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9.2: Partial Molar Quantities
The symbol , where  is an extensive property of a homogeneous mixture and the subscript  identifies a constituent species of
the mixture, denotes the partial molar quantity of species  defined by

This is the rate at which property  changes with the amount of species  added to the mixture as the temperature, the pressure, and
the amounts of all other species are kept constant. A partial molar quantity is an intensive state function. Its value depends on the
temperature, pressure, and composition of the mixture.

Keep in mind that as a practical matter, a macroscopic amount of a charged species (i.e., an ion) cannot be added by itself to a
phase because of the huge electric charge that would result. Thus if species  is charged,  as defined by Eq. 9.2.1 is a theoretical
concept whose value cannot be determined experimentally.

An older notation for a partial molar quantity uses an overbar: . The notation  was suggested in the first edition
of the IUPAC Green Book (Ian Mills et al, Quantities, Units and Symbols in Physical Chemistry, Blackwell, Oxford,
1988, p. 44), but is not mentioned in later editions.

Figure : Addition of pure methanol (substance B) to a water-methanol mixture at constant  and .

  
(a)  (one mole) of methanol is placed in a narrow tube above a much greater volume of a mixture (shaded) of
composition . The dashed line indicates the level of the upper meniscus.

(b) After the two liquid phases have mixed by diffusion, the volume of the mixture has increased by only .

9.2.1 Partial molar volume 

In order to gain insight into the significance of a partial molar quantity as defined by Eq. 9.2.1, let us first apply the concept to the
volume of an open single-phase system. Volume has the advantage for our example of being an extensive property that is easily
visualized. Let the system be a binary mixture of water (substance A) and methanol (substance B), two liquids that mix in all
proportions. The partial molar volume of the methanol, then, is the rate at which the system volume changes with the amount of
methanol added to the mixture at constant temperature and pressure: .

At  and , the molar volume of pure water is  and that of pure methanol is 
. If we mix  of water at  with  of methanol at , we find the volume of

the resulting mixture at  is not the sum of the separate volumes, , but rather the slightly smaller value .
The difference is due to new intermolecular interactions in the mixture compared to the pure liquids.

Let us calculate the mole fraction composition of this mixture:
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Now suppose we prepare a large volume of a mixture of this composition  and add an additional  (one
mole) of pure methanol, as shown in Fig. 9.1(a). If the initial volume of the mixture at  was , we find the
volume of the new mixture at the same temperature is , an increase of  - see Fig. 9.1(b). The amount of
methanol added is not infinitesimal, but it is small enough compared to the amount of initial mixture to cause very little change in
the mixture composition: 

increases by only . Treating the mixture as an open system, we see that the addition of one mole of methanol to the system at
constant , and  causes the system volume to increase by . To a good approximation, then, the partial molar volume
of methanol in the mixture, , is given by .

The volume of the mixture to which we add the methanol does not matter as long as it is large. We would have observed practically
the same volume increase, , if we had mixed one mole of pure methanol with  of the mixture instead of
only .

Thus, we may interpret the partial molar volume of B as the volume change per amount of B added at constant  and  when B is
mixed with such a large volume of mixture that the composition is not appreciably affected. We may also interpret the partial molar
volume as the volume change per amount when an infinitesimal amount is mixed with a finite volume of mixture.

The partial molar volume of  is an intensive property that is a function of the composition of the mixture, as well as of  and .
The limiting value of  as  approaches 1 (pure B) is , the molar volume of pure . We can see this by writing 

 for pure , giving us .

If the mixture is a binary mixture of  and , and  is small, we may treat the mixture as a dilute solution of solvent  and
solute . As  approaches 0 in this solution,  approaches a certain limiting value that is the volume increase per amount of B
mixed with a large amount of pure A. In the resulting mixture, each solute molecule is surrounded only by solvent molecules. We
denote this limiting value of  by , the partial molar volume of solute B at infinite dilution. 
It is possible for a partial molar volume to be negative. Magnesium sulfate, in aqueous solutions of molality less than 

, has a negative partial molar volume. Physically, this means that when a small amount of crystalline 
dissolves at constant temperature in water, the liquid phase contracts. This unusual behavior is due to strong attractive water-ion
interactions.

