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What is Chemometrics and Why Study it?

What is Chemometrics? 

The definition of chemometrics is is evident in its name, where chemo– means chemical and –metrics means measurement; thus,
chemometrics is the study of chemical (and biochemical) measurements and is a branch of analytical chemistry. Examples of
chemometric applications include

ensuring that the data we collect is appropriate for our purposes
enhancing the quality of an analytical signal by finding ways to minimize the contribution of noise
reporting on an experiment in a way that estimates the uncertainty in its results and our confidence in those results
building useful models that predict the outcomes of future experiments
extracting from chemical data, hidden, but analytically useful information by finding underlying patterns in the data

These topics, and others, are the focus of this textbook.

Why Study Chemometrics? 
Why chemometrics is important becomes clear when we consider a simple analytical problem: How do we determine the
concentration of copper in a sample, and how and why has the analytical method used for this analysis changed over time.

Prior to the 1950s, gravimetry and titrimetry were the most common analytical methods for determining the concentration of
copper in a variety of samples. Both of these methods rely on simple stoichiometric relationships. In a gravimetric analysis, for
example, we bring copper into solution as Cu (aq), precipitate it as Cu(OH) (s)

and isolate it as CuO(s) after heating it to a high temperature.

We then use the mass of CuO(s) to determine the amount of copper in the original sample by accounting for the simple
stoichiometric relationship between Cu and CuO where each mole of Cu yields one mole of CuO.

You can read more about gravimetry in Chapter 8 of the textbook Analytical Chemistry 2.1.

In a titrimetric analysis, we bring copper into solution as Cu (aq) and slowly add a solution of ethlyenediaminetetracetic acid,
EDTA, until the moles of EDTA added is equal to the moles of Cu  in the original sample.

If we know the concentration of our EDTA solution, then it is easy to determine the amount of Cu in the original sample using the
simple stoichiometric relationship between Cu  and EDTA. For both of these analyses, a chemometric treatment of the data
consists of little more than reporting an average, a standard deviation, and a confidence interval.

You can read more about titrimetry in Chapter 9 of the textbook Analytical Chemistry 2.1.

Gravimetry and titrimetry are useful analytical methods when copper is a major (> 1% w/w) analyte or a minor analyte (0.01% w/w
– 1% w/w) analyte, but less useful if it is a trace analyte (10 % w/w – 0.01% w/w). Neither method affords a rapid analysis, which
makes them less useful if we need to analyze multiple analytes in a large number of samples.

2+
2

(aq) +2 (aq) → (s)Cu2+ OH– Cu(OH)2

(s) → CuO(s) + O(l)Cu(OH)2 H2

 Note

2+

2+

(aq) +EDTA(aq) → (aq)Cu2+ Cu(EDTA)2+

2+ 

2+

 Note

−7
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For more information about the scale of operations for analytical chemistry, including the relative concentrations of analytes in
samples, see Chapter 3.4 of the textbook Analytical Chemistry 2.1.

Beginning in the 1950s, instrumental methods of analysis emerged in which an analytical signal is related to the analyte’s
concentration, not through the stoichiometry of one or more chemical reactions, but through a theoretical relationship in which at
least one variable is not known to us. For example, a solution of Cu (aq) is light blue in color because it absorbs light over a broad
range of wavelengths between about 600–900 nm, as we see in Figure .

Figure : Visible absorbance spectrum for Cu (aq).

The relationship between a solution’s absorbance, , at a specific wavelength, , and a given concentration, C, of Cu (aq) is
given by Beer’s law

where  is the analyte’s molar absorptivity at the selected wavelength, , and b is the distance light travels through the sample. Of
these variables— , , b, and C—the value of  is not known to us. Contrast that to gravimetry and titrimetry where we almost
always know the exact stoichiometric relationships.

For more information about visible absorption spectroscopy and Beer's Law, see Chapter 10.2 in Analytical Chemistry 2.1.

Although we can measure  and b, we cannot calculate C without first determining the value of , which we do using a standard
solution for which the concentration of analyte is known, C  If we use a single standard and a single wavelength—which is all
early instrumentation allowed—then we have

which we can solve exactly for . With this value in hand, we can use the sample’s absorbance to calculate the analyte’s
concentration in the sample.

Note that we are expressing Beer's Law here using the matrix notation , where r is the number of rows and c is the
number of columns in the matrix. In this equation, each matrix holds a single value: an absorbance, a value for , or a
concentration. A matrix with a single value is a scaler. A matrix with a single column or a single row is a vector. The reason for
expressing Beer's Law in this way will soon be evident.

If we use c standards instead of one standard, and if we continue to use a single wavelength, then we can write Beer’s law this way

 Note

2+

1

1 2+

Aλ λ 2+

= bCAλ ϵλ

ϵλ λ

Aλ ϵλ ϵλ

 Note

Aλ ϵλ

std.

  =     ×[ ]Aλ,std 1 × 1 [ b]ϵλ 1 × 1 [ ]Cstd 1 × 1

bϵλ

 Note

[  ]r×c

bϵλ

  =     ×   + [⋯     ⋯]Aλ,std 1 × c [ b]ϵλ 1 × 1 [⋯     ⋯]Cstd 1 × c [⋯  E  ⋯]1 × c
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where the absorbance values and the concentrations are vectors with dimensions of 1×c (1 wavelength and c standards), where the
value of  is a scalar (a constant), and where we have a vector of residual errors, E, that gives the uncertainties in our measured
absorbance values. Having multiple standards provides a new source of information that allows us to consider experimental
uncertainty!

Note that the equation  is in the form of a straight-line, , for which a standard linear regression
analysis returns values for the two constants: the slope, , which is equivalent to  and the y-intercept, , which is
equivalent to the residual error.

If we use r wavelengths and c standards, then we can write Beer’s law this way

where the absorbance values and the residual errors are in matrices (with wavelengths in rows and standards in columns), the
values for  at each wavelength are in a vector, and the analyte’s concentration in the standards are in a vector; this is a
computationally more difficult form of regression, but, as we will learn in a later chapter, one we can solve.

But we can push this even further! Note that the  matrix has one column because we are using a single wavelength, and the C
matrix has one row because we assumed just one analyte. As long as the number of analytes is less than the smaller of the number
of wavelengths or the number of standards, then we can include additional analytes. For example, if we have n analytes, then

where each column in the  matrix holds the  values for a different analyte at one of our wavelengths, and each row in the C
matrix is the concentration of a different analyte in one of our standards; again, we can use linear regression to analyze the data.

Moving from the analysis of a single analyte in a single standard using a single wavelength

to the analysis of multiple analytes using multiple standards and multiple wavelengths

required a significant increase in computational power and a significant growth in the capabilities of instrumentation; not
surprisingly, new chemometric techniques rely on and are driven by developments in computer science and instrumental analysis!
In turn, new chemometric techniques open up new areas of analysis and encourage innovations in computer science and
instrumental analysis. This is why chemometrics is an important part of analytical chemistry.
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1

CHAPTER OVERVIEW

1: R and RStudio
As we move through this textbook, we will make frequent use of the statistical programming language R, accessing the program
through the RStudio Desktop interface, which provides a useful environment for managing files and for writing code. There are
many programs you can use in place of R and RStudio: some, such as Python, are free, and others, such as SPSS or Matlab, are
commercial packages. We will use R and RStudio for four reasons:

1. Both R and RStudio are available at no cost.
2. As a programming language, R is designed specifically for the analysis of data; this is one its great strength.
3. The base installation of R comes with most of the tools we need, including tools for visualizing data.
4. When we need additional tools, packages of functions built by other users are available to us.

To ensure that this textbook is not tied too directly to R—and, therefore, accessible to anyone interested in learning about
chemometics—each chapter begins with a general treatment of a chemometric topic that is software-independent, followed by
specific examples of how to implement the topic using R.

1.1: Installing and Accessing R and RStudio
1.2: The Basics of Working With R
1.3: Exercises
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1.1: Installing and Accessing R and RStudio

Installing R and RStudio 

You can download and install R from the R-Project website. On the left side of the page, click on the link to CRAN under the title
“Downloads.” Scroll through the list of CRAN mirror sites and click on the link to a site located near you. Versions are available
for Mac OS, for Windows, and for Linux. Follow the directions for your operating system.

You can download and install the RStudio Desktop Interface from the RStudio website. Click on the Download button for the free
version of RStudio Desktop. From the list of available installers, click on the link that is appropriate for your operating system and
follow the directions.

Navigating RStudio 

When you launch RStudio, the program opens with the four panes as shown in Figure  (although some panes may be
minimized).

Figure : A screenshot showing the arrangement of RStudio's four panes while I was working on Chapter 11. You can
customize the arrangement of these panes by selecting RStudio: Preferences from the menu bar.

Beginning in the lower left corner and moving clockwise, these panes are

the Console, which provides access to R; this is where you can directly enter commands as you work on problems.
the Source Pane, which provides access to a variety of different types of documents, including script files, which end with an
extension of .R (more on these later). The source pane also provides a way to submit code to the console by highlighting the
code and clicking on the Run button; this usually is a more efficient way to work.
the Environment & History Pane, which provides access to your data and the functions you create while using R.
the Files, Plots, Packages, Help & Viewer Pane, which provides access to your computer's file structure, to help files for R
commands, to a list of R packages available to you (packages provide access to additional commands beyond those available to
you when you first launch R; more on this in later chapters), to plots that you create, and to an internal web-like browser.

As you work with R, take time to examine each pane so that you become comfortable with them. For example, Figure  shows
my RStudio screen after I highlighted lines 15–21 in the script file "figures_11.R" and clicked Run, sending the lines of code to the
console where R processed them to create the figure in the lower right pane.

1.1.1

1.1.1

1.1.1
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1.2: The Basics of Working With R

Communicating With R 

The symbol >  in the console is the command prompt, which indicates that R is awaiting your instructions. When you type a
command in the console and hit Enter or Return, R executes the command and displays any appropriate output in the console; thus,
this command adds the numbers 1 and 3

1 + 3

and returns the number 4 as an answer.

[1] 4

The text above is a code block that contains the line of code to enter into the console and the output generated by R. The
command prompt ( > ) is not included here so that you can, if you wish, copy and paste the code into R; if you are copying
and pasting the code, do not include the output or R will return an error message. Note that the output here is preceded by the
number 1 in brackets, which is the id number of the first value returned on that line.

This is all well and good, but it is even less useful than a calculator because we cannot operate further on the result. If we assign
this calculation to an object using an assignment operator, then the result of the calculation remains available to us.

There are two common leftward assignment operators in R: an arrow that points from right-to-left, <- , which means the value on
the right is assigned to the object on the left, and an equals sign, = . Most style guides for R favor <-  over = , but as =  is
the more common option in most other programming languages—such as Python, C++, and Matlab—we will use it here.

If we assign our calculation to the object answer then the result of the calculation is assigned to the object but not returned to
us. To see an object’s value we can look for it in RStudio’s Environment Panel or enter the object’s name as a command in the
Console, as shown here.

answer = 1 + 3

answer

[1] 4

Note that an object’s name is case-sensitive so answer and Answer are different objects.

Answer = 2 + 4

Answer

[1] 6

There are just a few limitations to the names you can assign to objects: they can include letters (both upper and lower case),
numbers, dots ( . ), or underscores ( _ ), but not spaces. A name can begin with a letter or with a dot followed by a letter
(but not a dot followed by a number). Here are some examples of valid names

answerone answer_one answer1 answerOne answer.one

and examples of invalid names

1stanswer answer* first answer

You will find it helpful to use names that remind you of the object's meaning and that are not overly long. My personal
preference is to use all lowercase letters, to use a descriptive noun, and to separate words using an underscore as I find that
these choices make my code easier to read. When I find it useful to use the same base name for several objects of different
types, then I may append a two or three letter designation to the name similar to the extensions that designate, for example, a
spreadsheet stored as a .csv file. For example, when I use R to run a linear regression based on Beer's law, I may store the

 Note

 Note
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concentrations and absorbances of my standards in a data frame (see below for a description of data frames) with a name such
as zinc.df and store the output of the linear model (see Chapter 8 for a discussion of linear models) in an object with a name
such as zinc.lm.

Objects for Storing Data 
In the code above, answer  and Answer  are objects that store a single numerical value. There are several different types of
objects we can use to store data, including vectors, data frames, matrices and arrays, and lists.

Vectors 

A vector is an ordered collection of elements of the same type, which may be numerical values, integer values, logical values, or
character strings. Note that ordered does not imply that the values are arranged from smallest-to-largest or from largest-to-smallest,
or in alphabetical order; it simply means the vector’s elements are stored in the order in which we enter them into the object. The
length of a vector is the number of elements it holds. The objects answer  and Answer , for example, are vectors with lengths
of 1.

length(answer)

[1] 1

Most of the vectors we will use include multiple elements. One way to create a vector with multiple elements is to use the
concatenation function, c( ) .

In the code blocks below and elsewhere, any text that follows a hashtag, #, is a comment that explains what the line of code is
accomplishing; comments are not executable code, so R simply ignores them.

For example, we can create a vector of numerical values,

v00 = c(1.1, 2.2, 3.3)

v00

[1] 1.1 2.2 3.3

or a vector of integers,

v01 = c(1, 2, 3)

v01

[1] 1 2 3

or a vector of logical values,

v02 = c(TRUE, TRUE, FALSE) # we also could enter this as c(T, T, F)

v02

[1] TRUE TRUE FALSE

or a vector of character strings

v03 = c("alpha", "bravo", "charley")

v03

[1] "alpha" "bravo" "charley"

You can view an object’s structure by examining it in the Environment Panel or by using R’s structure command, str( )
which, for example, identifies vector the v02  as a logical vector with an index for its entries of 1, 2, and 3, and with values of
TRUE, TRUE, and FALSE.

str(v02)

 Note
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logi [1:3] TRUE TRUE FALSE

We can use a vector’s index to correct errors, to add additional values, or to create a new vector using already existing vectors.
Note that the number within the square brackets, [ ] , identifies the element in the vector of interest. For example, the correct
spelling for the third element in v03  is charlie, not charley; we can correct this using the following line of code.

v03[3] = "charlie" # correct the vector's third value

v03

[1] "alpha" "bravo" "charlie"

We can also use the square bracket to add a new element to an existing vector,

v00[4] = 4.4 # add a fourth element to the existing vector, increasing its length

v00

[1] 1.1 2.2 3.3 4.4

or to create a new vector using elements from other vectors.

v04 = c(v01[1], v02[2], v03[3])

v04

[1] "1" "TRUE" "charlie"

Note the the elements of v04  are character strings even though v01  contains integers and v02  contains logical values. This
is because the elements of a vector must be of the same type, so R coerces them to a common type, in this case a vector of character
strings.

