, and raise the temperature above the
critical temperature. The vessel now contains a single fluid phase. When the substance is slowly cooled to a temperature slightly
above the critical temperature, it exhibits a cloudy appearance, a phenomenon called critical opalescence (Fig. 8.7). The
opalescence is the scattering of light caused by large local density fluctuations. At the critical temperature, a meniscus forms
between liquid and gas phases of practically the same density. With further cooling, the density of the liquid increases and the
density of the gas decreases.

At temperatures above the critical temperature and pressures above the critical pressure, the one existing fluid phase is called a
supercritical fluid. Thus, a supercritical fluid of a pure substance is a fluid that does not undergo a phase transition to a different
fluid phase when we change the pressure at constant temperature or change the temperature at constant pressure.

If, however, we increase  at constant , the supercritical fluid will change to a solid. In the phase diagram of H O, the coexistence
curve for ice VII and liquid shown in Fig. 8.4 extends to a higher temperature than the critical temperature of . Thus,
supercritical water can be converted to ice VII by isothermal compression.

A fluid in the supercritical region can have a density comparable to that of the liquid, and can be more compressible than the liquid.
Under supercritical conditions, a substance is often an excellent solvent for solids and liquids. By varying the pressure or
temperature, the solvating power can be changed; by reducing the pressure isothermally, the substance can be easily removed as a
gas from dissolved solutes. These properties make supercritical fluids useful for chromatography and solvent extraction.
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Figure 8.8 Densities of coexisting gas and liquid phases close to the
critical point as functions of temperature for (a) CO  (based on data in
A. Michels, B. Blaisse, and C. Michels, Proc. R. Soc. London, Ser. A,
160, 358–375, 1937); (b) SF  (data of M. W. Pestak et al, Phys. Rev. B,
36, 599–614, 1987, Table VII). Experimental gas densities are shown by
open squares and experimental liquid densities by open triangles. The
mean density at each experimental temperature is shown by an open
circle. The open diamond is at the critical temperature and critical
density.

The critical temperature of a substance can be measured quite accurately by observing the appearance or disappearance of a liquid–
gas meniscus, and the critical pressure can be measured at this temperature with a high-pressure manometer. To evaluate the
density at the critical point, it is best to extrapolate the mean density of the coexisting liquid and gas phases, , to the
critical temperature as illustrated in Fig. 8.8. The observation that the mean density closely approximates a linear function of
temperature, as shown in the figure, is known as the law of rectilinear diameters, or the law of Cailletet and Matthias. This law is
an approximation, as can be seen by the small deviation of the mean density of SF  from a linear relation very close to the critical
point in Fig. 8.8(b). This failure of the law of rectilinear diameters is predicted by recent theoretical treatments (Jingtao Wang and
Mikhail A. Anisimov, Phys. Rev. E, 75, 051107, 2007; Hassan Behnejad, Jan V. Sengers, and Mikhail A. Anisimov, in A. R. H.
Goodwin, J. V. Sengers, and C. J. Peters, editors, Applied Thermodynamics of Fluids, pages 321–367, Royal Society of Chemistry,
Cambridge, 2010).

8.2.4 The lever rule 
Consider a single-substance system whose system point is in a two-phase area of a pressure–volume phase diagram. How can we
determine the amounts in the two phases?

Figure 8.9 Tie line (dashed) at constant  and  in the liquid–gas area
of a pressure–volume phase diagram. Points A and B are at the ends of
the tie line, and point S is a system point on the tie line.  and  are
the lengths AS and SB, respectively.
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As an example, let the system contain a fixed amount  of a pure substance divided into liquid and gas phases, at a temperature and
pressure at which these phases can coexist in equilibrium. When heat is transferred into the system at this  and , some of the
liquid vaporizes by a liquid–gas phase transition and  increases; withdrawal of heat at this  and  causes gas to condense and 
to decrease. The molar volumes and other intensive properties of the individual liquid and gas phases remain constant during these
changes at constant  and . On the pressure–volume phase diagram of Fig. 8.9, the volume changes correspond to movement of
the system point to the right or left along the tie line AB.

When enough heat is transferred into the system to vaporize all of the liquid at the given  and , the system point moves to point
B at the right end of the tie line.  at this point must be the same as the molar volume of the gas, . We can see this because
the system point could have moved from within the one-phase gas area to this position on the boundary without undergoing a phase
transition.

When, on the other hand, enough heat is transferred out of the system to condense all of the gas, the system point moves to point A
at the left end of the tie line.  at this point is the molar volume of the liquid, .

When the system point is at position S on the tie line, both liquid and gas are present. Their amounts must be such that the total
volume is the sum of the volumes of the individual phases, and the total amount is the sum of the amounts in the two phases:

The value of  at the system point is then given by the equation

which can be rearranged to

The quantities  and  are the lengths  and , respectively, defined in the figure and measured in units of 
. This gives us the lever rule for liquid–gas equilibrium:

(The relation is called the lever rule by analogy to a stationary mechanical lever, each end of which has the same value of the
product of applied force and distance from the fulcrum.)

In Fig. 8.9 the system point S is positioned on the tie line two thirds of the way from the left end, making length  twice as long as
. The lever rule then gives the ratio of amounts: . One-third of the total amount is liquid and two-thirds is

gas.

We cannot apply the lever rule to a point on the triple line, because we need more than the value of  to determine the relative
amounts present in three phases.

We can derive a more general form of the lever rule that will be needed in Chap. 13 for phase diagrams of
multicomponent systems. This general form can be applied to any two-phase area of a two-dimensional phase
diagram in which a tie-line construction is valid, with the position of the system point along the tie line given by the
variable

where  and  are extensive state functions. (In the pressure–volume phase diagram of Fig. 8.9, these functions are 
 and  and the system point position is given by .) We repeat the steps of the derivation above,

labeling the two phases by superscripts  and  instead of  and . The relation corresponding to Eq. 8.2.4 is
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If  and  are lengths measured along the tie line from the system point to the ends of the tie line at single phases 
 and , respectively, Eq. 8.2.7 is equivalent to the general lever rule

8.2.5 Volume properties 

Figure 8.10 Isotherms for the fluid phases of H O (based on data in
NIST Chemistry WebBook). The open circle indicates the critical point,
the dashed curve is the critical isotherm at , and the dotted
curve encloses the two-phase area of the pressure–volume phase
diagram. The triple line lies too close to the bottom of the diagram to be
visible on this scale.

Figure 8.10 is a pressure–volume phase diagram for H O. On the diagram are drawn isotherms (curves of constant ). These
isotherms define the shape of the three-dimensional – –  surface. The area containing the horizontal isotherm segments is
the two-phase area for coexisting liquid and gas phases. The boundary of this area is defined by the dotted curve drawn through the
ends of the horizontal segments. The one-phase liquid area lies to the left of this curve, the one-phase gas area lies to the right, and
the critical point lies at the top.

The diagram contains the information needed to evaluate the molar volume at any temperature and pressure in the one-phase region
and the derivatives of the molar volume with respect to temperature and pressure. At a system point in the one-phase region, the
slope of the isotherm passing through the point is the partial derivative . Since the isothermal compressibility is given
by , we have

We see from Fig. 8.10 that the slopes of the isotherms are large and negative in the liquid region, smaller and negative in the gas
and supercritical fluid regions, and approach zero at the critical point. Accordingly, the isothermal compressibility of the gas and
the supercritical fluid is much greater than that of the liquid, approaching infinity at the critical point. The critical opalescence seen
in Fig. 8.7 is caused by local density fluctuations, which are large when  is large.

Lα Lβ

α β

= or =bαLα bβLβ bβ

bα

Lα

Lβ
(8.2.8)
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Figure 8.11 Isobars for the fluid phases of H O (based on data in NIST
Chemistry WebBook). The open circle indicates the critical point, the
dashed curve is the critical isobar at , and the dotted curve
encloses the two-phase area of the temperature–volume phase diagram.  
Solid curves: a, ; b, ; c, ; d, 

.

Figure 8.11 shows isobars for H O instead of isotherms. At a system point in the one-phase region, the slope of the isobar passing
through the point is the partial derivative . The cubic expansion coefficient  is equal to , so we
have

The figure shows that the slopes of the isobars are large and positive in the liquid region, smaller and negative in the gas and
supercritical fluid regions, and approach zero at the critical point. Thus the gas and the supercritical fluid have much larger cubic
expansion coefficients than the liquid. The value of  approaches infinity at the critical point, meaning that in the critical region the
density distribution is greatly affected by temperature gradients. This may account for the low position of the middle ball in Fig.
8.7(b).

This page titled 8.2: Phase Diagrams of Pure Substances is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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8.3: Phase Transitions
Recall (Sec. 2.2.2) that an equilibrium phase transition of a pure substance is a process in which some or all of the substance is
transferred from one coexisting phase to another at constant temperature and pressure.

8.3.1 Molar transition quantities 
The quantity  is the molar enthalpy change for the reversible process in which liquid changes to gas at a temperature and
pressure at which the two phases coexist at equilibrium. This quantity is called the molar enthalpy of vaporization. (Because 

 is an enthalpy change per amount of vaporization, it would be more accurate to call it the “molar enthalpy change of
vaporization.”) Since the pressure is constant during the process,  is equal to the heat per amount of vaporization (Eq.
5.3.8). Hence,  is also called the molar heat of vaporization.

The IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in Physical Chemistry, 3rd edition,
RSC Publishing, Cambridge, 2007, p. 58) recommends that  be interpreted as an operator symbol: 

, where “p” is the abbreviation for a process at constant  and  (in this case “vap”) and  is its
advancement. Thus  is the same as  where  is the amount of liquid changed to gas.

Here is a list of symbols for the molar enthalpy changes of various equilibrium phase transitions:

Molar enthalpies of vaporization, sublimation, and fusion are positive. The reverse processes of condensation (gas liquid),
condensation or deposition (gas solid), and freezing (liquid solid) have negative enthalpy changes.

The subscripts in the list above are also used for other molar transition quantities. Thus, there is the molar entropy of vaporization 
, the molar internal energy of sublimation , and so on.

A molar transition quantity of a pure substance is the change of an extensive property divided by the amount transferred between
the phases. For example, when an amount  in a liquid phase is allowed to vaporize to gas at constant  and , the enthalpy change
is  and the molar enthalpy of vaporization is

In other words,  is the enthalpy change per amount vaporized and is also the difference between the molar enthalpies of the
two phases.

A molar property of a phase, being intensive, usually depends on two independent intensive variables such as  and . Despite the
fact that  is the difference of the two molar properties  and , its value depends on only one intensive variable,
because the two phases are in transfer equilibrium and the system is univariant. Thus, we may treat  as a function of  only.
The same is true of any other molar transition quantity.

The molar Gibbs energy of an equilibrium phase transition, , is a special case. For the phase transition , we may write
an equation analogous to Eq. 8.3.1 and equate the molar Gibbs energy in each phase to a chemical potential (see Eq. 7.8.1):

But the transition is between two phases at equilibrium, requiring both phases to have the same chemical potential: .
Therefore, the molar Gibbs energy of any equilibrium phase transition is zero:

Since the Gibbs energy is defined by , in phase  we have . Similarly, in phase  we
have . When we substitute these expressions in  (Eq. 8.3.2) and set  equal to the transition

HΔvap
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temperature , we obtain

Then, by setting  equal to zero, we find the molar entropy and molar enthalpy of the equilibrium phase transition are related
by

where  and  are evaluated at the transition temperature .

We may obtain Eq. 8.3.5 directly from the second law. With the phases in equilibrium, the transition process is
reversible. The second law gives . Dividing by the amount transferred between the
phases gives Eq. 8.3.5.

8.3.2 Calorimetric measurement of transition enthalpies 

The most precise measurement of the molar enthalpy of an equilibrium phase transition uses electrical work. A known quantity of
electrical work is performed on a system containing coexisting phases, in a constant-pressure adiabatic calorimeter, and the
resulting amount of substance transferred between the phases is measured. The first law shows that the electrical work 
equals the heat that would be needed to cause the same change of state. This heat, at constant , is the enthalpy change of the
process.

The method is similar to that used to measure the heat capacity of a phase at constant pressure (Sec. 7.3.2), except that now the
temperature remains constant and there is no need to make a correction for the heat capacity of the calorimeter.

8.3.3 Standard molar transition quantities 

The standard molar enthalpy of vaporization, , is the enthalpy change when pure liquid in its standard state at a specified
temperature changes to gas in its standard state at the same temperature, divided by the amount changed.

Note that the initial state of this process is a real one (the pure liquid at pressure ), but the final state (the gas behaving ideally at
pressure ) is hypothetical. The liquid and gas are not necessarily in equilibrium with one another at pressure  and the
temperature of interest, and we cannot evaluate  from a calorimetric measurement with electrical work without further
corrections. The same difficulty applies to the evaluation of . In contrast,  and  (without the  symbol), as
well as , all refer to reversible transitions between two real phases coexisting in equilibrium.

Let  represent one of the thermodynamic potentials or the entropy of a phase. The standard molar transition quantities 
 and  are functions only of . To evaluate  or  at a

given temperature, we must calculate the change of  for a path that connects the standard state of the liquid or solid with that of
the gas. The simplest choice of path is one of constant temperature  with the following steps:

1. The sum of  for these three steps is the desired quantity  or .

This page titled 8.3: Phase Transitions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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8.4: Coexistence Curves
A coexistence curve on a pressure–temperature phase diagram shows the conditions under which two phases can coexist in
equilibrium, as explained in Sec. 8.2.2.

8.4.1 Chemical potential surfaces 
From the relation , we see that at constant  the slope of  versus  is negative since molar entropy is always
positive. Furthermore, the magnitude of the slope increases on going from solid to liquid and from liquid to gas, because the molar
entropies of sublimation and vaporization are positive. This difference in slope is illustrated by the curves for H O in Fig. 8.13(a).
The triple-point pressure of H O is . At a pressure of , greater than the triple-point pressure, the curves for solid
and liquid intersect at a melting point (point A) and the curves for liquid and gas intersect at a boiling point (point B).

From , we see that a pressure reduction at constant temperature lowers the chemical potential of a phase. The
result of a pressure reduction from  to  (below the triple-point pressure of H O) is a downward shift of each of
the curves of Fig. 8.13(a) by a distance proportional to the molar volume of the phase. The shifts of the solid and liquid curves are
too small to see (  is only ). Because the gas has a large molar volume, the gas curve shifts substantially to a
position where it intersects with the solid curve at a sublimation point (point C). At , or any other pressure below the
triple-point pressure, only a solid–gas equilibrium is possible for H O. The liquid phase is not stable at any pressure below the
triple-point pressure, as shown by the pressure–temperature phase diagram of H O in Fig. 8.13(b).

8.4.2 The Clapeyron equation 
If we start with two coexisting phases,  and , of a pure substance and change the temperature of both phases equally without
changing the pressure, the phases will no longer be in equilibrium, because their chemical potentials change unequally. In order for
the phases to remain in equilibrium during the temperature change  of both phases, there must be a certain simultaneous change 

 in the pressure of both phases. The changes  and  must be such that the chemical potentials of both phases change equally
so as to remain equal to one another: .

The infinitesimal change of  in a phase is given by  (Eq. 7.8.2). Thus, the two phases remain in
equilibrium if  and  satisfy the relation

which we rearrange to

or

Equation 8.4.4 is one form of the Clapeyron equation, which contains no approximations. We find an alternative form by
substituting  (Eq. 8.3.5):

Equations 8.4.4 and 8.4.5 give the slope of the coexistence curve, , as a function of quantities that can be measured. For the
sublimation and vaporization processes, both  and  are positive. Therefore, according to Eq. 8.4.5, the solid–gas and
liquid–gas coexistence curves have positive slopes. For the fusion process, however,  is positive, but  may be positive
or negative depending on the substance, so that the slope of the solid–liquid coexistence curve may be either positive or negative.
The absolute value of  is small, causing the solid–liquid coexistence curve to be relatively steep; see Fig. 8.13(b) for an
example.

Most substances expand on melting, making the slope of the solid–liquid coexistence curve positive. This is true of
carbon dioxide, although in Fig. 8.2(c) the curve is so steep that it is difficult to see the slope is positive. Exceptions
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at ordinary pressures, substances that contract on melting, are H O, rubidium nitrate, and the elements antimony,
bismuth, and gallium.

The phase diagram for H O in Fig. 8.4 clearly shows that the coexistence curve for ice I and liquid has a negative
slope due to ordinary ice being less dense than liquid water. The high-pressure forms of ice are more dense than the
liquid, causing the slopes of the other solid–liquid coexistence curves to be positive. The ice VII–ice VIII
coexistence curve is vertical, because these two forms of ice have identical crystal structures, except for the
orientations of the H O molecule; therefore, within experimental uncertainty, the two forms have equal molar
volumes.

We may rearrange Eq. 8.4.5 to give the variation of  with  along the coexistence curve:

Consider the transition from solid to liquid (fusion). Because of the fact that the cubic expansion coefficient and isothermal
compressibility of a condensed phase are relatively small,  is approximately constant for small changes of  and . If 
is also practically constant, integration of Eq. 8.4.6 yields the relation

or

from which we may estimate the dependence of the melting point on pressure.

8.4.3 The Clausius–Clapeyron equation 
When the gas phase of a substance coexists in equilibrium with the liquid or solid phase, and provided  and  are not close to the
critical point, the molar volume of the gas is much greater than that of the condensed phase. Thus, we may write for the processes
of vaporization and sublimation

The further approximation that the gas behaves as an ideal gas, , then changes Eq. 8.4.5 to

Equation 8.4.10 is the Clausius–Clapeyron equation. It gives an approximate expression for the slope of a liquid–gas or solid–gas
coexistence curve. The expression is not valid for coexisting solid and liquid phases, or for coexisting liquid and gas phases close
to the critical point.

At the temperature and pressure of the triple point, it is possible to carry out all three equilibrium phase transitions of fusion,
vaporization, and sublimation. When fusion is followed by vaporization, the net change is sublimation. Therefore, the molar
transition enthalpies at the triple point are related by

Since all three of these transition enthalpies are positive, it follows that  is greater than  at the triple point. Therefore,
according to Eq. 8.4.10, the slope of the solid–gas coexistence curve at the triple point is slightly greater than the slope of the
liquid–gas coexistence curve.

We divide both sides of Eq. 8.4.10 by  and rearrange to the form
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Then, using the mathematical identities  and , we can write Eq. 8.4.12 in three
alternative forms:

Equation 8.4.15 shows that the curve of a plot of  versus  (where  is the vapor pressure of a pure liquid or solid) has
a slope at each temperature equal, usually to a high degree of accuracy, to  or  at that temperature. This
kind of plot provides an alternative to calorimetry for evaluating molar enthalpies of vaporization and sublimation.

If we use the recommended standard pressure of , the ratio  appearing in these equations becomes .
That is,  is simply the numerical value of  when  is expressed in bars. For the purpose of using Eq. 8.4.15 to
evaluate , we can replace  by any convenient value. Thus, the curves of plots of  versus , 

 versus , and  versus  using the same temperature and pressure data all have the same
slope (but different intercepts) and yield the same value of .

If we assume  or  is essentially constant in a temperature range, we may integrate Eq. 8.4.14 from an initial to a final
state along the coexistence curve to obtain

Equation 8.4.16 allows us to estimate any one of the quantities , , , , or , given values of the other four.
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vaporization or sublimation)

ln(p/ )p∘ 1/T p

− H/RΔvap − H/RΔsub

1 bar p/p∘ p/bar

p/p∘ p p

HΔtrs p∘ ln(p/bar) 1/T

ln(p/Pa) 1/T ln(p/Torr) 1/T

HΔtrs

HΔvap HΔsub

ln ≈ − ( − )
p2

p1

HΔtrs

R

1

T2

1

T1
(8.4.16)

(pure substance,
vaporization or sublimation)

p1 p2 T1 T2 HΔtrs
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8.5: Chapter 8 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

8.1 
Consider the system described in Sec. 8.1.5 containing a spherical liquid droplet of radius  surrounded by pure vapor. Starting
with Eq. 8.1.15, find an expression for the total differential of . Then impose conditions of isolation and show that the
equilibrium conditions are , , and , where  is the surface tension.

8.2 
This problem concerns diethyl ether at . At this temperature, the standard molar entropy of the gas calculated from
spectroscopic data is . The saturation vapor pressure of the liquid at this temperature is ,
and the molar enthalpy of vaporization is . The second virial coefficient of the gas at this temperature
has the value , and its variation with temperature is given by 

.

(a) Use these data to calculate the standard molar entropy of liquid diethyl ether at . A small pressure change has a
negligible effect on the molar entropy of a liquid, so that it is a good approximation to equate  to  at the saturation vapor
pressure.

(b) Calculate the standard molar entropy of vaporization and the standard molar enthalpy of vaporization of diethyl ether at 
. It is a good approximation to equate  to  at the saturation vapor pressure.

8.3 
Explain why the chemical potential surfaces shown in Fig. 8.12 are concave downward; that is, why  becomes more
negative with increasing  and  becomes less positive with increasing .

8.4 
Potassium has a standard boiling point of  and a molar enthalpy of vaporization . Estimate the
saturation vapor pressure of liquid potassium at .

8.5 
Naphthalene has a melting point of  at  and  at . The molar volume change on melting is 

. Calculate the molar enthalpy of fusion to two significant figures.

8.6 
The dependence of the vapor pressure of a liquid on temperature, over a limited temperature range, is often represented by the
Antoine equation, , where  is the Celsius temperature and , , and  are constants
determined by experiment. A variation of this equation, using a natural logarithm and the thermodynamic temperature, is

The vapor pressure of liquid benzene at temperatures close to  is adequately represented by the preceding equation with the
following values of the constants:

(a) Find the standard boiling point of benzene.

(b) Use the Clausius–Clapeyron equation to evaluate the molar enthalpy of vaporization of benzene at .

8.7 
At a pressure of one atmosphere, water and steam are in equilibrium at  (the normal boiling point of water). At this
pressure and temperature, the water density is , the steam density is , and the molar enthalpy of
vaporization is .

(a) Use the Clapeyron equation to calculate the slope  of the liquid–gas coexistence curve at this point.

(b) Repeat the calculation using the Clausius–Clapeyron equation.

(c) Use your results to estimate the standard boiling point of water. (Note: The experimental value is .)

r

U

=T g T l =μg μl = +2γ/rpl pg γ

T = 298.15 K

(g) = 342.2 J K  molS∘
m

−1 −1 0.6691 bar

H = 27.10 kJ molΔvap
−1

B = −1.227 × m  mol10−3 3 −1

dB/ dT = 1.50 × m  K  mol10−5 3 −1 −1

298.15 K

(l)S∘
m (l)Sm

298.15 K (l)H ∘
m (l)Hm

(∂μ/∂T )p

T (∂μ/∂p)T p

773 C∘ H = 84.9 kJ molΔvap
−1

400. C∘

78.2 C∘ 1 bar 81.7 C∘ 100 bar

V = 0.019 cm  molΔfus
3 −1

(p/Torr) = A −B/(t +C)log10 t A B C

ln(p/bar) = a −
b

T +c
(8.5.1)

298 K

a = 9.25092 b = 2771.233 K c = −53.262 K (8.5.2)

298.15 K

99.97 C∘

0.958 g cm−3 5.98 × g cm10−4 −3

40.66 kJ mol−1

dp/ dT

99.61 C∘
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8.8 
At the standard pressure of , liquid and gaseous H O coexist in equilibrium at , the standard boiling point of water.

(a) Do you expect the standard molar enthalpy of vaporization to have the same value as the molar enthalpy of vaporization at this
temperature? Explain.

(b) The molar enthalpy of vaporization at  has the value . Estimate the value of  at this
temperature with the help of Table 7.5 and the following data for the second virial coefficient of gaseous H O at :

(c) Would you expect the values of  and  to be equal at the standard freezing point of water? Explain.

8.9 
The standard boiling point of H O is . The molar enthalpy of vaporization at this temperature is 

. The molar heat capacity of the liquid at temperatures close to this value is given by

where  is the Celsius temperature and the constants have the values

Suppose  of liquid H O is placed in a container maintained at a constant pressure of , and is carefully heated to a
temperature  above the standard boiling point, resulting in an unstable phase of superheated water. If the container is
enclosed with an adiabatic boundary and the system subsequently changes spontaneously to an equilibrium state, what amount of
water will vaporize? (Hint: The temperature will drop to the standard boiling point, and the enthalpy change will be zero.)

This page titled 8.5: Chapter 8 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

1 bar 2 372.76 K

372.76 K H = 40.67 kJ molΔvap
−1 ΔvapH ∘

2 372.76 K

B = −4.60 × m  mol dB/ dT = 3.4 × m  K  mol10−4 3 −1 10−6 3 −1 −1 (8.5.3)

HΔfus ΔfusH ∘

2 99.61 C∘

H = 40.67 kJ molΔvap
−1

= a +b(t −c)Cp,m

t

a = 75.94 J K  mol b = 0.022 J K  mol c = 99.61 C−1 −1 −2 −1 ∘ (8.5.4)

100.00 mol 2 1 bar
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CHAPTER OVERVIEW

9: Mixtures
A homogeneous mixture is a phase containing more than one substance. This chapter discusses composition variables and partial
molar quantities of mixtures in which no chemical reaction is occurring. The ideal mixture is defined. Chemical potentials, activity
coefficients, and activities of individual substances in both ideal and nonideal mixtures are discussed.

Except for the use of fugacities to determine activity coefficients in condensed phases, a discussion of phase equilibria involving
mixtures will be postponed to Chap. 13.

9.1: Composition Variables
9.2: Partial Molar Quantities
9.3: Gas Mixtures
9.4: Liquid and Solid Mixtures of Nonelectrolytes
9.5: Activity Coefficients in Mixtures of Nonelectrolytes
9.6: Evaluation of Activity Coefficients
9.7: Activity of an Uncharged Species
9.8: Mixtures in Gravitational and Centrifugal Fields
9.9: Chapter 9 Problems

This page titled 9: Mixtures is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source content
that was edited to the style and standards of the LibreTexts platform.
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9.1: Composition Variables
A composition variable is an intensive property that indicates the relative amount of a particular species or substance in a phase.

9.1.1 Species and substances 
We sometimes need to make a distinction between a species and a substance. A species is any entity of definite elemental
composition and charge and can be described by a chemical formula, such as H O, H O , NaCl, or Na . A substance is a species
that can be prepared in a pure state (e.g., N  and NaCl). Since we cannot prepare a macroscopic amount of a single kind of ion by
itself, a charged species such as H O  or Na  is not a substance. Chap. 10 will discuss the special features of mixtures containing
charged species.

9.1.2 Mixtures in general 

The mole fraction of species  is defined by

where  is the amount of species  and the sum is taken over all species in the mixture. The symbol  is used for a mixture in
general, and  is used when the mixture is a gas.

The mass fraction, or weight fraction, of species  is defined by

where  is the mass of species  and  is the total mass.

The concentration, or molarity, of species  in a mixture is defined by

The symbol M is often used to stand for units of mol L , or mol dm . Thus, a concentration of  is  moles per liter, or 
 molar.

Concentration is sometimes called “amount concentration” or “molar concentration” to avoid confusion with
number concentration (the number of particles per unit volume). An alternative notation for  is [A].

A binary mixture is a mixture of two substances.

9.1.3 Solutions 

A solution, strictly speaking, is a mixture in which one substance, the solvent, is treated in a special way. Each of the other species
comprising the mixture is then a solute. The solvent is denoted by A and the solute species by B, C, and so on. (Some chemists
denote the solvent by subscript  and use , , and so on for solutes.) Although in principle a solution can be a gas mixture, in this
section we will consider only liquid and solid solutions.

We can prepare a solution of varying composition by gradually mixing one or more solutes with the solvent so as to continuously
increase the solute mole fractions. During this mixing process, the physical state (liquid or solid) of the solution remains the same
as that of the pure solvent. When the sum of the solute mole fractions is small compared to  (i.e.,  is close to unity), the
solution is called dilute. As the solute mole fractions increase, we say the solution becomes more concentrated.

Mole fraction, mass fraction, and concentration can be used as composition variables for both solvent and solute, just as they are
for mixtures in general. A fourth composition variable, molality, is often used for a solute. The molality of solute species B is
defined by

2 3
+ +

2

3
+ +

i

orxi =
def ni

∑j nj

yi =
def ni

∑j nj

(9.1.1)
(P =1)

ni i xi

yi

i

=wi =
def m(i)

m

niMi

∑j njMj

(9.1.2)
(P =1)

m(i) i m

i

ci =
def ni

V
(9.1.3)
(P =1)

−1 −3 0.5 M 0.5

0.5

cA

1 2 3

xA xA

mB =
def nB

m(A)
(9.1.4)
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where  is the mass of solvent. The symbol m is sometimes used to stand for units of mol kg , although this
should be discouraged because m is also the symbol for meter. For example, a solute molality of  is  moles of solute per
kilogram of solvent, or  molal.

9.1.4 Binary solutions 

We may write simplified equations for a binary solution of two substances, solvent A and solute B. Equations 9.1.1–9.1.4 become

The right sides of Eqs. 9.1.5–9.1.8 express the solute composition variables in terms of the amounts and molar masses of the
solvent and solute and the density  of the solution.

To be able to relate the values of these composition variables to one another, we solve each equation for  and divide by  to
obtain an expression for the mole ratio :

These expressions for  allow us to find one composition variable as a function of another. For example, to find molality as a
function of concentration, we equate the expressions for  on the right sides of Eqs. 9.1.11 and 9.1.12 and solve for  to
obtain

A binary solution becomes more dilute as any of the solute composition variables becomes smaller. In the limit of infinite dilution,
the expressions for  become:

where a superscript asterisk ( ) denotes a pure phase. We see that, in the limit of infinite dilution, the composition variables , 
, , and  are proportional to one another. These expressions are also valid for solute B in a multisolute solution in which

each solute is very dilute; that is, in the limit .

The rule of thumb that the molarity and molality values of a dilute aqueous solution are approximately equal is
explained by the relation  (from Eq. 9.1.14), or , and the fact that the density 

m(A) = nAMA
−1

0.6 m 0.6

0.6

=xB
nB

+nA nB
(9.1.5)

(binary solution)

=wB
nBMB

+nAMA nBMB

(9.1.6)
(binary solution)

= =cB
nB

V

ρnB

+nAMA nBMB
(9.1.7)

(binary solution)

=mB
nB

nAMA
(9.1.8)

(binary solution)

ρ

nB nA

/nB nA

from Eq. 9.1.5 =
nB

nA

xB

1 −xB

(9.1.9)
(binary solution)

from Eq. 9.1.6 =
nB

nA

MAwB

(1 − )MB wB
(9.1.10)

(binary solution)

from Eq. 9.1.7 =
nB

nA

MAcB

ρ −MBcB

(9.1.11)
(binary solution)

from Eq. 9.1.8 =
nB

nA

MAmB (9.1.12)
(binary solution)
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of water is approximately . Hence, if the solvent is water and the solution is dilute, the numerical value of 
 expressed in mol L  is approximately equal to the numerical value of  expressed in mol kg .

9.1.5 The composition of a mixture 

We can describe the composition of a phase with the amounts of each species, or with any of the composition variables defined
earlier: mole fraction, mass fraction, concentration, or molality. If we use mole fractions or mass fractions to describe the
composition, we need the values for all but one of the species, since the sum of all fractions is unity.

Other composition variables are sometimes used, such as volume fraction, mole ratio, and mole percent. To describe the
composition of a gas mixture, partial pressures can be used (Sec. 9.3.1).

When the composition of a mixture is said to be fixed or constant during changes of temperature, pressure, or volume, this means
there is no change in the relative amounts or masses of the various species. A mixture of fixed composition has fixed values of
mole fractions, mass fractions, and molalities, but not necessarily of concentrations and partial pressures. Concentrations will
change if the volume changes, and partial pressures in a gas mixture will change if the pressure changes.

This page titled 9.1: Composition Variables is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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9.2: Partial Molar Quantities
The symbol , where  is an extensive property of a homogeneous mixture and the subscript  identifies a constituent species of
the mixture, denotes the partial molar quantity of species  defined by

This is the rate at which property  changes with the amount of species  added to the mixture as the temperature, the pressure, and
the amounts of all other species are kept constant. A partial molar quantity is an intensive state function. Its value depends on the
temperature, pressure, and composition of the mixture.

Keep in mind that as a practical matter, a macroscopic amount of a charged species (i.e., an ion) cannot be added by itself to a
phase because of the huge electric charge that would result. Thus if species  is charged,  as defined by Eq. 9.2.1 is a theoretical
concept whose value cannot be determined experimentally.

An older notation for a partial molar quantity uses an overbar: . The notation  was suggested in the first edition
of the IUPAC Green Book (Ian Mills et al, Quantities, Units and Symbols in Physical Chemistry, Blackwell, Oxford,
1988, p. 44), but is not mentioned in later editions.

Figure : Addition of pure methanol (substance B) to a water-methanol mixture at constant  and .

  
(a)  (one mole) of methanol is placed in a narrow tube above a much greater volume of a mixture (shaded) of
composition . The dashed line indicates the level of the upper meniscus.

(b) After the two liquid phases have mixed by diffusion, the volume of the mixture has increased by only .

9.2.1 Partial molar volume 

In order to gain insight into the significance of a partial molar quantity as defined by Eq. 9.2.1, let us first apply the concept to the
volume of an open single-phase system. Volume has the advantage for our example of being an extensive property that is easily
visualized. Let the system be a binary mixture of water (substance A) and methanol (substance B), two liquids that mix in all
proportions. The partial molar volume of the methanol, then, is the rate at which the system volume changes with the amount of
methanol added to the mixture at constant temperature and pressure: .

At  and , the molar volume of pure water is  and that of pure methanol is 
. If we mix  of water at  with  of methanol at , we find the volume of

the resulting mixture at  is not the sum of the separate volumes, , but rather the slightly smaller value .
The difference is due to new intermolecular interactions in the mixture compared to the pure liquids.

Let us calculate the mole fraction composition of this mixture:

Xi X i

i

Xi =
def

( )
∂X

∂ni T ,p,nj≠i

(9.2.1)
(mixture)

X i

i Xi

X
¯ ¯¯̄

i X ′
i

 Example 9.2.1

9.2.1 T p

40.75 cm3

= 0.307xB

38.8 cm3

= (∂V /∂VB nB)T ,p,nA

25 C∘ 1 bar = 18.07 cm  molV ∗
m,A

3 −1

= 40.75 cm  molV ∗
m,B

3 −1 100.0 cm3 25 C∘ 100.0 cm3 25 C∘

25 C∘ 200.0 cm3 193.1 cm3

= = = 5.53 molnA

V ∗
A

V ∗
m,A

100.0 cm3

18.07 cm  mol3 −1
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Now suppose we prepare a large volume of a mixture of this composition  and add an additional  (one
mole) of pure methanol, as shown in Fig. 9.1(a). If the initial volume of the mixture at  was , we find the
volume of the new mixture at the same temperature is , an increase of  - see Fig. 9.1(b). The amount of
methanol added is not infinitesimal, but it is small enough compared to the amount of initial mixture to cause very little change in
the mixture composition: 

increases by only . Treating the mixture as an open system, we see that the addition of one mole of methanol to the system at
constant , and  causes the system volume to increase by . To a good approximation, then, the partial molar volume
of methanol in the mixture, , is given by .

The volume of the mixture to which we add the methanol does not matter as long as it is large. We would have observed practically
the same volume increase, , if we had mixed one mole of pure methanol with  of the mixture instead of
only .

Thus, we may interpret the partial molar volume of B as the volume change per amount of B added at constant  and  when B is
mixed with such a large volume of mixture that the composition is not appreciably affected. We may also interpret the partial molar
volume as the volume change per amount when an infinitesimal amount is mixed with a finite volume of mixture.

The partial molar volume of  is an intensive property that is a function of the composition of the mixture, as well as of  and .
The limiting value of  as  approaches 1 (pure B) is , the molar volume of pure . We can see this by writing 

 for pure , giving us .

If the mixture is a binary mixture of  and , and  is small, we may treat the mixture as a dilute solution of solvent  and
solute . As  approaches 0 in this solution,  approaches a certain limiting value that is the volume increase per amount of B
mixed with a large amount of pure A. In the resulting mixture, each solute molecule is surrounded only by solvent molecules. We
denote this limiting value of  by , the partial molar volume of solute B at infinite dilution. 
It is possible for a partial molar volume to be negative. Magnesium sulfate, in aqueous solutions of molality less than 

, has a negative partial molar volume. Physically, this means that when a small amount of crystalline 
dissolves at constant temperature in water, the liquid phase contracts. This unusual behavior is due to strong attractive water-ion
interactions.

9.2.2 The total differential of the volume in an open system 

Consider an open single-phase system consisting of a mixture of nonreacting substances. How many independent variables does
this system have?

We can prepare the mixture with various amounts of each substance, and we are able to adjust the temperature and pressure to
whatever values we wish (within certain limits that prevent the formation of a second phase). Each choice of temperature, pressure,
and amounts results in a definite value of every other property, such as volume, density, and mole fraction composition. Thus, an
open single-phase system of  substances has  independent variables. 

3. C in this kind of system is actually the number of components. The number of components is usually the same as the number
of substances, but is less if certain constraints exist, such as reaction equilibrium or a fixed mixture composition. The general
meaning of C will be discussed in Sec. 13.
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Figure : Mixing of water (A) and methanol (B) in a 2:1 ratio of volumes to form a mixture of increasing volume and constant
composition. The system is the mixture.

For a binary mixture , the number of independent variables is four. We may choose these variables to be , and ,
and write the total differential of  in the general form 

(binary mixture)

We know the first two partial derivatives on the right side are given by 

4. See Eqs. 7.1.1 and 7.1.2, which are for closed syste

 

 
We identify the last two partial derivatives on the right side of Eq. 9.2.5 as the partial molar volumes  and . Thus, we may
write the total differential of  for this open system in the compact form 

(binary mixture)

If we compare this equation with the total differential of  for a one-component closed system,  (Eq.
7.1.6), we see that an additional term is required for each constituent of the mixture to allow the system to be open and the
composition to vary. 
When  and  are held constant, Eq. 9.2.7 becomes 

(binary mixture, constant  and  )

We obtain an important relation between the mixture volume and the partial molar volumes by imagining the following process.
Suppose we continuously pour pure water and pure methanol at constant but not necessarily equal volume rates into a stirred,
thermostatted container to form a mixture of increasing volume and constant composition, as shown schematically in Fig. 9.2. If
this mixture remains at constant  and  as it is formed, none of its intensive properties change during the process, and the partial
molar volumes  and  remain constant. Under these conditions, we can integrate Eq. 9.2.8 to obtain the additivity 

rule for volume:  

 
(binary mixture) 

9.2.2

(C = 2) T , p, nA nB

V

dV = dT + dp( )
∂V

∂T p, ,nA nB

( )
∂V

∂p T , ,nA nB

+ d + d( )
∂V

∂nA T ,p,nB

nA ( )
∂V

∂nB T ,p,nA

nB

4

 Footnote

= αV = − V( )
∂V

∂T p, ,nA nB

( )
∂V

∂p T , ,nA nB

κT (9.2.1)

VA VB

V

dV = αV  dT − V  dp + d + dκT VA nA VB nB (9.2.2)

V dV = αV  dT − V  dpκT

T p

dV = d + dVA nA VB nB (9.2.3)

T p

T p

VA VB
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This equation allows us to calculate the mixture volume from the amounts of the constituents and the appropriate partial molar
volumes for the particular temperature, pressure, and composition.

For example, given that the partial molar volumes in a water-methanol mixture of composition  are 
 and , we calculate the volume of the water-methanol mixture described at the

beginning of Sec. 9.2.1 as follows: 

 
We can differentiate Eq. 9.2.9 to obtain a general expression for  under conditions of constant  and  : 

 
But this expression for  is consistent with Eq. 9.2.8 only if the sum of the last two terms on the right is zero: 

 
(binary mixture, constant  and  ) 
Equation 9.2.12 is the Gibbs-Duhem equation for a binary mixture, applied to partial molar volumes. (Section 9.2.4 will give a
general version of this equation.) Dividing both sides of the equation by  gives the equivalent form 

 
(binary mixture, constant  and  ) 
Equation 9.2.12 shows that changes in the values of  and  are related when the composition changes at constant  and . If
we rearrange the equation to the form 

 
(binary mixture, constant  and  ) 
we see that a composition change that increases  (so that  is positive) must make  decrease.

9.2.3 Evaluation of partial molar volumes in binary mixtures 

The partial molar volumes  and  in a binary mixture can be evaluated by the method of intercepts. To use this method, we
plot experimental values of the quantity  (where  is  ) versus the mole fraction  is called the mean molar
volume.

= 0.307xB

= 17.74VA  cm3  mol−1 = 38.76VB  cm3  mol−1

V = (17.74 ) (5.53 mol) +(38.76 ) (2.45 mol) cm3  mol−1  cm3  mol−1

= 193.1 cm3

dV T p

dV = d + d + d + dVA nA VB nB nA VA nB VB (9.2.5)

dV

d + d = 0nA VA nB VB (9.2.6)

T p

+nA nB

d + d = 0xA VA xB VB (9.2.7)
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Figure : Figure 9.3 Mixtures of water (A) and methanol (B) at  and 1 bar. 

a. Mean molar volume as a function of . The dashed line is the tangent to the curve at .
b. Molar volume of mixing as a function of . The dashed line is the tangent to the curve at .
c. Partial molar volumes as functions of . The points at  (open circles) are obtained from the intercepts of the

dashed line in either (a) or (b).

 Based on data in Ref. [12].

See Fig. 9.3(a) for an example. In this figure, the tangent to the curve drawn at the point on the curve at the composition of interest
(the composition used as an illustration in Sec. 9.2.1) intercepts the vertical line where  equals  at 

, and intercepts the vertical line where  equals  at .

To derive this property of a tangent line for the plot of  versus , we use Eq. 9.2.9 to write

 The equation is an example of the result of applying Euler's theorem on homogeneous functions to  treated as a function of 
 and .

When we differentiate this expression for  with respect to , keeping in mind that  and  are functions of 
, we obtain
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xB = 0.307xB

xB = 0.307xB
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V /n = = 17.7 cm  molVA
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3 −1
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VAxA VBxB

= (1 − ) + = ( − ) +VA xB VBxB VB VA xB VA

(9.2.15)

 Footnote
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=
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The differentials  and  are related to one another by the Gibbs–Duhem equation (Eq. 9.2.13): 
. We divide both sides of this equation by  to obtain

and substitute in Eq. 9.2.16 to obtain

Let the partial molar volumes of the constituents of a binary mixture of arbitrary composition  be  and .
Equation 9.2.15 shows that the value of  at the point on the curve of  versus  where the composition is 

 is . Equation 9.2.18 shows that the tangent to the curve at this point has a slope of .
The equation of the line that passes through this point and has this slope, and thus is the tangent to the curve at this
point, is , where  is the vertical ordinate on the plot of  versus . The line has
intercepts  at  and  at .

A variant of the method of intercepts is to plot the molar integral volume of mixing given by

versus , as illustrated in Fig. 9.3(b).  is the integral volume of mixing—the volume change at constant  and  when
solvent and solute are mixed to form a mixture of volume  and total amount  (see Sec. 11.1.1). The tangent to the curve at the
composition of interest has intercepts  at  and  at .

To see this, we write

We make the substitution  from Eq. 9.2.15 and rearrange:

Differentiation with respect to  yields

With a substitution from Eq. 9.2.17, this becomes

Equations 9.2.21 and 9.2.23 are analogous to Eqs. 9.2.15 and 9.2.18, with  replaced by ,  by 
, and  by . Using the same reasoning as for a plot of  versus , we find the

intercepts of the tangent to a point on the curve of  versus  are at  and .

Figure 9.3 shows smoothed experimental data for water–methanol mixtures plotted in both kinds of graphs, and the resulting partial
molar volumes as functions of composition. Note in Fig. 9.3(c) how the  curve mirrors the  curve as  varies, as predicted
by the Gibbs–Duhem equation. The minimum in  at  is mirrored by a maximum in  in agreement with Eq. 9.2.14;
the maximum is much attenuated because  is much less than unity.
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Macroscopic measurements are unable to provide unambiguous information about molecular structure. Nevertheless,
it is interesting to speculate on the implications of the minimum observed for the partial molar volume of methanol.
One interpretation is that in a mostly aqueous environment, there is association of methanol molecules, perhaps
involving the formation of dimers.

9.2.4 General relations 

The discussion above of partial molar volumes used the notation  and  for the molar volumes of pure A and B. The
partial molar volume of a pure substance is the same as the molar volume, so we can simplify the notation by using  and 
instead. Hereafter, this e-book will denote molar quantities of pure substances by such symbols as , , and .

The relations derived above for the volume of a binary mixture may be generalized for any extensive property  of a mixture of
any number of constituents. The partial molar quantity of species , defined by

is an intensive property that depends on , , and the composition of the mixture. The additivity rule for property  is

and the Gibbs–Duhem equation applied to  can be written in the equivalent forms

and

These relations can be applied to a mixture in which each species  is a nonelectrolyte substance, an electrolyte substance that is
dissociated into ions, or an individual ionic species. In Eq. 9.2.27, the mole fraction  must be based on the different species
considered to be present in the mixture. For example, an aqueous solution of NaCl could be treated as a mixture of components
A=H O and B=NaCl, with  equal to ; or the constituents could be taken as H O, Na , and Cl , in which case
the mole fraction of Na  would be .

A general method to evaluate the partial molar quantities  and  in a binary mixture is based on the variant of the method of
intercepts described in Sec. 9.2.3. The molar mixing quantity  is plotted versus , where  is 

. On this plot, the tangent to the curve at the composition of interest has intercepts equal to  at 
and  at .

We can obtain experimental values of such partial molar quantities of an uncharged species as , , and . It is not possible,
however, to evaluate the partial molar quantities , , , and  because these quantities involve the internal energy brought
into the system by the species, and we cannot evaluate the absolute value of internal energy (Sec. 2.6.2). For example, while we can
evaluate the difference  from calorimetric measurements of enthalpies of mixing, we cannot evaluate the partial molar
enthalpy  itself. We can, however, include such quantities as  in useful theoretical relations.

A partial molar quantity of a charged species is something else we cannot evaluate. It is possible, however, to obtain
values relative to a reference ion. Consider an aqueous solution of a fully-dissociated electrolyte solute with the
formula , where  and  are the numbers of cations and anions per solute formula unit. The partial molar
volume  of the solute, which can be determined experimentally, is related to the (unmeasurable) partial molar
volumes  and  of the constituent ions by

For aqueous solutions, the usual reference ion is H , and the partial molar volume of this ion at infinite dilution is
arbitrarily set equal to zero: .
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For example, given the value (at  and ) of the partial molar volume at infinite dilution of aqueous
hydrogen chloride

we can find the so-called “conventional” partial molar volume of Cl  ion:

Going one step further, the measured value  gives, for Na  ion, the conventional value

9.2.5 Partial specific quantities 

A partial specific quantity of a substance is the partial molar quantity divided by the molar mass, and has dimensions of volume
divided by mass. For example, the partial specific volume  of solute B in a binary solution is given by

where  and  are the masses of solvent and solute.

Although this e-book makes little use of specific quantities and partial specific quantities, in some applications they have an
advantage over molar quantities and partial molar quantities because they can be evaluated without knowledge of the molar mass.
For instance, the value of a solute’s partial specific volume is used to determine its molar mass by the method of sedimentation
equilibrium (Sec. 9.8.2).

The general relations in Sec. 9.2.4 involving partial molar quantities may be turned into relations involving partial specific
quantities by replacing amounts by masses, mole fractions by mass fractions, and partial molar quantities by partial specific
quantities. Using volume as an example, we can write an additivity relation , and Gibbs–Duhem relations 

 and . For a binary mixture of A and B, we can plot the specific volume  versus the mass fraction
; then the tangent to the curve at a given composition has intercepts equal to  at  and  at . A variant of this

plot is  versus ; the intercepts are then equal to  and .

9.2.6 The chemical potential of a species in a mixture 

Just as the molar Gibbs energy of a pure substance is called the chemical potential and given the special symbol , the partial
molar Gibbs energy  of species  in a mixture is called the chemical potential of species , defined by

If there are work coordinates for nonexpansion work, the partial derivative is taken at constant values of these coordinates.

The chemical potential of a species in a phase plays a crucial role in equilibrium problems, because it is a measure of the escaping
tendency of the species from the phase. Although we cannot determine the absolute value of  for a given state of the system, we
are usually able to evaluate the difference between the value in this state and the value in a defined reference state.

