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12.8: Liquid-Gas Equilibria
This section describes multicomponent systems in which a liquid phase is equilibrated with a gas phase.

12.8.1 Effect of liquid pressure on gas fugacity 
If we vary the pressure of a liquid mixture at constant temperature and composition, there is a small effect on the fugacity of each
volatile component in an equilibrated gas phase. One way to vary the pressure at essentially constant liquid composition is to
change the partial pressure of a component of the gas phase that has negligible solubility in the liquid.

At transfer equilibrium, component  has the same chemical potential in both phases: . Combining the relations 
 and  (Eqs. 9.2.49 and 9.3.12), we obtain

Equation 12.8.1 shows that an increase in pressure, at constant temperature and liquid composition, causes an increase in the
fugacity of each component in the gas phase.

Integration of Eq. 12.8.1 between pressures  and  yields

The exponential on the right side is called the Poynting factor.

The integral in the Poynting factor is simplified if we make the approximation that  is independent of pressure. Then we
obtain the approximate relation

The effect of pressure on fugacity is usually small, and can often be neglected. For typical values of the partial
molar volume , the exponential factor is close to unity unless  is very large. For instance, for 

 and , we obtain a value for the ratio  of  if  is , 
 if  is , and  if  is . Thus, unless the pressure change is large, we can to a good

approximation neglect the effect of total pressure on fugacity. This statement applies only to the fugacity of a
substance in a gas phase that is equilibrated with a liquid phase of constant composition containing the same
substance. If the liquid phase is absent, the fugacity of  in a gas phase of constant composition is of course
approximately proportional to the total gas pressure.

We can apply Eqs. 12.8.2 and 12.8.3 to pure liquid A, in which case  is the molar volume . Suppose we have pure liquid
A in equilibrium with pure gaseous A at a certain temperature. This is a one-component, two-phase equilibrium system with one
degree of freedom (Sec. 8.1.7), so that at the given temperature the value of the pressure is fixed. This pressure is the saturation
vapor pressure of pure liquid A at this temperature. We can make the pressure  greater than the saturation vapor pressure by
adding a second substance to the gas phase that is essentially insoluble in the liquid, without changing the temperature or volume.
The fugacity  is greater at this higher pressure than it was at the saturation vapor pressure. The vapor pressure , which is
approximately equal to , has now become greater than the saturation vapor pressure. It is, however, safe to say that the difference
is negligible unless the difference between  and  is much greater than .

As an application of these relations, consider the effect of the size of a liquid droplet on the equilibrium vapor pressure. The
calculation of Prob. 12.8(b) shows that the fugacity of H O in a gas phase equilibrated with liquid water in a small droplet is
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slightly greater than when the liquid is in a bulk phase. The smaller the radius of the droplet, the greater is the fugacity and the
vapor pressure.

12.8.2 Effect of liquid composition on gas fugacities 

Consider system 1 in Fig. 9.5. A binary liquid mixture of two volatile components, A and B, is equilibrated with a gas mixture
containing A, B, and a third gaseous component C of negligible solubility used to control the total pressure. In order for A and B to
be in transfer equilibrium, their chemical potentials must be the same in both phases:

Suppose we make an infinitesimal change in the liquid composition at constant  and . This causes infinitesimal changes in the
chemical potentials and fugacities:

By inserting these expressions in the Gibbs–Duhem equation  (Eq. 9.2.43), we obtain

This equation is a relation between changes in gas-phase fugacities caused by a change in the liquid-phase composition. It shows
that a composition change at constant  and  that increases the fugacity of A in the equilibrated gas phase must decrease the
fugacity of B.

Now let us treat the liquid mixture as a binary solution with component B as the solute. In the ideal-dilute region, at constant  and
, the solute obeys Henry’s law for fugacity:

For composition changes in the ideal-dilute region, we can write

With the substitution  and rearrangement, Eq. 12.8.8 becomes

Combined with Eq. 12.8.6, this is , which we can rearrange and integrate as follows within the ideal-dilute
region:

The result is

Here  is the fugacity of A in a gas phase equilibrated with pure liquid A at the same  and  as the mixture. Equation 12.8.11 is
Raoult’s law for fugacity applied to component A.

If component B obeys Henry’s law at all compositions, then the Henry’s law constant  is equal to  and B obeys Raoult’s law,
, over the entire range of .

We can draw two conclusions:

1. Figure 12.11 illustrates the case of a binary mixture in which component B has only positive deviations from Raoult’s law,
whereas component A has both positive and negative deviations (  is slightly less than  for  less than 0.3). This
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unusual behavior is possible because both fugacity curves have two inflection points instead of the usual one. Other types of
unusual nonideal behavior are possible (M. L. McGlashan, J. Chem. Educ., 40, 516–518, 1963).