9.2.2 The total differential of the volume in an open system 

Consider an open single-phase system consisting of a mixture of nonreacting substances. How many independent variables does
this system have?

We can prepare the mixture with various amounts of each substance, and we are able to adjust the temperature and pressure to
whatever values we wish (within certain limits that prevent the formation of a second phase). Each choice of temperature, pressure,
and amounts results in a definite value of every other property, such as volume, density, and mole fraction composition. Thus, an
open single-phase system of  substances has  independent variables. 

3. C in this kind of system is actually the number of components. The number of components is usually the same as the number
of substances, but is less if certain constraints exist, such as reaction equilibrium or a fixed mixture composition. The general
meaning of C will be discussed in Sec. 13.
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Figure : Mixing of water (A) and methanol (B) in a 2:1 ratio of volumes to form a mixture of increasing volume and constant
composition. The system is the mixture.

For a binary mixture , the number of independent variables is four. We may choose these variables to be , and ,
and write the total differential of  in the general form 

(binary mixture)

We know the first two partial derivatives on the right side are given by 

4. See Eqs. 7.1.1 and 7.1.2, which are for closed syste

 

 
We identify the last two partial derivatives on the right side of Eq. 9.2.5 as the partial molar volumes  and . Thus, we may
write the total differential of  for this open system in the compact form 

(binary mixture)

If we compare this equation with the total differential of  for a one-component closed system,  (Eq.
7.1.6), we see that an additional term is required for each constituent of the mixture to allow the system to be open and the
composition to vary. 
When  and  are held constant, Eq. 9.2.7 becomes 

(binary mixture, constant  and  )

We obtain an important relation between the mixture volume and the partial molar volumes by imagining the following process.
Suppose we continuously pour pure water and pure methanol at constant but not necessarily equal volume rates into a stirred,
thermostatted container to form a mixture of increasing volume and constant composition, as shown schematically in Fig. 9.2. If
this mixture remains at constant  and  as it is formed, none of its intensive properties change during the process, and the partial
molar volumes  and  remain constant. Under these conditions, we can integrate Eq. 9.2.8 to obtain the additivity 

rule for volume:  
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This equation allows us to calculate the mixture volume from the amounts of the constituents and the appropriate partial molar
volumes for the particular temperature, pressure, and composition.

For example, given that the partial molar volumes in a water-methanol mixture of composition  are 
 and , we calculate the volume of the water-methanol mixture described at the

beginning of Sec. 9.2.1 as follows: 

 
We can differentiate Eq. 9.2.9 to obtain a general expression for  under conditions of constant  and  : 

 
But this expression for  is consistent with Eq. 9.2.8 only if the sum of the last two terms on the right is zero: 

 
(binary mixture, constant  and  ) 
Equation 9.2.12 is the Gibbs-Duhem equation for a binary mixture, applied to partial molar volumes. (Section 9.2.4 will give a
general version of this equation.) Dividing both sides of the equation by  gives the equivalent form 

 
(binary mixture, constant  and  ) 
Equation 9.2.12 shows that changes in the values of  and  are related when the composition changes at constant  and . If
we rearrange the equation to the form 

 
(binary mixture, constant  and  ) 
we see that a composition change that increases  (so that  is positive) must make  decrease.

9.2.3 Evaluation of partial molar volumes in binary mixtures 

The partial molar volumes  and  in a binary mixture can be evaluated by the method of intercepts. To use this method, we
plot experimental values of the quantity  (where  is  ) versus the mole fraction  is called the mean molar
volume.
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Figure : Figure 9.3 Mixtures of water (A) and methanol (B) at  and 1 bar. 

a. Mean molar volume as a function of . The dashed line is the tangent to the curve at .
b. Molar volume of mixing as a function of . The dashed line is the tangent to the curve at .
c. Partial molar volumes as functions of . The points at  (open circles) are obtained from the intercepts of the

dashed line in either (a) or (b).

 Based on data in Ref. [12].

See Fig. 9.3(a) for an example. In this figure, the tangent to the curve drawn at the point on the curve at the composition of interest
(the composition used as an illustration in Sec. 9.2.1) intercepts the vertical line where  equals  at 

, and intercepts the vertical line where  equals  at .

To derive this property of a tangent line for the plot of  versus , we use Eq. 9.2.9 to write

 The equation is an example of the result of applying Euler's theorem on homogeneous functions to  treated as a function of 
 and .

