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7.2: Significance Tests for Normal Distributions
A normal distribution is the most common distribution for the data we collect. Because the area between any two limits of a normal
distribution curve is well defined, it is straightforward to construct and evaluate significance tests.

You can review the properties of a normal distribution in Chapter 5 and Chapter 6.

Comparing  to  

One way to validate a new analytical method is to analyze a sample that contains a known amount of analyte, . To judge the
method’s accuracy we analyze several portions of the sample, determine the average amount of analyte in the sample, , and use a
significance test to compare  to . The null hypothesis is that the difference between  and  is explained by indeterminate
errors that affect our determination of . The alternative hypothesis is that the difference between  and  is too large to be
explained by indeterminate error.

The test statistic is t , which we substitute into the confidence interval for 

Rearranging this equation and solving for 

gives the value for  when  is at either the right edge or the left edge of the sample's confidence interval (Figure ).

Figure : Relationship between a confidence interval and the result of a significance test. (a) The shaded area under the normal
distribution curve shows the sample’s confidence interval for  based on t . The solid bars in (b) and (c) show the expected
confidence intervals for  explained by indeterminate error given the choice of  and the available degrees of freedom, . For (b)
we reject the null hypothesis because portions of the sample’s confidence interval fall outside the confidence interval explained by
indeterminate error. In the case of (c) we retain the null hypothesis because the confidence interval explained by indeterminate error
completely encompasses the sample’s confidence interval.

To determine if we should retain or reject the null hypothesis, we compare the value of t  to a critical value, , where  is
the confidence level and  is the degrees of freedom for the sample. The critical value  defines the largest confidence
interval explained by indeterminate error. If , then our sample’s confidence interval is greater than that explained by
indeterminate errors (Figure b). In this case, we reject the null hypothesis and accept the alternative hypothesis. If 

, then our sample’s confidence interval is smaller than that explained by indeterminate error, and we retain the null
hypothesis (Figure c). Example  provides a typical application of this significance test, which is known as a t-test of 
to . You will find values for  in Appendix 2.
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Before determining the amount of Na CO  in a sample, you decide to check your procedure by analyzing a standard sample
that is 98.76% w/w Na CO . Five replicate determinations of the %w/w Na CO  in the standard gives the following results

Using , is there any evidence that the analysis is giving inaccurate results?

Solution

The mean and standard deviation for the five trials are

Because there is no reason to believe that the results for the standard must be larger or smaller than , a two-tailed t-test is
appropriate. The null hypothesis and alternative hypothesis are

The test statistic, t , is

The critical value for t(0.05, 4) from Appendix 2 is 2.78. Since t  is greater than t(0.05, 4), we reject the null hypothesis and
accept the alternative hypothesis. At the 95% confidence level the difference between  and  is too large to be explained by
indeterminate sources of error, which suggests there is a determinate source of error that affects the analysis.

There is another way to interpret the result of this t-test. Knowing that t  is 3.91 and that there are 4 degrees of freedom, we
use Appendix 2 to estimate the value of  that corresponds to a t( , 4) of 3.91. From Appendix 2, t(0.02, 4) is 3.75 and t(0.01,
4) is 4.60. Although we can reject the null hypothesis at the 98% confidence level, we cannot reject it at the 99% confidence
level. For a discussion of the advantages of this approach, see J. A. C. Sterne and G. D. Smith “Sifting the evidence—what’s
wrong with significance tests?” BMJ 2001, 322, 226–231.

Earlier we made the point that we must exercise caution when we interpret the result of a statistical analysis. We will keep returning
to this point because it is an important one. Having determined that a result is inaccurate, as we did in Example , the next step
is to identify and to correct the error. Before we expend time and money on this, however, we first should critically examine our
data. For example, the smaller the value of s, the larger the value of t . If the standard deviation for our analysis is unrealistically
small, then the probability of a type 2 error increases. Including a few additional replicate analyses of the standard and reevaluating
the t-test may strengthen our evidence for a determinate error, or it may show us that there is no evidence for a determinate error.

Comparing  to  
If we analyze regularly a particular sample, we may be able to establish an expected variance, , for the analysis. This often is the
case, for example, in a clinical lab that analyzes hundreds of blood samples each day. A few replicate analyses of a single sample
gives a sample variance, s , whose value may or may not differ significantly from .

