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7.3: Thermal Properties
For convenience in derivations to follow, expressions from Chap. 5 are repeated here that apply to processes in a closed system in
the absence of nonexpansion work (i.e., đ  ). For a process at constant volume we have  

and for a process at constant pressure we have  

A closed system of one component in a single phase has only two independent variables. In such a system, the partial derivatives
above are complete and unambiguous definitions of  and  because they are expressed with two independent variables-  and 

 for , and  and  for . As mentioned on page 146, additional conditions would have to be specified to define  for a
more complicated system; the same is true for .

For a closed system of an ideal gas we have 5 

7.3.1 The relation between  and  

The value of  for a substance is greater than . The derivation is simple in the case of a fixed amount of an ideal gas.
Using substitutions from Eq. 7.3.3, we write

Division by  to obtain molar quantities and rearrangement then gives

For any phase in general, we proceed as follows. First we write

Then we write the total differential of  with  and  as independent variables and identify one of the coefficients as  :

When we divide both sides of the preceding equation by  and impose a condition of constant , we obtain

Substitution of this expression for  in the equation for  yields

Finally we set the partial derivative  (the internal pressure) equal to  (Eq. 7.2.4) and  equal to 
 to obtain

and divide by  to obtain molar quantities:
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Since the quantity  must be positive,  is greater than .

7.3.2 The measurement of heat capacities 
The most accurate method of evaluating the heat capacity of a phase is by measuring the temperature change resulting from heating
with electrical work. The procedure in general is called calorimetry, and the apparatus containing the phase of interest and the
electric heater is a calorimeter. The principles of three commonly-used types of calorimeters with electrical heating are described
below.

Adiabatic calorimeters 

An adiabatic calorimeter is designed to have negligible heat flow to or from its surroundings. The calorimeter contains the phase of
interest, kept at either constant volume or constant pressure, and also an electric heater and a temperature-measuring device such as
a platinum resistance thermometer, thermistor, or quartz crystal oscillator. The contents may be stirred to ensure temperature
uniformity.

To minimize conduction and convection, the calorimeter usually is surrounded by a jacket separated by an air gap or an evacuated
space. The outer surface of the calorimeter and inner surface of the jacket may be polished to minimize radiation emission from
these surfaces. These measures, however, are not sufficient to ensure a completely adiabatic boundary, because energy can be
transferred by heat along the mounting hardware and through the electrical leads. Therefore, the temperature of the jacket, or of an
outer metal shield, is adjusted throughout the course of the experiment so as to be as close as possible to the varying temperature of
the calorimeter. This goal is most easily achieved when the temperature change is slow.

To make a heat capacity measurement, a constant electric current is passed through the heater circuit for a known period of time.
The system is the calorimeter and its contents. The electrical work  performed on the system by the heater circuit is calculated
from the integrated form of Eq.  on page 91: , where  is the electric current,  is the electric resistance, and

 is the time interval. We assume the boundary is adiabatic and write the first law in the form

where  is expansion work and  is any continuous mechanical work from stirring (the subscript "cont" stands for
continuous). If electrical work is done on the system by a

Figure : Typical heating curve of an adiabatic calorimet

thermometer using an external electrical circuit, such as a platinum resistance thermometer, this work is included in .

Consider first an adiabatic calorimeter in which the heating process is carried out at constant volume. There is no expansion work,
and Eq.  becomes

(constant  )

An example of a measured heating curve (temperature  as a function of time  ) is shown in Fig. 7.3. We select two points on the
heating curve, indicated in the figure by open circles. Time  is at or shortly before the instant the heater circuit is closed and
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electrical heating begins, and time  is after the heater circuit has been opened and the slope of the curve has become essentially
constant.

In the time periods before  and after , the temperature may exhibit a slow rate of increase due to the continuous work 
from stirring and temperature measurement. If this work is performed at a constant rate throughout the course of the experiment,
the slope is constant and the same in both time periods as shown in the figure.

The relation between the slope and the rate of work is given by a quantity called the energy equivalent, . The energy equivalent is
the heat capacity of the calorimeter under the conditions of an experiment. The heat capacity of a constant-volume calorimeter is
given by  (Eq. 5.6.1). Thus, at times before  or after , when đ  is zero and  equals , the slope  of
the heating curve is given by

The rate of the continuous work is therefore . This rate is constant throughout the experiment. In the time interval
from  to , the total quantity of continuous work is , where  is the slope of the heating curve measured
outside this time interval.

To find the energy equivalent, we integrate Eq.  between the two points on the curve:

(constant  )

Then the average heat capacity between temperatures  and  is

Solving for , we obtain

The value of the denominator on the right side is indicated by the vertical line in Fig. 7.3. It is the temperature change that would
have been observed if the same quantity of electrical work had been performed without the continuous work.

Next, consider the heating process in a calorimeter at constant pressure. In this case the enthalpy change is given by 
 which, with substitution from Eq. 7.3.12, becomes

 
(constant  )

We follow the same procedure as for the constant-volume calorimeter, using Eq.  in place of Eq.  and equating the
energy equivalent  to , the heat capacity of the calorimeter at constant pressure (Eq. 5.6.3). We obtain the relation

 
(constant  )

in place of Eq.  and end up again with the expression of Eq.  for .