In an open single-phase system containing a mixture of  different nonreacting species, we may in principle independently vary , 
, and the amount of each species. This is a total of  independent variables. The total differential of the Gibbs energy of this

system is given by Eq. 5.5.9, often called the Gibbs fundamental equation:

Consider the special case of a mixture containing charged species, for example an aqueous solution of the electrolyte KCl. We
could consider the constituents to be either the substances H O and KCl, or else H O and the species K  and Cl . Any mixture we
can prepare in the laboratory must remain electrically neutral, or virtually so. Thus, while we are able to independently vary the
amounts of H O and KCl, we cannot in practice independently vary the amounts of K  and Cl  in the mixture. The chemical
potential of the K  ion is defined as the rate at which the Gibbs energy changes with the amount of K  added at constant  and 

298.15 K 1 bar
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3 −1 (9.2.29)
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3 −1 (9.2.30)

= 16.61 cm  molV ∞
NaCl

3 −1 +

= − = (16.61 −17.82) cm  mol = −1.21 cm  molV ∞
Na+ V ∞

NaCl V ∞
Cl−

3 −1 3 −1 (9.2.31)

vB

= =vB
VB

MB
[ ]

∂V

∂m(B) T ,p,m(A)

(9.2.32)

m(A) m(B)

V = m(i)∑i vi

m(i)d = 0∑i vi d = 0∑i wi vi v

wB vA =0wB vB =1wB

(v− − )wAv∗
A wBv∗

B wB −vA v∗
A −vB v∗

B

μ

Gi i i

μi =
def ( )

∂G

∂ni T ,p,nj≠i

(9.2.33)
(mixture)

μi

s T

p 2 +s

dG = −S dT +V dp + d∑
i=1

s

μi ni (9.2.34)
(mixture)

2 2
+ −

2
+ −

+ + T p

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20612?pdf


9.2.9 https://chem.libretexts.org/@go/page/20612

while the amount of Cl  is kept constant. This is a hypothetical process in which the net charge of the mixture increases. The
chemical potential of a ion is therefore a valid but purely theoretical concept. Let A stand for H O, B for KCl,  for K , and  for
Cl . Then it is theoretically valid to write the total differential of  for the KCl solution either as

or as

9.2.7 Equilibrium conditions in a multiphase, multicomponent system 

This section extends the derivation described in Sec. 8.1.2, which was for equilibrium conditions in a multiphase system containing
a single substance, to a more general kind of system: one with two or more homogeneous phases containing mixtures of
nonreacting species. The derivation assumes there are no internal partitions that could prevent transfer of species and energy
between the phases, and that effects of gravity and other external force fields are negligible.

The system consists of a reference phase, , and other phases labeled by . Species are labeled by subscript . Following the
procedure of Sec. 8.1.1, we write for the total differential of the internal energy

The conditions of isolation are

We use these relations to substitute for , , and  in Eq. 9.2.37. After making the further substitution 
 and solving for , we obtain

This equation is like Eq. 8.1.6 with provision for more than one species.

In the equilibrium state of the isolated system,  has the maximum possible value,  is equal to zero for an infinitesimal change
of any of the independent variables, and the coefficient of each term on the right side of Eq. 9.2.41 is zero. We find that in this state
each phase has the same temperature and the same pressure, and for each species the chemical potential is the same in each phase.

Suppose the system contains a species  that is effectively excluded from a particular phase, . For instance, sucrose molecules
dissolved in an aqueous phase are not accommodated in the crystal structure of an ice phase, and a nonpolar substance may be
essentially insoluble in an aqueous phase. We can treat this kind of situation by setting  equal to zero. Consequently there is no
equilibrium condition involving the chemical potential of this species in phase .

To summarize these conclusions: In an equilibrium state of a multiphase, multicomponent system without internal partitions, the
temperature and pressure are uniform throughout the system, and each species has a uniform chemical potential except in phases
where it is excluded.

This statement regarding the uniform chemical potential of a species applies to both a substance and an ion, as the
following argument explains. The derivation in this section begins with Eq. 9.2.37, an expression for the total

−

2 + + −
− G

dG = −S dT +V dp + d + dμA nA μB nB (9.2.35)

dG = −S dT +V dp + d + d + dμA nA μ+ n+ μ− n− (9.2.36)
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differential of . Because it is a total differential, the expression requires the amount  of each species  in each
phase to be an independent variable. Suppose one of the phases is the aqueous solution of KCl used as an example at
the end of the preceding section. In principle (but not in practice), the amounts of the species H O, K , and Cl  can
be varied independently, so that it is valid to include these three species in the sums over  in Eq. 9.2.37. The
derivation then leads to the conclusion that K  has the same chemical potential in phases that are in transfer
equilibrium with respect to K , and likewise for Cl . This kind of situation arises when we consider a Donnan
membrane equilibrium (Sec. 12.7.3) in which transfer equilibrium of ions exists between solutions of electrolytes
separated by a semipermeable membrane.

9.2.8 Relations involving partial molar quantities 

Here we derive several useful relations involving partial molar quantities in a single-phase system that is a mixture. The
independent variables are , , and the amount  of each constituent species .

From Eqs. 9.2.26 and 9.2.27, the Gibbs–Duhem equation applied to the chemical potentials can be written in the equivalent forms

and

These equations show that the chemical potentials of different species cannot be varied independently at constant  and .

A more general version of the Gibbs–Duhem equation, without the restriction of constant  and , is

This version is derived by comparing the expression for  given by Eq. 9.2.34 with the differential 
obtained from the additivity rule .

The Gibbs energy is defined by . Taking the partial derivatives of both sides of this equation with respect to  at
constant , , and  gives us

We recognize each partial derivative as a partial molar quantity and rewrite the equation as

This is analogous to the relation  for a pure substance.

From the total differential of the Gibbs energy,  (Eq. 9.2.34), we obtain the following
reciprocity relations:

The symbol  stands for the set of amounts of all species, and subscript  on a partial derivative means the amount of each
species is constant—that is, the derivative is taken at constant composition of a closed system. Again we recognize partial
derivatives as partial molar quantities and rewrite these relations as follows:

U ni i

2
+ −

i
+

+ −

T p ni i

d = 0∑
i

ni μi (9.2.42)
(constant T  and p)

d = 0∑
i

xi μi (9.2.43)
(constant T  and p)

T p

T p

S dT −V dp + d = 0∑
i

ni μi (9.2.44)

dG dG= d + d∑i μi ni ∑i ni μi

G=∑i μini
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(9.2.45)

= −Tμi Hi Si (9.2.46)

μ = G/n = −THm Sm

dG = −S dT +V dp + d∑i μi ni

= − =( )
∂μi

∂T p,{ }ni

( )
∂S

∂ni T ,p,nj≠i
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These equations are the equivalent for a mixture of the relations  and  for a pure phase (Eqs.
7.8.3 and 7.8.4).

Taking the partial derivatives of both sides of  with respect to  at constant , , and  gives

Finally, we can obtain a formula for , the partial molar heat capacity at constant pressure of species , by writing the total
differential of  in the form

from which we have the reciprocity relation , or

This page titled 9.2: Partial Molar Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
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(∂μ/∂T = −)p Sm (∂μ/∂p =)T Vm

U = H −pV ni T p nj≠i

= −pUi Hi Vi (9.2.50)
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9.3: Gas Mixtures
The gas mixtures described in this chapter are assumed to be mixtures of nonreacting gaseous substances.

9.3.1 Partial pressure 
The partial pressure  of substance  in a gas mixture is defined as the product of its mole fraction in the gas phase and the
pressure of the phase:

The sum of the partial pressures of all substances in a gas mixture is . Since the sum of the mole
fractions of all substances in a mixture is , this sum becomes

Thus, the sum of the partial pressures equals the pressure of the gas phase. This statement is known as Dalton’s Law. It is valid for
any gas mixture, regardless of whether or not the gas obeys the ideal gas equation.

9.3.2 The ideal gas mixture 

As discussed in Sec. 3.5.1, an ideal gas (whether pure or a mixture) is a gas with negligible intermolecular interactions. It obeys the
ideal gas equation  (where  in a mixture is the sum ) and its internal energy in a closed system is a function
only of temperature. The partial pressure of substance  in an ideal gas mixture is ; but  equals , giving

Equation 9.3.3 is the ideal gas equation with the partial pressure of a constituent substance replacing the total pressure, and the
amount of the substance replacing the total amount. The equation shows that the partial pressure of a substance in an ideal gas
mixture is the pressure the substance by itself, with all others removed from the system, would have at the same  and  as the
mixture. Note that this statement is only true for an ideal gas mixture. The partial pressure of a substance in a real gas mixture is in
general different from the pressure of the pure substance at the same  and , because the intermolecular interactions are different.

9.3.3 Partial molar quantities in an ideal gas mixture 
We need to relate the chemical potential of a constituent of a gas mixture to its partial pressure. We cannot measure the absolute
value of a chemical potential, but we can evaluate its value relative to the chemical potential in a particular reference state called
the standard state.

The standard state of substance  in a gas mixture is the same as the standard state of the pure gas described in Sec. 7.7: It is the
hypothetical state in which pure gaseous  has the same temperature as the mixture, is at the standard pressure , and behaves as
an ideal gas. The standard chemical potential  of gaseous  is the chemical potential of  in this gas standard state, and is a
function of temperature.

By combining Eqs. 9.3.12 and 9.3.16, we obtain

which is the analogue for a gas mixture of Eq. 7.9.2 for a pure gas. Section 7.9 describes the procedure needed to obtain formulas
for various molar quantities of a pure gas from Eq. 7.9.2. By following a similar procedure with Eq. 9.3.19, we obtain the formulas
for differences between partial molar and standard molar quantities of a constituent of a gas mixture shown in the second column of
Table 9.1. These formulas are obtained with the help of Eqs. 9.2.46, 9.2.48, 9.2.50, and 9.2.52.
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Equation of state 

The equation of state of a real gas mixture can be written as the virial equation

This equation is the same as Eq. 2.2.2 for a pure gas, except that the molar volume  is replaced by the mean molar volume ,
and the virial coefficients  depend on composition as well as temperature.

At low to moderate pressures, the simple equation of state

describes a gas mixture to a sufficiently high degree of accuracy (see Eq. 2.2.8). This is equivalent to a compression factor given by

From statistical mechanical theory, the dependence of the second virial coefficient  of a binary gas mixture on the mole fraction
composition is given by

where  and  are the second virial coefficients of pure A and B, and  is a mixed second virial coefficient. , ,
and  are functions of  only. For a gas mixture with any number of constituents, the composition dependence of  is given by

Here  is the second virial of  if  and  are the same, or a mixed second virial coefficient if  and  are different.

If a gas mixture obeys the equation of state of Eq. 9.3.21, the partial molar volume of constituent  is given by

where the quantity , in order to be consistent with , is found to be given by

For the constituents of a binary mixture of A and B, Eq. 9.3.26 becomes

When we substitute the expression of Eq. 9.3.25 for  in Eq. 9.3.18, we obtain a relation between the fugacity coefficient of
constituent  and the function :

The third column of Table 9.1 gives formulas for various partial molar quantities of constituent  in terms of  and its temperature
derivative. The formulas are the same as the approximate formulas in the third column of Table 7.5 for molar quantities of a pure
gas, with  replacing the second virial coefficient .
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9.4: Liquid and Solid Mixtures of Nonelectrolytes
Homogeneous liquid and solid mixtures are condensed phases of variable composition. Most of the discussion of condensed-phase
mixtures in this section focuses on liquids. The same principles, however, apply to homogeneous solid mixtures, often called solid
solutions. These solid mixtures include most metal alloys, many gemstones, and doped semiconductors.

The relations derived in this section apply to mixtures of nonelectrolytes—substances that do not dissociate into charged species.
Solutions of electrolytes behave quite differently in many ways, and will be discussed in the next chapter.

9.4.1 Raoult’s law 

In 1888, the French physical chemist François Raoult published his finding that when a dilute liquid solution of a volatile solvent
and a nonelectrolyte solute is equilibrated with a gas phase, the partial pressure  of the solvent in the gas phase is proportional to
the mole fraction  of the solvent in the solution:

Here  is the saturation vapor pressure of the pure solvent (the pressure at which the pure liquid and pure gas phases are in
equilibrium).

Consider the solvent, A, of a solution that is dilute enough to be in the ideal-dilute range. In this range, the solvent fugacity obeys
Raoult’s law, and the partial molar quantities of the solvent are the same as those in an ideal mixture. Formulas for these quantities
were given in Eqs. 9.4.8–9.4.13 and are collected in the first column of Table 9.2. The formulas show that the chemical potential
and partial molar entropy of the solvent, at constant  and , vary with the solution composition and, in the limit of infinite dilution
( ), approach the values for the pure solvent. The partial molar enthalpy, volume, internal energy, and heat capacity, on the
other hand, are independent of composition in the ideal-dilute region and are equal to the corresponding molar quantities for the
pure solvent.

Next consider a solute, B, of a binary ideal-dilute solution. The solute obeys Henry’s law, and its chemical potential is given by 
 (Eq. 9.4.24) where  is a function of  and , but not of composition.  varies with the composition

and goes to  as the solution becomes infinitely dilute (  and ).

For the partial molar entropy of the solute, we use  (Eq. 9.2.48) and obtain

The term  represents the partial molar entropy  of B in the fictitious reference state of unit solute mole fraction.
Thus, we can write Eq. 9.4.36 in the form

This equation shows that the partial molar entropy varies with composition and goes to  in the limit of infinite dilution. From
the expressions of Eqs. 9.4.27 and 9.4.28, we can derive similar expressions for  in terms of the solute reference states on a
concentration or molality basis.

The relation  (from Eq. 9.2.46), combined with Eqs. 9.4.24 and 9.4.37, yields

showing that at constant  and , the partial molar enthalpy of the solute is constant throughout the ideal-dilute solution range.
Therefore, we can write

where  is the partial molar enthalpy at infinite dilution. By similar reasoning, using Eqs. 9.2.49–9.2.52, we find that the partial
molar volume, internal energy, and heat capacity of the solute are constant in the ideal-dilute range and equal to the values at
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infinite dilution. The expressions are listed in the second column of Table 9.2.

When the pressure is equal to the standard pressure , the quantities , , , and  are the same as the standard values 
, , , and .
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9.5: Activity Coefficients in Mixtures of Nonelectrolytes
An activity coefficient of a species is a kind of adjustment factor that relates the actual behavior to ideal behavior at the same
temperature and pressure. The ideal behavior is based on a reference state for the species.

We begin by describing reference states for nonelectrolytes. The thermodynamic behavior of an electrolyte solution is more
complicated than that of a mixture of nonelectrolytes, and will be discussed in the next chapter.

9.5.1 Reference states and standard states 

A reference state of a constituent of a mixture has the same temperature and pressure as the mixture. When species  is in its
reference state, its chemical potential  depends only on the temperature and pressure of the mixture.

If the pressure is the standard pressure , the reference state of species  becomes its standard state. In the standard state, the
chemical potential is the standard chemical potential , which is a function only of temperature.

Reference states are useful for derivations involving processes taking place at constant  and  when the pressure is not necessarily
the standard pressure.

Table 9.3 describes the reference states of nonelectrolytes used in this e-book, and lists symbols for chemical potentials of
substances in these states. The symbols for solutes include , , or  in the subscript to indicate the basis of the reference state.

9.5.2 Ideal mixtures 
Since the activity coefficient of a species relates its actual behavior to its ideal behavior at the same  and , let us begin by
examining behavior in ideal mixtures.

Consider first an ideal gas mixture at pressure . The chemical potential of substance  in this ideal gas mixture is given by Eq.
9.3.5 (the superscript “id” stands for ideal):

The reference state of gaseous substance  is pure  acting as an ideal gas at pressure . Its chemical potential is given by

Subtracting Eq. 9.5.2 from Eq. 9.5.1, we obtain

Consider the following expressions for chemical potentials in ideal mixtures and ideal-dilute solutions of nonelectrolytes. The first
equation is a rearrangement of Eq. 9.5.3, and the others are from earlier sections of this chapter (in order of occurrence, Eqs. 9.4.8,
9.4.35, 9.4.24, 9.4.27, and 9.4.28).

Note that the equations for the condensed phases have the general form

i

μref
i

p∘ i

μ∘
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where  is the chemical potential of component  in an appropriate reference state. (The standard composition on a mole fraction
basis is .)

9.5.3 Real mixtures 

If a mixture is not ideal, we can write an expression for the chemical potential of each component that includes an activity
coefficient. The expression is like one of those for the ideal case (Eqs. 9.5.4–9.5.9) with the activity coefficient multiplying the
quantity within the logarithm.

Consider constituent  of a gas mixture. If we eliminate  from Eqs. 9.3.12 and 9.5.2, we obtain

where  is the fugacity of constituent  and  is its fugacity coefficient. Here the activity coefficient is the fugacity coefficient .

For components of a condensed-phase mixture, we write expressions for the chemical potential having a form similar to that in Eq.
9.5.10, with the composition variable now multiplied by an activity coefficient:

The activity coefficient of a species is a dimensionless quantity whose value depends on the temperature, the pressure, the mixture
composition, and the choice of the reference state for the species. Under conditions in which the mixture behaves ideally, the
activity coefficient is unity and the chemical potential is given by one of the expressions of Eqs. 9.5.4–9.5.9; otherwise, the activity
coefficient has the value that gives the actual chemical potential.

This e-book will use various symbols for activity coefficients, as indicated in the following list of expressions for the chemical
potentials of nonelectrolytes:

Equation 9.5.14 refers to a component of a liquid or solid mixture of substances that mix in all proportions. Equation 9.5.15 refers
to the solvent of a solution. The reference states of these components are the pure liquid or solid at the temperature and pressure of
the mixture. For the activity coefficients of these components, this e-book uses the symbols  and .

The IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in Physical Chemistry, 3rd edition,
RSC Publishing, Cambridge, 2007, p. 59) recommends the symbol  for the activity coefficient of component 
when the reference state is the pure liquid or solid. This e-book instead uses symbols such as  and , in order to
avoid confusion with the symbol usually used for fugacity, .

In Eqs. 9.5.16–9.5.18, the symbols , , and  for activity coefficients of a nonelectrolyte solute include , , or  in the
subscript to indicate the choice of the solute reference state. Although three different expressions for  are shown, for a given
solution composition they must all represent the same value of , equal to the rate at which the Gibbs energy increases with the
amount of substance B added to the solution at constant  and . The value of a solute activity coefficient, on the other hand,
depends on the choice of the solute reference state.

You may find it helpful to interpret products appearing on the right sides of Eqs. 9.5.13–9.5.18 as follows.
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In other words, the value of one of these products is the value of a partial pressure or composition variable that would give the
same chemical potential in an ideal mixture as the actual chemical potential in the real mixture. These effective composition
variables are an alternative way to express the escaping tendency of a substance from a phase; they are related exponentially to
the chemical potential, which is also a measure of escaping tendency.

A change in pressure or composition that causes a mixture to approach the behavior of an ideal mixture or ideal-dilute solution
must cause the activity coefficient of each mixture constituent to approach unity:

9.5.4 Nonideal dilute solutions

How would we expect the activity coefficient of a nonelectrolyte solute to behave in a dilute solution as the solute mole fraction
increases beyond the range of ideal-dilute solution behavior?

The following argument is based on molecular properties at constant  and .

We focus our attention on a single solute molecule. This molecule has interactions with nearby solute molecules.
Each interaction depends on the intermolecular distance and causes a change in the internal energy compared to
the interaction of the solute molecule with solvent at the same distance.

In Sec. 11.1.5, it will be shown that roughly speaking the internal energy change is negative if the average of the
attractive forces between two solute molecules and two solvent molecules is greater than the attractive force
between a solute molecule and a solvent molecule at the same distance, and is positive for the opposite situation.

The number of solute molecules in a volume element at a given distance from the solute molecule we are
focusing on is proportional to the local solute concentration. If the solution is dilute and the interactions weak,
we expect the local solute concentration to be proportional to the macroscopic solute mole fraction. Thus, the
partial molar quantities  and  of the solute should be approximately linear functions of  in a dilute
solution at constant  and .

From Eqs. 9.2.46 and 9.2.50, the solute chemical potential is given by . In the dilute
solution, we assume  and  are linear functions of  as explained above. We also assume the dependence
of  on  is approximately the same as in an ideal mixture; this is a prediction from statistical mechanics for
a mixture in which all molecules have similar sizes and shapes. Thus we expect the deviation of the chemical
potential from ideal-dilute behavior, , can be described by adding a term proportional to 

: , where  is a positive or negative constant related to solute-solute
interactions.

If we equate this expression for  with the one that defines the activity coefficient, 
 (Eq. 9.5.16), and solve for the activity coefficient, we obtain the relation 

. (This is essentially the result of the McMillan–Mayer solution theory from statistical
mechanics.) An expansion of the exponential in powers of  converts this to

Thus we predict that at constant  and ,  is a linear function of  at low . An ideal-dilute solution,
then, is one in which  is much smaller than  so that  is approximately 1. An ideal mixture requires
the interaction constant  to be zero.

By similar reasoning, we reach analogous conclusions for solute activity coefficients on a concentration or
molality basis. For instance, at low  the chemical potential of B should be approximately 

, where  is a constant at a given  and ; then the activity coefficient at
low  is given by

The prediction from the theoretical argument above, that a solute activity coefficient in a dilute solution is a linear function of
the composition variable, is borne out experimentally as illustrated in Fig. 9.10. This prediction applies only to a nonelectrolyte
solute; for an electrolyte, the slope of activity coefficient versus molality approaches  at low molality.
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9.6: Evaluation of Activity Coefficients
This section describes several methods by which activity coefficients of nonelectrolyte substances may be evaluated. Section 9.6.3
describes an osmotic coefficient method that is also suitable for electrolyte solutes, as will be explained in Sec. 10.6.

9.6.1 Activity coefficients from gas fugacities 
Suppose we equilibrate a liquid mixture with a gas phase. If component  of the liquid mixture is a volatile nonelectrolyte, and we
are able to evaluate its fugacity  in the gas phase, we have a convenient way to evaluate the activity coefficient  in the liquid.
The relation between  and  will now be derived.

When component  is in transfer equilibrium between two phases, its chemical potential is the same in both phases. Equating
expressions for  in the liquid mixture and the equilibrated gas phase (from Eqs. 9.5.14 and 9.5.11, respectively), and then solving
for , we have

On the right side of Eq. 9.6.2, only  and  depend on the liquid composition. We can therefore write

where  is a factor whose value depends on  and , but not on the liquid composition. Solving Eq. 9.6.3 for  gives 
.

Now consider Eq. 9.5.20. It says that as  approaches 1 at constant  and ,  also approaches 1. We can use this limit to
evaluate :

Here  is the fugacity of  in a gas phase equilibrated with pure liquid  at the temperature and pressure of the mixture. Then
substitution of this value of  (which is independent of ) in Eq. 9.6.3 gives us an expression for  at any liquid composition:

We can follow the same procedure for a solvent or solute of a liquid solution. We replace the left side of Eq. 9.6.1 with an
expression from among Eqs. 9.5.15–9.5.18, then derive an expression analogous to Eq. 9.6.3 for the activity coefficient with a
composition-independent factor, and finally apply the limiting conditions that cause the activity coefficient to approach unity (Eqs.
9.5.21–9.5.24) and allow us to evaluate the factor. When we take the limits that cause the solute activity coefficients to approach
unity, the ratios , , and  become Henry’s law constants (Eqs. 9.4.19–9.4.21). The resulting expressions for
activity coefficients as functions of fugacity are listed in Table 9.4.

Examples 

Figure 9.11(a) shows the function  for aqueous sucrose solutions over a wide range of molality. The dependence of
the solute activity coefficient on molality, generated from Eq. 9.6.20, is shown in Fig. 9.11(b). Figure 9.11(c) is a plot of the
effective sucrose molality  as a function of composition. Note how the activity coefficient becomes greater than unity
beyond the ideal-dilute region, and how in consequence the effective molality  becomes considerably greater than the
actual molality .

9.6.4 Fugacity measurements 
Section 9.6.1 described the evaluation of the activity coefficient of a constituent of a liquid mixture from its fugacity in a gas phase
equilibrated with the mixture. Section 9.6.3 mentioned the use of solvent fugacities in gas phases equilibrated with pure solvent and
with a solution, in order to evaluate the osmotic coefficient of the solution.
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Various experimental methods are available for measuring a partial pressure in a gas phase equilibrated with a liquid mixture. A
correction for gas nonideality, such as that given by Eq. 9.3.16, can be used to convert the partial pressure to fugacity.

If the solute of a solution is nonvolatile, we may pump out the air above the solution and use a manometer to measure the pressure,
which is the partial pressure of the solvent. Dynamic methods involve passing a stream of inert gas through a liquid mixture and
analyzing the gas mixture to evaluate the partial pressures of volatile components. For instance, we could pass dry air successively
through an aqueous solution and a desiccant and measure the weight gained by the desiccant.

The isopiestic vapor pressure technique is one of the most useful methods for determining the fugacity of H O in a gas phase
equilibrated with an aqueous solution. This is a comparative method using a binary solution of the solute of interest, B, and a
nonvolatile reference solute of known properties. Some commonly used reference solutes for which data are available are sucrose,
NaCl, and CaCl .

In this method, solute B can be either a nonelectrolyte or electrolyte. Dishes, each containing water and an accurately weighed
sample of one of the solutes, are placed in wells drilled in a block made of metal for good thermal equilibration. The assembly is
placed in a gas-tight chamber, the air is evacuated, and the apparatus is gently rocked in a thermostat for a period of up to several
days, or even weeks. During this period, H O is transferred among the dishes through the vapor space until the chemical potential
of the water becomes the same in each solution. The solutions are then said to be isopiestic. Finally, the dishes are removed from
the apparatus and weighed to establish the molality of each solution. The H O fugacity is known as a function of the molality of
the reference solute, and is the same as the H O fugacity in equilibrium with the solution of solute B at its measured molality.

The isopiestic vapor pressure method can also be used for nonaqueous solutions.

This page titled 9.6: Evaluation of Activity Coefficients is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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9.7: Activity of an Uncharged Species
The activity  of uncharged species  (i.e., a substance) is defined by the relation

or

where  is the standard chemical potential of the species. The activity of a species in a given phase is a dimensionless quantity
whose value depends on the choice of the standard state and on the intensive properties of the phase: temperature, pressure, and
composition.

Some chemists define the activity by . The activity defined this way is not the same as the
activity used in this e-book unless the phase is at the standard pressure.

The quantity  is sometimes called the relative activity of , because it depends on the chemical potential relative to a standard
chemical potential. An important application of the activity concept is the definition of equilibrium constants (Sec. 11.8.1).

For convenience in later applications, we specify that the value of  is the same in phases that have the same temperature,
pressure, and composition but are at different elevations in a gravitational field, or are at different electric potentials. Section 9.8
10.1 will describe a modification of the defining equation  for a system with phases of different elevations, and
Sec. 10.1 will describe the modification needed for a charged species.

9.7.1 Standard states 
The standard states of different kinds of mixture components have the same definitions as those for reference states (Table 9.3),
with the additional stipulation in each case that the pressure is equal to the standard pressure .

When component  is in its standard state, its chemical potential is the standard chemical potential . It is important to note from
Eq. 9.7.2 that when  equals , the logarithm of  is zero and the activity in the standard state is therefore unity.

The following equations in the form of Eq. 9.7.2 show the notation used in this e-book for the standard chemical potentials and
activities of various kinds of uncharged mixture components:

9.7.2 Activities and composition 
We need to be able to relate the activity of component  to the mixture composition. We can do this by finding the relation between
the chemical potential of component  in its reference state and in its standard state, both at the same temperature. These two
chemical potentials,  and , are equal only if the mixture is at the standard pressure .

It will be useful to define the following dimensionless quantity:

The symbol  for this quantity was introduced by Pitzer and Brewer (Thermodynamics, 2nd edition, McGraw-Hill, New York,
1961, p. 249). They called it the activity in a reference state. To see why, compare the definition of activity given by 
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 with a rearrangement of Eq. 9.7.9: .

At a given temperature, the difference  depends only on the pressure  of the mixture, and is zero when  is equal to .
Thus  is a function of  with a value of 1 when  is equal to . This e-book will call  the pressure factor of species .

To understand how activity is related to composition, let us take as an example the activity  of solute B based on molality.
From Eqs. 9.5.18 and 9.7.8, we have

The activity is then given by

The activity of a constituent of a condensed-phase mixture is in general equal to the product of the pressure factor, the activity
coefficient, and the composition variable divided by the standard composition.

We are now able to write explicit formulas for  for each kind of mixture component. They are collected in Table 9.6.

Considering a constituent of a condensed-phase mixture, by how much is the pressure factor likely to differ from unity? If we use
the values  and , and assume the molar volume of pure  is  at all pressures, we find
that  is  in the limit of zero pressure, unity at ,  at ,  at , and  at . For a solution with

, we obtain the same values as these for , , and . These values demonstrate that it is only at
high pressures that the pressure factor differs appreciably from unity. For this reason, it is common to see expressions for activity in
which this factor is omitted: , , and so on.

In principle, we can specify any convenient value for the standard pressure . For a chemist making measurements
at high pressures, it would be convenient to specify a value of  within the range of the experimental pressures, for
example , in order that the value of each pressure factor be close to unity.

This page titled 9.7: Activity of an Uncharged Species is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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9.8: Mixtures in Gravitational and Centrifugal Fields
A tall column of a gas mixture in a gravitational field, and a liquid solution in the cell of a spinning centrifuge rotor, are systems
with equilibrium states that are nonuniform in pressure and composition. This section derives the ways in which pressure and
composition vary spatially within these kinds of systems at equilibrium.

9.8.1 Gas mixture in a gravitational field 
Consider a tall column of a gas mixture in an earth-fixed lab frame. Our treatment will parallel that for a tall column of a pure gas
in Sec. 8.1.4. We imagine the gas to be divided into many thin slab-shaped phases at different elevations in a rigid container, as in
Fig. 8.1. We want to find the equilibrium conditions reached spontaneously when the system is isolated from its surroundings.

The derivation is the same as that in Sec. 9.2.7, with the additional constraint that for each phase ,  is zero in order that each
phase stays at a constant elevation. The result is the relation

In an equilibrium state,  is at a maximum and  is zero for an infinitesimal change of any of the independent variables. This
requires the coefficient of each term in the sums on the right side of Eq. 9.8.1 to be zero. The equation therefore tells that at
equilibrium the temperature and the chemical potential of each constituent are uniform throughout the gas mixture. The equation
says nothing about the pressure.

Just as the chemical potential of a pure substance at a given elevation is defined in this e-book as the molar Gibbs energy at that
elevation (Sec. 8.1.4), the chemical potential of substance  in a mixture at elevation  is the partial molar Gibbs energy at that
elevation.

We define the standard potential  of component  of the gas mixture as the chemical potential of  under standard state
conditions at the reference elevation . At this elevation, the chemical potential and fugacity are related by

If we reversibly raise a small sample of mass  of the gas mixture by an infinitesimal distance , without heat and at constant 
and , the fugacity  remains constant. The gravitational work during the elevation process is . This work
contributes to the internal energy change: . The total differential of the Gibbs energy of
the sample is

From this total differential, we write the reciprocity relation

With the substitution  in the partial derivative on the right side, the partial derivative becomes . At constant , 
, and composition, therefore, we have . Integrating over a finite elevation change from  to , we obtain

The general relation between , , and  that agrees with Eqs. 9.8.2 and 9.8.5 is

In the equilibrium state of the tall column of gas,  is equal to . Equation 9.8.6 shows that this is only possible if 
decreases as  increases. Equating the expressions given by this equation for  and , we have
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Solving for  gives

If the gas is an ideal gas mixture,  is the same as the partial pressure :

Equation 9.8.9 shows that each constituent of an ideal gas mixture individually obeys the barometric formula given by Eq. 8.1.13.

The pressure at elevation  is found from . If the constituents have different molar masses, the mole fraction
composition changes with elevation. For example, in a binary ideal gas mixture the mole fraction of the constituent with the greater
molar mass decreases with increasing elevation, and the mole fraction of the other constituent increases.

9.8.2 Liquid solution in a centrifuge cell 

This section derives equilibrium conditions of a dilute binary solution confined to a cell embedded in a spinning centrifuge rotor.

The system is the solution. The rotor’s angle of rotation with respect to a lab frame is not relevant to the state of the system, so we
use a local reference frame fixed in the rotor as shown in Fig. 9.12(a). The values of heat, work, and energy changes measured in
this rotating frame are different from those in a lab frame (Sec. G.9 in Appendix G). Nevertheless, the laws of thermodynamics and
the relations derived from them are obeyed in the local frame when we measure the heat, work, and state functions in this frame
(Sec. G.6).

Note that an equilibrium state can only exist relative to the rotating local frame; an observer fixed in this frame would see no
change in the state of the isolated solution over time. While the rotor rotates, however, there is no equilibrium state relative to the
lab frame, because the system’s position in the frame constantly changes.

We assume the centrifuge rotor rotates about the vertical  axis at a constant angular velocity . As shown in Fig. 9.12(a), the
elevation of a point within the local frame is given by  and the radial distance from the axis of rotation is given by .

In the rotating local frame, a body of mass  has exerted on it a centrifugal force  directed horizontally in the
outward  radial direction (Sec. G.9). The gravitational force in this frame, directed in the downward  direction, is the same as
the gravitational force in a lab frame. Because the height of a typical centrifuge cell is usually no greater than about one centimeter,
in an equilibrium state the variation of pressure and composition between the top and bottom of the cell at any given distance from
the axis of rotation is completely negligible—all the measurable variation is along the radial direction.

There is also a Coriolis force that vanishes as the body’s velocity in the rotating local frame approaches zero. The
centrifugal and Coriolis forces are apparent or fictitious forces, in the sense that they are caused by the acceleration
of the rotating frame rather than by interactions between particles. When we treat these forces as if they are real
forces, we can use Newton’s second law of motion to relate the net force on a body and the body’s acceleration in
the rotating frame (see Sec. G.6).

To find conditions for equilibrium, we imagine the solution to be divided into many thin curved volume elements at different
distances from the axis of rotation as depicted in Fig. 9.12(b). We treat each volume element as a uniform phase held at constant
volume so that it is at a constant distance from the axis of rotation. The derivation is the same as the one used in the preceding
section to obtain Eq. 9.8.1, and leads to the same conclusion: in an equilibrium state the temperature and the chemical potential of
each substance (solvent and solute) are uniform throughout the solution.

We find the dependence of pressure on  as follows. Consider one of the thin slab-shaped volume elements of Fig. 9.12(b). The
volume element is located at radial position  and its faces are perpendicular to the direction of increasing . The thickness of the
volume element is , the surface area of each face is , and the mass of the solution in the volume element is .
Expressed as components in the direction of increasing  of the forces exerted on the volume element, the force at the inner face is 

, the force at the outer face is , and the centrifugal force is . From Newton’s second law, the
sum of these components is zero at equilibrium:
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or . In the limit as  and  are made infinitesimal, this becomes

We will assume the density  is uniform throughout the solution. (In the centrifugal field, this assumption is strictly true only if the
solution is incompressible and its density is independent of composition.) Then integration of Eq. 9.8.11 yields

where the superscripts  and  denote positions at two different values of  in the cell. The pressure is seen to increase with
increasing distance from the axis of rotation.

Next we investigate the dependence of the solute concentration  on  in the equilibrium state of the binary solution. Consider a
small sample of the solution of mass . Assume the extent of this sample in the radial direction is small enough for the variation of
the centrifugal force field to be negligible. The reversible work in the local frame needed to move this small sample an infinitesimal
distance  at constant , , and , using an external force  that opposes the centrifugal force, is

This work is a contribution to the change  of the internal energy. The Gibbs energy of the small sample in the local frame is a
function of the independent variables , , , , and , and its total differential is

We use Eq. 9.8.14 to write the reciprocity relation

Then, using , we obtain

Thus at constant , , and composition, which are the conditions that allow the activity  to remain constant,  for the sample
varies with  according to . We integrate from radial position  to position  to obtain

Let us take  as a reference position, such as the end of the centrifuge cell farthest from the axis of rotation. We define the standard
chemical potential  as the solute chemical potential under standard state conditions on a concentration basis at this position.
The solute chemical potential and activity at this position are related by

From Eqs. 9.8.17 and 9.8.18, we obtain the following general relation between  and  at an arbitrary radial position :

We found earlier that when the solution is in an equilibrium state,  is independent of —that is,  is equal to  for
any value of . When we equate expressions given by Eq. 9.8.19 for  and  and rearrange, we obtain the following
relation between the activities at the two radial positions:

p −(p +δp) +ρ rδr = 0As As Asω
2 (9.8.10)

δp = ρ rδrω2 δr δp

dp = ρ r drω2 (9.8.11)

ρ
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( )r′′ 2

( )r′ 2
(9.8.12)
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The solute activity is related to the concentration  by . We assume the solution is sufficiently dilute for the
activity coefficient  to be approximated by . The pressure factor is given by  (Table 9.6).
These relations give us another expression for the logarithm of the ratio of activities:

We substitute for  from Eq. 9.8.12. It is also useful to make the substitution , where  is the partial specific
volume of the solute at infinite dilution.

When we equate the two expressions for , we obtain finally

This equation shows that if the solution density  is less than the effective solute density , so that  is less than 1, the
solute concentration increases with increasing distance from the axis of rotation in the equilibrium state. If, however,  is greater
than , the concentration decreases with increasing . The factor  is like a buoyancy factor for the effect of the
centrifugal field on the solute.

Equation 9.8.22 is needed for sedimentation equilibrium, a method of determining the molar mass of a macromolecule. A dilute
solution of the macromolecule is placed in the cell of an analytical ultracentrifuge, and the angular velocity is selected to produce a
measurable solute concentration gradient at equilibrium. The solute concentration is measured optically as a function of . The
equation predicts that a plot of  versus  will be linear, with a slope equal to . The partial
specific volume  is found from measurements of solution density as a function of solute mass fraction (Sec. 9.2.5). By this
means, the molar mass  of the macromolecule is evaluated.

This page titled 9.8: Mixtures in Gravitational and Centrifugal Fields is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

ln = [ − ]
( )ac,B r′′

( )ac,B r′

MBω2

2RT
( )r′′ 2

( )r′ 2
(9.8.20)

(solution in centrifuge
cell at equilibrium)

cB = /ac,B Γc,Bγc,BcB c∘

γc,B 1 ≈ exp[ (p − )/RT ]Γc,B V ∞
B p∘

ln = +ln
( )ac,B r′′

( )ac,B r′

( − )V ∞
B p′′ p′

RT

( )cB r′′

( )cB r′
(9.8.21)

−p′′ p′ =V ∞
B MBv∞

B v∞
B

ln[ ( )/ ( )]ac,B r′′ ac,B r′

ln = [ − ]
( )cB r′′

( )cB r′

(1 − ρ)MB v∞
B

ω2

2RT
( )r′′ 2

( )r′ 2
(9.8.22)

(solution in centrifuge
cell at equilibrium)

ρ 1/v∞
B

ρv∞
B

ρ

1/v∞
B

r (1 − ρ)v∞
B

r

ln( / )cB c∘ r2 (1 − ρ) /2RTMB v∞
B ω2

v∞
B

MB

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20618?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/09%3A_Mixtures/9.08%3A_Mixtures_in_Gravitational_and_Centrifugal_Fields
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/09%3A_Mixtures/9.08%3A_Mixtures_in_Gravitational_and_Centrifugal_Fields?no-cache
https://www2.chem.umd.edu/thermobook


9.9.1 https://chem.libretexts.org/@go/page/23733

9.9: Chapter 9 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I. 
9.1 For a binary solution, find expressions for the mole fractions  and  as functions of the solute molality .

9.2 Consider a binary mixture of two liquids,  and . The molar volume of mixing, , is given by Eq. 9.2.19.

(a) Find a formula for calculating the value of  of a binary mixture from values of , and 

Table  Molar volumes of mixing of binary mixtures of 1-hexanol (A) and 1 -octene  at 

 
 Ref. [170]. 

(b) The molar volumes of mixing for liquid binary mixtures of 1-hexanol (A) and 1-octene (B) at  have been calculated from their measured densities. The data are in Table 9.7. The molar
volumes of the pure constituents are  and  . Use the method of intercepts to estimate the partial molar volumes of both constituents in an
equimolar mixture , and the partial molar volume  of B at infinite dilution.

9.3 Extend the derivation of Prob. 8.1, concerning a liquid droplet of radius  suspended in a gas, to the case in which the liquid and gas are both mixtures. Show that the equilibrium conditions
are  (for each species  that can equilibrate between the two phases), and , where  is the surface tension. (As in Prob. 8.1, the last relation is the Laplace
equation.)

9.4 Consider a gaseous mixture of  of  (A) and  of  (B) in a volume of  at a temperature of . The second virial
coefficients at this temperature have the values  

 
Compare the pressure of the real gas mixture with that predicted by the ideal gas equation. See Eqs. 9.3.20 and 9.3.23. 

 Refs. [3], [49], and [50].

9.5 At  and 1 bar, the Henry's law constants of nitrogen and oxygen dissolved in water are  bar and  bar.  The vapor pressure of water at this
temperature and pressure is  bar. Assume that dry air contains only  and  at mole fractions  and . Consider liquid-gas systems formed by
equilibrating liquid water and air at  and , and assume that the gas phase behaves as an ideal gas mixture.

Hint: The sum of the partial pressures of  and  must be  bar  bar. If the volume of one of the phases is much larger than that of the other, then almost all of the 
and  will be in the predominant phase and the ratio of their amounts in this phase must be practically the same as in dry air.

Determine the mole fractions of  and  in both phases in the following limiting cases:

(a) A large volume of air is equilibrated with just enough water to leave a small drop of liquid.

(b) A large volume of water is equilibrated with just enough air to leave a small bubble of gas.

9.6 Derive the expression for  given in Table 9.4, starting with Eq. 9.5.18.

9.7 Consider a nonideal binary gas mixture with the simple equation of state  (Eq.  ).

(a) The rule of Lewis and Randall states that the value of the mixed second virial coefficient  is the average of  and . Show that when this rule holds, the fugacity coefficient of 
in a binary gas mixture of any composition is given by . By comparing this expression with Eq.  for a pure gas, express the fugacity of  in the mixture as a function
of the fugacity of pure  at the same temperature and pressure as the mixture.

(b) The rule of Lewis and Randall is not accurately obeyed when constituents A and B are chemically dissimilar. For example, at , the second virial coefficients of  (A) and 
(B) are  and , respectively, whereas the mixed second virial coefficient is .

When liquid water is equilibrated with nitrogen at  and 1 bar, the partial pressure of  in the gas phase is  bar. Use the given values of , and  to
calculate the fugacity of the gaseous  in this binary mixture. Compare this fugacity with the fugacity calculated with the value of  predicted by the rule of Lewis and Randall.

Table  Activity coefficient of benzene (A) in mixtures of benzene and 1 -octanol at . The reference state 
is the pure liquid.

 
 Ref. [184].

9.8 Benzene and 1-octanol are two liquids that mix in all proportions. Benzene has a measurable vapor pressure, whereas 1-octanol is practically nonvolatile. The data in Table  on the
preceding page were obtained by Platford  using the isopiestic vapor pressure method.

(a) Use numerical integration to evaluate the integral on the right side of Eq.  at each of the values of  listed in the table, and thus find  at these compositions.

(b) Draw two curves on the same graph showing the effective mole fractions  and  as functions of . Are the deviations from ideal-mixture behavior positive or negative?

xB xA mB

A B ΔV (mix)/n

ΔV (mix)/n , , , , ρ,xA xB MA MB ρ∗
A

.ρ∗
B

9.7 (B) C25∘ .a

\begin{tabular}{lccc}  
\hline\(x_{\mathrm{B}}\) & {\([\Delta V(\mathrm{mix}) / n] / \mathrm{cm}^{3} \mathrm{~mol}^{-1}\)} & \(x_{\mathrm{B}}\) & {\([\Delta V(\mathrm{mix}) / n] / \mathrm{cm}^{3} \mathrm{~mol}^{-1}\)} \\  
\hline 0 & 0 & \(0.555\) & \(0.005\) \\  
\(0.049\) & \(-0.027\) & \(0.597\) & \(0.011\) \\ 
\(0.097\) & \(-0.050\) & \(0.702\) & \(0.029\) \\  
\(0.146\) & \(-0.063\) & \(0.716\) & \(0.035\) \\  
\(0.199\) & \(-0.077\) & \(0.751\) & \(0.048\) \\  
\(0.235\) & \(-0.073\) & \(0.803\) & \(0.056\) \\  
\(0.284\) & \(-0.074\) & \(0.846\) & \(0.058\) \\  
\(0.343\) & \(-0.065\) & \(0.897\) & \(0.057\) \\  
\(0.388\) & \(-0.053\) & \(0.944\) & \(0.049\) \\  
\(0.448\) & \(-0.032\) & 1 & 0 \\  
\(0.491\) & \(-0.016\) & & \\  
\hline  
\end{tabular}

a

C25∘

= 125.31V ∗
A

 cm3  mol−1 =V ∗
B

157.85 cm3  mol−1

( = = 0.5)xA xB V ∞
B

r

= , =T g T l μg
i μ1

i i = +2γ/rp1 pg γ

4.0000 ×  mol10−2 N2 4.0000 ×  mol10−2 CO2 1.0000 ×10−3  m3 298.15 K
14

BAA

BBB

BAB

= −4.8 ×10−6  m3  mol−1

= −124.5 ×10−6  m3  mol−1

= −47.5 ×10−6  m3  mol−1

14

C25∘ = 8.64 ×kH,N2
104 = 4.41 ×kH,O2

104 15

= 0.032p OH2
N2 O2 = 0.788yN2

= 0.212yO2

C25∘ 1.000bar

N2 O2 (1.000 −0.032) = 0.968 N2

O2

N2 O2

γm, B

V = nRT /p +nB 9.3.21

BAB BAA BBB A

ln = p/RTϕA BAA 7.8.18 A

A

298.15 K OH2 N2

= −1158BAA  cm3  mol−1 = −5BBB  cm3  mol−1 = −40BAB  cm3  mol−1

298.15 K OH2 = 0.03185pA ,BAA BBB BAB

OH2 BAB

9.8 C20∘

\begin{tabular}{lccc}  
\hline\(x_{\mathrm{A}}\) & \(\gamma_{\mathrm{A}}\) & \(x_{\mathrm{A}}\) & \(\gamma_{\mathrm{A}}\) \\  
\hline 0 & \(2.0^{a}\) & \(0.7631\) & \(1.183\) \\  
\(0.1334\) & \(1.915\) & \(0.8474\) & \(1.101\) \\  
\(0.2381\) & \(1.809\) & \(0.9174\) & \(1.046\) \\  
\(0.4131\) & \(1.594\) & \(0.9782\) & \(1.005\) \\  
\(0.5805\) & \(1.370\) & & \\  
\hline \multicolumn{3}{l}{\(a_{\text {extrapolated }}\)}  
\end{tabular}

15

9.8
16
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Table  Liquid and gas compositions in the two-phase system of methanol (A) and benzene (B) at 

 Ref. [169].

9.9 Table  lists measured values of gas-phase composition and total pressure for the binary two-phase methanol-benzene system at constant temperature and varied liquid-phase composition. 
 is the mole fraction of methanol in the liquid mixture, and  is the mole fraction of methanol in the equilibrated gas phase.

(a) For each of the 16 different liquid-phase compositions, tabulate the partial pressures of  and  in the equilibrated gas phase.

(b) Plot  and  versus  on the same graph. Notice that the behavior of the mixture is far from that of an ideal mixture. Are the deviations from Raoult's law positive or negative?

(c) Tabulate and plot the activity coefficient  of the benzene as a function of  using a pure-liquid reference state. Assume that the fugacity  is equal to , and ignore the effects of
variable pressure.

(d) Estimate the Henry's law constant  of methanol in the benzene environment at  by the graphical method suggested in Fig. 9.7(b). Again assume that  and  are equal, and
ignore the effects of variable pressure.

9.10 Consider a dilute binary nonelectrolyte solution in which the dependence of the chemical potential of solute B on composition is given by 

 
where  and  are constants at a given  and . (The derivation of this equation is sketched in Sec. 9.5.4.) Use the Gibbs-Duhem equation in the form  to obtain
an expression for  as a function of  in this solution. 

 Ref. [145].

9.11 By means of the isopiestic vapor pressure technique, the osmotic coefficients of aqueous solutions of urea at  have been measured at molalities up to the saturation limit of about 
 The experimental values are closely approximated by the function 

 
where  is . Calculate values of the solvent and solute activity coefficients  and  at various molalities in the range , and plot them versus . Use
enough points to be able to see the shapes of the curves. What are the limiting slopes of these curves as  approaches zero?

9.12 Use Eq.  to derive an expression for the rate at which the logarithm of the activity coefficient of component  of a liquid mixture changes with pressure at constant temperature and
composition:  ?

9.13 Assume that at sea level the atmosphere has a pressure of  bar and a composition given by  and . Find the partial pressures and mole fractions of  and ,
and the total pressure, at an altitude of , making the (drastic) approximation that the atmosphere is an ideal gas mixture in an equilibrium state at . For  use the value of the
standard acceleration of free fall listed in Appendix B.

9.14 Consider a tall column of a dilute binary liquid solution at equilibrium in a gravitational field.

(a) Derive an expression for , where  and  are the solute concentrations at elevations  and 0 . Your expression should be a function of , and the partial
specific volume of the solute at infinite dilution, . For the dependence of pressure on elevation, you may use the hydrostatic formula  (Eq.  on page 200) and assume the
solution density  is the same at all elevations. Hint: use the derivation leading to Eq.  as a guide.