We can use an F-test to evaluate whether a difference between s  and  is significant. The null hypothesis is  and the
alternative hypothesis is . The test statistic for evaluating the null hypothesis is F , which is given as either

depending on whether s  is larger or smaller than . This way of defining F  ensures that its value is always greater than or
equal to one.

If the null hypothesis is true, then F  should equal one; however, because of indeterminate errors, F , usually is greater than
one. A critical value, , is the largest value of F  that we can attribute to indeterminate error given the specified
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significance level, , and the degrees of freedom for the variance in the numerator, , and the variance in the denominator,
. The degrees of freedom for s  is n – 1, where n is the number of replicates used to determine the sample’s variance, and the

degrees of freedom for  is defined as infinity, . Critical values of F for  are listed in Appendix 3 for both one-tailed
and two-tailed F-tests.

A manufacturer’s process for analyzing aspirin tablets has a known variance of 25. A sample of 10 aspirin tablets is selected
and analyzed for the amount of aspirin, yielding the following results in mg aspirin/tablet.

Determine whether there is evidence of a significant difference between the sample’s variance and the expected variance at 
.

Solution

The variance for the sample of 10 tablets is 4.3. The null hypothesis and alternative hypotheses are

and the value for F  is

The critical value for F(0.05, , 9) from Appendix 3 is 3.333. Since F is greater than F(0.05, , 9), we reject the null
hypothesis and accept the alternative hypothesis that there is a significant difference between the sample’s variance and the
expected variance. One explanation for the difference might be that the aspirin tablets were not selected randomly.

Comparing Variances for Two Samples 
We can extend the F-test to compare the variances for two samples, A and B, by rewriting our equation for F  as

defining A and B so that the value of F  is greater than or equal to 1.

The table below shows results for two experiments to determine the mass of a circulating U.S. penny. Determine whether there
is a difference in the variances of these analyses at .

First Experiment Second Experiment

Penny Mass (g) Penny Mass (g)

1 3.080 1 3.052

2 3.094 2 3.141

3 3.107 3 3.083

4 3.056 4 3.083

5 3.112 5 3.048

6 3.174

7 3.198
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The standard deviations for the two experiments are 0.051 for the first experiment (A) and 0.037 for the second experiment (B).
The null and alternative hypotheses are

and the value of F  is

From Appendix 3 the critical value for F(0.05, 6, 4) is 9.197. Because F  < F(0.05, 6, 4), we retain the null hypothesis. There
is no evidence at  to suggest that the difference in variances is significant.

Comparing Means for Two Samples 
Three factors influence the result of an analysis: the method, the sample, and the analyst. We can study the influence of these
factors by conducting experiments in which we change one factor while holding constant the other factors. For example, to
compare two analytical methods we can have the same analyst apply each method to the same sample and then examine the
resulting means. In a similar fashion, we can design experiments to compare two analysts or to compare two samples.

Before we consider the significance tests for comparing the means of two samples, we need to understand the difference between
unpaired data and paired data. This is a critical distinction and learning to distinguish between these two types of data is important.
Here are two simple examples that highlight the difference between unpaired data and paired data. In each example the goal is to
compare two balances by weighing pennies.

Example 1: We collect 10 pennies and weigh each penny on each balance. This is an example of paired data because we use the
same 10 pennies to evaluate each balance.
Example 2: We collect 10 pennies and divide them into two groups of five pennies each. We weigh the pennies in the first group
on one balance and we weigh the second group of pennies on the other balance. Note that no penny is weighed on both
balances. This is an example of unpaired data because we evaluate each balance using a different sample of pennies.

In both examples the samples of 10 pennies were drawn from the same population; the difference is how we sampled that
population. We will learn why this distinction is important when we review the significance test for paired data; first, however, we
present the significance test for unpaired data.

One simple test for determining whether data are paired or unpaired is to look at the size of each sample. If the samples are of
different size, then the data must be unpaired. The converse is not true. If two samples are of equal size, they may be paired or
unpaired.

Unpaired Data 

Consider two analyses, A and B, with means of  and , and standard deviations of s  and s . The confidence intervals for 
and for  are

where n  and n  are the sample sizes for A and for B. Our null hypothesis, , is that any difference between  and 
 is the result of indeterminate errors that affect the analyses. The alternative hypothesis, , is that the difference

between and  is too large to be explained by indeterminate error.

