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13.1: The Gibbs Phase Rule for Multicomponent Systems
In Sec. 8.1.7, the Gibbs phase rule for a pure substance was written . We now consider a system of more than one
substance and more than one phase in an equilibrium state. The phase rule assumes the system is at thermal and mechanical
equilibrium. We shall assume furthermore that in addition to the temperature and pressure, the only other state functions needed to
describe the state are the amounts of the species in each phase; this means for instance that surface effects are ignored.

The derivations to follow will show that the phase rule may be written either in the form

or

where the symbols have the following meanings:

 the number of degrees of freedom (or variance) 
 the maximum number of intensive variables that can be varied independently while the system remains in an equilibrium state;

 the number of components 
 the minimum number of substances (or fixed-composition mixtures of substances) 

 that could be used to prepare each phase individually;

 the number of different phases;

 the number of different species;

 the number of independent relations among intensive variables of individual phases other than relations 
 needed for thermal, mechanical, and transfer equilibrium.

If we subdivide a phase, that does not change the number of phases . That is, we treat noncontiguous regions of the system that
have identical intensive properties as parts of the same phase.

13.1.1 Degrees of freedom 

Consider a system in an equilibrium state. In this state, the system has one or more phases; each phase contains one or more
species; and intensive properties such as , , and the mole fraction of a species in a phase have definite values. Starting with the
system in this state, we can make changes that place the system in a new equilibrium state having the same kinds of phases and the
same species, but different values of some of the intensive properties. The number of different independent intensive variables that
we may change in this way is the number of degrees of freedom or variance, , of the system.

Clearly, the system remains in equilibrium if we change the amount of a phase without changing its temperature, pressure, or
composition. This, however, is the change of an extensive variable and is not counted as a degree of freedom.

The phase rule, in the form to be derived, applies to a system that continues to have complete thermal, mechanical, and transfer
equilibrium as intensive variables change. This means different phases are not separated by adiabatic or rigid partitions, or by
semipermeable or impermeable membranes. Furthermore, every conceivable reaction among the species is either at reaction
equilibrium or else is frozen at a fixed advancement during the time period we observe the system.

The number of degrees of freedom is the maximum number of intensive properties of the equilibrium system we may
independently vary, or fix at arbitrary values, without causing a change in the number and kinds of phases and species. We cannot,
of course, change one of these properties to just any value whatever. We are able to vary the value only within a certain finite
(sometimes quite narrow) range before a phase disappears or a new one appears.

The number of degrees of freedom is also the number of independent intensive variables needed to specify the equilibrium state in
all necessary completeness, aside from the amount of each phase. In other words, when we specify values of  different
independent intensive variables, then the values of all other intensive variables of the equilibrium state have definite values
determined by the physical nature of the system.

Just as for a one-component system, we can use the terms bivariant, univariant, and invariant depending on the value of  (Sec.
8.1.7).
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13.1.2 Species approach to the phase rule 

This section derives an expression for the number of degrees of freedom, , based on species. Section 13.1.3 derives an expression
based on components. Both approaches yield equivalent versions of the phase rule.

Recall that a species is an entity, uncharged or charged, distinguished from other species by its chemical formula (Sec. 9.1.1). Thus,
CO  and CO  are different species, but CO (aq) and CO (g) is the same species in different phases.

Consider an equilibrium system of  phases, each of which contains the same set of species. Let the number of different species be
. If we could make changes while the system remains in thermal and mechanical equilibrium, but not necessarily in transfer

equilibrium, we could independently vary the temperature and pressure of the system as a whole and the amount of each species in
each phase; there would then be  independent variables.

The equilibrium system is, however, in transfer equilibrium, which requires each species to have the same chemical potential in
each phase: , , and so on. There are  independent relations like this for each species, and a total of 

 independent relations for all species. Each such independent relation introduces a constraint and reduces the number of
independent variables by one. Accordingly, taking transfer equilibrium into account, the number of independent variables is 

.

We obtain the same result if a species present in one phase is totally excluded from another. For example, solvent molecules of a
solution are not found in a pure perfectly-ordered crystal of the solute, undissociated molecules of a volatile strong acid such as
HCl can exist in a gas phase but not in aqueous solution, and ions of an electrolyte solute are usually not found in a gas phase. For
each such species absent from a phase, there is one fewer amount variable and also one fewer relation for transfer equilibrium; on
balance, the number of independent variables is still .

Next, we consider the possibility that further independent relations exist among intensive variables in addition to the relations
needed for thermal, mechanical, and transfer equilibrium. (Relations such as  for a gas phase or  for a phase in
general have already been accounted for in the derivation by the specification of  and the amount of each species.) If there are  of
these additional relations, the total number of independent variables is reduced to . These relations may come from

1. In the case of a reaction equilibrium, the relation is , or the equivalent relation  for the
thermodynamic equilibrium constant. Thus,  is the sum of the number of independent reaction equilibria, the number of phases
containing ions, and the number of independent initial conditions. Several examples will be given in Sec. 13.1.4.