When we differentiate this expression for  with respect to , keeping in mind that  and  are functions of 
, we obtain
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The differentials  and  are related to one another by the Gibbs–Duhem equation (Eq. 9.2.13): 
. We divide both sides of this equation by  to obtain

and substitute in Eq. 9.2.16 to obtain

Let the partial molar volumes of the constituents of a binary mixture of arbitrary composition  be  and .
Equation 9.2.15 shows that the value of  at the point on the curve of  versus  where the composition is 

 is . Equation 9.2.18 shows that the tangent to the curve at this point has a slope of .
The equation of the line that passes through this point and has this slope, and thus is the tangent to the curve at this
point, is , where  is the vertical ordinate on the plot of  versus . The line has
intercepts  at  and  at .

A variant of the method of intercepts is to plot the molar integral volume of mixing given by

versus , as illustrated in Fig. 9.3(b).  is the integral volume of mixing—the volume change at constant  and  when
solvent and solute are mixed to form a mixture of volume  and total amount  (see Sec. 11.1.1). The tangent to the curve at the
composition of interest has intercepts  at  and  at .

To see this, we write

We make the substitution  from Eq. 9.2.15 and rearrange:

Differentiation with respect to  yields

With a substitution from Eq. 9.2.17, this becomes

Equations 9.2.21 and 9.2.23 are analogous to Eqs. 9.2.15 and 9.2.18, with  replaced by ,  by 
, and  by . Using the same reasoning as for a plot of  versus , we find the

intercepts of the tangent to a point on the curve of  versus  are at  and .

Figure 9.3 shows smoothed experimental data for water–methanol mixtures plotted in both kinds of graphs, and the resulting partial
molar volumes as functions of composition. Note in Fig. 9.3(c) how the  curve mirrors the  curve as  varies, as predicted
by the Gibbs–Duhem equation. The minimum in  at  is mirrored by a maximum in  in agreement with Eq. 9.2.14;
the maximum is much attenuated because  is much less than unity.

dVA dVB

d + d = 0xA VA xB VB dxB

( ) +( ) = 0
dVA

dxB
xA

dVB

dxB
xB (9.2.17)

= −
d(V /n)

dxB
VB VA (9.2.18)

x′
B V ′

A V ′
B

V /n V /n xB

x′
B ( − ) +V ′

B V ′
A

x′
B V ′

A
−V ′

B V ′
A

y = ( − ) +V ′
B

V ′
A

xB V ′
A

y (V /n) xB

y=V ′
A =0xB y=V ′

B =1xB

Δ (mix) = =Vm

ΔV (mix)

n

V − −nAV ∗
m,A

nBV ∗
m,B

n
(9.2.19)

xB ΔV (mix) T p

V n

−VA V ∗
m,A

=0xB −VB V ∗
m,B =1xB

Δ (mix)Vm = (V /n) − −xAV ∗
m,A

xBV ∗
m,B

= (V /n) −(1 − ) −xB V ∗
m,A

xBV ∗
m,B

(9.2.20)

(V /n) = ( − ) +VB VA xB VA

Δ (mix) = [( − )−( − )] +( − )Vm VB V ∗
m,B VA V ∗

m,A xB VA V ∗
m,A (9.2.21)

xB

dΔ (mix)Vm

dxB
= ( − )−( − )+( − ) +VB V ∗

m,B VA V ∗
m,A

dVB

dxB

dVA

dxB
xB

dVA

dxB

= ( − )−( − )+( ) (1 − ) +( )VB V ∗
m,B VA V ∗

m,A

dVA

dxB
xB

dVB

dxB
xB

= ( − )−( − )+( ) +( )VB V ∗
m,B VA V ∗

m,A

dVA

dxB
xA

dVB

dxB
xB

(9.2.22)

= ( − )−( − )
dΔ (mix)Vm

dxB
VB V ∗

m,B VA V ∗
m,A (9.2.23)

V /n Δ (mix)Vm VA

( − )VA V ∗
m,A

VB ( − )VB V ∗
m,B

V /n xB

Δ (mix)Vm xB −VA V ∗
m,A

−VB V ∗
m,B

VA VB xB

VB ≈0.09xB VA

/nB nA

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20612?pdf


9.2.7 https://chem.libretexts.org/@go/page/20612

Macroscopic measurements are unable to provide unambiguous information about molecular structure. Nevertheless,
it is interesting to speculate on the implications of the minimum observed for the partial molar volume of methanol.
One interpretation is that in a mostly aqueous environment, there is association of methanol molecules, perhaps
involving the formation of dimers.

