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1.4: Principles of Quantum Mechanics
Here we will continue to develop the mathematical formalism of quantum mechanics, using heuristic arguments as necessary. This
will lead to a system of postulates which will be the basis of our subsequent applications of quantum mechanics.

Hermitian Operators
An important property of operators is suggested by considering the Hamiltonian for the particle in a box:

Let  and  be arbitrary functions which obey the same boundary values as the eigenfunctions of , namely that they vanish
at  and . Consider the integral

Now, using integration by parts,

The boundary terms vanish by the assumed conditions on  and . A second integration by parts transforms Equation  to

It follows therefore that

An obvious generalization for complex functions will read

In mathematical terminology, an operator  for which

for all functions  and  which obey specified boundary conditions is classified as hermitian or self-adjoint. Evidently, the
Hamiltonian is a hermitian operator. It is postulated that all quantum-mechanical operators that represent dynamical variables are
hermitian.

Properties of Eigenvalues and Eigenfunctions

The sets of energies and wavefunctions obtained by solving any quantum-mechanical problem can be summarized symbolically as
solutions of the eigenvalue equation

For another value of the quantum number, we can write

Let us multiply Equation  by  and the complex conjugate of Equation  by . Then we subtract the two expressions
and integrate over . The result is
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x = 0 x = a

f(x) g(x) dx = − f(x) (x) dx∫
a

0

Ĥ
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But by the hermitian property (Equation ), the left-hand side of Equation  equals zero. Thus

Consider first the case . The second factor in Equation  then becomes the normalization integral , which
equals 1 (or at least a nonzero constant). Therefore the first factor in Equation  must equal zero, so that

implying that the energy eigenvalues must be real numbers. This is quite reasonable from a physical point of view since
eigenvalues represent possible results of measurement. Consider next the case when . Then it is the second factor in
Equation  that must vanish and

Thus eigenfunctions belonging to different eigenvalues are orthogonal. In the case that  and  are degenerate eigenfunctions,
so  but , the above proof of orthogonality does not apply. But it is always possible to construct degenerate
functions that are mutually orthogonal. A general result is therefore the orthonormalization condition

It is easy to prove that a linear combination of degenerate eigenfunctions is itself an eigenfunction of the same energy. Let

where the  represent a d-fold degenerate set of eigenfunctions with the same eigenvalue . Consider now the linear
combination

Operating on  with the Hamiltonian and using (14), we find

which shows that the linear combination  is also an eigenfunction of the same energy. There is evidently a limitless number of
possible eigenfunctions for a degenerate eigenvalue. However, only d of these will be linearly independent.

Dirac Notation
The term orthogonal has been used both for perpendicular vectors and for functions whose product integrates to zero. This actually
connotes a deep connection between vectors and functions. Consider two orthogonal vectors a and b. Then, in terms of their x, y, z
components, labeled by 1, 2, 3, respectively, the scalar product can be written

Suppose now that we consider an analogous relationship involving vectors in n-dimensional space (which you need not visualize!).
We could then write

Finally let the dimension of the space become non-denumerably infinite, turning into a continuum. The sum in Equation 
would then be replaced by an integral such as
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But this is just the relation for orthogonal functions. A function can therefore be regarded as an abstract vector in a higher-
dimensional continuum, known as Hilbert space. This is true for eigenfunctions as well. Dirac denoted the vector in Hilbert space
corresponding to the eigenfunction  by the symbol . Correspondingly, the complex conjugate  is denoted by . The
integral over the product of the two functions is then analogous to a scalar product (or inner product in linear algebra) of the
abstract vectors, written

The last quantity is known as a bracket, which led Dirac to designate the vectors  and  as a "bra" and a "ket," respectively.
The orthonormality conditions (Equation ) can be written

The integral of a "sandwich" containing an operator  can be written very compactly in the form

