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2.11: Thermodynamic Probability and Equilibrium in an Isomerization Reaction
To relate these ideas to a change in a more specific macroscopic system, let us consider isomeric substances  and . (We consider
this example further in Chapter 21.) In principle, we can solve the Schrödinger equation for a molecule of isomer  and for a
molecule of isomer . We obtain all possible energy levels for a molecule of each isomer.  If we list these energy levels in order,
beginning with the lowest, some of these levels belong to isomer  and the others belong to isomer .

Now let us consider a mixture of  molecules of  and  molecules of . We suppose that individual molecules are
distinguishable and that intermolecular interactions can be ignored. Since a group of atoms that can form an  molecule can also
form a  molecule, every energy level is accessible to this group of atoms; that is, we can view both sets of energy levels as being
available to the atoms that make up the molecules. For a given system energy, there will be many population sets in which only the
energy levels belonging to isomer  are occupied. For each of these population sets, there is a corresponding thermodynamic
probability, . Let  be the largest of these thermodynamic probabilities. Similarly, there will be many population sets in
which only the energy levels corresponding to isomer  are occupied. Let  be the largest of the thermodynamic probabilities
associated with these population sets. Finally, there will be many population sets in which the occupied energy levels belong to
both isomer  and isomer . Let  be the largest of the thermodynamic probabilities associated with this group of population
sets.

Now,  is a good approximation to the number of ways that the atoms of the system can come together to form isomer . 
 is a good approximation to the the number of ways that the atoms of the system can come together to form isomer . At

equilibrium, therefore, we expect

If we consider the illustrative—if somewhat unrealistic—case of isomeric molecules whose energy levels all have the same
degeneracy (  for all ), we can readily see that the equilibrium system must contain some amount of each isomer. For a
system containing  molecules,  is the numerator in each of the thermodynamic probabilities , , and .
The denominators are different. The denominator of  must contain terms, , for essentially all of the levels represented in
the denominator of . Likewise, it must contain terms, , for essentially all of the energy levels represented in the
denominator of . Then the denominator of  is a product of  terms that are generally smaller than the corresponding
factorial terms in the denominators of  and . As a result, the denominators of  and  are larger than the
denominator of . In consequence,  and . (See problems 5 and 6.)

If we create the system as a collection of  molecules, or as a collection of  molecules, redistribution of the sets of atoms among
all of the available energy levels must eventually produce a mixture of  molecules and  molecules. Viewed as a consequence of
the principle of equal a priori probabilities, this occurs because there are necessarily more microstates of the same energy available
to some mixture of  and  molecules than there are microstates available to either  molecules alone or  molecules alone.
Viewed as a consequence of the tendency of the isolated system to attain the state of maximum entropy, this occurs because 

 and .
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