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7.8: Chemical Potential and Fugacity
The chemical potential, , of a pure substance has as one of its definitions (Sec. 5.5)

That is,  is equal to the molar Gibbs energy of the substance at a given temperature and pressure. (Section 9.2.6 will introduce a
more general definition of chemical potential that applies also to a constituent of a mixture.) The chemical potential is an intensive
state function.

The total differential of the Gibbs energy of a fixed amount of a pure substance in a single phase, with  and  as independent
variables, is  (Eq. 5.4.4). Dividing both sides of this equation by  gives the total differential of the chemical
potential with these same independent variables:

(Since all quantities in this equation are intensive, it is not necessary to specify a closed system; the amount of the substance in the
system is irrelevant.)

We identify the coefficients of the terms on the right side of Eq. 7.8.2 as the partial derivatives

and

Since  is positive, Eq. 7.8.4 shows that the chemical potential increases with increasing pressure in an isothermal process.

The standard chemical potential, , of a pure substance in a given phase and at a given temperature is the chemical potential of
the substance when it is in the standard state of the phase at this temperature and the standard pressure .

There is no way we can evaluate the absolute value of  at a given temperature and pressure, or of  at the same temperature—at
least not to any useful degree of precision. The values of  and  include the molar internal energy whose absolute value can only
be calculated from the Einstein relation; see Sec. 2.6.2. We can however measure or calculate the difference . The general
procedure is to integrate  (Eq. 7.8.2 with  set equal to zero) from the standard state at pressure  to the
experimental state at pressure :

7.8.1 Gases 
For the standard chemical potential of a gas, this e-book will usually use the notation  to emphasize the choice of a gas
standard state.

An ideal gas is in its standard state at a given temperature when its pressure is the standard pressure. We find the relation of the
chemical potential of an ideal gas to its pressure and its standard chemical potential at the same temperature by setting  equal to 

 in Eq. 7.8.5: . The general relation for  as a function of , then, is

This function is shown as the dashed curve in Fig. 7.6.

If a gas is not an ideal gas, its standard state is a hypothetical state. The fugacity, , of a real gas (a gas that is not necessarily an
ideal gas) is defined by an equation with the same form as Eq. 7.8.6:
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or

Note that fugacity has the dimensions of pressure. Fugacity is a kind of effective pressure. Specifically, it is the pressure that the
hypothetical ideal gas (the gas with intermolecular forces “turned off” ) would need to have in order for its chemical potential at the
given temperature to be the same as the chemical potential of the real gas (see point C in Fig. 7.6). If the gas is an ideal gas, its
fugacity is equal to its pressure.

To evaluate the fugacity of a real gas at a given  and , we must relate the chemical potential to the pressure–volume behavior.
Let  be the chemical potential and  be the fugacity at the pressure  of interest; let  be the chemical potential and  be the
fugacity of the same gas at some low pressure  (all at the same temperature). Then we use Eq. 7.8.5 to write 

 and , from which we obtain

By integrating  from pressure  to pressure , we obtain

Equating the two expressions for  and dividing by  gives

In principle, we could use the integral on the right side of Eq. 7.8.11 to evaluate  by choosing the lower integration limit  to be
such a low pressure that the gas behaves as an ideal gas and replacing  by . However, because the integrand  becomes
very large at low pressure, the integral is difficult to evaluate. We avoid this difficulty by subtracting from the preceding equation
the identity

which is simply the result of integrating the function  from  to . The result is

Now we take the limit of both sides of Eq. 7.8.13 as  approaches zero. In this limit, the gas at pressure  approaches ideal-gas
behavior,  approaches , and the ratio  approaches :

The integrand  of this integral approaches zero at low pressure, making it feasible to evaluate the integral from
experimental data.

The fugacity coefficient  of a gas is defined by

The fugacity coefficient at pressure  is then given by Eq. 7.8.14:
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The isothermal behavior of real gases at low to moderate pressures (up to at least ) is usually adequately described by a two-
term equation of state of the form given in Eq. 2.2.8:

Here  is the second virial coefficient, a function of . With this equation of state, Eq. 7.8.16 becomes

For a real gas at temperature  and pressure , Eq. 7.8.16 or 7.8.18 allows us to evaluate the fugacity coefficient from an
experimental equation of state or a second virial coefficient. We can then find the fugacity from .

As we will see in Sec. 9.7, the dimensionless ratio  is an example of an activity coefficient and the
dimensionless ratio  is an example of an activity.

7.8.2 Liquids and solids 

The dependence of the chemical potential on pressure at constant temperature is given by Eq. 7.8.5. With an approximation of zero
compressibility, this becomes
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