(b) Suppose you have a tall vessel containing a dilute solution of a macromolecule solute of molar mass  and partial specific volume . The solution
density is  and the temperature is . Find the height  from the bottom of the vessel at which, in the equilibrium state, the concentration  has decreased to 99
percent of the concentration at the bottom.

9.15 FhuA is a protein found in the outer membrane of the Escherichia coli bacterium. From the known amino acid sequence, its molar mass is calculated to be . In aqueous
solution, molecules of the detergent dodecyl maltoside bind to a FhuA molecule to form an aggregate that behaves as a single solute species. Figure  on the next page shows data collected
in a sedimentation equilibrium experiment with a dilute solution of the aggregate.  In the graph,  is the absorbance measured at a wavelength of  (a property that is a linear function
of the aggregate concentration) and  is the radial distance from the axis of rotation of the centrifuge rotor. The experimental points fall very close to the straight line shown in the graph. The
sedimentation conditions were  and . The authors used the values  and .

(a) The values of  at which the absorbance was measured range from  to . Find the difference of pressure in the solution between these two positions.

(b) Find the molar mass of the aggregate solute species, and use it to estimate the mass binding ratio (the mass of bound detergent divided by the mass of protein). 
 Ref. [160].  Ref. [18].

9.9 45∘Ca

\begin{tabular}{llllll}  
\hline\(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) & \(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) \\  
\hline 0 & 0 & \(29.894\) & \(0.4201\) & \(0.5590\) & \(60.015\) \\  
\(0.0207\) & \(0.2794\) & \(40.962\) & \(0.5420\) & \(0.5783\) & \(60.416\) \\  
\(0.0314\) & \(0.3391\) & \(44.231\) & \(0.6164\) & \(0.5908\) & \(60.416\) \\  
\(0.0431\) & \(0.3794\) & \(46.832\) & \(0.7259\) & \(0.6216\) & \(59.868\) \\  
\(0.0613\) & \(0.4306\) & \(50.488\) & \(0.8171\) & \(0.6681\) & \(58.321\) \\  
\(0.0854\) & \(0.4642\) & \(53.224\) & \(0.9033\) & \(0.7525\) & \(54.692\) \\  
\(0.1811\) & \(0.5171\) & \(57.454\) & \(0.9497\) & \(0.8368\) & \(51.009\) \\  
\(0.3217\) & \(0.5450\) & \(59.402\) & 1 & 1 & \(44.608\) \\  
\hline  
\end{tabular}

a

9.9

xA yA

A B

pA pB xA

γB xA fB pB

kH,A C45∘ fA pA

= +RT ln +μB μref
m, B

mB

m∘
kmmB (9.9.1)

μref
m, B km T p d = −( / ) dμA nB nA μB

−μA μ∗
A mB

16

C25∘

20 mol . kg−1 17

= 1.00 −ϕm

0.050 /mB m∘

1.00 +0.179 /mB m∘
(9.9.2)

m∘ 1 mol kg−1 γA γm, B 0 −20 mol kg−1 /mB m∘

mB

9.2.49 i

=(∂ ln /∂p)γi T ,{ }ni

1.00 = 0.788yN2
= 0.212yO2

N2 O2

10.0 km C0∘ g

ln[ (h)/ (0)]cB cB (h)cB (0)cB h h, , T , ρMB

v∞
B dp = −ρg dh 8.1.14

ρ 9.8.22

= 10.0 kgMB  mol−1 = 0.78v∞
B  cm3  g−1

ρ = 1.00 g cm−3 T = 300 K h cB

78.804 kg mol−1

9.13
18 A 280 nm

r

ω = 838 s−1 T = 293 K = 0.776v∞
B  cm3  g−1 ρ = 1.004 g cm−3

r 6.95 cm 7.20 cm

17 18
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Figure : Sedimentation equilibrium of a dilute solution of the FhuA-dodecyl maltoside aggr
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1

CHAPTER OVERVIEW

10: Electrolyte Solutions
The thermodynamic properties of electrolyte solutions differ in significant ways from the properties of mixtures of nonelectrolytes.

Figure 10.1 Partial pressure of HCl in a gas phase equilibrated with
aqueous HCl at  and . Open circles: experimental data from
Stuart J. Bates and H. Darwin Kirschman, J. Am. Chem. Soc., 41, 1991–
2001, 1919.

Here is an example. Pure HCl (hydrogen chloride) is a gas that is very soluble in water. A plot of the partial pressure of gaseous
HCl in equilibrium with aqueous HCl, as a function of the solution molality (Fig. 10.1), shows that the limiting slope at infinite
dilution is not finite, but zero. What is the reason for this non-Henry’s law behavior? It must be because HCl is an electrolyte—it
dissociates (ionizes) in the aqueous environment.

It is customary to use a molality basis for the reference and standard states of electrolyte solutes. This is the only basis used in this
chapter, even when not explicitly indicated for ions. The symbol , for instance, denotes the chemical potential of a cation in a
standard state based on molality.

In dealing with an electrolyte solute, we can refer to the solute (a substance) as a whole and to the individual charged ions that
result from dissociation. We can apply the same general definitions of chemical potential, activity coefficient, and activity to these
different species, but only the activity coefficient and activity of the solute as a whole can be evaluated experimentally.

10.1: Single-ion Quantities
10.2: Solution of a Symmetrical Electrolyte
10.3: Electrolytes in General
10.4: The Debye-Hückel Theory
10.5: Derivation of the Debye-Hückel Theory
10.6: Mean Ionic Activity Coefficients from Osmotic Coefficients
10.7: Chapter 10 Problems
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This page titled 10: Electrolyte Solutions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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10.1: Single-ion Quantities
Consider a solution of an electrolyte solute that dissociates completely into a cation species and an anion species. Subscripts  and 

 will be used to denote the cation and anion, respectively. The solute molality  is defined as the amount of solute formula unit
divided by the mass of solvent.

We first need to investigate the relation between the chemical potential of an ion species and the electric potential of the solution
phase.

The electric potential  in the interior of a phase is called the inner electric potential, or Galvani potential. It is defined as the work
needed to reversibly move an infinitesimal test charge into the phase from a position infinitely far from other charges, divided by
the value of the test charge. The electrical potential energy of a charge in the phase is the product of  and the charge.

Consider a hypothetical process in which an infinitesimal amount  of the cation is transferred into a solution phase at constant 
 and . The quantity of charge transferred is , where  is the charge number ( , , etc.) of the cation, and 

is the Faraday constant. (The Faraday constant is the charge per amount of protons.) If the phase is at zero electric potential, the
process causes no change in its electrical potential energy. However, if the phase has a finite electric potential , the transfer
process changes its electrical potential energy by . Consequently, the internal energy change depends on 
according to

where the electric potential is indicated in parentheses. The change in the Gibbs energy of the phase is given by 
, where , , , and  are unaffected by the value of . The dependence of  on  is therefore

The Gibbs fundamental equation for an open system,  (Eq. 9.2.34), assumes the electric
potential is zero. From this equation and Eq. 10.1.2, the Gibbs energy change during the transfer process at constant  and  is
found to depend on  according to

The chemical potential of the cation in a phase of electric potential , defined by the partial molar Gibbs energy ,
is therefore given by

The corresponding relation for an anion is

where  is the charge number of the anion ( , , etc.). For a charged species in general, we have

We define the standard state of an ion on a molality basis in the same way as for a nonelectrolyte solute, with the additional
stipulation that the ion is in a phase of zero electric potential. Thus, the standard state is a hypothetical state in which the ion is at
molality  with behavior extrapolated from infinite dilution on a molality basis, in a phase of pressure  and electric
potential .

The standard chemical potential  or  of a cation or anion is the chemical potential of the ion in its standard state. Single-ion
activities  and  in a phase of zero electric potential are defined by relations having the form of Eq. 9.7.8:

As explained in Sec. 9.7,  and  should depend on the temperature, pressure, and composition of the phase, and not on the
value of .

From Eqs. 10.1.4, 10.1.5, and 10.1.7, the relations between the chemical potential of a cation or anion, its activity, and the electric
potential of its phase, are found to be

+

− mB

ϕ

ϕ

dn+

T p δQ = F dz+ n+ z+ +1 +2 F

ϕ

ϕδQ = F ϕ dz+ n+ ϕ

dU(ϕ) = dU(0) + F ϕ dz+ n+ (10.1.1)

dG = d(U −T S +pV ) T S p V ϕ dG ϕ

dG(ϕ) = dG(0) + F ϕ dz+ n+ (10.1.2)

dG = −S dT +V dp + d∑i μi ni

T p

ϕ

dG(ϕ) = [ (0) + F ϕ] dμ+ z+ n+ (10.1.3)

ϕ [∂G(ϕ)/∂n+]T ,p

(ϕ) = (0) + F ϕμ+ μ+ z+ (10.1.4)

(ϕ) = (0) + F ϕμ− μ− z− (10.1.5)

z− −1 −2

(ϕ) = (0) + F ϕμi μi zi (10.1.6)

m∘ p = p∘

ϕ=0

μ∘
+ μ∘

−

a+ a−

(0) = +RT ln (0) = +RT lnμ+ μ∘
+ a+ μ− μ∘

− a− (10.1.7)

a+ a−

ϕ

= +RT ln + F ϕ = +RT ln + F ϕμ+ μ∘
+ a+ z+ μ− μ∘

− a− zi (10.1.8)
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These relations are definitions of single-ion activities in a phase of electric potential .

For a charged species in general, we can write

Note that we can also apply this equation to an uncharged species, because the charge number  is then zero and Eq. 10.1.9
becomes the same as Eq. 9.7.2.

Some thermodynamicists call the quantity , which depends only on , , and composition, the
chemical potential of ion , and the quantity  the electrochemical potential with symbol 

.

Of course there is no experimental way to evaluate either  or  relative to a reference state or standard state, because it is
impossible to add cations or anions by themselves to a solution. We can nevertheless write some theoretical relations involving 
and .

For a given temperature and pressure, we can write the dependence of the chemical potentials of the ions on their molalities in the
same form as that given by Eq. 9.5.18 for a nonelectrolyte solute:

Here  and  are the chemical potentials of the cation and anion in solute reference states. Each reference state is defined as a
hypothetical solution with the same temperature, pressure, and electric potential as the solution under consideration; in this
solution, the molality of the ion has the standard value , and the ion behaves according to Henry’s law based on molality. 
and  are single-ion activity coefficients on a molality basis.

The single-ion activity coefficients approach unity in the limit of infinite dilution:

In other words, we assume that in an extremely dilute electrolyte solution each individual ion behaves like a nonelectrolyte solute
species in an ideal-dilute solution. At a finite solute molality, the values of  and  are the ones that allow Eq. 10.1.10 to give
the correct values of the quantities  and . We have no way to actually measure these quantities
experimentally, so we cannot evaluate either  or .

We can define single-ion pressure factors  and  as follows:

The approximations in these equations are like those in Table 9.6 for nonelectrolyte solutes; they are based on the assumption that
the partial molar volumes  and  are independent of pressure.

From Eqs. 10.1.7, 10.1.10, 10.1.12, and 10.1.13, the single-ion activities are related to the solution composition by

Then, from Eq. 10.1.9, we have the following relations between the chemical potentials and molalities of the ions:

Like the values of  and , values of the single-ion quantities , , , and  cannot be determined by experiment.

This page titled 10.1: Single-ion Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

ϕ

= +RT ln + F ϕμi μ∘
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10.2: Solution of a Symmetrical Electrolyte
Let us consider properties of an electrolyte solute as a whole. The simplest case is that of a binary solution in which the solute is a
symmetrical strong electrolyte—a substance whose formula unit has one cation and one anion that dissociate completely. This
condition will be indicated by , where  is the number of ions per formula unit. In an aqueous solution, the solute with 
equal to 2 might be a 1:1 salt such as NaCl, a 2:2 salt such as MgSO , or a strong monoprotic acid such as HCl.

In this binary solution, the chemical potential of the solute as a whole is defined in the usual way as the partial molar Gibbs energy

and is a function of , , and the solute molality . Although  under given conditions must in principle have a definite value,
we are not able to actually evaluate it because we have no way to measure precisely the energy brought into the system by the
solute. This energy contributes to the internal energy and thus to . We can, however, evaluate the differences  and 

.

We can write the additivity rule (Eq. 9.2.25) for  as either

or

A comparison of these equations for a symmetrical electrolyte ( ) gives us the relation

We see that the solute chemical potential in this case is the sum of the single-ion chemical potentials.

The solution is a phase of electric potential . From Eqs. 10.1.4 and 10.1.5, the sum  appearing in Eq. 10.2.4 is

For the symmetrical electrolyte, the sum  is zero, so that  is equal to . We substitute the expressions of
Eq. 10.1.10, use the relation  with reference states at , set the ion molalities  and  equal to , and
obtain

The important feature of this relation is the appearance of the second power of , instead of the first power as in the case of
a nonelectrolyte. Also note that  does not depend on , unlike  and .

Although we cannot evaluate  or  individually, we can evaluate the product . This product is the square of the mean
ionic activity coefficient , defined for a symmetrical electrolyte by

With this definition, Eq. 10.2.6 becomes

Since it is possible to determine the value of  for a solution of known molality,  is a measurable quantity.

If the electrolyte (e.g., HCl) is sufficiently volatile, its mean ionic activity coefficient in a solution can be evaluated
from partial pressure measurements of an equilibrated gas phase. Section 10.6 will describe a general method by

ν = 2 ν ν

4

μB =
def

( )
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which  can be found from osmotic coefficients. Section 14.5 describes how, in favorable cases, it is possible to
evaluate  from the equilibrium cell potential of a galvanic cell.

The activity  of a solute substance on a molality basis is defined by Eq. 9.7.8:

Here  is the chemical potential of the solute in its standard state, which is the solute reference state at the standard pressure.
By equating the expressions for  given by Eqs. 10.2.8 and 10.2.9 and solving for the activity, we obtain

where  is the pressure factor defined by

We can use the appropriate expression in Table 9.6 to evaluate  at an arbitrary pressure :

The value of  is  at the standard pressure, and close to  at any reasonably low pressure. For this reason it is common to see
Eq. 10.2.10 written as , with  omitted.

Equation 10.2.10 predicts that the activity of HCl in aqueous solutions is proportional, in the limit of infinite dilution, to the square
of the HCl molality. In contrast, the activity of a nonelectrolyte solute is proportional to the first power of the molality in this limit.
This predicted behavior of aqueous HCl is consistent with the data plotted in Fig. 10.1, and is confirmed by the data for dilute HCl
solutions shown in Fig. 10.2(a). The dashed line in Fig. 10.2(a) is the extrapolation of the ideal-dilute behavior given by 

. The extension of this line to  establishes the hypothetical solute reference state based on molality,
indicated by a filled circle in Fig. 10.2(b). (Since the data are for solutions at the standard pressure of , the solute reference
state shown in the figure is also the solute standard state.)

The solid curve of Fig. 10.2(c) shows how the mean ionic activity coefficient of HCl varies with molality in approximately the
same range of molalities as the data shown in Fig. 10.2(b). In the limit of infinite dilution,  approaches unity. The slope of the
curve approaches  in this limit, quite unlike the behavior described in Sec. 9.5.4 for the activity coefficient of a nonelectrolyte
solute.

For a symmetrical strong electrolyte,  is the geometric average of the single-ion activity coefficients  and . We have no
way of evaluating  or  individually, even if we know the value of . For instance, we cannot assume that  and  are
equal.

This page titled 10.2: Solution of a Symmetrical Electrolyte is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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10.3: Electrolytes in General
The formula unit of a nonsymmetrical electrolyte solute has more than two ions. General formulas for the solute as a whole are
more complicated than those for the symmetrical case treated in the preceding section, but are derived by the same reasoning.

Again we assume the solute dissociates completely into its constituent ions. We define the following symbols:

 the number of cations per solute formula unit

 the number of anions per solute formula unit

 the sum 

For example, if the solute formula is Al (SO ) , the values are , , and .

10.3.1 Solution of a single electrolyte 
In a solution of a single electrolyte solute that is not necessarily symmetrical, the ion molalities are related to the overall solute
molality by

From the additivity rule for the Gibbs energy, we have

giving the relation

in place of Eq. 10.2.4. The cations and anions are in the same phase of electric potential . We use Eqs. 10.1.4 and 10.1.5 to obtain

Electrical neutrality requires that  be zero, giving

By combining Eq. 10.3.5 with Eqs. 10.1.10, 10.3.1, and 10.3.3, we obtain

where  is the chemical potential of the solute in the hypothetical reference state at  in which B is at the
standard molality and behaves as at infinite dilution. Equation 10.3.6 is the generalization of Eq. 10.2.6. It shows that although 
and  depend on ,  does not.

The mean ionic activity coefficient  is defined in general by

or

Thus  is a geometric average of  and  weighted by the numbers of the cations and anions in the solute formula unit. With a
substitution from Eq. 10.3.7, Eq. 10.3.6 becomes

Since  is a measurable quantity, so also is .

The solute activity, defined by , is
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where  is the pressure factor that we can evaluate with Eq. 10.2.12. Equation 10.3.10 is the generalization of Eq. 10.2.10.
From Eqs. 10.1.12, 10.1.13, and 10.2.11 and the relations  and , we obtain the relation

10.3.2 Multisolute solution 

Equation 10.3.3 relates the chemical potential of electrolyte B in a binary solution to the single-ion chemical potentials of its
constituent ions:

This relation is valid for each individual solute substance in a multisolute solution, even when two or more of the electrolyte solutes
have an ion species in common.

As an illustration of this principle, consider a solution prepared by dissolving amounts  of BaI  and  of CsI in an amount 
of H O. Assume the dissolved salts are completely dissociated into ions, with the I  ion common to both. The additivity rule for
the Gibbs energy of this solution can be written in the form

and also, using single-ion quantities, in the form

Comparing Eqs. 10.3.13 and 10.3.14, we find the following relations must exist between the chemical potentials of the solute
substances and the ion species:

These relations agree with Eq. 10.3.12. Note that , the chemical potential of the ion common to both salts, appears in both
relations.

The solute activity  is defined by the relation  (Eq. 10.2.9). Using this relation together with Eqs.
10.1.7 and 10.1.14, we find that the solute activity is related to ion molalities by

where the pressure factor  is defined in Eq. 10.2.11. The ion molalities in this expression refer to the constituent ions of solute
B, which in a multisolute solution are not necessarily present in the same stoichiometric ratio as in the solute substance.

For instance, suppose we apply Eq. 10.3.16 to the solution of BaI  and CsI used above as an illustration of a multisolute solution,
letting  be the activity of solute substance BaI . The quantities  and  in the equation are then the molalities of the Ba
and I  ions, and  is the mean ionic activity coefficient of the dissolved BaI . Note that in this solution the Ba  and I  ions are
not present in the 1:2 ratio found in BaI , because I  is a constituent of both solutes.

10.3.3 Incomplete dissociation 
In the preceding sections of this chapter, the electrolyte solute or solutes have been assumed to be completely dissociated into their
constituent ions at all molalities. Some solutions, however, contain ion pairs—closely associated ions of opposite charge.
Furthermore, in solutions of some electrolytes (often called “weak” electrolytes), an equilibrium is established between ions and
electrically-neutral molecules. In these kinds of solutions, the relations between solute molality and ion molalities given by Eq.
10.3.1 are no longer valid. When dissociation is not complete, the expression for  given by Eq. 10.3.9 can still be used.
However, the quantity  appearing in the expression no longer has the physical significance of being the geometric average of the
activity coefficients of the actual dissociated ions, and is called the stoichiometric activity coefficient of the electrolyte.

This page titled 10.3: Electrolytes in General is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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10.4: The Debye-Hückel Theory
The theory of Peter Debye and Erich Hückel (1923) provides theoretical expressions for single-ion activity coefficients and mean
ionic activity coefficients in electrolyte solutions. The expressions in one form or another are very useful for extrapolation of
quantities that include mean ionic activity coefficients to low solute molality or infinite dilution.

The only interactions the theory considers are the electrostatic interactions between ions. These interactions are much stronger than
those between uncharged molecules, and they die off more slowly with distance. If the positions of ions in an electrolyte solution
were completely random, the net effect of electrostatic ion–ion interactions would be zero, because each cation–cation or anion–
anion repulsion would be balanced by a cation–anion attraction. The positions are not random, however: each cation has a surplus
of anions in its immediate environment, and each anion has a surplus of neighboring cations. Each ion therefore has a net attractive
interaction with the surrounding ion atmosphere. The result for a cation species at low electrolyte molality is a decrease of 
compared to the cation at same molality in the absence of ion–ion interactions, meaning that the single-ion activity coefficient 
becomes less than  as the electrolyte molality is increased beyond the ideal-dilute range. Similarly,  also becomes less than .

According to the Debye–Hückel theory, the single-ion activity coefficient  of ion  in a solution of one or more electrolytes is
given by

where

The definitions of the quantities  and  appearing in Eq. 10.4.1 are

where  is the Avogadro constant,  is the elementary charge (the charge of a proton),  and  are the density and relative
permittivity (dielectric constant) of the solvent, and  is the electric constant (or permittivity of vacuum).

Lewis and Randall (J. Am. Chem. Soc., 1112–1154, 1921) introduced the term ionic strength, defined by Eq.
10.4.2, two years before the Debye–Hückel theory was published. They found empirically that in dilute
solutions, the mean ionic activity coefficient of a given strong electrolyte is the same in all solutions having the
same ionic strength.

From Eqs. 10.3.8 and 10.4.1 and the electroneutrality condition , we obtain the following expression for the
logarithm of the mean ionic activity coefficient of an electrolyte solute:

In this equation,  and  are the charge numbers of the cation and anion of the solute. Since the right side of Eq. 10.4.7 is
negative at finite solute molalities, and zero at infinite dilution, the theory predicts that  is less than  at finite solute
molalities and approaches  at infinite dilution.

Figure 10.4 shows  as a function of  for aqueous HCl and CaCl . The experimental curves have the limiting slopes
predicted by the Debye–Hückel limiting law (Eq. 10.4.8), but at a low ionic strength the curves begin to deviate significantly
from the linear relations predicted by that law. The full Debye–Hückel equation (Eq. 10.4.7) fits the experimental curves over a
wider range of ionic strength.
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10.5: Derivation of the Debye-Hückel Theory
Debye and Hückel derived Eq. 10.4.1 using a combination of electrostatic theory, statistical mechanical theory, and
thermodynamics. This section gives a brief outline of their derivation.

The derivation starts by focusing on an individual ion of species  as it moves through the solution; call it the central ion. Around
this central ion, the time-average spatial distribution of any ion species  is not random, on account of the interaction of these ions
of species  with the central ion. (Species  and  may be the same or different.) The distribution, whatever it is, must be
spherically symmetric about the central ion; that is, a function only of the distance  from the center of the ion. The local
concentration, , of the ions of species  at a given value of  depends on the ion charge  and the electric potential  at that
position. The time-average electric potential in turn depends on the distribution of all ions and is symmetric about the central ion,
so expressions must be found for  and  as functions of  that are mutually consistent.

Debye and Hückel assumed that  is given by the Boltzmann distribution

where  is the electrostatic energy of an ion of species , and  is the Boltzmann constant ( ). As  becomes large, 
approaches zero and  approaches the macroscopic concentration . As  increases,  at a fixed value of  approaches 
because of the randomizing effect of thermal energy. Debye and Hückel expanded the exponential function in powers of  and
retained only the first two terms: . The distribution of each ion species is assumed to follow this relation.
The electric potential function consistent with this distribution and with the electroneutrality of the solution as a whole is

Here  is defined by , where  is the ionic strength on a concentration basis defined by 
.

The electric potential  at a point is assumed to be a sum of two contributions: the electric potential the central ion would cause at
infinite dilution, , and the electric potential due to all other ions, . Thus,  is equal to , or

This expression for  is valid for distances from the center of the central ion down to , the distance of closest approach of other
ions. At smaller values of ,  is constant and equal to the value at , which is . The
interaction energy between the central ion and the surrounding ions (the ion atmosphere) is the product of the central ion charge
and .

The last step of the derivation is the calculation of the work of a hypothetical reversible process in which the surrounding ions stay
in their final distribution, and the charge of the central ion gradually increases from zero to its actual value . Let  be the
charge at each stage of the process, where  is a fractional advancement that changes from  to . Then the work  due to the
interaction of the central ion with its ion atmosphere is  integrated over the charge:

Since the infinitesimal Gibbs energy change in a reversible process is given by  (Eq. 5.8.6), this
reversible nonexpansion work at constant  and  is equal to the Gibbs energy change. The Gibbs energy change per amount of
species  is . This quantity is  for the process in which a solution of fixed
composition changes from a hypothetical state lacking ion–ion interactions to the real state with ion–ion interactions present.

 may be equated to the difference of the chemical potentials of  in the final and initial states. If the chemical potential
without ion–ion interactions is taken to be that for ideal-dilute behavior on a molality basis, , then 

 is equal to . In a dilute solution,  can with little
error be set equal to , and  to . Equation 10.4.1 follows.
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10.6: Mean Ionic Activity Coefficients from Osmotic Coefficients
Recall that  is the mean ionic activity coefficient of a strong electrolyte, or the stoichiometric activity coefficient of an
electrolyte that does not dissociate completely.

The general procedure described in this section for evaluating  requires knowledge of the osmotic coefficient  as a function
of molality.  is commonly evaluated by the isopiestic method (Sec. 9.6.4) or from measurements of freezing-point depression
(Sec. 12.2).

The osmotic coefficient of a binary solution of an electrolyte is defined by

That is, for an electrolyte the sum  appearing in the definition of  for a nonelectrolyte solution (Eq. 9.6.11) is replaced
by , the sum of the ion molalities assuming complete dissociation. It will now be shown that  defined this way can be used
to evaluate .

The derivation is like that described in Sec. 9.6.3 for a binary solution of a nonelectrolyte. Solving Eq. 10.6.1 for  and taking the
differential of  at constant  and , we obtain

From Eq. 10.3.9, we obtain

Substitution of these expressions in the Gibbs–Duhem equation , together with the substitution 
, yields

Then integration from  to any desired molality  gives the result

The right side of this equation is the same expression as derived for  for a nonelectrolyte (Eq. 9.6.20).

The integrand of the integral on the right side of Eq. 10.6.5 approaches  as  approaches zero, making it difficult to evaluate
the integral by numerical integration starting at . (This difficulty does not exist when the solute is a nonelectrolyte.)
Instead, we can split the integral into two parts

where the integration limit  is a low molality at which the value of  is available and at which  can either be measured or
estimated from the Debye–Hückel equation.

We next rewrite Eq. 10.6.5 with  replaced with :

By eliminating the integral with an upper limit of  from Eqs. 10.6.6 and 10.6.7, we obtain

Equation 10.6.5 becomes
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The integral on the right side of this equation can easily be evaluated by numerical integration.
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10.7: Chapter 10 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

10.1 
The mean ionic activity coefficient of NaCl in a 0.100 molal aqueous solution at  has been evaluated with measurements
of equilibrium cell potentials, with the result  (R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd
edition, Butterworths, London, 1959, Table 9.3). Use this value in Eq. 10.6.9, together with the values of osmotic coefficients in
Table 10.1, to evaluate  at each of the molalities shown in the table; then plot  as a function of .
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CHAPTER OVERVIEW

11: Reactions and Other Chemical Processes
This chapter discusses the thermodynamics of mixing processes and processes described by reaction equations (chemical
equations). It introduces the important concepts of molar mixing and reaction quantities, advancement, and the thermodynamic
equilibrium constant. The focus is on chemical processes that take place in closed systems at constant pressure, with no work other
than expansion work. Under these conditions, the enthalpy change is equal to the heat (Eq. 5.3.7). The processes either take place at
constant temperature, or have initial and final states of the same temperature.

Most of the processes to be described involve mixtures and have intermediate states that are nonequilibrium states. At constant
temperature and pressure, these processes proceed spontaneously with decreasing Gibbs energy (Sec. 5.8). (Processes in which 
decreases are sometimes called exergonic.) When the rates of change are slow enough for thermal and mechanical equilibrium to
be maintained, the spontaneity is due to lack of transfer equilibrium or reaction equilibrium. An equilibrium phase transition of a
pure substance, however, is a special case: it is a reversible process of constant Gibbs energy (Sec. 8.3).

11.1: Mixing Processes
11.2: The Advancement and Molar Reaction Quantities
11.3: Molar Reaction Enthalpy
11.4: Enthalpies of Solution and Dilution
11.5: Reaction Calorimetry
11.6: Adiabatic Flame Temperature
11.7: Gibbs Energy and Reaction Equilibrium
11.8: The Thermodynamic Equilibrium Constant
11.9: Effects of Temperature and Pressure on Equilibrium Position
11.10: Chapter 11 Problems
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11.1: Mixing Processes
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11.2: The Advancement and Molar Reaction Quantities
Many of the processes of interest to chemists can be described by balanced reaction equations, or chemical equations, for the
conversion of reactants into products. Thus, for the vaporization of water we write

For the dissolution of sodium chloride in water, we write

For the Haber synthesis of ammonia, the reaction equation can be written

The essential feature of a reaction equation is that equal amounts of each element and equal net charges appear on both sides; the
equation is said to be balanced. Thus, matter and charge are conserved during the process, and the process can take place in a
closed system. The species to the left of a single arrow are called reactants, the species to the right are called products, and the
arrow indicates the forward direction of the process.

A reaction equation is sometimes written with right and left arrows

to indicate that the process is at reaction equilibrium. It can also be written as a stoichiometric equation with an equal sign:

A reaction equation shows stoichiometric relations among the reactants and products. It is important to keep in mind that it
specifies neither the initial and final states of a chemical process, nor the change in the amount of a reactant or product during the
process. For example, the reaction equation N  + 3 H   2 NH  does not imply that the system initially contains only N  and H ,
or that only NH  is present in the final state; and it does not mean that the process consists of the conversion of exactly one mole of
N  and three moles of H  to two moles of NH  (although this is a possibility). Instead, the reaction equation tells us that a change
in the amount of N  is accompanied by three times this change in the amount of H  and by twice this change, with the opposite
sign, in the amount of NH .

11.2.1 An example: ammonia synthesis 

It is convenient to indicate the progress of a chemical process with a variable called the advancement. The reaction equation 
N  + 3 H   2 NH  for the synthesis of ammonia synthesis will serve to illustrate this concept. Let the system be a gaseous
mixture of N , H , and NH .

If the system is open and the intensive properties remain uniform throughout the gas mixture, there are five independent variables.
We can choose them to be , , and the amounts of the three substances. We can write the total differential of the enthalpy, for
instance, as

The notation  stands for the set of amounts of all substances in the mixture, and the quantities , , and  are partial
molar enthalpies. For example,  is defined by

If the system is closed, the amounts of the three substances can still change because of the reaction N  + 3 H   2 NH , and the
number of independent variables is reduced from five to three. We can choose them to be , , and a variable called advancement.

The advancement (or extent of reaction), , is the amount by which the reaction defined by the reaction equation has advanced in
the forward direction from specified initial conditions. The quantity  has dimensions of amount of substance, the usual unit being
the mole.

O(l) → O(g)H2 H2 (11.2.1)

NaCl(s) → (aq) + (aq)Na+ Cl− (11.2.2)

(g) +3 (g) → 2 (g)N2 H2 NH3

(g) +3 (g) ⇌ 2 (g)N2 H2 NH3 (11.2.3)

(g) +3 (g) = 2 (g)N2 H2 NH3 (11.2.4)

2 2 → 3 2 2

3

2 2 3

2 2

3

2 2 → 3

2 2 3

T p

dH = dT + dp( )
∂H

∂T p,{ }ni

( )
∂H

∂p T ,{ }ni

+ d + d + dHN2
nN2

HH2
nH2

HNH3
nNH3

(11.2.1)

{ }ni HN2 HH2 HNH3

HN2

=HN2 ( )
∂H

∂nN2 T ,p, ,nH2
nNH3

(11.2.2)

2 2 → 3

T p

ξ

ξ
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Let the initial amounts be , , and . Then at any stage of the reaction process in the closed system, the amounts are
given by

These relations come from the stoichiometry of the reaction as expressed by the stoichiometric coefficients in the reaction equation.
The second relation, for example, expresses the fact that when one mole of reaction has occurred ( ), the amount of H  in
the closed system has decreased by three moles.

Taking the differentials of Eqs. 11.2.3, we find that infinitesimal changes in the amounts are related to the change of  as follows:

These relations show that in a closed system, the changes in the various amounts are not independent. Substitution in Eq. 11.2.1 of
the expressions for , , and  gives

(The subscript  on the partial derivatives has been replaced by  to indicate the same thing: that the derivative is taken with the
amount of each species held constant.)

Equation 11.2.5 gives an expression for the total differential of the enthalpy with , , and  as the independent variables. The
coefficient of  in this equation is called the molar reaction enthalpy, or molar enthalpy of reaction, :

We identify this coefficient as the partial derivative

That is, the molar reaction enthalpy is the rate at which the enthalpy changes with the advancement as the reaction proceeds in the
forward direction at constant  and .

The partial molar enthalpy of a species is the enthalpy change per amount of the species added to an open system. To
see why the particular combination of partial molar enthalpies on the right side of Eq. 11.2.6 is the rate at which
enthalpy changes with advancement in the closed system, we can imagine the following process at constant  and :
An infinitesimal amount  of N  is removed from an open system, three times this amount of H  is removed from
the same system, and twice this amount of NH  is added to the system. The total enthalpy change in the open system
is . The net change in the state of the system is equivalent to an advancement 

 in a closed system, so  in the closed system is equal to  in agreement
with Eqs. 11.2.6 and 11.2.7.

Note that because the advancement is defined by how we write the reaction equation, the value of  also depends on the
reaction equation. For instance, if we change the reaction equation for ammonia synthesis from N  + 3 H   2 NH  to

then the value of  is halved.

11.2.2 Molar reaction quantities in general 

Now let us generalize the relations of the preceding section for any chemical process in a closed system. Suppose the
stoichiometric equation has the form

where A and B are reactant species, D and E are product species, and , , , and  are the corresponding stoichiometric
coefficients. We can rearrange this equation to

n ,0N2 n ,0H2 n ,0NH3

= −ξ = −3ξ = +2ξnN2
n ,0N2

nH2
n ,0H2

nNH3
n ,0NH3

(11.2.3)

ξ = 1 mol 2

ξ

d = −dξ d = −3 dξ d = 2 dξnN2 nH2 nNH3 (11.2.4)

dnN2
dnH2

dnNH3

dH = dT + dp( )
∂H

∂T p,ξ

( )
∂H

∂p T ,ξ

+(− −3 +2 )dξHN2 HH2 HNH3

(11.2.5)
(closed system)

{ }ni ξ

T p ξ

dξ HΔr

H = − −3 +2Δr HN2 HH2 HNH3 (11.2.6)

H =Δr ( )
∂H

∂ξ T ,p

(11.2.7)

T p

T p

dn 2 2

3

dH = (− −3 +2 )dnHN2 HH2 HNH3

dξ = dn dH/ dξ (− −3 +2 )HN2 HH2 HNH3

HΔr

2 2 → 3

+ →1
2

N2
3
2

H2 NH3 (11.2.5)

HΔr

aA +bB = dD +eE (11.2.8)

a b d e

0 = −aA −bB+dD +eE (11.2.9)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20626?pdf


11.2.3 https://chem.libretexts.org/@go/page/20626

In general, the stoichiometric relation for any chemical process is

where  is the stoichiometric number of species A , a dimensionless quantity taken as negative for a reactant and positive for a
product. In the ammonia synthesis example of the previous section, the stoichiometric relation is  and the
stoichiometric numbers are , , and . In other words, each stoichiometric number is the same as the
stoichiometric coefficient in the reaction equation, except that the sign is negative for a reactant.

The amount of reactant or product species  present in the closed system at any instant depends on the advancement at that instant,
and is given by

The infinitesimal change in the amount due to an infinitesimal change in the advancement is

In an open system, the total differential of extensive property  is

where  is a partial molar quantity. We restrict the system to a closed one with , , and  as the independent variables. Then,
with the substitution  from Eq. 11.2.12, the total differential of  becomes

where the coefficient  is the molar reaction quantity defined by

Equation 11.2.14 allows us to identify the molar reaction quantity as a partial derivative:

It is important to observe the distinction between the notations , the finite change of  during a process, and , a
differential quantity that is a property of the system in a given state. The fact that both notations use the symbol  can be
confusing. Equation 11.2.16 shows that we can think of  as an operator.

In dealing with the change of an extensive property  as  changes, we must distinguish between molar integral and molar
differential reaction quantities.

 

 is a molar integral reaction quantity, the ratio of two finite differences between the final and initial states of a process.
These states are assumed to have the same temperature and the same pressure. This e-book will use a notation such as 

 for a molar integral reaction enthalpy:

 

 is a molar differential reaction quantity. Equation 11.2.16 shows that  is the rate at which the extensive property 
changes with the advancement in a closed system at constant  and . The value of  is in general a function of the
independent variables , , and .

0 =∑
i

νiAi (11.2.10)

νi i

0 = − −3 +2N2 H2 NH3

= −1νN2 = −3νH2 = +2νNH3

i

= + ξni ni,0 νi (11.2.11)
(closed system)

d = dξni νi (11.2.12)
(closed system)

X

dX = dT + dp+ d( )
∂X

∂T p,{ }ni

( )
∂X

∂p T ,{ }ni

∑
i

Xi ni (11.2.13)

Xi T p ξ

d = dξni νi X

dX = dT + dp+ Xdξ( )
∂X

∂T p,ξ

( )
∂X

∂p T ,ξ

Δr (11.2.14)
(closed system)

XΔr

XΔr =
def ∑

i

νiXi (11.2.15)

X =Δr ( )
∂X

∂ξ T ,p

(11.2.16)
(closed system)

ΔX X XΔr

Δ

Δr

X ξ

ΔX/Δξ

Δ (rxn)Hm

Δ (rxn) = =Hm
ΔH(rxn)

Δξ

H( ) −H( )ξ2 ξ1

−ξ2 ξ1
(11.2.17)

( = , = )T2 T1 p2 p1

XΔr XΔr X

T p XΔr

T p ξ
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The notation for a molar differential reaction quantity such as  includes a subscript following the  symbol to indicate the
kind of chemical process. The subscript “r” denotes a reaction or process in general. The meanings of “vap,” “sub,” “fus,” and “trs”
were described in Sec. 8.3.1. Subscripts for specific kinds of reactions and processes are listed in Sec. D.2 of Appendix D and are
illustrated in sections to follow.

For certain kinds of processes, it may happen that a partial molar quantity  remains constant for each species  as the process
advances at constant  and . If  remains constant for each , then according to Eq. 11.2.15 the value of  must also remain
constant as the process advances. Since  is the rate at which  changes with , in such a situation  is a linear function of .
This means that the molar integral reaction quantity  defined by  is equal, for any finite change of , to .

Figure 11.6 Enthalpy and entropy as functions of advancement at
constant  and . The curves are for a reaction A 2B with positive 

 taking place in an ideal gas mixture with initial amounts 
 and .

An example is the partial molar enthalpy  of a constituent of an ideal gas mixture, an ideal condensed-phase mixture, or an ideal-
dilute solution. In these ideal mixtures,  is independent of composition at constant  and  (Secs. 9.3.3, 9.4.3, and 9.4.7). When
a reaction takes place at constant  and  in one of these mixtures, the molar differential reaction enthalpy  is constant during
the process,  is a linear function of , and  and  are equal. Figure 11.6(a) illustrates this linear dependence for a
reaction in an ideal gas mixture.

In contrast, Fig. 11.6(b) shows the nonlinearity of the entropy as a function of  during the same reaction. The nonlinearity is a
consequence of the dependence of the partial molar entropy  on the mixture composition (Eq. 11.1.24). In the figure, the slope of
the curve at each value of  equals  at that point; its value changes as the reaction advances and the composition of the reaction
mixture changes. Consequently, the molar integral reaction entropy  approaches the value of  only
in the limit as  approaches zero.

11.2.3 Standard molar reaction quantities 

If a chemical process takes place at constant temperature while each reactant and product remains in its standard state of unit
activity, the molar reaction quantity  is called the standard molar reaction quantity and is denoted by . For instance, 

 is a standard molar enthalpy of vaporization (already discussed in Sec. 8.3.3), and  is the standard molar Gibbs
energy of a reaction.

From Eq. 11.2.15, the relation between a standard molar reaction quantity and the standard molar quantities of the reactants and
products at the same temperature is

Two comments are in order.

HΔr Δ

Xi i

T p Xi i XΔr

XΔr X ξ X ξ

Δ (rxn)Xm ΔX/Δξ ξ XΔr

T p →

HΔr

= 1 molnA,0 = 0nB,0

Hi

Hi T p

T p HΔr

H ξ HΔr Δ (rxn)Hm

ξ

Si

ξ SΔr

Δ (rxn) = ΔS(rxn)/ΔξSm SΔr

Δξ

XΔr ΔrX
∘

ΔvapH
∘ ΔrG

∘

ΔrX
∘ =

def
∑
i

νiX∘
i (11.2.18)
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1. Whereas a molar reaction quantity is usually a function of , , and , a standard molar reaction quantity is a function only of 
. This is evident because standard-state conditions imply that each reactant and product is in a separate phase of constant

defined composition and constant pressure .
2. Since the value of a standard molar reaction quantity is independent of , the standard molar integral and differential quantities

are identical (Sec. 11.2.2):

These general concepts will now be applied to some specific chemical processes.

This page titled 11.2: The Advancement and Molar Reaction Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

T p ξ
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11.3: Molar Reaction Enthalpy
Recall that  is a molar integral reaction enthalpy equal to , and that  is a molar differential reaction
enthalpy defined by  and equal to .

11.3.1 Molar reaction enthalpy and heat 
During a process in a closed system at constant pressure with expansion work only, the enthalpy change equals the energy
transferred across the boundary in the form of heat:  (Eq. 5.3.7). Thus for the molar reaction enthalpy 

, which refers to a process not just at constant pressure but also at constant temperature, we can write

Note that when there is nonexpansion work ( ), such as electrical work, the enthalpy change is not equal to the heat. For example,
if we compare a reaction taking place in a galvanic cell with the same reaction in a reaction vessel, the heats at constant  and  for
a given change of  are different, and may even have opposite signs. The value of  is the same in both systems, but the ratio of
heat to advancement, , is different.

An exothermic reaction is one for which  is negative, and an endothermic reaction is one for which  is positive. Thus in
a reaction at constant temperature and pressure with expansion work only, heat is transferred out of the system during an
exothermic process and into the system during an endothermic process. If the process takes place at constant pressure in a system
with thermally-insulated walls, the temperature increases during an exothermic process and decreases during an endothermic
process.

These comments apply not just to chemical reactions, but to the other chemical processes at constant temperature and pressure
discussed in this chapter.

11.3.2 Standard molar enthalpies of reaction and formation 

A standard molar reaction enthalpy, , is the same as the molar integral reaction enthalpy  for the reaction
taking place under standard state conditions (each reactant and product at unit activity) at constant temperature.

At constant temperature, partial molar enthalpies depend only mildly on pressure. It is therefore usually safe to assume that unless
the experimental pressure is much greater than , the reaction is exothermic if  is negative and endothermic if  is
positive.

The formation reaction of a substance is the reaction in which the substance, at a given temperature and in a given physical state,
is formed from the constituent elements in their reference states at the same temperature. The reference state of an element is
usually chosen to be the standard state of the element in the allotropic form and physical state that is stable at the given temperature
and the standard pressure. For instance, at  and  the stable allotrope of carbon is crystalline graphite rather than
diamond.

Phosphorus is an exception to the rule regarding reference states of elements. Although red phosphorus is the stable allotrope at 
, it is not well characterized. Instead, the reference state is white phosphorus (crystalline P ) at .

At , the reference states of the elements are the following:

The standard molar enthalpy of formation (or standard molar heat of formation), , of a substance is the enthalpy
change per amount of substance produced in the formation reaction of the substance in its standard state. Thus, the standard
molar enthalpy of formation of gaseous methyl bromide at  is the molar reaction enthalpy of the reaction

The value of  for a given substance depends only on . By definition,  for the reference state of an element is zero.

A principle called Hess’s law can be used to calculate the standard molar enthalpy of formation of a substance at a given
temperature from standard molar reaction enthalpies at the same temperature, and to calculate a standard molar reaction
enthalpy from tabulated values of standard molar enthalpies of formation. The principle is an application of the fact that
enthalpy is a state function. Therefore,  for a given change of the state of the system is independent of the path and is equal

Δ (rxn)Hm ΔH(rxn)/Δξ HΔr

∑iνiHi (∂H/∂ξ)T ,p

dH = dq

H = (∂H/∂ξΔr )T ,p

H =Δr
dq

dξ
(11.3.1)

(constant T  and p, d =0)w′

w′

T p

ξ HΔr

dq/ dξ

HΔr HΔr

ΔrH
∘ Δ (rxn)Hm

p∘ ΔrH
∘ ΔrH

∘

298.15 K 1 bar

298.15 K 4 1 bar

298.15 K

ΔfH
∘

298.15 K

C(s, graphite,  ) + H (ideal gas,  ) + Br (l,  ) → CH Br(ideal gas,  )p∘ 3
2 2 p∘ 1

2 2 p∘
3 p∘ (11.3.1)

ΔfH ∘ T ΔfH ∘

ΔH
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to the sum of  values for any sequence of changes whose net result is the given change. (We may apply the same principle
to a change of any state function.)

This value is one of the many standard molar enthalpies of formation to be found in compilations of thermodynamic properties
of individual substances, such as the table in Appendix H. We may use the tabulated values to evaluate the standard molar
reaction enthalpy  of a reaction using a formula based on Hess’s law. Imagine the reaction to take place in two steps: First
each reactant in its standard state changes to the constituent elements in their reference states (the reverse of a formation
reaction), and then these elements form the products in their standard states. The resulting formula is

where  is the standard molar enthalpy of formation of substance . Recall that the stoichiometric number  of each
reactant is negative and that of each product is positive, so according to Hess’s law the standard molar reaction enthalpy is the
sum of the standard molar enthalpies of formation of the products minus the sum of the standard molar enthalpies of formation
of the reactants. Each term is multiplied by the appropriate stoichiometric coefficient from the reaction equation.

A standard molar enthalpy of formation can be defined for a solute in solution to use in Eq. 11.3.3. For instance, the formation
reaction of aqueous sucrose is

and  for C H O (aq) is the enthalpy change per amount of sucrose formed when the reactants and product are in their
standard states. Note that this formation reaction does not include the formation of the solvent H O from H  and O . Instead,
the solute once formed combines with the amount of pure liquid water needed to form the solution. If the aqueous solute is
formed in its standard state, the amount of water needed is very large so as to have the solute exhibit infinite-dilution behavior.

There is no ordinary reaction that would produce an individual ion in solution from its element or elements without producing
other species as well. We can, however, prepare a consistent set of standard molar enthalpies of formation of ions by assigning a
value to a single reference ion. ({This procedure is similar to that described in Sec. 9.2.4 for partial molar volumes of ions.) We
can use these values for ions in Eq. 11.3.3 just like values of  for substances and nonionic solutes. Aqueous hydrogen ion
is the usual reference ion, to which is assigned the arbitrary value

To see how we can use this reference value, consider the reaction for the formation of aqueous HCl (hydrochloric acid):

The standard molar reaction enthalpy at  for this reaction is known, from reaction calorimetry, to have the value 
. The standard states of the gaseous H  and Cl  are, of course, the pure gases acting ideally at

pressure , and the standard state of each of the aqueous ions is the ion at the standard molality and standard pressure, acting
as if its activity coefficient on a molality basis were . From Eq. 11.3.3, we equate the value of  to the sum

But the first three terms of this sum are zero. Therefore, the value of (Cl , aq) is .

Next we can combine this value of (Cl , aq) with the measured standard molar enthalpy of formation of aqueous sodium
chloride

to evaluate the standard molar enthalpy of formation of aqueous sodium ion. By continuing this procedure with other reactions,
we can build up a consistent set of  values of various ions in aqueous solution.

11.3.3 Molar reaction heat capacity

The molar reaction enthalpy  is in general a function of , , and . Using the relations  (from Eq.
11.2.15) and  (Eq. 9.2.52), we can write

ΔH

ΔrH ∘

= (i)ΔrH
∘ ∑

i

νiΔfH
∘ (11.3.3)

(Hess’s law)

(i)ΔfH
∘ i νi

12 C(s, graphite) +11 H (g) + O (g) → C H O (aq)2
11
2 2 12 22 11 (11.3.2)

ΔfH
∘

12 22 11

2 2 2

ΔfH
∘

(H , aq) = 0 (at all temperatures)ΔfH
∘ + (11.3.4)

(g) + (g) → (aq) + (aq)1
2

H2
1
2

Cl2 H+ Cl−

298.15 K

= −167.08 kJ molΔrH
∘ −1

2 2

p∘

1 ΔrH
∘

− (H , g) − (Cl , g) + (H , aq) + (Cl , aq)1
2

ΔfH
∘

2
1
2

ΔfH
∘

2 ΔfH
∘ + ΔfH

∘ − (11.3.3)

ΔfH
∘ − −167.08 kJ mol−1

ΔfH ∘ −

Na(s) + (g) → (aq) + (aq)1
2

Cl2 Na+ Cl− (11.3.4)

ΔfH
∘

HΔr T p ξ H =Δr ∑iνiHi

= (∂ /∂TCp,i Hi )p,ξ
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where  is the molar reaction heat capacity at constant pressure, equal to the rate at which the heat capacity  changes
with  at constant  and .

