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8.11: Oscillating Reactions
It should be clear by now that chemical kinetics is governed by the mathematics of systems of differential equations. Thus far, we have only looked
at reaction systems that give rise to purely linear differential equations, however, in many instances the rate equations are nonlinear. When the
differential equations are nonlinear, the behavior is considerably more complex. In particular, nonlinear equations can lead to oscillatory solutions
and can also exhibit the phenomenon of chaos. Chaotic systems are systems that are highly sensitive to small changes in the parameters of the
equations or in the initial conditions. Basically, this means that the behavior of a chaotic system can be unpredictable, since such small changes can
occur in the form of small errors in determining the parameters (rounding to the nearest tenth or hundredth) or in specifying the initial conditions,
and these small changes can cause the system to evolve in time in a very different way.

The Iodine Clock Reaction
The iodine clock reaction is a popular chemistry experiment in which one can visualize how different rate constants in consecutive reactions affect
the concentration of species during the reaction. Iodine anions ( ) are colorless. When  is reacted with hydrogen peroxide and protons, triiodide
is formed, which has a dark blue color. Consider the following series of irreversible reactions:

The rate laws for this system are

In order to make the equations look a little simpler, let us introduce the variables:

In terms of these, the rate equations are

If we solve these numerically, we find the following time dependence of the three concentrations: This is a clear example of nonlinearity. Note how
the concentration of  remains close to  for a period of time and then suddenly starts to increase. In a sense, think of the “straw that broke the
camel’s back”. As we pile straws on the back of the camel, the camel remains upright until that last straw, which suddenly breaks the back of the
camel, and the camel suddenly falls to the ground. This is also an illustration of nonlinearity.
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Video : Famous iodine clock reaction: oxidation of potassium iodide by hydrogen peroxide (https://www.youtube.com/watch?
v=_qhYDuJt8fI).

Despite the complexity of the rate equations, we can still analyze the approximately and predict the behavior seen in Figure . In this reaction
mechanism, . Given the rate law for ,

if we use the steady-state approximation, we can set the  equal to , yielding

Since , the concentration of  is approximately  as long as there are  ions present. As soon as all of the  is consumed, the
concentration of  can build up in the solution, changing the solution to a dark blue color. Figure  displays the concentration profiles for , 

, and . As can be seen from the figure, the concentration of  (red line) remains at approximately  until all of the  (blue
line) has been depleted.

Figure : Concentrations as functions of time of the three species in the iodine clock reaction.

Oscillating Reactions
In all of the examples we have seen thus far, the concentration of intermediate species displays a single maximum during the course of the reaction.
There is another class of reactions called oscillating reactions in which the concentration of intermediate species oscillates with time. Consider the
following series of reactions

Chemistry experiment 28 - Iodine clock reactionChemistry experiment 28 - Iodine clock reaction
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In the above reaction mechanism,  and  are reactants; , , and  are intermediates; and  and  are products. The third reaction in which 
and  react to form  and  is known as an ”autocatalytic reaction” in which at least one of the reactants is also a product. Such reactions are a key
feature of oscillating reactions, as will be discussed below.

Video : The famous Belousov Zhabotinsky chemical reaction in a petri dish. The action is speeded up 8 x from real life. Pacemaker
nucleation sites emit circular waves. Breaking the wavefront with a wire triggers pairs of spiral defects which emit more closely spaced waves which

eventually fill the container.

Let us assume that the concentrations of  and  are large, such that we can approximate them to be constant with time. The rate equation for
species  can be written as

Using the steady-state approximation, we can set  and rewrite Equation  as

We can then use the quadratic formula to solve for :

Thus, there are two solutions for the concentration of  accessible to the reaction system. To examine solutions for , let us first assume that  is
large. Under these conditions, the first two reactions in the reaction mechanism largely determine the concentration of . We can thus approximate
Equation  as

Solving for  yields

As the reaction continues, species  is depleted and the assumption that  is large becomes invalid. Instead the  and  steps of the reaction
mechanism determine the concentration of . In this limit, we can approximate Equation  as

Solving for  yields

X +Y P⟶
k2

(8.11.13)

B+X 2 X +Z⟶

k3

(8.11.14)

2 X Q⟶

k4

(8.11.15)

Z Y⟶

k5

(8.11.16)

A B X Y Z P Q B

X X Z

The Belousov Zhabotinsky reaction The Belousov Zhabotinsky reaction 8 x normal 8 x normal ……

8.11.2

A B

X

= [A] [Y] − [X] [Y] + [B] [X] −2
d [X]

dt
k1 k2 k3 k4[X]

2
(8.11.17)

dX/dt = 0 8.11.17

(−2 ) +( [Y] − [B]) [X] + [A] [Y] = 0k4 [X]2 k2 k3 k1 (8.11.18)

X

[X] = −
( [Y] − [B]) ±k2 k3 −4 (−2 ) ( [A] [Y])( [Y] − [B])k2 k3

2
k4 k1

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

2 (−2 )k4

(8.11.19)

X [X] [Y]

[X]

8.11.17

0 ≈ [A] [Y] − [X] [Y]k1 k2 (8.11.20)

[X]

[X] ≈
[A]k1

k2
(8.11.21)

Y [Y] 3rd 4th

X 8.11.17

0 ≈ [B] [X] −2k3 k4[X]
2

(8.11.22)

[X]

[X] ≈
[B]k3

2k4
(8.11.23)

https://libretexts.org/
https://chem.libretexts.org/@go/page/207017?pdf
https://www.youtube.com/watch?v=jRQAndvF4sM
https://www.youtube.com/watch?v=jRQAndvF4sM


8.11.4 https://chem.libretexts.org/@go/page/207017

In the second mechanism, the autocatalytic reaction step leads to an increase in the concentration of  and , which in turn leads to an increase in
the concentration of . The feedback loop between the production of species  and  leads to oscillatory behavior in the system. This reaction
mechanism is known as the Belousov-Zhabotinksii reaction first discovered in the 1950s.

The autocatalytic reaction of  in which  reacts with  to form more  in reaction 
The regeneration of species  in reaction 
The competition between reaction  and  for the consumption of  and the involvement of  in reaction 

The actual Belousov-Zhabotinskii reaction is complex, involving many individual steps, and involves the oscillation between the concentration of 
 and . The reaction equations are

The essential steps in this mechanism can be reduced to the following set of reactions. Note that we leave this unbalanced and only include the
species whose concentrations as functions of time we seek.

Setting the variables as follows:

We make the approximation that  to be a constant . In this case, the rate equations become

Solving these equations numerically, we obtain the trajectory of two of the species show in the Figure .

Figure : Oscillating pattern of the concentrations in the Belousov-Zhabotinskii reaction.

On the other hand, we can drive this system to become chaotic by changing the parameters a little. When this is done, we find the follow plot of the
concentration of :
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Figure : Chaotic behavior in the Belousov-Zhabotinskii reaction.
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