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1.7: Hydrogen Atom

Atomic Spectra

When gaseous hydrogen in a glass tube is excited by a -volt electrical discharge, four lines are observed in the visible part of
the emission spectrum: red at  nm, blue-green at  nm, blue violet at  nm and violet at  nm:

Figure : Visible spectrum of atomic hydrogen.

Other series of lines have been observed in the ultraviolet and infrared regions. Rydberg (1890) found that all the lines of the
atomic hydrogen spectrum could be fitted to a single formula

where , known as the Rydberg constant, has the value  cm  for hydrogen. The reciprocal of wavelength, in units of cm
, is in general use by spectroscopists. This unit is also designated wavenumbers, since it represents the number of wavelengths per

cm. The Balmer series of spectral lines in the visible region, shown in Figure , correspond to the values 
and . The lines with  in the ultraviolet make up the Lyman series. The line with , designated the Lyman alpha, has
the longest wavelength (lowest wavenumber) in this series, with  cm  or  nm.

Other atomic species have line spectra, which can be used as a "fingerprint" to identify the element. However, no atom other than
hydrogen has a simple relation analogous to Equation  for its spectral frequencies. Bohr in 1913 proposed that all atomic
spectral lines arise from transitions between discrete energy levels, giving a photon such that

This is called the Bohr frequency condition. We now understand that the atomic transition energy  is equal to the energy of a
photon, as proposed earlier by Planck and Einstein.

The Bohr Atom
The nuclear model proposed by Rutherford in 1911 pictures the atom as a heavy, positively-charged nucleus, around which much
lighter, negatively-charged electrons circulate, much like planets in the Solar system. This model is however completely untenable
from the standpoint of classical electromagnetic theory, for an accelerating electron (circular motion represents an acceleration)
should radiate away its energy. In fact, a hydrogen atom should exist for no longer than  sec, time enough for the
electron's death spiral into the nucleus. This is one of the worst quantitative predictions in the history of physics. It has been called
the Hindenberg disaster on an atomic level. (Recall that the Hindenberg, a hydrogen-filled dirigible, crashed and burned in a
famous disaster in 1937.)

Bohr sought to avoid an atomic catastrophe by proposing that certain orbits of the electron around the nucleus could be exempted
from classical electrodynamics and remain stable. The Bohr model was quantitatively successful for the hydrogen atom, as we shall
now show.

We recall that the attraction between two opposite charges, such as the electron and proton, is given by Coulomb's law

We prefer to use the Gaussian system in applications to atomic phenomena. Since the Coulomb attraction is a central force
(dependent only on r), the potential energy is related by
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We find therefore, for the mutual potential energy of a proton and electron,

Bohr considered an electron in a circular orbit of radius  around the proton. To remain in this orbit, the electron must be
experiencing a centripetal acceleration

where  is the speed of the electron. Using Equations  and  in Newton's second law, we find

where  is the mass of the electron. For simplicity, we assume that the proton mass is infinite (actually ) so that the
proton's position remains fixed. We will later correct for this approximation by introducing reduced mass. The energy of the
hydrogen atom is the sum of the kinetic and potential energies:

Using Equation , we see that

This is the form of the virial theorem for a force law varying as . Note that the energy of a bound atom is negative, since it is
lower than the energy of the separated electron and proton, which is taken to be zero.

For further progress, we need some restriction on the possible values of  or . This is where we can introduce the quantization of
angular momentum . Since  is perpendicular to , we can write simply

Using Equation , we find also that

We introduce angular momentum quantization, writing

excluding , since the electron would then not be in a circular orbit. The allowed orbital radii are then given by

where

which is known as the Bohr radius. The corresponding energy is

Rydberg's formula (Equation ) can now be deduced from the Bohr model. We have
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and the Rydbeg constant can be identified as

The slight discrepency with the experimental value for hydrogen  is due to the finite proton mass. This will be corrected
later.

The Bohr model can be readily extended to hydrogenlike ions, systems in which a single electron orbits a nucleus of arbitrary
atomic number . Thus  for hydrogen,  for ,  for , and so on. The Coulomb potential 
generalizes to

the radius of the orbit (Equation ) becomes

and the energy Equation  becomes

De Broglie's proposal that electrons can have wavelike properties was actually inspired by the Bohr atomic model. Since

we find

Therefore, each allowed orbit traces out an integral number of de Broglie wavelengths.