To derive an equation for t , we assume that  equals , and combine the equations for the two confidence intervals
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Solving for  and using a propagation of uncertainty, gives

Finally, we solve for t

and compare it to a critical value, , where  is the probability of a type 1 error, and  is the degrees of freedom.

Thus far our development of this t-test is similar to that for comparing  to , and yet we do not have enough information to
evaluate the t-test. Do you see the problem? With two independent sets of data it is unclear how many degrees of freedom we have.

Suppose that the variances  and  provide estimates of the same . In this case we can replace  and  with a pooled
variance, , that is a better estimate for the variance. Thus, our equation for  becomes

where s , the pooled standard deviation, is

The denominator of this equation shows us that the degrees of freedom for a pooled standard deviation is , which also
is the degrees of freedom for the t-test. Note that we lose two degrees of freedom because the calculations for  and  require
the prior calculation of  amd .

So how do you determine if it is okay to pool the variances? Use an F-test.

If  and  are significantly different, then we calculate t  using the following equation. In this case, we find the degrees of
freedom using the following imposing equation.

Because the degrees of freedom must be an integer, we round to the nearest integer the value of  obtained from this equation.

The equation above for the degrees of freedom is from Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 2nd Ed.,
Ellis-Horward: Chichester, UK, 1988. In the 6th Edition, the authors note that several different equations have been suggested
for the number of degrees of freedom for t when s  and s  differ, reflecting the fact that the determination of degrees of
freedom an approximation. An alternative equation—which is used by statistical software packages, such as R, Minitab, Excel
—is
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For typical problems in analytical chemistry, the calculated degrees of freedom is reasonably insensitive to the choice of
equation.

Regardless of whether how we calculate t , we reject the null hypothesis if t  is greater than  and retain the null
hypothesis if t  is less than or equal to .

Example  provides results for two experiments to determine the mass of a circulating U.S. penny. Determine whether
there is a difference in the means of these analyses at .

Solution

First we use an F-test to determine whether we can pool the variances. We completed this analysis in Example , finding
no evidence of a significant difference, which means we can pool the standard deviations, obtaining

with 10 degrees of freedom. To compare the means we use the following null hypothesis and alternative hypotheses

Because we are using the pooled standard deviation, we calculate t  as

The critical value for t(0.05, 10), from Appendix 2, is 2.23. Because t  is less than t(0.05, 10) we retain the null hypothesis.
For  we do not have evidence that the two sets of pennies are significantly different.

One method for determining the %w/w Na CO  in soda ash is to use an acid–base titration. When two analysts analyze the
same sample of soda ash they obtain the results shown here.

Analyst A: 

Analyst B: 

Determine whether the difference in the mean values is significant at .

Solution

We begin by reporting the mean and standard deviation for each analyst.

To determine whether we can use a pooled standard deviation, we first complete an F-test using the following null and
alternative hypotheses.

Calculating F , we obtain a value of

Because F  is larger than the critical value of 7.15 for F(0.05, 5, 5) from Appendix 3, we reject the null hypothesis and accept
the alternative hypothesis that there is a significant difference between the variances; thus, we cannot calculate a pooled
standard deviation.
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To compare the means for the two analysts we use the following null and alternative hypotheses.

Because we cannot pool the standard deviations, we calculate t  as

and calculate the degrees of freedom as

From Appendix 2, the critical value for t(0.05, 5) is 2.57. Because t  is greater than t(0.05, 5) we reject the null hypothesis
and accept the alternative hypothesis that the means for the two analysts are significantly different at .

Paired Data 

Suppose we are evaluating a new method for monitoring blood glucose concentrations in patients. An important part of evaluating
a new method is to compare it to an established method. What is the best way to gather data for this study? Because the variation in
the blood glucose levels amongst patients is large we may be unable to detect a small, but significant difference between the
methods if we use different patients to gather data for each method. Using paired data, in which the we analyze each patient’s blood
using both methods, prevents a large variance within a population from adversely affecting a t-test of means.