Here are several ways to create a vector when its entries follow a defined sequence, seq( ) , or use a repetitive pattern, 
rep( ) .

v05 = seq(from = 0, to = 20, by = 4)

v05

[1] 0 4 8 12 16 20

v06 = seq(0, 10, 2) # R assumes the values are provided in the order from, to, and by

v06

[1] 0 2 4 6 8 10

v07 = rep(1:4, times = 2) # repeats the pattern 1, 2, 3, 4 twice

v07

[1] 1 2 3 4 1 2 3 4

v08 = rep(1:4, each = 2) # repeats each element in the string twice before proceeding
to next element

v08

[1] 1 1 2 2 3 3 4 4

Note that 1:4  is equivalent to c(1, 2, 3, 4)  or seq(1, 4, 1) . In R it often is the case that there are multiple
ways to accomplish the same thing!

Finally, we can complete mathematical operations using vectors, make logical inquiries of vectors, and create sub-samples of
vectors.

v09 = v08 - v07 # subtract two vectors, which must be of equal length

 Note
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v09

[1] 0 -1 -1 -2 2 1 1 0

v10 = (v09 == 0) # returns TRUE for each element in v10 that equals zero

v10

[1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

v11 = which(v09 < 1) # returns the index for each elements in v09 that is less than 1

v11

[1] 1 2 3 4 8

v12 = v09[!v09 < 1] # returns values for elements in v09 whose values are not less
than 1

v12

[1] 2 1 1

Data Frames 

A data frame is a collection of vectors—all equal in length but not necessarily of a single type of element—arranged with the
vectors as the data frame's columns.

df01 = data.frame(v07, v08, v09, v10)

df01

v07 v08 v09 v10

1 1 1 0 TRUE

2 2 1 -1 FALSE

3 3 2 -1 FALSE

4 4 2 -2 FALSE

5 1 3 2 FALSE

6 2 3 1 FALSE

7 3 4 1 FALSE

8 4 4 0 TRUE

We can access the elements in a data frame using the data frame's index, which takes the form [row number(s), column number(s}],
where [  is the bracket operator.

df02 = df01[1, ] # returns all elements in the data frame's first row

df02

v07 v08 v09 v10

1 1 1 0 TRUE

df03 = df01[ , 3:4] # returns all elements in the data frame's third and fourth
columns

df03

v09 v10

1 0 TRUE

2 -1 FALSE

3 -1 FALSE
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4 -2 FALSE

5 2 FALSE

6 1 FALSE

7 1 FALSE

8 0 TRUE

df04 = df01[4, 3] # returns the element in the data frame's fourth row and third
column

df04

[1] -2

We can also extract a single column from a data frame using the dollar sign ( $ ) operator to designate the column's name

df05 = df01$v08

df05

[1] 1 1 2 2 3 3 4 4

If you look carefully at the output above you will see that extracting a single row or multiple columns using the [ operator
returns a new data frame. Extracting a single element from a data frame using the bracket operator, or a single column using
the $ operator returns a vector.

Matrices and Arrays 

A matrix is similar to a data frame, but every element in a matrix is of the same type, usually numerical.

m01 = matrix(1:10, nrow = 5) # places numbers 1:10 in matrix with five rows, filing by
column

m01

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

m02 = matrix(1:10, ncol = 5) # places numbers 1:10 in matrix with five columns,
filling by row

m02

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

A matrix has two dimensions and an array has three or more dimensions.

Lists 

A list is an object that holds other objects, even if those objects are of different types.

li01 = list(v00, df01, m01)

li01

 Note
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[[1]]

[1] 1.1 2.2 3.3 4.4

[[2]]

v07 v08 v09 v10

1 1 1 0 TRUE

2 2 1 -1 FALSE

3 3 2 -1 FALSE

4 4 2 -2 FALSE

5 1 3 2 FALSE

6 2 3 1 FALSE

7 3 4 1 FALSE

8 4 4 0 TRUE

[[3]]

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

Note that the double bracket, such as [[1]] , identifies an object in the list and that we can extract values from this list using this
notation.

li01[[1]] # extract first object stored in the list

[1] 1.1 2.2 3.3 4.4

li01[[1]][1] # extract the first value of the first object stored in the list

[1] 1.1

Script Files 

Although you can enter commands directly into RStudio’s Console Panel and execute them, you will find it much easier to write
your commands in a script file and send them to the console line-by-line, as groups of two or more lines, or all at once by sourcing
the file. You will make errors as you enter code. When your error is in one line of a multi-line script, you can fix the error and then
rerun the script at once without the need to retype each line directly into the console.

To open a script file, select File: New File: R Script from the main menu. To save your script file, which will have .R as an
extension, select File: Save from the main menu and navigate to the folder where you wish to save the file. As an exercise, try
entering the following sequence of commands in a script file
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x1 = runif(1000) # a vector of 1000 values drawn at random from a uniform distribution 
x2 = runif(1000) # another vector of 1000 values drawn at random from a uniform
distribution 
y1 = rnorm(1000) # a vector of 1000 values drawn at random from a normal distribution 
y2 = rnorm(1000) # another vector of 1000 values drawn at random from a normal
distribution 
old.par = par(mfrow = c(2,2)) # create a 2 x 2 grid for plots 
plot(x1, x2) # create a scatterplot of two vectors 
plot(y1, y2) 
plot(x1, y1) 
plot(x2, y2) 
par(old.par) # restore the initial plot conditions (more on this later)

save it as test_script.R and then click the Source button; you should see the following plot appear in the Plot tab.

Figure : Grid of four scatterplots created by the code in test_script.R . The scatterplot in the upper left uses two
vectors drawn at random from a uniform distribution. The scatterplot in the upper right uses two vectors drawn at random from a
normal distribution. Each of the scatterplots in the bottom row use two vectors, one drawn at random from a uniform distribution
and one drawn at random from a normal distribution. (Copyright; author via source)

Loading a Data File and Saving a Data File 
Although creating a small vector, data frame, matrix, array, or list is easy, creating one with hundreds of elements or creating
dozens of individual data objects is tedious at best; thus, the ability to load data saved during an earlier session, or the ability to
read in a spreadsheet file is helpful.

To read in a spreadsheet file saved in .csv format (comma separated values), we use R's read.csv()  function, which takes the
general form

read.csv(file)

where file  provides the absolute path to the file. This is easiest to manage if you navigate to the folder where your .csv file is
stored using RStudio's file pane and then set it as the working directory by clicking on More and selecting Set As Working

1.2.1
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Directory. Download the file "element_data.csv" using this � link and then store the file in a folder on your computer. Navigate to
this folder and set it as your working directory. Enter the following line of code

elements = read.csv(file = "element_data.csv")

to read the file's data into a data frame named elements  . To view the data frame's structure we use the head() function to
display the first six rows of data.

head(elements)

name symbol at_no at_wt mp bp phase electronegativity electron_affinity

1 Hydrogen H 1 1.007940 14.01 20.28 Gas 2.20 72.8

2 Helium He 2 4.002602 NA 4.22 Gas NA 0.0

3 Lithium Li 3 6.941000 453.69 1615.15 Solid 0.98 59.6

4 Beryllium Be 4 9.012182 1560.15 2743.15 Solid 1.57 0.0

5 Boron B 5 10.811000 2348.15 4273.15 Solid 2.04 26.7

6 Carbon C 6 12.010700 3823.15 4300.15 Solid 2.55 153.9

block group period at_radius covalent_radius

1 s 1 1 5.30e-11 3.70e-11

2 p 18 1 3.10e-11 3.20e-11

3 s 1 2 1.67e-10 1.34e-10

4 s 2 2 1.12e-10 9.00e-11

5 p 13 2 8.70e-11 8.20e-11

6 p 14 2 6.70e-11 7.70e-11

Note that cells in the spreadsheet with missing values appear here as NA  for not available. The melting points (mp) and boiling
points (bp) are in Kelvin, and the electron affinities are in kJ/mol.

You can save to your working directory the contents of data frame by using the write.csv()  function; thus, we can save a
copy of the data in elements  using the following line of code

write.csv(elements, file = "element_data_copy.csv")

Another way to save multiple objects is to use the save()  function to create an .RData file. For example, to save the vectors 
v00 , v01 , and v02  to a file with the name vectors.RData , enter

save(v00, v01, v02, file = "vectors.RData")

To read in the objects in an .RData file, navigate to the folder that contains the file, click on the file's name and RStudio will ask if
you wish to load the file into your session.

Using Packages of Functions 

The base installation of R provides many useful functions for working with data. The advantage of these functions is that they work
(always a plus) and they are stable (which means they will continue to work even as R is updated to new versions). For the most
part, we will rely on R’s built in functions for these two reasons. When we need capabilities that are not part of R’s base
installation, then we must write our own functions or use packages of functions written by others.

To install a package of functions, click on the Packages tab in the Files, Plots, Packages, Help & Viewer pane. Click on the button
labeled Install, enter the name of the package you wish to install, and click on Install to complete the installation. You only need to
install a package once.

To use a package that is not part of R’s base installation, you need to bring it into your current session, which you do with the
command library(name of package)  or by clicking on the checkbox next to the name of the package in the list of your
installed packages. Once you have loaded the package into your session, it remains available to you until you quit RStudio.
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Managing Your Environment 

One nice feature of RStudio is that the Environment Panel provides a list of the objects you create. If your environment becomes
too cluttered, you can delete items by switching to the Grid view, clicking on the check-box next to the object(s) you wish to delete,
and then clicking on the broom icon. You can remove all items from the List view by simply clicking on the broom icon.

Getting Help 
There are extensive help files for R's functions that you can search for using the Help Panel or by using the help()  command.
A help file shows you the command’s proper syntax, including the types of values you can pass to the command and their default
values, if any—more details on this later—and provides you with some examples of how the command is used. R's help files can
be difficult to parse at times; you may find it more helpful to simply use a search engine to look for information about "how to use
<command> in R." Another good source for finding help with R is stackoverflow.

This page titled 1.2: The Basics of Working With R is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
David Harvey.
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1.3: Exercises
1. Gather the following information for the first 18 elements in the periodic table and create a vector for each:

name
symbol
atomic number
atomic weight
phase (gas, liquid, solid)
group number (1–18)
row number
atomic radius (in picometers)
electronegativity
first ionization potential (in electron volts)

Combine these vectors into a single data frame and save it as a .csv file. In addition, save the data frame and the individual vectors
as a single .RData file. You will use these files to complete exercises in some of the chapters that follow.

This page titled 1.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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CHAPTER OVERVIEW

2: Types of Data
At the heart of any analysis is data. Sometimes our data describes a category and sometimes it is numerical; sometimes our data
conveys order and sometimes it does not; sometimes our data has an absolute reference and sometimes it has an arbitrary reference;
and sometimes our data takes on discrete values and sometimes it takes on continuous values. Whatever its form, when we gather
data our intent is to extract from it information that can help us solve a problem.

2.1: Ways to Describe Data
2.2: Using R to Organize and Manipulate Data
2.3: Exercises

This page titled 2: Types of Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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2.1: Ways to Describe Data
If we are to consider how to describe data, then we need some data with which we can work. Ideally, we want data that is easy to
gather and easy to understand. It also is helpful if you can gather similar data on your own so you can repeat what we cover here. A
simple system that meets these criteria is to analyze the contents of bags of M&Ms. Although this system may seem trivial, keep in
mind that reporting the percentage of yellow M&Ms in a bag is analogous to reporting the concentration of Cu  in a sample of an
ore or water: both express the amount of an analyte present in a unit of its matrix.

At the beginning of this chapter we identified four contrasting ways to describe data: categorical vs. numerical, ordered vs.
unordered, absolute reference vs. arbitrary reference, and discrete vs. continuous. To give meaning to these descriptive terms, let’s
consider the data in Table , which includes the year the bag was purchased and analyzed, the weight listed on the package, the
type of M&Ms, the number of yellow M&Ms in the bag, the percentage of the M&Ms that were red, the total number of M&Ms in
the bag and their corresponding ranks.

Table . Distribution of Yellow and Red M&Ms in Bags of M&Ms.

bag id year weight (oz) type number yellow % red total M&Ms rank (for total)

a 2006 1.74 peanut 2 27.8 18 sixth

b 2006 1.74 peanut 3 4.35 23 fourth

c 2000 0.80 plain 1 22.7 22 fifth

d 2000 0.80 plain 5 20.8 24 third

e 1994 10.0 plain 56 23.0 331 second

f 1994 10.0 plain 63 21.9 333 first

The entries in Table  are organized by column and by row. The first row—sometimes called the header row—identifies the
variables that make up the data. Each additional row is the record for one sample and each entry in a sample’s record provides
information about one of its variables; thus, the data in the table lists the result for each variable and for each sample.

Categorical vs. Numerical Data 
Of the variables included in Table , some are categorical and some are numerical. A categorical variable provides qualitative
information that we can use to describe the samples relative to each other, or that we can use to organize the samples into groups
(or categories). For the data in Table , bag id, type, and rank are categorical variables.

A numerical variable provides quantitative information that we can use in a meaningful calculation; for example, we can use the
number of yellow M&Ms and the total number of M&Ms to calculate a new variable that reports the percentage of M&Ms that are
yellow. For the data in Table , year, weight (oz), number yellow, % red M&Ms, and total M&Ms are numerical variables.

We can also use a numerical variable to assign samples to groups. For example, we can divide the plain M&Ms in Table  into
two groups based on the sample’s weight. What makes a numerical variable more interesting, however, is that we can use it to
make quantitative comparisons between samples; thus, we can report that there are  as many plain M&Ms in a 10-oz. bag as
there are in a 0.8-oz. bag.

Although we could classify year as a categorical variable—not an unreasonable choice as it could serve as a useful way to group
samples—we list it here as a numerical variable because it can serve as a useful predictive variable in a regression analysis. On the
other hand rank is not a numerical variable—even if we rewrite the ranks as numerals—as there are no meaningful calculations we
can complete using this variable.

Nominal vs. Ordinal Data 
Categorical variables are described as nominal or ordinal. A nominal categorical variable does not imply a particular order; an
ordinal categorical variable, on the other hand, coveys a meaningful sense of order. For the categorical variables in Table , bag
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id and type are nominal variables, and rank is an ordinal variable.

Ratio vs. Interval Data 

A numerical variable is described as either ratio or interval depending on whether it has (ratio) or does not have (interval) an
absolute reference. Although we can complete meaningful calculations using any numerical variable, the type of calculation we can
perform depends on whether or not the variable’s values have an absolute reference.

A numerical variable has an absolute reference if it has a meaningful zero—that is, a zero that means a measured quantity of none
—against which we reference all other measurements of that variable. For the numerical variables in Table , weight (oz),
number yellow, % red, and total M&Ms are ratio variables because each has a meaningful zero; year is an interval variable because
its scale is referenced to an arbitrary point in time, 1 BCE, and not to the beginning of time.