Wilson (1915) and Sommerfeld (1916) generalized Bohr's formula for the allowed orbits to

The Sommerfeld-Wilson quantum conditions Equation  reduce to Bohr's results for circular orbits, but allow, in addition,
elliptical orbits along which the momentum  is variable. According to Kepler's first law of planetary motion, the orbits of planets
are ellipses with the Sun at one focus. Figure  shows the generalization of the Bohr theory for hydrogen, including the
elliptical orbits. The lowest energy state  is still a circular orbit. But  allows an elliptical orbit in addition to the circular
one;  has three possible orbits, and so on. The energy still depends on  alone, so that the elliptical orbits represent
degenerate states. Atomic spectroscopy shows in fact that energy levels with  consist of multiple states, as implied by the
splitting of atomic lines by an electric field (Stark effect) or a magnetic field (Zeeman effect). Some of these generalized orbits are
drawn schematically in Figure .
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Figure : Elliptical orbits with the same energy and quantized angular momentum in Bohr-Sommerfield orbits for 
(not to scale). (Public Domain; Pieter Kuiper)

The Bohr model was an important first step in the historical development of quantum mechanics. It introduced the quantization of
atomic energy levels and gave quantitative agreement with the atomic hydrogen spectrum. With the Sommerfeld-Wilson
generalization, it accounted as well for the degeneracy of hydrogen energy levels. Although the Bohr model was able to sidestep
the atomic "Hindenberg disaster," it cannot avoid what we might call the "Heisenberg disaster." By this we mean that the
assumption of well-defined electronic orbits around a nucleus is completely contrary to the basic premises of quantum mechanics.
Another flaw in the Bohr picture is that the angular momenta are all too large by one unit, for example, the ground state actually
has zero orbital angular momentum (rather than ).

The assumption of well-defined electronic orbits around a nucleus in the Bohr atom is
completely contrary to the basic premises of quantum mechanics.

Quantum Mechanics of Hydrogenlike Atoms

In contrast to the particle in a box and the harmonic oscillator, the hydrogen atom is a real physical system that can be treated
exactly by quantum mechanics. In addition to their inherent significance, these solutions suggest prototypes for atomic orbitals
used in approximate treatments of complex atoms and molecules.

For an electron in the field of a nucleus of charge , the Schrӧdinger equation can be written

It is convenient to introduce atomic units in which length is measured in bohrs:

and energy in hartrees:

Electron volts  are a convenient unit for atomic energies. One  is defined as the energy an electron gains when accelerated
across a potential difference of . The ground state of the hydrogen atom has an energy of  or .
Conversion to atomic units is equivalent to setting

in all formulas containing these constants. Rewriting the Schrӧdinger equation in atomic units, we have
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Since the potential energy is spherically symmetrical (a function of  alone), it is obviously advantageous to treat this problem in
spherical polar coordinates . Expressing the Laplacian operator in these coordinates [cf. Eq (6-20)],

Equation  shows that the second and third terms in the Laplacian represent the angular momentum operator . Clearly,
Equation  will have separable solutions of the form

Substituting Equation  into Equation  and using the angular momentum eigenvalue Equation Equation , we obtain
an ordinary differential equation for the radial function :

Note that in the domain of the variable , the angular momentum contribution  acts as an effective addition to the
potential energy. It can be identified with centrifugal force, which pulls the electron outward, in opposition to the Coulomb
attraction. Carrying out the successive differentiations in Equation  and simplifying, we obtain

another second-order linear differential equation with non-constant coefficients. It is again useful to explore the asymptotic
solutions to Equation , as . In the asymptotic approximation,

having noted that the energy  is negative for bound states. Solutions to Equation  are

We reject the positive exponential on physical grounds, since  as , in violation of the requirement that the
wavefunction must be finite everywhere. Choosing the negative exponential and setting  the ground state energy in the
Bohr theory (in atomic units), we obtain

It turns out, very fortunately, that this asymptotic approximation is also an exact solution of the Schrӧdinger equation (Equation \
(\ref{29 }\)) with , just what happened for the harmonic-oscillator problem in Chap. 5. The solutions to Equation ,
designated , are labeled by , known as the principal quantum number, as well as by the angular momentum , which is a
parameter in the radial equation. The solution in Equation  corresponds to . This should be normalized according to
the condition

A useful definite integral is

The normalized radial function is thereby given by

Since this function is nodeless, we identify it with the ground state of the hydrogenlike atom. Multipyling Equation  by the
spherical harmonic , we obtain the total wavefunction (Equation )
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This is conventionally designated as the 1s function .

