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4.4: Derivation of the Mathematical Statement of the Second Law

4.4.1 The existence of the entropy function 

This section derives the existence and properties of the state function called entropy.

Consider an arbitrary cyclic process of a closed system. To avoid confusion, this system will be the “experimental system” and the
process will be the “experimental process” or “experimental cycle.” There are no restrictions on the contents of the experimental
system—it may have any degree of complexity whatsoever. The experimental process may involve more than one kind of work,
phase changes and reactions may occur, there may be temperature and pressure gradients, constraints and external fields may be
present, and so on. All parts of the process must be either irreversible or reversible, but not impossible.

Figure 4.8 Experimental system, Carnot engine (represented by a small
square box), and heat reservoir. The dashed lines indicate the boundary
of the supersystem. 
(a) Reversible heat transfer between heat reservoir and Carnot engine. 
(b) Heat transfer between Carnot engine and experimental system. 
The infinitesimal quantities  and  are positive for transfer in the
directions indicated by the arrows.

We imagine that the experimental cycle is carried out in a special way that allows us to apply the Kelvin–Planck statement of the
second law. The heat transferred across the boundary of the experimental system in each infinitesimal path element of the cycle is
exchanged with a hypothetical Carnot engine. The combination of the experimental system and the Carnot engine is a closed
supersystem (see Fig. 4.8). In the surroundings of the supersystem is a heat reservoir of arbitrary constant temperature . By
allowing the supersystem to exchange heat with only this single heat reservoir, we will be able to apply the Kelvin–Planck
statement to a cycle of the supersystem.

This procedure is similar to ones described by A. B. Pippard (Elements of Classical Thermodynamics for Advanced
Students of Physics, Cambridge University Press, Cambridge, 1966, Chap. 4); C. J. Adkins (Equilibrium
Thermodynamics, 3rd edition, Cambridge University Press, Cambridge, 1983, Chap. 5); and Peter T. Landsberg
(Thermodynamics and Statistical Mechanics, Dover Publications, Inc., New York, 1990, p. 53).

We assume that we are able to control changes of the work coordinates of the experimental system from the surroundings of the
supersystem. We are also able to control the Carnot engine from these surroundings, for example by moving the piston of a
cylinder-and-piston device containing the working substance. Thus the energy transferred by work across the boundary of the
experimental system, and the work required to operate the Carnot engine, is exchanged with the surroundings of the supersystem.

During each stage of the experimental process with nonzero heat, we allow the Carnot engine to undergo many infinitesimal Carnot
cycles with infinitesimal quantities of heat and work. In one of the isothermal steps of each Carnot cycle, the Carnot engine is in
thermal contact with the heat reservoir, as depicted in Fig. 4.8(a). In this step the Carnot engine has the same temperature as the
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heat reservoir, and reversibly exchanges heat  with it. The sign convention is that  is positive if heat is transferred in the
direction of the arrow, from the heat reservoir to the Carnot engine.

In the other isothermal step of the Carnot cycle, the Carnot engine is in thermal contact with the experimental system at a portion of
the system’s boundary. as depicted in Fig. 4.8(b). The Carnot engine now has the same temperature, , as the experimental system
at this part of the boundary, and exchanges heat with it. The heat  is positive if the transfer is into the experimental system.

The relation between temperatures and heats in the isothermal steps of a Carnot cycle is given by Eq. 4.3.15. From this relation we
obtain, for one infinitesimal Carnot cycle, the relation , or

After many infinitesimal Carnot cycles, the experimental cycle is complete, the experimental system has returned to its initial state,
and the Carnot engine has returned to its initial state in thermal contact with the heat reservoir. Integration of Eq. 4.4.1 around the
experimental cycle gives the net heat entering the supersystem during the process:

The integration here is over each path element of the experimental process and over each surface element of the boundary of the
experimental system.

Keep in mind that the value of the cyclic integral  depends only on the path of the experimental cycle, that this process can
be reversible or irreversible, and that  is a positive constant.

