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12.1: Effects of Temperature
For some of the derivations in this chapter, we will need an expression for the rate at which the ratio μi /T varies with temperature
in a phase of fixed composition maintained at constant pressure. This expression leads, among other things, to an important relation
between the temperature dependence of an equilibrium constant and the standard molar reaction enthalpy.

12.1.1 Variation of μi /T with temperature 

In a phase containing species i, either pure or in a mixture, the partial derivative of μi /T with respect to T at constant p and a fixed
amount of each species is given by

∂ μi /T

∂T p , { ni }
=

1
T

∂μi

∂T p , { ni }
−

μi

T2

This equality comes from a purely mathematical operation; no thermodynamics is involved.

The relation is obtained from the formula d(uv) /dx = u(dv /dx) + v(du /dx)  (Appendix E), where u is 1 /T, v is μi,
and x is T.

The partial derivative (∂μi /∂T)p , { ni }  is equal to −Si (Eq. 9.2.48), so that Eq. 12.1.1 becomes

∂ μi /T

∂T p , { ni }
= −

Si

T −
μi

T2 = −
TSi + μi

T2

The further substitution μi = Hi − TSi (Eq. 9.2.46) gives finally

∂ μi /T

∂T p , { ni }
= −

Hi

T2

For a pure substance in a closed system, Eq. 12.1.3 when multiplied by the amount n becomes

∂(G /T)
∂T p

= −
H

T2

This is the Gibbs–Helmholtz equation.

12.1.2 Variation of μ ∘i /T with temperature 

If we make the substitution μi = μ ∘i + RTlnai in Eq. 12.1.3 and rearrange, we obtain

d(μ ∘i /T)

dT = −
Hi

T2 − R
∂lnai

∂T p , { ni }

Because μ ∘i /T is a function only of T, its derivative with respect to T is itself a function only of T. We can therefore use any
convenient combination of pressure and composition in the expression on the right side of Eq. 12.1.5 in order to evaluate 

d(μ ∘i /T) /dT  at a given temperature.

If species i is a constituent of a gas mixture, we take a constant pressure of the gas that is low enough for the gas to behave ideally.
Under these conditions Hi is the standard molar enthalpy H ∘

i  (Eq. 9.3.7). In the expression for activity, ai(g) = Γi(g)ϕipi /p (Table
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9.5), the pressure factor Γi(g) is constant when p is constant, the fugacity coefficient ϕi for the ideal gas is unity, and pi /p = yi is
constant at constant {ni}, so that the partial derivative [∂lnai(g) /∂T]p , { ni }  is zero.

For component i of a condensed-phase mixture, we take a constant pressure equal to the standard pressure p ∘ , and a mixture
composition in the limit given by Eqs. 9.5.20–9.5.24 in which the activity coefficient is unity. Hi is then the standard molar

enthalpy H ∘

i , and the activity is given by an expression in Table 9.5 with the pressure factor and activity coefficient set equal to 1: 

ai = xi, aA = xA, ax , B = xB, ac , B = cB /c ∘ , or am , B = mB /m ∘ . With the exception of ac , B, these activities are constant as T
changes at constant p and {ni}.

If solute B is an electrolyte, am , B is given instead by Eq. 10.3.10; like am , B for a nonelectrolyte, it is constant as T
changes at constant p and {ni}.

Thus for a gas-phase species, or a species with a standard state based on mole fraction or molality, [∂lnai(g) /∂T]p , { ni }  is zero and

Eq. 12.1.5 becomes

d(μ ∘i /T)

dT = −
H ∘

i

T2

Equation 12.1.6, as the conditions of validity indicate, does not apply to a solute standard state based on concentration, except as an
approximation. The reason is the volume change that accompanies an isobaric temperature change. We can treat this case by
considering the following behavior of ln(cB /c ∘):

∂ln(cB /c ∘)

∂T p , { ni }
=

1
cB

∂cB

∂T p , { ni }
=

1
nB /V

∂(nB /V)

∂T p , { ni }

= V
∂(1 /V)

∂T p , { ni }
= −

1
V

∂V
∂T p , { ni }

= − α

Here α is the cubic expansion coefficient of the solution (Eq. 7.1.1). If the activity coefficient is to be unity, the solution must be an
ideal-dilute solution, and α is then α∗A , the cubic expansion coefficient of the pure solvent. Eq. 12.1.5 for a nonelectrolyte becomes

d(μ ∘c , B /T)

dT = −
H ∘

B

T2 + Rα ∗A

12.1.3 Variation of lnK with temperature 
The thermodynamic equilibrium constant K, for a given reaction equation and a given choice of reactant and product standard

states, is a function of T and only of T. By equating two expressions for the standard molar reaction Gibbs energy, ΔrG
∘ = ∑iνiμ

∘

i

and ΔrG
∘ = − RTlnK (Eqs. 11.8.3 and 11.8.10), we obtain

lnK = −
1

RT ∑
i

νiμ
∘

i

The rate at which lnK varies with T is then given by

dlnK
dT = −

1
R ∑

i
νi

d(μ ∘i /T)

dT
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Combining Eq. 12.1.10 with Eqs. 12.1.6 or 12.1.8, and recognizing that ∑iνiH
∘

i  is the standard molar reaction enthalpy ΔrH
∘ , we

obtain the final expression for the temperature dependence of lnK:

dlnK
dT =

ΔrH
∘

RT2 − α ∗A ∑
 solutes,

 conc. basis

νi

The sum on the right side includes only solute species whose standard states are based on concentration. The expression is simpler
if all solute standard states are based on mole fraction or molality:

dlnK
dT =

ΔrH
∘

RT2

We can rearrange Eq. 12.1.12 to

ΔrH
∘ = RT2

dlnK
dT

We can convert this expression for ΔrH
∘  to an equivalent form by using the mathematical identity d(1 /T) = − (1/T2)dT :

ΔrH
∘ = − R

dlnK
d(1 /T)

Equations 12.1.13 and 12.1.14 are two forms of the van’t Hoff equation. They allow us to evaluate the standard molar reaction
enthalpy of a reaction by a noncalorimetric method from the temperature dependence of lnK. For example, we can plot lnK versus 
1 /T; then according to Eq. 12.1.14, the slope of the curve at any value of 1 /T is equal to −ΔrH

∘ /R at the corresponding
temperature T.

A simple way to derive the equation for this last procedure is to substitute ΔrG
∘ = ΔrH

∘ − TΔrS
∘  in 

ΔrG
∘ = − RTlnK and rearrange to

lnK = −
ΔrH

∘

R
1
T +

ΔrS
∘

R

Suppose we plot lnK versus 1 /T. In a small temperature interval in which ΔrH
∘  and ΔrS

∘  are practically constant,

the curve will appear linear. According to Eq. 12.1.15, the curve in this interval has a slope of −ΔrH
∘ /R, and the

tangent to a point on the curve has its intercept at 1 /T = 0 equal to ΔrS
∘ /R.

When we apply Eq. 12.1.14 to the vaporization process A(l) → A(g) of pure A, it resembles the Clausius–Clapeyron equation for
the same process (Eq. 8.4.15). These equations are not exactly equivalent, however, as the comparison in Table 12.1 shows.
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