12.8.3 The Duhem–Margules equation
To a good approximation, by assuming an ideal gas mixture and neglecting the effect of total pressure on fugacity, we can apply
Eq. 12.8.20 to a liquid–gas system in which the total pressure is not constant, but instead is the sum of  and . Under these
conditions, we obtain the following expression for the rate at which the total pressure changes with the liquid composition at
constant :

Here  and  are the mole fractions of A and B in the gas phase given by  and .

We can use Eq. 12.8.21 to make several predictions for a binary liquid–gas system at constant .

In some binary liquid–gas systems, the total pressure at constant temperature exhibits a maximum or minimum at a
particular liquid composition. At this composition,  is zero but  is positive. From Eq. 12.8.21, we see that
at this composition  must equal , meaning that the liquid and gas phases have identical mole fraction
compositions. The liquid with this composition is called an azeotrope. The behavior of systems with azeotropes will be
discussed in Sec. 13.2.5.

12.8.4 Gas solubility
The activity of B in the gas phase is given by . If the solute is a nonelectrolyte and we choose a standard
state based on mole fraction, the activity in the solution is . The equilibrium constant is then given by

and the solubility, expressed as the equilibrium mole fraction of solute in the solution, is given by

At a fixed  and , the values of  and  are constant. Therefore any change in the solution composition that increases
the value of the activity coefficient  will decrease the solubility for the same gas fugacity. This solubility decrease is
often what happens when a salt is dissolved in an aqueous solution, and is known as the salting-out effect (Prob. 12.11).

Unless the pressure is much greater than , we can with negligible error set the pressure factor  equal to 1. When the
gas solubility is low and the solution contains no other solutes, the activity coefficient  is close to 1. If furthermore we
assume ideal gas behavior, then Eq. 12.8.23 becomes

The solubility is predicted to be proportional to the partial pressure. The solubility of a gas that dissociates into ions in
solution has a quite different dependence on partial pressure. An example is the solubility of gaseous HCl in water to form
an electrolyte solution, shown in Fig. 10.1.

If the actual conditions are close to those assumed for Eq. 12.8.24, we can use Eq. 12.1.13 to derive an expression for the
temperature dependence of the solubility for a fixed partial pressure of the gas:
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At the standard pressure,  is the same as the molar enthalpy of solution at infinite dilution.

Since the dissolution of a gas in a liquid is invariably an exothermic process,  is negative, and Eq. 12.8.25 predicts
the solubility decreases with increasing temperature.

Note the similarity of Eq. 12.8.25 and the expressions derived previously for the temperature dependence of the solubilities
of solids (Eq. 12.5.8) and liquids (Eq. 12.6.3). When we substitute the mathematical identity , Eq.
12.8.25 becomes

We can use this form to evaluate  from a plot of  versus .

The ideal solubility of a gas is the solubility calculated on the assumption that the dissolved gas obeys Raoult’s law for
partial pressure: . The ideal solubility, expressed as a mole fraction, is then given as a function of partial
pressure by

Here  is the vapor pressure of pure liquid solute at the same temperature and total pressure as the solution. If the pressure
is too low for pure B to exist as a liquid at this temperature, we can with little error replace  with the saturation vapor
pressure of liquid B at the same temperature, because the effect of total pressure on the vapor pressure of a liquid is usually
negligible (Sec. 12.8.1). If the temperature is above the critical temperature of pure B, we can estimate a hypothetical vapor
pressure by extrapolating the liquid–vapor coexistence curve beyond the critical point.

We can use Eq. 12.8.27 to make several predictions regarding the ideal solubility of a gas at a fixed value of .

1. Of course, these predictions apply only to solutions that behave approximately as ideal liquid mixtures, but even for
many nonideal mixtures the predictions are found to have good agreement with experiment.

As an example of the general validity of prediction 1, Hildebrand and Scott (The Solubility of
Nonelectrolytes, 3rd edition, Dover, New York, 1964, Chap. XV) list the following solubilities of gaseous
Cl  in several dissimilar solvents at  and a partial pressure of :  in heptane, 

 in SiCl , and  in CCl . These values are similar to one another and close to the
ideal value .

12.8.5 Effect of temperature and pressure on Henry’s law constants

At the standard pressure , the value of  is unity, and Eqs. 12.1.13 and 12.1.14 then give the following
expressions for the dependence of the dimensionless quantity  on temperature:

These expressions can be used with little error at any pressure that is not much greater than , say up to at least ,
because under these conditions  does not differ appreciably from unity.

To find the dependence of  on pressure, we substitute  in Eq. 12.8.30 with the expression for  at pressure 
found in Table 9.6:

We can use Eq. 12.8.33 to compare the values of  at the same temperature and two different pressures,  and :
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An approximate version of this relation, found by treating  as independent of pressure, is

Unless  is much greater than , the effect of pressure on  is small; see Prob. 12.12 for an example.

This page titled 12.8: Liquid-Gas Equilibria is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe
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