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10.5: Derivation of the Debye-Hückel Theory
Debye and Hückel derived Eq. 10.4.1 using a combination of electrostatic theory, statistical mechanical theory, and
thermodynamics. This section gives a brief outline of their derivation.

The derivation starts by focusing on an individual ion of species  as it moves through the solution; call it the central ion. Around
this central ion, the time-average spatial distribution of any ion species  is not random, on account of the interaction of these ions
of species  with the central ion. (Species  and  may be the same or different.) The distribution, whatever it is, must be
spherically symmetric about the central ion; that is, a function only of the distance  from the center of the ion. The local
concentration, , of the ions of species  at a given value of  depends on the ion charge  and the electric potential  at that
position. The time-average electric potential in turn depends on the distribution of all ions and is symmetric about the central ion,
so expressions must be found for  and  as functions of  that are mutually consistent.

Debye and Hückel assumed that  is given by the Boltzmann distribution

where  is the electrostatic energy of an ion of species , and  is the Boltzmann constant ( ). As  becomes large, 
approaches zero and  approaches the macroscopic concentration . As  increases,  at a fixed value of  approaches 
because of the randomizing effect of thermal energy. Debye and Hückel expanded the exponential function in powers of  and
retained only the first two terms: . The distribution of each ion species is assumed to follow this relation.
The electric potential function consistent with this distribution and with the electroneutrality of the solution as a whole is

Here  is defined by , where  is the ionic strength on a concentration basis defined by 
.

The electric potential  at a point is assumed to be a sum of two contributions: the electric potential the central ion would cause at
infinite dilution, , and the electric potential due to all other ions, . Thus,  is equal to , or

This expression for  is valid for distances from the center of the central ion down to , the distance of closest approach of other
ions. At smaller values of ,  is constant and equal to the value at , which is . The
interaction energy between the central ion and the surrounding ions (the ion atmosphere) is the product of the central ion charge
and .

The last step of the derivation is the calculation of the work of a hypothetical reversible process in which the surrounding ions stay
in their final distribution, and the charge of the central ion gradually increases from zero to its actual value . Let  be the
charge at each stage of the process, where  is a fractional advancement that changes from  to . Then the work  due to the
interaction of the central ion with its ion atmosphere is  integrated over the charge:

Since the infinitesimal Gibbs energy change in a reversible process is given by  (Eq. 5.8.6), this
reversible nonexpansion work at constant  and  is equal to the Gibbs energy change. The Gibbs energy change per amount of
species  is . This quantity is  for the process in which a solution of fixed
composition changes from a hypothetical state lacking ion–ion interactions to the real state with ion–ion interactions present.

 may be equated to the difference of the chemical potentials of  in the final and initial states. If the chemical potential
without ion–ion interactions is taken to be that for ideal-dilute behavior on a molality basis, , then 

 is equal to . In a dilute solution,  can with little
error be set equal to , and  to . Equation 10.4.1 follows.
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