LibreTextsw

10.4: Using R to Clean Up Data

R has two useful functions, Tilter() and TTt() , that we can use to smooth or filter noise and to remove background
signals. To explore their use, let's first create two sets of data that we can use as examples: a noisy signal and a pure signal
superimposed on an exponential background. To create the noisy signal, we first create a vector of 256 values that defines the x-
axis; although we will not specify a unit here, these could be times or frequencies. Next we use R's dnorm() function to
generate a pure Gaussian signal with a mean of 125 and a standard deviation of 10, and R's rnorm() function to generate 256
points of random noise with a mean of zero and a standard deviation of 10. Finally, we add the pure signal and the noise to arrive at
our noisy signal and then plot the noisy signal and overlay the pure signal.

X = seq(1,256,1)

gaus_signal = 1250 * dnorm(x, mean = 125, sd = 10)

noise = rnorm(256, mean = 0, sd = 10)

noisy_signal = gaus_signal + noise

plot(x = x, y = noisy_signal, type = "1", lwd = 2, col = "blue", xlab = "x", ylab =
"signal")

lines(x = X, y = gaus_signal, lwd = 2)

signal
20
|

Figure 10.4.1: Example of a noisy signal with a signal-to-noise ratio of 5.1. Figure 10.4.3, Figure 10.4.4, and Figures 10.4.8 show

this same figure after applying a seven-point moving average filter, a seven-point Savitizky-Golay smoothing filter, and a Fourier

filter.
To estimate the signal-to-noise ratio, we use the maximum of the pure signal and the standard deviation of the noisy signal as
determined using 100 points divided evenly between the two ends.

s_to_n = max(gaus_signal)/sd(noisy_signal[c(1:50,201:250)])
s_to_n

[1] 5.14663

To create a signal superimposed on an exponential background, we use R's exp() function to generate 256 points for the
background's signal, add that to our pure Gaussian signal, and plot the result.

exp_bkgd = 30*exp(-0.01 * Xx)

plot(x, exp_bkgd, type = "1")

signal_bkgd = gaus_signal + exp_bkgd

plot(x = x, y = signal _bkgd, type = "1", 1lwd = 2, col = "blue", xlab = "x", ylab =
"signal", ylim = c(0,60))

lines(x = x, vy gaus_signal, lwd = 2, 1lty = 2)

https://chem.libretexts.org/@go/page/292497

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/10%3A_Cleaning_Up_Data/10.4%3A_Using_R_to_Clean_Up_Data

LibreTextsw

signal

Figure 10.4.2: Example of a pure Gaussian signal superimposed on an exponential background. Figure 10.4.5 shows this same
figure after using a seven-point first-derivative Savitzky-Golay filter to remove the background.

Using R's filter() Functionto Smooth Noise and Remove Background Signals
R's filter() function takes the general form
filter(x, filter)
where x is the object being filtered and Tilter is an object that contains the filter's coefficients. To create a seven-point
moving average filter, we use the rep() function to create a vector that has seven identical values, each equal to 1/7.
mov_avg_7 = rep(1/7, 7)
Applying this filter to our noisy signal returns the following result

noisy_signal_movavg = filter(noisy_signal, mov_avg_7)

plot(x = x, y = noisy_signal_movavg, type = "1", 1lwd = 2, col = "blue", xlab = "x",
ylab = "signal")

lines(x = x, y = gaus_signal, lwd = 2)
with the signal-to-noise ratio improved to

s_to_n_movavg = max(gaus_signal)/sd(noisy_signal_movavg[c(1:50,200:250)], na.rm =
TRUE)
s_to_n_movavg

[1] 11.29943

Note that we must add na.rm = TRUE tothe sd() function because applying a seven-point moving average filter replaces
the first three and the last three points with values of NA which we must tell the sd() function to ignore.

signal
0
|

T T T
0 50 100 150 200 250

x

Figure 10.4.3: The result of using R's filter () function to apply a seven-point moving average filter to the noisy signal in
Figure 10.4.1.

https://chem.libretexts.org/@go/page/292497

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf

LibreTextsw

To create a seven-point Savitzky-Golay smoothing filter, we create a vector to store the coefficients, obtaining the values from the
original paper (Savitzky, A.; Golay, M. J. E. Anal Chem, 1964, 36, 1627-1639) and then apply it to our noisy signal, obtaining the
results below.

sg_smooth_7 = ¢(-2,3,6,7,6,5,-2)/21

noisy_signal_sg = filter(noisy_signal, sg_smooth_7)

plot(x = X, y = noisy_signal_sg, type = "1", lwd = 2, col = "blue", xlab = "x"
"signal")

lines(x = x, y = gaus_signal, lwd = 2)

s_to_n_movavg = max(gaus_signal)/sd(noisy_signal_sg[c(1:50,200:250)], na.rm = TRUE)
s_to_n_movavg

, ylab =

[1] 7.177931

signal

0 50 100 150 200 250

x

Figure 10.4.4: The result of using R's Tilter () function to apply a seven-point Savitizky-Golay smooting filter to the noisy
signal in Figure 10.4.1.

