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15.6: Appendix F- Mathematical Properties of State Functions
A state function is a property of a thermodynamic system whose value at any given instant depends only on the state of the system
at that instant (Sec. 2.4).

F.1 Differentials 
The differential  of a state function  is an infinitesimal change of . Since the value of a state function by definition depends
only on the state of the system, integrating  between an initial state  and a final state  yields the change in , and this change is
independent of the path:

A differential with this property is called an exact differential. The differential of a state function is always exact.

F.2 Total Differential 

A state function  treated as a dependent variable is a function of a certain number of independent variables that are also state
functions. The total differential of  is  expressed in terms of the differentials of the independent variables and has the form

There are as many terms in the expression on the right side as there are independent variables. Each partial derivative in the
expression has all independent variables held constant except the variable shown in the denominator.

Figure F.1 interprets this expression for a function  of the two independent variables  and . The shaded plane represents a small
element of the surface .

Consider a system with three independent variables. If we choose these independent variables to be , , and , the total
differential of the dependent state function  takes the form

where we can identify the coefficients as

These coefficients are themselves, in general, functions of the independent variables and may be differentiated to give mixed
second partial derivatives; for example:

The second partial derivative , for instance, is the partial derivative with respect to  of the partial derivative of  with
respect to . It is a theorem of calculus that if a function  is single valued and has continuous derivatives, the order of
differentiation in a mixed derivative is immaterial. Therefore the mixed derivatives  and , evaluated for the
system in any given state, are equal:

The general relation that applies to a function of any number of independent variables is

where  and  are any two of the independent variables,  is ,  is , and each partial derivative has all independent
variables held constant except the variable shown in the denominator. This general relation is the Euler reciprocity relation, or
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reciprocity relation for short. A necessary and sufficient condition for  to be an exact differential is that the reciprocity relation
is satisfied for each pair of independent variables.

F.3 Integration of a Total Differential 

If the coefficients of the total differential of a dependent variable are known as functions of the independent variables, the
expression for the total differential may be integrated to obtain an expression for the dependent variable as a function of the
independent variables.

For example, suppose the total differential of the state function  is given by Eq. F.2.2 and the coefficients are known
functions , , and . Because  is a state function, its change between  and  is
independent of the integration path taken between these two states. A convenient path would be one with the following three
segments:

1. The expression for  is then the sum of the three integrals and a constant of integration.

Here is an example of this procedure applied to the total differential

An expression for the function  in this example is given by the sum

where primes are omitted on the second and third lines because the expressions are supposed to apply to any values of , , and 
.  is an integration constant. You can verify that the third line of Eq. F.3.2 gives the correct expression for  by taking partial

derivatives with respect to , , and  and comparing with Eq. F.3.1.

A different kind of integration can be used to express a dependent extensive property in terms of independent extensive
properties. An extensive property of a thermodynamic system is one that is additive, and an intensive property is one that is not
additive and has the same value everywhere in a homogeneous region (Sec. 2.1.1). Suppose we have a state function  that is an
extensive property with the total differential

where the independent variables  are extensive and the coefficients  are intensive. If the independent
variables include those needed to describe an open system (for example, the amounts of the substances), then it is possible to
integrate both sides of the equation from a lower limit of zero for each of the extensive functions while holding the intensive
functions constant:

Note that a term of the form  where  is intensive becomes zero when integrated with intensive functions held constant,
because  is this case is zero.

F.4 Legendre Transforms
A Legendre transform of a state function is a linear change of one or more of the independent variables made by subtracting
products of conjugate variables.

To understand how this works, consider a state function  whose total differential is given by

In the expression on the right side, , , and  are being treated as the independent variables. The pairs  and ,  and , and 
and  are conjugate pairs. That is,  and  are conjugates,  and  are conjugates, and  and  are conjugates.
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For the first example of a Legendre transform, we define a new state function  by subtracting the product of the conjugate
variables  and :

The function  is a Legendre transform of . We take the differential of Eq. F.4.2

and substitute for  from Eq. F.4.1:

Equation F.4.4 gives the total differential of  with , , and  as the independent variables. The functions  and  have
switched places as independent variables. What we did in order to let  replace  as an independent variable was to subtract
from  the product of the conjugate variables  and .

Because the right side of Eq. F.4.4 is an expression for the total differential of the state function , we can use the expression to
identify the coefficients as partial derivatives of  with respect to the new set of independent variables:

We can also use Eq. F.4.4 to write new reciprocity relations, such as

We can make other Legendre transforms of  by subtracting one or more products of conjugate variables. A second example of
a Legendre transform is

whose total differential is

Here  has replaced  and  has replaced  as independent variables. Again, we can identify the coefficients as partial
derivatives and write new reciprocity relations.

If we have an algebraic expression for a state function as a function of independent variables, then a Legendre transform
preserves all the information contained in that expression. To illustrate this, we can use the state function  and its Legendre
transform  described above. Suppose we have an expression for —this is  expressed as a function of the
independent variables , , and . Then by taking partial derivatives of this expression, we can find according to Eq. F.2.3
expressions for the functions , , and .

Now we perform the Legendre transform of Eq. F.4.7:  with total differential  (Eq.
F.4.8). The independent variables have been changed from , , and  to , , and .

We want to find an expression for  as a function of these new variables, using the information available from the original
function . To do this, we eliminate  from the known functions  and  and solve for  as a function
of , , and . We also eliminate  from  and  and solve for  as a function of , , and . This gives us
expressions for  and  which we substitute into the expression for , turning it into the function 

. Finally, we use the functions of the new variables to obtain an expression for 
.

The original expression for  and the new expression for  contain the same information. We could take the
expression for  and, by following the same procedure with the Legendre transform , retrieve the
expression for . Thus no information is lost during a Legendre transform.
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