For a ratio variable, we can make meaningful absolute and relative comparisons between two results, but only meaningful absolute
comparisons for an interval variable. For example, consider sample e, which was collected in 1994 and has 331 M&Ms, and sample
d, which was collected in 2000 and has 24 M&Ms. We can report a meaningful absolute comparison for both variables: sample e is
six years older than sample d and sample e has 307 more M&Ms than sample d. We also can report a meaningful relative
comparison for the total number of M&Ms—there are

as many M&Ms in sample e as in sample d—but we cannot report a meaningful relative comparison for year because a sample
collected in 2000 is not

older than a sample collected in 1994.

Discrete vs. Continuous Data 
Finally, the granularity of a numerical variable provides one more way to describe our data. For example, we can describe a
numerical variable as discrete or continuous. A numerical variable is discrete if it can take on only specific values—typically, but
not always, an integer value—between its limits; a continuous variable can take on any possible value within its limits. For the
numerical data in Table , year, number yellow, and total M&Ms are discrete in that each is limited to integer values. The
numerical variables weight (oz) and % red, on the other hand, are continuous variables. Note that weight is a continuous variable
even if the device we use to measure weight yields discrete values.

This page titled 2.1: Ways to Describe Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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2.2: Using R to Organize and Manipulate Data
The data in Table  should remind you of a data frame, a way of organizing data in R that we introduced in Chapter 1. Here we
will learn how to create a data frame that holds the data in Table  and learn how we can make us of the data frame.

Creating a Data Frame 
To create a data frame we begin by creating vectors for each of the variables. Note that letters  is a constant in R that contains
the 26 lower case letters of the Roman alphabet: here we are using just the first six letters for the bag ids.

bag_id = letters[1:6] 
year = c(2006, 2006, 2000, 2000, 1994, 1994) 
weight = c(1.74, 1.74, 0.80, 0.80, 10.0, 10.0) 
type = c("peanut", "peanut", "plain", "plain", "plain", "plain")  
number_yellow = c(2, 3, 1, 5, 56, 63) 
percent_red = c(27.8, 4.35, 22.7, 20.8, 23.0, 21.9) 
total = c(18, 23, 22, 24, 331, 333) 
rank = c("sixth", "fourth", "fifth", "third", "second", "first")

To create the data frame, we use R’s data.frame() function, passing to it the names of our vectors, each of which must be of
the same length. There is an option within this function to treat variables whose values are character strings as factors—another
name for a categorical variable—by using the argument stringsAsFactors = TRUE . As the default value for this
argument depends on your version of R, it is useful to make your choice explicit by including it in your code, as we do here.

mm_data = data.frame(bag_id, year, weight, type, number_yellow, percent_red, total,
rank, stringsAsFactors = TRUE) 
mm_data

bag_id year weight type number_yellow percent_red total rank

1 a 2006 1.74 peanut 2 27.80 18 sixth

2 b 2006 1.74 peanut 3 4.35 23 fourth

3 c 2000 0.80 plain 1 22.70 22 fifth

4 d 2000 0.80 plain 5 20.80 24 third

5 e 1994 10.00 plain 56 23.00 331 second

6 f 1994 10.00 plain 63 21.90 333 first

If we examine the structure of this data set using R’s str() function, we see that bag_id, type, and rank are factors and year,
weight, number_yellow, percent_red, and total arenumerical variables, assignments that are consistent with our earlier analysis of
the data.

str(mm_data)

'data.frame': 6 obs. of 8 variables:

$ bag_id : Factor w/ 6 levels "a","b","c","d",..: 1 2 3 4 5 6

$ year : num 2006 2006 2000 2000 1994 ...

$ weight : num 1.74 1.74 0.8 0.8 10 10

$ type : Factor w/ 2 levels "peanut","plain": 1 1 2 2 2 2

$ number_yellow: num 2 3 1 5 56 63

$ percent_red : num 27.8 4.35 22.7 20.8 23 21.9

$ total : num 18 23 22 24 331 333

$ rank : Factor w/ 6 levels "fifth","first",..: 5 3 1 6 4 2

2.2.1

2.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/218885?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/02%3A_Types_of_Data/2.02%3A_Using_R_to_Organize_and_Manipulate_Data


2.2.2 https://chem.libretexts.org/@go/page/218885

Finally, we can use the function as.factor() to have R treat a numerical variable as a categorical variable, as we do here for
year. Why we might wish to do this is a topic we will return to in later chapters.

mm_year_as_factor = data.frame(bag_id, as.factor(year), percent_red, total)

str(mm_year_as_factor)

'data.frame': 6 obs. of 4 variables:

$ bag_id : Factor w/ 6 levels "a","b","c","d",..: 1 2 3 4 5 6

$ as.factor.year.: Factor w/ 3 levels "1994","2000",..: 3 3 2 2 1 1

$ percent_red : num 27.8 4.35 22.7 20.8 23 21.9

$ total : num 18 23 22 24 331 33

Creating a New Data Frame by Subsetting an Existing Data Frame 
In Chapter 1.2 we learned how to retrieve individual rows or columns from a data frame and assign them to a new object. Here we
learn how to use R’s more flexible subset()  function to accomplish the same thing. Here, for example, we retrieve only the
data for plain M&Ms.

plain_mm = subset(mm_data, type == "plain")

plain_mm

bag_id year weight type number_yellow percent_red total rank

3 c 2000 0.8 plain 1 22.7 22 fifth

4 d 2000 0.8 plain 5 20.8 24 third

5 e 1994 10.0 plain 56 23.0 331 second

6 f 1994 10.0 plain 63 21.9 333 first

Note that type == "plain" uses a relational operator to choose only those rows in which the variable type  has the value 
plain . Here is a list of relational operators:

Table . Relational Operators in R.

operator usage meaning

< x < y x is less than y

> x > y x is greater than y

<= x <= y x is less than or equal to y

>= x >= y x is greater than or equal to y

== x == y x is exactly equal to y

!= x != y x is not equal to y

We can string variables together using the logical & operator.

mm_plain10 = subset(mm_data, (weight == 10.0 & type == "plain"))

mm_plain10

bag_id year weight type number_yellow percent_red total rank

5 e 1994 10 plain 56 23.0 331 second

6 f 1994 10 plain 63 21.9 333 first

We also can narrow the number of variables returned using the subset()  function’s select  argument. In this example we
exclude samples collected before the year 2000 and return only the year, the number of yellow M&Ms, and the percentage of red
M&Ms.
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mm_20xx = subset(mm_data, year >= 2000, select = c(year, number_yellow, percent_red))

mm_20xx

year number_yellow percent_red

1 2006 2 27.80

2 2006 3 4.35

3 2000 1 22.70

4 2000 5 20.80

This page titled 2.2: Using R to Organize and Manipulate Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by David Harvey.
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2.3: Exercises
1. In Exercise 1 of Chapter 1 you created a data frame with the following information about the first 18 elements.

name
symbol
atomic number
atomic weight
phase (gas, liquid, solid)
group number (1–18)
row number
atomic radius (in picometers)
electronegativity
first ionization potential (in electron volts)

(a) Setting aside name and symbol, which of the remaining variables are categorical or numerical?

(b) For those variables that are categorical, which are nominal and which are ordinal?

(c) For those variables that are numerical, which are ratio and which are interval?

(d) For those variables that are numerical, which are discrete and which are continuous?

2. Use this � link to download and save the spreadsheet marlybone_2018.csv. The data in this file gives the daily average level of
NOX (the combined concentrations of NO and of NO ) in µg/m  and the daily average temperature in °C as recorded in 2018 at a
roadside monitoring station located on Marylebone Road in Westminster, which is near Reagents Park, Madame Tussaud's Wax
Museum, and Baker Street, the "home" of Sherlock Holmes. The data is made available by London Air, a website managed by
Kings College in London that reports results from the continuous monitoring of air quality at hundreds of sites spread throughout
the greater London area. As in most long-term monitoring project, some data is missing for various reasons, such as equipment
failure; these values appear in the spreadsheet as empty cells. If you wish, you can visit the London Air web site here.

(a) Use the read.csv()  function to bring the data into R as a data frame and examine the dataset's structure using the 
head()  function.

(b) Add a new column to the data frame that contains the running day number (January 1st is day 1 and December 31st is day 365).

(c) Use the subset()  function to create separate data frames for each month.

(d) Save all of your data frames in a single .RData  file so that it is available to you when working problems in other chapters.

3. Use this link to access a case study on data analysis and complete the five investigations included in Part I: Ways to Describe
Data.

This page titled 2.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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CHAPTER OVERVIEW

3: Visualizing Data
The old saying that "a picture is worth a 1000 words" may not be universally true, but it true when it comes to the analysis of data.
A good visualization of data, for example, allows us to see patterns and relationships that are less evident when we look at data
arranged in a table, and it provides a powerful way to tell our data's story. One of R's significant strengths as a statistical
programming language is the ease with which we can generate useful visualizations.

3.1: Types of Visualizations
3.2: Using R to Visualize Data
3.3: Creating Plots From Scratch in R Using Base Graphics
3.4: Exercises

This page titled 3: Visualizing Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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3.1: Types of Visualizations
Suppose we want to study the composition of 1.69-oz (47.9-g) packages of plain M&Ms. We obtain 30 bags of M&Ms (ten from each of three stores) and remove the
M&Ms from each bag one-by-one, recording the number of blue, brown, green, orange, red, and yellow M&Ms. We also record the number of yellow M&Ms in the
first five candies drawn from each bag, and record the actual net weight of the M&Ms in each bag. Table  summarizes the data collected on these samples. The
bag id identifies the order in which the bags were opened and analyzed.

Table . Analysis of Plain M&Ms in 47.9 g Bags.

bag store blue brown green orange red yellow
yellow_first_fi

ve
net_weight

1 CVS 3 18 1 5 7 23 2 49.287

2 CVS 3 14 9 7 8 15 0 48.870

3 Target 4 14 5 10 10 16 1 51.250

4 Kroger 3 13 5 4 15 16 0 48.692

5 Kroger 3 16 5 7 8 18 1 48.777

6 Kroger 2 12 6 10 17 7 1 46.405

7 CVS 13 11 2 8 6 17 1 49.693

8 CVS 13 12 7 10 7 8 2 49.391

9 Kroger 6 17 5 4 8 16 1 48.196

10 Kroger 8 13 2 5 10 17 1 47.326

11 Target 9 20 1 4 12 13 3 50.974

12 Target 11 12 0 8 4 23 0 50.081

13 CVS 3 15 4 6 14 13 2 47.841

14 Kroger 4 17 5 6 14 10 2 48.377

15 Kroger 9 13 3 8 14 8 0 47.004

16 CVS 8 15 1 10 9 15 1 50.037

17 CVS 10 11 5 10 7 13 2 48.599

18 Kroger 1 17 6 7 11 14 1 48.625

19 Target 7 17 2 8 4 18 1 48.395

20 Kroger 9 13 1 8 7 22 1 51.730

21 Target 7 17 0 15 4 15 3 50.405

22 CVS 12 14 4 11 9 5 2 47.305

23 Target 9 19 0 5 12 12 0 49.477

24 Target 5 13 3 4 15 16 0 48.027

25 CVS 7 13 0 4 15 16 2 48.212

26 Target 6 15 1 13 10 14 1 51.682

27 CVS 5 17 6 4 8 19 1 50.802

28 Kroger 1 21 6 5 10 14 0 49.055

29 Target 4 12 6 5 13 14 2 46.577

30 Target 15 8 9 6 10 8 1 48.317

Having collected our data, we next examine it for possible problems, such as missing values (Did we forget to record the number of brown M&Ms in any of our
samples?), for errors introduced when we recorded the data (Is the decimal point recorded incorrectly for any of the net weights?), or for unusual results (Is it really the
case that this bag has only yellow M&M?). We also examine our data to identify interesting observations that we may wish to explore (It appears that most net weights
are greater than the net weight listed on the individual packages. Why might this be? Is the difference significant?) When our data set is small we usually can identify
possible problems and interesting observations without much difficulty; however, for a large data set, this becomes a challenge. Instead of trying to examine individual
values, we can look at our results visually. While it may be difficult to find a single, odd data point when we have to individually review 1000 samples, it often jumps
out when we look at the data using one or more of the approaches we will explore in this chapter.

Dot Plots 

A dot plot displays data for one variable, with each sample’s value plotted on the x-axis. The individual points are organized along the y-axis with the first sample at the
bottom and the last sample at the top. Figure  shows a dot plot for the number of brown M&Ms in the 30 bags of M&Ms from Table . The distribution of
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points appears random as there is no correlation between the sample id and the number of brown M&Ms. We would be surprised if we discovered that the points were
arranged from the lower-left to the upper-right as this implies that the order in which we open the bags determines whether they have many or a few brown M&Ms.

Figure : Dot plot for the brown M&Ms in each of the 30 bags included in Table .

Stripcharts 

A dot plot provides a quick way to give us confidence that our data are free from unusual patterns, but at the cost of space because we use the y-axis to include the
sample id as a variable. A stripchart uses the same x-axis as a dot plot, but does not use the y-axis to distinguish between samples. Because all samples with the same
number of brown M&Ms will appear in the same place—making it impossible to distinguish them from each other—we stack the points vertically to spread them out,
as shown in Figure .

Figure : Stripchart for the brown M&Ms in each of the 30 bags included in Table .

Both the dot plot in Figure  and the stripchart in Figure  suggest that there is a smaller density of points at the lower limit and the upper limit of our results.
We see, for example, that there is just one bag each with 8, 16, 18, 19, 20, and 21 brown M&Ms, but there are six bags each with 13 and 17 brown M&Ms.

Because a stripchart does not use the y-axis to provide meaningful categorical information, we can easily display several stripcharts at once. Figure  shows this for
the data in Table . Instead of stacking the individual points, we jitter them by applying a small, random offset to each point. Among the things we learn from this
stripchart are that only brown and yellow M&Ms have counts of greater than 20 and that only blue and green M&Ms have counts of three or fewer M&Ms.
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Figure : Stripcharts for each color of M&Ms in each of the 30 bags included in Table .

Box and Whisker Plots 
The stripchart in Figure  is easy for us to examine because the number of samples, 30 bags, and the number of M&Ms per bag is sufficiently small that we can see
the individual points. As the density of points becomes greater, a stripchart becomes less useful. A box and whisker plot provides a similar view but focuses on the data
in terms of the range of values that encompass the middle 50% of the data.

Figure  shows the box and whisker plot for brown M&Ms using the data in Table . The 30 individual samples are superimposed as a stripchart. The central
box divides the x-axis into three regions: bags with fewer than 13 brown M&Ms (seven samples), bags with between 13 and 17 brown M&Ms (19 samples), and bags
with more than 17 brown M&Ms (four samples). The box's limits are set so that it includes at least the middle 50% of our data. In this case, the box contains 19 of the
30 samples (63%) of the bags, because moving either end of the box toward the middle results in a box that includes less than 50% of the samples. The difference
between the box's upper limit (19) and its lower limit (13) is called the interquartile range (IQR). The thick line in the box is the median, or middle value (more on this
and the IQR in the next chapter). The dashed lines at either end of the box are called whiskers, and they extend to the largest or the smallest result that is within 

 of the box's right or left edge, respectively.

