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7.5: Partial Derivatives with Respect to T T , p p , and V V

7.5.1 Tables of partial derivatives 

The tables in this section collect useful expressions for partial derivatives of the eight state functions , , , , , , , and 
in a closed, single-phase system. Each derivative is taken with respect to one of the three easily-controlled variables , , or 
while another of these variables is held constant. We have already seen some of these expressions, and the derivations of the others
are indicated below.

We can use these partial derivatives (1) for writing an expression for the total differential of any of the eight quantities, and (2) for
expressing the finite change in one of these quantities as an integral under conditions of constant , , or . For instance, given the
expressions

we may write the total differential of , taking  and  as the independent variables, as

Furthermore, the first expression is equivalent to the differential form

provided  is constant; we can integrate this equation to obtain the finite change  under isobaric conditions as shown in Eq.
7.4.12.

Both general expressions and expressions valid for an ideal gas are given in Tables 7.1, 7.2, and 7.3.

We may derive the general expressions as follows. We are considering differentiation with respect only to , , and 
. Expressions for , , and  come from Eqs. 7.1.1, 7.1.2, and 7.1.7 and are shown

as functions of  and . The reciprocal of each of these three expressions provides the expression for another
partial derivative from the general relation

This procedure gives us expressions for the six partial derivatives of , , and .

The remaining expressions are for partial derivatives of , , , , and . We obtain the expression for 
 from Eq. 7.3.1, for  from Eq. 7.2.4, for  from Eq. 7.3.2, for  from

Eq. 5.4.9, for  from Eq. 5.4.10, for  from Eq. 5.4.12, for  from Eq. 5.4.11, for 
 from Eq. 7.4.6, for  from Eq. 7.4.11, and for  from Eq. 5.4.18.

We can transform each of these partial derivatives, and others derived in later steps, to two other partial derivatives
with the same variable held constant and the variable of differentiation changed. The transformation involves
multiplying by an appropriate partial derivative of , , or . For instance, from the partial derivative 

, we obtain

The remaining partial derivatives can be found by differentiating , , , and 
 and making appropriate substitutions. Whenever a partial derivative appears in a derived expression,

it is replaced with an expression derived in an earlier step. The expressions derived by these steps constitute the full
set shown in Tables 7.1, 7.2, and 7.3.

Bridgman devised a simple method to obtain expressions for these and many other partial derivatives from a
relatively small set of formulas (Phys. Rev., 3, 273–281, 1914; The Thermodynamics of Electrical Phenomena in
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Metals and a Condensed Collection of Thermodynamic Formulas, Dover, New York, 1961, p. 199–241).

7.5.2 The Joule–Thomson coefficient 

The Joule–Thomson coefficient of a gas was defined in Eq. 6.3.3 by . It can be evaluated with measurements of 
 and  during adiabatic throttling processes as described in Sec. 6.3.1.

To relate  to other properties of the gas, we write the total differential of the enthalpy of a closed, single-phase system in the
form

and divide both sides by :

Next we impose a condition of constant ; the ratio  becomes a partial derivative:

Rearrangement gives

The left side of this equation is the Joule–Thomson coefficient. An expression for the partial derivative  is given in
Table 7.1, and the partial derivative  is the heat capacity at constant pressure (Eq. 5.6.3). These substitutions give us the
desired relation
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