Under standard state conditions, Eq. 11.3.5 becomes

11.3.4 Effect of temperature on reaction enthalpy
Consider a reaction occurring with a certain finite change of the advancement in a closed system at temperature  and at
constant pressure. The reaction is characterized by a change of the advancement from  to , and the integral reaction
enthalpy at this temperature is denoted . We wish to find an expression for the reaction enthalpy 
for the same values of  and  at the same pressure but at a different temperature, .

The heat capacity of the system at constant pressure is related to the enthalpy by Eq. 5.6.3: . We integrate 
 from  to  at constant  and , for both the final and initial values of the advancement:

Subtracting Eq. 11.3.8 from Eq. 11.3.7, we obtain

where  is the difference between the heat capacities of the system at the final and initial values of , a function of : 
. Equation 11.3.9 is the Kirchhoff equation.

When  is essentially constant in the temperature range from  to , the Kirchhoff equation becomes

Figure 11.7 illustrates the principle of the Kirchhoff equation as expressed by Eq. 11.3.10.  equals the difference in the
slopes of the two dashed lines in the figure, and the product of  and the temperature difference  equals the change
in the value of . The figure illustrates an exothermic reaction with negative , resulting in a more negative value
of  at the higher temperature.

We can also find the effect of temperature on the molar differential reaction enthalpy . From Eq. 11.3.5, we have 
. Integration from temperature  to temperature  yields the relation

This relation is analogous to Eq. 11.3.9, using molar differential reaction quantities in place of integral reaction quantities.

This page titled 11.3: Molar Reaction Enthalpy is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.

= = =( )
∂ HΔr

∂T p,ξ

( )
∂∑i νiHi

∂T p,ξ

∑
i

νiCp,i ΔrCp (11.3.5)

ΔrCp Cp

ξ T p

d / dT =ΔrH
∘ ΔrC ∘

p (11.3.6)

T ′

ξ1 ξ2

ΔH(rxn,  )T ′ ΔH(rxn,  )T ′′

ξ1 ξ2 T ′′

= (∂H/∂TCp )p,ξ

dH = dTCp T ′ T ′′ p ξ

H( , ) = H( , ) + ( )dTξ2 T ′′ ξ2 T ′ ∫
T ′′

T ′

Cp ξ2 (11.3.7)

H( , ) = H( , ) + ( )dTξ1 T ′′ ξ1 T ′ ∫
T ′′

T ′
Cp ξ1 (11.3.8)

ΔH(rxn,  ) = ΔH(rxn,  ) + Δ dTT ′′ T ′ ∫
T ′′

T ′
Cp (11.3.9)

ΔCp ξ T

Δ = ( ) − ( )Cp Cp ξ2 Cp ξ1

ΔCp T ′ T ′′

ΔH(rxn,  ) = ΔH(rxn,  ) +Δ ( − )T ′′ T ′ Cp T ′′ T ′ (11.3.10)

ΔCp

ΔCp −T ′′ T ′

ΔH(rxn) ΔCp

ΔH(rxn)

HΔr

(∂ H/∂T =Δr )p,ξ ΔrCp T ′ T ′′

H( , ξ) = H( , ξ) + (T , ξ)dTΔr T ′′ Δr T ′ ∫
T ′′

T ′
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11.4: Enthalpies of Solution and Dilution
The processes of solution (dissolution) and dilution are related. The IUPAC Green Book (E. Richard Cohen et al, Quantities, Units
and Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, Sec. 2.11.1) recommends the abbreviations sol
and dil for these processes.

For an electrolyte solute, a plot of  versus  has a limiting slope of  at , whereas the limiting slope of 
 versus  is finite and can be predicted from the Debye–Hückel limiting law. Accordingly, a satisfactory

procedure is to plot  versus , perform a linear extrapolation of the experimental points to , and then
shift the origin to the extrapolated intercept. The result is a plot of  versus . An example for aqueous NaCl solutions is
shown in Fig. 11.10(a).

We can also evaluate  from experimental enthalpies of dilution. From Eqs. 11.4.10 and 11.4.22, we obtain the relation

We can measure the enthalpy changes for diluting a solution of initial molality  to various molalities , plot the values of 
 versus , extrapolate the curve to , and shift the origin to the extrapolated intercept, resulting

in a plot of  versus .

In order to be able to use Eq. 11.4.23, we need to relate the derivative  to the slope of the curve of  versus . We
write

Substituting this expression for  into Eq. 11.4.23, we obtain the following operational equation for evaluating  from the
plot of  versus :

The value of  goes to zero at infinite dilution. When the solute is an electrolyte, the dependence of  on  in solutions dilute
enough for the Debye–Hückel limiting law to apply is given by

For aqueous solutions of a 1:1 electrolyte at , the coefficient  has the value

(The fact that  is positive means, according to Eq. 11.4.25, that dilution of a very dilute electrolyte solution is an exothermic
process.)  is equal to the limiting slope of  versus , of  versus , and of 
versus . The value given by Eq. 11.4.29 can be used for extrapolation of measurements at  and low molality to infinite
dilution.

Equation 11.4.28 can be derived as follows. For simplicity, we assume the pressure is the standard pressure . At
this pressure  is the same as , and Eq. 11.4.17 becomes . From Eqs. 12.1.3 and 12.1.6 in
the next chapter, we can write the relations

Subtracting the second of these relations from the first, we obtain

Δ (sol, )Hm mB mB +∞ =0mB

Δ (sol, )Hm mB mB
−−−

√
Δ (sol, )Hm mB mB

−−−
√ =0mB

−−−
√

ΦL mB
−−−

√

ΦL

( ) − ( ) = Δ (dil,  → )ΦL m′′
B ΦL m′

B Hm m′
B m′′

B (11.4.25)
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dmB LB

ΦL mB
−−−

√

= +LB ΦL

mB
−−−

√

2

dΦL

d mB
−−−

√
(11.4.27)

(constant T  and p)

ΦL ΦL mB

=ΦL CΦL mB
−−−

√ (11.4.28)
(very dilute solution)
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The solute activity on a molality basis, , is defined by . The activity of an electrolyte
solute at the standard pressure, from Eq. 10.3.10, is given by . Accordingly, the
relative partial molar enthalpy of the solute is related to the mean ionic activity coefficient by

We assume the solution is sufficiently dilute for the mean ionic activity coefficient to be adequately described by
the Debye–Hückel limiting law, Eq. 10.4.8: , where  is a temperature-dependent
quantity defined in Sec. 10.4. Then Eq. 11.4.32 becomes

Substitution of the expression given by Eq. 10.4.9 for  in a solution of a single completely-dissociated electrolyte
converts Eq. 11.4.33 to

The coefficient  (the quantity in brackets) depends on , the kind of solvent, and the ion charges and number of
ions per solute formula unit, but not on the solute molality.

Let  represent the limiting slope of  versus . In a very dilute solution we have , and
Eq. 11.4.27 becomes

By equating this expression for  with the one given by Eq. 11.4.34 and solving for , we obtain 
 and .

This page titled 11.4: Enthalpies of Solution and Dilution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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11.5: Reaction Calorimetry
Reaction calorimetry is used to evaluate the molar integral reaction enthalpy  of a reaction or other chemical process at
constant temperature and pressure. The measurement actually made, however, is a temperature change.

Sections 11.5.1 and 11.5.2 will describe two common types of calorimeters designed for reactions taking place at either constant
pressure or constant volume. The constant-pressure type is usually called a reaction calorimeter, and the constant-volume type is
known as a bomb calorimeter or combustion calorimeter.

In either type of calorimeter, the chemical process takes place in a reaction vessel surrounded by an outer jacket. The jacket may be
of either the adiabatic type or the isothermal-jacket type described in Sec. 7.3.2 in connection with heat capacity measurements. A
temperature-measuring device is immersed either in the vessel or in a phase in thermal contact with it. The measured temperature
change is caused by the chemical process, instead of by electrical work as in the determination of heat capacity. One important way
in which these calorimeters differ from ones used for heat capacity measurements is that work is kept deliberately small, in order to
minimize changes of internal energy and enthalpy during the experimental process.

11.5.1 The constant-pressure reaction calorimeter 
The contents of a constant-pressure calorimeter are usually open to the atmosphere, so this type of calorimeter is unsuitable for
processes involving gases. It is, however, a convenient apparatus in which to study a liquid-phase chemical reaction, the dissolution
of a solid or liquid solute in a liquid solvent, or the dilution of a solution with solvent.

The process is initiated in the calorimeter by allowing the reactants to come into contact. The temperature in the reaction vessel is
measured over a period of time starting before the process initiation and ending after the advancement has reached a final value
with no further change.

The heating or cooling curve (temperature as a function of time) is observed over a period of time that includes the period during
which the advancement  changes. For an exothermic reaction occurring in an adiabatic calorimeter, the heating curve may
resemble that shown in Fig. 7.3, and the heating curve in an isothermal-jacket calorimeter may resemble that shown in Fig. 7.4.
Two points are designated on the heating or cooling curve: one at temperature , before the reaction is initiated, and the other at 

, after  has reached its final value. These points are indicated by open circles in Figs. 7.3 and 7.4.

The relations derived here parallel those of Sec. 11.5.1 for a constant-pressure calorimeter. The three paths depicted in Fig. 11.13
are similar to those in Fig. 11.11, except that instead of being at constant pressure they are at constant volume. We shall assume the
combustion reaction is exothermic, with  being greater than .

The internal energy change of the experimental process that actually occurs in the calorimeter between times  and  is denoted 
 in the figure. Conceptually, the overall change of state during this process would be duplicated by a path in which the

temperature of the system with the reactants present increases from  to , followed by the isothermal bomb process at
temperature . (When one investigates a combustion reaction, the path in which temperature changes without reaction is best
taken with reactants rather than products present because the reactants are more easily characterized.) In the figure these paths are
labeled with the internal energy changes  and , and we can write

To evaluate , we can use the energy equivalent  of the calorimeter with reactants present in the bomb vessel.  is the
average heat capacity of the system between  and —that is, the ratio , where  is the heat that would be needed to
change the temperature from  to . From the first law, with expansion work assumed negligible, the internal energy change
equals this heat, giving us the relation

The initial and final states of the path are assumed to be equilibrium states, and there may be some transfer of reactants or H O
from one phase to another within the bomb vessel during the heating process.

The value of  is obtained in a separate calibration experiment. The calibration is usually carried out with the combustion of a
reference substance, such as benzoic acid, whose internal energy of combustion under controlled conditions is precisely known
from standardization based on electrical work. If the bomb vessel is immersed in the same mass of water in both experiments and
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other conditions are similar, the difference in the values of  in the two experiments is equal to the known difference in the heat
capacities of the initial contents (reactants, water, etc.) of the bomb vessel in the two experiments.

The internal energy change we wish to find is , that of the isothermal bomb process in which reactants change to
products at temperature , accompanied perhaps by some further transfer of substances between phases. From Eqs. 11.5.4 and
11.5.5, we obtain

The value of  is small. To evaluate it, we must look in detail at the possible sources of energy transfer between the
system and the surroundings during the experimental process. These sources are

1. The ignition work occurs during only a short time interval at the beginning of the process, and its value is known. The effects of
heat transfer, stirring work, and temperature measurement continue throughout the course of the experiment. With these
considerations, Eq. 11.5.6 becomes

where  is the internal energy change due to heat, stirring, and temperature measurement.  can be
evaluated from the energy equivalent and the observed rates of temperature change at times  and ; the relevant relations for
an isothermal jacket are Eq. 7.3.24 (with  set equal to zero) and Eq. 7.3.32.

Correction to the reference temperature

Reduction to standard states

We want to obtain the value of , the molar internal energy change for the main combustion reaction at the reference
temperature under standard-state conditions. Once we have this value, it is an easy matter to find the molar enthalpy change
under standard-state conditions, our ultimate goal.

Consider a hypothetical process with the following three isothermal steps carried out at the reference temperature :

1. The net change is a decrease in the amount of each reactant in its standard state and an increase in the amount of each
product in its standard state. The internal energy change of step 2 is , whose value is found from Eq. 11.5.8.
The internal energy changes of steps 1 and 3 are called Washburn corrections (Edward W. Washburn, J. Res. Natl. Bur.
Stand. (U.S.), 10, 525–558, 1933).

Thus, we calculate the standard internal energy change of the main combustion reaction at temperature  from

where the sum over  is for side reactions and auxiliary reactions if present. Finally, we calculate the standard molar internal
energy of combustion from

where  is the advancement of the main combustion reaction in the bomb vessel.

Standard molar enthalpy change

Washburn corrections

The Washburn corrections needed in Eq. 11.5.9 are internal energy changes for certain hypothetical physical processes
occurring at the reference temperature  involving the substances present in the bomb vessel. In these processes,
substances change from their standard states to the initial state of the isothermal bomb process, or change from the final state
of the isothermal bomb process to their standard states.

For example, consider the complete combustion of a solid or liquid compound of carbon, hydrogen, and oxygen in which
the combustion products are CO  and H O and there are no side reactions or auxiliary reactions. In the initial state of the
isothermal bomb process, the bomb vessel contains the pure reactant, liquid water with O  dissolved in it, and a gaseous
mixture of O  and H O, all at a high pressure . In the final state, the bomb vessel contains liquid water with O  and CO
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dissolved in it and a gaseous mixture of O , H O, and CO , all at pressure . In addition, the bomb vessel contains internal
parts of constant mass such as the sample holder and ignition wires.

In making Washburn corrections, we must use a single standard state for each substance in order for Eq. 11.5.9 to correctly
give the standard internal energy of combustion. In the present example we choose the following standard states: pure solid
or liquid for the reactant compound, pure liquid for the H O, and pure ideal gases for the O  and CO , each at pressure 

.

We can calculate the amount of each substance in each phase, in both the initial state and final state of the isothermal bomb
process, from the following information: the internal volume of the bomb vessel; the mass of solid or liquid reactant initially
placed in the vessel; the initial amount of H O; the initial O  pressure; the water vapor pressure; the solubilities (estimated
from Henry’s law constants) of O  and CO  in the water; and the stoichiometry of the combustion reaction. Problem 11.7
guides you through these calculations.

11.5.3 Other calorimeters
Experimenters have used great ingenuity in designing calorimeters to measure reaction enthalpies and to improve their
precision. In addition to the constant-pressure reaction calorimeter and bomb calorimeter described above, three additional
types will be briefly mentioned.

A phase-change calorimeter has two coexisting phases of a pure substance in thermal contact with the reaction vessel and
an adiabatic outer jacket. The two coexisting phases constitute a univariant subsystem that at constant pressure is at the fixed
temperature of the equilibrium phase transition. The thermal energy released or absorbed by the reaction, instead of
changing the temperature, is transferred isothermally to or from the coexisting phases and can be measured by the volume
change of the phase transition. A reaction enthalpy, of course, can only be measured by this method at the temperature of the
equilibrium phase transition. The well-known Bunsen ice calorimeter uses the ice–water transition at . The solid–liquid
transition of diphenyl ether has a relatively large volume change and is useful for measurements at . Phase-transition
calorimeters are especially useful for slow reactions.

A heat-flow calorimeter is a variation of an isothermal-jacket calorimeter. It uses a thermopile (Fig. 2.7) to continuously
measure the temperature difference between the reaction vessel and an outer jacket acting as a constant-temperature heat
sink. The heat transfer takes place mostly through the thermocouple wires, and to a high degree of accuracy is proportional
to the temperature difference integrated over time. This is the best method for an extremely slow reaction, and it can also be
used for rapid reactions.

A flame calorimeter is a flow system in which oxygen, fluorine, or another gaseous oxidant reacts with a gaseous fuel. The
heat transfer between the flow tube and a heat sink can be measured with a thermopile, as in a heat-flow calorimeter.

This page titled 11.5: Reaction Calorimetry is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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11.6: Adiabatic Flame Temperature
With a few simple approximations, we can estimate the temperature of a flame formed in a flowing gas mixture of oxygen or air
and a fuel. We treat a moving segment of the gas mixture as a closed system in which the temperature increases as combustion
takes place. We assume that the reaction occurs at a constant pressure equal to the standard pressure, and that the process is
adiabatic and the gas is an ideal-gas mixture.

The principle of the calculation is similar to that used for a constant-pressure calorimeter as explained by the paths shown in Fig.
11.11. When the combustion reaction in the segment of gas reaches reaction equilibrium, the advancement has changed by  and
the temperature has increased from  to . Because the reaction is assumed to be adiabatic at constant pressure,  is
zero. Therefore, the sum of  and  is zero, and we can write

where  is the standard molar enthalpy of combustion at the initial temperature, and  is the heat capacity at
constant pressure of the product mixture.

The value of  that satisfies Eq. 11.6.1 is the estimated flame temperature. Problem 11.9 presents an application of this
calculation. Several factors cause the actual temperature in a flame to be lower: the process is never completely adiabatic, and in
the high temperature of the flame there may be product dissociation and other reactions in addition to the main combustion
reaction.

This page titled 11.6: Adiabatic Flame Temperature is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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11.7: Gibbs Energy and Reaction Equilibrium
This section begins by examining the way in which the Gibbs energy changes as a chemical process advances in a closed system at
constant  and  with expansion work only. A universal criterion for reaction equilibrium is derived involving the molar reaction
Gibbs energy.

The molar reaction Gibbs energy 
Applying the general definition of a molar differential reaction quantity (Eq. 11.2.15) to the Gibbs energy of a closed system with 

, , and  as the independent variables, we obtain the definition of the molar reaction Gibbs energy or molar Gibbs energy of
reaction, :

Equation 11.2.16 shows that this quantity is also given by the partial derivative

The total differential of  is then

Spontaneity and reaction equilibrium 

In Sec. 5.8, we found that the spontaneous direction of a process taking place in a closed system at constant  and , with
expansion work only, is the direction of decreasing . In the case of a chemical process occurring at constant  and ,  is the
rate at which  changes with . Thus if  is positive,  spontaneously decreases; if  is negative,  spontaneously increases.
During a spontaneous process  and  have opposite signs.

Sometimes reaction spontaneity at constant  and  is ascribed to the “driving force” of a quantity called the affinity
of reaction, defined as the negative of .  increases spontaneously if the affinity is positive and decreases
spontaneously if the affinity is negative; the system is at equilibrium when the affinity is zero.

Note how the equality of Equation  agrees with the inequality , a criterion of spontaneity
in a closed system with expansion work only (Eq. 5.8.6). When  and  have opposite signs,  is negative
and  is less than .

If the system is closed and contains at least one phase that is a mixture, a state of reaction equilibrium can be approached
spontaneously at constant  and  in either direction of the reaction; that is, by both positive and negative changes of . In this
equilibrium state, therefore,  has its minimum value for the given  and . Since  is a smooth function of , its rate of change
with respect to  is zero in the equilibrium state. The condition for reaction equilibrium, then, is that  must be zero:

It is important to realize that this condition is independent of whether or not reaction equilibrium is approached at constant
temperature and pressure. It is a universal criterion of reaction equilibrium. The value of  is equal to  and depends on
the state of the system. If the state is such that  is positive, the direction of spontaneous change is one that, under the existing
constraints, allows  to decrease. If  is negative, the spontaneous change increases the value of . When the system
reaches reaction equilibrium, whatever the path of the spontaneous process, the value of  becomes zero.

General derivation 
We can obtain the condition of reaction equilibrium given by Eq. 11.7.4 in a more general and rigorous way by an extension of the
derivation of Sec. 9.2.7, which was for equilibrium conditions in a multiphase, multicomponent system.

Consider a system with a reference phase, , and optionally other phases labeled by . Each phase contains one or more
species labeled by subscript , and some or all of the species are the reactants and products of a reaction.
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11.7.3 dG < −S dT +V dp

dξ GΔr GdξΔr

dG = (−S dT +V dp + Gdξ)Δr (−S dT +V dp)

T p ξ

G T p G ξ

ξ GΔr

G = = 0Δr ∑
i

νiμi (11.7.4)
(reaction equilibrium)

GΔr ∑iνiμi

GΔr

GΔr GΔr GΔr
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i
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The total differential of the internal energy is given by Eq. 9.2.37:

The conditions of isolation are

In Eq. 11.7.8,  should be set equal to zero for a species  that is excluded from phase , and  should be set equal to zero
for a species  that is not a reactant or product of the reaction.

We use these conditions of isolation to substitute for , , and  in Eq. 11.7.5, and make the further substitution 
. Solving for , we obtain

The equilibrium condition is that the coefficient multiplying each differential on the right side of Eq. 11.7.9 must be zero. We
conclude that at equilibrium the temperature of each phase is equal to that of phase ; the pressure of each phase is equal to that of
phase ; the chemical potential of each species, in each phase containing that species, is equal to the chemical potential of the
species in phase ; and the quantity  (which is equal to ) is zero.

In short, in an equilibrium state each phase has the same temperature and the same pressure, each species has the same chemical
potential in the phases in which it is present, and the molar reaction Gibbs energy of each phase is zero.

Pure phases 
Consider a chemical process in which each reactant and product is in a separate pure phase. For example, the decomposition of
calcium carbonate,

involves three pure phases if no other gas is allowed to mix with the .

The situation is different when the number of molecules changes during the reaction. Consider the reaction A 2 B in an ideal gas
mixture. As this reaction proceeds to the right at constant , the volume increases if the pressure is held constant and the pressure
increases if the volume is held constant. Figure 11.17 shows how  depends on both  and  for this reaction. Movement along
the horizontal dashed line in the figure corresponds to reaction at constant  and . The minimum of  along this line is at the
volume indicated by the open circle. At this volume,  has an even lower minimum at the pressure indicated by the filled circle,
where the vertical dashed line is tangent to one of the contours of constant . The condition needed for reaction equilibrium,
however, is that  must be zero. This condition is satisfied along the vertical dashed line only at the position of the open circle.

This example demonstrates that for a reaction occurring at constant temperature and volume in which the pressure changes, the
point of reaction equilibrium is not the point of minimum . Instead, the point of reaction equilibrium in this case is at the
minimum of the Helmholtz energy  (Sec. 11.7.5).

dU = d − d + dT α′

Sα′

pα′

V α′

∑
i

μα′

i nα′

i

+ ( d − d + d )∑
α≠α′

T α Sα pα V α ∑
i

μα
i

nα
i

(11.7.5)

dU = 0 (constant internal energy) (11.7.6)

d + d = 0 (no expansion work)V α′

∑
α≠α′

V α (11.7.7)

For each species i:

d + d = dξ (closed system)nα′

i ∑
α≠α′

nα
i νi (11.7.8)

dnα′′

i′ i′ α′′ νi′′

i′′

dU dV α′
dnα′

i

d = dS − dSα′
∑α≠α′ Sα dS

dS = d − d∑
α≠α′

( − )T α′
T α

T α′ Sα ∑
α≠α′

( − )pα′
pα

T α′ V α

+ d − dξ∑
i

∑
α≠α′

( − )μα′

i μα
i

T α′ nα
i

∑i νiμ
α′

i

T α′

(11.7.9)
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11.8: The Thermodynamic Equilibrium Constant

11.8.1 Activities and the definition of  

Equation 10.1.9 gives the general relation between the chemical potential  and the activity  of species  in a phase of electric
potential :

The electric potential affects  only if the charge number  is nonzero, i.e., only if species  is an ion.

Consider a reaction in which any reactants and products that are ions are in a single phase of electric potential , or in several
phases of equal electric potential . Under these conditions, substitution of the expression above for  in  gives

The first term on the right side of Eq. 11.8.2 is the standard molar reaction Gibbs energy, or standard molar Gibbs energy of
reaction:

Since the standard chemical potential  of each species  is a function only of , the value of  for a given reaction as
defined by the reaction equation depends only on  and on the choice of a standard state for each reactant and product.

The last term on the right side of Eq. 11.8.2 is the sum . Because charge is conserved during the advancement of a reaction
in a closed system, this sum is zero.

With these substitutions, Eq. 11.8.2 becomes

This relation enables us to say that for a reaction at a given temperature in which any charged reactants or products are all in the
same phase, or in phases of equal electric potential, the value of  and  depends only on the activities of the reactants
and products and is independent of what the electric potentials of any of the phases might happen to be.

Unless a reaction involving ions is carried out in a galvanic cell, the ions are usually present in a single phase, and this will not be
shown as a condition of validity in the rest of this chapter. The special case of a reaction in a galvanic cell will be discussed in Sec.
14.3.

We may use properties of logarithms to write the sum on the right side of Eq. 11.8.4 as follows:

The symbol  stands for a continued product. If, for instance, there are three species,  is the product 
.

The product  is called the reaction quotient or activity quotient, :

 consists of a factor for each reactant and product. Each factor is the activity raised to the power of the stoichiometric number 
. Since the value of  is positive for a product and negative for a reactant,  is a quotient in which the activities of the

products appear in the numerator and those of the reactants appear in the denominator, with each activity raised to a power equal to
the corresponding stoichiometric coefficient in the reaction equation. Such a quotient, with quantities raised to these powers, is
called a proper quotient. The reaction quotient is a proper quotient of activities.

For instance, for the ammonia synthesis reaction N (g) + 3 H (g) 2 NH (g) the reaction quotient is given by

K

μi ai i

ϕ

= +RT ln + F ϕμi μ∘
i ai zi (11.8.1)

μi zi i

ϕ′

ϕ′ μi G =Δr ∑iνiμi

G = +RT ln +FΔr ∑
i

νiμ∘
i ∑

i

νi ai ϕ′∑
i

νizi (11.8.2)
(all ions at ϕ= )ϕ′

ΔrG
∘ =

def ∑
i

νiμ∘
i (11.8.3)

μ∘
i i T ΔrG

∘

T

∑iνizi

G = +RT lnΔr ΔrG
∘ ∑

i

νi ai (11.8.4)
(all ions at same ϕ)

GΔr ∑iνiμi

ln = ln( )= ln∑
i

νi ai ∑
i

aνi

i ∏
i

aνi

i (11.8.5)

∏ ∏i aνi

i

( )( )( )aν1
1 aν2

2 aν3
3

∏i aνi

i Qrxn

Qrxn =
def
∏

i

aνi

i (11.8.6)
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 is a dimensionless quantity. It is a function of , , and the mixture composition, so its value changes as the reaction
advances.

The expression for the molar reaction Gibbs energy given by Eq. 11.8.4 can now be written

The value of  under equilibrium conditions is the thermodynamic equilibrium constant, . The general definition of  is

where the subscript eq indicates an equilibrium state. Note that , like , is dimensionless.

The IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in Physical Chemistry, 3rd edition,
RSC Publishing, Cambridge, 2007, p. 58) gives  as an alternative symbol for the thermodynamic equilibrium
constant, the appended superscript denoting “standard.” An IUPAC Commission on Thermodynamics (M. B. Ewing
et al, Pure Appl. Chem., 66, 533–552, 1994) has furthermore recommended the name “standard equilibrium
constant,” apparently because its value depends on the choice of standard states. Using this alternative symbol and
name could cause confusion, since the quantity defined by Eq. 11.8.9 does not refer to reactants and products in
their standard states but rather to reactants and products in an equilibrium state.

Substituting the equilibrium conditions  and  in Eq. 11.8.8 gives an important relation between the standard
molar reaction Gibbs energy and the thermodynamic equilibrium constant:

We can solve this equation for  to obtain the equivalent relation

We have seen that the value of  depends only on  and the choice of the standard states of the reactants and products. This
being so, Eq. 11.8.11 shows that the value of  for a given reaction depends only on  and the choice of standard states. No other
condition, neither pressure nor composition, can affect the value of . We also see from Eq. 11.8.11 that  is less than  if 
is positive and greater than  if  is negative. At a fixed temperature, reaction equilibrium is attained only if and only if the
value of  becomes equal to the value of  at that temperature.

The thermodynamic equilibrium constant  is the proper quotient of the activities of species in reaction equilibrium. At typical
temperatures and pressures, an activity cannot be many orders of magnitude greater than . For instance, a partial pressure cannot
be greater than the total pressure, so at a pressure of  the activity of a gaseous constituent cannot be greater than about .
The molarity of a solute is rarely much greater than , corresponding to an activity (on a concentration basis) of about 

. Activities can, however, be extremely small.

These considerations lead us to the conclusion that in an equilibrium state of a reaction with a very large value of , the activity of
at least one of the reactants must be very small. That is, if  is very large then the reaction goes practically to completion and at
equilibrium a limiting reactant is essentially entirely exhausted. The opposite case, a reaction with a very small value of , must
have at equilibrium one or more products with very small activities. These two cases are the two extremes of the trends shown in
Fig. 11.16.

Equation 11.8.10 correctly relates  and  only if they are both calculated with the same standard states. For instance, if we
base the standard state of a particular solute species on molality in calculating , the activity of that species appearing in the
expression for  (Eq. 11.8.9) must also be based on molality.

11.8.2 Reaction in a gas phase 

If a reaction takes place in a gaseous mixture, the standard state of each reactant and product is the pure gas behaving ideally at the
standard pressure  (Sec. 9.3.3). In this case, each activity is given by  where  is a fugacity coefficient

=Qrxn

a2
NH3

aN2
a3

H2

(11.8.7)

Qrxn T p

G = +RT lnΔr ΔrG
∘ Qrxn (11.8.8)

Qrxn K K

K (=
def ∏

i

ai)
νi
eq (11.8.9)

K Qrxn

K⦵

G = 0Δr = KQrxn

= −RT lnKΔrG
∘ (11.8.10)

K

K = exp(− )
ΔrG

∘
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(11.8.11)
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∘
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∘
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(Table 9.5). When we substitute this expression into Eq. 11.8.9, we find we can express the thermodynamic equilibrium constant as
the product of three factors:

On the right side of this equation, the first factor is the proper quotient of fugacity coefficients in the mixture at reaction
equilibrium, the second factor is the proper quotient of partial pressures in this mixture, and the third factor is the power of 
needed to make  dimensionless.

The proper quotient of equilibrium partial pressures is an equilibrium constant on a pressure basis, :

Note that  is dimensionless only if  is equal to zero.

The value of  can vary at constant temperature, so  is not a thermodynamic equilibrium constant. For instance, consider what
happens when we take an ideal gas mixture at reaction equilibrium and compress it isothermally. As the gas pressure increases, the
fugacity coefficient of each constituent changes from its low pressure value of  and the gas mixture becomes nonideal. In order for
the mixture to remain in reaction equilibrium, and the product of factors on the right side of Eq. 11.8.12 to remain constant, there
must be a change in the value of . In other words, the reaction equilibrium shifts as we increase  at constant , an effect that
will be considered in more detail in Sec. 11.9.

As an example of the difference between  and , consider again the ammonia synthesis  in
which the sum  equals . For this reaction, the expression for the thermodynamic equilibrium constant is

where  is given by

11.8.3 Reaction in solution 
If any of the reactants or products are solutes in a solution, the value of  depends on the choice of the solute standard state.

For a given reaction at a given temperature, we can derive relations between values of  that are based on different solute standard
states. In the limit of infinite dilution, each solute activity coefficient is unity, and at the standard pressure each pressure factor is
unity. Under these conditions of infinite dilution and standard pressure, the activities of solute B on a mole fraction, concentration,
and molality basis are therefore

In the limit of infinite dilution, the solute composition variables approach values given by the relations in Eq. 9.1.14: 
. Combining these with  from Eq. 11.8.16, we write

Then, using the relations for  and  in Eq. 11.8.16, we find that the activities of solute B at infinite dilution and pressure 
are related by

The expression  has a factor  for each solute B that is a reactant or product. From Eq. 11.8.18, we see that for
solutes at infinite dilution at pressure , the relations between the values of  based on different solute standard states are

K = [ ( ][ ( ] [( ]∏
i

ϕi)
νi
eq ∏

i

pi)
νi
eq p∘)−∑i νi (11.8.12)

(gas mixture)

p∘

K

Kp

= (Kp ∏
i

pi)
νi
eq (11.8.13)

(gas mixture)

Kp ∑iνi

Kp Kp

1

Kp p T

K Kp (g) +3 (g) → 2 (g)N2 H2 NH3

∑iνi −2

K = (( )
ϕ2

NH3

ϕN2 ϕ3
H2 eq

Kp p∘)2 (11.8.14)

Kp

=Kp ( )
p2

NH3

pN2 p3
H2 eq

(11.8.15)

K

K

= = / = /ax,B xB ac,B cB c∘ am,B mB m∘ (11.8.16)

= =xB V ∗
A cB MAmB =ax,B xB

= =ax,B V ∗
A

cB MAmB (11.8.17)

ac,B am,B p∘
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A

c∘ac,B MAm∘am,B (11.8.18)
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νi
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p∘ K
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A
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For a given reaction at a given temperature, and with a given choice of solute standard state, the value of  is not affected by
pressure or dilution. The relations of Eq. 11.8.19 are therefore valid under all conditions.

11.8.4 Evaluation of  

The relation  (Eq. 11.8.11) gives us a way to evaluate the thermodynamic equilibrium constant  of a
reaction at a given temperature from the value of the standard molar reaction Gibbs energy  at that temperature. If we know
the value of , we can calculate the value of .

One method is to calculate  from values of the standard molar Gibbs energy of formation  of each reactant and
product. These values are the standard molar reaction Gibbs energies for the formation reactions of the substances. To relate 
to measurable quantities, we make the substitution  (Eq. 9.2.46) in  to give 

, or

When we apply this equation to a reaction with each reactant and product in its standard state, it becomes

where the standard molar reaction entropy is given by

If the reaction is the formation reaction of a substance, we have

where the sum over  is for the reactants and product of the formation reaction. We can evaluate the standard molar Gibbs energy of
formation of a substance, then, from its standard molar enthalpy of formation and the standard molar entropies of the reactants and
product.

Extensive tables are available of values of  for substances and ions. An abbreviated version at the single temperature 
 is given in Appendix H. For a reaction of interest, the tabulated values enable us to evaluate , and then , from the

expression (analogous to Hess’s law)

The sum over  is for the reactants and products of the reaction of interest.

Recall that the standard molar enthalpies of formation needed in Eq. 11.8.23 can be evaluated by calorimetric methods (Sec.
11.3.2). The absolute molar entropy values  come from heat capacity data or statistical mechanical theory by methods discussed
in Sec. 6.2. Thus, it is entirely feasible to use nothing but calorimetry to evaluate an equilibrium constant, a goal sought by
thermodynamicists during the first half of the 20th century. (Another method, for a reaction that can be carried out reversibly in a
galvanic cell, is described in Sec. 14.3.3.)

For ions in aqueous solution, the values of  and  found in Appendix H are based on the reference values  and 
 for H (aq) at all temperatures, similar to the convention for  values discussed in Sec. 11.3.2. For a reaction with

aqueous ions as reactants or products, these values correctly give  using Eq. 11.8.22, or  using Eq. 11.8.24.

Note that the values of  in Appendix H for some ions, unlike the values for substances, are negative; this simply
means that the standard molar entropies of these ions are less than that of H (aq).

The relation of Eq. 11.8.23 does not apply to an ion, because we cannot write a formation reaction for a single ion.
Instead, the relation between ,  and  is more complicated.

Consider first a hypothetical reaction in which hydrogen ions and one or more elements form H  and a cation M
with charge number :

K

K

K = exp(− /RT )ΔrG
∘ K

ΔrG
∘

ΔrG
∘ K

ΔrG
∘ ΔfG

∘

ΔfG
∘

= −Tμi Hi Si G =Δr ∑iνiμi
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G = H −T SΔr Δr Δr (11.8.20)
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∘ ΔrH
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∘ (11.8.21)
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∘ ∑
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∘ ΔfH

∘ ∑
i

νiS∘
i (11.8.23)
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i

νiΔfG
∘ (11.8.24)
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i
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m ΔfG

∘ = 0S∘
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= 0ΔfG
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∘ ΔrG

∘
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+
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∘ S∘
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For this reaction, using the convention that , , and  are zero for the aqueous H  ion and the fact that 
 and  are zero for the elements, we can write the following expressions for standard molar reaction

quantities:

Then, from , we find

For example, the standard molar Gibbs energy of the aqueous mercury(I) ion is found from

For an anion X  with negative charge number , using the hypothetical reaction

we find by the same method

For example, the calculation for the nitrate ion is

This page titled 11.8: The Thermodynamic Equilibrium Constant is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

ΔfH
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m ΔfG
∘ +
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∘
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∘ z+ (11.8.25)
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∘ z+ (11.8.27)
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∘ ΔrH
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(NO ) = (NO ) −T (NO ) + T (N ) + T (O ) + T (H )ΔfG
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11.9: Effects of Temperature and Pressure on Equilibrium Position
The advancement  of a chemical reaction in a closed system describes the changes in the amounts of the reactants and products
from specified initial values of these amounts. We have seen that if the system is maintained at constant temperature and pressure, 
changes spontaneously in the direction that decreases the Gibbs energy. The change continues until the system reaches a state of
reaction equilibrium at the minimum of . The value of the advancement in this equilibrium state will be denoted , as shown in
Fig. 11.15. The value of  depends in general on the values of  and . Thus when we change the temperature or pressure of a
closed system that is at equilibrium,  usually changes also and the reaction spontaneously shifts to a new equilibrium position.

To investigate this effect, we write the total differential of  with , , and  as independent variables

and obtain the reciprocity relations

We recognize the partial derivative on the right side of each of these relations as a molar differential reaction quantity:

We use these expressions for two of the coefficients in an expression for the total differential of :

Since  is the partial derivative of  with respect to  at constant  and , the coefficient  is the partial second
derivative of  with respect to :

We know that at a fixed  and , a plot of  versus  has a slope at each point equal to  and a minimum at the position of
reaction equilibrium where  is . At the minimum of the plotted curve, the slope  is zero and the second derivative is
positive (see Fig. 11.15). By setting  equal to zero in the general relation , we obtain the equation 

 which is valid only at reaction equilibrium where  equals . Making this substitution in Eq. 11.9.4, and setting 
 equal to zero and  equal to , we obtain

which shows how infinitesimal changes in , , and  are related.

Now we are ready to see how  is affected by changes in  or . Solving Eq. 11.9.6 for  gives

The right side of Eq. 11.9.7 is the expression for the total differential of  in a closed system at reaction equilibrium, with  and 
as the independent variables. Thus, at constant pressure the equilibrium shifts with temperature according to

and at constant temperature the equilibrium shifts with pressure according to

ξ

ξ

G ξeq

ξeq T p

ξeq

G T p ξ

dG = −S dT +V dp + GdξΔr (11.9.1)

= − =( )
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∂ξ T ,p
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Δr ( )
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GΔr
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Because the partial second derivative  is positive, Eqs. 11.9.8 and 11.9.9 show that  and  have the
same sign, whereas  and  have opposite signs.

These statements express the application to temperature and pressure changes of what is known as Le Chatelier’s principle: When a
change is made to a closed system at equilibrium, the equilibrium shifts in the direction that tends to oppose the change. Here are
two examples.

1. It is easy to misuse or to be misled by Le Chatelier’s principle. Consider the solution process B (s) B(sln) for which 
, the rate of change of solubility with , has the same sign as the molar differential enthalpy of solution  at

saturation. The sign of  at saturation may be different from the sign of the molar integral enthalpy of solution, 
. This is the situation for the dissolution of sodium acetate shown in Fig. 11.9. The equilibrium position (saturation)

with one kilogram of water is at , indicated in the figure by an open circle. At this position,  is positive and 
 is negative. So, despite the fact that the dissolution of 15 moles of sodium acetate in one kilogram of water to form a

saturated solution is an exothermic process, the solubility of sodium acetate actually increases with increasing temperature,
contrary to what one might predict from Le Chatelier’s principle (L. K. Brice, J. Chem. Educ., 60, 387–389, 1983).

Another kind of change for which Le Chatelier’s principle gives an incorrect prediction is the addition of an inert gas to a gas
mixture of constant volume. Adding the inert gas at constant  increases the pressure, but has little effect on the equilibrium
position of a gas-phase reaction regardless of the value of . This is because the inert gas affects the activities of the
reactants and products only slightly, and not at all if the gas mixture is ideal, so there is little or no effect on the value of .
(Note that the dependence of  on  expressed by Eq. 11.9.9 does not apply to an open system.)

This page titled 11.9: Effects of Temperature and Pressure on Equilibrium Position is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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11.10: Chapter 11 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

11.1 
Use values of  and  in Appendix H to evaluate the standard molar reaction enthalpy and the thermodynamic
equilibrium constant at  for the oxidation of nitrogen to form aqueous nitric acid:

11.2 
In 1982, the International Union of Pure and Applied Chemistry recommended that the value of the standard pressure  be
changed from  to . This change affects the values of some standard molar quantities of a substance calculated from
experimental data.

(a) Find the changes in , , and  for a gaseous substance when the standard pressure is changed isothermally from 
 ( ) to exactly . (Such a small pressure change has an entirely negligible effect on these quantities for a

substance in a condensed phase.)

(b) What are the values of the corrections that need to be made to the standard molar enthalpy of formation, the standard molar
entropy of formation, and the standard molar Gibbs energy of formation of N O (g) at  when the standard pressure is
changed from  to ?

11.3 
From data for mercury listed in Appendix H, calculate the saturation vapor pressure of liquid mercury at both  and 

. You may need to make some reasonable approximations.

11.4 
Given the following experimental values at , :

Using only these values, calculate:

(a)  for Na (aq), NaOH(aq), and OH (aq);

(b)  for NaOH in 5 H O;

(c)  for the dissolution of  NaOH(s) in  H O.

States 1 and 2 referred to in this problem are the initial and final states of the isothermal bomb process. The temperature is the
reference temperature of .

(a) Parts (a)–(c) consist of simple calculations of some quantities needed in later parts of the problem. Begin by using the masses of
C H  and H O placed in the bomb vessel, and their molar masses, to calculate the amounts (moles) of C H  and H O present
initially in the bomb vessel. Then use the stoichiometry of the combustion reaction to find the amount of O  consumed and the
amounts of H O and CO  present in state 2. (There is not enough information at this stage to allow you to find the amount of O
present, just the change.) Also find the final mass of H O. Assume that oxygen is present in excess and the combustion reaction
goes to completion.

(b) From the molar masses and the densities of liquid C H  and H O, calculate their molar volumes.

(c) From the amounts present initially in the bomb vessel and the internal volume, find the volumes of liquid C H , liquid H O,
and gas in state 1 and the volumes of liquid H O and gas in state 2. For this calculation, you can neglect the small change in the
volume of liquid H O due to its vaporization.

(d) When the bomb vessel is charged with oxygen and before the inlet valve is closed, the pressure at  measured on an
external gauge is found to be . To a good approximation, the gas phase of state 1 has the equation of state of pure O

ΔfH
∘ ΔfG

∘

298.15 K

(g) + (g) + O(l) → (aq) + (aq)1
2

N2
5
4

O2
1
2
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3 (11.10.1)
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 (since the vapor pressure of water is only  of ). Assume that this equation of state is given by 
 (Eq. 2.2.8), where  is the second virial coefficient of O  listed in Table 11.3. Solve for the amount of O

in the gas phase of state 1. The gas phase of state 2 is a mixture of O  and CO , again with a negligible partial pressure of H O.
Assume that only small fractions of the total amounts of O  and CO  dissolve in the liquid water, and find the amount of O  in the
gas phase of state 2 and the mole fractions of O  and CO  in this phase.

(e) You now have the information needed to find the pressure in state 2, which cannot be measured directly. For the mixture of O
and CO  in the gas phase of state 2, use Eq. 9.3.23 to calculate the second virial coefficient. Then solve the equation of state of Eq.
9.3.21 for the pressure. Also calculate the partial pressures of the O  and CO  in the gas mixture.

(f) Although the amounts of H O in the gas phases of states 1 and 2 are small, you need to know their values in order to take the
energy of vaporization into account. In this part, you calculate the fugacities of the H O in the initial and final gas phases, in part
(g) you use gas equations of state to evaluate the fugacity coefficients of the H O (as well as of the O  and CO ), and then in part
(h) you find the amounts of H O in the initial and final gas phases.

The pressure at which the pure liquid and gas phases of H O are in equilibrium at  (the saturation vapor pressure of
water) is . Use Eq. 7.8.18 to estimate the fugacity of H O(g) in equilibrium with pure liquid water at this temperature
and pressure. The effect of pressure on fugacity in a one-component liquid–gas system is discussed in Sec. 12.8.1; use Eq. 12.8.3 to
find the fugacity of H O in gas phases equilibrated with liquid water at the pressures of states 1 and 2 of the isothermal bomb
process. (The mole fraction of O  dissolved in the liquid water is so small that you can ignore its effect on the chemical potential of
the water.)

(g) Calculate the fugacity coefficients of H O and O  in the gas phase of state 1 and of H O, O , and CO  in the gas phase of state
2.

For state 1, in which the gas phase is practically-pure O , you can use Eq. 7.8.18 to calculate . The other calculations require
Eq. 9.3.29, with the value of  found from the formulas of Eq. 9.3.26 or Eqs. 9.3.27 and 9.3.28 (  is so small that you can set it
equal to zero in these formulas).

Use the fugacity coefficient and partial pressure of O  to evaluate its fugacity in states 1 and 2; likewise, find the fugacity of CO
in state 2. [You calculated the fugacity of the H O in part (f).]

(h) From the values of the fugacity and fugacity coefficient of a constituent of a gas mixture, you can calculate the partial pressure
with Eq. 9.3.17, then the mole fraction with , and finally the amount with . Use this method to find the amounts
of H O in the gas phases of states 1 and 2, and also calculate the amounts of H O in the liquid phases of both states.

(i) Next, consider the O  dissolved in the water of state 1 and the O  and CO  dissolved in the water of state 2. Treat the solutions
of these gases as ideal dilute with the molality of solute  given by  (Eq. 9.4.21). The values of the Henry’s law
constants of these gases listed in Table 11.3 are for the standard pressure of . Use Eq. 12.8.35 to find the appropriate values of 

 at the pressures of states 1 and 2, and use these values to calculate the amounts of the dissolved gases in both states.

(j) At this point in the calculations, you know the values of all properties needed to describe the initial and final states of the
isothermal bomb process. You are now able to evaluate the various Washburn corrections. These corrections are the internal energy
changes, at the reference temperature of , of processes that connect the standard states of substances with either state 1 or
state 2 of the isothermal bomb process.

First, consider the gaseous H O. The Washburn corrections should be based on a pure-liquid standard state for the H O. Section
7.9 shows that the molar internal energy of a pure gas under ideal-gas conditions (low pressure) is the same as the molar internal
energy of the gas in its standard state at the same temperature. Thus, the molar internal energy change when a substance in its pure-
liquid standard state changes isothermally to an ideal gas is equal to the standard molar internal energy of vaporization, .
Using the value of  for H O given in Table 11.3, calculate  for the vaporization of liquid H O at pressure  to ideal
gas in the amount present in the gas phase of state 1. Also calculate  for the condensation of ideal gaseous H O in the amount
present in the gas phase of state 2 to liquid at pressure .

(k) Next, consider the dissolved O  and CO , for which gas standard states are used. Assume that the solutions are sufficiently
dilute to have infinite-dilution behavior; then the partial molar internal energy of either solute in the solution at the standard
pressure  is equal to the standard partial molar internal energy based on a solute standard state (Sec. 9.7.1). Values of 

 are listed in Table 11.3. Find  for the dissolution of O  from its gas standard state to ideal-dilute solution at pressure 
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in the amount present in the aqueous phase of state 1. Find  for the desolution (transfer from solution to gas phase) of O  and
of CO  from ideal-dilute solution at pressure , in the amounts present in the aqueous phase of state 2, to their gas standard states.

(l) Calculate the internal energy changes when the liquid phases of state 1 (n-hexane and aqueous solution) are compressed from 
to  and the aqueous solution of state 2 is decompressed from  to . Use an approximate expression from Table 7.4, and treat
the cubic expansion coefficient of the aqueous solutions as being the same as that of pure water.

(m) The final Washburn corrections are internal energy changes of the gas phases of states 1 and 2. H O has such low mole
fractions in these phases that you can ignore H O in these calculations; that is, treat the gas phase of state 1 as pure O  and the gas
phase of state 2 as a binary mixture of O  and CO .

One of the internal energy changes is for the compression of gaseous O , starting at a pressure low enough for ideal-gas behavior (
) and ending at pressure  to form the gas phase present in state 1. Use the approximate expression for  in

Table 7.5 to calculate ; a value of  for pure O  is listed in Table 11.3.

The other internal energy change is for a process in which the gas phase of state 2 at pressure  is expanded until the pressure is
low enough for the gas to behave ideally, and the mixture is then separated into ideal-gas phases of pure O  and CO . The molar
internal energies of the separated low-pressure O  and CO  gases are the same as the standard molar internal energies of these
gases. The internal energy of unmixing ideal gases is zero (Eq. 11.1.11). The dependence of the internal energy of the gas mixture
is given, to a good approximation, by , where  is the second virial coefficient of the gas mixture;
this expression is the analogy for a gas mixture of the approximate expression for  in Table 7.5. Calculate the value of 

 for the mixture of O  and CO  in state 2 (you need Eq. 9.3.23 and the values of  in Table 11.3) and evaluate 
 for the gas expansion.