Figure : Box-and-whisker plot for the brown M&Ms in each of the 30 bags included in Table  showing individual samples as a jittered stripchart.

Because a box and whisker plot does not use the y-axis to provide meaningful categorical information, we can easily display several plots in the same frame. Figure 
 shows this for the data in Table . Note that when a value falls outside of a whisker, as is the case here for yellow M&Ms, it is flagged by displaying it as an

open circle.
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Figure : Box-and-whisker plots for each of the 30 bags included in Table  organized by color.

One use of a box and whisker plot is to examine the distribution of the individual samples, particularly with respect to symmetry. With the exception of the single
sample that falls outside of the whiskers, the distribution of yellow M&Ms appears symmetrical: the median is near the center of the box and the whiskers extend
equally in both directions. The distribution of the orange M&Ms is asymmetrical: half of the samples have 4–7 M&Ms (just four possible outcomes) and half have 7–
15 M&Ms (nine possible outcomes), suggesting that the distribution is skewed toward higher numbers of orange M&Ms (see Chapter 5 for more information about the
distribution of samples).

Figure  shows box-and-whisker plots for yellow M&Ms grouped according to the store where the bags of M&Ms were purchased. Although the box and whisker
plots are quite different in terms of the relative sizes of the boxes and the relative length of the whiskers, the dot plots suggest that the distribution of the underlying
data is relatively similar in that most bags contain 12–18 yellow M&Ms and just a few bags deviate from these limits. These observations are reassuring because we do
not expect the choice of store to affect the composition of bags of M&Ms. If we saw evidence that the choice of store affected our results, then we would look more
closely at the bags themselves for evidence of a poorly controlled variable, such as type (Did we accidentally purchase bags of peanut butter M&Ms from one store?) or
the product’s lot number (Did the manufacturer change the composition of colors between lots?).

Figure : Box-and-whisker plots for yellow M&Ms for each of the 30 bag in Table  organized by the store where the bags were purchased.

Bar Plots 

Although a dot plot, a stripchart and a box-and-whisker plot provide some qualitative evidence of how a variable’s values are distributed—we will have more to say
about the distribution of data in Chapter 5—they are less useful when we need a more quantitative picture of the distribution. For this we can use a bar plot that displays
a count of each discrete outcome. Figure  shows bar plots for orange and for yellow M&Ms using the data in Table .
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Figure : Bar plots for orange M&Ms and yellow M&Ms using the data in Table .

Here we see that the most common number of orange M&Ms per bag is four, which is also the smallest number of orange M&Ms per bag, and that there is a general
decrease in the number of bags as the number of orange M&M per bag increases. For the yellow M&Ms, the most common number of M&Ms per bag is 16, which
falls near the middle of the range of yellow M&Ms.

Histograms 
A bar plot is a useful way to look at the distribution of discrete results, such as the counts of orange or yellow M&Ms, but it is not useful for continuous data where
each result is unique. A histogram, in which we display the number of results that fall within a sequence of equally spaced bins, provides a view that is similar to that of
a bar plot but that works with continuous data. Figure , for example, shows a histogram for the net weights of the 30 bags of M&Ms in Table . Individual
values are shown by the vertical hash marks at the bottom of the histogram.

Figure : Histogram of net weights for the data in Table . There are, for example, four bags of M&Ms with net weights between 47 g and 48 g.

This page titled 3.1: Types of Visualizations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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3.2: Using R to Visualize Data
One of the strengths of R is the ease with which you can plot data and the quality of the plots you can create. R has two pre-
installed graphing packages: one is the graphics  package, which is available to you when you launch R, and the second is the 
lattice  package tat you can bring into your session by running library(lattice) in the console—and there are many

additional graphics packages, such as ggplot2 , developed by others. As our interest in this textbook is making R quickly and
easily accessible, we will rely on R’s base graphics. See this chapter's resources for a list of other graphing packages.

This section uses the M&M data in Table 1 of Chapter 3.1. You can download a copy of the data as a .csv spreadsheet using
this � link, and save it in your working directory.

Bringing Your Data Into R 
Before we can create a visualization, we need to make our data available to R. The code below uses the read.csv() function to
read in the file MandM.csv as a data frame with the name mm_data . The text "MandM.csv" assumes the file is located in
your working directory.

mm_data = read.csv("MandM.csv")

Creating a Dot Plot Using R 
To create a dot plot in R we use the function dotchart(x,...)  where x is the object that holds our data, typically a vector
or a single column from a data frame, and ... is a list of optional arguments that affects what we see. In the example below, 
pch  sets the plotting symbol (19 is an solid circle), col is the color assigned to the plotting symbol, labels identifies the

samples by name along the y-axis, xlab assigns a label to the x-axis, ylab assigns a label to the y-axis, and cex controls the
size of the labels and points. See the last section of this chapter for a more general introduction to creating and displaying plots
using R’s base graphics.

dotchart(mm_data$brown, pch = 19, col = "brown", labels = mm_data$bag, xlab = "number
of brown M&Ms", ylab = "bag id", cex = 0.5)

Figure : Example of a dot plot created using R's dotchart()  function.

 Note
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Creating a Stripchart Using R 

To create a stripchart in R we use the function stripchart(x, ...) where x is the object that holds our data, typically a
vector or a column from a data frame, and ...  is a list of optional arguments that affects what we see. In the example below,
pch sets the plotting symbol (19 is an solid circle), col is the color assigned to the plotting symbol, method defines how

points with the same value for x are displayed on the y-axis, in this case stacking them one above the other by an amount defined by
an offset , and cex controls the size of the individual data points.

stripchart(mm_data$brown, pch = 19, col = "brown", method = "stack", offset = 0.5, cex
= 0.6, xlab = "number of brown M&Ms")

Figure : Example of a stripchart created using R's stripchart()  function.

Because a stripchart does not use the y-axis to provide information, we can easily display several stripcharts at once, as shown in
the following example, where we use mm _data[3:8] to identify the data for each stripchart and col to assign a color to
each stripchart. Instead of stacking the individual points, they are jittered by applying a small, random offset to each point using 
jitter . The parameter las forces the labels to be displayed horizontally ( las = 0 aligns labels parallel to the axis,
las = 1  aligns labels horizontally, las = 2 aligns labels perpendicular to the axis, and las = 4 aligns labels vertically).

stripchart(mm_data[3:8], pch = 19, cex = 0.5, xlab = "number of M&MS", col = c("blue",
"brown", "green", "orange", "red", "yellow"), method = "jitter", jitter = 0.2, las =
1)
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Figure : Example of a stripchart for multiple sets of data created using R's stripchart()  function.

Creating a Box-and-Whisker Plot Using R 
To create a box-and-whisker plot in R we use the function boxplot(x,...) where x is the object that holds our data,
typically a vector or a column from a data frame, and ... is a list of optional arguments that affects what we see. In the example
below, the option horizontal = TRUE overrides the default, which is to display a vertical boxplot, and range specifies the
length of the whisker as a multiple of the IQR. In this example, we also show the individual values using stripchart()  with
the option add = TRUE to overlay the stripchart on the boxplot.

boxplot(mm_data$brown, horizontal = TRUE, range = 1.5, xlab = "number of brown M&Ms")

stripchart(mm_data$brown, method = "jitter", jitter = 0.2, add = TRUE, col = "brown",
pch = 19)

3.2.3
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Figure : Example of a box-and-whisker plot created using R's boxplot()  function. A stripchart of the data is overlayed
on the box-and-whisker plot using the stripchart()  function.

Because a box and whisker plot does not use the y-axis to provide information, we can easily display several plots at once, as
shown in the following example, where we use mm_data[3:8] to identify the data for each plot and col  to assign a color to
each plot.

boxplot(mm_data[3:8], xlab = "number of M&MS", las = 1, horizontal = TRUE, col =
c("blue", "brown", "green", "orange", "red", "yellow"))

Figure : Example of box-and-whisker plots for multiple sets of data created using R's boxplot()  function.

In the example below, the code mm_data$yellow ~ mm_data$store is a formula, which takes the general form of y as a
function of x; in this case, it uses the data in the column named store  to divide the data into three groups. The option
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outline = FALSE in the boxplot() function suppresses the function’s default to plot an open circle for each sample that
lies outside of the whiskers; by doing this we avoid plotting these points twice.

boxplot(mm_data$yellow ~ mm_data$store, horizontal = TRUE, las = 1, col = "yellow",
outline = FALSE, xlab = "number of yellow M&Ms")
stripchart(mm_data$yellow ~ mm_data$store, add = TRUE, pch = 19, method = "jitter",
jitter = 0.2)

Figure : Example of using a formula to subset the data into three groups based on the store where the samples were purchased.

See Chapter 8.5 for a discussion of the use of formulas in R.

Creating a Bar Plot Using R 
To create a bar plot in R we use the function barplot(x,...)  where x is the object that holds our data, typically a vector or
a column from a data frame and ... is a list of optional arguments that affects what we see. Unlike the previous plots, we cannot
pass to barplot()  our raw data that consists of the number of orange M&Ms in each bag. Instead, we have to provide the data
in the form of a table that gives the number of bags that contain 0, 1, 2, . . . up to the maximum number of orange M&Ms in any
bag; we accomplish this using the tabulate()  function. Because tabulate() only counts the frequency of positive
integers, it will ignore any bags that do not have any orange M&Ms; adding one to each count by using 
mm_data$orange + 1  ensures they are counted. The argument names.arg allows us to provide categorical labels for the

x-axis (and correct for the fact that we increased each index by 1).

orange_table = tabulate(mm_data$orange + 1) 
barplot(orange_table, col = "orange", names.arg = seq(0, max(mm_data$orange), 1), xlab
= "number of orange M&Ms", ylab = "number of bags")

3.2.6
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Figure : Example of a bar plot created using R's barplot()  function.

Creating a Histogram Using R 
To create a histogram in R we use the function hist(x,...)  where x is the object that holds our data, typically a vector or a
column from a data frame, and ... is a list of optional arguments that affects what we see. In the example below, the option
main = NULL suppresses the placing of a title above the plot, which otherwise is included by default. The option
right = TRUE means the right-most value of a bin is included in that bin. Finally, although a histogram shows how individual

values are distributed, it does not show the individual values themselves. The rug(x) function adds tick marks along the x-axis
that show each individual value.

hist(mm_data$net_weight, col = "lightblue", xlab = "net weight of M&Ms (oz)", right =
TRUE, main = NULL)

rug(mm_data$net_weight, lwd = 1.5)

3.2.7
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Figure : Example of a histogram created using R's hist()  and rug()  functions.

By default, R uses an algorithm to determine how to set the size of bins. As shown in the following example, we can use the option
breaks to specify the values of x where one bin ends and the next bin begins.

hist(mm_data$net_weight, col = "lightblue", xlab = "net weight of M&Ms (oz)", breaks =
seq(46, 52, 0.5), right = TRUE, main = NULL)

rug(mm_data$net_weight, lwd = 1.5)

Figure : Example showing how to use the breaks command to control the bins used to construct a histogram using R's 
hist()  function.

This page titled 3.2: Using R to Visualize Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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3.3: Creating Plots From Scratch in R Using Base Graphics
As we saw in the last section, the functions to create dot charts, stripcharts, boxplots, barplots, and histograms have arguments that
we can use to alter the appearance of the function’s output. For example, here is the full list of arguments available when we use
dotchart() that control what the plot shows.

dotchart(x, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pt.cex =
cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"),
lcolor = "gray", xlim = range(x[is.finite(x)]), main = NULL, xlab = NULL, ylab = NULL,
...)

Each of the arguments has a default value, which means we need not specify the value for an argument unless we wish to change its
value, as we did when we set pch to 19. The final argument of ...  indicates that we can change any of a long list of
graphical parameters that control what we see when we use dotchart.

Creating a Simple Scatterplot Using R 
One of the most common, and most important, visualizations in analytical chemistry is a scatterplot in which we are interested in
the relationship, if any, between two measurement by plotting the values for one variable along the x-axis and the values for the
other variable along y-axis. For this exercise, we will use some data from the Puget Sound Data Hoard that gives the mass and the
diameter for 816 M&Ms obtained from a 14.0-oz bag of plain M&Ms, a 12.7-oz bag of peanut M&Ms, and a 12.7-oz bag of peanut
butter M&Ms. Let’s read the data into R and store it in a data frame with the name psmm_data . You can download a copy of
the data using this � link saving it in your working directory.

psmm_data = read.csv("data/PugetSoundM&MData.csv")

We might expect that as the diameter of an M&M increases so will the mass of the M&M. We might also expect that the
relationship between diameter and mass may depend on whether the M&Ms are plain, peanut, or peanut butter. So that we can
access data for each type of M&M, let’s use the which()  function to create vectors that designate the row numbers for each of
the three types of M&Ms.

pb_id = which(psmm_data$type == "peanut butter")

plain_id = which(psmm_data$type == "plain")

peanut_id = which(psmm_data$type == "peanut")

Typically we are interested in how one variable affects the other variable. We call the former the independent variable and place it
on the x-axis and we call the latter the dependent variable and place it on the y-axis. Here we will use diameter as the independent
variable and mass as the dependent variable. To create a scatterplot for the plain M&Ms we use the function plot(x, y)
where x  is the data to plot on the x-axis and y is the data to plot on the y-axis.

plot(x = psmm_data$diameter[plain_id], y = psmm_data$mass[plain_id])
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Figure : A simple scatterplot created using R's plot() function.

Customizing a Plot Created Using R 
Although our scatterplot shows that the mass of a plain M&M increases as its diameter increases, it is not a particularly attractive
plot. In addition to specifying x and y, the plot function allows us to pass additional arguments to customize our plot; here are some
of these optional arguments:

type = “option”. This argument specifies how points are displayed; there are a number of options, but the most useful are “p” for
points (this is the default), “l” for lines without points, “b” for both points and lines that do not touch the points, “o” for points and
lines that pass through the points, “h” for histogram-like vertical lines, and “s” for stair steps; use “n” if you wish to suppress the
points.

pch = number. This argument selects the symbol used to plot the data, with the number assigned to each symbol shown below. The
default option is 1, or an open circle. Symbols 15–20 are filled using the color of the symbol’s boundary, and symbols 21–25 can
take a background color that is different from the symbol’s boundary. See later in this document for more details about setting
colors. The figure below shows the different options.

