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12.7: Membrane Equilibria
A semipermeable membrane used to separate two liquid phases can, in principle, be permeable to certain species and impermeable
to others. A membrane, however, may not be perfect in this respect over a long time period. We will assume that during the period
of observation, those species to which the membrane is supposed to be permeable quickly achieve transfer equilibrium, and only
negligible amounts of the other species are transferred across the membrane.

Section 12.2.2 sketched a derivation of the conditions needed for equilibrium in a two-phase system in which a membrane
permeable only to solvent separates a solution from pure solvent. We can generalize the results for any system with two liquid
phases separated by a semipermeable membrane: in an equilibrium state, both phases must have the same temperature, and any
species to which the membrane is permeable must have the same chemical potential in both phases. The two phases, however, need
not and usually do not have the same pressure.

12.7.1 Osmotic membrane equilibrium 

An equilibrium state in a system with two solutions of the same solvent and different solute compositions, separated by a
membrane permeable only to the solvent, is called an osmotic membrane equilibrium. We have already seen this kind of
equilibrium in an apparatus that measures osmotic pressure (Fig. 12.2).

Consider a system with transfer equilibrium of the solvent across a membrane separating phases  and . The phases have equal
solvent chemical potentials but different pressures:

The dependence of  on pressure in a phase of fixed temperature and composition is given by  (from Eq.
9.2.49), where  is the partial molar volume of A in the phase. If we apply this relation to the solution of phase , treat the partial
molar volume  as independent of pressure, and integrate at constant temperature and composition from the pressure of phase 
to that of phase , we obtain

By equating the two expressions for  and rearranging, we obtain the following expression for the pressure difference needed
to achieve transfer equilibrium:

The pressure difference can be related to the osmotic pressures of the two phases. From Eq. 12.2.11, the solvent chemical potential
in a solution phase can be written . Using this to substitute for  and  in Eq. 12.7.3, we
obtain

12.7.2 Equilibrium dialysis 
Equilibrium dialysis is a useful technique for studying the binding of a small uncharged solute species (a ligand) to a
macromolecule. The macromolecule solution is placed on one side of a membrane through which it cannot pass, with a solution
without the macromolecule on the other side, and the ligand is allowed to come to transfer equilibrium across the membrane. If the
same solute standard state is used for the ligand in both solutions, at equilibrium the unbound ligand must have the same activity in
both solutions. Measurements of the total ligand molality in the macromolecule solution and the ligand molality in the other
solution, combined with estimated values of the unbound ligand activity coefficients, allow the amount of ligand bound per
macromolecule to be calculated.

12.7.3 Donnan membrane equilibrium 

If one of the solutions in a two-phase membrane equilibrium contains certain charged solute species that are unable to pass through
the membrane, whereas other ions can pass through, the situation is more complicated than the osmotic membrane equilibrium
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described in Sec. 12.7.1. Usually if the membrane is impermeable to one kind of ion, an ion species to which it is permeable
achieves transfer equilibrium across the membrane only when the phases have different pressures and different electric potentials.
The equilibrium state in this case is a Donnan membrane equilibrium, and the resulting electric potential difference across the
membrane is called the Donnan potential. This phenomenon is related to the membrane potentials that are important in the
functioning of nerve and muscle cells (although the cells of a living organism are not, of course, in equilibrium states).

A Donnan potential can be measured electrically, with some uncertainty due to unknown liquid junction potentials, by connecting
silver-silver chloride electrodes (described in Sec. 14.1) to both phases through salt bridges.

General expressions 

Consider solution phases  and  separated by a semipermeable membrane. Both phases contain a dissolved salt, designated solute
B, that has  cations and  anions in each formula unit. The membrane is permeable to these ions. Phase  also contains a
protein or other polyelectrolyte with a net positive or negative charge, together with counterions of the opposite charge that are the
same species as the cation or anion of the salt. The presence of the counterions in phase  prevents the cation and anion of the salt
from being present in stoichiometric amounts in this phase. The membrane is impermeable to the polyelectrolyte, perhaps because
the membrane pores are too small to allow the polyelectrolyte to pass through.