9.2.4 General relations 

The discussion above of partial molar volumes used the notation  and  for the molar volumes of pure A and B. The
partial molar volume of a pure substance is the same as the molar volume, so we can simplify the notation by using  and 
instead. Hereafter, this e-book will denote molar quantities of pure substances by such symbols as , , and .

The relations derived above for the volume of a binary mixture may be generalized for any extensive property  of a mixture of
any number of constituents. The partial molar quantity of species , defined by

is an intensive property that depends on , , and the composition of the mixture. The additivity rule for property  is

and the Gibbs–Duhem equation applied to  can be written in the equivalent forms

and

These relations can be applied to a mixture in which each species  is a nonelectrolyte substance, an electrolyte substance that is
dissociated into ions, or an individual ionic species. In Eq. 9.2.27, the mole fraction  must be based on the different species
considered to be present in the mixture. For example, an aqueous solution of NaCl could be treated as a mixture of components
A=H O and B=NaCl, with  equal to ; or the constituents could be taken as H O, Na , and Cl , in which case
the mole fraction of Na  would be .

A general method to evaluate the partial molar quantities  and  in a binary mixture is based on the variant of the method of
intercepts described in Sec. 9.2.3. The molar mixing quantity  is plotted versus , where  is 

. On this plot, the tangent to the curve at the composition of interest has intercepts equal to  at 
and  at .

We can obtain experimental values of such partial molar quantities of an uncharged species as , , and . It is not possible,
however, to evaluate the partial molar quantities , , , and  because these quantities involve the internal energy brought
into the system by the species, and we cannot evaluate the absolute value of internal energy (Sec. 2.6.2). For example, while we can
evaluate the difference  from calorimetric measurements of enthalpies of mixing, we cannot evaluate the partial molar
enthalpy  itself. We can, however, include such quantities as  in useful theoretical relations.

A partial molar quantity of a charged species is something else we cannot evaluate. It is possible, however, to obtain
values relative to a reference ion. Consider an aqueous solution of a fully-dissociated electrolyte solute with the
formula , where  and  are the numbers of cations and anions per solute formula unit. The partial molar
volume  of the solute, which can be determined experimentally, is related to the (unmeasurable) partial molar
volumes  and  of the constituent ions by

For aqueous solutions, the usual reference ion is H , and the partial molar volume of this ion at infinite dilution is
arbitrarily set equal to zero: .
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For example, given the value (at  and ) of the partial molar volume at infinite dilution of aqueous
hydrogen chloride

we can find the so-called “conventional” partial molar volume of Cl  ion:

Going one step further, the measured value  gives, for Na  ion, the conventional value

9.2.5 Partial specific quantities 

A partial specific quantity of a substance is the partial molar quantity divided by the molar mass, and has dimensions of volume
divided by mass. For example, the partial specific volume  of solute B in a binary solution is given by

where  and  are the masses of solvent and solute.

Although this e-book makes little use of specific quantities and partial specific quantities, in some applications they have an
advantage over molar quantities and partial molar quantities because they can be evaluated without knowledge of the molar mass.
For instance, the value of a solute’s partial specific volume is used to determine its molar mass by the method of sedimentation
equilibrium (Sec. 9.8.2).

The general relations in Sec. 9.2.4 involving partial molar quantities may be turned into relations involving partial specific
quantities by replacing amounts by masses, mole fractions by mass fractions, and partial molar quantities by partial specific
quantities. Using volume as an example, we can write an additivity relation , and Gibbs–Duhem relations 

 and . For a binary mixture of A and B, we can plot the specific volume  versus the mass fraction
; then the tangent to the curve at a given composition has intercepts equal to  at  and  at . A variant of this

plot is  versus ; the intercepts are then equal to  and .