# code from http://www.sthda.com/english/wiki/r-...available-in-r 
oldPar = par() 
par(font = 2, mar = c(0.5, 0, 0, 0)) 
y = rev(c(rep(1, 6),rep(2, 5), rep(3, 5), rep(4, 5), rep(5, 5))) 
x = c(rep(1:5, 5), 6) 
plot(x, y, pch = 0:25, cex = 1.5, ylim = c(1, 5.5), xlim = c(1, 6.5), 
axes = FALSE, xlab = "", ylab = "", bg = "blue") 
text(x, y, labels = 0:25, pos = 3) 
par(mar = oldPar$mar, font = oldPar$font)
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Figure : The 25 pch  symbols available in R's base graphics.

lty = number. This argument specifies the type of line to draw; the options are 1 for a solid line (this is the default), 2 for a dashed
line, 3 for a dotted line, 4 for a dot-dash line, 5 for a long-dash line, and 6 for a two-dash line.

lwd = number. This argument sets the width of the line. The default is 1 and any other entry simply scales the width relative to the
default; thus lwd = 2  doubles the width and lwd = 0.5  cuts the width in half.

bty = “option”. This argument specifies the type of box to draw around the plot; the options are “o” to draw all four sides (this is
the default), “l” to draw on the left side and the bottom side only, “7” to draw on the top side and the right side only, “c” to draw all
but the right side, “u” to draw all but the top side, “]” to draw all but the left side, and “n” to omit all four sides.

axes = logical. This argument indicates whether the axes are drawn (TRUE) or not drawn (FALSE); the default is TRUE.

xlim = c(begin, end). This argument sets the limits for the x-axis, overriding the default limits set by the plot()  command.

ylim = c(begin, end). This argument sets the limits for the y-axis, overriding the default limits set by the plot()  command.

xlab = “text”. This argument specifies the label for the x-axis, overriding the default label set by the plot()  command.

ylab = “text”. This argument specifies the label for the y-axis, overriding the default label set by the plot()  command.

main = “text”. This argument specifies the main title, which is placed above the plot, overriding the default title set by the 
plot()  command.

sub = “text”. This argument specifies the subtitle, which is placed below the plot, overriding the default subtitle set by the 
plot()  command.

cex = number. This argument controls the relative size of the symbols used to plot points. The default is 1 and any other entry
simply scales the size relative to the default; thus cex = 2  doubles the size and cex = 0.5  cuts the size in half.

cex.axis = number. This argument controls the relative size of the text used for the scale on both axes; see the entry above for cex
for more details.

cex.lab = number. This argument controls the relative size of the text used for the label on both axes; see the entry above for cex
for more details.

cex.main = number. This argument controls the relative size of the text used for the plot’s main title; see the entry above for cex
for more details.

cex.sub = number. This argument controls the relative size of the text used for the plot’s subtitle; see the entry above for cex for
more details.
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col = number or “string”. This argument controls the color of the symbols used to plot points. There are 657 available colors, for
which the default is “black” or 24. You can see a list of colors (number and text string) by typing colors()  in the console.

col.axis = number or “string”. This argument controls the color of the text used for the scale on both axes; see the entry above for
col for more details.

col.lab = number or “string”. This argument controls the color of the text used for the label on both axes; see the entry above for
col for more details.

col.main = number or “string”. This argument controls the color of the text used for the plot’s main title; see the entry above for
col for more details.

col.sub = number or “string”. This argument controls the color of the text used for the plot’s subtitle; see the entry above for col
for more details.

bg = number or “string”. This argument sets the background color for the plot symbols 21–25; see the entries above for pch and
for col for more details.

Let’s use some of these arguments to improve our scatterplot by adding some color to and adjusting the size of the symbols used to
plot the data, and by adding a title and some more informative labels for the two axes.

plot(x = psmm_data$diameter[plain_id], y = psmm_data$mass[plain_id], xlab = "diameter
of M&Ms", ylab = "mass of M&Ms", main = "Diameter and Mass of Plain M&Ms", pch = 19,
cex = 0.5, col = "blue")

Figure : An improved version of the scatterplot from Figure .

Modifying an Existing Plot Created Using R 
We can modify an existing plot in a number of useful ways, such as adding a new set of data, adding a reference line, adding a
legend, adding text, and adding a set of grid lines; here are some of the things we can do:

points(x, y, . . . ). This command is identical to the plot()  command, but overlays the new points on the current plot instead of
first erasing the previous plot. Note: the points()  command can not re-scale the axes; thus, you must ensure that your original
plot—created using the plot()  command—has x-axis and y-axis limits that meet your needs.

abline(h = number, . . . ). This command adds a horizontal line at y = number  with the line’s color, type, and size set using
the optional arguments.
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abline(v = number, . . . ). This command adds a vertical line at x = number  with the line’s color, type, and size set using the
optional arguments.

abline(b = number, a = number, . . . ). This command adds a diagonal line defined by a slope (b) and a y-intercept (a); the line’s
color, type, and size are set using the optional arguments. As we will see in Chapter 8, this is a useful command for displaying the
results of a linear regression.

legend(location, legend, . . . ). This command adds a legend to the current plot. The location is specified in one of two ways:

• by giving the x and y coordinates for the legend’s upper-left corner using x = number  and y = number )

• by using location = “keyword” where the keyword is one of “topleft”, “top”, “topright”, “right”, “bottomright”, “bottom”,
“bottomleft”, or “left”; the optional argument inset = number moves the legend in from the margin when using a keyword
(it takes a value from 0 to 1 as a fraction of the plot’s area; the default is 0)

The legend is added as a vector of character strings (one for each item in the legend), and any accompanying formatting, such as
plot symbols, lines, or colors, are passed along as vectors of the same length; look carefully at the example at the end of this section
to see how this command works.

text(location, label, . . . ). This command adds the text given by “label” to the current plot. The location is specified by providing
values for x and y using x = number  and y = number . By default, the text is centered at its location; to set the text so
that it is left-justified (which is easier to work with), add the argument adj = c(0, NA) .

grid(col, lty, lwd). This command adds a set of grid lines to the plot using the color, line type, and line width defined by “col”,
“lty”, and “lwd”, respectively.

Here is an example of a figure in which we show how the diameter and mass vary as a function of the type of M&Ms, add a legend,
add a grid, and add some text that identifies the source of the data. Note the use of the functions max and min to identify the
limits needed to display results for all of the data.

# determine minimum and maximum values for diameter and mass so that we can

# set limits for the x-axis and y-axis that will allow plotting of all data

xmax = max(psmm_data$diameter)

xmin = min(psmm_data$diameter)

ymax = max(psmm_data$mass)

ymin = min(psmm_data$mass)

# create the initial plot using data for plain M&Ms, xlim and ylim values

# ensure plot window will allow plotting of all data

plot(x = psmm_data$diameter[plain_id], y = psmm_data$mass[plain_id], xlab = "diameter
of M&Ms", ylab = "mass of M&Ms", main = "Diameter and Mass of M&Ms", pch = 19, cex =
0.65, col = "red", xlim = c(xmin, xmax), ylim = c(ymin, ymax))

# add the data for the peanut and peanut butter M&Ms using points()

points(x = psmm_data$diameter[peanut_id], y = psmm_data$mass[peanut_id], pch = 18, col
= "brown", cex = 0.65)

points(x = psmm_data$diameter[pb_id], y = psmm_data$mass[pb_id], pch = 17, col =
"blue", cex = 0.65)

# add a legend, gird, and explanatory text

legend(x = "topleft", legend = c("plain", "peanut", "peanut butter"), col = c("red",
"brown", "blue"), pch = c(19, 18, 17), bty = "n")

grid(col = "gray")

text(x = 16.5, y = 1, label = "data from University of Puget Sound Data Hoard", cex =
0.5)
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Figure : Example of a more informative scatterplot.

Our new plot shows that the individual M&Ms are reasonably well separated from each other in the space created by the variables
diameter and mass, although a few M&Ms encroach into the space occupied by other types of M&Ms. We also see that the
distribution of plain M&Ms is much more compact than for peanut and peanut butter M&Ms, which makes sense given the likely
variability in the size of individual peanuts and the softer consistency of peanut butter.

This page titled 3.3: Creating Plots From Scratch in R Using Base Graphics is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by David Harvey.
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3.4: Exercises
1. When copper metal and powdered sulfur are placed in a crucible and ignited, the product is a sulfide with an empirical formula
of Cu S. The value of x is determined by weighing the Cu and the S before ignition and finding the mass of Cu S when the reaction
is complete (any excess sulfur leaves as SO ). The following table shows the Cu/S ratios from 62 such experiments (note that the
values are organized from smallest-to-largest by rows). A copy of the data is � available as a .csv file with data organized in a
single column.

1.764 1.838 1.865 1.866 1.872 1.877

1.890 1.891 1.891 1.897 1.899 1.900

1.906 1.908 1.910 1.911 1.916 1.919

1.920 1.922 1.927 1.931 1.935 1.936

1.936 1.937 1.939 1.939 1.940 1.941

1.941 1.942 1.943 1.948 1.953 1.955

1.957 1.957 1.957 1.959 1.962 1.963

1.963 1.963 1.966 1.968 1.969 1.973

1.975 1.976 1.977 1.981 1.981 1.988

1.993 1.993 1.995 1.995 1.995 2.017

2.029 2.042     

(a) Construct a boxplot for this data and comment on your results.

(b) Construct a histogram and comment on your results.

2. Mizutani, Yabuki and Asai developed an electrochemical method for analyzing l-malate. As part of their study they analyzed a
series of beverages using both their method and a standard spectrophotometric procedure based on a clinical kit purchased from
Boerhinger Scientific. The following table summarizes their results. All values are in ppm.

Sample Electrode Spectrophotometric

Apple Juice 1 34.0 33.4

Apple Juice 2 22.6 28.4

Apple Juice 3 29.7 29.5

Apple Juice 4 24.9 24.8

Grape Juice 1 17.8 18.3

Grape Juice 2 14.8 15.4

Mixed Fruit Juice 1 8.6 8.5

Mixed Fruit Juice 2 31.4 31.9

White Wine 1 10.8 11.5

White Wine 2 17.3 17.6

White Wine 3 15.7 15.4

White Wine 4 18.4 18.3

x x

2
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Construct a scatterplot of this data, placing values for the electrochemical method on the x-axis and values for the
spectrophotometric method on the y-axis. Use different symbols for the four types of beverages. The data in this problem are from
Mizutani, F.; Yabuki, S.; Asai, M. Anal. Chim. Acta 1991, 245,145–150. A copy of the data is � available as a .csv file.

3. Ten laboratories were asked to determine an analyte’s concentration of in three standard test samples. Following are the results,
in μg/ml.

Laboratory Sample 1 Sample 2 Sample 3

1 22.6 13.6 16.0

2 23.0 14.2 15.9

3 21.5 13.9 16.9

4 21.9 13.9 16.9

5 21.3 13.5 16.7

6 22.1 13.5 17.4

7 23.1 13.5 17.5

8 21.7 13.5 16.8

9 22.2 12.9 17.2

10 21.7 13.8 16.7

(a) Construct a single plot that contains separate stripcharts for each of the three samples.

(b) Construct a single plot that contains separate boxplots for each of the three samples.

The data in this problem are adapted from Steiner, E. H. “Planning and Analysis of Results of Collaborative Tests,” in Statistical
Manual of the Association of Official Analytical Chemists, Association of Official Analytical Chemists: Washington, D. C., 1975.
A copy of the data is � available as a .csv file.

4. Real-time quantitative PCR is an analytical method for determining trace amounts of DNA. During the analysis, each cycle
doubles the amount of DNA. A probe species that fluoresces in the presence of DNA is added to the reaction mixture and the
increase in fluorescence is monitored during the cycling. The cycle threshold, C , is the cycle when the fluorescence exceeds a
threshold value. The data in the following table shows C values for three samples using real-time quantitative PCR. Each sample
was analyzed 18 times.

Sample X Sample Y Sample Z

24.24 25.14 24.41 28.06 22.97 23.43

23.97 24.57 27.21 27.77 22.93 23.66

24.44 24.49 27.02 28.74 22.95 28.79

24.79 24.68 26.81 28.35 23.12 23.77

23.92 24.45 26.64 28.80 23.59 23.98

24.53 24.48 27.63 27.99 23.37 23.56

24.95 24.30 28.42 28.21 24.17 22.80

24.76 24.60 25.16 28.00 23.48 23.29

25.18 24.57 28.53 28.21 23.80 23.86

Use two or more methods to analyze this data visually and write a brief report on your conclusions. The data in this problem is
from Burns, M. J.; Nixon, G. J.; Foy, C. A.; Harris, N. BMC Biotechnol. 2005, 5:31 (open access publication). A copy of the data is

t
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� available as a .csv file.

5. The file � problem3_5.csv contains data for 1061 United States pennies organized into three columns: the year the penny was
minted, the penny's mass (to four decimal places), and the location where the penny was minted (D = Denver and P =
Philadelphia). Subset the data by year into three groups

pennies minted before 1982
pennies minted during 1982
pennies minuted after 1982

Plot separate histograms for the masses of the pennies in each group and comment on your results. The data in this problem was
collected by Jordan Katz at Denison University and is available at the Analytical Sciences Digital Library's Active Learning
website.

6. Use the element data you created in Exercise 1.3.1 to create several visualizations of your choosing. At least one of your
visualizations should be a scatterplot and one should be a boxplot.

7. Use the data set you created in Exercise 2.3.2 on the daily average NOX concentrations and daily average temperatures recorded
at a roadside monitoring station located on Marlybone Road in Westminster. Use this data to prepare a scatterplot that shows the
daily average NOX concentrations for January on the y-axis and the daily average temperature for January on the x-axis. Add to
this plot, a second scatterplot that shows the daily average NOX concentrations for July on the y-axis and the daily average
temperature for July on the x-axis. Comment on your results.

8. Use this link to access a case study on data analysis and complete the nine investigations included in Part II: Ways to Visualize
Data.

This page titled 3.4: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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CHAPTER OVERVIEW

4: Summarizing Data
In Chapter 3 we used data collected from 30 bags of M&Ms to explore ways to visualize data. Although a good visualization is a
powerful tool for quickly examining our data qualitatively, inevitably we will need to be able to describe our data quantitatively as
well. In this chapter we will consider ways to summarize our data using one or more statistical measures.

4.1: Ways to Summarize Data
4.2: Using R to Summarize Data
4.3: Exercises

This page titled 4: Summarizing Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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4.1: Ways to Summarize Data
In Chapter 3 we used data collected from 30 bags of M&Ms to explore different ways to visualize data. In this chapter we consider
several ways to summarize data using the net weights of the same bags of M&Ms. Here is the raw data.

Table : Net Weights for 30 Bags of M&Ms.

49.287 48.870 51.250 48.692 48.777 46.405

49.693 49.391 48.196 47.326 50.974 50.081

47.841 48.377 47.004 50.037 48.599 48.625

48.395 51.730 50.405 47.305 49.477 48.027

48.212 51.682 50.802 49.055 46.577 48.317

Without completing any calculations, what conclusions can we make by just looking at this data? Here are a few:

All net weights are greater than 46 g and less than 52 g.
As we see in Figure , a box-and-whisker plot (overlaid with a stripchart) and a histogram suggest that the distribution of
the net weights is reasonably symmetric.
The absence of any points beyond the whiskers of the box-and-whisker plot suggests that there are no unusually large or
unsually small net weights.