(n) Add the internal energy changes you calculated in parts (j)–(m) to find the total internal energy change of the Washburn
corrections. Note that most of the corrections occur in pairs of opposite sign and almost completely cancel one another. Which
contributions are the greatest in magnitude?

(o) The internal energy change of the isothermal bomb process in the bomb vessel, corrected to the reference temperature of 
, is found to be . Assume there are no side reactions or auxiliary reactions. From Eqs.

11.5.9 and 11.5.10, calculate the standard molar internal energy of combustion of n-hexane at .

(p) From Eq. 11.5.13, calculate the standard molar enthalpy of combustion of n-hexane at .

11.8 
By combining the results of Prob. 11.7(p) with the values of standard molar enthalpies of formation from Appendix H, calculate the
standard molar enthalpy of formation of liquid n-hexane at .

11.9 
Consider the combustion of methane:

Suppose the reaction occurs in a flowing gas mixture of methane and air. Assume that the pressure is constant at , the reactant
mixture is at a temperature of  and has stoichiometric proportions of methane and oxygen, and the reaction goes to
completion with no dissociation. For the quantity of gaseous product mixture containing  CO ,  H O, and the nitrogen
and other substances remaining from the air, you may use the approximate formula , where the coefficients have
the values  and . Solve Eq. 11.6.1 for  to estimate the flame temperature to the nearest
kelvin.

11.10 
The standard molar Gibbs energy of formation of crystalline mercury(II) oxide at  has the value 

. Estimate the partial pressure of O  in equilibrium with HgO at this temperature: 
.

11.11 
The combustion of hydrogen is a reaction that is known to “go to completion.”

(a) Use data in Appendix H to evaluate the thermodynamic equilibrium constant at  for the reaction
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(b) Assume that the reaction is at equilibrium at  in a system in which the partial pressure of O  is . Assume ideal-
gas behavior and find the equilibrium partial pressure of H  and the number of H  molecules in  of the gas phase.

(c) In the preceding part, you calculated a very small value (a fraction) for the number of H  molecules in . Statistically, this
fraction can be interpreted as the fraction of a given length of time during which one molecule is present in the system. Take the
age of the universe as  years and find the total length of time in seconds, during the age of the universe, that a H
molecule is present in the equilibrium system. (This hypothetical value is a dramatic demonstration of the statement that the
limiting reactant is essentially entirely exhausted during a reaction with a large value of .)

11.12 
Let G represent carbon in the form of graphite and D represent the diamond crystal form. At , the thermodynamic
equilibrium constant for G D, based on a standard pressure , has the value . The molar volumes of the two
crystal forms at this temperature are  and .

(a) Write an expression for the reaction quotient  as a function of pressure. Use the approximate expression of the pressure
factor given in Table 9.6.

(b) Use the value of  to estimate the pressure at which the D and G crystal forms are in equilibrium with one another at 
. (This is the lowest pressure at which graphite could in principle be converted to diamond at this temperature.)

11.13 
Consider the dissociation reaction  taking place at a constant temperature of  and a constant
pressure of . Initially (at ) the system contains  of N O  and no NO . Other needed data are found in
Appendix H. Assume ideal-gas behavior.

(a) For values of the advancement  ranging from 0 to , at an interval of  or less, calculate  to the
nearest . A computer spreadsheet would be a convenient way to make the calculations.

(b) Plot your values of  as a function of , and draw a smooth curve through the points.

(c) On your curve, indicate the estimated position of . Calculate the activities of N O  and NO  for this value of , use them to
estimate the thermodynamic equilibrium constant , and compare your result with the value of  calculated from Eq. 11.8.11.

This page titled 11.10: Chapter 11 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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CHAPTER OVERVIEW

12: Equilibrium Conditions in Multicomponent Systems
This chapter applies equilibrium theory to a variety of chemical systems of more than one component. Two different approaches
will be used as appropriate: one based on the relation  for transfer equilibrium, the other based on 

 or  for reaction equilibrium.

12.1: Effects of Temperature
12.2: Solvent Chemical Potentials from Phase Equilibria
12.3: Binary Mixture in Equilibrium with a Pure Phase
12.4: Colligative Properties of a Dilute Solution
12.5: Solid-Liquid Equilibria
12.6: Liquid-Liquid Equilibria
12.7: Membrane Equilibria
12.8: Liquid-Gas Equilibria
12.9: Reaction Equilibria
12.10: Evaluation of Standard Molar Quantities
12.11: Chapter 12 Problems
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12.1: Effects of Temperature
For some of the derivations in this chapter, we will need an expression for the rate at which the ratio μi /T varies with temperature
in a phase of fixed composition maintained at constant pressure. This expression leads, among other things, to an important relation
between the temperature dependence of an equilibrium constant and the standard molar reaction enthalpy.

12.1.1 Variation of μi /T with temperature 

In a phase containing species i, either pure or in a mixture, the partial derivative of μi /T with respect to T at constant p and a fixed
amount of each species is given by

∂ μi /T

∂T p , { ni }
=

1
T

∂μi

∂T p , { ni }
−

μi

T2

This equality comes from a purely mathematical operation; no thermodynamics is involved.

The relation is obtained from the formula d(uv) /dx = u(dv /dx) + v(du /dx)  (Appendix E), where u is 1 /T, v is μi,
and x is T.

The partial derivative (∂μi /∂T)p , { ni }  is equal to −Si (Eq. 9.2.48), so that Eq. 12.1.1 becomes

∂ μi /T

∂T p , { ni }
= −

Si

T −
μi

T2 = −
TSi + μi

T2

The further substitution μi = Hi − TSi (Eq. 9.2.46) gives finally

∂ μi /T

∂T p , { ni }
= −

Hi

T2

For a pure substance in a closed system, Eq. 12.1.3 when multiplied by the amount n becomes

∂(G /T)
∂T p

= −
H

T2

This is the Gibbs–Helmholtz equation.

12.1.2 Variation of μ ∘i /T with temperature 

If we make the substitution μi = μ ∘i + RTlnai in Eq. 12.1.3 and rearrange, we obtain

d(μ ∘i /T)

dT = −
Hi

T2 − R
∂lnai

∂T p , { ni }

Because μ ∘i /T is a function only of T, its derivative with respect to T is itself a function only of T. We can therefore use any
convenient combination of pressure and composition in the expression on the right side of Eq. 12.1.5 in order to evaluate 

d(μ ∘i /T) /dT  at a given temperature.

If species i is a constituent of a gas mixture, we take a constant pressure of the gas that is low enough for the gas to behave ideally.
Under these conditions Hi is the standard molar enthalpy H ∘

i  (Eq. 9.3.7). In the expression for activity, ai(g) = Γi(g)ϕipi /p (Table

[ ( ) ] ( )

[ ( ) ]

[ ( ) ]

[ ]

( )
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9.5), the pressure factor Γi(g) is constant when p is constant, the fugacity coefficient ϕi for the ideal gas is unity, and pi /p = yi is
constant at constant {ni}, so that the partial derivative [∂lnai(g) /∂T]p , { ni }  is zero.

For component i of a condensed-phase mixture, we take a constant pressure equal to the standard pressure p ∘ , and a mixture
composition in the limit given by Eqs. 9.5.20–9.5.24 in which the activity coefficient is unity. Hi is then the standard molar

enthalpy H ∘

i , and the activity is given by an expression in Table 9.5 with the pressure factor and activity coefficient set equal to 1: 

ai = xi, aA = xA, ax , B = xB, ac , B = cB /c ∘ , or am , B = mB /m ∘ . With the exception of ac , B, these activities are constant as T
changes at constant p and {ni}.

If solute B is an electrolyte, am , B is given instead by Eq. 10.3.10; like am , B for a nonelectrolyte, it is constant as T
changes at constant p and {ni}.

Thus for a gas-phase species, or a species with a standard state based on mole fraction or molality, [∂lnai(g) /∂T]p , { ni }  is zero and

Eq. 12.1.5 becomes

d(μ ∘i /T)

dT = −
H ∘

i

T2

Equation 12.1.6, as the conditions of validity indicate, does not apply to a solute standard state based on concentration, except as an
approximation. The reason is the volume change that accompanies an isobaric temperature change. We can treat this case by
considering the following behavior of ln(cB /c ∘):

∂ln(cB /c ∘)

∂T p , { ni }
=

1
cB

∂cB

∂T p , { ni }
=

1
nB /V

∂(nB /V)

∂T p , { ni }

= V
∂(1 /V)

∂T p , { ni }
= −

1
V

∂V
∂T p , { ni }

= − α

Here α is the cubic expansion coefficient of the solution (Eq. 7.1.1). If the activity coefficient is to be unity, the solution must be an
ideal-dilute solution, and α is then α∗A , the cubic expansion coefficient of the pure solvent. Eq. 12.1.5 for a nonelectrolyte becomes

d(μ ∘c , B /T)

dT = −
H ∘

B

T2 + Rα ∗A

12.1.3 Variation of lnK with temperature 
The thermodynamic equilibrium constant K, for a given reaction equation and a given choice of reactant and product standard

states, is a function of T and only of T. By equating two expressions for the standard molar reaction Gibbs energy, ΔrG
∘ = ∑iνiμ

∘

i

and ΔrG
∘ = − RTlnK (Eqs. 11.8.3 and 11.8.10), we obtain

lnK = −
1

RT ∑
i

νiμ
∘

i

The rate at which lnK varies with T is then given by

dlnK
dT = −

1
R ∑

i
νi

d(μ ∘i /T)

dT

[ ] ( ) [ ]
[ ] ( )
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Combining Eq. 12.1.10 with Eqs. 12.1.6 or 12.1.8, and recognizing that ∑iνiH
∘

i  is the standard molar reaction enthalpy ΔrH
∘ , we

obtain the final expression for the temperature dependence of lnK:

dlnK
dT =

ΔrH
∘

RT2 − α ∗A ∑
 solutes,

 conc. basis

νi

The sum on the right side includes only solute species whose standard states are based on concentration. The expression is simpler
if all solute standard states are based on mole fraction or molality:

dlnK
dT =

ΔrH
∘

RT2

We can rearrange Eq. 12.1.12 to

ΔrH
∘ = RT2

dlnK
dT

We can convert this expression for ΔrH
∘  to an equivalent form by using the mathematical identity d(1 /T) = − (1/T2)dT :

ΔrH
∘ = − R

dlnK
d(1 /T)

Equations 12.1.13 and 12.1.14 are two forms of the van’t Hoff equation. They allow us to evaluate the standard molar reaction
enthalpy of a reaction by a noncalorimetric method from the temperature dependence of lnK. For example, we can plot lnK versus 
1 /T; then according to Eq. 12.1.14, the slope of the curve at any value of 1 /T is equal to −ΔrH

∘ /R at the corresponding
temperature T.

A simple way to derive the equation for this last procedure is to substitute ΔrG
∘ = ΔrH

∘ − TΔrS
∘  in 

ΔrG
∘ = − RTlnK and rearrange to

lnK = −
ΔrH

∘

R
1
T +

ΔrS
∘

R

Suppose we plot lnK versus 1 /T. In a small temperature interval in which ΔrH
∘  and ΔrS

∘  are practically constant,

the curve will appear linear. According to Eq. 12.1.15, the curve in this interval has a slope of −ΔrH
∘ /R, and the

tangent to a point on the curve has its intercept at 1 /T = 0 equal to ΔrS
∘ /R.

When we apply Eq. 12.1.14 to the vaporization process A(l) → A(g) of pure A, it resembles the Clausius–Clapeyron equation for
the same process (Eq. 8.4.15). These equations are not exactly equivalent, however, as the comparison in Table 12.1 shows.

This page titled 12.1: Effects of Temperature is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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12.2: Solvent Chemical Potentials from Phase Equilibria
Section 9.6.3 explained how we can evaluate the activity coefficient  of a nonelectrolyte solute of a binary
solution if we know the variation of the osmotic coefficient of the solution from infinite dilution to the molality of interest. A
similar procedure for the mean ionic activity coefficient of an electrolyte solute was described in Sec. 10.6.

The physical measurements needed to find the osmotic coefficient  of a binary solution must be directed to
the calculation of the quantity , the difference between the chemical potentials of the pure solvent and the
solvent in the solution at the temperature and pressure of interest. This difference is positive, because the presence of the solute
reduces the solvent’s chemical potential.

To calculate  from , we use Eq. 9.6.16 for a nonelectrolyte solute, or Eq. 10.6.1
for an electrolyte solute. Both equations are represented by  where  for a
nonelectrolyte is  and for an electrolyte is the number of ions per formula unit.

The sequence of steps, then, is (1) the determination of  over a range of molality at constant 
 and , (2) the conversion of these values to  using Eq. 12.2.1,

and (3) the evaluation of the solute activity coefficient by a suitable integration from infinite dilution to the molality of interest.

A measurement of  also gives us the solvent activity coefficient, based on the pure-solvent
reference state, through the relation  (Eq. 9.5.15).

Sections 12.2.1 and 12.2.2 will describe freezing-point and osmotic-pressure measurements, two much-used methods for evaluating
 in a binary solution at a given  and . The isopiestic

vapor-pressure method was described in Sec. 9.6.4. The freezing-point and isopiestic vapor-pressure methods are often used for
electrolyte solutions, and osmotic pressure is especially useful for solutions of macromolecules.

12.2.1 Freezing-point measurements 
This section explains how we can evaluate  for a solution of a given composition at a given 

 and  from the freezing point of the solution combined with additional data obtained
from calorimetric measurements.

Consider a binary solution of solvent A and solute B. We assume that when this solution is cooled at constant pressure and
composition, the solid that first appears is pure A. For example, for a dilute aqueous solution the solid would be ice. The
temperature at which solid A first appears is , the freezing point of the solution. This temperature is lower
than the freezing point  of the pure solvent, a consequence of the lowering of  by
the presence of the solute. Both  and  can be measured experimentally.

Let  be a temperature of interest that is equal to or greater than . We wish to
determine the value of , where  refers to pure liquid solvent and 

 refers to the solution.

A second method for evaluating  uses the solution property called osmotic pressure. A simple apparatus to
measure the osmotic pressure of a binary solution is shown schematically in Fig. 12.2. The system consists of two liquid phases
separated by a semipermeable membrane. Phase  is pure solvent and phase  is a
solution with the same solvent at the same temperature. The semipermeable membrane is permeable to the solvent and
impermeable to the solute.

The presence of the membrane makes this system different from the multiphase, multicomponent system of Sec. 9.2.7, used there
to derive conditions for transfer equilibrium. By a modification of that procedure, we can derive the conditions of equilibrium for
the present system. We take phase  as the reference phase because it includes both solvent and solute. In
order to prevent expansion work in the isolated system, both pistons shown in the figure must be fixed in stationary positions. This
keeps the volume of each phase constant: . Equation 9.2.41, expressing the total differential of the entropy
in an isolated multiphase, multicomponent system, becomes  In an equilibrium state, the coefficients

 and  must be zero. Therefore, in an equilibrium state the temperature is the same
in both phases and the solvent has the same chemical potential in both phases. The presence of the membrane, however, allows the
pressures of the two phases to be unequal in the equilibrium state.
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Suppose we start with both phases shown in Fig. 12.2 at the same temperature and pressure. Under these conditions, the value of
 is less in the solution than in the pure liquid, and a spontaneous flow of solvent will occur through the

membrane from the pure solvent to the solution. This phenomenon is called osmosis (Greek for push). If we move the right-hand
piston down slightly in order to increase the pressure  of the solution in phase ,

 increases in this phase. The osmotic pressure of the solution, , is defined as the
additional pressure the solution must have, compared to the pressure  of the pure solvent at the same
temperature, to establish an equilibrium state with no flow of solvent in either direction through the membrane: 

.

In practice, the membrane may not be completely impermeable to a solute. All that is required for the establishment
of an equilibrium state with different pressures on either side of the membrane is that solvent transfer equilibrium
be established on a short time scale compared to the period of observation, and that the amount of solute transferred
during this period be negligible.

The osmotic pressure  is an intensive property of a solution whose value depends on the solution’s
temperature, pressure, and composition. Strictly speaking,  in an equilibrium state of the system shown in
Fig. 12.2 refers to the osmotic pressure of the solution at pressure , the pressure of the pure solvent. In
other words, the osmotic pressure of a solution at temperature  and pressure  is
the additional pressure that would have to be exerted on the solution to establish transfer equilibrium with pure solvent that has
temperature  and pressure . A solution has the property called osmotic pressure
regardless of whether this additional pressure is actually present, just as a solution has a freezing point even when its actual
temperature is different from the freezing point.

Because in an equilibrium state the solvent chemical potential must be the same on both sides of the semipermeable membrane,
there is a relation between chemical potentials and osmotic pressure given by  We can use this relation to
derive an expression for  as a function of . The dependence of 

 on pressure is given according to Eq. 9.2.49 by  where  is the partial molar
volume of the solvent in the solution. Rewriting this equation in the form  and integrating at constant
temperature and composition from  to , we obtain 
Substitution from Eq. 12.2.7 changes this to  which is the desired expression for 
at a single temperature and pressure. To evaluate the integral, we need an experimental value of the osmotic pressure 

 of the solution. If we assume  is constant in the pressure range from 
 to , Eq. 12.2.10 becomes simply 

This page titled 12.2: Solvent Chemical Potentials from Phase Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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12.3: Binary Mixture in Equilibrium with a Pure Phase
This section considers a binary liquid mixture of components A and B in equilibrium with either pure solid A or pure gaseous A.
The aim is to find general relations among changes of temperature, pressure, and mixture composition in the two-phase equilibrium
system that can be applied to specific situations in later sections.

In this section,  is the chemical potential of component A in the mixture and  is
for the pure solid or gaseous phase. We begin by writing the total differential of  with 

, , and  as the independent variables. These quantities refer to the binary
liquid mixture, and we have not yet imposed a condition of equilibrium with another phase. The general expression for the total
differential is  With substitutions from Eqs. 9.2.49 and 12.1.3, this becomes 

Next we write the total differential of  for pure solid or gaseous A. The independent variables are 
 and ; the expression is like Eq. 12.3.2 with the last term missing: 

When the two phases are in transfer equilibrium,  and  are equal. If changes occur
in , , or  while the phases remain in equilibrium, the
condition  must be satisfied. Equating the expressions on the right sides of Eqs. 12.3.2 and 12.3.3 and
combining terms, we obtain the equation  which we can rewrite as  Here 

 is the molar differential enthalpy of solution of solid or gaseous A in the liquid mixture, and 
 is the molar differential volume of solution. Equation 12.3.5 is a relation between changes in the variables 
, , and , only two of which are independent in the equilibrium system.

Suppose we set  equal to zero in Eq. 12.3.5 and solve for . This gives us the rate
at which  changes with  at constant : 

 We can also set  equal to zero in Eq. 12.3.5 and find the rate at which 
changes with  at constant : 

Equations 12.3.6 and 12.3.7 will be needed in Secs. 12.4 and 12.5.
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12.4: Colligative Properties of a Dilute Solution
The colligative properties of a solution are usually considered to be:

1. Note that all four properties are defined by an equilibrium between the liquid solution and a solid, liquid, or gas phase of the
pure solvent. The properties called colligative (Latin: tied together) have in common a dependence on the concentration of
solute particles that affects the solvent chemical potential.

Figure 12.3 illustrates the freezing-point depression and boiling-point elevation of an aqueous solution. At a fixed pressure,
pure liquid water is in equilibrium with ice at the freezing point and with steam at the boiling point. These are the temperatures
at which H O has the same chemical potential in both phases at this pressure. At these temperatures, the chemical potential
curves for the phases intersect, as indicated by open circles in the figure. The presence of dissolved solute in the solution causes
a lowering of the H O chemical potential compared to pure water at the same temperature. Consequently, the curve for the
chemical potential of H O in the solution intersects the curve for ice at a lower temperature, and the curve for steam at a higher
temperature, as indicated by open triangles. The freezing point is depressed by , and the boiling point (if the solute is
nonvolatile) is elevated by .

Although these expressions provide no information about the activity coefficient of a solute, they are useful for estimating the
solute molar mass. For example, from a measurement of any of the colligative properties of a dilute solution and the appropriate
theoretical relation, we can obtain an approximate value of the solute molality . (It is only approximate because, for a
measurement of reasonable precision, the solution cannot be extremely dilute.) If we prepare the solution with a known amount 

 of solvent and a known mass of solute, we can calculate the amount of solute from ; then the solute molar
mass is the solute mass divided by .

12.4.1 Freezing-point depression
As in Sec. 12.2.1, we assume the solid that forms when a dilute solution is cooled to its freezing point is pure component A.

Equation 12.3.6 gives the general dependence of temperature on the composition of a binary liquid mixture of A and B that is in
equilibrium with pure solid A. We treat the mixture as a solution. The solvent is component A, the solute is B, and the
temperature is the freezing point :

Consider the expression on the right side of this equation in the limit of infinite dilution. In this limit,  becomes , the
freezing point of the pure solvent, and  becomes , the molar enthalpy of fusion of the pure solvent.

To deal with the partial derivative on the right side of Eq. 12.4.1 in the limit of infinite dilution, we use the fact that the solvent
activity coefficient  approaches  in this limit. Then the solvent chemical potential is given by the Raoult’s law relation

where  is the chemical potential of A in a pure-liquid reference state at the same  and  as the mixture. (At the freezing
point of the mixture, the reference state is an unstable supercooled liquid.)

If the solute is an electrolyte, Eq. 12.4.2 can be derived by the same procedure as described in Sec. 9.4.6 for an ideal-dilute
binary solution of a nonelectrolyte. We must calculate  from the amounts of all species present at infinite dilution. In the
limit of infinite dilution, any electrolyte solute is completely dissociated to its constituent ions: ion pairs and weak electrolytes
are completely dissociated in this limit. Thus, for a binary solution of electrolyte B with  ions per formula unit, we should
calculate  from

where  is the amount of solute formula unit. (If the solute is a nonelectrolyte, we simply set  equal to  in this equation.)

From Eq. 12.4.2, we can write

2

2

2
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ΔTb

mB

nA =nB nAMAmB

nB

Tf

=( )
∂Tf
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In the limit of infinite dilution, then, Eq. 12.4.1 becomes

It is customary to relate freezing-point depression to the solute concentration  or molality . From Eq. 12.4.3, we obtain

In the limit of infinite dilution, when  is much smaller than ,  approaches the value . Then, using
expressions in Eq. 9.1.14, we obtain the relations

which transform Eq. 12.4.5 into the following (ignoring a small dependence of  on ):

We can apply these equations to a nonelectrolyte solute by setting  equal to .

As  or  approaches zero,  approaches . The freezing-point depression (a negative quantity) is . In the
range of molalities of a dilute solution in which  is given by the expression on the right side of Eq. 12.4.8, we can
write

The molal freezing-point depression constant or cryoscopic constant, , is defined for a binary solution by

and, from Eq. 12.4.9, has a value given by

The value of  calculated from this formula depends only on the kind of solvent and the pressure. For H O at , the
calculated value is  (Prob. 12.4).

In the dilute binary solution, we have the relation

This relation is useful for estimating the molality of a dilute nonelectrolyte solution ( ) from a measurement of the freezing
point. The relation is of little utility for an electrolyte solute, because at any electrolyte molality that is high enough to give a
measurable depression of the freezing point, the mean ionic activity coefficient deviates greatly from unity and the relation is
not accurate.

→ R as → 1[ ]
∂( /T )μA

∂xA T ,p

xA (12.4.4)

=lim
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12.4.2 Boiling-point elevation
We can apply Eq. 12.3.6 to the boiling point  of a dilute binary solution. The pure phase of A in equilibrium with the solution
is now a gas instead of a solid. (We must assume the solute is nonvolatile or has negligible partial pressure in the gas phase.)
Following the procedure of Sec. 12.4.1, we obtain

where  is the molar enthalpy of vaporization of pure solvent at its boiling point .

The molal boiling-point elevation constant or ebullioscopic constant, , is defined for a binary solution by

where  is the boiling-point elevation. Accordingly,  has a value given by

For the boiling point of a dilute solution, the analogy of Eq. 12.4.12 is

Since  has a larger value than  (because  is smaller than ), the measurement of freezing-point depression
is more useful than that of boiling-point elevation for estimating the molality of a dilute solution.

12.4.3 Vapor-pressure lowering
In a binary two-phase system in which a solution of volatile solvent A and nonvolatile solute B is in equilibrium with gaseous
A, the vapor pressure of the solution is equal to the system pressure .

Equation 12.3.7 gives the general dependence of  on  for a binary liquid mixture in equilibrium with pure gaseous A. In this
equation,  is the molar differential volume change for the dissolution of the gas in the solution. In the limit of infinite
dilution,  becomes , the molar volume change for the vaporization of pure solvent. We also apply the
limiting expressions of Eqs. 12.4.4 and 12.4.7. The result is

If we neglect the molar volume of the liquid solvent compared to that of the gas, and assume the gas is ideal, then we can
replace  in the expressions above by  and obtain

where  is the vapor pressure of the pure solvent at the temperature of the solution.

Thus, approximate expressions for vapor-pressure lowering in the limit of infinite dilution are

We see that the lowering in this limit depends on the kind of solvent and the solution composition, but not on the kind of solute.

12.4.4 Osmotic pressure

The osmotic pressure  is an intensive property of a solution and was defined in Sec. 12.2.2. In a dilute solution of low , the
approximation used to derive Eq. 12.2.11 (that the partial molar volume  of the solvent is constant in the pressure range from

 to ) becomes valid, and we can write
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In the limit of infinite dilution,  approaches  (Eq. 12.4.2) and  becomes the molar volume  of the
pure solvent. In this limit, Eq. 12.4.20 becomes

from which we obtain the equation

The relations in Eq. 12.4.7 transform Eq. 12.4.22 into

Equations 12.4.23 and 12.4.24 show that the osmotic pressure becomes independent of the kind of solute as the solution
approaches infinite dilution. The integrated forms of these equations are

Equation 12.4.25 is van’t Hoff’s equation for osmotic pressure. If there is more than one solute species,  can be replaced
by  and  by  in these expressions.

In Sec. 9.6.3, it was stated that  is equal to the product of  and the limiting value of  at infinite dilution, where 
 is the osmotic coefficient. This relation follows directly from Eqs. 12.2.11 and 12.4.26.

This page titled 12.4: Colligative Properties of a Dilute Solution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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12.5: Solid-Liquid Equilibria
A freezing-point curve (freezing point as a function of liquid composition) and a solubility curve (composition of a solution in
equilibrium with a pure solid as a function of temperature) are different ways of describing the same physical situation. Thus,
strange as it may sound, the composition  of an aqueous solution at the freezing point is the mole fraction solubility of ice in the
solution.

12.5.1 Freezing points of ideal binary liquid mixtures 
Section 12.2.1 described the use of freezing-point measurements to determine the solvent chemical potential in a solution of
arbitrary composition relative to the chemical potential of the pure solvent. The way in which freezing point varies with solution
composition in the limit of infinite dilution was derived in Sec. 12.4.1. Now let us consider the freezing behavior over the entire
composition range of an ideal liquid mixture.

Let  be the freezing point of a liquid mixture of composition  and , and let  be the melting point of the solid
compound of composition  and . Figure 12.7 shows an example of a molten metal mixture that
solidifies to an alloy of fixed composition. The freezing-point curve of this system is closely approximated by Eq. 12.5.23.

12.5.5 Solubility of a solid electrolyte 

Consider an equilibrium between a crystalline salt (or other kind of ionic solid) and a solution containing the solvated ions:

Here  and  are the numbers of cations and anions in the formula unit of the salt, and  and  are the charge numbers of
these ions. The solution in equilibrium with the solid salt is a saturated solution. The thermodynamic equilibrium constant for this
kind of equilibrium is called a solubility product, .

We can readily derive a relation between  and the molalities of the ions in the saturated solution by treating the dissolved salt as
a single solute substance, B. We write the equilibrium in the form B (s) B(sln), and write the expression for the solubility
product as a proper quotient of activities:

From Eq. 10.3.16, we have . This expression is valid whether or not the ions M  and X
 are present in solution in the same ratio as in the solid salt. When we replace  with this expression, and replace  with 

(Table 9.5), we obtain

where  is the total number of ions per formula unit.  is the mean ionic activity coefficient of the dissolved salt in
the saturated solution, and the molalities  and  refer to the ions M  and X  in this solution.

The first factor on the right side of Eq. 12.5.25, the proper quotient of pressure factors for the reaction B (s) B(sln), will be
denoted  (the subscript “r” stands for reaction). The value of  is exactly  if the system is at the standard pressure, and is
otherwise approximately  unless the pressure is very high.

If the aqueous solution is produced by allowing the salt to dissolve in pure water, or in a solution of a second solute containing no
ions in common with the salt, then the ion molalities in the saturated solution are  and  where  is the
solubility of the salt expressed as a molality. Under these conditions, Eq. 12.5.25 becomes

We could also have obtained this equation by using the expression of Eq. 10.3.10 for .

If the ionic strength of the saturated salt solution is sufficiently low (i.e., the solubility is sufficiently low), it may be practical to
evaluate the solubility product with Eq. 12.5.26 and an estimate of  from the Debye–Hückel limiting law (see Prob. 12.19). The
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most accurate method of measuring a solubility product, however, is through the standard cell potential of an appropriate galvanic
cell (Sec. 14.3.3).

Since  is a thermodynamic equilibrium constant that depends only on , and  depends only on  and , Eq. 12.5.26 shows
that any change in the solution composition at constant  and  that decreases  must increase the solubility. For example, the
solubility of a sparingly-soluble salt increases when a second salt, lacking a common ion, is dissolved in the solution; this is a
salting-in effect.

Equation 12.5.25 is a general equation that applies even if the solution saturated with one salt contains a second salt with a common
ion. For instance, consider the sparingly-soluble salt M X  in transfer equilibrium with a solution containing the more soluble
salt M Y  at molality . The common ion in this example is the cation M . The expression for the solubility product is now

where  again is the solubility of the sparingly-soluble salt, and  is the molality of the second salt.  and  are constant if 
 and  do not change, so any increase in  at constant  and  must cause a decrease in the solubility . This is called the

common ion effect.

From the measured solubility of a salt in pure solvent, or in an electrolyte solution with a common cation, and a known value of 
, we can evaluate the mean ionic activity coefficient  through Eq. 12.5.26 or 12.5.27. This procedure has the disadvantage of

being limited to the value of  existing in the saturated solution.

We find the temperature dependence of  by applying Eq. 12.1.12:

At the standard pressure,  is the same as the molar enthalpy of solution at infinite dilution, .

This page titled 12.5: Solid-Liquid Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.

Ks T Γr T p

T p γ±

ν+ ν−

ν ′
+ ν ′

−
mC

z+

= ( + ( /(Ks Γrγ
ν
± ν+mB ν ′

+mC)ν+ ν−mB)ν− m∘)ν (12.5.27)
(common cation)

mB mC Ks Γr

T p mC T p mB

Ks γ±

mB

Ks

=
dlnKs

dT

Δsol,BH ∘

RT 2
(12.5.28)

Δsol,BH ∘ Δsol,BH ∞

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20643?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/12%3A_Equilibrium_Conditions_in_Multicomponent_Systems/12.05%3A_Solid-Liquid_Equilibria
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/12%3A_Equilibrium_Conditions_in_Multicomponent_Systems/12.05%3A_Solid-Liquid_Equilibria?no-cache
https://www2.chem.umd.edu/thermobook


12.6.1 https://chem.libretexts.org/@go/page/20644

12.6: Liquid-Liquid Equilibria

12.6.1 Miscibility in binary liquid systems 

When two different pure liquids are unable to mix in all proportions, they are said to be partially miscible. When these liquids are
placed in contact with one another and allowed to come to thermal, mechanical, and transfer equilibrium, the result is two
coexisting liquid mixtures of different compositions.

Liquids are never actually completely immiscible. To take an extreme case, liquid mercury, when equilibrated with water, has some
H O dissolved in it, and some mercury dissolves in the water, although the amounts may be too small to measure.

The Gibbs phase rule for a multicomponent system to be described in Sec. 13.1 shows that a two-component, two-phase system at
equilibrium has only two independent intensive variables. Thus at a given temperature and pressure, the mole fraction compositions
of both phases are fixed; the compositions depend only on the identity of the substances and the temperature and pressure.

Figure 13.5 shows a phase diagram for a typical binary liquid mixture that spontaneously separates into two phases when the
temperature is lowered. The thermodynamic conditions for phase separation of this kind were discussed in Sec. 11.1.6. The phase
separation is usually the result of positive deviations from Raoult’s law. Typically, when phase separation occurs, one of the
substances is polar and the other nonpolar.

12.6.2 Solubility of one liquid in another 

Suppose substances A and B are both liquids when pure. In discussing the solubility of liquid B in liquid A, we can treat B as either
a solute or as a constituent of a liquid mixture. The difference lies in the choice of the standard state or reference state of B.

We can define the solubility of B in A as the maximum amount of B that can dissolve without phase separation in a given amount
of A at the given temperature and pressure. Treating B as a solute, we can express its solubility as the mole fraction of B in the
phase at the point of phase separation. The addition of any more B to the system will result in two coexisting liquid phases of fixed
composition, one of which will have mole fraction  equal to its solubility.

Experimentally, the solubility of B in A can be determined from the cloud point, the point during titration of A with B at which
persistent turbidity is observed.

Consider a system with two coexisting liquid phases  and  containing components A and B. Let  be the A-rich phase and  be
the B-rich phase. For example, A could be water and B could be benzene, a hydrophobic substance. Phase  would then be an
aqueous phase polluted with a low concentration of dissolved benzene, and phase  would be wet benzene.  would be the
solubility of the benzene in water, expressed as a mole fraction.

Below, relations are derived for this kind of system using both choices of standard state or reference state.

Solute standard state 

Assume that the two components have low mutual solubilities, so that B has a low mole fraction in phase  and a mole fraction
close to 1 in phase . It is then appropriate to treat B as a solute in phase  and as a constituent of a liquid mixture in phase . The
value of  is the solubility of liquid B in liquid A.

The equilibrium when two liquid phases are present is B( ) B( ), and the expression for the thermodynamic equilibrium
constant, with the solute standard state based on mole fraction, is

The solubility of B is then given by

The values of the pressure factors and activity coefficients are all close to , so that the solubility of B in A is given by .
The temperature dependence of the solubility is given by
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where  is the molar enthalpy change for the transfer at pressure  of pure liquid solute to the solution at infinite dilution.

H O and n-butylbenzene are two liquids with very small mutual solubilities. Figure 12.8 shows that the solubility of n-
butylbenzene in water exhibits a minimum at about . Equation 12.6.3 allows us to deduce from this behavior that  is
negative below this temperature, and positive above.

Pure-liquid reference state 

The condition for transfer equilibrium of component B is . If we use a pure-liquid reference state for B in both phases, this
condition becomes

This results in the following relation between the compositions and activity coefficients:

As before, we assume the two components have low mutual solubilities, so that the B-rich phase is almost pure liquid B. Then 
is only slightly less than ,  is close to , and Eq. 12.6.5 becomes . Since  is much less than ,  must be much
greater than .

In environmental chemistry it is common to use a pure-liquid reference state for a nonpolar liquid solute that has very low
solubility in water, so that the aqueous solution is essentially at infinite dilution. Let the nonpolar solute be component B, and let
the aqueous phase that is equilibrated with liquid B be phase . The activity coefficient  is then a limiting activity coefficient or
activity coefficient at infinite dilution. As explained above, the aqueous solubility of B in this case is given by , and 
is much greater than .

We can also relate the solubility of B to its Henry’s law constant . Suppose the two liquid phases are equilibrated not only with
one another but also with a gas phase. Since B is equilibrated between phase  and the gas, we have  (Table
9.4). From the equilibration of B between phase  and the gas, we also have . By eliminating the fugacity  from
these relations, we obtain the general relation

If we assume as before that the activity coefficients and  are close to 1, and that the gas phase behaves ideally, the solubility of B
is given by , where  is the vapor pressure of the pure solute.

12.6.3 Solute distribution between two partially-miscible solvents 
Consider a two-component system of two equilibrated liquid phases,  and . If we add a small quantity of a third component, C, it
will distribute itself between the two phases. It is appropriate to treat C as a solute in both phases. The thermodynamic equilibrium
constant for the equilibrium , with solute standard states based on mole fraction, is

We define  as the ratio of the mole fractions of C in the two phases at equilibrium:

At a fixed  and , the pressure factors and equilibrium constant are constants. If  is low enough in both phases for  and 

 to be close to unity,  becomes a constant for the given  and . The constancy of  over a range of dilute composition is
the Nernst distribution law.
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Since solute molality and concentration are proportional to mole fraction in dilute solutions, the ratios  and  also
approach constant values at a given  and . The ratio of concentrations is called the partition coefficient or distribution
coefficient.

In the limit of infinite dilution of C, the two phases have the compositions that exist when only components A and B are present.
As C is added and  and  increase beyond the region of dilute solution behavior, the ratios  and  may change.
Continued addition of C may increase the mutual solubilities of A and B, resulting, when enough C has been added, in a single
liquid phase containing all three components. It is easier to understand this behavior with the help of a ternary phase diagram such
as Fig. 13.17.

This page titled 12.6: Liquid-Liquid Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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12.7: Membrane Equilibria
A semipermeable membrane used to separate two liquid phases can, in principle, be permeable to certain species and impermeable
to others. A membrane, however, may not be perfect in this respect over a long time period. We will assume that during the period
of observation, those species to which the membrane is supposed to be permeable quickly achieve transfer equilibrium, and only
negligible amounts of the other species are transferred across the membrane.

Section 12.2.2 sketched a derivation of the conditions needed for equilibrium in a two-phase system in which a membrane
permeable only to solvent separates a solution from pure solvent. We can generalize the results for any system with two liquid
phases separated by a semipermeable membrane: in an equilibrium state, both phases must have the same temperature, and any
species to which the membrane is permeable must have the same chemical potential in both phases. The two phases, however, need
not and usually do not have the same pressure.

12.7.1 Osmotic membrane equilibrium 

An equilibrium state in a system with two solutions of the same solvent and different solute compositions, separated by a
membrane permeable only to the solvent, is called an osmotic membrane equilibrium. We have already seen this kind of
equilibrium in an apparatus that measures osmotic pressure (Fig. 12.2).

Consider a system with transfer equilibrium of the solvent across a membrane separating phases  and . The phases have equal
solvent chemical potentials but different pressures:

The dependence of  on pressure in a phase of fixed temperature and composition is given by  (from Eq.
9.2.49), where  is the partial molar volume of A in the phase. If we apply this relation to the solution of phase , treat the partial
molar volume  as independent of pressure, and integrate at constant temperature and composition from the pressure of phase 
to that of phase , we obtain

By equating the two expressions for  and rearranging, we obtain the following expression for the pressure difference needed
to achieve transfer equilibrium:

The pressure difference can be related to the osmotic pressures of the two phases. From Eq. 12.2.11, the solvent chemical potential
in a solution phase can be written . Using this to substitute for  and  in Eq. 12.7.3, we
obtain

12.7.2 Equilibrium dialysis 
Equilibrium dialysis is a useful technique for studying the binding of a small uncharged solute species (a ligand) to a
macromolecule. The macromolecule solution is placed on one side of a membrane through which it cannot pass, with a solution
without the macromolecule on the other side, and the ligand is allowed to come to transfer equilibrium across the membrane. If the
same solute standard state is used for the ligand in both solutions, at equilibrium the unbound ligand must have the same activity in
both solutions. Measurements of the total ligand molality in the macromolecule solution and the ligand molality in the other
solution, combined with estimated values of the unbound ligand activity coefficients, allow the amount of ligand bound per
macromolecule to be calculated.

12.7.3 Donnan membrane equilibrium 

If one of the solutions in a two-phase membrane equilibrium contains certain charged solute species that are unable to pass through
the membrane, whereas other ions can pass through, the situation is more complicated than the osmotic membrane equilibrium
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described in Sec. 12.7.1. Usually if the membrane is impermeable to one kind of ion, an ion species to which it is permeable
achieves transfer equilibrium across the membrane only when the phases have different pressures and different electric potentials.
The equilibrium state in this case is a Donnan membrane equilibrium, and the resulting electric potential difference across the
membrane is called the Donnan potential. This phenomenon is related to the membrane potentials that are important in the
functioning of nerve and muscle cells (although the cells of a living organism are not, of course, in equilibrium states).

A Donnan potential can be measured electrically, with some uncertainty due to unknown liquid junction potentials, by connecting
silver-silver chloride electrodes (described in Sec. 14.1) to both phases through salt bridges.

General expressions 

Consider solution phases  and  separated by a semipermeable membrane. Both phases contain a dissolved salt, designated solute
B, that has  cations and  anions in each formula unit. The membrane is permeable to these ions. Phase  also contains a
protein or other polyelectrolyte with a net positive or negative charge, together with counterions of the opposite charge that are the
same species as the cation or anion of the salt. The presence of the counterions in phase  prevents the cation and anion of the salt
from being present in stoichiometric amounts in this phase. The membrane is impermeable to the polyelectrolyte, perhaps because
the membrane pores are too small to allow the polyelectrolyte to pass through.

The condition for transfer equilibrium of solute B is , or

Solute B has the same standard state in the two phases, so that  and  are equal. The activities  and  are
therefore equal at equilibrium. Using the expression for solute activity from Eq. 10.3.16, which is valid for a multisolute solution,
we find that at transfer equilibrium the following relation must exist between the molalities of the salt ions in the two phases:

To find an expression for the Donnan potential, we can equate the single-ion chemical potentials of the salt cation: 
. When we use the expression of Eq. 10.1.15 for , we obtain

The condition needed for an osmotic membrane equilibrium related to the solvent can be written

The chemical potential of the solvent is . From Table 9.6, we have to a good
approximation the expression . With these substitutions, Eq. 12.7.8 becomes

We can use this equation to estimate the pressure difference needed to maintain an equilibrium state. For dilute solutions, with 
and  set equal to 1, the equation becomes

In the limit of infinite dilution,  can be replaced by  (Eq. 9.6.12), giving the relation

Example 

As a specific example of a Donnan membrane equilibrium, consider a system in which an aqueous solution of a polyelectrolyte
with a net negative charge, together with a counterion M  and a salt MX of the counterion, is equilibrated with an aqueous solution
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of the salt across a semipermeable membrane. The membrane is permeable to the H O solvent and to the ions M  and X , but is
impermeable to the polyelectrolyte. The species in phase  are H O, M , and X ; those in phase  are H O, M , X , and the
polyelectrolyte. In an equilibrium state, the two phases have the same temperature but different compositions, electric potentials,
and pressures.

Because the polyelectrolyte in this example has a negative charge, the system has more M  ions than X  ions. Figure 12.9(a) is a
schematic representation of an initial state of this kind of system. Phase  is shown as a solution confined to a closed dialysis bag
immersed in phase . The number of cations and anions shown in each phase indicate the relative amounts of these ions.

For simplicity, let us assume the two phases have equal masses of water, so that the molality of an ion is proportional to its amount
by the same ratio in both phases. It is clear that in the initial state shown in the figure, the chemical potentials of both M  and X
are greater in phase  (greater amounts) than in phase , and this is a nonequilibrium state. A certain quantity of salt MX will
therefore pass spontaneously through the membrane from phase  to phase  until equilibrium is attained.

The equilibrium ion molalities must agree with Eq. 12.7.6. We make the approximation that the pressure factors and mean ionic
activity coefficients are unity. Then for the present example, with , the equation becomes

There is furthermore an electroneutrality condition for each phase:

Here  is the negative charge of the polyelectrolyte, and  is its molality. Substitution of these expressions into Eq. 12.7.12
gives the relation

This shows that in the equilibrium state,  is greater than . Then Eq. 12.7.12 shows that  is less than . These
equilibrium molalities are depicted in Fig. 12.9(b).

The chemical potential of a cation, its activity, and the electric potential of the phase are related by Eq. 10.1.9: 
. In order for M  to have the same chemical potential in both phases, despite its lower activity in

phase , the electric potential of phase  must be greater than that of phase . Thus the Donnan potential  in the present
example is positive. Its value can be estimated from Eq. 12.7.7 with the values of the single-ion pressure factors and activity
coefficients approximated by 1 and with  for this example set equal to 1:

The existence of a Donnan potential in the equilibrium state is the result of a very small departure of the phases on
both sides of the membrane from exact electroneutrality. In the example, phase  has a minute net positive charge
and phase  has a net negative charge of equal magnitude. The amount of M  ion transferred across the membrane
to achieve equilibrium is slightly greater than the amount of X  ion transferred; the difference between these two
amounts is far too small to be measured chemically. At equilibrium, the excess charge on each side of the
membrane is distributed over the boundary surface of the solution phase on that side, and is not part of the bulk
phase composition.

The pressure difference  at equilibrium can be estimated with Eq. 12.7.11, and for the present example is found to be
positive. Without this pressure difference, the solution in phase  would move spontaneously through the membrane into phase 
until phase  completely disappears. With phase  open to the atmosphere, as in Fig. 12.9, the volume of phase  must be
constrained in order to allow its pressure to differ from atmospheric pressure. If the volume of phase  remains practically constant,
the transfer of a minute quantity of solvent across the membrane is sufficient to cause the pressure difference.

It should be clear that the existence of a Donnan membrane equilibrium introduces complications that would make it difficult to use
a measured pressure difference to estimate the molar mass of the polyelectrolyte by the method of Sec. 12.4, or to study the binding
of a charged ligand by equilibrium dialysis.
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12.8: Liquid-Gas Equilibria
This section describes multicomponent systems in which a liquid phase is equilibrated with a gas phase.

12.8.1 Effect of liquid pressure on gas fugacity 
If we vary the pressure of a liquid mixture at constant temperature and composition, there is a small effect on the fugacity of each
volatile component in an equilibrated gas phase. One way to vary the pressure at essentially constant liquid composition is to
change the partial pressure of a component of the gas phase that has negligible solubility in the liquid.

At transfer equilibrium, component  has the same chemical potential in both phases: . Combining the relations 
 and  (Eqs. 9.2.49 and 9.3.12), we obtain

Equation 12.8.1 shows that an increase in pressure, at constant temperature and liquid composition, causes an increase in the
fugacity of each component in the gas phase.

Integration of Eq. 12.8.1 between pressures  and  yields

The exponential on the right side is called the Poynting factor.

The integral in the Poynting factor is simplified if we make the approximation that  is independent of pressure. Then we
obtain the approximate relation

The effect of pressure on fugacity is usually small, and can often be neglected. For typical values of the partial
molar volume , the exponential factor is close to unity unless  is very large. For instance, for 

 and , we obtain a value for the ratio  of  if  is , 
 if  is , and  if  is . Thus, unless the pressure change is large, we can to a good

approximation neglect the effect of total pressure on fugacity. This statement applies only to the fugacity of a
substance in a gas phase that is equilibrated with a liquid phase of constant composition containing the same
substance. If the liquid phase is absent, the fugacity of  in a gas phase of constant composition is of course
approximately proportional to the total gas pressure.

We can apply Eqs. 12.8.2 and 12.8.3 to pure liquid A, in which case  is the molar volume . Suppose we have pure liquid
A in equilibrium with pure gaseous A at a certain temperature. This is a one-component, two-phase equilibrium system with one
degree of freedom (Sec. 8.1.7), so that at the given temperature the value of the pressure is fixed. This pressure is the saturation
vapor pressure of pure liquid A at this temperature. We can make the pressure  greater than the saturation vapor pressure by
adding a second substance to the gas phase that is essentially insoluble in the liquid, without changing the temperature or volume.
The fugacity  is greater at this higher pressure than it was at the saturation vapor pressure. The vapor pressure , which is
approximately equal to , has now become greater than the saturation vapor pressure. It is, however, safe to say that the difference
is negligible unless the difference between  and  is much greater than .

As an application of these relations, consider the effect of the size of a liquid droplet on the equilibrium vapor pressure. The
calculation of Prob. 12.8(b) shows that the fugacity of H O in a gas phase equilibrated with liquid water in a small droplet is
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slightly greater than when the liquid is in a bulk phase. The smaller the radius of the droplet, the greater is the fugacity and the
vapor pressure.

12.8.2 Effect of liquid composition on gas fugacities 

Consider system 1 in Fig. 9.5. A binary liquid mixture of two volatile components, A and B, is equilibrated with a gas mixture
containing A, B, and a third gaseous component C of negligible solubility used to control the total pressure. In order for A and B to
be in transfer equilibrium, their chemical potentials must be the same in both phases:

Suppose we make an infinitesimal change in the liquid composition at constant  and . This causes infinitesimal changes in the
chemical potentials and fugacities:

By inserting these expressions in the Gibbs–Duhem equation  (Eq. 9.2.43), we obtain

This equation is a relation between changes in gas-phase fugacities caused by a change in the liquid-phase composition. It shows
that a composition change at constant  and  that increases the fugacity of A in the equilibrated gas phase must decrease the
fugacity of B.