To remove a background from a signal, we use the same approach, substituting a first-derivative (or higher order) Savitxky-Golay
filter.

sg_fd_7 = c(22, -67, -58, 0, 58, 67, -22)/252

signal_bkgd_sg = filter(signal_bkgd, sg_fd_7)

plot(x = x, y = signal_bkgd_sg, type = "1", 1lwd = 2, col = "blue", xlab = "x", ylab =
"signal")

signal
0
|

T T
0 50 100 150 200 250

X

Figure 10.4.5: The result of using R's filter () function to apply a seven-point first-derivative Savitzky-Golay filter to the
noisy signal in Figure 10.4.1.

Using R's fft() Function for Fourier Filtering

To complete a Fourier transform in R we use the Tt () function, which takes the form Tft(z, inverse = FALSE)
where 7z is the object that contains the values to which we wish to apply the Fourier transform and where setting

https://chem.libretexts.org/@go/page/292497

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf

LibreTextsw

inverse = TRUE allows for an inverse Fourier transform. Before we apply Fourier filtering to our noisy signal, let's first
apply the Tt () function to a vector that contains the integers 1 through 8. First we create a vector to hold our values and the
apply the TTt() function to the vector, obtaining the following results

test_vector = seq(1, 8, 1)

test_vector_ft = fft(test_vector)

test_vector_ft

[1] 36+0.0000001 -4+9.6568541 -4+4.0000001 -4+1.6568541 -4+0.000000i -4-1.6568541

[7] -4-4.0000001 -4-9.6568541

Each of the eight results is a complex number with a real and an imaginary component. Note that the real component of the first
value is 36, which is the sum of the elements in our test vector. Note, also, the symmetry in the remaining values where the second
and eighth values, the third and seventh values, and the fourth and sixth values are identical except for a change in sign for the
imaginary component.

Taking the inverse Fourier transform returns the original eight values (note that the imaginary terms are now zero), but each is eight
times larger in value than in our original vector.

test_vector_ifft = fft(test_vector_ft, inverse = TRUE)
test_vector_ifft

[1] 8+01i 16-0i 24+0i 32+0i 40+0i 48+0i 56-0i 64+01i
To compensate for this, we divide by the length of our vector

test_vector_ifft = fft(test_vector_ft, inverse = TRUE)/length(test_vector)
test_vector_ifft
[1] 1+01i 2-0i 3+01i 4+0i 5+0i 6+0i 7-0i 8+0i

which returns our original vector.

With this background in place, let's use R to complete a Fourier filtering of our noisy signal. First, we complete the Fourier

transform of the noisy signal and examine the values for the real component, using R's Re() function to extract them. Because
of the symmetry noted above, we need only look at the first half of the real components (x = 1 to x = 128).

noisy_signal_ft = fft(noisy_signal)
plot(x = x[1:128], y = Re(noisy_signal_ft)[1:128], type = "1", col = "blue", xlab =
""ooylab = "intensity", lwd = 2)

500 1000
I L

intensity

0
I

-500

-1000

0 20 40 60 80 100 120

Figure 10.4.6: Plot showing the first 128 real components of the data from Figure 10.4.1 after completing a Fourier transform.
Next, we look for where the signal's magnitude has decayed to what appears to be random noise and set these values to zero. In this

example, we retain the first 24 points (and the last 24 points; remember the symmetry noted above) and set both the real and the
imaginary components to 0 + 0i.

https://chem.libretexts.org/@go/page/292497

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf

LibreTextsw

noisy_signal_ ft[25:232] = 0 + 01
plot(x = x, y = Re(noisy_signal_ft), type = "1", col = "blue", xlab = "", ylab =
"intensity", lwd = 2)

1000
I

500
I

intensity

0
I

-500
L

-1000

0 50 100 150 200 250

Figure 10.4.7: Plot showing the real components of the data from Figure 10.4.1 after completing a Fourier transform and zeroing
out all values other than the first 24 and the last 24 points. Here we are assuming that these points are dominated by the original
signal, while the remaining points are mostly from the noise.

Finally, we take the inverse Fourier transform and display the resulting filtered signal and report the signal-to-noise ratio.

noisy_signal_ifft = fft(noisy_signal_ft, inverse = TRUE)/length(noisy_signal_ft)

plot(x = x, y = Re(noisy_signal_ifft), type = "1", col = "blue", xlab = "", ylab =
"intensity", ylim = c¢(-20,60), lwd = 3)

lines(x = X,y = gaus_signal,lwd =2, col = "black")

s_to_n = 50/sd(Re(noisy_signal_ifft)[c(1:50,200:250)], na.rm = TRUE)

s_to_n

[1] 9.695329

40 60

inensity
20
.

T T T
100 150 200 250

o
@
2

Figure 10.4.8: The final result of Fourier filtering the data from Figure 10.4.1.

This page titled 10.4: Using R to Clean Up Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.

https://chem.libretexts.org/@go/page/292497

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/10%3A_Cleaning_Up_Data/10.4%3A_Using_R_to_Clean_Up_Data
https://creativecommons.org/licenses/by-nc-sa/4.0
http://dpuadweb.depauw.edu/harvey_web/Index.html

