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6.1: Distribution Functions for Gas-velocity Components
In Chapter 2, we assume that all of the molecules in a gas move with the same speed and use a simplified argument to conclude that
this speed depends only on temperature. We now recognize that the individual molecules in a gas sample have a wide range of
speeds; the velocities of gas molecules must be described by a distribution function. It is true, however, that the average speed
depends only on temperature.

James Clerk Maxwell was the first to derive the distribution function for gas velocities. He did it about 1860. We follow Maxwell’s
argument. For a molecule moving in three dimensions, there are three velocity components. Maxwell’s argument uses only one
assumption: the speed of a gas molecule is independent of the direction in which it is moving. Equivalently, we can say that the
components of the velocity of a gas molecule are independent of one another; knowing the value of one component of a molecule’s
velocity does not enable us to infer anything about the values of the other two components. When we use Cartesian coordinates,
Maxwell’s assumptionMaxwell’s assumption means also that the same mathematical model must describe the distribution of each
of the velocity components.

Since the velocity of a gas molecule has three components, we must treat the velocity distribution as a function of three random
variables. To understand how this can be done, let us consider how we might find probability distribution functions for velocity
components. We need to consider both spherical and Cartesian coordinate systems.

Let us suppose that we are able to measure the Cartesian-coordinate components , , and  of the velocities of a large number
of randomly selected gas molecules in a particular constant-temperature sample. Then we can transform each set of Cartesian
components to spherical-coordinate velocity covelocity componentsmponents , , and . We imagine accumulating the results of
these measurements in a table like Table 1. As a practical matter, of course, we cannot make the measurements to complete such a
table. However, there is no doubt that, at every instant, every gas molecule can be characterized by a set of such velocity
components; the values exist, even if we cannot measure them. We imagine that we have such data only as a way to clarify the
properties of the distribution functions that we need.

Table 1. Molecular Velocity Components

Molecule
Number

v

1

2

3

4

… … … … … … …

These data have several important features. The scalar velocity, , ranges from 0 to ; , , and  range from  to .
In §2, we see that  varies from 0 to ; and  ranges from 0 to . Each column represents data sampled from the distribution of
the corresponding random variable. In Chapter 3, we find that we can use such data to find mathematical models for such
distributions. Here, we can find mathematical models for the cumulative distribution functions , , and . We
can approximate the graph of  by plotting the rank probability of  versus . We expect this plot to be sigmoid; at any ,
the slope of this plot is the probability-density function, . The probability density function for  depends only on ,
because the value measured for  is independent of the values measured for  and . However, by Maxwell’s assumption, the
functions describing the distribution of  and  are the same as those describing the distribution of . While redundant, it is
convenient to introduce additional symbols to represent these probability density functions. We define , 

, and .

When we find these one-dimensional distribution functions by modeling the experimental data in this way, each  datum that we
use in our analysis comes from an observation on a molecule and is associated with particular  and  values. These values of 
and  can be anything from  to . This is a significant point. The functions  and  are independent of 
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 and . We can also say that  describes the distribution of  when  and  are averaged over all the values it is
possible for them to have.

To clarify this, let us consider another cumulative probability distribution function, , which is just the fraction of all
molecules whose respective Cartesian velocity components are less than , , . Since , , and  are the
fractions whose components are less than , , and , respectively, their product is equal to  We have 

. For the velocity of a randomly selected molecule, , to be included in the
fraction represented by , the velocity must be in the particular range , , and 

.

However, for a velocity  to be included in , we must have , , and ; that is, the components  and
 can have any values. Since the probability that , , and  satisfy , , and  is

the probability that  is included in  becomes

For our purposes, we need to be able to express the probability that the velocity lies within any range of velocities. Let us use  to
designate a particular “volume” region in velocity space and use  to designate the probability that the velocity of a randomly
selected molecule is in this region. When we let ʋ be the region in velocity space in which -components lie between 

and , -components lie between , and , and -components lie between  and ,  denotes the
probability that the velocity of a randomly chosen molecule, , satisfies the conditions , 

, and .

 is an increment of probability. The dependence of  on , , , , , and can be made explicit by
introducing a new function, , defined by

Since  is the volume available in velocity space for velocities whose -components are between  and ,
whose -components are between , and , and whose -components are between  and , we see that 

 is a probability density function in three dimensions. The value of  is the probability, per unit volume in
velocity space, that a molecule has the velocity . For any velocity, , there is a value of ; this
value is just a number. If we want the probability of finding a velocity within some small volume of velocity space around 

, we can find it by multiplying  by this volume.

From the one-dimensional probability-density functions, the probability that the -component of a molecular velocity lies between 
 and , is just , whatever the values of  and . The probability that the -component lies between 
 and , is just , whatever the values of  and . The probability that the -component lies between 
 and , is just , whatever the values of  and . When we interpret Maxwell’s assumption to mean

that these are independent probabilities, the probability that all three conditions are realized simultaneously is

Evidently, the product of these three one-dimensional probability densities is the three-dimensional probability density. We have

From Maxwell’s assumption, we have derived the conclusion that  can be expressed as a product of the one-
dimensional probability densities , , and . Since these are probability
densities, we have
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and

Moreover, because the Cartesian coordinates differ from one another only in orientation, , ,
and  must all be the same function.

Figure 1. Transformation from Cartesian to spherical coordinates.

To summarize the development above, we define  independently of , , and .
Then, from Maxwell’s assumption that the three one-dimensional probabilities are independent, we find

Alternatively, we could take Maxwell’s assumption to be that the three-dimensional probability density function is expressible as a
product of three one-dimensional probability densities:

In this case, the relationships of , , and , to the one-dimensional cumulative probabilities ( , etc.) must
be deduced from the properties of . As emphasized above, our deduction of  from experimental data uses 
values that are associated with all possible values of  and . That is, what we determine in our (hypothetical) experiment is
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Figure 2. The differential volume element in spherical coordinates.
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