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12.4: Colligative Properties of a Dilute Solution
The colligative properties of a solution are usually considered to be:

1. Note that all four properties are defined by an equilibrium between the liquid solution and a solid, liquid, or gas phase of the
pure solvent. The properties called colligative (Latin: tied together) have in common a dependence on the concentration of
solute particles that affects the solvent chemical potential.

Figure 12.3 illustrates the freezing-point depression and boiling-point elevation of an aqueous solution. At a fixed pressure,
pure liquid water is in equilibrium with ice at the freezing point and with steam at the boiling point. These are the temperatures
at which H O has the same chemical potential in both phases at this pressure. At these temperatures, the chemical potential
curves for the phases intersect, as indicated by open circles in the figure. The presence of dissolved solute in the solution causes
a lowering of the H O chemical potential compared to pure water at the same temperature. Consequently, the curve for the
chemical potential of H O in the solution intersects the curve for ice at a lower temperature, and the curve for steam at a higher
temperature, as indicated by open triangles. The freezing point is depressed by , and the boiling point (if the solute is
nonvolatile) is elevated by .

Although these expressions provide no information about the activity coefficient of a solute, they are useful for estimating the
solute molar mass. For example, from a measurement of any of the colligative properties of a dilute solution and the appropriate
theoretical relation, we can obtain an approximate value of the solute molality . (It is only approximate because, for a
measurement of reasonable precision, the solution cannot be extremely dilute.) If we prepare the solution with a known amount 

 of solvent and a known mass of solute, we can calculate the amount of solute from ; then the solute molar
mass is the solute mass divided by .

12.4.1 Freezing-point depression
As in Sec. 12.2.1, we assume the solid that forms when a dilute solution is cooled to its freezing point is pure component A.

Equation 12.3.6 gives the general dependence of temperature on the composition of a binary liquid mixture of A and B that is in
equilibrium with pure solid A. We treat the mixture as a solution. The solvent is component A, the solute is B, and the
temperature is the freezing point :

Consider the expression on the right side of this equation in the limit of infinite dilution. In this limit,  becomes , the
freezing point of the pure solvent, and  becomes , the molar enthalpy of fusion of the pure solvent.

To deal with the partial derivative on the right side of Eq. 12.4.1 in the limit of infinite dilution, we use the fact that the solvent
activity coefficient  approaches  in this limit. Then the solvent chemical potential is given by the Raoult’s law relation

where  is the chemical potential of A in a pure-liquid reference state at the same  and  as the mixture. (At the freezing
point of the mixture, the reference state is an unstable supercooled liquid.)

If the solute is an electrolyte, Eq. 12.4.2 can be derived by the same procedure as described in Sec. 9.4.6 for an ideal-dilute
binary solution of a nonelectrolyte. We must calculate  from the amounts of all species present at infinite dilution. In the
limit of infinite dilution, any electrolyte solute is completely dissociated to its constituent ions: ion pairs and weak electrolytes
are completely dissociated in this limit. Thus, for a binary solution of electrolyte B with  ions per formula unit, we should
calculate  from

where  is the amount of solute formula unit. (If the solute is a nonelectrolyte, we simply set  equal to  in this equation.)

From Eq. 12.4.2, we can write

2

2

2

ΔTf

ΔTb

mB

nA =nB nAMAmB

nB

Tf

=( )
∂Tf

∂xA p

T 2
f

HΔsol,A
[ ]

∂( /T )μA

∂xA T ,p

(12.4.1)

Tf T ∗
f

HΔsol,A HΔfus,A

γA 1

= +RT lnμA μ∗
A

xA (12.4.2)
(solution at infinite dilution)

μ∗
A T p

xA

ν

xA

=xA
nA

+νnA nB
(12.4.3)

nB ν 1

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/20642?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/12%3A_Equilibrium_Conditions_in_Multicomponent_Systems/12.04%3A_Colligative_Properties_of_a_Dilute_Solution


12.4.2 https://chem.libretexts.org/@go/page/20642

In the limit of infinite dilution, then, Eq. 12.4.1 becomes

It is customary to relate freezing-point depression to the solute concentration  or molality . From Eq. 12.4.3, we obtain

In the limit of infinite dilution, when  is much smaller than ,  approaches the value . Then, using
expressions in Eq. 9.1.14, we obtain the relations

which transform Eq. 12.4.5 into the following (ignoring a small dependence of  on ):

We can apply these equations to a nonelectrolyte solute by setting  equal to .

