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3.1: Finding the Boltzmann Equation
The probabilities of the energy levels of a constant-temperature system at equilibrium must depend only on the intensive variables
that serve to characterize the equilibrium state. In Section 20.8, we introduce the principle of equal a priori probabilities, which
asserts that any two microstates of an isolated system have the same probability. From the central limit theorem, we infer that an
isolated system is functionally equivalent to a constant-temperature system when the system contains a sufficiently large number of
molecules. From these ideas, we can now find the relationship between the energy values, , and the corresponding probabilities,

Let us consider the microstates of an isolated system whose energy is . For any population set, , that has
energy , the following relationships apply.

1. The sum of the energy-level populations is the total number of molecules:

2. The energy of the system is the sum of the energies of its constituent molecules:

3. The product of powers of quantum-state probabilities is a constant:

or, equivalently,

4. For the system at constant temperature, the sum of the energy-level probabilities is one. When we infer that the constant-
temperature system and the isolated system are functionally equivalent, we assume that this is true also for the isolated system:

We want to find a function, , that satisfies all four of these conditions. One way is to keep trying functions that look like they
might work until we find one that does. A slightly more sophisticated version of this approach is to try the most general possible
version of each such function and see if any set of restrictions will make it work. We could even try an infinite series. Suppose that
we are clever (or lucky) enough to try the series solution

Then the third condition becomes
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We see that the coefficient of  is  and the coefficient of  is the total energy, . Therefore, the sum of the first two terms is a
constant. We can make the trial function satisfy the third condition if we set  for all . We find

The last equality is satisfied if, for each quantum state, we have

or

where . Since the  are positive and the probabilities  lie in the interval , we must have .
Following custom, we let , where  is a constant, and . Then,

and

The fourth condition is that the energy-level probabilities sum to one. Using this, we have

The sum of exponential terms is so important that it is given a name. It is called the molecular partition function. It is often
represented by the letter “ .” Letting

we have

Thus, we have the Boltzmann probability:
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The probability of an energy level depends only on its degeneracy, , its energy, , and the constant . Since the equilibrium-
characterizing population set is determined by the probabilities, we have , and

In Section 21.2, we develop Lagrange’s method of undetermined multipliers. In Section 21.3, we develop the same result by
applying Lagrange’s method to our model for the probabilities of the microstates of an isolated system. That is, we find the
Boltzmann probability equation by applying Lagrange’s method to the entropy relationship,

that we first develop in §20-11. In §4, we find the Boltzmann probability equation by using Lagrange’s method to find the values of
 that produce the largest possible value for  in an isolated system. This argument requires us to assume that there is a very

large number of molecules in each of the occupied energy levels of the most probable population set. Since our other arguments do
not assume anything about the magnitude of the various , it is evident that some of the assumptions we make when we apply
Lagrange’s method to find the  are not inherent characteristics of our microscopic model.

This page titled 3.1: Finding the Boltzmann Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul
Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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