Now let us treat the liquid mixture as a binary solution with component B as the solute. In the ideal-dilute region, at constant  and
, the solute obeys Henry’s law for fugacity:

For composition changes in the ideal-dilute region, we can write

With the substitution  and rearrangement, Eq. 12.8.8 becomes

Combined with Eq. 12.8.6, this is , which we can rearrange and integrate as follows within the ideal-dilute
region:

The result is

Here  is the fugacity of A in a gas phase equilibrated with pure liquid A at the same  and  as the mixture. Equation 12.8.11 is
Raoult’s law for fugacity applied to component A.

If component B obeys Henry’s law at all compositions, then the Henry’s law constant  is equal to  and B obeys Raoult’s law,
, over the entire range of .

We can draw two conclusions:

1. Figure 12.11 illustrates the case of a binary mixture in which component B has only positive deviations from Raoult’s law,
whereas component A has both positive and negative deviations (  is slightly less than  for  less than 0.3). This
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unusual behavior is possible because both fugacity curves have two inflection points instead of the usual one. Other types of
unusual nonideal behavior are possible (M. L. McGlashan, J. Chem. Educ., 40, 516–518, 1963).

12.8.3 The Duhem–Margules equation
To a good approximation, by assuming an ideal gas mixture and neglecting the effect of total pressure on fugacity, we can apply
Eq. 12.8.20 to a liquid–gas system in which the total pressure is not constant, but instead is the sum of  and . Under these
conditions, we obtain the following expression for the rate at which the total pressure changes with the liquid composition at
constant :

Here  and  are the mole fractions of A and B in the gas phase given by  and .

We can use Eq. 12.8.21 to make several predictions for a binary liquid–gas system at constant .

In some binary liquid–gas systems, the total pressure at constant temperature exhibits a maximum or minimum at a
particular liquid composition. At this composition,  is zero but  is positive. From Eq. 12.8.21, we see that
at this composition  must equal , meaning that the liquid and gas phases have identical mole fraction
compositions. The liquid with this composition is called an azeotrope. The behavior of systems with azeotropes will be
discussed in Sec. 13.2.5.

12.8.4 Gas solubility
The activity of B in the gas phase is given by . If the solute is a nonelectrolyte and we choose a standard
state based on mole fraction, the activity in the solution is . The equilibrium constant is then given by

and the solubility, expressed as the equilibrium mole fraction of solute in the solution, is given by

At a fixed  and , the values of  and  are constant. Therefore any change in the solution composition that increases
the value of the activity coefficient  will decrease the solubility for the same gas fugacity. This solubility decrease is
often what happens when a salt is dissolved in an aqueous solution, and is known as the salting-out effect (Prob. 12.11).

Unless the pressure is much greater than , we can with negligible error set the pressure factor  equal to 1. When the
gas solubility is low and the solution contains no other solutes, the activity coefficient  is close to 1. If furthermore we
assume ideal gas behavior, then Eq. 12.8.23 becomes

The solubility is predicted to be proportional to the partial pressure. The solubility of a gas that dissociates into ions in
solution has a quite different dependence on partial pressure. An example is the solubility of gaseous HCl in water to form
an electrolyte solution, shown in Fig. 10.1.

If the actual conditions are close to those assumed for Eq. 12.8.24, we can use Eq. 12.1.13 to derive an expression for the
temperature dependence of the solubility for a fixed partial pressure of the gas:

pA pB

T

dp

dxA
= = − = (1 − )

d( + )pA pB

dxA

dpA

dxA

xApB

xBpA

dpA

dxA

dpA

dxA

/xA xB

/pA pB

= (1 − )
dpA

dxA

/xA xB

/yA yB

(12.8.21)

yA yB = /pyA pA = /pyB pB

T

dp/ dxA d / dpA xA

/xA xB /yA yB

(g) = /aB fB p∘

(sln) =aB Γx,Bγx,BxB

K =
Γx,Bγx,BxB

/fB p∘
(12.8.22)

=xB

K /fB p∘

Γx,Bγx,B
(12.8.23)

(nonelectrolyte solute in
equilibrium with gas)

T p K Γx,B

γx,B

p∘ Γx,B

γx,B

= KxB
pB

p∘
(12.8.24)

(nonelectrolyte solute in equilibrium
with ideal gas,  =1,  =1)Γx,B γx,B

= =( )
∂ lnxB

∂T pB

dlnK

dT

Δsol,BH ∘

RT 2
(12.8.25)
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At the standard pressure,  is the same as the molar enthalpy of solution at infinite dilution.

Since the dissolution of a gas in a liquid is invariably an exothermic process,  is negative, and Eq. 12.8.25 predicts
the solubility decreases with increasing temperature.

Note the similarity of Eq. 12.8.25 and the expressions derived previously for the temperature dependence of the solubilities
of solids (Eq. 12.5.8) and liquids (Eq. 12.6.3). When we substitute the mathematical identity , Eq.
12.8.25 becomes

We can use this form to evaluate  from a plot of  versus .

The ideal solubility of a gas is the solubility calculated on the assumption that the dissolved gas obeys Raoult’s law for
partial pressure: . The ideal solubility, expressed as a mole fraction, is then given as a function of partial
pressure by

Here  is the vapor pressure of pure liquid solute at the same temperature and total pressure as the solution. If the pressure
is too low for pure B to exist as a liquid at this temperature, we can with little error replace  with the saturation vapor
pressure of liquid B at the same temperature, because the effect of total pressure on the vapor pressure of a liquid is usually
negligible (Sec. 12.8.1). If the temperature is above the critical temperature of pure B, we can estimate a hypothetical vapor
pressure by extrapolating the liquid–vapor coexistence curve beyond the critical point.

We can use Eq. 12.8.27 to make several predictions regarding the ideal solubility of a gas at a fixed value of .

1. Of course, these predictions apply only to solutions that behave approximately as ideal liquid mixtures, but even for
many nonideal mixtures the predictions are found to have good agreement with experiment.

As an example of the general validity of prediction 1, Hildebrand and Scott (The Solubility of
Nonelectrolytes, 3rd edition, Dover, New York, 1964, Chap. XV) list the following solubilities of gaseous
Cl  in several dissimilar solvents at  and a partial pressure of :  in heptane, 

 in SiCl , and  in CCl . These values are similar to one another and close to the
ideal value .

12.8.5 Effect of temperature and pressure on Henry’s law constants

At the standard pressure , the value of  is unity, and Eqs. 12.1.13 and 12.1.14 then give the following
expressions for the dependence of the dimensionless quantity  on temperature:

These expressions can be used with little error at any pressure that is not much greater than , say up to at least ,
because under these conditions  does not differ appreciably from unity.

To find the dependence of  on pressure, we substitute  in Eq. 12.8.30 with the expression for  at pressure 
found in Table 9.6:

We can use Eq. 12.8.33 to compare the values of  at the same temperature and two different pressures,  and :

Δsol,BH ∘

Δsol,BH ∘

dT = − d(1/T )T 2

= −[ ]
∂ lnxB

∂(1/T ) pB

Δsol,BH ∘

R
(12.8.26)

Δsol,BH ∘ lnxB 1/T

=pB xBp∗
B

=xB
pB

p∗
B

(12.8.27)
(ideal solubility of a gas)

p∗
B

p∗
B

pB

2 0 C∘ 1.01 bar = 0.270xB

= 0.288xB 4 = 0.298xB 4

/ = 0.273pB p∗
B

= 1 barp∘ Γx,B

/kH,B p∘

= − = −
dln( / )kH,B p∘

dT

dlnK

dT

Δsol,BH ∘

RT 2
(12.8.31)

(p= )p∘

= − =
dln( / )kH,B p∘

d(1/T )

d lnK

d(1/T )

Δsol,BH ∘

R
(12.8.32)

(p= )p∘

p∘ 2 bar

Γx,B

kH,B Γx,B Γx,B p′

( ) = = exp( dp)kH,B p′ ( )Γx,B p′ p∘

K

p∘

K
∫

p′

p∘

V ∞
B

RT
(12.8.33)
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An approximate version of this relation, found by treating  as independent of pressure, is

Unless  is much greater than , the effect of pressure on  is small; see Prob. 12.12 for an example.

This page titled 12.8: Liquid-Gas Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.
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p2

p1

V ∞
B

RT
(12.8.34)
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( ) ≈ ( ) exp[ ]kH,B p2 kH,B p1

( − )V ∞
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p2 p1
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12.9: Reaction Equilibria
The definition of the thermodynamic equilibrium constant of a reaction or other chemical process is given by Eq. 11.8.9:

The activity  of each reactant or product species is based on an appropriate standard state. We can replace each activity on the
right side of Eq. 12.9.1 by an expression in Table 12.2.

For example, consider the following heterogeneous equilibrium that is important in the formation of limestone caverns:

If we treat H O as a solvent and Ca  and HCO  as the solute species, then we write the thermodynamic equilibrium constant as
follows:

The subscripts  and  refer to the Ca  and HCO  ions, and all quantities are for the system at reaction equilibrium.  is the
proper quotient of pressure factors, given for this reaction by

Unless the pressure is very high, we can with little error set the value of  equal to unity.

The product  in the numerator of Eq. 12.9.3 is the pressure factor  for the solute Ca(HCO )  (see Eq. 10.3.11).

Equation 12.9.2 is an example of a “mixed” equilibrium constant—one using more than one kind of standard state. From the
definition of the mean ionic activity coefficient (Eq. 10.3.7), we can replace the product  by , where  is the mean ionic
activity coefficient of aqueous Ca(HCO ) :

Instead of treating the aqueous Ca  and HCO  ions as solute species, we can regard the dissolved Ca(HCO )  electrolyte as the
solute and write

We then obtain Eq. 12.9.4 by replacing  with the expression in Table 12.2 for an electrolyte solute.

The value of  depends only on , and the value of  depends only on  and . Suppose we dissolve some NaCl in the aqueous
phase while maintaining the system at constant  and . The increase in the ionic strength will alter  and necessarily cause a
compensating change in the solute molarity in order for the system to remain in reaction equilibrium.

An example of a different kind of reaction equilibrium is the dissociation (ionization) of a weak monoprotic acid such as acetic acid

for which the thermodynamic equilibrium constant (the acid dissociation constant) is

Suppose the solution is prepared from water and the acid, and H  from the dissociation of H O is negligible compared to H  from
the acid dissociation. We may then write , where  is the degree of dissociation and  is the overall molality
of the acid. The molality of the undissociated acid is , and the dissociation constant can be written

K = (∏
i

ai)
νi
eq (12.9.1)

ai

(cr, calcite) + (g) + O(sln) ⇌ (aq) +2 (aq)CaCO3 CO2 H2 Ca2+ HCO−
3 (12.9.1)

2
2+

3
−

K = =
a+a2

−

aCaCO3
aCO2

aH O2

Γr

/(γ+γ2
−m+m2

− m∘)3

( / )fCO2 p∘ γH O2 xH O2

(12.9.2)

+ − 2+
3

− Γr

=Γr

Γ+Γ 2
−

ΓCaCO3 ΓH O2

(12.9.3)
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Γ+Γ 2
− Γm,B 3 2
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± γ±

3 2

K = Γr

/(γ3
±m+m2
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( / )fCO2
p∘ γH O2

xH O2

(12.9.4)

2+
3
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3 2
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aH O2

(12.9.5)
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K T Γr T p

T p γ±

HA(aq) ⇌ (aq) + (aq)H+ A− (12.9.2)

= =Ka Γr
γ+γ−m+m−

γm,HAmHAm∘
Γr

γ2
±m+m−

γm,HAmHAm∘
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+
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From this equation, we see that a change in the ionic strength that decreases  when , , and  are held constant must increase
the degree of dissociation (Prob. 12.17).

This page titled 12.9: Reaction Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.
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12.10: Evaluation of Standard Molar Quantities
Some of the most useful experimentally-derived data for thermodynamic calculations are values of standard molar reaction
enthalpies, standard molar reaction Gibbs energies, and standard molar reaction entropies. The values of these quantities for a given
reaction are related, as we know (Eq. 11.8.21), by

and  can be calculated from the standard molar entropies of the reactants and products using Eq. 11.8.22:

The standard molar quantities appearing in Eqs. 12.10.1 and 12.10.2 can be evaluated through a variety of experimental techniques.
Reaction calorimetry can be used to evaluate  for a reaction (Sec. 11.5). Calorimetric measurements of heat capacity and
phase-transition enthalpies can be used to obtain the value of  for a solid or liquid (Sec. 6.2.1). For a gas, spectroscopic
measurements can be used to evaluate  (Sec. 6.2.2). Evaluation of a thermodynamic equilibrium constant and its temperature
derivative, for any of the kinds of equilibria discussed in this chapter (vapor pressure, solubility, chemical reaction, etc.), can
provide values of  and  through the relations  and .

In addition to these methods, measurements of cell potentials are useful for a reaction that can be carried out reversibly in a
galvanic cell. Section 14.3.3 will describe how the standard cell potential and its temperature derivative allow , , and 

 to be evaluated for such a reaction.

An efficient way of tabulating the results of experimental measurements is in the form of standard molar enthalpies and Gibbs
energies of formation. These values can be used to generate the values of standard molar reaction quantities for reactions not
investigated directly. The relations between standard molar reaction and formation quantities (Sec. 11.3.2) are

and for ions the conventions used are

Appendix H gives an abbreviated set of values of , , and  at .

For examples of the evaluation of standard molar reaction quantities and standard molar formation quantities from measurements
made by various experimental techniques, see Probs. 12.18–12.20, 14.3, and 14.4.

This page titled 12.10: Evaluation of Standard Molar Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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12.11: Chapter 12 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

12.1 
Consider the heterogeneous equilibrium . Table 12.3 lists pressures measured over a range of
temperatures for this system.

12.14 
The method described in Prob. 12.13 has been used to obtain high-precision values of the Henry’s law constant, , for gaseous
methane dissolved in water (Timothy R. Rettich, Y. Paul Handa, Rubin Battino, and Emmerich Wilhelm, J. Phys. Chem., 85, 3230–
3237, 1981). Table 12.6 lists values of  at eleven temperatures in the range –  and at pressures close to 

. Use these data to evaluate  and  at . This can be done by a graphical method. Better
precision will be obtained by making a least-squares fit of the data to the three-term polynomial

and using the values of the coefficients , , and  for the evaluations.

12.15 
Liquid water and liquid benzene have very small mutual solubilities. Equilibria in the binary water–benzene system were
investigated by Tucker, Lane, and Christian (J. Solution Chem., 10, 1–20, 1981) as follows. A known amount of distilled water was
admitted to an evacuated, thermostatted vessel. Part of the water vaporized to form a vapor phase. Small, precisely measured
volumes of liquid benzene were then added incrementally from the sample loop of a liquid-chromatography valve. The benzene
distributed itself between the liquid and gaseous phases in the vessel. After each addition, the pressure was read with a precision
pressure gauge. From the known amounts of water and benzene and the total pressure, the liquid composition and the partial
pressure of the benzene were calculated. The fugacity of the benzene in the vapor phase was calculated from its partial pressure and
the second virial coefficient.

At a fixed temperature, for mole fractions  of benzene in the liquid phase up to about  (less than the solubility of
benzene in water), the fugacity of the benzene in the equilibrated gas phase was found to have the following dependence on :

Here  is the Henry’s law constant and  is a constant related to deviations from Henry’s law. At , the measured values
were  and .

(a) Treat benzene (B) as the solute and find its activity coefficient on a mole fraction basis, , at  in the solution of
composition .

(b) The fugacity of benzene vapor in equilibrium with pure liquid benzene at  is . Estimate the mole fraction
solubility of liquid benzene in water at this temperature.

(c) The calculation of  in part (a) treated the benzene as a single solute species with deviations from infinite-dilution behavior.
Tucker et al suggested a dimerization model to explain the observed negative deviations from Henry’s law. (Classical
thermodynamics, of course, cannot prove such a molecular interpretation of observed macroscopic behavior.) The model assumes
that there are two solute species, a monomer (M) and a dimer (D), in reaction equilibrium: . Let  be the total amount
of C H  present in solution, and define the mole fractions

where the approximations are for dilute solution. In the model, the individual monomer and dimer particles behave as solutes in an
ideal-dilute solution, with activity coefficients of unity. The monomer is in transfer equilibrium with the gas phase: .
The equilibrium constant expression (using a mole fraction basis for the solute standard states and setting pressure factors equal to
1) is . From the relation , and because the solution is very dilute, the expression becomes

(s) ⇌ CaO(s) + (g)CaCO3 CO2

kH,B

ln( / )kH,B p∘ 275 K 328 K

1 bar Δsol,BH ∘ Δsol,BC ∘
p T = 298.15 K

ln( / ) = a +b(1/T ) +c(1/TkH,B p∘ )2

a b c

xB 3 × 10−4

xB

= −A
fB

xB
kH,B xB (12.11.1)

kH,B A 30 C∘

= 385.5 barkH,B A = 2.24 × bar104

γx,B 30 C∘

= 3.00 ×xB 10−4

30 C∘ = 0.1576 barf ∗
B

γx,B

2 M ⇌ D nB

6 6

≈xB =
def nB

+nA nB

nB

nA
(12.11.2)

≈ ≈xM =
def nM

+ +nA nM nD

nM

nA
xD =

def nD

+ +nA nM nD

nD

nA
(12.11.3)

= /xM fB kH,B

K = /xD x2
M

= +2nB nM nD
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Make individual calculations of  from the values of  measured at , , and 
. Extrapolate the calculated values of  to  in order to eliminate nonideal effects such as higher

aggregates. Finally, find the fraction of the benzene molecules present in the dimer form at  if this model is
correct.

12.16 
Use data in Appendix H to evaluate the thermodynamic equilibrium constant at  for the limestone reaction

12.17 
For the dissociation equilibrium of formic acid, , the acid dissociation constant at 

 has the value .

(a) Use Eq. 12.9.7 to find the degree of dissociation and the hydrogen ion molality in a 0.01000 molal formic acid solution. You
can safely set  and  equal to , and use the Debye–Hückel limiting law (Eq. 10.4.8) to calculate . You can do this
calculation by iteration: Start with an initial estimate of the ionic strength (in this case 0), calculate  and , and repeat these steps
until the value of  no longer changes.

(b) Estimate the degree of dissociation of formic acid in a solution that is 0.01000 molal in both formic acid and sodium nitrate,
again using the Debye–Hückel limiting law for . Compare with the value in part (a).

12.18 
Use the following experimental information to evaluate the standard molar enthalpy of formation and the standard molar entropy of
the aqueous chloride ion at , based on the conventions  and  (Secs. 11.3.2 and
11.8.4). (Your calculated values will be close to, but not exactly the same as, those listed in Appendix H, which are based on the
same data combined with data of other workers.)

12.19 
The solubility of crystalline AgCl in ultrapure water has been determined from the electrical conductivity of the saturated
solution (J. A. Gledhill and G. McP. Malan, Trans. Faraday Soc., 48, 258–262, 1952). The average of five measurements at 

 is . The density of water at this temperature is .

(a) From these data and the Debye–Hückel limiting law, calculate the solubility product  of AgCl at .

12.20 
The following reaction was carried out in an adiabatic solution calorimeter by Wagman and Kilday (J. Res. Natl. Bur. Stand.
(U.S.), 77A, 569–579, 1973):

The reaction can be assumed to go to completion, and the amount of KCl was in slight excess, so the amount of AgCl formed
was equal to the initial amount of AgNO . After correction for the enthalpies of diluting the solutes in the initial and final
solutions to infinite dilution, the standard molar reaction enthalpy at  was found to be .
The same workers used solution calorimetry to obtain the molar enthalpy of solution at infinite dilution of crystalline AgNO  at

: .

(a) Show that the difference of these two values is the standard molar reaction enthalpy for the precipitation reaction

and evaluate this quantity.

(b) Evaluate the standard molar enthalpy of formation of aqueous Ag  ion at , using the results of part (a) and the
values  and  from Appendix H. (These values
come from calculations similar to those in Probs. 12.18 and 14.4.) The calculated value will be close to, but not exactly the
same as, the value listed in Appendix H, which is based on the same data combined with data of other workers.

K =
−xB xM

2x2
M

(12.11.4)

K fB = 1.00 ×xB 10−4 = 2.00 ×xB 10−4

= 3.00 ×xB 10−4 K =0xB

= 3.00 ×xB 10−4

298.15 K

(cr, calcite) + (g) + O(l) → (aq) +2 (aq)CaCO
3

CO
2

H
2

Ca2+ HCO−
3 (12.11.5)

H(aq) ⇌ (aq) + (aq)HCO2 H+ HCO−
2

298.15 K = 1.77 ×Ka 10−4

Γr γm,HA 1 γ±

γ± α

α

γ±

298.15 K (H , aq) = 0ΔfH
∘ + (H , aq) = 0S∘

m
+

298.15 K = 1.337 × mol dmsB 10−5 −3 = 0.9970 kg dmρ∗
A

−3

Ks 298.15 K

AgNO (s) +KCl(aq,  = 0.101 mol kg ) → AgCl(s) +KNO (aq)3 mB
−1

3 (12.11.6)

3

298.15 K = −43.042 kJ molΔrH
∘ −1

3

298.15 K = 22.727 kJ molΔsol,BH ∞ −1

(aq) + (aq) → AgCl(s)Ag+ Cl− (12.11.7)

+ 298.15 K

(Cl , aq) = −167.08 kJ molΔfH ∘ − −1 (AgCl, s) = −127.01 kJ molΔfH ∘ −1
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13.1: The Gibbs Phase Rule for Multicomponent Systems
In Sec. 8.1.7, the Gibbs phase rule for a pure substance was written . We now consider a system of more than one
substance and more than one phase in an equilibrium state. The phase rule assumes the system is at thermal and mechanical
equilibrium. We shall assume furthermore that in addition to the temperature and pressure, the only other state functions needed to
describe the state are the amounts of the species in each phase; this means for instance that surface effects are ignored.

The derivations to follow will show that the phase rule may be written either in the form

or

where the symbols have the following meanings:

 the number of degrees of freedom (or variance) 
 the maximum number of intensive variables that can be varied independently while the system remains in an equilibrium state;

 the number of components 
 the minimum number of substances (or fixed-composition mixtures of substances) 

 that could be used to prepare each phase individually;

 the number of different phases;

 the number of different species;

 the number of independent relations among intensive variables of individual phases other than relations 
 needed for thermal, mechanical, and transfer equilibrium.

If we subdivide a phase, that does not change the number of phases . That is, we treat noncontiguous regions of the system that
have identical intensive properties as parts of the same phase.

13.1.1 Degrees of freedom 

Consider a system in an equilibrium state. In this state, the system has one or more phases; each phase contains one or more
species; and intensive properties such as , , and the mole fraction of a species in a phase have definite values. Starting with the
system in this state, we can make changes that place the system in a new equilibrium state having the same kinds of phases and the
same species, but different values of some of the intensive properties. The number of different independent intensive variables that
we may change in this way is the number of degrees of freedom or variance, , of the system.

Clearly, the system remains in equilibrium if we change the amount of a phase without changing its temperature, pressure, or
composition. This, however, is the change of an extensive variable and is not counted as a degree of freedom.

The phase rule, in the form to be derived, applies to a system that continues to have complete thermal, mechanical, and transfer
equilibrium as intensive variables change. This means different phases are not separated by adiabatic or rigid partitions, or by
semipermeable or impermeable membranes. Furthermore, every conceivable reaction among the species is either at reaction
equilibrium or else is frozen at a fixed advancement during the time period we observe the system.

The number of degrees of freedom is the maximum number of intensive properties of the equilibrium system we may
independently vary, or fix at arbitrary values, without causing a change in the number and kinds of phases and species. We cannot,
of course, change one of these properties to just any value whatever. We are able to vary the value only within a certain finite
(sometimes quite narrow) range before a phase disappears or a new one appears.

The number of degrees of freedom is also the number of independent intensive variables needed to specify the equilibrium state in
all necessary completeness, aside from the amount of each phase. In other words, when we specify values of  different
independent intensive variables, then the values of all other intensive variables of the equilibrium state have definite values
determined by the physical nature of the system.

Just as for a one-component system, we can use the terms bivariant, univariant, and invariant depending on the value of  (Sec.
8.1.7).

F = 3 −P

F = 2 +C −P (13.1.1)
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13.1.2 Species approach to the phase rule 

This section derives an expression for the number of degrees of freedom, , based on species. Section 13.1.3 derives an expression
based on components. Both approaches yield equivalent versions of the phase rule.

Recall that a species is an entity, uncharged or charged, distinguished from other species by its chemical formula (Sec. 9.1.1). Thus,
CO  and CO  are different species, but CO (aq) and CO (g) is the same species in different phases.

Consider an equilibrium system of  phases, each of which contains the same set of species. Let the number of different species be
. If we could make changes while the system remains in thermal and mechanical equilibrium, but not necessarily in transfer

equilibrium, we could independently vary the temperature and pressure of the system as a whole and the amount of each species in
each phase; there would then be  independent variables.

The equilibrium system is, however, in transfer equilibrium, which requires each species to have the same chemical potential in
each phase: , , and so on. There are  independent relations like this for each species, and a total of 

 independent relations for all species. Each such independent relation introduces a constraint and reduces the number of
independent variables by one. Accordingly, taking transfer equilibrium into account, the number of independent variables is 

.

We obtain the same result if a species present in one phase is totally excluded from another. For example, solvent molecules of a
solution are not found in a pure perfectly-ordered crystal of the solute, undissociated molecules of a volatile strong acid such as
HCl can exist in a gas phase but not in aqueous solution, and ions of an electrolyte solute are usually not found in a gas phase. For
each such species absent from a phase, there is one fewer amount variable and also one fewer relation for transfer equilibrium; on
balance, the number of independent variables is still .

Next, we consider the possibility that further independent relations exist among intensive variables in addition to the relations
needed for thermal, mechanical, and transfer equilibrium. (Relations such as  for a gas phase or  for a phase in
general have already been accounted for in the derivation by the specification of  and the amount of each species.) If there are  of
these additional relations, the total number of independent variables is reduced to . These relations may come from

1. In the case of a reaction equilibrium, the relation is , or the equivalent relation  for the
thermodynamic equilibrium constant. Thus,  is the sum of the number of independent reaction equilibria, the number of phases
containing ions, and the number of independent initial conditions. Several examples will be given in Sec. 13.1.4.

There is an infinite variety of possible choices of the independent variables (both extensive and intensive) for the equilibrium
system, but the total number of independent variables is fixed at . Keeping intensive properties fixed, we can always
vary how much of each phase is present (e.g., its volume, mass, or amount) without destroying the equilibrium. Thus, at least 
of the independent variables, one for each phase, must be extensive. It follows that the maximum number of independent
intensive variables is the difference .

Since the maximum number of independent intensive variables is the number of degrees of freedom, our expression for  based
on species is

13.1.3 Components approach to the phase rule

The derivation of the phase rule in this section uses the concept of components. The number of components, , is the
minimum number of substances or mixtures of fixed composition from which we could in principle prepare each individual
phase of an equilibrium state of the system, using methods that may be hypothetical. These methods include the addition or
removal of one or more of the substances or fixed-composition mixtures, and the conversion of some of the substances into
others by means of a reaction that is at equilibrium in the actual system.

It is not always easy to decide on the number of components of an equilibrium system. The number of components may be less
than the number of substances present, on account of the existence of reaction equilibria that produce some substances from
others. When we use a reaction to prepare a phase, nothing must remain unused. For instance, consider a system consisting of
solid phases of CaCO  and CaO and a gas phase of CO . Assume the reaction CaCO (s)  CaO(s) + CO (g) is at equilibrium.
We could prepare the CaCO  phase from CaO and CO  by the reverse of this reaction, but we can only prepare the CaO and
CO  phases from the individual substances. We could not use CaCO  to prepare either the CaO phase or the CO  phase,
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because CO  or CaO would be left over. Thus this system has three substances but only two components, namely CaO and CO
.

In deriving the phase rule by the components approach, it is convenient to consider only intensive variables. Suppose we have a
system of  phases in which each substance present is a component (i.e., there are no reactions) and each of the  components
is present in each phase. If we make changes to the system while it remains in thermal and mechanical equilibrium, but not
necessarily in transfer equilibrium, we can independently vary the temperature and pressure of the whole system, and for each
phase we can independently vary the mole fraction of all but one of the substances (the value of the omitted mole fraction
comes from the relation ). This is a total of  independent intensive variables.

When there also exist transfer and reaction equilibria, not all of these variables are independent. Each substance in the system is
either a component, or else can be formed from components by a reaction that is in reaction equilibrium in the system. Transfer
equilibria establish  independent relations for each component ( , , etc.) and a total of 
relations for all components. Since these are relations among chemical potentials, which are intensive properties, each relation
reduces the number of independent intensive variables by one. The resulting number of independent intensive variables is

If the equilibrium system lacks a particular component in one phase, there is one fewer mole fraction variable and one fewer
relation for transfer equilibrium. These changes cancel in the calculation of , which is still equal to . If a phase
contains a substance that is formed from components by a reaction, there is an additional mole fraction variable and also the
additional relation  for the reaction; again the changes cancel.

We may need to remove a component from a phase to achieve the final composition. Note that it is not necessary
to consider additional relations for electroneutrality or initial conditions; they are implicit in the definitions of
the components. For instance, since each component is a substance of zero electric charge, the electrical
neutrality of the phase is assured.

We conclude that, regardless of the kind of system, the expression for  based on components is given by . By
comparing this expression and , we see that the number of components is related to the number of species
by

13.1.4 Examples

The five examples below illustrate various aspects of using the phase rule.

Example 1: liquid water

For a single phase of pure water,  equals . If we treat the water as the single species H O,  is 1 and  is 0. The phase rule
then predicts two degrees of freedom:

Since  is the number of intensive variables that can be varied independently, we could for instance vary  and 
independently, or  and , or any other pair of independent intensive variables.

Next let us take into account the proton transfer equilibrium

and consider the system to contain the three species H O, H O , and OH . Then for the species approach to the phase rule, we
have . We can write two independent relations:

1. Thus, we have two relations involving intensive variables only. Now  is 3,  is 2,  is 1, and the number of degrees of
freedom is given by

which is the same value of  as before.

2

2

P C

= 1∑i xi 2 +P (C −1)

P −1 =μ
β

i μα
i =μ

γ

i μα
i C(P −1)

F = [2 +P (C −1)] −C(P −1) = 2 +C −P (13.1.4)

F 2 +C −P

= 0∑iνiμi

F F = 2 +C −P

F = 2 +s −r −P

C = s −r (13.1.5)

P 1 2 s r

F = 2 +s −r −P

= 2 +1 −0 −1 = 2
(13.1.6)

F T p

T ρ

2 O(l) ⇌ (aq) + (aq)H2 H3O+ OH− (13.1.1)

2 3
+ −

s = 3

s r P

F = 2 +s −r −P = 2 (13.1.7)

F

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20627?pdf


13.1.4 https://chem.libretexts.org/@go/page/20627

If we consider water to contain additional cation species (e.g., ), each such species would add  to  and  to , but 
would remain equal to 2. Thus, no matter how complicated are the equilibria that actually exist in liquid water, the number
of degrees of freedom remains .

Example 2: carbon, oxygen, and carbon oxides

Consider a system containing solid carbon (graphite) and a gaseous mixture of O , CO, and CO . There are four species and
two phases. If reaction equilibrium is absent, as might be the case at low temperature in the absence of a catalyst, we have 

 and . The four components are the four substances. The phase rule tells us the system has four degrees
of freedom. We could, for instance, arbitrarily vary , , , and .

Now suppose we raise the temperature or introduce an appropriate catalyst to allow the following reaction equilibria to
exist:

1. These equilibria introduce two new independent relations among chemical potentials and among activities. We could
also consider the equilibrium , but it does not contribute an additional independent
relation because it depends on the other two equilibria: the reaction equation is obtained by subtracting the reaction
equation for equilibrium 1 from twice the reaction equation for equilibrium 2. By the species approach, we have , 

, and ; the number of degrees of freedom from these values is

If we wish to calculate  by the components approach, we must decide on the minimum number of substances we could
use to prepare each phase separately. (This does not refer to how we actually prepare the two-phase system, but to a
hypothetical preparation of each phase with any of the compositions that can actually exist in the equilibrium system.)
Assume equilibria 1 and 2 are present. We prepare the solid phase with carbon, and we can prepare any possible
equilibrium composition of the gas phase from carbon and O  by using the reactions of both equilibria. Thus, there are
two components (C and O ) giving the same result of two degrees of freedom.

1. Now to introduce an additional complexity: Suppose we prepare the system by placing a certain amount of O  and
twice this amount of carbon in an evacuated container, and wait for the reactions to come to equilibrium. This method
of preparation imposes an initial condition on the system, and we must decide whether the number of degrees of
freedom is affected. Equating the total amount of carbon atoms to the total amount of oxygen atoms in the
equilibrated system gives the relation

Either equation is a relation among extensive variables of the two phases. From them, we are unable to obtain any
relation among intensive variables of the phases. Therefore, this particular initial condition does not change the value
of , and  remains equal to 2.

Example 3: a solid salt and saturated aqueous solution

Applying the components approach to this system is straightforward. The solid phase is prepared from PbCl  and the
aqueous phase could be prepared by dissolving solid PbCl  in H O. Thus, there are two components and two phases:

For the species approach, we note that there are four species (PbCl , Pb , Cl , and H O) and two independent
relations among intensive variables:

1. We have , , and , giving the same result as the components approach:

Example 4: liquid water and water-saturated air

If there is no special relation among the total amounts of N  and O , there are three components and the phase
rule gives

H5O+
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Since there are three degrees of freedom, we could, for instance, specify arbitrary values of , , and 
(arbitrary, that is, within the limits that would allow the two phases to coexist); then the values of other intensive
variables such as the mole fractions  and  would have definite values.

Now suppose we impose an initial condition by preparing the system with water and dry air of a fixed
composition. The mole ratio of N  and O  in the aqueous solution is not necessarily the same as in the
equilibrated gas phase; consequently, the air does not behave like a single substance. The number of components
is still three: H O, N , and O  are all required to prepare each phase individually, just as when there was no
initial condition, giving  as before.

The fact that the compositions of both phases depend on the relative amounts of the phases is illustrated in Prob.
9.5.

We can reach the same conclusion with the species approach. The initial condition can be expressed by an
equation such as

where  is a constant equal to the mole ratio of N  and O  in the dry air. This equation cannot be changed to a
relation between intensive variables such as  and , so that  is zero and there are still three degrees of
freedom.

Finally, let us assume that we prepare the system with dry air of fixed composition, as before, but consider the
solubilities of N  and O  in water to be negligible. Then  and  are zero and Eq. 13.1.13 becomes 

, or , which is a relation between intensive variables. In this case,  is 1 and the phase
rule becomes

The reduction in the value of  from 3 to 2 is a consequence of our inability to detect any dissolved N  or O .
According to the components approach, we may prepare the liquid phase with H O and the gas phase with H O
and air of fixed composition that behaves as a single substance; thus, there are only two components.

Example 5: equilibrium between two solid phases and a gas phase

Consider the following reaction equilibrium:

According to the species approach, there are five species, one relation (for reaction equilibrium), and three phases.
The phase rule gives

It is more difficult to apply the components approach to this example. As components, we might choose CuO and
Cu (from which we could prepare the solid phases) and also NH  and H O. Then to obtain the N  needed to
prepare the gas phase, we could use CuO and NH  as reactants in the reaction 

 and remove the products Cu and H O. In the components approach,
we are allowed to remove substances from the system provided they are counted as components.

This page titled 13.1: The Gibbs Phase Rule for Multicomponent Systems is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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13.2: Phase Diagrams- Binary Systems
As explained in Sec. 8.2, a phase diagram is a kind of two-dimensional map that shows which phase or phases are stable under a
given set of conditions. This section discusses some common kinds of binary systems, and Sec. 13.3 will describe some interesting
ternary systems.

13.2.1 Generalities 
A binary system has two components;  equals , and the number of degrees of freedom is . There must be at least one
phase, so the maximum possible value of  is 3. Since  cannot be negative, the equilibrium system can have no more than four
phases.

We can independently vary the temperature, pressure, and composition of the system as a whole. Instead of using these variables as
the coordinates of a three-dimensional phase diagram, we usually draw a two-dimensional phase diagram that is either a
temperature–composition diagram at a fixed pressure or a pressure–composition diagram at a fixed temperature. The position of the
system point on one of these diagrams then corresponds to a definite temperature, pressure, and overall composition. The
composition variable usually varies along the horizontal axis and can be the mole fraction, mass fraction, or mass percent of one of
the components, as will presently be illustrated by various examples.

The way in which we interpret a two-dimensional phase diagram to obtain the compositions of individual phases depends on the
number of phases present in the system.

If the system point falls within a one-phase area of the phase diagram, the composition variable is the composition of that single
phase. There are three degrees of freedom. On the phase diagram, the value of either  or  has been fixed, so there are two
other independent intensive variables. For example, on a temperature–composition phase diagram, the pressure is fixed and the
temperature and composition can be changed independently within the boundaries of the one-phase area of the diagram.
If the system point is in a two-phase area of the phase diagram, we draw a horizontal tie line of constant temperature (on a
temperature–composition phase diagram) or constant pressure (on a pressure–composition phase diagram). The lever rule
applies. The position of the point at each end of the tie line, at the boundary of the two-phase area, gives the value of the
composition variable of one of the phases and also the physical state of this phase: either the state of an adjacent one-phase area,
or the state of a phase of fixed composition when the boundary is a vertical line. Thus, a boundary that separates a two-phase
area for phases  and  from a one-phase area for phase  is a curve that describes the composition of phase  as a function of 

 or  when it is in equilibrium with phase . The curve is called a solidus, liquidus, or vaporus depending on whether phase 
is a solid, liquid, or gas.
A binary system with three phases has only one degree of freedom and cannot be represented by an area on a two-dimensional
phase diagram. Instead, there is a horizontal boundary line between areas, with a special point along the line at the junction of
several areas. The compositions of the three phases are given by the positions of this point and the points at the two ends of the
line. The position of the system point on this line does not uniquely specify the relative amounts in the three phases.

The examples that follow show some of the simpler kinds of phase diagrams known for binary systems.

13.2.2 Solid–liquid systems 
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Figure 13.1 Temperature–composition phase diagram for a binary
system exhibiting a eutectic point.

Figure 13.1 is a temperature–composition phase diagram at a fixed pressure. The composition variable  is the mole fraction of
component B in the system as a whole. The phases shown are a binary liquid mixture of A and B, pure solid A, and pure solid B.

The one-phase liquid area is bounded by two curves, which we can think of either as freezing-point curves for the liquid or as
solubility curves for the solids. These curves comprise the liquidus. As the mole fraction of either component in the liquid phase
decreases from unity, the freezing point decreases. The curves meet at point a, which is a eutectic point. At this point, both solid A
and solid B can coexist in equilibrium with a binary liquid mixture. The composition at this point is the eutectic composition, and
the temperature here (denoted ) is the eutectic temperature. (“Eutectic” comes from the Greek for easy melting.)  is the lowest
temperature for the given pressure at which the liquid phase is stable.

Suppose we combine  A and  B ( ) and adjust the temperature so as to put the system point at b. This
point is in the one-phase liquid area, so the equilibrium system at this temperature has a single liquid phase. If we now place the
system in thermal contact with a cold reservoir, heat is transferred out of the system and the system point moves down along the
isopleth (path of constant overall composition) b–h. The cooling rate depends on the temperature gradient at the system boundary
and the system’s heat capacity.

At point c on the isopleth, the system point reaches the boundary of the one-phase area and is about to enter the two-phase area
labeled A(s) + liquid. At this point in the cooling process, the liquid is saturated with respect to solid A, and solid A is about to
freeze out from the liquid. There is an abrupt decrease (break) in the cooling rate at this point, because the freezing process
involves an extra enthalpy decrease.

At the still lower temperature at point d, the system point is within the two-phase solid–liquid area. The tie line through this point is
line e–f. The compositions of the two phases are given by the values of  at the ends of the tie line:  for the solid and 

 for the liquid. From the general lever rule (Eq. 8.2.8), the ratio of the amounts in these phases is

Since the total amount is , the amounts of the two phases must be  and .

When the system point reaches the eutectic temperature at point g, cooling halts until all of the liquid freezes. Solid B freezes out as
well as solid A. During this eutectic halt, there are at first three phases: liquid with the eutectic composition, solid A, and solid B.
As heat continues to be withdrawn from the system, the amount of liquid decreases and the amounts of the solids increase until
finally only  of solid A and  of solid B are present. The temperature then begins to decrease again and the system
point enters the two-phase area for solid A and solid B; tie lines in this area extend from  to .

Temperature–composition phase diagrams such as this are often mapped out experimentally by observing the cooling curve
(temperature as a function of time) along isopleths of various compositions. This procedure is thermal analysis. A break in the
slope of a cooling curve at a particular temperature indicates the system point has moved from a one-phase liquid area to a two-
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phase area of liquid and solid. A temperature halt indicates the temperature is either the freezing point of the liquid to form a solid
of the same composition, or else a eutectic temperature.

Figure 13.2 Temperature–composition phase diagrams with single
eutectics. 
(a) Two pure solids and a liquid mixture (E. W. Washburn, International
Critical Tables of Numerical Data, Physics, Chemistry and Technology,
Vol. IV, McGraw-Hill, New York, 1928, p. 98).  
(b) Two solid solutions and a liquid mixture.

Figure 13.2 shows two temperature–composition phase diagrams with single eutectic points. The left-hand diagram is for the
binary system of chloroform and carbon tetrachloride, two liquids that form nearly ideal mixtures. The solid phases are pure
crystals, as in Fig. 13.1. The right-hand diagram is for the silver–copper system and involves solid phases that are solid solutions
(substitutional alloys of variable composition). The area labeled s  is a solid solution that is mostly silver, and s  is a solid solution
that is mostly copper. Tie lines in the two-phase areas do not end at a vertical line for a pure solid component as they do in the
system shown in the left-hand diagram. The three phases that can coexist at the eutectic temperature of  are the melt of the
eutectic composition and the two solid solutions.

Figure 13.3 Temperature–composition phase diagram for the binary
system of -naphthylamine (A) and phenol (B) at  (J. C. Philip, J.
Chem. Soc., 83, 814–834, 1903).

Section 12.5.4 discussed the possibility of the appearance of a solid compound when a binary liquid mixture is cooled. An example
of this behavior is shown in Fig. 13.3, in which the solid compound contains equal amounts of the two components -
naphthylamine and phenol. The possible solid phases are pure A, pure B, and the solid compound AB. Only one or two of these
solids can be present simultaneously in an equilibrium state. The vertical line in the figure at  represents the solid
compound. The temperature at the upper end of this line is the melting point of the solid compound, . The solid melts
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congruently to give a liquid of the same composition. A melting process with this behavior is called a dystectic reaction. The
cooling curve for liquid of this composition would display a halt at the melting point.

The phase diagram in Fig. 13.3 has two eutectic points. It resembles two simple phase diagrams like Fig. 13.1 placed side by side.
There is one important difference: the slope of the freezing-point curve (liquidus curve) is nonzero at the composition of a pure
component, but is zero at the composition of a solid compound that is completely dissociated in the liquid (as derived theoretically
in Sec. 12.5.4). Thus, the curve in Fig. 13.3 has a relative maximum at the composition of the solid compound ( ) and is
rounded there, instead of having a cusp—like a Romanesque arch rather than a Gothic arch.

Figure 13.4 Temperature–composition phase diagram for the binary
system of H O and NaCl at . (Data from Roger Cohen-Adad and
John W. Lorimer, Alkali Metal and Ammonium Chlorides in Water and
Heavy Water (Binary Systems), Solubility Data Series, Vol. 47,
Pergamon Press, Oxford, 1991; and E. W. Washburn, International
Critical Tables of Numerical Data, Physics, Chemistry and Technology,
Vol. III, McGraw-Hill, New York, 1928.)

An example of a solid compound that does not melt congruently is shown in Fig. 13.4. The solid hydrate  is 
NaCl by mass. It decomposes at  to form an aqueous solution of composition  NaCl by mass and a solid phase of
anhydrous NaCl. These three phases can coexist at equilibrium at . A phase transition like this, in which a solid compound
changes into a liquid and a different solid, is called incongruent or peritectic melting, and the point on the phase diagram at this
temperature at the composition of the liquid is a peritectic point.

Figure 13.4 shows there are two other temperatures at which three phases can be present simultaneously: , where the phases
are ice, the solution at its eutectic point, and the solid hydrate; and , where the phases are gaseous H O, a solution of
composition  NaCl by mass, and solid NaCl. Note that both segments of the right-hand boundary of the one-phase solution
area have positive slopes, meaning that the solubilities of the solid hydrate and the anhydrous salt both increase with increasing
temperature.

13.2.3 Partially-miscible liquids 

When two liquids that are partially miscible are combined in certain proportions, phase separation occurs (Sec. 11.1.6). Two liquid
phases in equilibrium with one another are called conjugate phases. Obviously the two phases must have different compositions or
they would be identical; the difference is called a miscibility gap. A binary system with two phases has two degrees of freedom, so
that at a given temperature and pressure each conjugate phase has a fixed composition.
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Figure 13.5 Temperature–composition phase diagram for the binary
system of methyl acetate (A) and carbon disulfide (B) at  (data
from P. Ferloni and G. Spinolo, Int. DATA Ser., Sel. Data Mixtures, Ser.
A, 70, 1974). All phases are liquids. The open circle indicates the critical
point.

The typical dependence of a miscibility gap on temperature is shown in Fig. 13.5. The miscibility gap (the difference in
compositions at the left and right boundaries of the two-phase area) decreases as the temperature increases until at the upper
consolute temperature, also called the upper critical solution temperature, the gap vanishes. The point at the maximum of the
boundary curve of the two-phase area, where the temperature is the upper consolute temperature, is the consolute point or critical
point. At this point, the two liquid phases become identical, just as the liquid and gas phases become identical at the critical point of
a pure substance. Critical opalescence (Sec. 8.2.3) is observed in the vicinity of this point, caused by large local composition
fluctuations. At temperatures at and above the critical point, the system is a single binary liquid mixture.

Suppose we combine  of component A (methyl acetate) and  of component B (carbon disulfide) in a cylindrical
vessel and adjust the temperature to . The overall mole fraction of B is . The system point is at point a in the two-
phase region. From the positions of points b and c at the ends of the tie line through point a, we find the two liquid layers have
compositions  and . Since carbon disulfide is the more dense of the two pure liquids, the bottom layer is phase

, the layer that is richer in carbon disulfide. According to the lever rule, the ratio of the amounts in the two phases is given by

Combining this value with  gives us  and .

If we gradually add more carbon disulfide to the vessel while gently stirring and keeping the temperature constant, the system point
moves to the right along the tie line. Since the ends of this tie line have fixed positions, neither phase changes its composition, but
the amount of phase  increases at the expense of phase . The liquid–liquid interface moves up in the vessel toward the top of the
liquid column until, at overall composition  (point c), there is only one liquid phase.

Now suppose the system point is back at point a and we raise the temperature while keeping the overall composition constant at 
. The system point moves up the isopleth a–d. The phase diagram shows that the ratio  decreases

during this change. As a result, the amount of phase  increases, the amount of phase  decreases, and the liquid–liquid interface
moves down toward the bottom of the vessel until at  (point d) there again is only one liquid phase.

13.2.4 Liquid–gas systems with ideal liquid mixtures 
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Figure 13.6 Phase diagrams for the binary system of toluene (A) and
benzene (B). The curves are calculated from Eqs. 13.2.6 and 13.2.7 and
the saturation vapor pressures of the pure liquids. 
(a) Pressure–composition diagram at . 
(b) Temperature–composition diagram at .

Toluene and benzene form liquid mixtures that are practically ideal and closely obey Raoult’s law for partial pressure. For the
binary system of these components, we can use the vapor pressures of the pure liquids to generate the liquidus and vaporus curves
of the pressure–composition and temperature–composition phase diagram. The results are shown in Fig. 13.6. The composition
variable  is the overall mole fraction of component A (toluene).

The equations needed to generate the curves can be derived as follows. Consider a binary liquid mixture of components A and B
and mole fraction composition  that obeys Raoult’s law for partial pressure (Eq. 9.4.2):

Strictly speaking, Raoult’s law applies to a liquid–gas system maintained at a constant pressure by means of a third gaseous
component, and  and  are the vapor pressures of the pure liquid components at this pressure and the temperature of the
system. However, when a liquid phase is equilibrated with a gas phase, the partial pressure of a constituent of the liquid is
practically independent of the total pressure (Sec. 12.8.1), so that it is a good approximation to apply the equations to a binary
liquid–gas system and treat  and  as functions only of .