In this experimental cycle, could the net heat  transferred to the supersystem be positive? If so, the net work would be negative
(to make the internal energy change zero) and the supersystem would have converted heat from a single heat reservoir completely
into work, a process the Kelvin–Planck statement of the second law says is impossible. Therefore it is impossible for  to be
positive, and from Eq. 4.4.2 we obtain the relation

This relation is known as the Clausius inequality. It is valid only if the integration is taken around a cyclic path in a direction with
nothing but reversible and irreversible changes—the path must not include an impossible change, such as the reverse of an
irreversible change. The Clausius inequality says that if a cyclic path meets this specification, it is impossible for the cyclic integral

 to be positive.

If the entire experimental cycle is adiabatic (which is only possible if the process is reversible), the Carnot engine is not needed and
Eq. 4.4.3 can be replaced by .

Next let us investigate a reversible nonadiabatic process of the closed experimental system. Starting with a particular equilibrium
state A, we carry out a reversible process in which there is a net flow of heat into the system, and in which  is either positive or
zero in each path element. The final state of this process is equilibrium state B. If each infinitesimal quantity of heat  is positive
or zero during the process, then the integral  must be positive. In this case the Clausius inequality tells us that if the
system completes a cycle by returning from state B back to state A by a different path, the integral  for this second path
must be negative. Therefore the change B A cannot be carried out by any adiabatic process.

Any reversible process can be carried out in reverse. Thus, by reversing the reversible nonadiabatic process, it is possible to change
the state from B to A by a reversible process with a net flow of heat out of the system and with  either negative or zero in each
element of the reverse path. In contrast, the absence of an adiabatic path from B to A means that it is impossible to carry out the
change A B by a reversible adiabatic process.

The general rule, then, is that whenever equilibrium state A of a closed system can be changed to equilibrium state B by a
reversible process with finite “one-way” heat (i.e., the flow of heat is either entirely into the system or else entirely out of it), it is
impossible for the system to change from either of these states to the other by a reversible adiabatic process.

A simple example will relate this rule to experience. We can increase the temperature of a liquid by allowing heat to
flow reversibly into the liquid. It is impossible to duplicate this change of state by a reversible process without heat—
that is, by using some kind of reversible work. The reason is that reversible work involves the change of a work
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coordinate that brings the system to a different final state. There is nothing in the rule that says we can’t increase the
temperature irreversibly without heat, as we can for instance with stirring work.

States A and B can be arbitrarily close. We conclude that every equilibrium state of a closed system has other equilibrium states
infinitesimally close to it that are inaccessible by a reversible adiabatic process. This is Carathéodory’s principle of adiabatic
inaccessibility. (Constantin Carathéodory in 1909 combined this principle with a mathematical theorem Carathéodory’s theorem

to deduce the existence of the entropy function. The derivation outlined here avoids the complexities of that mathematical
treatment and leads to the same results.)

Next let us consider the reversible adiabatic processes that are possible. To carry out a reversible adiabatic process, starting at an
initial equilibrium state, we use an adiabatic boundary and slowly vary one or more of the work coordinates. A certain final
temperature will result. It is helpful in visualizing this process to think of an -dimensional space in which each axis represents
one of the  independent variables needed to describe an equilibrium state. A point in this space represents an equilibrium state,
and the path of a reversible process can be represented as a curve in this space.

A suitable set of independent variables for equilibrium states of a closed system of uniform temperature consists of the temperature 
 and each of the work coordinates (Sec. 3.10). We can vary the work coordinates independently while keeping the boundary

adiabatic, so the paths for possible reversible adiabatic processes can connect any arbitrary combinations of work coordinate
values.

There is, however, the additional dimension of temperature in the -dimensional space. Do the paths for possible reversible
adiabatic processes, starting from a common initial point, lie in a volume in the -dimensional space? Or do they fall on a surface
described by  as a function of the work coordinates? If the paths lie in a volume, then every point in a volume element
surrounding the initial point must be accessible from the initial point by a reversible adiabatic path. This accessibility is precisely
what Carathéodory’s principle of adiabatic inaccessibility denies. Therefore, the paths for all possible reversible adiabatic processes
with a common initial state must lie on a unique surface. This is an -dimensional hypersurface in the -dimensional
space, or a curve if  is . One of these surfaces or curves will be referred to as a reversible adiabatic surface.

