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6.2: Molar Entropies
With the convention that the entropy of a pure, perfectly-ordered crystalline solid at zero kelvins is zero, we can establish the third-
law value of the molar entropy of a pure substance at any temperature and pressure. Absolute values of  are what are usually
tabulated for calculational use.

6.2.1 Third-law molar entropies 
Suppose we wish to evaluate the entropy of an amount  of a pure substance at a certain temperature  and a certain pressure. The
same substance, in a perfectly-ordered crystal at zero kelvins and the same pressure, has an entropy of zero. The entropy at the

temperature and pressure of interest, then, is the entropy change  of a reversible heating process at constant
pressure that converts the perfectly-ordered crystal at zero kelvins to the state of interest.

Consider a reversible isobaric heating process of a pure substance while it exists in a single phase. The definition of heat capacity
as  (Eq. 3.1.9) allows us to substitute  for , where  is the heat capacity of the phase at constant pressure.

If the substance in the state of interest is a liquid or gas, or a crystal of a different form than the perfectly-ordered crystal present at
zero kelvins, the heating process will include one or more equilibrium phase transitions under conditions where two phases are in
equilibrium at the same temperature and pressure (Sec. 2.2.2). For example, a reversible heating process at a pressure above the
triple point that transforms the crystal at  to a gas may involve transitions from one crystal form to another, and also melting and
vaporization transitions.

Each such reversible phase transition requires positive heat . Because the pressure is constant, the heat is equal to the enthalpy
change (Eq. 5.3.8). The ratio  is called the molar heat or molar enthalpy of the transition,  (see Sec. 8.3.1). Because the
phase transition is reversible, the entropy change during the transition is given by  where  is the transition
temperature.

With these considerations, we can write the following expression for the entropy change of the entire heating process:

The resulting operational equation for the calculation of the molar entropy of the substance at the temperature and pressure of
interest is

where  is the molar heat capacity at constant pressure. The summation is over each equilibrium phase transition
occurring during the heating process.

Since  is positive at all temperatures above zero kelvins, and  is positive for all transitions occurring during a reversible
heating process, the molar entropy of a substance is positive at all temperatures above zero kelvins.

The heat capacity and transition enthalpy data required to evaluate  using Eq. 6.2.2 come from calorimetry. The calorimeter
can be cooled to about  with liquid hydrogen, but it is difficult to make measurements below this temperature. Statistical
mechanical theory may be used to approximate the part of the integral in Eq. 6.2.2 between zero kelvins and the lowest temperature
at which a value of  can be measured. The appropriate formula for nonmagnetic nonmetals comes from the Debye theory for
the lattice vibration of a monatomic crystal. This theory predicts that at low temperatures (from  to about ), the molar heat
capacity at constant volume is proportional to : , where  is a constant. For a solid, the molar heat capacities at
constant volume and at constant pressure are practically equal. Thus for the integral on the right side of Eq. 6.2.2 we can, to a good
approximation, write

where  is the lowest temperature at which  is measured. The first term on the right side of Eq. 6.2.3 is
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But  is the value of  at , so Eq. 6.2.2 becomes

In the case of a metal, statistical mechanical theory predicts an electronic contribution to the molar heat capacity,
proportional to  at low temperature, that should be added to the Debye  term: . The error in
using Eq. 6.2.5, which ignores the electronic term, is usually negligible if the heat capacity measurements are made
down to about .

We may evaluate the integral on the right side of Eq. 6.2.5 by numerical integration. We need the area under the curve of 
plotted as a function of  between some low temperature, , and the temperature  at which the molar entropy is to be
evaluated. Since the integral may be written in the form

we may also evaluate the integral from the area under a curve of  plotted as a function of .

Ideally, the molar entropy values obtained by the calorimetric (third-law) method for a gas should agree closely with the values
calculated from spectroscopic data. Table 6.1 shows that for some substances this agreement is not present. The table lists values of

 for ideal gases at  evaluated by both the calorimetric and spectroscopic methods. The quantity  in the last column
is the difference between the two  values, and is called the molar residual entropy.

In the case of HCl, the experimental value of the residual entropy is comparable to its uncertainty, indicating good agreement
between the calorimetric and spectroscopic methods. This agreement is typical of most substances, particularly those like HCl
whose molecules are polar and asymmetric with a large energetic advantage of forming perfectly-ordered crystals.

The other substances listed in Table 6.1 have residual entropies that are greater than zero within the uncertainty of the data. What is
the meaning of this discrepancy between the calorimetric and spectroscopic results? We can assume that the true values of  at 

 are the spectroscopic values, because their calculation assumes the solid has only one microstate at , with an entropy
of zero, and takes into account all of the possible accessible microstates of the ideal gas. The calorimetric values, on the other hand,
are based on Eq. 6.2.2 which assumes the solid becomes a perfectly-ordered crystal as the temperature approaches .

The calorimetric values in Table 6.1 were calculated as follows. Measurements of heat capacities and heats of
transition were used in Eq. 6.2.2 to find the third-law value of  for the vapor at the boiling point of the substance
at . This calculated value for the gas was corrected to that for the ideal gas at  and adjusted to 

 with spectroscopic data.

The conventional explanation of a nonzero residual entropy is the presence of random rotational orientations of molecules in the
solid at the lowest temperature at which the heat capacity can be measured, so that the crystals are not perfectly ordered. The
random structure is established as the crystals form from the liquid, and becomes frozen into the crystals as the temperature is
lowered below the freezing point. This tends to happen with almost-symmetric molecules with small dipole moments which in the
crystal can have random rotational orientations of practically equal energy. In the case of solid H O it is the arrangement of
intermolecular hydrogen bonds that is random. Crystal imperfections such as dislocations can also contribute to the residual
entropy. If such crystal imperfection is present at the lowest experimental temperature, the calorimetric value of  for the gas at 

 is the molar entropy increase for the change at  from the imperfectly-ordered solid at  to the ideal gas at 
, and the residual entropy  is the molar entropy of this imperfectly-ordered solid.
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