When the binary system contains a liquid phase and a gas phase in equilibrium, the pressure is the sum of  and , which from
Eq. 13.2.3 is given by

where  is the mole fraction of A in the liquid phase. Equation 13.2.4 shows that in the two-phase system,  has a value between 
 and , and that if  is constant,  is a linear function of . The mole fraction composition of the gas in the two-phase system

is given by

A binary two-phase system has two degrees of freedom. At a given  and , each phase must have a fixed composition. We can
calculate the liquid composition by rearranging Eq. 13.2.4:

The gas composition is then given by
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If we know  and  as functions of , we can use Eqs. 13.2.6 and 13.2.7 to calculate the compositions for any combination of 
and  at which the liquid and gas phases can coexist, and thus construct a pressure–composition or temperature–composition phase
diagram.

In Fig. 13.6(a), the liquidus curve shows the relation between  and  for equilibrated liquid and gas phases at constant , and the
vaporus curve shows the relation between  and  under these conditions. We see that  is a linear function of  but not of .

In a similar fashion, the liquidus curve in Fig. 13.6(b) shows the relation between  and , and the vaporus curve shows the
relation between  and , for equilibrated liquid and gas phases at constant . Neither curve is linear.

Figure 13.7 Liquidus and vaporus surfaces for the binary system of
toluene (A) and benzene. Cross-sections through the two-phase region
are drawn at constant temperatures of  and  and at constant
pressures of  and . Two of the cross-sections intersect at a tie
line at  and , and the other cross-sections are
hatched in the direction of the tie lines.

A liquidus curve is also called a bubble-point curve or a boiling-point curve. Other names for a vaporus curve are dew-point curve
and condensation curve. These curves are actually cross-sections of liquidus and vaporus surfaces in a three-dimensional – –
phase diagram, as shown in Fig. 13.7. In this figure, the liquidus surface is in view at the front and the vaporus surface is hidden
behind it.

13.2.5 Liquid–gas systems with nonideal liquid mixtures 
Most binary liquid mixtures do not behave ideally. The most common situation is positive deviations from Raoult’s law. (In the
molecular model of Sec. 11.1.5, positive deviations correspond to a less negative value of  than the average of  and .)
Some mixtures, however, have specific A–B interactions, such as solvation or molecular association, that prevent random mixing
of the molecules of A and B, and the result is then negative deviations from Raoult’s law. If the deviations from Raoult’s law, either
positive or negative, are large enough, the constant-temperature liquidus curve exhibits a maximum or minimum and azeotropic
behavior results.
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Figure 13.8 Binary system of methanol (A) and benzene at 
(Hossein Toghiani, Rebecca K. Toghiani, and Dabir S. Viswanath, J.
Chem. Eng. Data, 39, 63–67, 1994).  
(a) Partial pressures and total pressure in the gas phase equilibrated with
liquid mixtures. The dashed lines indicate Raoult’s law behavior. 
(b) Pressure–composition phase diagram at . Open circle:
azeotropic point at  and .

Figure 13.8 shows the azeotropic behavior of the binary methanol-benzene system at constant temperature. In Fig. 13.8(a), the
experimental partial pressures in a gas phase equilibrated with the nonideal liquid mixture are plotted as a function of the liquid
composition. The partial pressures of both components exhibit positive deviations from Raoult’s law, consistent with the statement
in Sec. 12.8.2 that if one constituent of a binary liquid mixture exhibits positive deviations from Raoult’s law, with only one
inflection point in the curve of fugacity versus mole fraction, the other constituent also has positive deviations from Raoult’s law.
The total pressure (equal to the sum of the partial pressures) has a maximum value greater than the vapor pressure of either pure
component. The curve of  versus  becomes the liquidus curve of the pressure–composition phase diagram shown in Fig.
13.8(b). Points on the vaporus curve are calculated from .

In practice, the data needed to generate the liquidus and vaporus curves of a nonideal binary system are usually
obtained by allowing liquid mixtures of various compositions to boil in an equilibrium still at a fixed temperature or
pressure. When the liquid and gas phases have become equilibrated, samples of each are withdrawn for analysis.
The partial pressures shown in Fig. 13.8(a) were calculated from the experimental gas-phase compositions with the
relations  and .

If the constant-temperature liquidus curve has a maximum pressure at a liquid composition not corresponding to one of the pure
components, which is the case for the methanol–benzene system, then the liquid and gas phases are mixtures of identical
compositions at this pressure. This behavior was deduced at the end of Sec. 12.8.3. On the pressure–composition phase diagram,
the liquidus and vaporus curves both have maxima at this pressure, and the two curves coincide at an azeotropic point. A binary
system with negative deviations from Raoult’s law can have an isothermal liquidus curve with a minimum pressure at a particular
mixture composition, in which case the liquidus and vaporus curves coincide at an azeotropic point at this minimum. The general
phenomenon in which equilibrated liquid and gas mixtures have identical compositions is called azeotropy, and the liquid with this
composition is an azeotropic mixture or azeotrope (Greek: boils unchanged). An azeotropic mixture vaporizes as if it were a pure
substance, undergoing an equilibrium phase transition to a gas of the same composition.
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Figure 13.9 Liquidus and vaporus surfaces for the binary system of
methanol (A) and benzene (Hossein Toghiani, Rebecca K. Toghiani, and
Dabir S. Viswanath, J. Chem. Eng. Data, 39, 63–67, 1994). Cross-
sections are hatched in the direction of the tie lines. The dashed curve is
the azeotrope vapor-pressure curve.

If the liquidus and vaporus curves exhibit a maximum on a pressure–composition phase diagram, then they exhibit a minimum on a
temperature–composition phase diagram. This relation is explained for the methanol–benzene system by the three-dimensional
liquidus and vaporus surfaces drawn in Fig. 13.9. In this diagram, the vaporus surface is hidden behind the liquidus surface. The
hatched cross-section at the front of the figure is the same as the pressure–composition diagram of Fig. 13.8(b), and the hatched
cross-section at the top of the figure is a temperature–composition phase diagram in which the system exhibits a minimum-boiling
azeotrope.

A binary system containing an azeotropic mixture in equilibrium with its vapor has two species, two phases, and one relation
among intensive variables: . The number of degrees of freedom is then ; the
system is univariant. At a given temperature, the azeotrope can exist at only one pressure and have only one composition. As 
changes, so do  and  along an azeotrope vapor-pressure curve as illustrated by the dashed curve in Fig. 13.9.

Figure 13.10 Temperature–composition phase diagrams of binary
systems exhibiting (a) no azeotropy, (b) a minimum-boiling azeotrope,
and (c) a maximum-boiling azeotrope. Only the one-phase areas are
labeled; two-phase areas are hatched in the direction of the tie lines.

Figure 13.10 summarizes the general appearance of some relatively simple temperature–composition phase diagrams of binary
systems. If the system does not form an azeotrope (zeotropic behavior), the equilibrated gas phase is richer in one component than
the liquid phase at all liquid compositions, and the liquid mixture can be separated into its two components by fractional
distillation. The gas in equilibrium with an azeotropic mixture, however, is not enriched in either component. Fractional distillation
of a system with an azeotrope leads to separation into one pure component and the azeotropic mixture.
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Figure 13.11 Temperature–composition phase diagrams of binary
systems with partially-miscible liquids exhibiting (a) the ability to be
separated into pure components by fractional distillation, (b) a
minimum-boiling azeotrope, and (c) boiling at a lower temperature than
the boiling point of either pure component. Only the one-phase areas are
labeled; two-phase areas are hatched in the direction of the tie lines.

More complicated behavior is shown in the phase diagrams of Fig. 13.11. These are binary systems with partially-miscible liquids
in which the boiling point is reached before an upper consolute temperature can be observed.

13.2.6 Solid–gas systems 

Figure 13.12 Pressure–composition phase diagram for the binary
system of CuSO  (A) and H O (B) at  (Thomas S. Logan, J.
Chem. Educ., 35, 148–149, 1958; E. W. Washburn, International
Critical Tables of Numerical Data, Physics, Chemistry and Technology,
Vol. VII, McGraw-Hill, New York, 1930, p. 263).

As an example of a two-component system with equilibrated solid and gas phases, consider the components  and ,
denoted A and B respectively. In the pressure–composition phase diagram shown in Fig. 13.12, the composition variable  is as
usual the mole fraction of component B in the system as a whole.

The anhydrous salt and its hydrates (solid compounds) form the series of solids , , , and 
. In the phase diagram these formulas are abbreviated A, AB, AB , and AB . The following dissociation equilibria

(dehydration equilibria) are possible:
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The equilibria are written above with coefficients that make the coefficient of H O(g) unity. When one of these equilibria is
established in the system, there are two components and three phases; the phase rule then tells us the system is univariant and the
pressure has only one possible value at a given temperature. This pressure is called the dissociation pressure of the higher hydrate.

The dissociation pressures of the three hydrates are indicated by horizontal lines in Fig. 13.12. For instance, the dissociation
pressure of  is . At the pressure of each horizontal line, the equilibrium system can have one, two,
or three phases, with compositions given by the intersections of the line with vertical lines. A fourth three-phase equilibrium is
shown at ; this is the equilibrium between solid , the saturated aqueous solution of this
hydrate, and water vapor.

Consider the thermodynamic equilibrium constant of one of the dissociation reactions. At the low pressures shown in the phase
diagram, the activities of the solids are practically unity and the fugacity of the water vapor is practically the same as the pressure,
so the equilibrium constant is almost exactly equal to , where  is the dissociation pressure of the higher hydrate in the
reaction. Thus, a hydrate cannot exist in equilibrium with water vapor at a pressure below the dissociation pressure of the hydrate
because dissociation would be spontaneous under these conditions. Conversely, the salt formed by the dissociation of a hydrate
cannot exist in equilibrium with water vapor at a pressure above the dissociation pressure because hydration would be spontaneous.

If the system contains dry air as an additional gaseous component and one of the dissociation equilibria is
established, the partial pressure  of H O is equal (approximately) to the dissociation pressure  of the higher
hydrate. The prior statements regarding dissociation and hydration now depend on the value of . If a hydrate is
placed in air in which  is less than , dehydration is spontaneous; this phenomenon is called efflorescence
(Latin: blossoming). If  is greater than the vapor pressure of the saturated solution of the highest hydrate that
can form in the system, the anhydrous salt and any of its hydrates will spontaneously absorb water and form the
saturated solution; this is deliquescence (Latin: becoming fluid).

If the two-component equilibrium system contains only two phases, it is bivariant corresponding to one of the areas in Fig. 13.12.
Here both the temperature and the pressure can be varied. In the case of areas labeled with two solid phases, the pressure has to be
applied to the solids by a fluid (other than H O) that is not considered part of the system.

13.2.7 Systems at high pressure 

Figure 13.13 Pressure–temperature–composition behavior in the binary
heptane–ethane system (W. B. Kay, Ind. Eng. Chem., 30, 459–465,
1938). The open circles are critical points; the dashed curve is the
critical curve. The dashed line a–b illustrates retrograde condensation at 

.

Binary phase diagrams begin to look different when the pressure is greater than the critical pressure of either of the pure
components. Various types of behavior have been observed in this region. One common type, that found in the binary system of
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heptane and ethane, is shown in Fig. 13.13. This figure shows sections of a three-dimensional phase diagram at five temperatures.
Each section is a pressure–composition phase diagram at constant . The two-phase areas are hatched in the direction of the tie
lines. At the left end of each tie line (at low ) is a vaporus curve, and at the right end is a liquidus curve. The vapor pressure
curve of pure ethane ( ) ends at the critical point of ethane at ; between this point and the critical point of heptane at 

, there is a continuous critical curve, which is the locus of critical points at which gas and liquid mixtures become identical
in composition and density.

Consider what happens when the system point is at point a in Fig. 13.13 and the pressure is then increased by isothermal
compression along line a–b. The system point moves from the area for a gas phase into the two-phase gas–liquid area and then out
into the gas-phase area again. This curious phenomenon, condensation followed by vaporization, is called retrograde condensation.

Under some conditions, an isobaric increase of  can result in vaporization followed by condensation; this is retrograde
vaporization.

Figure 13.14 Pressure–temperature–composition behavior in the binary
xenon–helium system (J. de Swann Arons and G. A. M. Diepen, J.
Chem. Phys., 44, 2322–2330, 1966). The open circles are critical points;
the dashed curve is the critical curve.

A different type of high-pressure behavior, that found in the xenon–helium system, is shown in Fig. 13.14. Here, the critical curve
begins at the critical point of the less volatile component (xenon) and continues to higher temperatures and pressures than the
critical temperature and pressure of either pure component. The two-phase region at pressures above this critical curve is
sometimes said to represent gas–gas equilibrium, or gas–gas immiscibility, because we would not usually consider a liquid to exist
beyond the critical points of the pure components. Of course, the coexisting phases in this two-phase region are not gases in the
ordinary sense of being tenuous fluids, but are instead high-pressure fluids of liquid-like densities. If we want to call both phases
gases, then we have to say that pure gaseous substances at high pressure do not necessarily mix spontaneously in all proportions as
they do at ordinary pressures.

If the pressure of a system is increased isothermally, eventually solid phases will appear; these are not shown in Figs. 13.13 and
Fig. 13.14.

This page titled 13.2: Phase Diagrams- Binary Systems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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13.3: Phase Diagrams- Ternary Systems
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13.4: Chapter 13 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I. 
13.1 Consider a single-phase system that is a gaseous mixture of , and . For each of the following cases, find the number of degrees of freedom
and give an example of the independent intensive variables that could be used to specify the equilibrium state, apart from the total amount of gas.

(a) There is no reaction.

(b) The reaction  is at equilibrium.

(c) The reaction is at equilibrium and the system is prepared from  only.

13.2 How many components has a mixture of water and deuterium oxide in which the equilibrium  HDO exists?

13.3 Consider a system containing only , and  Assume that the equilibrium  exists.

(a) Suppose you prepare the system by placing solid  in an evacuated flask and heating to . Use the phase rule to decide whether you can vary
the pressure while both phases remain in equilibrium at .

(b) According to the phase rule, if the system is not prepared as described in part (a) could you vary the pressure while both phases remain in equilibrium at
 ? Explain.

(c) Rationalize your conclusions for these two cases on the basis of the thermodynamic equilibrium constant. Assume that the gas phase is an ideal gas
mixture and use the approximate expression .

13.4 Consider the lime-kiln process . Find the number of intensive variables that can be varied independently in the
equilibrium system under the following conditions:

(a) The system is prepared by placing calcium carbonate, calcium oxide, and carbon dioxide in a container.

(b) The system is prepared from calcium carbonate only.

(c) The temperature is fixed at .

13.5 What are the values of  and  in systems consisting of solid  in equilibrium with an aqueous phase containing 
, and  prepared in the following ways? Give examples of intensive variables that could be varied

independently.

(a) The system is prepared by equilibrating excess solid  with an aqueous solution of .

(b) The system is prepared by mixing aqueous solutions of  and  in arbitrary proportions; some solid  forms by precipitation.

13.6 How many degrees of freedom has a system consisting of solid  in equilibrium with an aqueous phase containing 
, and  ? Would it be possible to independently vary , and ? If so, explain how you could do this.

13.7 Consult the phase diagram shown in Fig.  on page 430. Suppose the system contains  (2.00 mol)  and  (1.00 mol)  at 
and 1 bar.

(a) Describe the phases present in the equilibrium system and their masses.

(b) Describe the changes that occur at constant pressure if the system is placed in thermal contact with a heat reservoir at .

(c) Describe the changes that occur if the temperature is raised from  to  at constant pressure.

(d) Describe the system after  is added at .

Table 13.1 Aqueous solubilities of sodium sulfate decahydrate and anhydrous sodium sulfate 

13.8 Use the following information to draw a temperature-composition phase diagram for the binary system of  and  at  bar,
confining  to the range  to  and  to the range . The solid decahydrate, , is stable below . The anhydrous salt, 

, is stable above this temperature. There is a peritectic point for these two solids and the solution at  and . There is a
eutectic point for ice, , and the solution at  and . Table  gives the temperature dependence of the solubilities
of the ionic solids.

Table 13.2 Data for Problem 13.9. Temperatures of saturated solutions of aqueous iron(III) chloride at  1 bar (\left(\mathrm{A}=\mathrm{FeCl}_{3},
\mathrm{~B}=\mathrm{H}_{2} \mathrm{O}\right)^{a}\)

,N2 H2 NH3

( g) +3 ( g) → 2 ( g)N2 H2 NH3

NH3

O+ O ⇌ 2H2 D2

Cl(s), ( g)NH4 NH3 HCl(g). Cl(s) ⇌ ( g) +HCl(g)NH4 NH3

ClNH4 400 K

400 K

400 K

K = /pNH3 pHCl ( )p∘ 2

( s) → CaO(s) + ( g)CaCO3 CO2

1000 K

C F AgCl

O, (aq), (aq), (aq)H2 Ag+ Cl− Na+ (aq)NO−
3

AgCl NaNO3

AgNO3 NaCl AgCl

NaCl

O, (aq), (aq), (aq)H2 Na+ Cl− H+ (aq)OH− T , p mOH−

13.4 36.0 g OH2 58.4 g NaCl C25∘

− C30∘

C25∘ C120∘

200 g OH2 C25∘

a

\begin{tabular}{lccc}  
\hline \(\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}\) & & \multicolumn{2}{c}{\(\mathrm{Na}_{2} \mathrm{SO}_{4}\)} \\  
\cline { 1 - 2 } \cline { 5 }\(t /{ }^{\circ} \mathrm{C}\) & \(x_{\mathrm{B}}\) & \(t /{ }^{\circ} \mathrm{C}\) & \(x_{\mathrm{B}}\) \\  
\hline 10 & \(0.011\) & 40 & \(0.058\) \\  
15 & \(0.016\) & 50 & \(0.056\) \\  
20 & \(0.024\) & & \\ 
25 & \(0.034\) & & \\ 
30 & \(0.048\) & & \\ 
\hline\({ }^{a}\) Ref. [59], p. 179-180. & & \\  
& & &  
\end{tabular}

O(A)H2 ( B)Na2SO4 p = 1

t −20 C50∘ zB 0 −0.2 ⋅ 10 ONa2SO4 H2 C32.4∘

Na2SO4 = 0.059xB t = C32.4∘

⋅ 10 ONa2SO4 H2 = 0.006xB t = − C1.3∘ 13.1

p =
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 Data from Ref. [59], page 

13.9 Iron(III) chloride forms various solid hydrates, all of which melt congruently. Table  on the preceding page lists the temperatures  of aqueous
solutions of various compositions that are saturated with respect to a solid phase.

(a) Use these data to construct a  phase diagram for the binary system of  (A) and  (B). Identify the formula and melting point of each
hydrate. Hint: derive a formula for the mole ratio  as a function of  in a binary mixture.

(b) For the following conditions, determine the phase or phases present at equilibrium and the composition of each. 
1.  and  
2.  and 

Figure  Temperature-composition phase diagram for the binary system of water (A) and phenol (B) at 1 bar.  Only liquid phases are present.

\(\overline

\) Ref. [59], p. 

13.10 Figure  is a temperature-composition phase diagram for the binary system of water (A) and phenol (B) at 1 bar. These liquids are partially
miscible below . Phenol is more dense than water, so the layer with the higher mole fraction of phenol is the bottom layer. Suppose you place 
of  and  of phenol in a beaker at  and gently stir to allow the layers to equilibrate.

(a) What are the compositions of the equilibrated top and bottom layers?

(b) Find the amount of each component in the bottom layer.

(c) As you gradually stir more phenol into the beaker, maintaining the temperature at , what changes occur in the volumes and compositions of the
two layers? Assuming that one layer eventually disappears, what additional amount of phenol is needed to cause this to happen?

13.11 The standard boiling point of propane is  and that of -butane is . Table  on the next page lists vapor pressure data for the pure
liquids. Assume that the liquid mixtures obey Raoult's law.

(a) Calculate the compositions, , of the liquid mixtures with boiling points of , , and  at a pressure of .

(b) Calculate the compositions, , of the equilibrium vapor at these three temperatures.

Table  Saturation vapor pressures of propane (A) and -butane (B)

\begin{tabular}{crcccr}  
\hline\(x_{\mathrm{A}}\) & \(t /{ }^{\circ} \mathrm{C}\) & \(x_{\mathrm{A}}\) & \(t /{ }^{\circ} \mathrm{C}\) & \(x_{\mathrm{A}}\) & \(t /{ }^{\circ} \mathrm{C}\) \\  
\hline \(0.000\) & \(0.0\) & \(0.119\) & \(35.0\) & \(0.286\) & \(56.0\) \\  
\(0.020\) & \(-10.0\) & \(0.143\) & \(37.0\) & \(0.289\) & \(55.0\) \\  
\(0.032\) & \(-20.5\) & \(0.157\) & \(36.0\) & \(0.293\) & \(60.0\) \\  
\(0.037\) & \(-27.5\) & \(0.173\) & \(33.0\) & \(0.301\) & \(69.0\) \\  
\(0.045\) & \(-40.0\) & \(0.183\) & \(30.0\) & \(0.318\) & \(72.5\) \\  
\(0.052\) & \(-55.0\) & \(0.195\) & \(27.4\) & \(0.333\) & \(73.5\) \\  
\(0.053\) & \(-41.0\) & \(0.213\) & \(32.0\) & \(0.343\) & \(72.5\) \\  
\(0.056\) & \(-27.0\) & \(0.222\) & \(32.5\) & \(0.358\) & \(70.0\) \\  
\(0.076\) & \(0.0\) & \(0.232\) & \(30.0\) & \(0.369\) & \(66.0\) \\  
\(0.083\) & \(10.0\) & \(0.238\) & \(35.0\) & \(0.369\) & \(80.0\) \\  
\(0.093\) & \(20.0\) & \(0.259\) & \(50.0\) & \(0.373\) & \(100.0\) \\  
\(0.106\) & \(30.0\) & \(0.277\) & \(55.0\) & & \\  
\hline  
\end{tabular}

a 193.

13.2 t

t −zB FeCl3 OH2

/nB nA xA

t = − C70.0∘ = 0.100zA

t = C50.0∘ = 0.275zA

13.19 a

� ParseError: invalid DekiScript (click for details)

95.

13.19

C67∘ 4.0 mol

OH2 1.0 mol C30∘

C30∘

−41.8 C∘ n −0.2 C∘ 13.3

xA − C10.0∘ − C20.0∘ − C30.0∘ 1bar

yA

13.3 n

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23764?pdf


13.4.3 https://chem.libretexts.org/@go/page/23764

(c) Plot the temperature-composition phase diagram at  bar using these data, and label the areas appropriately.

(d) Suppose a system containing  propane and -butane is brought to a pressure of 1 bar and a temperature of . From your phase
diagram, estimate the compositions and amounts of both phases.

Table 13.4 Liquid and gas compositions in the two-phase system of 2-propanol (A) and benzene at 

 
 Ref. [24].

13.12 Use the data in Table  to draw a pressure-composition phase diagram for the 2-propanolbenzene system at . Label the axes and each area.

Table 13.5 Liquid and gas compositions in the twophase system of acetone (A) and chloroform at 

 
 Ref. [179], p. 

This page titled 13.4: Chapter 13 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source content that was
edited to the style and standards of the LibreTexts platform.

\begin{tabular}{ccc}  
\hline\(t /{ }^{\circ} \mathrm{C}\) & \(p_{\mathrm{A}}^{*} /\) bar & \(p_{\mathrm{B}}^{*} / \mathrm{bar}\) \\  
\hline\(-10.0\) & \(3.360\) & \(0.678\) \\  
\(-20.0\) & \(2.380\) & \(0.441\) \\  
\(-30.0\) & \(1.633\) & \(0.275\) \\  
\hline  
\end{tabular}

p = 1

10.0 mol 10.0 moln − C25∘

45∘Ca

\begin{tabular}{llcccc}  
\hline\(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) & \(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) \\  
\hline 0 & 0 & \(29.89\) & \(0.5504\) & \(0.3692\) & \(35.32\) \\  
\(0.0472\) & \(0.1467\) & \(33.66\) & \(0.6198\) & \(0.3951\) & \(34.58\) \\  
\(0.0980\) & \(0.2066\) & \(35.21\) & \(0.7096\) & \(0.4378\) & \(33.02\) \\  
\(0.2047\) & \(0.2663\) & \(36.27\) & \(0.8073\) & \(0.5107\) & \(30.28\) \\  
\(0.2960\) & \(0.2953\) & \(36.45\) & \(0.9120\) & \(0.6658\) & \(25.24\) \\  
\(0.3862\) & \(0.3211\) & \(36.29\) & \(0.9655\) & \(0.8252\) & \(21.30\) \\  
\(0.4753\) & \(0.3463\) & \(35.93\) & \(1.0000\) & \(1.0000\) & \(18.14\) \\  
\hline  
\end{tabular}

a

13.4 C45∘

35.2 C∘

\begin{tabular}{lllccc}  
\hline\(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) & \(x_{\mathrm{A}}\) & \(y_{\mathrm{A}}\) & \(p / \mathrm{kPa}\) \\  
\hline 0 & 0 & \(39.08\) & \(0.634\) & \(0.727\) & \(36.29\) \\  
\(0.083\) & \(0.046\) & \(37.34\) & \(0.703\) & \(0.806\) & \(38.09\) \\  
\(0.200\) & \(0.143\) & \(34.92\) & \(0.815\) & \(0.896\) & \(40.97\) \\  
\(0.337\) & \(0.317\) & \(33.22\) & \(0.877\) & \(0.936\) & \(42.62\) \\  
\(0.413\) & \(0.437\) & \(33.12\) & \(0.941\) & \(0.972\) & \(44.32\) \\  
\(0.486\) & \(0.534\) & \(33.70\) & \(1.000\) & \(1.000\) & \(45.93\) \\  
\(0.577\) & \(0.662\) & \(35.09\) & & & \\  
\hline  
\end{tabular}

a 286.
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1

CHAPTER OVERVIEW

14: Galvanic Cells
An electrochemical cell is a system in which passage of an electric current through an electrical circuit is linked to an internal cell
reaction. A galvanic cell, or voltaic cell, is an electrochemical cell that, when isolated, has an electric potential difference between
its terminals; the cell is said to be a seat of electromotive force.

The cell reaction in a galvanic cell differs in a fundamental way from the same reaction (i.e., one with the same reaction equation)
taking place in a reaction vessel that is not part of an electrical circuit. In the reaction vessel, the reactants and products are in the
same phase or in phases in contact with one another, and the reaction advances in the spontaneous direction until reaction
equilibrium is reached. This reaction is the direct reaction.

The galvanic cell, in contrast, is arranged with the reactants physically separated from one another so that the cell reaction can
advance only when an electric current passes through the cell. If there is no current, the cell reaction is constrained from taking
place. When the electrical circuit is open and the cell is isolated from its surroundings, a state of thermal, mechanical, and transfer
equilibrium is rapidly reached. In this state of cell equilibrium or electrochemical equilibrium, however, reaction equilibrium is not
necessarily present—that is, if the reactants and products were moved to a reaction vessel at the same activities, there might be
spontaneous advancement of the reaction.

As will be shown, measurements of the cell potential of a galvanic cell are capable of yielding precise values of molar reaction
quantities of the cell reaction and thermodynamic equilibrium constants, and of mean ionic activity coefficients in electrolyte
solutions.

14.1: Cell Diagrams and Cell Reactions
14.2: Electric Potentials in the Cell
14.3: Molar Reaction Quantities of the Cell Reaction
14.4: The Nernst Equation
14.5: Evaluation of the Standard Cell Potential
14.6: Standard Electrode Potentials
14.7: Chapter 14 Problems
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14.1: Cell Diagrams and Cell Reactions

14.1.1 Elements of a galvanic cell 

We will treat a galvanic cell as a system. The cell has two metal wires called terminals that pass through the system boundary.
Within the cell are phases that can conduct an electric current and are collectively called electrical conductors. Each terminal is
attached to an electron conductor that is usually a metal, but might also be graphite or a semiconductor. Each electron conductor is
in contact with an ionic conductor, usually an electrolyte solution, through which ions but not electrons can move. Both of the
electron conductors can be in contact with the same ionic conductor; or they can be in contact with separate ionic conductors, in
which case the ionic conductors contact one another at a liquid junction. The general arrangement of the physical elements of a
galvanic cell is therefore

Both terminals must be the same metal (usually copper) in order for it to be possible to measure the electric potential difference
between them.

The combination of an electron conductor and the ionic conductor in contact with it is called an electrode, or half-cell. (The term
“electrode” is sometimes used to refer to just the electron conductor.) To describe a galvanic cell, it is conventional to distinguish
the left and right electrodes. In this way, we establish a left–right association with the reactants and products of the reactions at the
electrodes.

14.1.2 Cell diagrams 

The cell of Fig. 14.1 has a single electrolyte phase with essentially the same composition at both electrodes, and is an example of a
cell without liquid junction or cell without transference. As an example of a cell with transference, consider the cell diagram

This is the zinc–copper cell depicted in Fig. 14.2, sometimes called a Daniell cell. The two electrolyte phases are separated by a
liquid junction represented in the cell diagram by the dashed vertical bar. If the liquid junction potential can be assumed to be
negligible, the liquid junction is instead represented by a pair of dashed vertical bars:

14.1.4 Advancement and charge 
The electron number or charge number, , of the cell reaction is defined as the amount of electrons entering at the right terminal
per unit advancement of the cell reaction.  is a positive dimensionless quantity equal to , where  is the stoichiometric
number of the electrons in either of the electrode reactions whose sum is the cell reaction.

Because both electrode reactions are written with the same value of , the advancements of these reactions and of the cell
reaction are all described by the same advancement variable . For an infinitesimal change , an amount of electrons equal to 
enters the system at the right terminal, an equal amount of electrons leaves at the left terminal, and there is no buildup of charge in
any of the internal phases.

The Faraday constant  is a physical constant defined as the charge per amount of protons, and is equal to the product of the
elementary charge (the charge of a proton) and the Avogadro constant: . Its value to five significant figures is 

. The charge per amount of electrons is . Thus, the charge entering the right terminal during advancement
 is

This page titled 14.1: Cell Diagrams and Cell Reactions is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

terminal – electron conductor – ionic conductor(s) – electron conductor – terminal (14.1.1)
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2 Cu+

2 (14.1.2)

Zn (aq) (aq) CuZn+
2 Cu+
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z | |νe νe

| |νe
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F = 96, 485 C mol−1 −F
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14.2: Electric Potentials in the Cell

This page titled 14.2: Electric Potentials in the Cell is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
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14.3: Molar Reaction Quantities of the Cell Reaction
This e-book will denote the molar reaction Gibbs energy of a cell reaction by . This notation distinguishes it from the molar
reaction Gibbs energy  of the direct reaction, which may have a different value because in the cell the chemical potential of an
ionic species is affected by the electric potential of its phase.  is defined by

where the sum is over the reactants and products of the cell reaction.  is also equal to the partial derivative ,
where  is the advancement of the cell reaction.

14.3.1 Relation between  and  

When a galvanic cell is in a zero-current equilibrium state, both electrode reactions are at reaction equilibrium. In the electrode
reaction at the left electrode, electrons are a product with stoichiometric number equal to . At the right electrode, electrons are a
reactant with stoichiometric number equal to . We can write the conditions for electrode reaction equilibria as follows:

In these equations, the sum over  is for the chemical species (excluding electrons) of the electrode reaction at the left electrode,
and the sum over  is for the chemical species of the electrode reaction at the right electrode.  is the chemical potential of
electrons in the electron conductor of the left electrode, and  is the chemical potential of electrons in the electron conductor
of the right electrode.

Adding Eqs. 14.3.2 and 14.3.3, we obtain

The first two terms on the left side of Eq. 14.3.4 are sums over all the reactants and products of the cell reaction. From Eq. 14.3.1,
we recognize the sum of these terms as the molar reaction Gibbs energy of the cell reaction:

Substituting from Eq. 14.3.5 into Eq. 14.3.4 and solving for , we obtain

In a zero-current equilibrium state, there is electron transfer equilibrium between the left electron conductor and the left terminal,
and between the right electron conductor and the right terminal:  and , where  and 

 are the chemical potentials of electrons in the left terminal and right terminal, respectively. Thus we can rewrite Eq. 14.3.6
as

Making substitutions from Eq. 14.2.2 for  and , and recognizing that  is the same in both terminals because
they have the same composition, we obtain

We can see from Eq. 14.3.1 that the value of  has nothing to do with the composition of the terminals. The relations of Eq.
14.3.8 were derived for a cell with both terminals made of the same metal. We can make the following deductions for such a cell:

1. Equation 14.3.8 can be derived by a different route. According to Eq. 5.8.6, reversible electrical work at constant  and  is
equal to the Gibbs energy change: . Making the substitution  (from Eq. 3.8.8), with 

ΔrGcell

GΔr

ΔrGcell

ΔrGcell =
def
∑

i

νiμi (14.3.1)

ΔrGcell (∂ /∂ξGcell )T ,p

ξ

ΔrGcell Ecell, eq

z

−z

At the left electrode +z (LE) = 0∑
i

νiμi μe (14.3.2)

At the right electrode −z (RE) = 0∑
j

νjμj μe (14.3.3)

i

j (LE)μe

(RE)μe

+ +z[ (LE) − (RE)] = 0∑
i

νiμi ∑
j

νjμj μe μe (14.3.4)

+ =∑
i

νiμi ∑
j

νjμj ΔrGcell (14.3.5)

ΔrGcell

= −z[ (LE) − (RE)]ΔrGcell μe μe (14.3.6)

(LE) = (LT)μe μe (RE) = (RT)μe μe (LT)μe

(RT)μe

= −z[ (LT) − (RT)]ΔrGcell μe μe (14.3.7)

(LT)μe (RT)μe (0)μe

ΔrGcell = −zF ( − )ϕR ϕL

= −zF Ecell, eq
(14.3.8)

ΔrGcell

T p

d = dwel, rev Gcell d = dwel, rev Ecell, eq Qsys
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 set equal to  (Eq. 14.1.1), followed by division by , gives , or 
.

Strictly speaking, this derivation applies only to a cell without a liquid junction. In a cell with a liquid junction,
the electric current is carried across the junction by different ions depending on the direction of the current, and
the cell is therefore not reversible.

14.3.2 Relation between  and 

Now imagine a reaction vessel that has the same temperature and pressure as the galvanic cell, and contains the same reactants
and products at the same activities as in the cell. This reaction vessel, unlike the cell, is not part of an electrical circuit. In it, the
reactants and products are in direct contact with one another, so there is no constraint preventing a spontaneous direct reaction.
For example, the reaction vessel corresponding to the zinc–copper cell of Fig. 14.2 would have zinc and copper strips in contact
with a solution of both ZnSO  and CuSO . Another example is the slow direct reaction in a cell without liquid junction
described in Sec. 14.2.1.

Let the reaction equation of the direct reaction be written with the same stoichiometric numbers  as in the reaction equation
for the cell reaction. The direct reaction in the reaction vessel is described by this equation or its reverse, depending on which
direction is spontaneous for the given activities.

The question now arises whether the molar reaction Gibbs energy  of the cell reaction is equal to the molar reaction
Gibbs energy  of the direct reaction. Both  and  are defined by the sum . Both reactions have the same
values of , but the values of  for charged species are in general different in the two systems because the electric potentials
are different.

Consider first a cell without a liquid junction. This kind of cell has a single electrolyte solution, and all of the reactant and
product ions of the cell reaction are in this solution phase. The same solution phase is present in the reaction vessel during the
direct reaction. When all ions are in the same phase, the value of  is independent of the electric potentials of any of the
phases (see the comment following Eq. 11.8.4), so that the molar reaction Gibbs energies are the same for the cell reaction and
the direct reaction:

Next, consider a cell with two electrolyte solutions separated by a liquid junction. For the molar reaction Gibbs energy of the
cell reaction, we write

The sums here include all of the reactants and products appearing in the cell reaction, those with index  being at the left
electrode and those with index  at the right electrode. Let the solution at the left electrode be phase  and the solution at the
right electrode be phase . Then making the substitution  (Eq. 10.1.6) gives us

The sum of the first two terms on the right side of Eq. 14.3.11 is the molar reaction Gibbs energy of a reaction in which the
reactants and products are in phases of zero electric potential. According to the comment following Eq. 11.8.4, the molar
reaction Gibbs energy would be the same if the ions were in a single phase of any electric potential. Consequently the sum 

 is equal to  for the direct reaction.

The conservation of charge during advancement of the electrode reactions at the left electrode and the right electrode is
expressed by  and , respectively. Equation 14.3.11 becomes

where  is the liquid junction potential.

Finally, in Eqs. 14.3.9 and 14.3.12 we replace  by  (Eq. 14.3.8) and solve for :

dQsys −zF dξ dξ −zF = (∂ /∂ξEcell, eq Gcell )T ,p

= −zFΔrGcell Ecell, eq

ΔrGcell GΔr

4 4

νi

ΔrGcell

GΔr ΔrGcell GΔr ∑iνiμi

νi μi

∑iνiμi

= GΔrGcell Δr (14.3.9)
(no liquid junction)

= ( ) + ( )ΔrGcell ∑
i

νiμi ϕi ∑
j

νjμj ϕj (14.3.10)

i

j α

β (ϕ) = (0) + F ϕμi μi zi

= (0) + (0) + F + FΔrGcell ∑
i

νiμi ∑
j

νjμj ∑
i

νizi ϕα ∑
j

νjzj ϕβ (14.3.11)

(0)+ (0)∑iνiμi ∑jνjμj GΔr

−z = 0∑iνizi +z = 0∑jνjzj

= G−zFΔrGcell Δr Ej (14.3.12)
(cell with liquid junction)

= −Ej ϕβ ϕα

ΔrGcell −zF Ecell, eq Ecell, eq
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 can be measured with great precision. If a reaction can be carried out in a galvanic cell without liquid junction, Eq.
14.3.13 provides a way to evaluate  under given conditions. If the reaction can only be carried out in a cell with a liquid
junction, Eq. 14.3.14 can be used for this purpose provided that the liquid junction potential  can be assumed to be negligible
or can be estimated from theory.

Note that the cell has reaction equilibrium only if  is zero. The cell has thermal, mechanical, and transfer equilibrium when
the electric current is zero and the cell potential is the zero-current cell potential . Equations 14.3.13 and 14.3.14 show
that in order for the cell to also have reaction equilibrium,  must equal the liquid junction potential if there is a liquid
junction, or be zero otherwise. These are the conditions of an exhausted, “dead” cell that can no longer do electrical work.

14.3.3 Standard molar reaction quantities
Consider a hypothetical galvanic cell in which each reactant and product of the cell reaction is in its standard state at unit
activity, and in which a liquid junction if present has a negligible liquid junction potential. The equilibrium cell potential of this
cell is called the standard cell potential of the cell reaction, . An experimental procedure for evaluating  will be
described in Sec. 14.5.

In this hypothetical cell,  is equal to the standard molar reaction Gibbs energy . From Eq. 14.3.13, or Eq. 14.3.14
with  assumed equal to zero, we have

 is the molar reaction Gibbs energy when each reactant and product is at unit activity and, if it is an ion, is in a phase of
zero electric potential. Since  is equal to  (Eq. 11.8.10), we can write

Equation 14.3.16 allows us to evaluate the thermodynamic equilibrium constant  of the cell reaction by a noncalorimetric
method. Consider for example the cell

in which the pair of dashed vertical bars indicates a liquid junction of negligible liquid junction potential. The electrode
reactions are

and the cell reaction is

The equilibrium constant of this reaction is the solubility product  of silver chloride (Sec. 12.5.5). At , the standard
cell potential is found to be . We can use this value in Eq. 14.3.16 to evaluate  at  (see Prob.
14.5).

Equation 14.3.16 also allows us to evaluate the standard molar reaction enthalpy by substitution in Eq. 12.1.13:

= −Ecell, eq
GΔr

zF
(14.3.13)

(cell without liquid junction)

= − +Ecell, eq
GΔr

zF
Ej (14.3.14)

(cell with liquid junction)

Ecell, eq

GΔr

Ej

GΔr

Ecell, eq

Ecell, eq

E∘
cell, eq E∘

cell, eq

ΔrGcell ΔrG∘

Ej

= −zFΔrG
∘ E∘

cell, eq (14.3.15)

ΔrG
∘

ΔrG
∘ −RT lnK

lnK =
zF

RT
E∘

cell, eq (14.3.16)

K

Ag (aq) (aq) AgCl(s) AgAg+ Cl− (14.3.1)

Ag(s) → Ag (aq) +e+ −

AgCl(s) +e → Ag(s) +Cl (aq)− −

AgCl(s) → (aq) + (aq)Ag+ Cl−

Ks 298.15 K

= −0.5770 VE∘
cell, eq Ks 298.15 K

ΔrH
∘ = RT 2 dlnK

dT

= zF (T − )
dE∘

cell, eq

dT
E∘

cell, eq

(14.3.17)
(no solute standard states

based on concentration)
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Finally, by combining Eqs. 14.3.15 and 14.3.17 with , we obtain an expression for the standard
molar reaction entropy:

Because , , and  are state functions, the thermodynamic equilibrium constant and the molar reaction quantities evaluated
from  and  are the same quantities as those for the reaction when it takes place in a reaction vessel instead
of in a galvanic cell. However, the heats at constant  and  are not the same (Sec. 11.3.1). During a reversible cell reaction, 
must equal , and  is therefore equal to  during a cell reaction taking place reversibly under standard state
conditions at constant  and .

This page titled 14.3: Molar Reaction Quantities of the Cell Reaction is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

= −TΔrG
∘ ΔrH

∘ ΔrS
∘

= zFΔrS
∘

dE∘
cell, eq

dT
(14.3.18)

(no solute standard states
based on concentration)

G H S

E∘
cell, eq d / dTE∘

cell, eq

T p dS

dq/T dq/ dξ T ΔrS
∘

T p
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14.4: The Nernst Equation
The standard cell potential  of a cell reaction is the equilibrium cell potential of the hypothetical galvanic cell in which each
reactant and product of the cell reaction is in its standard state and there is no liquid junction potential. The value of  for a
given cell reaction with given choices of standard states is a function only of temperature. The measured equilibrium cell potential 

 of an actual cell, however, depends on the activities of the reactants and products as well as on temperature and the liquid
junction potential, if present.

To derive a relation between  and activities for a cell without liquid junction, or with a liquid junction of negligible liquid
junction potential, we substitute expressions for  and for  from Eqs. 14.3.13 and Eq. 14.3.15 into 

 (Eq. 11.8.8) and solve for :

Equation 14.4.1 is the Nernst equation for the cell reaction. Here  is the reaction quotient for the cell reaction defined by Eq.
11.8.6: .

The rest of this section will assume that the cell reaction takes place in a cell without liquid junction, or in one in which  is
negligible.

If each reactant and product of the cell reaction is in its standard state, then each activity is unity and  is zero. We can see
from the Nernst equation that the equilibrium cell potential  in this case has its standard value , as expected. A
decrease in product activities or an increase in reactant activities decreases the value of  and increases , as we would
expect since  should be greater when the forward cell reaction has a greater tendency for spontaneity.

If the cell reaction comes to reaction equilibrium, as it will if we short-circuit the cell terminals with an external wire, the value of 
 becomes equal to the thermodynamic equilibrium constant , and the Nernst equation becomes 

. The term  is equal to  (Eq. 14.3.16), so  becomes zero—the
cell is “dead” and is incapable of performing electrical work on the surroundings.

At  ( ), the value of  is , and we can write the Nernst equation in the compact form

As an illustration of an application of the Nernst equation, consider the reaction equation

This reaction takes place in a cell without liquid junction (Fig. 14.1), and the electrolyte solution can be aqueous HCl. The
expression for the reaction quotient is

We may usually with negligible error approximate the pressure factors of the solids and solutes by unity. The activities of the solids
are then 1, the solute activities are  and , and the hydrogen activity is . The ion
molalities  and  are equal to the HCl molality . The expression for  becomes

and the Nernst equation for this cell is

E∘
cell, eq

E∘
cell, eq

Ecell, eq

Ecell, eq

GΔr ΔrG
∘

G = +RT lnΔr ΔrG
∘ Qrxn Ecell, eq

= − lnEcell, eq E∘
cell, eq

RT

zF
Qrxn (14.4.1)

(no liquid junction, or  =0)Ej

Qrxn

=Qrxn ∏i aνi

i

Ej

lnQrxn

Ecell, eq E∘
cell, eq

lnQrxn Ecell, eq

Ecell, eq

Qrxn K

= −(RT /zF ) lnKEcell, eq E∘
cell, eq (RT /zF ) lnK E∘

cell, eq Ecell, eq

T =298.15 K 25.00 C∘ RT /F 0.02569 V

= − lnEcell, eq E∘
cell, eq

0.02569 V

z
Qrxn (14.4.2)

(T =298.15 K)

(g) +2 AgCl(s) → 2 (aq) +2 (aq) +2 Ag(s)H2 H+ Cl− (14.4.1)

=Qrxn

a2
+a2

−a2
Ag

aH2 a2
AgCl

(14.4.3)

= /a+ γ+m+ m∘ = /a− γ−m− m∘ = /aH2 fH2 p∘

m+ m− mB Qrxn

= =Qrxn

γ2
+γ2

−( / )mB m∘ 4

/fH2
p∘

γ4
±( / )mB m∘ 4

/fH2
p∘

(14.4.4)

Ecell, eq = − lnE∘
cell, eq

RT

2F

( /γ4
± mB m∘)4

/fH2 p∘

= − ln − ln + lnE∘
cell, eq

2RT

F
γ±

2RT

F

mB

m∘

RT

2F

fH2

p∘

(14.4.5)
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By measuring  for a cell with known values of  and , and with a derived value of , we can use this equation to
find the mean ionic activity coefficient  of the HCl solute. This is how the experimental curve for aqueous HCl in Fig. 10.3 was
obtained.

We can always multiply each of the stoichiometric coefficients of a reaction equation by the same positive constant
without changing the meaning of the reaction. How does this affect the Nernst equation for the reaction equation
above? Suppose we decide to multiply the stoichiometric coefficients by one-half:

With this changed reaction equation, the value of  is changed from 2 to 1 and the Nernst equation becomes

which yields the same value of  for given cell conditions as Eq. 14.4.5. This value must of course be
unchanged, because physically the cell is the same no matter how we write its cell reaction, and measurable
physical quantities such as  are unaffected. However, molar reaction quantities such as  and  do
depend on how we write the cell reaction, because they are changes per extent of reaction.

This page titled 14.4: The Nernst Equation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

Ecell, eq mB fH2 E∘
cell, eq

γ±

(g) +AgCl(s) → (aq) + (aq) +Ag(s)1
2

H2 H+ Cl−

z

= − lnEcell, eq E∘
cell, eq

RT

F

( /γ2
± mB m∘)2

( /fH2
p∘)1/2

(14.4.6)
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14.5: Evaluation of the Standard Cell Potential
As we have seen, the value of the standard cell potential  of a cell reaction has useful thermodynamic applications. The
value of  for a given cell reaction depends only on temperature. To evaluate it, we can extrapolate an appropriate function to
infinite dilution where ionic activity coefficients are unity.

To see how this procedure works, consider again the cell reaction . The
cell potential depends on the molality  of the HCl solute according to Eq. 14.4.5. We can rearrange the equation to

For given conditions of the cell, we can measure all quantities on the right side of Eq. 14.5.1 except the mean ionic activity
coefficient  of the electrolyte. We cannot know the exact value of  for any given molality until we have evaluated .
We do know that as  approaches zero,  approaches unity and  must approach zero. The Debye–Hückel formula of Eq.
10.4.7 is a theoretical expression for  that more closely approximates the actual value the lower is the ionic strength.
Accordingly, we define the quantity

The expression in parentheses is the Debye–Hückel formula for  with  replaced by . The constants  and  have
known values at any temperature (Sec. 10.4), and  is an ion-size parameter for which we can choose a reasonable value. At a
given temperature, we can evaluate  experimentally as a function of .

The expression on the right side of Eq. 14.5.1 differs from that of Eq. 14.5.2 by contributions to  not accounted for
by the Debye–Hückel formula. Since these contributions approach zero in the limit of infinite dilution, the extrapolation of
measured values of  to  yields the value of .

Figure 14.5  (defined by Eq. 14.5.2) as a function of HCl molality
for the cell of Fig. 14.1 at . Data from Herbert S. Harned and
Russell W. Ehlers, J. Am. Chem. Soc., 54, 1350–1357, 1932, with 
set equal to  and the parameter  set equal to . The
dashed line is a least-squares fit to a linear relation.

Figure 14.5 shows this extrapolation using data from the literature. The extrapolated value indicated by the filled circle is 
, and the uncertainty is on the order of only .

This page titled 14.5: Evaluation of the Standard Cell Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by
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E∘
cell, eq
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cell, eq

(g) +2 AgCl(s) → 2 (aq) +2 (aq) +2 Ag(s)H2 H+ Cl−

mB

= + ln + ln − lnE∘
cell, eq Ecell, eq

2RT

F
γ±

2RT

F

mB

m∘

RT

2F

fH2

p∘
(14.5.1)

γ± lnγ± E∘
cell, eq

mB γ± lnγ±

lnγ±

= + (− )+ ln − lnE ′
cell Ecell, eq

2RT

F

A mB
−−−

√

1 +Ba mB
−−−

√

2RT

F

mB

m∘

RT

2F

fH2

p∘
(14.5.2)

lnγ± Im mB A B

a

E ′
cell

mB

(2RT /F ) lnγ±

E ′
cell =0mB E∘

cell, eq

E ′
cell

298.15 K
fH2

pH2 a 4.3 × m10−10

= 0.2222 VE∘
cell, eq 0.1 mV
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14.6: Standard Electrode Potentials
Section 14.5 explained how, by measuring the equilibrium cell potential of a galvanic cell at different electrolyte molalities, we can
evaluate the standard cell potential  of the cell reaction. It is not necessary to carry out this involved experimental procedure
for each individual cell reaction of interest. Instead, we can calculate  from standard electrode potentials.