There is an infinite variety of possible choices of the independent variables (both extensive and intensive) for the equilibrium
system, but the total number of independent variables is fixed at . Keeping intensive properties fixed, we can always
vary how much of each phase is present (e.g., its volume, mass, or amount) without destroying the equilibrium. Thus, at least 
of the independent variables, one for each phase, must be extensive. It follows that the maximum number of independent
intensive variables is the difference .

Since the maximum number of independent intensive variables is the number of degrees of freedom, our expression for  based
on species is

13.1.3 Components approach to the phase rule

The derivation of the phase rule in this section uses the concept of components. The number of components, , is the
minimum number of substances or mixtures of fixed composition from which we could in principle prepare each individual
phase of an equilibrium state of the system, using methods that may be hypothetical. These methods include the addition or
removal of one or more of the substances or fixed-composition mixtures, and the conversion of some of the substances into
others by means of a reaction that is at equilibrium in the actual system.

It is not always easy to decide on the number of components of an equilibrium system. The number of components may be less
than the number of substances present, on account of the existence of reaction equilibria that produce some substances from
others. When we use a reaction to prepare a phase, nothing must remain unused. For instance, consider a system consisting of
solid phases of CaCO  and CaO and a gas phase of CO . Assume the reaction CaCO (s)  CaO(s) + CO (g) is at equilibrium.
We could prepare the CaCO  phase from CaO and CO  by the reverse of this reaction, but we can only prepare the CaO and
CO  phases from the individual substances. We could not use CaCO  to prepare either the CaO phase or the CO  phase,

F

2 3
2−

2 2

P

s

2 +P s

=μ
β

i μα
i =μ

γ

i μα
i P −1

s(P −1)

2 +P s −s(P −1) = 2 +s

2 +s

= p∑i pi = 1∑i xi

p r

2 +s −r

G = = 0Δr ∑iνiμi K = (∏i ai)
νi

r

2 +s −r

P

(2 +s −r) −P

F

F = 2 +s −r −P (13.1.3)

C

3 2 3 → 2

3 2

2 3 2

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20627?pdf


13.1.3 https://chem.libretexts.org/@go/page/20627

because CO  or CaO would be left over. Thus this system has three substances but only two components, namely CaO and CO
.

In deriving the phase rule by the components approach, it is convenient to consider only intensive variables. Suppose we have a
system of  phases in which each substance present is a component (i.e., there are no reactions) and each of the  components
is present in each phase. If we make changes to the system while it remains in thermal and mechanical equilibrium, but not
necessarily in transfer equilibrium, we can independently vary the temperature and pressure of the whole system, and for each
phase we can independently vary the mole fraction of all but one of the substances (the value of the omitted mole fraction
comes from the relation ). This is a total of  independent intensive variables.

When there also exist transfer and reaction equilibria, not all of these variables are independent. Each substance in the system is
either a component, or else can be formed from components by a reaction that is in reaction equilibrium in the system. Transfer
equilibria establish  independent relations for each component ( , , etc.) and a total of 
relations for all components. Since these are relations among chemical potentials, which are intensive properties, each relation
reduces the number of independent intensive variables by one. The resulting number of independent intensive variables is

If the equilibrium system lacks a particular component in one phase, there is one fewer mole fraction variable and one fewer
relation for transfer equilibrium. These changes cancel in the calculation of , which is still equal to . If a phase
contains a substance that is formed from components by a reaction, there is an additional mole fraction variable and also the
additional relation  for the reaction; again the changes cancel.

We may need to remove a component from a phase to achieve the final composition. Note that it is not necessary
to consider additional relations for electroneutrality or initial conditions; they are implicit in the definitions of
the components. For instance, since each component is a substance of zero electric charge, the electrical
neutrality of the phase is assured.

We conclude that, regardless of the kind of system, the expression for  based on components is given by . By
comparing this expression and , we see that the number of components is related to the number of species
by

13.1.4 Examples

The five examples below illustrate various aspects of using the phase rule.

Example 1: liquid water

For a single phase of pure water,  equals . If we treat the water as the single species H O,  is 1 and  is 0. The phase rule
then predicts two degrees of freedom:

Since  is the number of intensive variables that can be varied independently, we could for instance vary  and 
independently, or  and , or any other pair of independent intensive variables.

Next let us take into account the proton transfer equilibrium

and consider the system to contain the three species H O, H O , and OH . Then for the species approach to the phase rule, we
have . We can write two independent relations:

1. Thus, we have two relations involving intensive variables only. Now  is 3,  is 2,  is 1, and the number of degrees of
freedom is given by

which is the same value of  as before.
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If we consider water to contain additional cation species (e.g., ), each such species would add  to  and  to , but 
would remain equal to 2. Thus, no matter how complicated are the equilibria that actually exist in liquid water, the number
of degrees of freedom remains .

Example 2: carbon, oxygen, and carbon oxides

Consider a system containing solid carbon (graphite) and a gaseous mixture of O , CO, and CO . There are four species and
two phases. If reaction equilibrium is absent, as might be the case at low temperature in the absence of a catalyst, we have 

 and . The four components are the four substances. The phase rule tells us the system has four degrees
of freedom. We could, for instance, arbitrarily vary , , , and .