The hermitian condition on  [cf. Eq (6)] is therefore expressed as

Expectation Values

One of the extraordinary features of quantum mechanics is the possibility for superpositions of states. The state of a system can
sometimes exist as a linear combination of other states, for example,

Assuming that all three functions are normalized and that  and  are orthogonal, we find

We can interpret  and  as the probabilities that a system in a state described by  can have the attributes of the states 
and , respectively. Suppose  and  represent eigenstates of an observable , satisfying the respective eigenvalue equations

Then a large number of measurements of the variable  in the state  will register the value  with a probability  and the
value  with a probability . The average value or expectation value of  will be given by

This can be obtained directly from  by the "sandwich construction"

or, if  is not normalized,

Note that the expectation value need not itself be a possible result of a single measurement (like the centroid of a donut, which is
located in the hole!). When the operator  is a simple function, not containing differential operators or the like, then Equation 

 reduces to the classical formula for an average value:

ψn |n⟩ ψ∗
m ⟨m|

∫ dτ = ⟨m| ⋅ |n⟩ ≡ ⟨m|n⟩ψ∗
m ψn (1.4.21)

⟨m| |n⟩

1.4.14

⟨m|n⟩ = δmn (1.4.22)

Â
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More on Operators

An operator represents a prescription for turning one function into another: in symbols, . From a physical point of view,
the action of an operator on a wavefunction can be pictured as the process of measuring the observable  on the state . The
transformed wavefunction  then represents the state of the system after the measurement is performed. In general,  is different
from , consistent with the fact that the process of measurement on a quantum system produces an irreducible perturbation of its
state. Only in the special case that  is an eigenstate of , does a measurement preserve the original state. The function  is then
equal to an eigenvalue  times .

The product of two operators, say , represents the successive action of the operators, reading from right to left---i.e., first 
then . In general, the action of two operators in the reversed order, say , gives a different result, which can be written

We say that the operators do not commute. This can be attributed to the perturbing effect one measurement on a quantum system
can have on subsequent measurements. An example of non-commuting operators from everyday life. In our usual routine each
morning, we shower and we get dressed. But the result of carrying out these operations in reversed order will be dramatically
different!

The commutator of two operators is defined by

When , the two operators are said to commute. This means their combined effect will be the same whatever order they

are applied (like brushing your teeth and showering).

The uncertainty principle for simultaneous measurement of two observables  and  is closely related to their commutator. The
uncertainty  in the observable  is defined in terms of the mean square deviation from the average:

It corresponds to the standard deviation in statistics. The following inequality can be proven for the product of two uncertainties:

The best known application of Equation  is to the position and momentum operators, say  and . Their commutator is
given by

so that

which is known as the Heisenberg uncertainty principle. This fundamental consequence of quantum theory implies that the
position and momentum of a particle cannot be determined with arbitrary precision--the more accurately one is known, the more
uncertain is the other. For example, if the momentum is known exactly, as in a momentum eigenstate, then the position is
completely undetermined.

If two operators commute, there is no restriction on the accuracy of their simultaneous measurement. For example, the  and 
coordinates of a particle can be known at the same time. An important theorem states that two commuting observables can have
simultaneous eigenfunctions. To prove this, write the eigenvalue equation for an operator 

then operate with  and use the commutativity of  and  to obtain

This shows that  is also an eigenfunction of  with the same eigenvalue . This implies that
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showing that  is a simultaneous eigenfunction of  and  with eigenvalues  and , respectively. The derivation becomes
slightly more complicated in the case of degenerate eigenfunctions, but the same conclusion follows.

After the Hamiltonian, the operators for angular momenta are probably the most important in quantum mechanics. The definition of
angular momentum in classical mechanics is . In terms of its Cartesian components,

In future, we will write such sets of equation as " ," meaning that we add to one explicitly stated relation,
the versions formed by successive cyclic permutation . The general prescription for turning a classical dynamical
variable into a quantum-mechanical operator was developed in Chap 2. The key relations were the momentum components

with the coordinates  simply carried over into multiplicative operators. Applying Equation  to Equation , we
construct the three angular momentum operators

while the total angular momentum is given by

The angular momentum operators obey the following commutation relations:

but

and analogously for  and . This is consistent with the existence of simultaneous eigenfunctions of  and any one component,
conventionally designated . But then these states cannot be eigenfunctions of either  or .