Integrals in spherical-polar coordinates over a spherically-symmetrical integrand (like the 1s orbital) can be significantly
simplified. We can do the reduction

since integration over  and  gives , the total solid angle of a sphere. The normalization of the 1s wavefunction can thus be
written as

Hydrogen Atom Ground State
There are a number of different ways of representing hydrogen-atom wavefunctions graphically. We will illustrate some of these
for the 1s ground state. In atomic units,

is a decreasing exponential function of a single variable , and is simply plotted in Figure 3.

Figure . Wavefunctions for 1s and 2s orbitals for atomic hydrogen. The 2s-wavefunction (scaled by a factor of 2) has a node at
 bohr. Taken from voh.chem.ucla.edu/vohtar/wint.../lecture3.html

Figure  gives a somewhat more pictorial representation, a three-dimensional contour plot of  as a function of  and  in
the , -plane.

Figure : Contour map of 1s orbital in the -, -plane. Taken from winter.group.shef.ac.uk/orbit...s/wave-fn.html

According to Born's interpretation of the wavefunction, the probability per unit volume of finding the electron at the point 
 is equal to the square of the normalized wavefunction
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This is represented in Figure 5 by a scatter plot describing a possible sequence of observations of the electron position. Although
results of individual measurements are not predictable, a statistical pattern does emerge after a sufficiently large number of
measurements.

Figure : Scatter plot of electron position measurements in hydrogen 1s orbital. Taken from winter.group.shef.ac.uk/orbit...sity-
dots.html

The probability density is normalized such that

In some ways  does not provide the best description of the electron distribution, since the region around , where the
wavefunction has its largest values, is a relatively small fraction of the volume accessible to the electron. Larger radii  represent
larger physical regions since, in spherical polar coordinates, a value of  is associated with a shell of volume . A more
significant measure is therefore the radial distribution function

which represents the probability density within the entire shell of radius , normalized such that

The functions  and  are both shown in Figure . Remarkably, the 1s RDF has its maximum at , equal to the
radius of the first Bohr orbit

Figure : The wavefunction and probability distribution as functions of r for the n = 1 level of the H atom. The functions and
the radius r are in atomic units in this and succeeding figures. Image used with permisison (Bader).

Atomic Orbitals
The general solution for  has a rather complicated form which we give without proof:
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Here  is an associated Laguerre polynomial and , a normalizing constant. The angular momentum quantum number  is by
convention designated by a code: s for , p for , d for , f for , g for , and so on. The first four letters
come from an old classification scheme for atomic spectral lines: sharp, principal, diffuse and fundamental. Although these
designations have long since outlived their original significance, they remain in general use. The solutions of the hydrogenic
Schrӧdinger equation 
in spherical polar coordinates can now be written in full

where  are the spherical harmonics tabulated in Chap. 6. Table 1 below enumerates all the hydrogenic functions we will
actually need. These are called hydrogenic atomic orbitals, in anticipation of their later applications to the structure of atoms and
molecules.

Table 1. Real hydrogenic functions in atomic units.

The energy levels for a hydrogenic system are given by
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ℓ  = 0 ℓ  = 1 ℓ  = 2 ℓ  = 3 ℓ  = 4

(r, θ, ϕ) = (r) (θ, ϕ)ψnℓm Rnℓ Yℓm

n= 1, 2... ℓ = 0, 1... n−1 m = 0, ±1, ±2... ±ℓ

(1.7.48)

Yℓm

=ψ1s
1

π
−−

√
e−r (1.7.49)

= (1− )ψ2s
1

2 2π
−−

√

r

2
e−r/2 (1.7.50)

= zψ2pz

1

4 2π
−−

√
e−r/2 (1.7.51)

, analogousψ2px ψ2py (1.7.52)

= (27− 18r+2 )ψ3s
1

81 3π
−−

√
r2 e−r/3 (1.7.53)

= (6− r)zψ3pz

2
–

√

81 π−−√
e−r/3 (1.7.54)

, analogousψ3px ψ3py (1.7.55)

= (3 − )ψ3dz2

1

81 6π
−−

√
z2 r2 e−r/3 (1.7.56)

= zxψ3dzx

2
–

√

81 π−−√
e−r/3 (1.7.57)

, analogousψ3dyz ψ3dxy (1.7.58)

= ( − )ψ3d −x2 y2

1

81 π
−−

√
x2 y2 e−r/3 (1.7.59)

=− hartreesEn

Z2

2n2
(1.7.60)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/20787?pdf


1.7.9 https://chem.libretexts.org/@go/page/20787

and depends on the principal quantum number alone. Considering all the allowed values of  and , the level  has a degeneracy
of . Figure 7 shows an energy level diagram for hydrogen . For , the energy is a continuum, since the electron is
in fact a free particle. The continuum represents states of an electron and proton in interaction, but not bound into a stable atom.
Figure  also shows some of the transitions which make up the Lyman series in the ultraviolet and the Balmer series in the
visible region.