Now suppose we raise the temperature or introduce an appropriate catalyst to allow the following reaction equilibria to
exist:

1. These equilibria introduce two new independent relations among chemical potentials and among activities. We could
also consider the equilibrium , but it does not contribute an additional independent
relation because it depends on the other two equilibria: the reaction equation is obtained by subtracting the reaction
equation for equilibrium 1 from twice the reaction equation for equilibrium 2. By the species approach, we have , 

, and ; the number of degrees of freedom from these values is

If we wish to calculate  by the components approach, we must decide on the minimum number of substances we could
use to prepare each phase separately. (This does not refer to how we actually prepare the two-phase system, but to a
hypothetical preparation of each phase with any of the compositions that can actually exist in the equilibrium system.)
Assume equilibria 1 and 2 are present. We prepare the solid phase with carbon, and we can prepare any possible
equilibrium composition of the gas phase from carbon and O  by using the reactions of both equilibria. Thus, there are
two components (C and O ) giving the same result of two degrees of freedom.

1. Now to introduce an additional complexity: Suppose we prepare the system by placing a certain amount of O  and
twice this amount of carbon in an evacuated container, and wait for the reactions to come to equilibrium. This method
of preparation imposes an initial condition on the system, and we must decide whether the number of degrees of
freedom is affected. Equating the total amount of carbon atoms to the total amount of oxygen atoms in the
equilibrated system gives the relation

Either equation is a relation among extensive variables of the two phases. From them, we are unable to obtain any
relation among intensive variables of the phases. Therefore, this particular initial condition does not change the value
of , and  remains equal to 2.

Example 3: a solid salt and saturated aqueous solution

Applying the components approach to this system is straightforward. The solid phase is prepared from PbCl  and the
aqueous phase could be prepared by dissolving solid PbCl  in H O. Thus, there are two components and two phases:

For the species approach, we note that there are four species (PbCl , Pb , Cl , and H O) and two independent
relations among intensive variables:

1. We have , , and , giving the same result as the components approach:

Example 4: liquid water and water-saturated air

If there is no special relation among the total amounts of N  and O , there are three components and the phase
rule gives

H5O+
2 1 s 1 r F

2

2 2

r = 0 C = s −r = 4

T p yO2 yCO

2 CO(g) + (g) ⇌ 2 (g)O2 CO2

s = 4

r = 2 P = 2

F = 2 +s −r −P = 2 (13.1.8)

F

2

2

2

+ + = 2 + +2 or = 2 +nC nCO nCO2
nO2

nCO nCO2
nC nO2

nCO2
(13.1.9)

r F

2

2 2

F = 2 +C −P = 2 (13.1.10)

2
2+ −

2

s = 4 r = 2 P = 2

F = 2 +s −r −P = 2 (13.1.11)

2 2

F = 2 +C −P = 3 (13.1.12)

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20627?pdf


13.1.5 https://chem.libretexts.org/@go/page/20627

Since there are three degrees of freedom, we could, for instance, specify arbitrary values of , , and 
(arbitrary, that is, within the limits that would allow the two phases to coexist); then the values of other intensive
variables such as the mole fractions  and  would have definite values.

Now suppose we impose an initial condition by preparing the system with water and dry air of a fixed
composition. The mole ratio of N  and O  in the aqueous solution is not necessarily the same as in the
equilibrated gas phase; consequently, the air does not behave like a single substance. The number of components
is still three: H O, N , and O  are all required to prepare each phase individually, just as when there was no
initial condition, giving  as before.

The fact that the compositions of both phases depend on the relative amounts of the phases is illustrated in Prob.
9.5.

We can reach the same conclusion with the species approach. The initial condition can be expressed by an
equation such as

where  is a constant equal to the mole ratio of N  and O  in the dry air. This equation cannot be changed to a
relation between intensive variables such as  and , so that  is zero and there are still three degrees of
freedom.

Finally, let us assume that we prepare the system with dry air of fixed composition, as before, but consider the
solubilities of N  and O  in water to be negligible. Then  and  are zero and Eq. 13.1.13 becomes 

, or , which is a relation between intensive variables. In this case,  is 1 and the phase
rule becomes

The reduction in the value of  from 3 to 2 is a consequence of our inability to detect any dissolved N  or O .
According to the components approach, we may prepare the liquid phase with H O and the gas phase with H O
and air of fixed composition that behaves as a single substance; thus, there are only two components.

Example 5: equilibrium between two solid phases and a gas phase

Consider the following reaction equilibrium:

According to the species approach, there are five species, one relation (for reaction equilibrium), and three phases.
The phase rule gives

It is more difficult to apply the components approach to this example. As components, we might choose CuO and
Cu (from which we could prepare the solid phases) and also NH  and H O. Then to obtain the N  needed to
prepare the gas phase, we could use CuO and NH  as reactants in the reaction 

 and remove the products Cu and H O. In the components approach,
we are allowed to remove substances from the system provided they are counted as components.
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