Postulates of Quantum Mechanics

Our development of quantum mechanics is now sufficiently complete that we can reduce the theory to a set of five postulates.

The state of a quantum-mechanical system is completely specified by a wavefunction  that depends on the coordinates and
time. The square of this function  gives the probability density for finding the system with a specified set of coordinate
values.

The wavefunction must fulfill certain mathematical requirements because of its physical interpretation. It must be single-valued,
finite and continuous. It must also satisfy a normalization condition
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 Postulate 1: Wavefunctions
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ΨΨ∗
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Every observable in quantum mechanics is represented by a linear, hermitian operator.

The hermitian property was defined in Equation . A linear operator is one which satisfies the identity

which is required in order to have a superposition property for quantum states. The form of an operator which has an analog in
classical mechanics is derived by the prescriptions

which we have previously expressed in terms of Cartesian components [cf. Equation ].

In any measurement of an observable , associated with an operator , the only possible results are the eigenvalues , which
satisfy an eigenvalue equation

This postulate captures the essence of quantum mechanics--the quantization of dynamical variables. A continuum of eigenvalues is
not forbidden, however, as in the case of an unbound particle.

Every measurement of  invariably gives one of the eigenvalues. For an arbitrary state (not an eigenstate of ), these
measurements will be individually unpredictable but follow a definite statistical law, which is the subject of the fourth postulate:

For a system in a state described by a normalized wave function , the average or expectation value of the observable
corresponding to  is given by

Finally,

The wavefunction of a system evolves in time in accordance with the time-dependent Schrödinger equation

For time-independent problems this reduces to the time-independent Schrödinger equation

which is the eigenvalue equation for the Hamiltonian operator.

The Variational Principle

Except for a small number of intensively-studied examples, the Schrödinger equation for most problems of chemical interest
cannot be solved exactly. The variational principle provides a guide for constructing the best possible approximate solutions of a
specified functional form. Suppose that we seek an approximate solution for the ground state of a quantum system described by a
Hamiltonian . We presume that the Schrödinger equation

 Postulate 2: Observables
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 Postulate 5: Time-dependent Evolution
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is too difficult to solve exactly. Suppose, however, that we have a function  which we think is an approximation to the true
ground-state wavefunction. According to the variational principle (or variational theorem), the following formula provides an
upper bound to the exact ground-state energy :

Note that this ratio of integrals has the same form as the expectation value  defined by Equation . The better the
approximation , the lower will be the computed energy , though it will still be greater than the exact value. To prove Equation 

, we suppose that the approximate function can, in concept, be represented as a superposition of the actual eigenstates of the
Hamiltonian, analogous to Equation ,

This means that , the approximate ground state, might be close to the actual ground state  but is "contaminated" by
contributions from excited states , ... Of course, none of the states or coefficients on the right-hand side is actually known,
otherwise there would be no need to worry about approximate computations. By Equation , the expectation value of the
Hamiltonian in the state Equation  is given by

Since all the excited states have higher energy than the ground state, , we find

assuming  has been normalized. Thus  must be greater than the true ground-state energy , as implied by Equation .

As a very simple, although artificial, illustration of the variational principle, consider the ground state of the particle in a box.
Suppose we had never studied trigonometry and knew nothing about sines or cosines. Then a reasonable approximation to the
ground state might be an inverted parabola such as the normalized function

Fig. 1 shows this function along with the exact ground-state eigenfunction

Figure : Variational approximation for particle in a box. Red line represents  and black line represents 

A variational calculation gives
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in terms of the exact ground state energy . In accord with the variational theorem, . The computation is in error
by about 1%.
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