Figure : Two visualizations of the net weights of packages of M&Ms.

Both visualizations provide a good qualitative picture of the data, suggesting that the individual results are scattered around some
central value with more results closer to that central value that at distance from it. Neither visualization, however, describes the data
quantitatively. What we need is a convenient way to summarize the data by reporting where the data is centered and how varied the
individual results are around that center.

Where is the Center? 
There are two common ways to report the center of a data set: the mean and the median.

The mean, , is the numerical average obtained by adding together the results for all n observations and dividing by the number of
observations

4.1.1

4.1.1

4.1.1

Y
¯ ¯¯̄
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The median, , is the middle value after we order our observations from smallest-to-largest, as we show here for our data.

Table : The data from Table  Sorted From Smallest-to-Largest in Value.

46.405 46.577 47.004 47.305 47.326 47.841

48.027 48.196 48.212 48.317 48.377 48.395

48.599 48.625 48.692 48.777 48.870 49.055

49.287 49.391 49.477 49.693 50.037 50.081

50.405 50.802 50.974 51.250 51.682 51.730

If we have an odd number of samples, then the median is simply the middle value, or

where n is the number of samples. If, as is the case here, n is even, then

When our data has a symmetrical distribution, as we believe is the case here, then the mean and the median will have similar
values.

What is the Variation of the Data About the Center? 
There are five common measures of the variation of data about its center: the variance, the standard deviation, the range, the
interquartile range, and the median average difference.

The variance, s , is an average squared deviation of the individual observations relative to the mean

and the standard deviation, s, is the square root of the variance, which gives it the same units as the mean.

The range, w, is the difference between the largest and the smallest value in our data set.

The interquartile range, IQR, is the difference between the median of the bottom 25% of observations and the median of the top
25% of observations; that is, it provides a measure of the range of values that spans the middle 50% of observations. There is no
single, standard formula for calculating the IQR, and different algorithms yield slightly different results. We will adopt the
algorithm described here:

1. Divide the sorted data set in half; if there is an odd number of values, then remove the median for the complete data set. For our
data, the lower half is

Table : The Lower Half of the Data in Table .

46.405 46.577 47.004 47.305 47.326

47.841 48.027 48.196 48.212 48.317

48.377 48.395 48.599 48.625 48.692

= = = 48.980 gY
¯ ¯¯̄ ∑n

i=1 Yi

n

49.287 +48.870 +⋯ +48.317

30
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4.1.2 4.1.1
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( −∑n
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w = 51.730 g −46.405 g = 5.325 g
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and the upper half is

Table : The Upper Half of the Data in Table .

48.777 48.870 49.055 49.287 49.391

49.477 49.693 50.037 50.081 50.405

50.802 50.974 51.250 51.682 51.730

2. Find F , the median for the lower half of the data, which for our data is 48.196 g.

3. Find F  , the median for the upper half of the data, which for our data is 50.037 g.

4. The IQR is the difference between F  and F .

The median absolute deviation, MAD, is the median of the absolute deviations of each observation from the median of all
observations. To find the MAD for our set of 30 net weights, we first subtract the median from each sample in Table .

Table : The Results of Subtracting the Median From Each Value in Table .

0.5525 0.1355 2.5155 -0.0425 0.0425 -2.3295

0.9585 0.6565 -0.5385 -1.4085 2.2395 1.3465

-0.8935 -0.3575 -1.7305 1.3025 -0.1355 -0.1095

-0.3395 2.9955 1.6705 -1.4295 0.7425 -0.7075

-0.5225 2.9475 2.0675 0.3205 -2.1575 -0.4175

Next we take the absolute value of each difference and sort them from smallest-to-largest.

Table : The Data in Table  After Taking the Absolute Value.

0.0425 0.0425 0.1095 0.1355 0.1355 0.3205

0.3395 0.3575 0.4175 0.5225 0.5385 0.5525

0.6565 0.7075 0.7425 0.8935 0.9585 1.3025

1.3465 1.4085 1.4295 1.6705 1.7305 2.0675

2.1575 2.2395 2.3295 2.5155 2.9475 2.9955

Finally, we report the median for these sorted values as

Robust vs. Non-Robust Measures of The Center and Variation About the Center 

A good question to ask is why we might desire more than one way to report the center of our data and the variation in our data
about the center. Suppose that the result for the last of our 30 samples was reported as 483.17 instead of 48.317. Whether this is an
accidental shifting of the decimal point or a true result is not relevant to us here; what matters is its effect on what we report. Here
is a summary of the effect of this one value on each of our ways of summarizing our data.

Table : Effect on Summary Statistics of Changing Last Value in Table  From 48.317 g to 483.17 g.

statistic original data new data

mean 48.980 63.475

median 48.734 48.824

variance 2.052 6285.938

4.1.4 4.1.2

L

U

U L

− = 50.037 g −48.196 g = 1.841 gFU FL

4.1.1

4.1.5 4.1.1

4.1.6 4.1.5

= 0.818
0.7425 +0.8935
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statistic original data new data

standard deviation 1.433 79.280

range 5.325 436.765

IQR 1.841 1.885

MAD 0.818 0.926

Note that the mean, the variance, the standard deviation, and the range are very sensitive to the change in the last result, but the
median, the IQR, and the MAD are not. The median, the IQR, and the MAD are considered robust statistics because they are less
sensitive to an unusual result; the others are, of course, non-robust statistics. Both types of statistics have value to us, a point we
will return to from time-to-time.

This page titled 4.1: Ways to Summarize Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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4.2: Using R to Summarize Data
One of R’s strengths is its Stats  package, which provides access to a rich body of tools for analyzing data. The package is part
of R’s base installation and is available whenever you use R without the need to use library() to make it available. Almost all
of the statistical functions we will use in this textbook are included in the Stats  package.

Bringing Your Data Into R 
This section uses the M&M data in Table 1 of Chapter 3.1. You can download a copy of the data as a .csv spreadsheet using this �
link. Before we can summarize our data, we need to make it available to R. The code below uses the read.csv function to read
in the data from the file MandM.csv() as a data frame. The text "MandM.csv" assumes the file is located in your working
directory.

mm_data = read.csv("MandM.csv")

Finding the Central Tendency of Data Using R 
To report the mean of a data set we use the function mean(x) where x is the object that holds our data, typically a vector or a
single column from a data frame. An important argument to this, and to many other functions, is how to handle missing or NA
values. The default is to keep them, which leads to an error when we try to calculate the mean. This is a reasonable default as it
requires us to make note of the missing values and to set na.rm = TRUE if we wish to remove them from the calculation. As
our vector of data is not missing any values, we do not need to include na.rm = TRUE here, but we do so to illustrate its
importance.

mean(mm_data$net_weight, na.rm = TRUE)

[1] 48.9803

To report the median of a data set we use the function median(x) where x is the object that holds our data, typically a vector
or a single column from a data frame.

median(mm_data$net_weight, na.rm = TRUE)

[1] 48.7345

Finding the Spread of Data Using R 

To report the variance of a data set we use the function var(x) where x is the object that holds our data, typically a vector or a
single column from a data frame.

var(mm_data$net_weight, na.rm = TRUE)

[1] 2.052068

To report the standard deviation we use the function sd(x) where x is the object that holds our data, typically a vector or a
single column from a data frame.

sd(mm_data$net_weight, na.rm = TRUE)

[1] 1.432504

To report the range we have to be creative as R’s range() function does not directly report the range. Instead, it returns the
minimum as its first value and the maximum as its second value, which we can extract using the bracket operator and then use to
compute the range.

range(mm_data$net_weight, na.rm = TRUE)[2] - range(mm_data$net_weight, na.rm = TRUE)
[1]

[1] 5.325

Another approach for calculating the range is to use R's max()  and min()  functions.

max(mm_data$net_weight) - min(mm_data$net_weight)

[1] 5.325
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To report the interquartile range we use the function IQR(x) where x is the object that holds our data, typically a vector or a
single column from a data frame. The function has nine different algorithms for calculating the IQR, identified using type as an
argument. To obtain an IQR equivalent to that generated by R’s boxplot()  function, we use type = 5 for an even number
of values and type = 7 for an odd number of values.

IQR(mm_data$net_weight, na.rm = TRUE, type = 5)

[1] 1.841

To find the median absolute deviation we use the function mad(x) where x is the object that holds our data, typically a vector
or a single column from a data frame. The function includes a scaling constant, the default value for which does not match our
description for calculating the MAD; the argument constant = 1 gives a result that is consistent with our description of the
MAD.

mad(mm_data$net_weight, na.rm = TRUE, constant = 1)

[1] 0.818

This page titled 4.2: Using R to Summarize Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
David Harvey.
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4.3: Exercises
1. The following masses were recorded for 12 different U.S. quarters (all values given in grams):

5.683 5.549 5.548 5.552

5.620 5.536 5.539 5.684

5.551 5.552 5.554 5.632

Report the mean, median, variance, standard deviation, range, IQR, and MAD for this data.

2. A determination of acetaminophen in 10 separate tablets of Excedrin Extra Strength Pain Reliever gives the following results (in
mg). The data in this problem are from Simonian, M. H.; Dinh, S.; Fray, L. A. Spectroscopy 1993, 8(6), 37–47.

224.3 240.4 246.3 239.4 253.1

261.7 229.4 255.5 235.5 249.7

Report the mean, median, variance, standard deviation, range, IQR, and MAD for this data.

3. Salem and Galan developed a new method to determine the amount of morphine hydrochloride in tablets. An analysis of tablets
with different nominal dosages gave the following results (in mg/tablet). The data in this problem are from Salem, I. I.; Galan, A.
C. Anal. Chim. Acta 1993, 283, 334–337.

100-mg tablets 60-mg tablets 30-mg tablets 10-mg tablets

99.17 54.21 28.51 9.06

94.31 55.62 26.25 8.83

95.92 57.40 25.92 9.08

94.55 57.51 28.62

93.83 52.59 24.93

For each dosage, report the mean, median, variance, standard deviation, range, IQR, and MAD for this data.

4. Use the data set you create in Exercise 2.32 for the daily roadside monitoring of NOX concentrations and air temperatures along
Marlybone Road. Report the mean, median, variance, standard deviation, range, IQR, and MAD for the NOX concentrations in
January. Examine a boxplot of the data and not that two values are flagged. Remove these values and recalculate the mean, median,
variance, standard deviation, range, IQR, and MAD for this data. Compare these results to those calculated using all of the data and
comment on your results.

5. Use this link to access a case study on data analysis and complete the three investigations included in Part III: Ways to
Summarize Data.
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CHAPTER OVERVIEW

5: The Distribution of Data
When we measure something, such as the percentage of yellow M&Ms in a bag of M&Ms, we expect two things:

that there is an underlying “true” value that our measurements should approximate, and
that the results of individual measurements will show some variation about that "true" value

Visualizations of data—such as dot plots, stripcharts, boxplot-and-whisker plots, bar plots, histograms, and scatterplots—often
suggest there is an underlying structure to our data. For example, we saw in Chapter 3 that the distribution of yellow M&Ms in
bags of M&Ms is more or less symmetrical around its median, while the distribution of orange M&Ms was skewed toward higher
values. This underlying structure, or distribution, of our data as it effects how we choose to analyze our data. In this chapter we will
take a closer look at several ways in which data are distributed.

5.1: Terminology
5.2: Theoretical Models for the Distribution of Data
5.3: The Central Limit Theorem
5.4: Modeling Distributions Using R
5.5: Exercises

This page titled 5: The Distribution of Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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5.1: Terminology
Before we consider different types of distributions, let's define some key terms. You may wish, as well, to review the discussion of
different types of data in Chapter 2.

Populations and Samples 
A population includes every possible measurement we could make on a system, while a sample is the subset of a population on
which we actually make measurements. These definitions are fluid. A single bag of M&Ms is a population if we are interested only
in that specific bag, but it is but one sample from a box that contains a gross (144) of individual bags. That box, itself, can be a
population, or it can be one sample from a much larger production lot. And so on.

Discrete Distributions and Continuous Distributions 

In a discrete distribution the possible results take on a limited set of specific values that are independent of how we make our
measurements. When we determine the number of yellow M&Ms in a bag, the results are limited to integer values. We may find 13
yellow M&Ms or 24 yellow M&Ms, but we cannot obtain a result of 15.43 yellow M&Ms.

For a continuous distribution the result of a measurement can take on any possible value between a lower limit and an upper limit,
even though our measuring device has a limited precision; thus, when we weigh a bag of M&Ms on a three-digit balance and
obtain a result of 49.287 g we know that its true mass is greater than 49.2865... g and less than 49.2875... g.

This page titled 5.1: Terminology is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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5.2: Theoretical Models for the Distribution of Data
There are four important types of distributions that we will consider in this chapter: the uniform distribution, the binomial
distribution, the Poisson distribution, and the normal, or Gaussian, distribution. In Chapter 3 and Chapter 4 we used the analysis of
bags of M&Ms to explore ways to visualize data and to summarize data. Here we will use the same data set to explore the
distribution of data.

Uniform Distribution 
In a uniform distribution, all outcomes are equally probable. Suppose the population of M&Ms has a uniform distribution. If this is
the case, then, with six colors, we expect each color to appear with a probability of 1/6 or 16.7%. Figure  shows a comparison
of the theoretical results if we draw 1699 M&Ms—the total number of M&Ms in our sample of 30 bags—from a population with a
uniform distribution (on the left) to the actual distribution of the 1699 M&Ms in our sample (on the right). It seems unlikely that
the population of M&Ms has a uniform distribution of colors!

Figure : Comparison of (on the left) a uniform distribution of 1699 M&Ms with (on the right) the actual distribution from the
sample in Table 3.1.1.

Binomial Distribution 

A binomial distribution shows the probability of obtaining a particular result in a fixed number of trials, where the odds of that
result happening in a single trial are known. Mathematically, a binomial distribution is defined by the equation

where P(X,N) is the probability that the event happens X times in N trials, and where p is the probability that the event happens in a
single trial. The binomial distribution has a theoretical mean, , and a theoretical variance, , of

Figure  compares the expected binomial distribution for drawing 0, 1, 2, 3, 4, or 5 yellow M&Ms in the first five M&Ms—
assuming that the probability of drawing a yellow M&M is 435/1699, the ratio of the number of yellow M&Ms and the total
number of M&Ms—to the actual distribution of results. The similarity between the theoretical and the actual results seems evident;
in Chapter 6 we will consider ways to test this claim.

5.2.1
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Figure : Comparison of (on the left) the theoretical binomial distribution of yellow M&Ms in the first five selected from a bag
of M&Ms and (on the right) the actual distribution of M&Ms.