9.2.6 The chemical potential of a species in a mixture 

Just as the molar Gibbs energy of a pure substance is called the chemical potential and given the special symbol , the partial
molar Gibbs energy  of species  in a mixture is called the chemical potential of species , defined by

If there are work coordinates for nonexpansion work, the partial derivative is taken at constant values of these coordinates.

The chemical potential of a species in a phase plays a crucial role in equilibrium problems, because it is a measure of the escaping
tendency of the species from the phase. Although we cannot determine the absolute value of  for a given state of the system, we
are usually able to evaluate the difference between the value in this state and the value in a defined reference state.

In an open single-phase system containing a mixture of  different nonreacting species, we may in principle independently vary , 
, and the amount of each species. This is a total of  independent variables. The total differential of the Gibbs energy of this

system is given by Eq. 5.5.9, often called the Gibbs fundamental equation:

Consider the special case of a mixture containing charged species, for example an aqueous solution of the electrolyte KCl. We
could consider the constituents to be either the substances H O and KCl, or else H O and the species K  and Cl . Any mixture we
can prepare in the laboratory must remain electrically neutral, or virtually so. Thus, while we are able to independently vary the
amounts of H O and KCl, we cannot in practice independently vary the amounts of K  and Cl  in the mixture. The chemical
potential of the K  ion is defined as the rate at which the Gibbs energy changes with the amount of K  added at constant  and 
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s T

p 2 +s

dG = −S dT +V dp + d∑
i=1

s

μi ni (9.2.34)
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while the amount of Cl  is kept constant. This is a hypothetical process in which the net charge of the mixture increases. The
chemical potential of a ion is therefore a valid but purely theoretical concept. Let A stand for H O, B for KCl,  for K , and  for
Cl . Then it is theoretically valid to write the total differential of  for the KCl solution either as

or as

9.2.7 Equilibrium conditions in a multiphase, multicomponent system 

This section extends the derivation described in Sec. 8.1.2, which was for equilibrium conditions in a multiphase system containing
a single substance, to a more general kind of system: one with two or more homogeneous phases containing mixtures of
nonreacting species. The derivation assumes there are no internal partitions that could prevent transfer of species and energy
between the phases, and that effects of gravity and other external force fields are negligible.

The system consists of a reference phase, , and other phases labeled by . Species are labeled by subscript . Following the
procedure of Sec. 8.1.1, we write for the total differential of the internal energy

The conditions of isolation are

We use these relations to substitute for , , and  in Eq. 9.2.37. After making the further substitution 
 and solving for , we obtain

This equation is like Eq. 8.1.6 with provision for more than one species.

In the equilibrium state of the isolated system,  has the maximum possible value,  is equal to zero for an infinitesimal change
of any of the independent variables, and the coefficient of each term on the right side of Eq. 9.2.41 is zero. We find that in this state
each phase has the same temperature and the same pressure, and for each species the chemical potential is the same in each phase.

Suppose the system contains a species  that is effectively excluded from a particular phase, . For instance, sucrose molecules
dissolved in an aqueous phase are not accommodated in the crystal structure of an ice phase, and a nonpolar substance may be
essentially insoluble in an aqueous phase. We can treat this kind of situation by setting  equal to zero. Consequently there is no
equilibrium condition involving the chemical potential of this species in phase .

To summarize these conclusions: In an equilibrium state of a multiphase, multicomponent system without internal partitions, the
temperature and pressure are uniform throughout the system, and each species has a uniform chemical potential except in phases
where it is excluded.

This statement regarding the uniform chemical potential of a species applies to both a substance and an ion, as the
following argument explains. The derivation in this section begins with Eq. 9.2.37, an expression for the total

−

2 + + −
− G

dG = −S dT +V dp + d + dμA nA μB nB (9.2.35)

dG = −S dT +V dp + d + d + dμA nA μ+ n+ μ− n− (9.2.36)

α′ α≠α′ i

dU = d + dU α′

∑
α≠α′

U α

= d − d + dT α′

Sα′

pα′

V α′

∑
i

μα′

i nα′

i

+ ( d − d + d )∑
α≠α′

T α Sα pα V α ∑
i

μα
i nα

i

(9.2.37)

dU = 0 (constant internal energy) (9.2.38)

d + d = 0 (no expansion work)V α′

∑
α≠α′

V α (9.2.39)

