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9.8: Mixtures in Gravitational and Centrifugal Fields
A tall column of a gas mixture in a gravitational field, and a liquid solution in the cell of a spinning centrifuge rotor, are systems
with equilibrium states that are nonuniform in pressure and composition. This section derives the ways in which pressure and
composition vary spatially within these kinds of systems at equilibrium.

9.8.1 Gas mixture in a gravitational field 
Consider a tall column of a gas mixture in an earth-fixed lab frame. Our treatment will parallel that for a tall column of a pure gas
in Sec. 8.1.4. We imagine the gas to be divided into many thin slab-shaped phases at different elevations in a rigid container, as in
Fig. 8.1. We want to find the equilibrium conditions reached spontaneously when the system is isolated from its surroundings.

The derivation is the same as that in Sec. 9.2.7, with the additional constraint that for each phase ,  is zero in order that each
phase stays at a constant elevation. The result is the relation

In an equilibrium state,  is at a maximum and  is zero for an infinitesimal change of any of the independent variables. This
requires the coefficient of each term in the sums on the right side of Eq. 9.8.1 to be zero. The equation therefore tells that at
equilibrium the temperature and the chemical potential of each constituent are uniform throughout the gas mixture. The equation
says nothing about the pressure.

Just as the chemical potential of a pure substance at a given elevation is defined in this e-book as the molar Gibbs energy at that
elevation (Sec. 8.1.4), the chemical potential of substance  in a mixture at elevation  is the partial molar Gibbs energy at that
elevation.

We define the standard potential  of component  of the gas mixture as the chemical potential of  under standard state
conditions at the reference elevation . At this elevation, the chemical potential and fugacity are related by

If we reversibly raise a small sample of mass  of the gas mixture by an infinitesimal distance , without heat and at constant 
and , the fugacity  remains constant. The gravitational work during the elevation process is . This work
contributes to the internal energy change: . The total differential of the Gibbs energy of
the sample is

From this total differential, we write the reciprocity relation

With the substitution  in the partial derivative on the right side, the partial derivative becomes . At constant , 
, and composition, therefore, we have . Integrating over a finite elevation change from  to , we obtain

The general relation between , , and  that agrees with Eqs. 9.8.2 and 9.8.5 is

In the equilibrium state of the tall column of gas,  is equal to . Equation 9.8.6 shows that this is only possible if 
decreases as  increases. Equating the expressions given by this equation for  and , we have
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Solving for  gives

If the gas is an ideal gas mixture,  is the same as the partial pressure :

Equation 9.8.9 shows that each constituent of an ideal gas mixture individually obeys the barometric formula given by Eq. 8.1.13.

The pressure at elevation  is found from . If the constituents have different molar masses, the mole fraction
composition changes with elevation. For example, in a binary ideal gas mixture the mole fraction of the constituent with the greater
molar mass decreases with increasing elevation, and the mole fraction of the other constituent increases.

9.8.2 Liquid solution in a centrifuge cell 

This section derives equilibrium conditions of a dilute binary solution confined to a cell embedded in a spinning centrifuge rotor.

The system is the solution. The rotor’s angle of rotation with respect to a lab frame is not relevant to the state of the system, so we
use a local reference frame fixed in the rotor as shown in Fig. 9.12(a). The values of heat, work, and energy changes measured in
this rotating frame are different from those in a lab frame (Sec. G.9 in Appendix G). Nevertheless, the laws of thermodynamics and
the relations derived from them are obeyed in the local frame when we measure the heat, work, and state functions in this frame
(Sec. G.6).

Note that an equilibrium state can only exist relative to the rotating local frame; an observer fixed in this frame would see no
change in the state of the isolated solution over time. While the rotor rotates, however, there is no equilibrium state relative to the
lab frame, because the system’s position in the frame constantly changes.

We assume the centrifuge rotor rotates about the vertical  axis at a constant angular velocity . As shown in Fig. 9.12(a), the
elevation of a point within the local frame is given by  and the radial distance from the axis of rotation is given by .

In the rotating local frame, a body of mass  has exerted on it a centrifugal force  directed horizontally in the
outward  radial direction (Sec. G.9). The gravitational force in this frame, directed in the downward  direction, is the same as
the gravitational force in a lab frame. Because the height of a typical centrifuge cell is usually no greater than about one centimeter,
in an equilibrium state the variation of pressure and composition between the top and bottom of the cell at any given distance from
the axis of rotation is completely negligible—all the measurable variation is along the radial direction.