Poisson Distribution 
The binomial distribution is useful if we wish to model the probability of finding a fixed number of yellow M&Ms in a sample of
M&Ms of fixed size—such as the first five M&Ms that we draw from a bag—but not the probability of finding a fixed number of
yellow M&Ms in a single bag because there is some variability in the total number of M&Ms per bag.

A Poisson distribution gives the probability that a given number of events will occur in a fixed interval in time or space if the event
has a known average rate and if each new event is independent of the preceding event. Mathematically a Poisson distribution is
defined by the equation

where  is the probability that an event happens X times given the event’s average rate, . The Poisson distribution has a
theoretical mean, , and a theoretical variance, , that are each equal to .

The bar plot in Figure  shows the actual distribution of green M&Ms in 35 small bags of M&Ms (as reported by M. A. Xu-
Friedman “Illustrating concepts of quantal analysis with an intuitive classroom model,” Adv. Physiol. Educ. 2013, 37, 112–116).
Superimposed on the bar plot is the theoretical Poisson distribution based on their reported average rate of 3.4 green M&Ms per
bag. The similarity between the theoretical and the actual results seems evident; in Chapter 6 we will consider ways to test this
claim.
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Figure : Comparison of a Poisson distribution for green M&Ms (dots and line) to experimental results (bars). The data are
from M. A. Xu-Friedman, “Illustrating concepts of quantal analysis with an intuitive classroom model,” Adv. Physiol. Educ. 2013,
37, 112–116.

Normal Distribution 
A uniform distribution, a binomial distribution, and a Poisson distribution predict the probability of a discrete event, such as the
probability of finding exactly two green M&Ms in the next bag of M&Ms that we open. Not all of the data we collect is discrete.
The net weights of bags of M&Ms is an example of continuous data as the mass of an individual bag is not restricted to a discrete
set of allowed values. In many cases we can model continuous data using a normal (or Gaussian) distribution, which gives the
probability of obtaining a particular outcome, P(x), from a population with a known mean, , and a known variance, .
Mathematically a normal distribution is defined by the equation

Figure  shows the expected normal distribution for the net weights of our sample of 30 bags of M&Ms if we assume that their
mean, , of 48.98 g and standard deviation, s, of 1.433 g are good predictors of the population’s mean, , and standard deviation, 

. Given the small sample of 30 bags, the agreement between the model and the data seems reasonable.
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Figure : Comparison of a normal distribution for the net weights of M&Ms (line) to the experimental results (bars).

This page titled 5.2: Theoretical Models for the Distribution of Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by David Harvey.
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5.3: The Central Limit Theorem
Suppose we have a population for which one of its properties has a uniform distribution where every result between 0 and 1 is
equally probable. If we analyze 10,000 samples we should not be surprised to find that the distribution of these 10000 results looks
uniform, as shown by the histogram on the left side of Figure . If we collect 1000 pooled samples—each of which consists of
10 individual samples for a total of 10,000 individual samples—and report the average results for these 1000 pooled samples, we
see something interesting as their distribution, as shown by the histogram on the right, looks remarkably like a normal distribution.
When we draw single samples from a uniform distribution, each possible outcome is equally likely, which is why we see the
distribution on the left. When we draw a pooled sample that consists of 10 individual samples, however, the average values are
more likely to be near the middle of the distribution’s range, as we see on the right, because the pooled sample likely includes
values drawn from both the lower half and the upper half of the uniform distribution.

Figure : Distribution of results when analyzing samples of size n = 1 (left) and samples of size n = 10 (right) drawn from a
uniform distribution.

This tendency for a normal distribution to emerge when we pool samples is known as the central limit theorem. As shown in Figure
, we see a similar effect with populations that follow a binomial distribution or a Poisson distribution.
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Figure : Distribution of results when analyzing samples of size  (left) and samples of size  (right) drawn from a
binomial distribution with p = 0.167 (top) and a Poisson distribution with  (bottom).

You might reasonably ask whether the central limit theorem is important as it is unlikely that we will complete 1000 analyses, each
of which is the average of 10 individual trials. This is deceiving. When we acquire a sample of soil, for example, it consists of
many individual particles each of which is an individual sample of the soil. Our analysis of this sample, therefore, is the mean for a
large number of individual soil particles. Because of this, the central limit theorem is relevant.

This page titled 5.3: The Central Limit Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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5.4: Modeling Distributions Using R
The base installation of R includes a variety of functions for working with uniform distributions, binomial distributions, Poisson
distributions, and normal distributions. These functions come in four forms that take the general form xdist where dist is the
type of distribution ( unif for a uniform distribution, binom for a binomial distribution, pois for a Poisson distribution, and
norm for a normal distribution), and where x defines the information we extract from the distribution. For example, the

function dunif() returns the probability of obtaining a specific value drawn from a uniform distribution, the function
pbinom() returns the probability of obtaining a result less than a defined value from a binomial distribution, the function
qpois() returns the upper boundary that includes a defined percentage of results from a Poisson distribution, and the function
rnomr() returns results drawn at random from a normal distribution.

Modeling a Uniform Distribution Using R 
When you purchase a Class A 10.00-mL volumetric pipet it comes with a tolerance of ±0.02 mL, which is the manufacturer’s way
of saying that the pipet’s true volume is no less than 9.98 mL and no greater than 10.02 mL. Suppose a manufacturer produces
10,000 pipets, how many might we expect to have a volume between 9.990 mL and 9.992 mL? A uniform distribution is the choice
when the manufacturer provides a tolerance range without specifying a level of confidence and when there is no reason to believe
that results near the center of the range are more likely than results at the ends of the range.

To simulate a uniform distribution we use R’s runif(n, min, max) function, which returns n random values drawn from a
uniform distribution defined by its minimum ( min ) and its maximum ( max ) limits. The result is shown in Figure , where
the dots, added using the points() function, show the theoretical uniform distribution at the midpoint of each of the
histogram’s bins.

# create vector of volumes for 10000 pipets drawn at random from uniform distribution

pipet = runif(10000, 9.98, 10.02)

# create histogram using 20 bins of size 0.002 mL

pipet_hist = hist(pipet, breaks = seq(9.98, 10.02, 0.002), col = c("blue",
"lightblue"), ylab = "number of pipets", xlab = "volume of pipet (mL)", main =
NULL)

# overlay points showing expected values for uniform distribution

points(pipet_hist$mids, rep(10000/20, 20), pch = 19)
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Figure : Uniform distribution of volumes for 10000 10-mL volumetric pipets. The individual bars show the simulated results
and the individual dots show the expected results.

Saving the histogram to the object pipet_hist allows us to retrieve the number of pipets in each of the histogram’s intervals;
thus, there are 476 pipets with volumes between 9.990 mL and 9.992 mL, which is the sixth bar from the left edge of Figure .

pipet_hist$counts[6]

[1] 476

Modeling a Binomial Distribution Using R 
Carbon has two stable, non-radioactive isotopes, C and C, with relative isotopic abundances of, respectively, 98.89% and
1.11%. Suppose we are working with cholesterol, C H O, which has 27 atoms of carbon. We can use the binomial distribution to
model the expected distribution for the number of atoms C in 1000 cholesterol molecules.

To simulate the distribution we use R’s rbinom(n, size, prob) function, which returns n random values drawn from a
binomial distribution defined by the size of our sample, which is the number of possible carbon atoms, and the isotopic
abundance of C, which is its prob or probability. The result is shown in Figure , where the dots, added using the
points() function, show the theoretical binomial distribution. These theoretical values are calculated using the dbinom()

function. The bar plot is assigned to the object chol_bar to provide access to the values of x when plotting the points.

# create vector with 1000 values drawn at random from binomial distribution

cholesterol = rbinom(1000, 27, 0.0111)

# create bar plot of results; table(cholesterol) determines the number of cholesterol

# molecules with 0, 1, 2... atoms of carbon-13; dividing by 1000 gives probability

chol_bar = barplot(table(cholesterol)/1000, col = "lightblue", ylim = c(0,1), xlab
= "number of atoms of carbon-13", ylab = "probability")

# theoretical results for binomial distribution of carbon-13 in cholesterol

chol_binom = dbinom(seq(0,27,1), 27, 0.0111)

# overlay theoretical results for binomial distribution

points(x = chol_bar, y = chol_binom[1:length(chol_bar)], cex = 1.25, pch = 19)
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Figure : Distribution of results for carbon-13 atoms in cholesterol. The individual bars show the simulated results and the
individual dots show the expected results.

Modeling a Poisson Distribution Using R 
One measure of the quality of water in lakes used for recreational purposes is a fecal coliform test. In a typical test a sample of
water is passed through a membrane filter, which is then placed on a medium to encourage growth of the bacteria and incubated for
24 hours at 44.5°C. The number of colonies of bacteria is reported. Suppose a lake has a natural background level of 5 colonies per
50 mL of water tested and must be closed for swimming if it exceeds 10 colonies per 50 mL of water tested. We can use a Poisson
distribution to determine, over the course of a year of daily testing, the probability that a test will exceed this limit even though the
lake’s true fecal coliform count remains at its natural background level.

To simulate the distribution we use R’s rpois(n, lambda) function, which returns n random values drawn from a Poisson
distribution defined by lambda which is its average incidence. Because we are interested in modeling out a year, n is set to 365
days. The result is shown in Figure , where the dots, added using the points()  function, shows the theoretical Poisson
distribution. These theoretical values are calculated using the dpois() function. The bar plot is assigned to the object
choliform_bar  to provide access to the values of x when plotting the points.

# create vector of results drawn at random from Poisson distribution

coliforms = rpois(365,5)

# create table of simulated results

coliform_table = table(coliforms)

# create bar plot; ylim ensures there is some space above the plot's highest bar

coliform_bar = barplot(coliform_table, ylim = c(0, 1.2 * max(coliform_table)), col
= "lightblue")

# theoretical results for Poisson distribution

d_coliforms = dpois(seq(0,length(coliform_bar) - 1), 5) * 365

# overlay theoretical results for Poisson distribution

points(coliform_bar, d_coliforms, pch = 19)

5.4.2
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Figure : Distribution of results for fecal coliform test over course of a year. The individual bars show the simulated results and
the individual dots show the expected results.

To find the number of times our simulated results exceed the limit of 10 coliforms colonies per 50 mL we use R’s which()
function to identify within coliforms the values that are greater than 10

coliforms[which(coliforms > 10)]

finding that this happen 2 times over the course of a year.

The theoretical probability that a single test will exceed the limit of 10 colonies per 50 mL of water, we use R’s
ppois(q, lambda) function, where q is the value we wish to test, which returns the cumulative probability of obtaining a

result less than or equal to q on any day; over the course of 365 days

(1 - ppois(10,5))*365

[1] 4.998773

we expect that on 5 days the fecal coliform count will exceed the limit of 10.

Modeling a Normal Distribution Using R 

If we place copper metal and an excess of powdered sulfur in a crucible and ignite it, copper sulfide forms with an empirical
formula of Cu S. The value of x is determined by weighing the Cu and the S before ignition and finding the mass of Cu S when the
reaction is complete (any excess sulfur leaves as the gas SO ). The following are the Cu/S ratios from 62 such experiments, of
which just 3 are greater than 2. Because of the central limit theorem, we can use a normal distribution to model the data.

Table : Experimental Cu/S Ratios When Igniting Cu(s) and S(s).

1.764 1.838 1.890 1.891 1.906 1.908

1.920 1.922 1.936 1.937 1.941 1.942

1.957 1.957 1.963 1.963 1.975 1.976

1.993 1.993 2.029 2.042 1.866 1.872

1.891 1.897 1.899 1.910 1.911 1.916

1.927 1.931 1.935 1.939 1.939 1.940

1.943 1.948 1.953 1.957 1.959 1.962

5.4.3
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1.966 1.968 1.969 1.977 1.981 1.981

1.995 1.995 1.865 1.995 1.877 1.900

1.919 1.936 1.941 1.955 1.963 1.973

1.988 2.017     

Figure  shows the distribution of the experimental results as a histogram overlaid with the theoretical normal distribution
calculated assuming that  is equal to the mean of the 62 samples and that  is equal to the standard deviation of the 62 samples.
Both the experimental data and theoretical normal distribution suggest that most values of x are between 1.85 and 2.03.

# enter the data into a vector with the name cuxs

cuxs = c(1.764, 1.920, 1.957, 1.993, 1.891, 1.927, 1.943, 1.966, 1.995, 1.919, 1.988,
1.838, 1.922, 1.957, 1.993, 1.897, 1.931, 1.948, 1.968, 1.995, 1.936, 2.017, 1.890,
1.936, 1.963, 2.029, 1.899, 1.935, 1.953, 1.969, 1.865, 1.941, 1.891, 1.937, 1.963,
2.042, 1.910, 1.939, 1.957, 1.977, 1.995, 1.955, 1.906, 1.941, 1.975, 1.866, 1.911,
1.939, 1.959, 1.981, 1.877, 1.963, 1.908, 1.942, 1.976, 1.872, 1.916, 1.940, 1.962,
1.981, 1.900, 1.973)

# sequence of ratios over which to display experimental results and theoretical
distribution

x = seq(1.7,2.2,0.02)

# create histogram for experimental results

cuxs_hist = hist(cuxs, breaks = x, col = c("blue", "lightblue"), xlab = "value for
x", ylab = "frequency", main = NULL)

# calculate theoretical results for normal distribution using the mean and the
standard deviation

# for the 62 samples as predictors for mu and sigma

cuxs_theo = dnorm(cuxs_hist$mids, mean = mean(cuxs), sd = sd(cuxs))

# overlay results for theoretical normal distribution

points(cuxs_hist$mids, cuxs_theo, pch = 19)

5.4.4
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Figure : Distribution of results for ratio of Cu-to-S in preparations of copper sulfide. The individual bars show the simulated
results and the individual dots show the expected results.

This page titled 5.4: Modeling Distributions Using R is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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5.5: Exercises
Behavioral and ecological factors influence dispersion. Uniform patterns of dispersion are generally a result of interactions between
individuals like competition and territoriality.

1. In ecology a uniform distribution of an organism may result when the organism exhibits territorial behavior that keeps most
organisms. In one study, a portion of a field was divided into a  grid and a count made of the number of organisms in each
unit of the grid giving the results seen below.

number of organisms in plot frequency

2 58

3 51

4 60

5 64

6 54

7 52

8 61

Create a plot similar to that in 5.4.1 and comment on your results.

2. Chlorine has two isotopes, Cl (75.8% abundance) and Cl (24.2% abundance). Create a plot similar to that in Figure 5.4.2 for
the molecule PCB 77, a chlorinated compound with the formula C H Cl and comment on your results.

3. A radioactive decay process has a background level of 3 emissions per minute and follows a Poisson distribution. The number of
emissions per minute was monitored for one hour giving the following results

emissions per minute frequency of event

0 3

1 9

2 13

3 16

4 9

5 5

6 3

7 1

8 1

9 0

10 0

Use this data to create a plot similar to that in Figure 5.4.3 and comment on your results

4. Using the penny data from Exercise 3.4.5, create a plot similar to that in Figure 5.4.4 using all pennies minted after 1982 and
comment on your results.