For each species i:

d + d = 0 (closed system)nα′

i ∑
α≠α′

nα
i

(9.2.40)

dU dV α′
dnα′

i

d = dS − dSα′
∑α≠α′ Sα dS

dS = d − d + d∑
α≠α′

−T α′

T α

T α′ Sα ∑
α≠α′

−pα′

pα

T α′ V α ∑
i

∑
α≠α′

−μα′

i μα
i

T α′ nα
i (9.2.41)
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differential of . Because it is a total differential, the expression requires the amount  of each species  in each
phase to be an independent variable. Suppose one of the phases is the aqueous solution of KCl used as an example at
the end of the preceding section. In principle (but not in practice), the amounts of the species H O, K , and Cl  can
be varied independently, so that it is valid to include these three species in the sums over  in Eq. 9.2.37. The
derivation then leads to the conclusion that K  has the same chemical potential in phases that are in transfer
equilibrium with respect to K , and likewise for Cl . This kind of situation arises when we consider a Donnan
membrane equilibrium (Sec. 12.7.3) in which transfer equilibrium of ions exists between solutions of electrolytes
separated by a semipermeable membrane.

9.2.8 Relations involving partial molar quantities 

Here we derive several useful relations involving partial molar quantities in a single-phase system that is a mixture. The
independent variables are , , and the amount  of each constituent species .

From Eqs. 9.2.26 and 9.2.27, the Gibbs–Duhem equation applied to the chemical potentials can be written in the equivalent forms

and

These equations show that the chemical potentials of different species cannot be varied independently at constant  and .

A more general version of the Gibbs–Duhem equation, without the restriction of constant  and , is

This version is derived by comparing the expression for  given by Eq. 9.2.34 with the differential 
obtained from the additivity rule .

The Gibbs energy is defined by . Taking the partial derivatives of both sides of this equation with respect to  at
constant , , and  gives us

We recognize each partial derivative as a partial molar quantity and rewrite the equation as

This is analogous to the relation  for a pure substance.

From the total differential of the Gibbs energy,  (Eq. 9.2.34), we obtain the following
reciprocity relations:

The symbol  stands for the set of amounts of all species, and subscript  on a partial derivative means the amount of each
species is constant—that is, the derivative is taken at constant composition of a closed system. Again we recognize partial
derivatives as partial molar quantities and rewrite these relations as follows:

U ni i

2
+ −

i
+

+ −

T p ni i

d = 0∑
i

ni μi (9.2.42)
(constant T  and p)

d = 0∑
i

xi μi (9.2.43)
(constant T  and p)

T p

T p

S dT −V dp + d = 0∑
i

ni μi (9.2.44)

dG dG= d + d∑i μi ni ∑i ni μi

G=∑i μini

G = H −T S ni

T p nj≠i

= −T( )
∂G

∂ni T ,p,nj≠i

( )
∂H

∂ni T ,p,nj≠i

( )
∂S

∂ni T ,p,nj≠i

(9.2.45)

= −Tμi Hi Si (9.2.46)

μ = G/n = −THm Sm

dG = −S dT +V dp + d∑i μi ni

= − =( )
∂μi

∂T p,{ }ni

( )
∂S

∂ni T ,p,nj≠i

( )
∂μi

∂p T ,{ }ni

( )
∂V

∂ni T ,p,nj≠i

(9.2.47)

{ }ni { }ni

= −( )
∂μi

∂T p,{ }ni

Si (9.2.48)
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∂μi
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These equations are the equivalent for a mixture of the relations  and  for a pure phase (Eqs.
7.8.3 and 7.8.4).

Taking the partial derivatives of both sides of  with respect to  at constant , , and  gives

Finally, we can obtain a formula for , the partial molar heat capacity at constant pressure of species , by writing the total
differential of  in the form

from which we have the reciprocity relation , or

This page titled 9.2: Partial Molar Quantities is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
via source content that was edited to the style and standards of the LibreTexts platform.

(∂μ/∂T = −)p Sm (∂μ/∂p =)T Vm

U = H −pV ni T p nj≠i

= −pUi Hi Vi (9.2.50)
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H
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∂T p,{ }ni
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i
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(9.2.51)

(∂ /∂ = (∂ /∂TCp ni)T ,p,nj≠i
Hi )p,{ }ni
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∂Hi

∂T p,{ }ni
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