By convention, standard electrode potentials use a standard hydrogen electrode as a reference electrode. A standard hydrogen
electrode is a hydrogen electrode, such as the electrode shown at the left in Fig. 14.1, in which the species H (g) and H (aq) are in
their standard states. Since these are hypothetical gas and solute standard states, the standard hydrogen electrode is a hypothetical
electrode—not one we can actually construct in the laboratory.

A standard electrode potential  is defined as the standard cell potential of a cell with a hydrogen electrode at the left and the
electrode of interest at the right. For example, the cell in Fig. 14.1 with cell diagram

has a hydrogen electrode at the left and a silver–silver chloride electrode at the right. The standard electrode potential of the silver–
silver chloride electrode, therefore, is equal to the standard cell potential of this cell.

Since a cell with hydrogen electrodes at both the left and right has a standard cell potential of zero, the standard electrode potential
of the hydrogen electrode is zero at all temperatures. The standard electrode potential of any other electrode is nonzero and is a
function only of temperature.

Consider the following three cells constructed from various combinations of three different electrodes: a hydrogen electrode, and
two electrodes denoted L and R.

We wish to calculate the standard cell potential  of cell 1 from the standard electrode potentials  and .

If we write the cell reactions of cells 1 and 2 using the same value of the electron number  for both, we find that their sum is
the cell reaction for cell 3 with the same value of . Call these reactions 1, 2, and 3, respectively:

Equation 14.6.3 is a general relation applicable to any galvanic cell. It should be apparent that we can use the relation to
calculate the standard electrode potential of an electrode from the standard electrode potential of a different electrode and the
standard cell potential of a cell that contains both electrodes. Neither electrode has to be a hydrogen electrode, which is difficult
to work with experimentally.

Using Eq. 14.6.3 to calculate standard cell potentials from standard electrode potentials saves a lot of experimental work. For
example, measurement of  for ten different cells, only one of which needs to include a hydrogen electrode, provides
values of  for ten electrodes other than  for the hydrogen electrode. From these ten values of , values of  can
be calculated for 35 other cells without hydrogen electrodes.

This page titled 14.6: Standard Electrode Potentials is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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14.7: Chapter 14 Problems
An underlined problem number or problem-part letter indicates that the numerical answer appears in Appendix I.

14.1 
The state of a galvanic cell without liquid junction, when its temperature and pressure are uniform, can be fully described by values
of the variables , , and . Find an expression for  during a reversible advancement of the cell reaction, and use it to derive the
relation  (Eq. 14.3.8). (Hint: Eq. 3.8.8.)

14.2 
Before 1982 the standard pressure was usually taken as . For the cell shown in Fig. 14.1, what correction is needed, for a
value of  obtained at  and using the older convention, to change the value to one corresponding to a standard pressure
of ? Equation 14.3.15 can be used for this calculation.

14.3 
Careful measurements (Roger G. Bates and Vincent E. Bower, J. Res. Natl. Bur. Stand. (U.S.), 53, 283–290, 1954) of the
equilibrium cell potential of the cell

yielded, at  and using a standard pressure of , the values  and 
. (The requested calculated values are close to, but not exactly the same as, the values

listed in Appendix H, which are based on the same data combined with data of other workers.)

(a) Evaluate , , and  at  for the reaction

(b) Problem 12.18 showed how the standard molar enthalpy of formation of the aqueous chloride ion may be evaluated based on
the convention . If this value is combined with the value of  obtained in part (a) of the present problem,
the standard molar enthalpy of formation of crystalline silver chloride can be evaluated. Carry out this calculation for 

 using the value  (Appendix H).

(c) By a similar procedure, evaluate the standard molar entropy, the standard molar entropy of formation, and the standard molar
Gibbs energy of formation of crystalline silver chloride at . You need the following standard molar entropies evaluated
from spectroscopic and calorimetric data:

14.4 
The standard cell potential of the cell

has been determined over a range of temperature (G. Faita, P. Longhi, and T. Mussini, J. Electrochem. Soc., 114, 340–343, 1967).
At , the standard cell potential was found to be , and its temperature derivative was found to be 

.

(a) Write the cell reaction for this cell.

(b) Use the data to evaluate the standard molar enthalpy of formation and the standard molar Gibbs energy of formation of
crystalline silver chloride at . (Note that this calculation provides values of quantities also calculated in Prob. 14.3 using
independent data.)

14.5 
Use data in Sec. 14.3.3 to evaluate the solubility product of silver chloride at .

14.6 
The equilibrium cell potential of the galvanic cell

T p ξ dG

= −zFΔrGcell Ecell, eq

1 atm
E∘

cell, eq
25 C∘

1 bar

Pt (g) HCl(aq) AgCl(s) AgH2

298.15 K 1 bar = 0.22217 VE∘
cell, eq

d / dT = −6.462 × V KE∘
cell, eq 10−4 −1

ΔrG
∘ ΔrS

∘ ΔrH
∘ 298.15 K

(g) +AgCl(s) → (aq) + (aq) +Ag(s)1
2

H
2

H+ Cl− (14.7.1)

( , aq) = 0ΔfH
∘ H+ ΔrH

∘

T = 298.15 K ( , aq) = −167.08 kJ molΔfH
∘ Cl− −1

298.15 K

( , g) = 130.68 J K  molS∘
m H2

−1 −1

( , aq) = 56.60 J K  molS∘
m Cl− −1 −1

( , g) = 223.08 J K  molS∘
m Cl2

−1 −1

(Ag, s) = 42.55 J K  molS∘
m

−1 −1
(14.7.2)

Ag AgCl(s) HCl(aq) (g) PtCl2 (14.7.3)

T =298.15 K = 1.13579 VE∘
cell, eq

d / dT = −5.9863 × V KE∘
cell, eq

10−4 −1

298.15 K

298.15 K
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is found to be  at . The standard cell potential is .

(a) Write the cell reaction and calculate its thermodynamic equilibrium constant at .

(b) Use the cell measurement to calculate the mean ionic activity coefficient of aqueous HCl at  and a molality of 
.

14.7 
Consider the following galvanic cell, which combines a hydrogen electrode and a calomel electrode:

(a) Write the cell reaction.

(b) At , the standard cell potential of this cell is . Using the value of  for the aqueous chloride
ion in Appendix H, calculate the standard molar Gibbs energy of formation of crystalline mercury(I) chloride (calomel) at 

.

(c) Calculate the solubility product of mercury(I) chloride at . The dissolution equilibrium is 
. Take values for the standard molar Gibbs energies of formation of the aqueous ions from

Appendix H.

14.8 
Table 14.1 lists equilibrium cell potentials obtained with the following cell at  (Albert S. Keston, J. Am. Chem. Soc., 57,
1671–1673, 1935):

Use these data to evaluate the standard electrode potential of the silver-silver bromide electrode at this temperature to the nearest
millivolt. (Since the electrolyte solutions are quite dilute, you may ignore the term  in Eq. 14.5.2.)

14.9 
The cell diagram of a mercury cell can be written

(a) Write the electrode reactions and cell reaction with electron number .

(b) Use data in Appendix H to calculate the standard molar reaction quantities , , and  for the cell reaction at 
.

(c) Calculate the standard cell potential of the mercury cell at  to the nearest .

(d) Evaluate the ratio of heat to advancement, , at a constant temperature of  and a constant pressure of , for
the cell reaction taking place in two different ways: reversibly in the cell, and spontaneously in a reaction vessel that is not part of
an electrical circuit.

(e) Evaluate , the temperature coefficient of the standard cell potential.

This page titled 14.7: Chapter 14 Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via
source content that was edited to the style and standards of the LibreTexts platform.

Pt (g, f=1 bar) HCl(aq, 0.500 mol kg ) Cl (g, f=1 bar) PtH2
−1

2 (14.7.4)

= 1.410 VEcell, eq 298.15 K = 1.360 VE∘
cell, eq

298.15 K

298.15 K
0.500 mol kg−1

Pt (g) HCl(aq) (s) Hg(l) PtH2 Hg2Cl2 (14.7.5)

298.15 K = 0.2680 VE∘
cell, eq ΔfG

∘

298.15 K

298.15 K

(s) ⇌ (aq) +2 (aq)Hg2Cl2 Hg2+
2 Cl−

298.15 K

Pt (g, 1.01 bar) HBr(aq,  ) AgBr(s) AgH2 mB

Ba mB
−−−

√

Zn(s) ZnO(s) NaOH(aq) HgO(s) Hg(l)

z = 2

ΔrH
∘ ΔrG

∘ ΔrS
∘

298.15 K

298.15 K 0.01 V

dq/ dξ 298.15 K 1 bar

d / dTE∘
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15.1: Appendix A- Definitions of the SI Base Units
The official definitions of the base units given in the IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in
Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, Sec. 3.3) are as follows.

The metre is the length of path traveled by light in vacuum during a time interval of 1/299,792,458 of a second.  
[This e-book uses the alternative spelling meter.]

The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.  
[The international prototype is a platinum-iridium cylinder stored in a vault of the International Bureau of Weights and
Measures in Sèvres near Paris, France.]

The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the caesium 133 atom. This definition refers to a caesium atom at rest at a temperature of .

The kelvin, unit of thermodynamic temperature, is the fraction 1/  of the thermodynamic temperature of the triple point
of water. This definition refers to water having the isotopic composition defined exactly by the following amount-of-substance
ratios: 0.000 155 76 mole of H per mole of H, 0.000 379 9 mole of O per mole of O, and 0.002 005 2 mole of O per
mole of O.

The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 
kilogram of carbon 12; its symbol is “mol”. When the mole is used, the elementary entities must be specified and may be atoms,
molecules, ions, electrons, other particles, or specified groups of such particles. In this definition, it is understood that unbound
atoms of carbon 12, at rest and in their ground state, are referred to.

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible
circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 
newton per metre of length.

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 
 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

This page titled 15.1: Appendix A- Definitions of the SI Base Units is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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15.2: Appendix B- Physical Constants
The following table lists values from The Nist Reference on Constants, Units, and Uncertainty of fundamental physical constants
used in thermodynamic calculations. Except for those marked “exact,” they are the 2010 CODATA (Committee on Data for
Science and Technology) recommended values. The number in parentheses at the end of a value is the standard deviation
uncertainty in the right-most digits of the value.

This page titled 15.2: Appendix B- Physical Constants is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.
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15.3: Appendix C- Symbols for Physical Quantities
This appendix lists the symbols for most of the variable physical quantities used in this e-book. The symbols are those
recommended in the IUPAC Green Book (Ian Mills et al, Quantities, Units and Symbols in Physical Chemistry, 2nd edition,
Blackwell, Oxford, 1993) except for quantities followed by an asterisk ( ). The first table lists Roman letter symbols, and the
second lists Greek letter symbols.

∗

Symbol

A

As

a

B

C

Cp

CV

c

E

E

Ecell

Ej

Esys

F

f

g

G

h

H

H

I

Im

Ic

K

Ka

Kp

Ks

kH,i

kc,i

km,i

l

L

M

M

Physical quantity

Helmholtz energy

surface area

activity

second virial coefficient

number of components ∗

heat capacity at constant pressure

heat capacity at constant volume

concentration

energy

electrode potential

electric field strength

cell potential

liquid junction potential

system energy in a lab frame

force

number of degrees of freedom ∗

fugacity

acceleration of free fall

Gibbs energy

height, elevation

enthalpy

magnetic field strength

electric current

ionic strength, molality basis

ionic strength, concentration basis

thermodynamic equilibrium constant

acid dissociation constant

equilibrium constant, pressure basis

solubility product

Henry’s law constant of species i,

mole fraction basis

Henry’s law constant of species i,

concentration basis∗

Henry’s law constant of species i,

molality basis∗

length, distance

relative partial molar enthalpy∗

molar mass

magnetization

SI unit

J

m2

(dimensionless)

m3  mol−1

(dimensionless)

J K−1

J K−1

mol m−3

J

V

V m−1

V

V

J

N

(dimensionless)

Pa

m s−2

J

m

J

A m−1

A

mol kg−1

mol m−3

(dimensionless)

(dimensionless)

Pa∑ ν

(dimensionless)

Pa

Pa m3  mol−1

Pa kg mol−1

m

J mol−1

kg mol−1

A m−1
(15.3.1)
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Mr

m

mi

N

n

P

p

P

Q

Qsys

Qrxn

q

Rel

S

s

T

t

U

V

v

w

wel

w′

x

y

Z

z

relative molecular mass (molecular weight)

mass

molality of species i

number of entities (molecules, atoms, ions,

formula units, etc.)

amount of substance

number of phases ∗

pressure

partial pressure

dielectric polarization

electric charge

charge entering system at right conductor ∗

reaction quotient∗

heat

electric resistance∗

entropy

solubility

number of species ∗

thermodynamic temperature

time

Celsius temperature

internal energy

volume

specific volume

velocity, speed

work

mass fraction (weight fraction)

electrical work∗

nonexpansion work∗

mole fraction in a phase

Cartesian space coordinate

mole fraction in gas phase

Cartesian space coordinate

compression factor (compressibility factor)

mole fraction in multiphase system ∗

charge number of an ion

electron number of cell reaction

Cartesian space coordinate

(dimensionless)

kg

mol kg−1

(dimensionless)

mol

(dimensionless)

Pa

Pa

C m−2

C

C

(dimensionless)

J

Ω

J K−1

mol m−3

(dimensionless)

K

s

C∘

J

m3

m3  kg−1

m s−1

J

(dimensionless)

J

J

(dimensionless)

m

(dimensionless)

m

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

m

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23775?pdf


15.3.3 https://chem.libretexts.org/@go/page/23775

This page titled 15.3: Appendix C- Symbols for Physical Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or
curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

Symbol

α

γ

γi

γm,i

γc,i

γx,i

γ±

Γ

ϵ

ϑ

κ

κT

μ

μJT

ν

ν+

ν−

ξ

Π

ρ

τ

ϕ

Δϕ

ϕm

ΦL

ω

Physical quantity

degree of reaction, dissociation, etc.

cubic expansion coefficient

surface tension

activity coefficient of species i,

pure liquid or solid standard state ∗

activity coefficient of species i,

molality basis

activity coefficient of species i,

concentration basis

activity coefficient of species i,

mole fraction basis

mean ionic activity coefficient

pressure factor (activity of a reference state)
∗

efficiency of a heat engine

energy equivalent of a calorimeter∗

angle of rotation

reciprocal radius of ionic atmosphere

isothermal compressibility

chemical potential

Joule–Thomson coefficient

number of ions per formula unit

stoichiometric number

number of cations per formula unit

number of anions per formula unit

advancement (extent of reaction)

osmotic pressure

density

torque∗

fugacity coefficient

electric potential

electric potential difference

osmotic coefficient, molality basis

relative apparent molar enthalpy of solute ∗

angular velocity

SI unit

(dimensionless)

K−1

,N m−1 J m−2

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

J K−1

(dimensionless)

m−1

Pa−1

J mol−1

K Pa−1

(dimensionless)

(dimensionless)

(dimensionless)

(dimensionless)

mol

Pa

kg m−3

J

(dimensionless)

V

V

(dimensionless)

Jmol−1

s−1

(15.3.2)
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15.4: Appendix D- Miscellaneous Abbreviations and Symbols

D.1 Physical States 

These abbreviations for physical states (states of aggregation) may be appended in parentheses to chemical formulas or used as
superscripts to symbols for physical quantities. All but “mixt” are listed in the IUPAC Green Book (E. Richard Cohen et al,
Quantities, Units and Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, p. 54).

D.2 Subscripts for Chemical Processes 
These abbreviations are used as subscripts to the  symbol. They are listed in the IUPAC Green Book (E. Richard Cohen et al,
Quantities, Units and Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, p. 59–60).

The combination , where “p” is any one of the abbreviations below, can be interpreted as an operator:  where 
is the advancement of the given process at constant temperature and pressure. For example,  is the molar
differential enthalpy of combustion.

D.3 Superscripts 

These abbreviations and symbols are used as superscripts to symbols for physical quantities. All but , int, and ref are listed as
recommended superscripts in the IUPAC Green Book (E. Richard Cohen et al, Quantities, Units and Symbols in Physical
Chemistry, 3rd edition, RSC Publishing, Cambridge, 2007, p. 60).

g

l

f

s

cd

cr

mixt

sln

aq

aq, ∞

gas or vapor

liquid

fluid (gas or liquid)

solid

condensed phase (liquid or solid)

crystalline

mixture

solution

aqueous solution

aqueous solution at infinite dilution

(15.4.1)

Δ

Δp ∂/∂Δp =
def

ξp ξp

H = (∂H/∂Δc ξc)T ,p

vap

sub

fus

trs

mix

sol

dil

ads

dpl

imm

r

at

c

f

vaporization, evaporation (l → g)

sublimation (s → g)

melting, fusion (s → l)

transition between two phases

mixing of fluids

solution of a solute in solvent

dilution of a solution

adsorption

displacement

immersion

reaction in general

atomization

combustion reaction

formation reaction

(15.4.2)

′

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23776?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/15%3A_Appendices/15.04%3A_Appendix_D-_Miscellaneous_Abbreviations_and_Symbols


15.4.2 https://chem.libretexts.org/@go/page/23776

This page titled 15.4: Appendix D- Miscellaneous Abbreviations and Symbols is shared under a CC BY 4.0 license and was authored, remixed,
and/or curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

∘

∗

′

∞

id

int

E

ref

standard

pure substance

Legendre transform of a thermodynamic potential

infinite dilution

ideal

integral

excess quantity

reference state

(15.4.3)
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15.5: Appendix E- Calculus Review

E.1 Derivatives 

Let  be a function of the variable , and let  be the change in  when  changes by . Then the derivative  is the
ratio  in the limit as  approaches zero. The derivative  can also be described as the rate at which  changes with 

, and as the slope of a curve of  plotted as a function of .

The following is a short list of formulas likely to be needed. In these formulas,  and  are arbitrary functions of , and  is a
constant.

E.2 Partial Derivatives 
If  is a function of the independent variables , , and , the partial derivative  is the derivative  with  and 
held constant. It is important in thermodynamics to indicate the variables that are held constant, as  is not necessarily
equal to  where  and  are variables different from  and .

The variables shown at the bottom of a partial derivative should tell you which variables are being used as the independent

variables. For example, if the partial derivative is  then  is being treated as a function of , , and .

E.3 Integrals 
Let  be a function of the variable . Imagine the range of  between the limits  and  to be divided into many small increments
of size . Let  be the value of  when  is in the middle of the range of the th increment. Then the integral

is the sum  in the limit as each  approaches zero and the number of terms in the sum approaches infinity. The
integral is also the area under a curve of  plotted as a function of , measured from  to . The function  is the
integrand, which is integrated over the integration variable .

This e-book uses the following integrals:

Here are examples of the use of the expression for the third integral with  set equal to  and to :

f x Δf f x Δx df/ dx

Δf/Δx Δx df/ dx f

x f x

u v x a

= a
d( )ua

dx
ua−1 du

dx

= u +v
d(uv)

dx

dv

dx

du

dx

=( )(v −u )
d(u/v)

dx

1

v2

du

dx

dv

dx

=
dln(ax)

dx

1

x

= a
d( )eax

dx
eax

= ⋅
df(u)

dx

df(u)

du

du

dx

f x y z (∂f/∂x)y,z df/ dx y z

(∂f/∂x)y,z

(∂f/∂x)a,b a b y z

( )
∂f

∂y a,b

f y a b

f x x x′ x′′

Δ (i = 1, 2, …)xi fi f x i

f dx∫
x′′

x′

(15.5.1)

Δ∑i fi xi Δxi

f x x = x′ x = x′′ f

x

dx = −∫
x′′

x′

x′′ x′

= ln∫
x′′

x′

dx

x

∣

∣
∣
x′′

x′

∣

∣
∣

dx = [( −( ] (a is a constant other than −1)∫
x′′

x′

xa 1

a +1
x′′)a+1 x′)a+1

= ln (a is a constant)∫
x′′

x′

dx

ax +b

1

a

∣

∣
∣

a +bx′′

a +bx′

∣

∣
∣

a 1 −2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23777?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/15%3A_Appendices/15.05%3A_Appendix_E-_Calculus_Review


15.5.2 https://chem.libretexts.org/@go/page/23777

E.4 Line Integrals 
A line integral is an integral with an implicit single integration variable that constraints the integration to a path.

The most frequently-seen line integral in this e-book, , will serve as an example. The integral can be evaluated in three
different ways:

1. The integrand  can be expressed as a function of the integration variable , so that there is only one variable. For example, if 
 equals  where  is a constant, the line integral is given by .

2. If  and  can be written as functions of another variable, such as time, that coordinates their values so that they follow the
desired path, this new variable becomes the integration variable.

3. The desired path can be drawn as a curve on a plot of  versus ; then  is equal in value to the area under the curve.

This page titled 15.5: Appendix E- Calculus Review is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard
DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

x dx = [( −( ]∫
x′′

x′

1

2
x′′)2 x′)2

= −( − )∫
x′′

x′

dx

x2

1

x′′

1

x′

∫p dV

p V

p c/V c ∫p dV = c (1/V )dV = c ln( / )∫ V2

V1
V2 V1

p V

p V ∫p dV
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15.6: Appendix F- Mathematical Properties of State Functions
A state function is a property of a thermodynamic system whose value at any given instant depends only on the state of the system
at that instant (Sec. 2.4).

F.1 Differentials 
The differential  of a state function  is an infinitesimal change of . Since the value of a state function by definition depends
only on the state of the system, integrating  between an initial state  and a final state  yields the change in , and this change is
independent of the path:

A differential with this property is called an exact differential. The differential of a state function is always exact.

F.2 Total Differential 

A state function  treated as a dependent variable is a function of a certain number of independent variables that are also state
functions. The total differential of  is  expressed in terms of the differentials of the independent variables and has the form

There are as many terms in the expression on the right side as there are independent variables. Each partial derivative in the
expression has all independent variables held constant except the variable shown in the denominator.

Figure F.1 interprets this expression for a function  of the two independent variables  and . The shaded plane represents a small
element of the surface .

Consider a system with three independent variables. If we choose these independent variables to be , , and , the total
differential of the dependent state function  takes the form

where we can identify the coefficients as

These coefficients are themselves, in general, functions of the independent variables and may be differentiated to give mixed
second partial derivatives; for example:

The second partial derivative , for instance, is the partial derivative with respect to  of the partial derivative of  with
respect to . It is a theorem of calculus that if a function  is single valued and has continuous derivatives, the order of
differentiation in a mixed derivative is immaterial. Therefore the mixed derivatives  and , evaluated for the
system in any given state, are equal:

The general relation that applies to a function of any number of independent variables is

where  and  are any two of the independent variables,  is ,  is , and each partial derivative has all independent
variables held constant except the variable shown in the denominator. This general relation is the Euler reciprocity relation, or

df f f

df 1 2 f

df = − = Δf∫
f2

f1

f2 f1 (F.1.1)

f

f df

df = dx + dy + dz +…( )
∂f

∂x
( )

∂f

∂y
( )

∂f

∂z
(F.2.1)

f x y

f = f(x, y)

x y z

f

df = a dx +b dy +c dz (F.2.2)

a = b = c =( )
∂f

∂x y,z

( )
∂f

∂y x,z

( )
∂f

∂z x,y

(F.2.3)

= =( )
∂a

∂y x,z

f∂2

∂y∂x
( )

∂b

∂x y,z

f∂2

∂x∂y
(F.2.4)

f/∂y∂x∂2 y f

x f

f/∂y∂x∂2 f/∂x∂y∂2

=( )
∂a

∂y x,z

( )
∂b

∂x y,z

(F.2.5)

=( )
∂X

∂y
( )

∂Y

∂x
(F.2.6)

x y X ∂f/∂x Y /∂y∂f
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reciprocity relation for short. A necessary and sufficient condition for  to be an exact differential is that the reciprocity relation
is satisfied for each pair of independent variables.

F.3 Integration of a Total Differential 

If the coefficients of the total differential of a dependent variable are known as functions of the independent variables, the
expression for the total differential may be integrated to obtain an expression for the dependent variable as a function of the
independent variables.

For example, suppose the total differential of the state function  is given by Eq. F.2.2 and the coefficients are known
functions , , and . Because  is a state function, its change between  and  is
independent of the integration path taken between these two states. A convenient path would be one with the following three
segments:

1. The expression for  is then the sum of the three integrals and a constant of integration.

Here is an example of this procedure applied to the total differential

An expression for the function  in this example is given by the sum

where primes are omitted on the second and third lines because the expressions are supposed to apply to any values of , , and 
.  is an integration constant. You can verify that the third line of Eq. F.3.2 gives the correct expression for  by taking partial

derivatives with respect to , , and  and comparing with Eq. F.3.1.

A different kind of integration can be used to express a dependent extensive property in terms of independent extensive
properties. An extensive property of a thermodynamic system is one that is additive, and an intensive property is one that is not
additive and has the same value everywhere in a homogeneous region (Sec. 2.1.1). Suppose we have a state function  that is an
extensive property with the total differential

where the independent variables  are extensive and the coefficients  are intensive. If the independent
variables include those needed to describe an open system (for example, the amounts of the substances), then it is possible to
integrate both sides of the equation from a lower limit of zero for each of the extensive functions while holding the intensive
functions constant:

Note that a term of the form  where  is intensive becomes zero when integrated with intensive functions held constant,
because  is this case is zero.

F.4 Legendre Transforms
A Legendre transform of a state function is a linear change of one or more of the independent variables made by subtracting
products of conjugate variables.

To understand how this works, consider a state function  whose total differential is given by

In the expression on the right side, , , and  are being treated as the independent variables. The pairs  and ,  and , and 
and  are conjugate pairs. That is,  and  are conjugates,  and  are conjugates, and  and  are conjugates.

df

f(x, y, z)

a(x, y, z) b(x, y, z) c(x, y, z) f f(0, 0, 0) f( , , )x′ y′ z′

f(x, y, z)

df = (2xy)dx +( +z)dy +(y −9 )dzx2 z2 (F.3.1)

f

f = (2x ⋅ 0)dx + [( +0] dy + ( −9 )dz +C∫
x′

0

∫
y ′

0

x′)2 ∫
z ′

0

y′ z2

= 0 + y +(yz −9 /3) +Cx2 z3

= y +yz −3 +Cx2 z3

(F.3.2)

x y

z C f

x y z

f

df = a dx +b dy +c dz +… (F.3.3)

x, y, z, … a, b, c, …

df = a dx +b dy +c dz +…∫
f ′

0

∫
x′

0

∫
y ′

0

∫
z ′

0

(F.3.4)

= a +b +c +…f ′ x′ y′ z′ (F.3.5)

c du u

du

f

df = a dx +b dy +c dz (F.4.1)

x y z a x b y c

z a x b y c z
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For the first example of a Legendre transform, we define a new state function  by subtracting the product of the conjugate
variables  and :

The function  is a Legendre transform of . We take the differential of Eq. F.4.2

and substitute for  from Eq. F.4.1:

Equation F.4.4 gives the total differential of  with , , and  as the independent variables. The functions  and  have
switched places as independent variables. What we did in order to let  replace  as an independent variable was to subtract
from  the product of the conjugate variables  and .

Because the right side of Eq. F.4.4 is an expression for the total differential of the state function , we can use the expression to
identify the coefficients as partial derivatives of  with respect to the new set of independent variables:

We can also use Eq. F.4.4 to write new reciprocity relations, such as

We can make other Legendre transforms of  by subtracting one or more products of conjugate variables. A second example of
a Legendre transform is

whose total differential is

Here  has replaced  and  has replaced  as independent variables. Again, we can identify the coefficients as partial
derivatives and write new reciprocity relations.

If we have an algebraic expression for a state function as a function of independent variables, then a Legendre transform
preserves all the information contained in that expression. To illustrate this, we can use the state function  and its Legendre
transform  described above. Suppose we have an expression for —this is  expressed as a function of the
independent variables , , and . Then by taking partial derivatives of this expression, we can find according to Eq. F.2.3
expressions for the functions , , and .

Now we perform the Legendre transform of Eq. F.4.7:  with total differential  (Eq.
F.4.8). The independent variables have been changed from , , and  to , , and .

We want to find an expression for  as a function of these new variables, using the information available from the original
function . To do this, we eliminate  from the known functions  and  and solve for  as a function
of , , and . We also eliminate  from  and  and solve for  as a function of , , and . This gives us
expressions for  and  which we substitute into the expression for , turning it into the function 

. Finally, we use the functions of the new variables to obtain an expression for 
.

The original expression for  and the new expression for  contain the same information. We could take the
expression for  and, by following the same procedure with the Legendre transform , retrieve the
expression for . Thus no information is lost during a Legendre transform.

f1

a x

f −axf1 =
def

(F.4.2)

f1 f

d = df −a dx −x daf1 (F.4.3)

df

df1 = (a dx +b dy +c dz) −a dx −x da

= −x da +b dy +c dz
(F.4.4)

f1 a y z x a

a x

f a x

f1

f1

−x = b = c =( )
∂f1

∂a y,z

( )
∂f1

∂y a,z

( )
∂f1

∂z a,y

(F.4.5)

− =( )
∂x

∂y a,z

( )
∂b

∂a y,z

(F.4.6)

f

f −by −czf2 =
def

(F.4.7)

df2 = df −b dy −y db −c dz −zdc

= a dx −y db −zdc
(F.4.8)

b y c z

f

f2 f(x, y, z) f

x y z

a(x, y, z) b(x, y, z) c(x, y, z)

= f −by −czf2 d = a dx −y db −zdcf2

x y z x b c

f2

f(x, y, z) z b(x, y, z) c(x, y, z) y

x b c y b(x, y, z) c(x, y, z) z x b c

y(x, b, c) z(x, b, c) f(x, y, z)

f(x, b, c)

(x, b, c) = f(x, b, c) −by(x, b, c) −cz(x, b, c)f2

f(x, y, z) (x, b, c)f2

(x, b, c)f2 f = +by +czf2

f(x, y, z)
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15.7: Appendix G- Forces, Energy, and Work
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15.8: Appendix H- Standard Molar Thermodynamic Properties
The values in these tables are for a temperature of 298.15 K (25.00 ) and the standard pressure . Solute standard
states are based on molality. A crystalline solid is denoted by cr.

Most of the values in this table come from a project of the Committee on Data for Science and Technology (CODATA) to establish
a set of recommended, internally consistent values of thermodynamic properties. The values of  and  shown with
uncertainties are values recommended by CODATA (J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for
Thermodynamics, Hemisphere Publishing Corp., New York, 1989).

C∘ = 1 barp∘

ΔfH
∘ S∘

m

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23780?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/15%3A_Appendices/15.08%3A_Appendix_H-_Standard_Molar_Thermodynamic_Properties


15.8.2 https://chem.libretexts.org/@go/page/23780

Inorganic substance

Ag(cr)

AgCl(cr)

C(cr, graphite)

CO(g)

CO (g)2

Ca(cr)

CaCO (cr, calcite)3

CaO(cr)

Cl (g)2

F (g)2

H (g)2

HCl(g)

HF(g)

HI(g)

H O(l)2

H O(g)2

H S(g)2

Hg(l)

Hg(g)

HgO(cr, red)

Hg Cl (cr)2 2

I (cr)2

K(cr)

KI(cr)

KOH(cr)

N (g)2

NH (g)3

NO (g)2

N O (g)2 4

Na(cr)

NaCl(cr)

O (g)2

O (g)3

P(cr, white)

S(cr, rhombic)

SO (g)2

Si(cr)

SiF (g)4

SiO (cr, α-quartz)2

Zn(cr)

ZnO(cr)

ΔfH
∘

kJ mol−1

0

−127.01 ±0.05

0

−110.53 ±0.17

−393.51 ±0.13

0

−1206.9

−634.92 ±0.90

0

0

0

−92.31 ±0.10

−273.30 ±0.70

26.50 ±0.10

−285.830 ±0.040

−241.826 ±0.040

−20.6 ±0.5

0

61.38 ±0.04

−90.79 ±0.12

−265.37 ±0.40

0

0

−327.90

−424.72

0

−45.94 ±0.35

33.10

9.08

0

−411.12

0

142.67

0

0

−296.81 ±0.20

0

−1615.0 ±0.8

−910.7 ±1.0

0

−350.46 ±0.27

S∘
m

J K−1  mol−1

42.55 ±0.20

96.25 ±0.20

5.74 ±0.10

197.660 ±0.004

213.785 ±0.010

41.59 ±0.40

92.9

38.1 ±0.4

223.081 ±0.010

202.791 ±0.005

130.680 ±0.003

186.902 ±0.005

173.779 ±0.003

206.590 ±0.004

69.95 ±0.03

188.835 ±0.010

205.81 ±0.05

75.90 ±0.12

174.971 ±0.005

70.25 ±0.30

191.6 ±0.8

116.14 ±0.30

64.68 ±0.20

106.37

78.90

191.609 ±0.004

192.77 ±0.05

240.04

304.38

51.30 ±0.20

72.11

205.152 ±0.005

238.92

41.09 ±0.25

32.054 ±0.050

248.223 ±0.050

18.81 ±0.08

282.76 ±0.50

41.46 ±0.20

41.63 ±0.15

43.65 ±0.40

ΔfG
∘

kJ mol−1

0

−109.77

0

−137.17

−394.41

0

−1128.8

−603.31

0

0

0

−95.30

−275.40

1.70

−237.16

−228.58

−33.44

0

31.84

−58.54

−210.72

0

0

−323.03

−378.93

0

−16.41

51.22

97.72

0

−384.02

0

163.14

0

0

−300.09

0

−1572.8

−856.3

0

−320.48

(15.8.1)
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Organic compound

CH (g)4

CH OH(l)3

CH CH OH(l)3 2

C H (g)2 2

C H (g)2 4

C H (g)2 6

C H (g)3 8

C H (l, benzene)6 6

ΔfH
∘

kJ mol−1

−74.87

−238.9

−277.0

226.73

52.47

−83.85

−104.7

49.04

S∘
m

J K−1  mol−1

186.25

127.2

159.9

200.93

219.32

229.6

270.31

173.26

ΔfG
∘

kJ mol−1

−50.77

−166.6

−173.8

209.21

68.43

−32.00

−24.3

124.54

(15.8.2)

Ionic solute

Ag (aq)+

CO (aq)2−
3

Ca (aq)2+

Cl (aq)−

F (aq)−

H (aq)+

HCO (aq)−
3

HS (aq)−

HSO (aq)−
4

Hg (aq)2+
2

I (aq)−

K (aq)+

NH (aq)+
4

NO (aq)−
3

Na (aq)+

OH (aq)−

S (aq)2−

SO (aq)2−
4

ΔfH
∘

kJ mol−1

105.79 ±0.08

−675.23 ±0.25

−543.0 ±1.0

−167.08 ±0.10

−335.35 ±0.65

0

−689.93 ±2.0

−16.3 ±1.5

−886.9 ±1.0

166.87 ±0.50

−56.78 ±0.05

−252.14 ±0.08

−133.26 ±0.25

−206.85 ±0.40

−240.34 ±0.06

−230.015 ±0.040

33.1

−909.34 ±0.40

S
∘
m

J K−1  mol−1

73.45 ±0.40

−50.0 ±1.0

−56.2 ±1.0

56.60 ±0.20

−13.8 ±0.8

0

98.4 ±0.5

67 ±5

131.7 ±3.0

65.74 ±0.80

106.45 ±0.30

101.20 ±0.20

111.17 ±0.40

146.70 ±0.40

58.45 ±0.15

−10.90 ±0.20

−14.6

18.50 ±0.40

ΔfG
∘

kJ mol−1

77.10

−527.90

−552.8

−131.22

−281.52

0

−586.90

12.2

−755.4

153.57

−51.72

−282.52

−79.40

−110.84

−261.90

−157.24

86.0

−744.00

(15.8.3)
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15.9: Appendix I- Answers to Selected Problems
3.3(b) 

3.4(c) 
, .

3.5 

3.6(c) 
, . For , .

3.11 
 (  )

4.4 

4.5 
 for both processes;  and .

5.4(a) 

5.5(a) 
, , , 

5.5(c) 

6.1 

7.6(a)  
  

  
  

7.6(b) 

7.7(b) 

7.8(b) 

7.11 

7.12 
, 

7.13(a) 

7.13(b) 

q = −w = 1.00 × J105

w = 1.99 × J103 q = −1.99 × J103

0.0079%

→ nR /( +nR)V2 V1 CV → ∞T2 = (3/2)nRCV / → 0.4V2 V1

9.58 × s103 2 hr 40 min

ΔS = 0.054 J K−1

ΔS = 549 J K−1 ∫dq/ = 333 J KText
−1 0

S = nR ln[c ( −b)]+( )nRT 3/2 V

n

5

2

q = 0 w = 1.50 × J104 ΔU = 1.50 × J104 ΔH = 2.00 × J104

ΔS = 66.7 J K−1

≈ 151.6 J K  molSm
−1 −1

α = 8.519 × K10−4 −1

= 4.671 × barκt 10−5 −1

(∂p/∂T = 18.24 bar K)V
−1

(∂U/∂V = 5437 bar)T

Δp ≈ 1.8 bar

(∂ /∂p = −4.210 × J K  Pa  molCp,m )T 10−8 −1 −1 −1

8 × K10−4 −1

5.001 × J103

ΔH = 2.27 × J104 ΔS = 43.6 J K−1

= 42.3 J K  molC ∘
p,m

−1 −1

≈ 52.0 J K  molCp,m
−1 −1
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7.14(a) 

7.15(b) 

7.16(a) 
, 

7.16(b) 

8.2(a) 

8.2(b) 
, 

8.4 

8.5 

8.6(a) 

8.6(b) 

8.7(a) 

8.7(b) 

8.7(c) 

8.8(b) 

8.9 

9.2(b) 
  
  

9.4  
real gas:   
ideal gas: 

9.5(a) 
 
  

  

9.5(b) 
 
  

2.56 J K  g−1 −1

f = 17.4 bar

ϕ = 0.739 f = 148 bar

B = −7.28 × m  mol10−5 3 −1

(l) = 253.6 J K  molS∘
m

−1 −1

= 88.6 J K  molΔvapS∘ −1 −1 = 2.748 × J molΔvapH ∘ 104 −1

4.5 × bar10−3

19 J mol−1

352.82 K

3.4154 × J mol104 −1

3.62 × Pa K103 −1

3.56 × Pa K103 −1

99.60 C∘

= 4.084 × J molΔvapH ∘ 104 −1

0.93 mol

( = 0.5) ≈ 125.13 cm  molVA xB
3 −1

( = 0.5) ≈ 158.01 cm  molVB xB
3 −1

≈ 157.15 cm  molV ∞
B

3 −1

p = 1.9743 bar

p = 1.9832 bar

= 8.83 ×xN2 10−6

= 4.65 ×xO2 10−6

= 0.763yN2

= 0.205yO2

= 9.85 ×xN2 10−6

= 2.65 ×xO2 10−6
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9.7(b) 
, 

9.8(a) 
In the mixture of composition , the activity coefficient is .

9.9(d) 

9.11 
Values for : , ; the limiting slopes are , 

9.13 
  

  
  

  

9.14(b) 

9.15(a) 

9.15(b) 
 

mass binding ratio 

10.2 

11.1 
 

11.2(b) 
: no change 

: subtract  
: add 

11.3 
 

11.4(a) 
, , 

11.4(b) 

11.4(c) 

11.5 

11.6 
 

= 0.851yN2

= 0.117yO2

= 0.03167 barfA = 0.03040 barfA

= 0.9782xA ≈ 11.5γB

≈ 680 kPakH,A

/ = 20mB m∘ = 1.026γA = 0.526γm,B d / d( / ) = 0γA mB m∘

d / d( / ) = −0.09γm,B mB m∘

= 0.235 barpN2

= 0.815yN2

= 0.0532 barpO2

= 0.185yO2

p = 0.288 bar

h = 1.2 m

p(7.20 cm) −p(6.95 cm) = 1.2 bar

= 187 kg molMB
−1

= 1.37

γ± = 0.392

= −63.94 kJ molΔrH
∘ −1

K = 4.41 × 10−2

ΔfH
∘

ΔfS
∘ 0.219 J K  mol−1 −1

ΔfG
∘ 65 J mol−1

p(298.15 K) = 2.6 × bar10−6

p(273.15 K) = 2.7 × bar10−7

−240.34 kJ mol−1 −470.36 kJ mol−1 −230.02 kJ mol−1

−465.43 kJ mol−1

−39.82 kJ mol−1

ΔH = 0.92 kJ

= −0.405 J molLA
−1
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11.7(a) 
State 1: 

 
 

amount of O  consumed:  
State 2: 

 
 

\tx{mass of H O}=

11.7(b) 
 

11.7(c) 
State 1:  

 
 

State 2: 
 

11.7(d) 
State 1: 

 
State 2: 

 
 

11.7(e) 
State 2: 

 
 

11.7(f) 
 

State 1:  
State 2: 

11.7(g) 
State 1: 

 
 

 
State 2: 

 
 
 

 

11.7(h) 
State 1: 

= 0.810 kJ molLB
−1

= 7.822 × molnC H6 14 10−3

= 0.05560 molnH O2

2 0.07431 mol

= 0.11035 molnH O2

= 0.04693 molnCO2

2 1.9880 g

(C H ) = 131.61 cm  molVm 6 14
3 −1

(H O) = 18.070 cm  molVm 2
3 −1

V (C H ) = 1.029 cm6 14
3

V (H O) = 1.005 cm2
3

= 348.0 cmV g 3

V (H O) = 1.994 cm2
3

= 348.0 cmV g 3

= 0.429 molnO2

= 0.355 molnO2

= 0.883yO2

= 0.117yCO2

= 27.9 barp2

= 24.6 barpO2

= 3.26 barpCO2

(0.03169 bar) = 0.03164 barfH O2

= 0.03234 barfH O2

= 0.03229 barfH O2

= 0.925ϕH O2

= 0.981ϕO2

= 29.4 barfO2

= 0.896ϕH O2

= 0.983ϕO2

= 0.910ϕCO2

= 24.2 barfO2

= 2.97 barfCO2
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State 2:  
 

11.7(i) 
State 1: 

 
 

State 2: 
 

 
 

11.7(j) 
H O vaporization:  
H O condensation: 

11.7(k) 
O  dissolution:  
O  desolution:  
CO  desolution: 

11.7(l) 
C H (l) compression:  
solution compression:  
solution decompression: 

11.7(m) 
O  compression:  
gas mixture:  
gas mixture expansion: 

11.7(n) 

11.7(o) 

11.7(p) 

11.8 

11.9 

11.10 

11.11(a) 

11.11(b) 
 

= 5.00 × molng
H O2

10−4

= 0.05510 molnl
H O2

= 5.19 × moln
g
H O2

10−4

= 0.10983 molnl
H O2

= 825 bar kg molkm,O2
−1

= 3.57 × molnO2 10−5

= 823 bar kg molkm,O2
−1

= 30.8 bar kg molkm,CO2
−1

= 5.85 × molnO2 10−5

= 1.92 × molnCO2
10−4

2 ΔU = +20.8 J

2 ΔU = −21.6 J

2 ΔU = −0.35 J

2 ΔU = 0.57 J

2 ΔU = 3.32 J

6 14 ΔU = −1.226 J

ΔU = −0.225 J

ΔU = 0.414 J

2 ΔU = −81 J

dB/ dT = 0.26 × m K  mol10−6 3 −1 −1

ΔU = 87 J

ΔU = 8 J

= −4154.4 kJ molΔcU ∘ −1

= −4163.1 kJ molΔcH ∘ −1

= −198.8 kJ molΔfH
∘ −1

= 2272 KT2

p(O ) = 2.55 × bar2 10−5

K = 3.5 × 1041

= 2.8 × barpH2 10−42

= 6.9 ×NH2
10−17
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11.11(c) 

11.12(b) 

11.13(c) 

12.1(b) 
 

12.4 
 

12.5 

12.6 
 

12.7(a) 
 

 
 

12.8(a) 

12.8(b) 

12.10(a) 
  

12.10(b) 

12.10(c) 
  

12.13(a) 
, 

12.13(b) 

12.13(c) 

12.13(d) 

12.13(e) 

t = 22 s

p ≈ 1.5 × bar104

K = 0.15

T = 1168 K

= 1.64 × J molΔrH
∘ 105 −1

= 1.860 K kg molKf
−1

= 0.5118 K kg molKb
−1

≈ 5.6 × g molMB 104 −1

/kJ mol = −3.06, 0, 6.35Δsol,BH ∘ −1

/J K  mol = −121.0, −110.2, −88.4Δsol,BS∘ −1 −1

= = 1.20 × mol kgmα
+ mα

− 10−3 −1

= 1.80 × mol kgm
β
+ 10−3 −1

= 0.80 × mol kgmβ
− 10−3 −1

= 2.00 × mol kgmP 10−6 −1

= 2.44 barpl

f(2.44 bar) −f(1.00 bar) = 3.4 × bar10−5

= 1.8 ×xB 10−7

= 1.0 × mol kgmB 10−5 −1

= −1.99 × J molΔsol,BH ∘ 104 −1

K = 4.4 × 10−7

= 9.3 kJ molΔrH
∘ −1

p = 92399.6 Pa = 0.965724yB

= 0.995801ϕA

= 3164.47 PafA

= 0.965608yB

Z = 0.999319

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/23781?pdf


15.9.7 https://chem.libretexts.org/@go/page/23781

12.13(f) 

12.13(g) 

12.15(a) 

12.15(b) 

12.16 

12.17(a) 
 

12.17(b) 

12.18 
 

12.19(a) 

12.20(a) 

12.20(b) 

13.1(a) 

13.1(b) 

13.1(c) 

13.10(a) 
, 

13.10(b) 
, 

14.3(a) 
 

 

14.3(b) 

14.3(c) 
 

\units{J K  mol } 

p = 92347.7 Pa

= 4.40890 × PakH,B 109

= 0.9826γx,B

= 4.19 ×xB 10−4

K = 1.2 × 10−6

α = 0.129

= 1.29 × mol kgm+ 10−3 −1

α = 0.140

(Cl , aq) = −167.15 kJ molΔfH
∘ − −1

(Cl , aq) = 56.46 J K  molS∘
m

− −1 −1

= 1.783 ×Ks 10−10

= −65.769 kJ molΔrH
∘ −1

(Ag , aq) = 105.84 kJ molΔfH
∘ + −1

F = 4

F = 3

F = 2

(top) = 0.02xB (bottom) = 0.31xB

= 2.1 molnA = 1.0 molnB

= −21.436 kJ molΔrG∘ −1

= −62.35 J K  molΔrS∘ −1 −1

= −40.03 kJ molΔrH ∘ −1

(AgCl, s) = −127.05 kJ molΔfH
∘ −1

(AgCl, s) = 96.16 J K  molS∘
m

−1 −1

(AgCl, s) = −57.93ΔfS
∘ −1 −1

(AgCl, s) = −109.78 kJ molΔfG
∘ −1
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14.4(b) 
 

14.5 

14.6(b) 

14.7(b) 

14.7(c) 

14.8 

14.9(c) 

14.9(d) 
In the cell: 

  
In a reaction vessel: 

14.9(e) 

This page titled 15.9: Appendix I- Answers to Selected Problems is shared under a CC BY 4.0 license and was authored, remixed, and/or curated
by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

(AgCl, s) = −126.81 kJ molΔfH
∘ −1

(AgCl, s) = −109.59 kJ molΔfG
∘ −1

= 1.76 ×Ks 10−10

= 0.756γ±

= −210.72 kJ molΔfG∘ −1

= 1.4 ×Ks 10−18

= 0.071 VE∘

= 1.36 VE∘
cell, eq

dq/ dξ = 2.27 kJ mol−1

dq/ dξ = −259.67 kJ mol−1

d / dT = 3.9 × V KE∘
cell, eq 10−5 −1
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Index
C
Carnot cycle

4.3: Concepts Developed with Carnot Engines 
chemical potential

7.8: Chemical Potential and Fugacity 
Clausius inequality

4.4: Derivation of the Mathematical Statement of the
Second Law 

E
eutectic halt

13.2: Phase Diagrams- Binary Systems 
eutectic point

13.2: Phase Diagrams- Binary Systems 

F
fugacity

7.8: Chemical Potential and Fugacity 

O
osmotic coefficient

10.6: Mean Ionic Activity Coefficients from Osmotic
Coefficients 

P
Phase Rule

8.1: Phase Equilibria 
13: The Phase Rule and Phase Diagrams 
13.1: The Gibbs Phase Rule for Multicomponent

Systems 

T
Total Differentials

5.1: Total Differential of a Dependent Variable 

W
Washburn corrections

11.5: Reaction Calorimetry 
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