Typical blood glucose levels for most non-diabetic individuals ranges between 80–120 mg/dL (4.4–6.7 mM), rising to as high
as 140 mg/dL (7.8 mM) shortly after eating. Higher levels are common for individuals who are pre-diabetic or diabetic.

When we use paired data we first calculate the individual differences, d , between each sample's paired resykts. Using these
individual differences, we then calculate the average difference, , and the standard deviation of the differences, s . The null
hypothesis, , is that there is no difference between the two samples, and the alternative hypothesis, , is that
the difference between the two samples is significant.

The test statistic, t , is derived from a confidence interval around 

where n is the number of paired samples. As is true for other forms of the t-test, we compare t  to , where the degrees of
freedom, , is n – 1. If t  is greater than , then we reject the null hypothesis and accept the alternative hypothesis. We
retain the null hypothesis if t  is less than or equal to t(a, o). This is known as a paired t-test.

Marecek et. al. developed a new electrochemical method for the rapid determination of the concentration of the antibiotic
monensin in fermentation vats [Marecek, V.; Janchenova, H.; Brezina, M.; Betti, M. Anal. Chim. Acta 1991, 244, 15–19]. The
standard method for the analysis is a test for microbiological activity, which is both difficult to complete and time-consuming.
Samples were collected from the fermentation vats at various times during production and analyzed for the concentration of
monensin using both methods. The results, in parts per thousand (ppt), are reported in the following table.

Sample Microbiological Electrochemical

1 129.5 132.3
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2 89.6 91.0

3 76.6 73.6

4 52.2 58.2

5 110.8 104.2

6 50.4 49.9

7 72.4 82.1

8 141.4 154.1

9 75.0 73.4

10 34.1 38.1

11 60.3 60.1

Is there a significant difference between the methods at ?

Solution

Acquiring samples over an extended period of time introduces a substantial time-dependent change in the concentration of
monensin. Because the variation in concentration between samples is so large, we use a paired t-test with the following null
and alternative hypotheses.

Defining the difference between the methods as

we calculate the difference for each sample.

sample 1 2 3 4 5 6 7 8 9 10 11

2.8 1.4 –3.0 6.0 –6.6 –0.5 9.7 12.7 –1.6 4.0 –0.2

The mean and the standard deviation for the differences are, respectively, 2.25 ppt and 5.63 ppt. The value of t  is

which is smaller than the critical value of 2.23 for t(0.05, 10) from Appendix 2. We retain the null hypothesis and find no
evidence for a significant difference in the methods at .

One important requirement for a paired t-test is that the determinate and the indeterminate errors that affect the analysis must be
independent of the analyte’s concentration. If this is not the case, then a sample with an unusually high concentration of analyte
will have an unusually large d . Including this sample in the calculation of  and s  gives a biased estimate for the expected mean
and standard deviation. This rarely is a problem for samples that span a limited range of analyte concentrations, such as those in
Example  or Exercise . When paired data span a wide range of concentrations, however, the magnitude of the
determinate and indeterminate sources of error may not be independent of the analyte’s concentration; when true, a paired t-test
may give misleading results because the paired data with the largest absolute determinate and indeterminate errors will dominate .
In this situation a regression analysis, which is the subject of the next chapter, is more appropriate method for comparing the data.

The importance of distinguishing between paired and unpaired data is worth examining more closely. The following is data
from some work I completed with a colleague in which we were looking at concentration of Zn in Lake Erie at the air-water
interface and the sediment-water interface.

α = 0.05
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sample site ppm Zn at air-water interface ppm Zn at the sediment-water interface

1 0.430 0.415

2 0.266 0.238

3 0.457 0.390

4 0.531 0.410

5 0.707 0.605

6 0.716 0.609

The mean and the standard deviation for the ppm Zn at the air-water interface are 0.5178 ppm and 0.01732 ppm, and the mean
and the standard deviation for the ppm Zn at the sediment-water interface are 0.4445 ppm and 0.1418 ppm. We can use these
values to draw normal distributions for both by letting the means and the standard deviations for the samples,  and , serve
as estimates for the means and the standard deviations for the population,  and . As we see in the following figure

the two distributions overlap strongly, suggesting that a t-test of their means is not likely to find evidence of a difference. And
yet, we also see that for each site, the concentration of Zn at the sediment-water interface is less than that at the air-water
interface. In this case, the difference between the concentration of Zn at individual sites is sufficiently large that it masks our
ability to see the difference between the two interfaces.

