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4.3: Concepts Developed with Carnot Engines

4.3.1 Carnot engines and Carnot cycles 

Could the efficiency of the Carnot engine be different from the efficiency the heat pump would have when run in reverse as a
Carnot engine? If so, either the supersystem is an impossible Clausius device as shown in Fig. 4.7(b), or the supersystem operated
in reverse (with the engine and heat pump switching roles) is an impossible Clausius device as shown in Fig. 4.7(d). We conclude
that all Carnot engines operating between the same two temperatures have the same efficiency.

This is a good place to pause and think about the meaning of this statement in light of the fact that the steps of a
Carnot engine, being reversible changes, cannot take place in a real system (Sec. 3.2). How can an engine operate
that is not real? The statement is an example of a common kind of thermodynamic shorthand. To express the same
idea more accurately, one could say that all heat engines (real systems) operating between the same two
temperatures have the same limiting efficiency, where the limit is the reversible limit approached as the steps of the
cycle are carried out more and more slowly. You should interpret any statement involving a reversible process in a
similar fashion: a reversible process is an idealized limiting process that can be approached but never quite reached
by a real system.

Thus, the efficiency of a Carnot engine must depend only on the values of  and  and not on the properties of the working
substance. Since the efficiency is given by , the ratio  must be a unique function of  and  only. To find this
function for temperatures on the ideal-gas temperature scale, it is simplest to choose as the working substance an ideal gas.

An ideal gas has the equation of state . Its internal energy change in a closed system is given by  (Eq.
3.5.3), where  (a function only of ) is the heat capacity at constant volume. Reversible expansion work is given by 

, which for an ideal gas becomes . Substituting these expressions for  and  in the first
law, , and solving for , we obtain

Dividing both sides by  gives

In the two adiabatic steps of the Carnot cycle,  is zero. We obtain a relation among the volumes of the four labeled states shown
in Fig. 4.3 by integrating Eq. 4.3.5 over these steps and setting the integrals equal to zero:

} Adding these two equations (the integrals shown with limits cancel) gives the relation

which we can rearrange to

We obtain expressions for the heat in the two isothermal steps by integrating Eq. 4.3.4 with  set equal to 0.
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The ratio of  and  obtained from these expressions is

By means of Eq. 4.3.9, this ratio becomes

Accordingly, the unique function of  and  we seek that is equal to  is the ratio . The efficiency, from Eq. 4.3.3, is
then given by

In Eqs. 4.3.13 and 4.3.14,  and  are temperatures on the ideal-gas scale. As we have seen, these equations must be valid for
any working substance; it is not necessary to specify as a condition of validity that the system is an ideal gas.

The ratio  is positive but less than one, so the efficiency is less than one as deduced earlier. This conclusion is an illustration
of the Kelvin–Planck statement of the second law: A heat engine cannot have an efficiency of unity—that is, it cannot in one cycle
convert all of the energy transferred by heat from a single heat reservoir into work. The example shown in Fig. 4.5, with ,
must have  (e.g.,  and ).

Keep in mind that a Carnot engine operates reversibly between two heat reservoirs. The expression of Eq. 4.3.14 gives the
efficiency of this kind of idealized heat engine only. If any part of the cycle is carried out irreversibly, dissipation of mechanical
energy will cause the efficiency to be lower than the theoretical value given by Eq. 4.3.14.

4.3.4 Thermodynamic temperature 
The negative ratio  for a Carnot cycle depends only on the temperatures of the two heat reservoirs. Kelvin (1848) proposed
that this ratio be used to establish an “absolute” temperature scale. The physical quantity now called thermodynamic temperature
is defined by the relation

That is, the ratio of the thermodynamic temperatures of two heat reservoirs is equal, by definition, to the ratio of the absolute
quantities of heat transferred in the isothermal steps of a Carnot cycle operating between these two temperatures. In principle, a
measurement of  during a Carnot cycle, combined with a defined value of the thermodynamic temperature of one of the heat
reservoirs, can establish the thermodynamic temperature of the other heat reservoir. This defined value is provided by the triple
point of H O; its thermodynamic temperature is defined as exactly  kelvins.

Just as measurements with a gas thermometer in the limit of zero pressure establish the ideal-gas temperature scale (Sec. 2.3.5), the
behavior of a heat engine in the reversible limit establishes the thermodynamic temperature scale. Note, however, that a reversible
Carnot engine used as a “thermometer” to measure thermodynamic temperature is only a theoretical concept and not a practical
instrument, since a completely-reversible process cannot occur in practice.

It is now possible to justify the statement in Sec. 2.3.5 that the ideal-gas temperature scale is proportional to the thermodynamic
temperature scale. Both Eq. 4.3.13 and Eq. 4.3.15 equate the ratio  to ; but whereas  and  refer in Eq. 4.3.13 to
the ideal-gas temperatures of the heat reservoirs, in Eq. 4.3.15 they refer to the thermodynamic temperatures. This means that the
ratio of the ideal-gas temperatures of two bodies is equal to the ratio of the thermodynamic temperatures of the same bodies, and
therefore the two scales are proportional to one another. The proportionality factor is arbitrary, but must be unity if the same unit
(e.g., kelvins) is used in both scales. Thus, as stated in Sec. 2.3.5, the two scales expressed in kelvins are identical.
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