Figure : Energy levels of atomic hydrogen. Taken from http://eilat.sci.brooklyn.cuny.edu/c...hws/hw2d_c.htm

The  orbitals are all spherically symmetrical, being associated with a constant angular factor, the spherical harmonic 
. They have  radial nodes—spherical shells on which the wavefunction equals zero. The 1s ground state is

nodeless and the number of nodes increases with energy, in a pattern now familiar from our study of the particle-in-a-box and
harmonic oscillator. The 2s orbital, with its radial node at  bohr, is also shown in Figure .

p- and d-Orbitals

The lowest-energy solutions deviating from spherical symmetry are the 2p-orbitals. Using Equations ,  and the 
spherical harmonics, we find three degenerate eigenfunctions:

and

The function  is real and contains the factor , which is equal to the cartesian variable . In chemical applications, this is
designated as a 2p  orbital:

A contour plot is shown in Figure . Note that this function is cylindrically-symmetrical about the -axis with a node in the , 
-plane. The  are complex functions and not as easy to represent graphically. Their angular dependence is that of the

spherical harmonics , shown in Figure 6-4. As noted in Chap. 4, any linear combination of degenerate eigenfunctions is an
equally-valid alternative eigenfunction. Making use of the Euler formulas for sine and cosine

and noting that the combinations  and  correspond to the cartesian variables  and , respectively, we can
define the alternative 2p orbitals
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Clearly, these have the same shape as the 2p -orbital, but are oriented along the - and -axes, respectively. The threefold
degeneracy of the p-orbitals is very clearly shown by the geometric equivalence the functions 2p , 2p  and 2p , which is not
obvious for the spherical harmonics. The functions listed in Table 1 are, in fact, the real forms for all atomic orbitals, which are
more useful in chemical applications. All higher p-orbitals have analogous functional forms ,  and  and are
likewise 3-fold degenerate.

Figure : Contour plot of 2p  orbital. (Bader).

The orbital  is, like , a real function. It is known in chemistry as the -orbital and can be expressed as a cartesian factor
times a function of :

A contour plot is shown in Figure . This function is also cylindrically symmetric about the -axis with two angular nodes—the
conical surfaces with . The remaining four 3d orbitals are complex functions containing the spherical harmonics 
and  pictured in Figure 6-4. We can again construct real functions from linear combinations, the result being four
geometrically equivalent "four-leaf clover" functions with two perpendicular planar nodes. These orbitals are designated 

 and . Two of them are shown in Figure 9. The  orbital has a different shape. However, it can be expressed
in terms of two non-standard d-orbitals,  and . The latter functions, along with  add to zero and thus constitute a
linearly dependent set. Two combinations of these three functions can be chosen as independent eigenfunctions.

Figure : Contour plot of  orbital.

Summary

The atomic orbitals listed in Table 1 are illustrated in Figure . Blue and red indicate, respectively, positive and negative
regions of the wavefunctions (the radial nodes of the 2s and 3s orbitals are obscured). These pictures are intended as stylized
representations of atomic orbitals and should not be interpreted as quantitatively accurate.
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Figure : Hydrogenic atomic orbitals. Taken from www.chemcomp.com/journal/molorbs.htm

The electron charge distribution in an orbital  is given by

which for the s-orbitals is a function of  alone. The radial distribution function can be defined, even for orbitals containing angular
dependence, by

This represents the electron density in a shell of radius , including all values of the angular variables , . Figure  shows
plots of the RDF for the first few hydrogen orbitals.

Figure : Some radial distribution functions.
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(r)ψnℓm

ρ(r) = | (r)ψnℓm |2 (1.7.68)

r

(r) = [ (r)Dnℓ r2 Rnℓ ]2 (1.7.69)

r θ ϕ 1.7.11
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