If we take the differences between the air-water and sediment-water interfaces, we have values of 0.015, 0.028, 0.067, 0.121,
0.102, and 0.107 ppm Zn, with a mean of 0.07333 ppm Zn and a standard deviation of 0.04410 ppm Zn. Superimposing all
three normal distributions

X¯ ¯¯̄ s

μ σ
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shows clearly that most of the normal distribution for the differences lies above zero, suggesting that a t-test might show
evidence that the difference is significant.

Outliers 
In chapter 7.1 we examined a data set consisting of the masses of 100 circulating United States penny. Table  provides one
more data set. Do you notice anything unusual in this data? Of the 100 pennies included in the earlier table, no penny has a mass of
less than 3 g. In this table, however, the mass of one penny is less than 3 g. We might ask whether this penny’s mass is so different
from the other pennies that it is in error.

Table . Mass (g) for Additional Sample of Circulating U. S. Penniese

3.067 2.514 3.094

3.049 3.048 3.109

3.039 3.079 3.102

A measurement that is not consistent with other measurements is called an outlier. An outlier might exist for many reasons: the
outlier might belong to a different population

Is this a Canadian penny?

or the outlier might be a contaminated or an otherwise altered sample

Is the penny damaged or unusually dirty?

or the outlier may result from an error in the analysis

Did we forget to tare the balance?

Regardless of its source, the presence of an outlier compromises any meaningful analysis of our data. There are many significance
tests that we can use to identify a potential outlier, three of which we present here.

Dixon's Q-Test 

One of the most common significance tests for identifying an outlier is Dixon’s Q-test. The null hypothesis is that there are no
outliers, and the alternative hypothesis is that there is an outlier. The Q-test compares the gap between the suspected outlier and its
nearest numerical neighbor to the range of the entire data set (Figure ).

7.2.1

7.2.1

7.2.2
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Figure : Dotplots showing the distribution of two data sets containing a possible outlier. In (a) the possible outlier’s value is
larger than the remaining data, and in (b) the possible outlier’s value is smaller than the remaining data.

The test statistic, Q , is

This equation is appropriate for evaluating a single outlier. Other forms of Dixon’s Q-test allow its extension to detecting multiple
outliers [Rorabacher, D. B. Anal. Chem. 1991, 63, 139–146].

The value of Q  is compared to a critical value, , where  is the probability that we will reject a valid data point (a type 1
error) and n is the total number of data points. To protect against rejecting a valid data point, usually we apply the more
conservative two-tailed Q-test, even though the possible outlier is the smallest or the largest value in the data set. If Q  is greater
than , then we reject the null hypothesis and may exclude the outlier. We retain the possible outlier when Q  is less than
or equal to . Table  provides values for  for a data set that has 3–10 values. A more extensive table is in
Appendix 4. Values for  assume an underlying normal distribution.

Table : Dixon's Q-Test

n Q(0.05, n)

3 0.970

4 0.829

5 0.710

6 0.625

7 0.568

8 0.526

9 0.493

10 0.466

Grubb's Test 

Although Dixon’s Q-test is a common method for evaluating outliers, it is no longer favored by the International Standards
Organization (ISO), which recommends the Grubb’s test. There are several versions of Grubb’s test depending on the number of
potential outliers. Here we will consider the case where there is a single suspected outlier.

For details on this recommendation, see International Standards ISO Guide 5752-2 “Accuracy (trueness and precision) of
measurement methods and results–Part 2: basic methods for the determination of repeatability and reproducibility of a standard
measurement method,” 1994.

The test statistic for Grubb’s test, G , is the distance between the sample’s mean, , and the potential outlier, , in terms of
the sample’s standard deviation, s.

7.2.2

exp

= =Qexp
gap

range

|outlier's value −nearest value|

largest value −smallest value

exp Q(α,n) α

exp
Q(α,n) exp

Q(α,n) 7.2.2 Q(α,n)
Q(α,n)

7.2.2
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We compare the value of G  to a critical value , where  is the probability that we will reject a valid data point and n is
the number of data points in the sample. If G  is greater than , then we may reject the data point as an outlier, otherwise
we retain the data point as part of the sample. Table  provides values for G(0.05, n) for a sample containing 3–10 values. A
more extensive table is in Appendix 5. Values for  assume an underlying normal distribution.