There is also a Coriolis force that vanishes as the body’s velocity in the rotating local frame approaches zero. The
centrifugal and Coriolis forces are apparent or fictitious forces, in the sense that they are caused by the acceleration
of the rotating frame rather than by interactions between particles. When we treat these forces as if they are real
forces, we can use Newton’s second law of motion to relate the net force on a body and the body’s acceleration in
the rotating frame (see Sec. G.6).

To find conditions for equilibrium, we imagine the solution to be divided into many thin curved volume elements at different
distances from the axis of rotation as depicted in Fig. 9.12(b). We treat each volume element as a uniform phase held at constant
volume so that it is at a constant distance from the axis of rotation. The derivation is the same as the one used in the preceding
section to obtain Eq. 9.8.1, and leads to the same conclusion: in an equilibrium state the temperature and the chemical potential of
each substance (solvent and solute) are uniform throughout the solution.

We find the dependence of pressure on  as follows. Consider one of the thin slab-shaped volume elements of Fig. 9.12(b). The
volume element is located at radial position  and its faces are perpendicular to the direction of increasing . The thickness of the
volume element is , the surface area of each face is , and the mass of the solution in the volume element is .
Expressed as components in the direction of increasing  of the forces exerted on the volume element, the force at the inner face is 

, the force at the outer face is , and the centrifugal force is . From Newton’s second law, the
sum of these components is zero at equilibrium:
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or . In the limit as  and  are made infinitesimal, this becomes

We will assume the density  is uniform throughout the solution. (In the centrifugal field, this assumption is strictly true only if the
solution is incompressible and its density is independent of composition.) Then integration of Eq. 9.8.11 yields

where the superscripts  and  denote positions at two different values of  in the cell. The pressure is seen to increase with
increasing distance from the axis of rotation.

Next we investigate the dependence of the solute concentration  on  in the equilibrium state of the binary solution. Consider a
small sample of the solution of mass . Assume the extent of this sample in the radial direction is small enough for the variation of
the centrifugal force field to be negligible. The reversible work in the local frame needed to move this small sample an infinitesimal
distance  at constant , , and , using an external force  that opposes the centrifugal force, is

This work is a contribution to the change  of the internal energy. The Gibbs energy of the small sample in the local frame is a
function of the independent variables , , , , and , and its total differential is

We use Eq. 9.8.14 to write the reciprocity relation

Then, using , we obtain

Thus at constant , , and composition, which are the conditions that allow the activity  to remain constant,  for the sample
varies with  according to . We integrate from radial position  to position  to obtain

Let us take  as a reference position, such as the end of the centrifuge cell farthest from the axis of rotation. We define the standard
chemical potential  as the solute chemical potential under standard state conditions on a concentration basis at this position.
The solute chemical potential and activity at this position are related by

From Eqs. 9.8.17 and 9.8.18, we obtain the following general relation between  and  at an arbitrary radial position :

We found earlier that when the solution is in an equilibrium state,  is independent of —that is,  is equal to  for
any value of . When we equate expressions given by Eq. 9.8.19 for  and  and rearrange, we obtain the following
relation between the activities at the two radial positions:
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The solute activity is related to the concentration  by . We assume the solution is sufficiently dilute for the
activity coefficient  to be approximated by . The pressure factor is given by  (Table 9.6).
These relations give us another expression for the logarithm of the ratio of activities:

We substitute for  from Eq. 9.8.12. It is also useful to make the substitution , where  is the partial specific
volume of the solute at infinite dilution.

When we equate the two expressions for , we obtain finally

This equation shows that if the solution density  is less than the effective solute density , so that  is less than 1, the
solute concentration increases with increasing distance from the axis of rotation in the equilibrium state. If, however,  is greater
than , the concentration decreases with increasing . The factor  is like a buoyancy factor for the effect of the
centrifugal field on the solute.

Equation 9.8.22 is needed for sedimentation equilibrium, a method of determining the molar mass of a macromolecule. A dilute
solution of the macromolecule is placed in the cell of an analytical ultracentrifuge, and the angular velocity is selected to produce a
measurable solute concentration gradient at equilibrium. The solute concentration is measured optically as a function of . The
equation predicts that a plot of  versus  will be linear, with a slope equal to . The partial
specific volume  is found from measurements of solution density as a function of solute mass fraction (Sec. 9.2.5). By this
means, the molar mass  of the macromolecule is evaluated.
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