As  or  approaches zero,  approaches . The freezing-point depression (a negative quantity) is . In the
range of molalities of a dilute solution in which  is given by the expression on the right side of Eq. 12.4.8, we can
write

The molal freezing-point depression constant or cryoscopic constant, , is defined for a binary solution by

and, from Eq. 12.4.9, has a value given by

The value of  calculated from this formula depends only on the kind of solvent and the pressure. For H O at , the
calculated value is  (Prob. 12.4).

In the dilute binary solution, we have the relation

This relation is useful for estimating the molality of a dilute nonelectrolyte solution ( ) from a measurement of the freezing
point. The relation is of little utility for an electrolyte solute, because at any electrolyte molality that is high enough to give a
measurable depression of the freezing point, the mean ionic activity coefficient deviates greatly from unity and the relation is
not accurate.
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12.4.2 Boiling-point elevation
We can apply Eq. 12.3.6 to the boiling point  of a dilute binary solution. The pure phase of A in equilibrium with the solution
is now a gas instead of a solid. (We must assume the solute is nonvolatile or has negligible partial pressure in the gas phase.)
Following the procedure of Sec. 12.4.1, we obtain

where  is the molar enthalpy of vaporization of pure solvent at its boiling point .

The molal boiling-point elevation constant or ebullioscopic constant, , is defined for a binary solution by

where  is the boiling-point elevation. Accordingly,  has a value given by

For the boiling point of a dilute solution, the analogy of Eq. 12.4.12 is

Since  has a larger value than  (because  is smaller than ), the measurement of freezing-point depression
is more useful than that of boiling-point elevation for estimating the molality of a dilute solution.

12.4.3 Vapor-pressure lowering
In a binary two-phase system in which a solution of volatile solvent A and nonvolatile solute B is in equilibrium with gaseous
A, the vapor pressure of the solution is equal to the system pressure .

Equation 12.3.7 gives the general dependence of  on  for a binary liquid mixture in equilibrium with pure gaseous A. In this
equation,  is the molar differential volume change for the dissolution of the gas in the solution. In the limit of infinite
dilution,  becomes , the molar volume change for the vaporization of pure solvent. We also apply the
limiting expressions of Eqs. 12.4.4 and 12.4.7. The result is

If we neglect the molar volume of the liquid solvent compared to that of the gas, and assume the gas is ideal, then we can
replace  in the expressions above by  and obtain

where  is the vapor pressure of the pure solvent at the temperature of the solution.

Thus, approximate expressions for vapor-pressure lowering in the limit of infinite dilution are

We see that the lowering in this limit depends on the kind of solvent and the solution composition, but not on the kind of solute.

12.4.4 Osmotic pressure

The osmotic pressure  is an intensive property of a solution and was defined in Sec. 12.2.2. In a dilute solution of low , the
approximation used to derive Eq. 12.2.11 (that the partial molar volume  of the solvent is constant in the pressure range from

 to ) becomes valid, and we can write
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In the limit of infinite dilution,  approaches  (Eq. 12.4.2) and  becomes the molar volume  of the
pure solvent. In this limit, Eq. 12.4.20 becomes

from which we obtain the equation

The relations in Eq. 12.4.7 transform Eq. 12.4.22 into

Equations 12.4.23 and 12.4.24 show that the osmotic pressure becomes independent of the kind of solute as the solution
approaches infinite dilution. The integrated forms of these equations are

Equation 12.4.25 is van’t Hoff’s equation for osmotic pressure. If there is more than one solute species,  can be replaced
by  and  by  in these expressions.

In Sec. 9.6.3, it was stated that  is equal to the product of  and the limiting value of  at infinite dilution, where 
 is the osmotic coefficient. This relation follows directly from Eqs. 12.2.11 and 12.4.26.
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