Table : Grubb's Test

n G(0.05, n)

3 1.115

4 1.481

5 1.715

6 1.887

7 2.020

8 2.126

9 2.215

10 2.290

Chauvenet's Criterion 

Our final method for identifying an outlier is Chauvenet’s criterion. Unlike Dixon’s Q-Test and Grubb’s test, you can apply this
method to any distribution as long as you know how to calculate the probability for a particular outcome. Chauvenet’s criterion
states that we can reject a data point if the probability of obtaining the data point’s value is less than , where n is the size of
the sample. For example, if n = 10, a result with a probability of less than , or 0.05, is considered an outlier.

To calculate a potential outlier’s probability we first calculate its standardized deviation, z

where  is the potential outlier,  is the sample’s mean and s is the sample’s standard deviation. Note that this equation is
identical to the equation for G  in the Grubb’s test. For a normal distribution, we can find the probability of obtaining a value of z
using the probability table in Appendix 1.

Table  contains the masses for nine circulating United States pennies. One entry, 2.514 g, appears to be an outlier.
Determine if this penny is an outlier using a Q-test, Grubb’s test, and Chauvenet’s criterion. For the Q-test and Grubb’s test, let 

.

Solution

For the Q-test the value for  is

From Table , the critical value for Q(0.05, 9) is 0.493. Because Q  is greater than Q(0.05, 9), we can assume the penny
with a mass of 2.514 g likely is an outlier.

For Grubb’s test we first need the mean and the standard deviation, which are 3.011 g and 0.188 g, respectively. The value for
G  is

=Gexp
| − |Xout X¯ ¯¯̄

s

exp G(α,n) α

exp G(α,n)
7.2.3

G(α,n)

7.2.3

(2 )n−1

(2 ×10)−1

z =
| − |Xout X

¯ ¯¯̄

s

Xout X
¯ ¯¯̄

exp

 Example 7.2.7

7.2.1

α = 0.05

Qexp

= = 0.882Qexp
|2.514 −3.039|

3.109 −2.514

7.2.2 exp

exp

= = 2.64Gexp
|2.514 −3.011|

0.188
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Using Table , we find that the critical value for G(0.05, 9) is 2.215. Because G  is greater than G(0.05, 9), we can
assume that the penny with a mass of 2.514 g likely is an outlier.

For Chauvenet’s criterion, the critical probability is , or 0.0556. The value of z is the same as G , or 2.64. Using
Appendix 1, the probability for z = 2.64 is 0.00415. Because the probability of obtaining a mass of 0.2514 g is less than the
critical probability, we can assume the penny with a mass of 2.514 g likely is an outlier.

You should exercise caution when using a significance test for outliers because there is a chance you will reject a valid result. In
addition, you should avoid rejecting an outlier if it leads to a precision that is much better than expected based on a propagation of
uncertainty. Given these concerns it is not surprising that some statisticians caution against the removal of outliers [Deming, W. E.
Statistical Analysis of Data; Wiley: New York, 1943 (republished by Dover: New York, 1961); p. 171].

You also can adopt a more stringent requirement for rejecting data. When using the Grubb’s test, for example, the ISO 5752
guidelines suggest retaining a value if the probability for rejecting it is greater than , and flagging a value as a
“straggler” if the probability for rejecting it is between  and . A “straggler” is retained unless there is
compelling reason for its rejection. The guidelines recommend using  as the minimum criterion for rejecting a
possible outlier.

On the other hand, testing for outliers can provide useful information if we try to understand the source of the suspected outlier. For
example, the outlier in Table  represents a significant change in the mass of a penny (an approximately 17% decrease in
mass), which is the result of a change in the composition of the U.S. penny. In 1982 the composition of a U.S. penny changed from
a brass alloy that was 95% w/w Cu and 5% w/w Zn (with a nominal mass of 3.1 g), to a pure zinc core covered with copper (with a
nominal mass of 2.5 g) [Richardson, T. H. J. Chem. Educ. 1991, 68, 310–311]. The pennies in Table , therefore, were drawn
from different populations.

This page titled 7.2: Significance Tests for Normal Distributions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by David Harvey.
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