The condition for transfer equilibrium of solute B is , or

Solute B has the same standard state in the two phases, so that  and  are equal. The activities  and  are
therefore equal at equilibrium. Using the expression for solute activity from Eq. 10.3.16, which is valid for a multisolute solution,
we find that at transfer equilibrium the following relation must exist between the molalities of the salt ions in the two phases:

To find an expression for the Donnan potential, we can equate the single-ion chemical potentials of the salt cation: 
. When we use the expression of Eq. 10.1.15 for , we obtain

The condition needed for an osmotic membrane equilibrium related to the solvent can be written

The chemical potential of the solvent is . From Table 9.6, we have to a good
approximation the expression . With these substitutions, Eq. 12.7.8 becomes

We can use this equation to estimate the pressure difference needed to maintain an equilibrium state. For dilute solutions, with 
and  set equal to 1, the equation becomes

In the limit of infinite dilution,  can be replaced by  (Eq. 9.6.12), giving the relation

Example 

As a specific example of a Donnan membrane equilibrium, consider a system in which an aqueous solution of a polyelectrolyte
with a net negative charge, together with a counterion M  and a salt MX of the counterion, is equilibrated with an aqueous solution
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of the salt across a semipermeable membrane. The membrane is permeable to the H O solvent and to the ions M  and X , but is
impermeable to the polyelectrolyte. The species in phase  are H O, M , and X ; those in phase  are H O, M , X , and the
polyelectrolyte. In an equilibrium state, the two phases have the same temperature but different compositions, electric potentials,
and pressures.

Because the polyelectrolyte in this example has a negative charge, the system has more M  ions than X  ions. Figure 12.9(a) is a
schematic representation of an initial state of this kind of system. Phase  is shown as a solution confined to a closed dialysis bag
immersed in phase . The number of cations and anions shown in each phase indicate the relative amounts of these ions.

For simplicity, let us assume the two phases have equal masses of water, so that the molality of an ion is proportional to its amount
by the same ratio in both phases. It is clear that in the initial state shown in the figure, the chemical potentials of both M  and X
are greater in phase  (greater amounts) than in phase , and this is a nonequilibrium state. A certain quantity of salt MX will
therefore pass spontaneously through the membrane from phase  to phase  until equilibrium is attained.

The equilibrium ion molalities must agree with Eq. 12.7.6. We make the approximation that the pressure factors and mean ionic
activity coefficients are unity. Then for the present example, with , the equation becomes

There is furthermore an electroneutrality condition for each phase:

Here  is the negative charge of the polyelectrolyte, and  is its molality. Substitution of these expressions into Eq. 12.7.12
gives the relation

This shows that in the equilibrium state,  is greater than . Then Eq. 12.7.12 shows that  is less than . These
equilibrium molalities are depicted in Fig. 12.9(b).

The chemical potential of a cation, its activity, and the electric potential of the phase are related by Eq. 10.1.9: 
. In order for M  to have the same chemical potential in both phases, despite its lower activity in

phase , the electric potential of phase  must be greater than that of phase . Thus the Donnan potential  in the present
example is positive. Its value can be estimated from Eq. 12.7.7 with the values of the single-ion pressure factors and activity
coefficients approximated by 1 and with  for this example set equal to 1:

The existence of a Donnan potential in the equilibrium state is the result of a very small departure of the phases on
both sides of the membrane from exact electroneutrality. In the example, phase  has a minute net positive charge
and phase  has a net negative charge of equal magnitude. The amount of M  ion transferred across the membrane
to achieve equilibrium is slightly greater than the amount of X  ion transferred; the difference between these two
amounts is far too small to be measured chemically. At equilibrium, the excess charge on each side of the
membrane is distributed over the boundary surface of the solution phase on that side, and is not part of the bulk
phase composition.

The pressure difference  at equilibrium can be estimated with Eq. 12.7.11, and for the present example is found to be
positive. Without this pressure difference, the solution in phase  would move spontaneously through the membrane into phase 
until phase  completely disappears. With phase  open to the atmosphere, as in Fig. 12.9, the volume of phase  must be
constrained in order to allow its pressure to differ from atmospheric pressure. If the volume of phase  remains practically constant,
the transfer of a minute quantity of solvent across the membrane is sufficient to cause the pressure difference.

It should be clear that the existence of a Donnan membrane equilibrium introduces complications that would make it difficult to use
a measured pressure difference to estimate the molar mass of the polyelectrolyte by the method of Sec. 12.4, or to study the binding
of a charged ligand by equilibrium dialysis.
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