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1.12: Molecular Symmetry
In many cases, the symmetry of a molecule provides a great deal of information about its quantum states, even without a detailed
solution of the Schrödinger equation. A geometrical transformation which turns a molecule into an indistinguishable copy of itself
is called a symmetry operation. A symmetry operation can consist of a rotation about an axis, a reflection in a plane, an inversion
through a point, or some combination of these.

The Ammonia Molecule
We shall introduce the concepts of symmetry and group theory by considering a concrete example–the ammonia molecule NH . In
any symmetry operation on NH , the nitrogen atom remains fixed but the hydrogen atoms can be permuted in 3!=6 different ways.
The axis of the molecule is called a C  axis, since the molecule can be rotated about it into 3 equivalent orientations,  apart.
More generally, a C  axis has n equivalent orientations, separated by  radians. The axis of highest symmetry in a molecule is
called the principal axis. Three mirror planes, designated , run through the principal axis in ammonia. These are
designated as  or vertical planes of symmetry. Ammonia belongs to the symmetry group designated C , characterized by a
three-fold axis with three vertical planes of symmetry.

Let us designate the orientation of the three hydrogen atoms in Figure  as {1, 2, 3}, reading in clockwise order from the
bottom. A counterclockwise rotation by 120 , designated

Figure : Two views of the ammonia molecule.

by the operator C , produces the orientation {2, 3, 1}. A second counterclockwise rotation, designated , produces {3, 1, 2}. Note
that two successive counterclockwise rotations by 120  is equivalent to one clockwise rotation by 120 , so the last operation could
also be designated . The three reflection operations , applied to the original configuration {1, 2, 3} produces {1, 3,
2}, {3, 2, 1} and {2, 1, 3}, respectively. Finally, we must include the identity operation, designated E, which leaves an orientation
unchanged. The effects of the six possible operations of the symmetry group C  can be summarized as follows:

We have thus accounted for all 6 possible permutations of the three hydrogen atoms.

The successive application of two symmetry operations is equivalent to some single symmetry operation. For example, applying
C , then  to our starting orientation, we have

But this is equivalent to the single operation . This can be represented as an algebraic relation among symmetry operators

Note that successive operations are applied in the order right to left when represented algebraically. For the same two operations in
reversed order, we find

Thus symmetry operations do not, in general commute
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although they may commute, for example,  and .

The algebra of the group  can be summarized by the following multiplication table.

Notice that each operation occurs once and only once in each row and each column.

Group Theory

In mathematics, a group is defined as a set of g elements  together with a rule for combination of elements,
which we usually refer to as a product. The elements must fulfill the following four conditions.

I. The product of any two elements of the group is another element of the group. That is  with 
II. Group multiplication obeys an associative law, 

III. There exists an identity element E such that  for all i.
IV. Every element  has a unique inverse , such that  with .

The number of elements h is called the order of the group. Thus  is a group of order 6.

A set of quantities which obeys the group multiplication table is called a representation of the group. Because of the possible
noncommutativity of group elements [cf. Eq (1)], simple numbers are not always adequate to represent groups; we must often use
matrices. The group  has three irreducible representations, or IR’s, which cannot be broken down into simpler representations.
A trivial, but nonetheless important, representation of any group is the totally symmetric representation, in which each group
element is represented by 1. The multiplication table then simply reiterates that . For  this is called the 
representation:

A slightly less trivial representation is :

Much more exciting is the E representation, which requires  matrices:

The operations  and  are said to belong to the same class since they perform the same geometric function, but for different
orientations in space. Analogously,  and  are obviously in the same class. E is in a class by itself. The class structure of the
group is designated by . We state without proof that the number of irreducible representations of a group is equal to
the number of classes. Another important theorem states that the sum of the squares of the dimensionalities of the irreducible
representations of a group adds up to the order of the group. Thus, for , we find .