The value of  calculated from Eq.  is an average value for the temperature interval from  to , and we can identify this
value with the heat capacity at the temperature of the midpoint of the interval. By taking the difference of values of  measured
with and without the phase of interest present in the calorimeter, we obtain  or  for the phase alone.

It may seem paradoxical that we can use an adiabatic process, one without heat, to evaluate a quantity defined by heat (heat
capacity  ). The explanation is that energy transferred into the adiabatic calorimeter as electrical work, and dissipated
completely to thermal energy, substitutes for the heat that would be needed for the same change of state without electrical work.
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Isothermal-jacket calorimeters 

A second common type of calorimeter is similar in construction to an adiabatic calorimeter, except that the surrounding jacket is
maintained at constant temperature. It is sometimes called an isoperibol calorimeter. A correction is made for heat transfer resulting
from the difference in temperature across the gap separating the jacket from the outer surface of the calorimeter. It is important in
making this correction that the outer surface have a uniform temperature without "hot spots."

Assume the outer surface of the calorimeter has a uniform temperature  that varies with time, the jacket temperature has a
constant value , and convection has been eliminated by evacuating the gap. Then heat transfer is by conduction and radiation,
and its rate

Figure  Typical heating curve of an isothermal-jacket calorimeter

is given by Newton's law of cooling

where  is a constant (the thermal conductance). Heat flows from a warmer to a cooler body, so đ  is positive if  is less than 
 and negative if  is greater than .

The possible kinds of work are the same as for the adiabatic calorimeter: expansion work , intermittent work  done by
the heater circuit, and continuous work . By combining the first law and Eq. 7.3.20, we obtain the following relation for the
rate at which the internal energy changes:

For heating at constant volume , this relation becomes

(constant  )

An example of a heating curve is shown in Fig. 7.4. In contrast to the curve of Fig. , the slopes are different before and after the
heating interval due to changed rate of heat flow. Times  and  are before and after the heater circuit is closed. In any time
interval before time  or after time , the system behaves as if it is approaching a steady state of constant temperature  (called
the convergence temperature), which it would eventually reach if the experiment were continued without closing the heater circuit. 

 is greater than  because of the energy transferred to the system by stirring and electrical temperature measurement. By
setting  and  equal to zero and  equal to  in Eq. 7.3.22, we obtain đ  We assume d

 is constant. Substituting this expression into Eq.  gives us a general expression for the rate at which  changes in
terms of the unknown quantities  and  :
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This relation is valid throughout the experiment, not only while the heater circuit is closed. If we multiply by  and integrate from 
 to , we obtain the internal energy change in the time interval from  to  :

 
(constant  )

All the intermittent work  is performed in this time interval.

The derivation of Eq.  is a general one. The equation can be applied also to a isothermal-jacket calorimeter in which a
reaction is occurring. Section  will mention the use of this equation for an internal energy correction of a reaction calorimeter
with an isothermal jacket.

The average value of the energy equivalent in the temperature range  to  is

Solving for , we obtain

The value of  is known from , where  is the time interval during which the heater circuit is closed. The
integral can be evaluated numerically once  is known. 
For heating at constant pressure,  is equal to , and we can write

 
(constant  )

which is analogous to Eq. 7.3.22. By the procedure described above for the case of constant , we obtain

 
(constant  )

At constant , the energy equivalent is equal to , and the final expression for  is the same as that given by
Eq. 7.3.26.

To obtain values of  and  for use in Eq. 7.3.26, we need the slopes of the heating curve in time intervals (rating periods) just
before  and just after . Consider the case of constant volume. In these intervals,  is zero and  equals 

 (from Eq. 7.3.23). The heat capacity at constant volume is . The slope  in general is then given by

Applying this relation to the points at times  and , we have the following simultaneous equations in the unknowns  and  : 
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Finally,  is given by 

 
When the pressure is constant, this procedure yields the same relations for , and 

Continuous-flow calorimeters 

A flow calorimeter is a third type of calorimeter used to measure the heat capacity of a fluid phase. The gas or liquid flows through
a tube at a known constant rate past an electrical heater of known constant power input. After a steady state has been achieved in
the tube, the temperature increase  at the heater is measured.

If  is the rate at which electrical work is performed (the electric power) and  is the mass flow rate, then in
time interval  a quantity  of work is performed on an amount  of the
fluid (where  is the molar mass). If heat flow is negligible, the molar heat capacity of the substance is given by

To correct for the effects of heat flow,  is usually measured over a range of flow rates and the results extrapolated to infinite
flow rate.

7.3.3 Typical values 

Figure 7.5 Temperature dependence of molar heat capacity at constant
pressure ( ) of H O, N , and C(graphite).

Figure 7.5 shows the temperature dependence of  for several substances. The discontinuities seen at certain temperatures
occur at equilibrium phase transitions. At these temperatures the heat capacity is in effect infinite, since the phase transition of a
pure substance involves finite heat with zero temperature change.
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