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10.5: Derivation of the Debye-Huckel Theory

Debye and Hiickel derived Eq. 10.4.1 using a combination of electrostatic theory, statistical mechanical theory, and
thermodynamics. This section gives a brief outline of their derivation.

The derivation starts by focusing on an individual ion of species 7 as it moves through the solution; call it the central ion. Around
this central ion, the time-average spatial distribution of any ion species j is not random, on account of the interaction of these ions
of species j with the central ion. (Species ¢ and j may be the same or different.) The distribution, whatever it is, must be
spherically symmetric about the central ion; that is, a function only of the distance r from the center of the ion. The local
concentration, c;, of the ions of species j at a given value of r depends on the ion charge z;e and the electric potential ¢ at that
position. The time-average electric potential in turn depends on the distribution of all ions and is symmetric about the central ion,
so expressions must be found for c;. and ¢ as functions of r that are mutually consistent.

Debye and Hiickel assumed that c;. is given by the Boltzmann distribution
¢ =cje 99 (10.5.1)

where zje¢ is the electrostatic energy of an ion of species j, and k is the Boltzmann constant (k = R/ Ny ). As 7 becomes large, ¢
approaches zero and c;. approaches the macroscopic concentration c;. As T' increases, c;. at a fixed value of r approaches c;
because of the randomizing effect of thermal energy. Debye and Hiickel expanded the exponential function in powers of 1/T and
retained only the first two terms: c;. ~¢;(1 —zje¢/kT) . The distribution of each ion species is assumed to follow this relation.
The electric potential function consistent with this distribution and with the electroneutrality of the solution as a whole is

¢ = (zie/Amereor)e™ @™ /(1 + ka) (10.5.2)

Here k is defined by k2 =2N §e2Ic /€.€gRT, where I. is the ionic strength on a concentration basis defined by
2

L=(1/2)%, cizt.

The electric potential ¢ at a point is assumed to be a sum of two contributions: the electric potential the central ion would cause at

infinite dilution, 2;e/4me, €y, and the electric potential due to all other ions, ¢'. Thus, ¢' is equal to ¢ — z;e/4me, €y, or

¢ = (zie/4meeor)[e”v ) /(1 + ka) —1] (10.5.3)

This expression for ¢’ is valid for distances from the center of the central ion down to a, the distance of closest approach of other
ions. At smaller values of 7, ¢’ is constant and equal to the value at » = a, which is ¢'(a) = —(z;e/4me €0)k/ (1 + ka) . The
interaction energy between the central ion and the surrounding ions (the ion atmosphere) is the product of the central ion charge
and ¢'(a).

The last step of the derivation is the calculation of the work of a hypothetical reversible process in which the surrounding ions stay
in their final distribution, and the charge of the central ion gradually increases from zero to its actual value z;e. Let az;e be the
charge at each stage of the process, where a is a fractional advancement that changes from 0 to 1. Then the work w' due to the
interaction of the central ion with its ion atmosphere is ¢’ (a) integrated over the charge:

W = _/0:0 [(azie/dme€0)k/ (1 + Kka)] d(az;e) (10.5.4)

= —(22e* /8meeg)r/ (1 + Ka)

Since the infinitesimal Gibbs energy change in a reversible process is given by dG =—-SdT +Vdp+dw' (Eq. 5.8.6), this
reversible nonexpansion work at constant 7" and p is equal to the Gibbs energy change. The Gibbs energy change per amount of
species ¢ is w'Ny = —(22e2N, /8me€0)k/(1+ka). This quantity is AG/n; for the process in which a solution of fixed
composition changes from a hypothetical state lacking ion—ion interactions to the real state with ion—ion interactions present.
AG/n; may be equated to the difference of the chemical potentials of ¢ in the final and initial states. If the chemical potential
without ion—ion interactions is taken to be that for ideal-dilute behavior on a molality basis, u; = ,uﬁ;’fi + RT In(m;/m°) , then

—(22€* N /87eren)r /(1 +ka) is equal to p; — [pi; + RT In(m; /m°)] = RT Inv,,; . In a dilute solution, ¢; can with little

1
error be set equal to p} m;, and I, to p}, I,. Equation 10.4.1 follows.
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