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1.8: Helium Atom
The second element in the periodic table provides our first example of a quantum-mechanical problem which cannot be solved
exactly. Nevertheless, as we will show, approximation methods applied to helium can give accurate solutions in perfect agreement
with experimental results. In this sense, it can be concluded that quantum mechanics is correct for atoms more complicated than
hydrogen. By contrast, the Bohr theory failed miserably in attempts to apply it beyond the hydrogen atom.

The helium atom has two electrons bound to a nucleus with charge Z = 2. The successive removal of the two electrons can be
diagrammed as

The first ionization energy I , the minimum energy required to remove the first electron from helium, is experimentally 24.59 eV.
The second ionization energy, I , is 54.42 eV. The last result can be calculated exactly since He is a hydrogen-like ion. We have

The energy of the three separated particles on the right side of Equation  is, by definition, zero. Therefore the ground-state
energy of helium atom is given by . We will attempt to reproduce this
value, as close as possible, by theoretical analysis.

Schrödinger Equation and Variational Calculations
The Schrödinger equation for He atom, again using atomic units and assuming infinite nuclear mass, can be written

The five terms in the Hamiltonian represent, respectively, the kinetic energies of electrons 1 and 2, the nuclear attractions of
electrons 1 and 2, and the repulsive interaction between the two electrons. It is this last contribution which prevents an exact
solution of the Schrödinger equation and which accounts for much of the complication in the theory. In seeking an approximation
to the ground state, we might first work out the solution in the absence of the 1/r -term. In the Schrödinger equation thus
simplified, we can separate the variables r  and r  to reduce the equation to two independent hydrogen-like problems. The ground
state wavefunction (not normalized) for this hypothetical helium atom would be

and the energy would equal  hartrees, compared to the experimental value of  hartrees. Neglect of
electron repulsion evidently introduces a very large error.

A significantly improved result can be obtained with the functional form ( Equation ), but with Z replaced by a adjustable
parameter , thus:

Using this function in the variational principle [cf. Eq (4.53)], we have

where  is the full Hamiltonian as in Equation , including the -term. The expectation values of the five parts of the
Hamiltonian work out to

The sum of the integrals in Equation  gives the variational energy
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This will be always be an upper bound for the true ground-state energy. We can optimize our result by finding the value of  which
minimizes the energy (Equation ). We find

giving the optimal value

This can be given a physical interpretation, noting that the parameter  in the wavefunction (Equation ) represents an effective
nuclear charge. Each electron partially shields the other electron from the positively-charged nucleus by an amount equivalent to 

 of an electron charge. Substituting Equation  into Equation , we obtain the optimized approximation to the energy

For helium ( ), this gives  hartrees, an error of about  . Note that the inequality 
applies in an algebraic sense.

In the late 1920's, it was considered important to determine whether the helium computation could be improved, as a test of the
validity of quantum mechanics for many electron systems. The table below gives the results for a selection of variational
computations on helium.

wavefunction parameters energy

best 

best 

Hylleraas (1929) 10 parameters

Pekeris (1959) 1078 parameters

The third entry refers to the self-consistent field method, developed by Hartree. Even for the best possible choice of one-electron
functions , there remains a considerable error. This is due to failure to include the variable  in the wavefunction. The effect
is known as electron correlation.

The fourth entry, containing a simple correction for correlation, gives a considerable improvement. Hylleraas (1929) extended this
approach with a variational function of the form

and obtained the nearly exact result with 10 optimized parameters. More recently, using modern computers, results in essentially
perfect agreement with experiment have been obtained.

Spinorbitals and the Exclusion Principle
The simpler wavefunctions for helium atom in Equation , can be interpreted as representing two electrons in hydrogen-like 1s
orbitals, designated as a 1s  configuration. According to Pauli's exclusion principle, which states that no two electrons in an atom
can have the same set of four quantum numbers, the two 1s electrons must have different spins, one spin-up or , the other spin-
down or . A product of an orbital with a spin function is called a spinorbital. For example, electron 1 might occupy a spinorbital
which we designate
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Spinorbitals can be designated by a single subscript, for example,  or , where the subscript stands for a set of four quantum
numbers. In a two electron system the occupied spinorbitals  and  must be different, meaning that at least one of their four
quantum numbers must be unequal. A two-electron spinorbital function of the form

automatically fulflls the Pauli principle since it vanishes if . Moreover, this function associates each electron equally with
each orbital, which is consistent with the indistinguishability of identical particles in quantum mechanics. The factor 
normalizes the two-particle wavefunction, assuming that  and  are normalized and mutually orthogonal. The function
(Equation ) is antisymmetric with respect to interchange of electron labels, meaning that

This antisymmetry property is an elegant way of expressing the Pauli principle.

We note, for future reference, that the function in Equation  can be expressed as a  determinant:

For the 1s  configuration of helium, the two orbital functions are the same and Equation  can be written

For two-electron systems (but not for three or more electrons), the wavefunction can be factored into an orbital function times a
spin function. The two-electron spin function

represents the two electron spins in opposing directions (antiparallel) with a total spin angular momentum of zero. The two
subscripts are the quantum numbers S and M  for the total electron spin. Eqution  is called the singlet spin state since there is
only a single orientation for a total spin quantum number of zero. It is also possible to have both spins in the same state, provided
the orbitals are different. There are three possible states for two parallel spins:

These make up the triplet spin states, which have the three possible orientations of a total angular momentum of 1.

Excited States of Helium
The lowest excitated state of helium is represented by the electron configuration 1s 2s. The 1s 2p configuration has higher energy,
even though the 2s and 2p orbitals in hydrogen are degenerate, because the 2s penetrates closer to the nucleus, where the potential
energy is more negative. When electrons are in different orbitals, their spins can be either parallel or antiparallel. In order that the
wavefunction satisfy the antisymmetry requirement (Equation  ), the two-electron orbital and spin functions must have
opposite behavior under exchange of electron labels. There are four possible states from the 1s 2s configuration: a singlet state

and three triplet states
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Using the Hamiltonian in Equation , we can compute the approximate energies

After evaluating some fierce-looking integrals, this reduces to the form

in terms of the one electron integrals

the Coulomb integrals

and the exchange integrals

The Coulomb integral represents the repulsive potential energy for two interacting charge distributions  and . The
exchange integral, which has no classical analog, arises because of the exchange symmetry (or antisymmetry) requirement of the
wavefunction. Both J and K can be shown to be positive quantities. Therefore the lower sign in (22) represents the state of lower
energy, making the triplet state of the configuration 1s 2s lower in energy than the singlet state. This is an almost universal
generalization and contributes to Hund's rule, to be discussed in the next Chapter.
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