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1.5: Harmonic Oscillator
The harmonic oscillator is a model which has several important applications in both classical and quantum mechanics. It serves as a
prototype in the mathematical treatment of such diverse phenomena as elasticity, acoustics, AC circuits, molecular and crystal
vibrations, electromagnetic fields and optical properties of matter.

Classical Oscillator
A simple realization of the harmonic oscillator in classical mechanics is a particle which is acted upon by a restoring force
proportional to its displacement from its equilibrium position. Considering motion in one dimension, this means

Such a force might originate from a spring which obeys Hooke’s law, as shown in Figure . According to Hooke’s law, which
applies to real springs for sufficiently small displacements, the restoring force is proportional to the displacement—either stretching
or compression—from the equilibrium position.

Figure : Spring obeying Hooke’s law.

The force constant  is a measure of the stiffness of the spring. The variable  is chosen equal to zero at the equilibrium position,
positive for stretching, negative for compression. The negative sign in Equation   reflects the fact that  is a restoring force,
always in the opposite sense to the displacement .

Applying Newton’s second law to the force from Equation , we find 

where  is the mass of the body attached to the spring, which is itself assumed massless. This leads to a differential equation of
familiar form, although with different variables:

with

The dot notation (introduced by Newton himself) is used in place of primes when the independent variable is time. The general
solution to Equation  is

which represents periodic motion with a sinusoidal time dependence. This is known as simple harmonic motion and the
corresponding system is known as a harmonic oscillator. The oscillation occurs with a constant angular frequency

This is called the natural frequency of the oscillator. The corresponding circular (or angular) frequency in Hertz (cycles per
second) is

The general relation between force and potential energy in a conservative system in one dimension is

F = −kx (1.5.1)

1.5.1

1.5.1

k x

1.5.1 F

x

1.5.1 x

F = m = −kx
xd2

dx2
(1.5.2)

m

(t) + x(t) = 0ẍ ω2 (1.5.3)
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Thus the potential energy of a harmonic oscillator is given by

which has the shape of a parabola, as drawn in Figure . A simple computation shows that the oscillator moves between

positive and negative turning points  where the total energy  equals the potential energy  while the kinetic energy

is momentarily zero. In contrast, when the oscillator moves past , the kinetic energy reaches its maximum value while the
potential energy equals zero.

Figure : Potential energy function and first few energy levels for harmonic oscillator.

Harmonic Oscillator in Quantum Mechanics
Given the potential energy in Equation , we can write down the Schrödinger equation for the one-dimensional harmonic
oscillator: 

For the first time we encounter a differential equation with non-constant coefficients, which is a much greater challenge to solve.
We can combine the constants in Equation  to two parameters

and

and redefine the independent variable as

This reduces the Schrödinger equation to

The range of the variable  (also ) must be taken from  to , there being no finite cutoff as in the case of the particle in a
box. A useful first step is to determine the asymptotic solution to Equation , that is, the form of  as . For
sufficiently large values of ,  and the differential equation is approximated by

This suggests the following manipulation:
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The first-order differential equation

can be solved exactly to give

Remarkably, this turns out to be an exact solution of the Schrödinger  equation (Equation ) with . Using Equation 
, this corresponds to an energy

where  is the natural frequency of the oscillator according to classical mechanics. The function in Equation  has the form of
a Gaussian, the bell-shaped curve so beloved in the social sciences. The function has no nodes, which leads us to conclude that this
represents the ground state of the system.The ground state is usually designated with the quantum number  (the particle in a
box is a exception, with  labeling the ground state). Reverting to the original variable , we write

with

With help of the well-known definite integral (Laplace 1778)

we find the normalized eigenfunction

with the corresponding eigenvalue

Drawing from our experience with the particle in a box, we might surmise that the first excited state of the harmonic oscillator
would be a function similar to Equation , but with a node at , say,

This is orthogonal to  by symmetry and is indeed an eigenfunction with the eigenvalue

Continuing the process, we try a function with two nodes

Using the integrals tabulated in the Supplement 5, on Gaussian Integrals, we determine that with  makes  orthogonal

to  and . We verify that this is another eigenfunction, corresponding to

The general result, which follows from a more advanced mathematical analysis, gives the following formula for the normalized
eigenfunctions:
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where  represents the Hermite polynomial of degree . The first few Hermite polynomials are

The four lowest harmonic-oscillator eigenfunctions are plotted in Figure . Note the topological resemblance to the
corresponding particle-in-a-box eigenfunctions.

Figure : Harmonic oscillator eigenfunctions for n=0, 1, 2, 3.

The eigenvalues are given by the simple formula

These are drawn in Figure , on the same scale as the potential energy. The ground-state energy  is greater than the

classical value of zero, again a consequence of the uncertainty principle. This means that the oscillator is always oscillating.

It is remarkable that the difference between successive energy eigenvalues has a constant value

This is reminiscent of Planck’s formula for the energy of a photon. It comes as no surprise then that the quantum theory of radiation
has the structure of an assembly of oscillators, with each oscillator representing a mode of electromagnetic waves of a specified
frequency.
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