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6.2: Probability Density Functions for Velocity Components in Spherical Coordinates
We introduce the idea of a three-dimensional probability-density function by showing how to find it from data referred to a
Cartesian coordinates system. The probability density associated with a particular molecular velocity is just a number—a number
that depends only on the velocity. Given a velocity, the probability density associated with that velocity must be independent of our
choice of coordinate system. We can express the three-dimensional probability density using any coordinate system. We turn now
to expressing velocities and probability density functions using spherical coordinates.

Just as we did for the Cartesian velocity components, we deduce the cumulative probability functions , , and  for
the spherical-coordinate components. Our deduction of  from the experimental data uses -values that are associated with all
possible values of  and . Corresponding statements apply to our deductions of , and . We also obtain their
derivatives, the probability-density functions , , and . From the properties of probability-density
functions, we have

Let  be the arbitrarily small increment of volume in velocity space in which the -, -, and -components of velocity lie between 
 and ,  and , and  and . Then the probability that the velocity of a randomly selected molecule lies within 
 is

Note that the product

is not a three-dimensional probability density function. This is most immediately appreciated by recognizing that  is not an
incremental “volume” in velocity space. That is, 

We let  be the probability-density function for the velocity vector in spherical coordinates. When , , and  specify the
velocity,  is the probability per unit volume at that velocity. We want to use  to express the probability that an
arbitrarily selected molecule has a velocity vector whose magnitude lies between  and , while its -component lies between

 and , and its -component lies between  and . This is just  times the velocity-space “volume”
included by these ranges of , , and .

When we change from Cartesian coordinates, , to spherical coordinates, , the transformation is 
, , . (See Figure 1.) As sketched in Figure 2, an incremental increase in each of the

coordinates of the point specified by the vector  advances the vector to the point . When , ,
and  are arbitrarily small, these two points specify the diagonally opposite corners of a rectangular parallelepiped, whose edges
have the lengths , , and . The volume of this parallelepiped is . Hence, the differential volume
elementdifferential volume element in Cartesian coordinates, , becomes  in spherical coordinates.

Mathematically, this conversion is obtained using the absolute value of the Jacobian, , of the transformation. That is,

where the Jacobian is a determinate of partial derivatives
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Since the differential unit of volume in spherical coordinates is , the probability that the velocity components lie
within the indicated ranges is

We can develop the next step in Maxwell’s argument by taking his assumption to mean that the three-dimensional probability
density function is expressible as a product of three one-dimensional functions. That is, we take Maxwell’s assumption to assert the
existence of independent functions , , and  such that . The probability that the 

-, -, and -components of velocity lie between  and ,  and , and  and  becomes

Since , , and  are independent, it follows that

Moreover, the assumption that velocity is independent of direction means that  must actually be independent of ; that is, 
 must be a constant. We let this constant be ; so . By the same argument, we set . Each of these

probability-density functions must be normalized. This means that

from which we see that  and . It is important to recognize that, while , , and
 are probability density functions,  and  are not. (However,  is a probability density function.) We can see

this by noting that, if  were a probability density, its integral over all possible values of  would be one. Instead,
we find

Similarly, when we find , we can show explicitly that

Our notation now allows us to express the probability that an arbitrarily selected molecule has a velocity vector whose magnitude
lies between  and , while its -component lies between  and , and its -component lies between  and 
using three equivalent representations of the probability density function:

The three-dimensional probability-density function in spherical coordinates is
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This shows explicitly that  is independent of  and ; if the speed is independent of direction, the probability density
function that describes velocity must be independent of the coordinates,  and , that specify its direction.

This page titled 6.2: Probability Density Functions for Velocity Components in Spherical Coordinates is shared under a CC BY-SA 4.0 license and
was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.

4.2: Probability Density Functions for Velocity Components in Spherical Coordinates by Paul Ellgen is licensed CC BY-SA 4.0. Original
source: https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278.

ρ (v,  θ,φ) = (v) (θ) (φ) =ρv ρθ ρφ
(v)ρv

4π

ρ (v,  θ,φ) θ φ

θ φ

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/206341?pdf
https://chem.libretexts.org/Courses/Pacific_Union_College/Kinetics/06%3A_The_Distribution_of_Gas_Velocities/6.02%3A_Probability_Density_Functions_for_Velocity_Components_in_Spherical_Coordinates
https://creativecommons.org/licenses/by-sa/4.0
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://chem.libretexts.org/@go/page/151677
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://creativecommons.org/licenses/by-sa/4.0/
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278