Now consider the initial and final states of a reversible process with one-way heat (i.e., each nonzero infinitesimal quantity of heat 
 has the same sign). Since we have seen that it is impossible for there to be a reversible adiabatic path between these states, the

points for these states must lie on different reversible adiabatic surfaces that do not intersect anywhere in the -dimensional space.
Consequently, there is an infinite number of nonintersecting reversible adiabatic surfaces filling the -dimensional space. (To
visualize this for , think of a flexed stack of paper sheets; each sheet represents a different reversible adiabatic surface in
three-dimensional space.) A reversible, nonadiabatic process with one-way heat is represented by a path beginning at a point on
one reversible adiabatic surface and ending at a point on a different surface. If  is positive, the final surface lies on one side of the
initial surface, and if  is negative, the final surface is on the opposite side.

4.4.2 Using reversible processes to define the entropy 

The existence of reversible adiabatic surfaces is the justification for defining a new state function , the entropy.  is specified to
have the same value everywhere on one of these surfaces, and a different, unique value on each different surface. In other words,
the reversible adiabatic surfaces are surfaces of constant entropy in the -dimensional space. The fact that the surfaces fill this
space without intersecting ensures that  is a state function for equilibrium states, because any point in this space represents an
equilibrium state and also lies on a single reversible adiabatic surface with a definite value of .
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Figure 4.9 A family of reversible adiabatic curves (two-dimensional
reversible adiabatic surfaces) for an ideal gas with  and  as
independent variables. A reversible adiabatic process moves the state of
the system along a curve, whereas a reversible process with positive heat
moves the state from one curve to another above and to the right. The
curves are calculated for  and . Adjacent
curves differ in entropy by .

We know the entropy function must exist, because the reversible adiabatic surfaces exist. For instance, Fig. 4.9 shows a family of
these surfaces for a closed system of a pure substance in a single phase. In this system,  is equal to 2, and the surfaces are two-
dimensional curves. Each curve is a contour of constant . At this stage in the derivation, our assignment of values of  to the
different curves is entirely arbitrary.

How can we assign a unique value of  to each reversible adiabatic surface? We can order the values by letting a reversible process
with positive one-way heat, which moves the point for the state to a new surface, correspond to an increase in the value of .
Negative one-way heat will then correspond to decreasing . We can assign an arbitrary value to the entropy on one particular
reversible adiabatic surface. (The third law of thermodynamics is used for this purpose—see Sec. 6.1.) Then all that is needed to
assign a value of  to each equilibrium state is a formula for evaluating the difference in the entropies of any two surfaces.

Figure 4.10 Reversible paths in –  space. The thin curves are
reversible adiabatic surfaces.  
(a) Two paths connecting the same pair of reversible adiabatic surfaces.  
(b) A cyclic path.

Consider a reversible process with positive one-way heat that changes the system from state A to state B. The path for this process
must move the system from a reversible adiabatic surface of a certain entropy to a different surface of greater entropy. An example
is the path A B in Fig. 4.10(a). (The adiabatic surfaces in this figure are actually two-dimensional curves.) As before, we combine
the experimental system with a Carnot engine to form a supersystem that exchanges heat with a single heat reservoir of constant
temperature . The net heat entering the supersystem, found by integrating Eq. 4.4.1, is

and it is positive.

Suppose the same experimental system undergoes a second reversible process, not necessarily with one-way heat, along a different
path connecting the same pair of reversible adiabatic surfaces. This could be path C D in Fig. 4.10(a). The net heat entering the
supersystem during this second process is :
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We can then devise a cycle of the supersystem in which the experimental system undergoes the reversible path A B D C A,
as shown in Fig. 4.10(b). Step A B is the first process described above, step D C is the reverse of the second process described
above, and steps B D and C A are reversible and adiabatic. The net heat entering the supersystem in the cycle is . In the
reverse cycle the net heat is . In both of these cycles the heat is exchanged with a single heat reservoir; therefore, according
to the Kelvin–Planck statement, neither cycle can have positive net heat. Therefore  and  must be equal, and Eqs. 4.4.4 and
4.4.5 then show the integral  has the same value when evaluated along either of the reversible paths from the lower to the
higher entropy surface.

