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6.11: The Probability Density Function for the Relative Velocity
From our development of the Maxwell-Boltzmann probability density functions, we can express the probability that the velocity
components of particle 1 lie in the intervals  to ;  to ;  to ; while those of particle 2
simultaneously lie in the intervals  to ;  to ;  to  as

We want to express this probability using the relative velocity coordinates. Since the velocity of the center of mass and the relative
velocity are independent, we might expect that the Jacobian of this transformation is just the product of the two individual
Jacobians. This turns out to be the case. The Jacobian of the transformation

is a six-by-six determinate. It is messy, but straightforward, to show that it is equal to the product of two three-by-three
determinants and that the absolute value of this product is one. Therefore, we have

We transform the probability density by substituting into the one-dimensional probability density functions. That is,

where the last expression specifies the probability density as a function of the relative velocity coordinates.

Next, we make a further transformation of variables. We convert the velocity of the center of mass, , and the relative
velocity, , from Cartesian coordinates to spherical coordinates, referred to the  axis system. (The motion of the
center of mass is most readily visualized in the original frame . The relative motion, , is most readily visualized in the
Particle-One Centered Frame, . In , the motion of particle 2 is specified by , , and 

 The motion of the center of mass is specified by , , and . Since it is the
relative motion that is actually of interest, it might seem that we should refer the spherical coordinates to the  frame. This
is an unnecessary distinction because all three coordinate frames are parallel to one another, and  and  are the same vectors
in all three frames.) Letting

the Cartesian velocity components are expressed in spherical coordinates by
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=ẋ

′′
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The angles , , , and  are defined in the usual manner relative to the  axis system. The Jacobian of this
transformation is a six-by-six determinate; which can again be converted to the product of two three-by-three determinates. We find

The probability that the components of the velocity of the center of mass lie in the intervals  to ;  to ;  to 
; while the components of the relative velocity lie in the intervals  to ;  to ;  to 

; becomes

We are interested in the probability increment for the relative velocityrelative velocity:probability density function irrespective of
the velocity of the center of mass. To sum the contributions for all possible motions of the center of mass, we integrate this
expression over the possible ranges of , , and . We have

This is the same as the probability increment for a single-particle velocity—albeit with  replacing ;  replacing ; 
replacing ; and  replacing . As in the single-particle case, we can obtain the probability increment for the scalar component
of the relative velocity by integrating over all possible values of  and . We find

In §8, we find the most probable velocity, the mean velocity, and the root-mean-square velocity for a gas whose particles have mass
. By identical arguments, we obtain the most probable relative velocity, the mean relative velocity, and the root-mean-square

relative velocity. To do so, we can simply substitute  for  in the earlier results. In particular, the mean relative velocity is

If particles 1 and 2 have the same mass, , the reduced mass becomes . In this case, we have
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= cos  ż12 v12 θ12

θ0 θ12 φ0 φ12 Oxyz
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We can arrive at this same conclusion by considering the relative motion of two particles that represents the average case. As
illustrated in Figure 9, this occurs when the two particles have the same speed, , but are moving at 90-degree angles to one
another. In this situation, the length of the resultant vector—the relative speed— is just
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