The trace or character of a matrix is defined as the sum of the elements along the main diagonal:
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For many purposes, it suffices to know just the characters of a matrix representation of a group, rather than the complete matrices.
For example, the characters for the E representation of  in Eq (4) are given by

It is true in general that the characters for all operations in the same class are equal. Thus Eq (6) can be abbreviated to

For one-dimensional representations, such as  and , the characters are equal to the matrices themselves, so Equations 
and  can be read as a table of characters.

The essential information about a symmetry group is summarized in its character table. We display here the character table for 

The last two columns show how the cartesian coordinates x, y, z and their products transform under the operations of the group.

Group Theory and Quantum Mechanics

When a molecule has the symmetry of a group , this means that each member of the group commutes with the molecular
Hamiltonian

where we now explicitly designate the group elements  as operators on wavefunctions. As was shown in Chap. 4, commuting
operators can have simultaneous eigenfunctions. A representation of the group of dimension d means that there must exist a set of d
degenerate eigenfunctions of  that transform among themselves in accord with the corresponding matrix representation. For
example, if the eigenvalue  is d-fold degenerate, the commutation conditions (Equation ) imply that, for ,

Thus each  is also an eigenfunction of  with the same eigenvalue , and must therefore be represented as a linear
combination of the eigenfunctions . More precisely, the eigenfunctions transform among themselves according to

where  means the  element of the matrix representing the operator .

The character of the identity operation E immediately shows the degeneracy of the eigenvalues of that symmetry. The 
character table reveals that , and other molecules of the same symmetry, can have only nondegenerate and two-fold
degenerate energy levels. The following notation for symmetry species was introduced by Mulliken:

I. One dimensional representations are designated either A or B. Those symmetric wrt rotation by  about the  principal
axis are labeled A, while those antisymmetric are labeled B.

II. Two dimensional representations are designated E; 3, 4 and 5 dimensional representations are designated T, F and G,
respectively. These latter cases occur only in groups of high symmetry: cubic, octahedral and icosohedral.

III. In groups with a center of inversion, the subscripts g and u indicate even and odd parity, respectively.
IV. Subscripts 1 and 2 indicate symmetry and antisymmetry, respectively, wrt a  axis perpendicular to , or to a  plane.
V. Primes and double primes indicate symmetry and antisymmetry to a  plane.

For individual orbitals, the lower case analogs of the symmetry designations are used. For example, MO’s in ammonia are
classified  or e.

For ammonia and other  molecules, there exist three species of eigenfunctions. Those belonging to the classification  are
transformed into themselves by all symmetry operations of the group. The 1s, 2s and  AO’s on nitrogen are in this category. The
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χ(E) = 2, χ( ) = −1, χ( ) = 0C3 σv (1.12.14)
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Ĝiψnk Ĥ En
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z-axis is taken as the 3-fold axis. There are no low-lying orbitals belonging to . The nitrogen  and  AO’s form a two-
dimensional representation of the group . That is to say, any of the six operations of the group transforms either one of these
AO’s into a linear combination of the two, with coefficients given by the matrices (4). The three hydrogen 1s orbitals transform like
a  representation of the group. If we represent the hydrogens by a column vector {H1,H2,H3}, then the six group operations
generate the following algebra

Let us denote this representation by . It can be shown that  is a reducible representation, meaning that by some unitary
transformation the  matrices can be factorized into blockdiagonal form with  plus  submatrices. The reducibility of

 can be deduced from the character table. The characters of the matrices (Equation ) are

The character of each of these permutation operations is equal to the number of H atoms left untouched: 3 for the identity, 1 for a
reflection and 0 for a rotation. The characters of  are seen to equal the sum of the characters of  plus E. This reducibility
relation is expressed by writing

The three H atom 1s functions can be combined into LCAO functions which transform according to the IR’s of the group. Clearly
the sum

transforms like . The two remaining linear combinations which transform like E must be orthogonal to (Equation ) and
to one another. One possible choice is

Now, Equation  can be combined with the N 1s, 2s and  to form MO’s of  symmetry, while Equation  can be
combined with the N  and  to form MO’s of E symmetry. Note that no hybridization of AO’s is predetermined, it emerges
automatically in the results of computation.
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