Note that since the second path (C D) does not necessarily have one-way heat, it can take the experimental system through any
sequence of intermediate entropy values, provided it starts at the lower entropy surface and ends at the higher. Furthermore, since
the path is reversible, it can be carried out in reverse resulting in reversal of the signs of  and .

It should now be apparent that a satisfactory formula for defining the entropy change of a reversible process in a closed system is

This formula satisfies the necessary requirements: it makes the value of  positive if the process has positive one-way heat,
negative if the process has negative one-way heat, and zero if the process is adiabatic. It gives the same value of  for any
reversible change between the same two reversible adiabatic surfaces, and it makes the sum of the  values of several
consecutive reversible processes equal to  for the overall process.

In Eq. 4.4.6,  is the entropy change when the system changes from one arbitrary equilibrium state to another. If the change is an
infinitesimal path element of a reversible process, the equation becomes

It is common to see this equation written in the form , where  denotes an infinitesimal quantity of heat in a
reversible process.

In Eq. 4.4.7, the quantity  is called an integrating factor for , a factor that makes the product  be the
infinitesimal change of a state function. The quantity , where  is any nonzero constant, would also be a
satisfactory integrating factor; so the definition of entropy, using , is actually one of an infinite number of
possible choices for assigning values to the reversible adiabatic surfaces.

4.4.3 Some properties of the entropy 

It is not difficult to show that the entropy of a closed system in an equilibrium state is an extensive property. Suppose a system of
uniform temperature  is divided into two closed subsystems A and B. When a reversible infinitesimal change occurs, the entropy
changes of the subsystems are  and  and of the system . But  is the sum of  and 

, which gives . Thus, the entropy changes are additive, so that entropy must be extensive: .
(The argument is not quite complete, because we have not shown that when each subsystem has an entropy of zero, so does the
entire system. The zero of entropy will be discussed in Sec. 6.1.)

How can we evaluate the entropy of a particular equilibrium state of the system? We must assign an arbitrary value to one state and
then evaluate the entropy change along a reversible path from this state to the state of interest using .

We may need to evaluate the entropy of a nonequilibrium state. To do this, we imagine imposing hypothetical internal constraints
that change the nonequilibrium state to a constrained equilibrium state with the same internal structure. Some examples of such
internal constraints were given in Sec. 2.4.4, and include rigid adiabatic partitions between phases of different temperature and
pressure, semipermeable membranes to prevent transfer of certain species between adjacent phases, and inhibitors to prevent
chemical reactions.
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We assume that we can, in principle, impose or remove such constraints reversibly without heat, so there is no entropy change. If
the nonequilibrium state includes macroscopic internal motion, the imposition of internal constraints involves negative reversible
work to bring moving regions of the system to rest. This concept amounts to defining the entropy of a state with macroscopic
internal motion to be the same as the entropy of a state with the same internal structure but without the motion, i.e., the same state
frozen in time. By this definition,  for a purely mechanical process (Sec. 3.2.3) is zero.

If the system is nonuniform over its extent, the internal constraints will partition it into practically-uniform regions whose entropy
is additive. The entropy of the nonequilibrium state is then found from  using a reversible path that changes the
system from an equilibrium state of known entropy to the constrained equilibrium state with the same entropy as the state of
interest. This procedure allows every possible state (at least conceptually) to have a definite value of .

This page titled 4.4: Derivation of the Mathematical Statement of the Second Law is shared under a CC BY 4.0 license and was authored,
remixed, and/or curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform.

ΔS

ΔS = ∫(dq/ )Tb

S

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20664?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/04%3A_The_Second_Law/4.04%3A__Derivation_of_the_Mathematical_Statement_of_the_Second_Law
https://creativecommons.org/licenses/by/4.0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/04%3A_The_Second_Law/4.04%3A__Derivation_of_the_Mathematical_Statement_of_the_Second_Law?no-cache
https://www2.chem.umd.edu/thermobook