5. Use this link to access a case study on data analysis and complete the first four investigations included in Part IV: Ways to Model
Data.

20 ×\20

35 37

12 6 4 
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CHAPTER OVERVIEW

6: Uncertainty of Data
In Chapter 5 we examined four ways in which the individual samples we collect and analyze are distributed about a central value: a
uniform distribution, a binomial distribution, a Poisson distribution, and a normal distribution. We also learned that regardless of
how individual samples are distributed, the distribution of averages for multiple samples often follows a normal distribution. This
tendency for a normal distribution to emerge when we report averages for multiple samples is known as the central limit theorem.
In this chapter we look more closely at the normal distribution—examining some of its properties—and consider how we can use
these properties to say something more meaningful about our data than simply reporting a mean and a standard deviation.

6.1: Properties of a Normal Distribution
6.2: Confidence Intervals
6.3: Using R to Model Properties of a Normal Distribution
6.4: Using R to Find Confidence Intervals
6.5: Exercises
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6.1: Properties of a Normal Distribution
Mathematically a normal distribution is defined by the equation

where  is the probability of obtaining a result, , from a population with a known mean, , and a known standard deviation, 
. Figure  shows the normal distribution curves for  with standard deviations of 5, 10, and 20.

Figure : Three examples of normal distribution curves. Although the height and width are affected by , the area under each
curve is the same.

Because the equation for a normal distribution depends solely on the population’s mean, , and its standard deviation, , the
probability that a sample drawn from a population has a value between any two arbitrary limits is the same for all populations. For
example, Figure  shows that 68.26% of all samples drawn from a normally distributed population have values within the range

, and only 0.14% have values greater than .

P (x) =
1

2πσ2
− −−−

√
e−(x−μ /(2 ))

2
σ2

P (x) x μ

σ 6.1.1 μ = 0
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Figure : Normal distribution curve for  and  showing area under the curve for various values of  in .

This feature of a normal distribution—that the area under the curve is the same for all values of —allows us to create a probability
table (see Appendix 1) based on the relative deviation, , between a limit, x, and the mean, .

The value of  gives the area under the curve between that limit and the distribution’s closest tail, as shown in Figure .

Figure : Normal distribution curve for  and  showing (on the left) the area under the curve for  and (on
the right for .

6.1.2 μ = 0 σ = 1 z μ ± zσ

σ

z μ

z =
x −μ

σ

z 6.1.3

6.1.3 μ = 0 σ = 1 z = −1.5
z = +0.5
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Suppose we know that  is 5.5833 ppb Pb and that  is 0.0558 ppb Pb for a particular standard reference material (SRM).
What is the probability that we will obtain a result that is greater than 5.650 ppb if we analyze a single, random sample drawn
from the SRM?

Solution

Figure  shows the normal distribution curve given values of 5.5833 ppb Pb for  and of 0.0558 ppb Pb . The shaded
area in the figures is the probability of obtaining a sample with a concentration of Pb greater than 5.650 ppm. To determine the
probability, we first calculate 

Next, we look up the probability in Appendix 1 for this value of , which is the average of 0.1170 (for ) and 0.1151
(for ), or a probability of 0.1160; thus, we expect that 11.60% of samples will provide a result greater than 5.650 ppb
Pb.

Figure : Normal distribution curve for the amount of lead in a standard reference with  ppb and  ppb.
The shaded area shows those results for which the concentration of lead exceeds 5.650 ppb.

Example  considers a single limit—the probability that a result exceeds a single value. But what if we want to determine
the probability that a sample has between 5.580 g Pb and 5.625 g Pb?

Solution

In this case we are interested in the shaded area shown in Figure . First, we calculate  for the upper limit

and then we calculate  for the lower limit

 Example 6.1.1

μ σ

6.1.4 μ σ

z

z = = = 1.195
x −μ

σ

5.650 −5.5833

0.0558

z z = 1.19
z = 1.20

6.1.4 μ = 5.5833 σ = 0.0558

 Example 6.1.2

6.1.1

6.1.5 z

z = = 0.747
5.625 −5.5833

0.0558

z

z = = −0.059
5.580 −5.5833

0.0558
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Then, we look up the probability in Appendix 1 that a result will exceed our upper limit of 5.625, which is 0.2275, or 22.75%,
and the probability that a result will be less than our lower limit of 5.580, which is 0.4765, or 47.65%. The total unshaded area
is 71.4% of the total area, so the shaded area corresponds to a probability of

Figure : Normal distribution curve for the amount of lead in a standard reference with  ppb and  ppb.
The shaded area shows those results for which the concentration of lead is more than 5.580 ppb and less than 5.625 ppb.

This page titled 6.1: Properties of a Normal Distribution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David Harvey.

100.00 −22.75 −47.65 = 100.00 −71.40 = 29.6%

6.1.5 μ = 5.5833 σ = 0.0558
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6.2: Confidence Intervals
In the previous section, we learned how to predict the probability of obtaining a particular outcome if our data are normally
distributed with a known  and a known . For example, we estimated that 11.60% of samples drawn at random from a standard
reference material will have a concentration of Pb greater than 5.650 ppb given a  of 5.5833 ppb and a  of 0.0558 ppb. In
essence, we determined how many standard deviations 5.650 is from  and used this to define the probability given the standard
area under a normal distribution curve.

We can look at this in a different way by asking the following question: If we collect a single sample at random from a population
with a known  and a known , within what range of values might we reasonably expect to find the sample’s result 95% of the
time? Rearranging the equation

and solving for  gives

where a  of 1.96 corresponds to 95% of the area under the curve; we call this a 95% confidence interval for a single sample.

It generally is a poor idea to draw a conclusion from the result of a single experiment; instead, we usually collect several samples
and ask the question this way: If we collect  random samples from a population with a known  and a known , within what
range of values might we reasonably expect to find the mean of these samples 95% of the time?

We might reasonably expect that the standard deviation for the mean of several samples is smaller than the standard deviation for a
set of individual samples; indeed it is and it is given as

where  is called the standard error of the mean. For example, if we collect three samples from the standard reference material

described above, then we expect that the mean for these three samples will fall within a range

that is  ppb around , a range that is smaller than that of  ppb when we analyze individual samples. Note that the
relative value to us of increasing the sample’s size diminishes as  increases because of the square root term, as shown in Figure 

.
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Figure : Plot showing how the standard error of the mean varies with the size of the sample. The value for  is 10.

Our treatment thus far assumes we know  and  for the parent population, but we rarely know these values; instead, we examine
samples drawn from the parent population and ask the following question: Given the sample’s mean, , and its standard deviation, 

, what is our best estimate of the population’s mean, , and its standard deviation, .

To make this estimate, we replace the population’s standard deviation, , with the standard deviation, , for our samples, replace
the population’s mean, , with the mean, , for our samples, replace  with , where the value of  depends on the number of
samples, 

and then rearrange the equation to solve for .

We call this a confidence interval. Values for  are available in tables (see Appendix 2) and depend on the probability level, ,
where  is the confidence level, and the degrees of freedom, ; note that for any probability level,  as 

.

We need to give special attention to what this confidence interval means and to what it does not mean:

It does not mean that there is a 95% probability that the population’s mean is in the range  because our
measurements may be biased or the normal distribution may be inappropriate for our system.
It does provide our best estimate of the population’s mean,  given our analysis of  samples drawn at random from the parent
population; a different sample, however, will give a different confidence interval and, therefore, a different estimate for .

This page titled 6.2: Confidence Intervals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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6.3: Using R to Model Properties of a Normal Distribution
Given a mean and a standard deviation, we can use R’s dnorm() function to plot the corresponding normal distribution

dnorm(x, mean, sd)

where mean is the value for , sd is the value for , and x is a vector of values that spans the range of x-axis values we want
to plot. 

# define the mean and the standard deviation

mu = 12 
sigma = 2

# create vector for values of x that span a sufficient range of

# standard deviations on either side of the mean; here we use values

# for x that are four standard deviations on either side of the mean

x = seq(4, 20, 0.01)

# use dnorm() to calculate probabilities for each x

y = dnorm(x, mean = mu, sd = sigma)

# plot normal distribution curve

plot(x, y, type = "l", lwd = 2, col = "blue", ylab = "probability", xlab = "x")

Figure : Plot showing the normal distribution curve for a population with  and .

To annotate the normal distribution curve to show an area of interest to us, we use R’s polygon()  function, as illustrated here
for the normal distribution curve in Figure , showing the area that includes values between 8 and 15.

# define the mean and the standard deviation

mu = 12 
sigma = 2

# create vector for values of x that span a sufficient range of

# standard deviations on either side of the mean; here we use values

μ σ

6.3.1 μ = 12 σ = 2

6.3.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/220901?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/06%3A_Uncertainty_of_Data/6.03%3A_Using_R_to_Model_Properties_of_a_Normal_Distribution


6.3.2 https://chem.libretexts.org/@go/page/220901

# for x that are four standard deviations on either side of the mean

x = seq(4, 20, 0.01)

# use dnorm() to calculate probabilities for each x

y = dnorm(x, mean = mu, sd = sigma)

# plot normal distribution curve; the options xaxt = "i" and yaxt = "i"

# force the axes to begin and end at the limits of the data

plot(x, y, type = "l", lwd = 2, col = "ivory4", ylab = "probability", xlab = "x",
xaxs = "i", yaxs = "i")

# create vector for values of x between a lower limit of 8 and an upper limit of 15 
lowlim = 8

uplim = 15

dx = seq(lowlim, uplim, 0.01)

# use polygon to fill in area; x and y are vectors of x,y coordinates

# that define the shape that is then filled using the desired color

polygon(x = c(lowlim, dx, uplim), y = c(0, dnorm(dx, mean = 12, sd = 2), 0),
border = NA, col = "ivory4")

Figure : Plot showing the normal distribution curve for a population with  and , and highlighting probability of
obtaining a result between 8 and 15.

To find the probability of obtaining a value within the shaded are, we use R’s pnorm() command

pnorm(q, mean, sd, lower.tail)

where q is a limit of interest, mean is the value for , sd is the value for , and lower.tail is a logical value that
indicates whether we return the probability for values below the limit ( lower.tail = TRUE ) or for values above the limit 
(lower.tail = FALSE ). For example, to find the probability of obtaining a result between 8 and 15, given  and 

, we use the following lines of code.

# find probability of obtaining a result greater than 15

prob_greater15 = pnorm(15, mean = 12, sd = 2, lower.tail = FALSE)

6.3.2 μ = 12 σ = 2

μ σ

μ = 12

σ = 2
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# find probability of obtaining a result less than 8

prob_less8 = pnorm(8, mean = 12, sd = 2, lower.tail = TRUE)

# find probability of obtaining a result between 8 and 15

prob_between = 1 - prob_greater15 - prob_less8 # display results

prob_greater15

[1] 0.0668072

prob_less8

[1] 0.02275013

prob_between

[1] 0.9104427

Thus, 91.04% of values fall between the limits of 8 and 15.

This page titled 6.3: Using R to Model Properties of a Normal Distribution is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by David Harvey.
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6.4: Using R to Find Confidence Intervals
The confidence interval for a population’s mean, , given an experimental mean, , for  samples is defined as

if we know the population's standard deviation, , and as

if we assume that the sample's standard deviation, , is a reasonable predictor of the population's standard deviation. To find values
for  we use R's qnorm () function, which takes the form

qnorm(p)

where p is the probability on one side of the normal distribution curve that a result is not included within the confidence interval.
For a 95% confidence interval,  because the total probability of 0.05 is equally divided between both sides of
the normal distribution. To find  we use R's qt () function, which takes the form

qt(p, df)

where p is defined as above and where df is the degrees of freedom or .

For example, if we have a mean of  for 10 samples with a known standard deviation of , then for the 95% confidence
interval the value of  and the resulting confidence interval are

# for a 95% confidence interval, alpha is 0.05 and the probability, p, on either end
of the distribution is 0.025;

# the value of z is positive on one side of the normal distribution and negative on
the other side;

# as we are interested in just the magnitude, not the sign, we use the abs() function
to return the absolute value

z = qnorm(0.025) 
conf_int_pop = abs(z * 2/sqrt(10)) 
conf_int_pop

[1] 1.23959

Adding and subtracting this value from the mean defines the confidence interval, which, in this case is .

If we have a mean of  for 10 samples with an experimental standard deviation of , then for the 95% confidence
interval the value of  and the resulting confidence interval are

t = qt(p = 0.025, 9) 
conf_int_samp = abs(t * 2/sqrt(10)) 
conf_int_samp

[1] 1.430714

Adding and subtracting this value from the mean defines the confidence interval, which, in this case is .

This page titled 6.4: Using R to Find Confidence Intervals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David Harvey.
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6.5: Exercises
1. Berglund and Wichardt investigated the quantitative determination of Cr in high-alloy steels using a potentiometric titration of
Cr(VI). Before the titration, samples of the steel were dissolved in acid and the chromium oxidized to Cr(VI) using peroxydisulfate.
Shown here are the results ( as %w/w Cr) for the analysis of a reference steel as reported in Berglund, B.; Wichardt, C. Anal. Chim.
Acta 1990, 236, 399–410.

16.968 16.922 16.840 16.883

16.887 16.977 16.857 16.728

Calculate the mean, the standard deviation, and the 95% confidence interval about the mean. What does this confidence interval
mean?

2. In Exercise 4.3.2 you determined the mean and the variance for 10 separate tablets of Excedrin Extra Strength Pain Reliever
gives the following results (in mg). The data in this problem are from Simonian, M. H.; Dinh, S.; Fray, L. A. Spectroscopy 1993,
8(6), 37–47.

224.3 240.4 246.3 239.4 253.1

261.7 229.4 255.5 235.5 249.7

Assuming that  and  are good approximations for  and for , and that the population is normally distributed, what
percentage of the tablets are expected to contain more than the standard amount of 250 mg acetaminophen per tablet?.

3. In Exercise 4.3.3 you determined the mean and the standard deviation for the amount of morphine hydrochloride in each of four
different nominal dosages levels using data from Salem, I. I.; Galan, A. C. Anal. Chim. Acta 1993, 283, 334–337. All results are in
mg/tablet.

100-mg tablets 60-mg tablets 30-mg tablets 10-mg tablets

99.17 54.21 28.51 9.06

94.31 55.62 26.25 8.83

95.92 57.40 25.92 9.08

94.55 57.51 28.62

93.83 52.59 24.93

For each dosage level, and assuming that  and  are good approximations for  and for , and that the population is normally,
what percentage of tablets contain more than the nominal amount of mophine hydrochloride per tablet?

4. Use this link to access a case study on data analysis and complete the last three investigations included in Part IV: Ways to
Model Data and the first three investigations included in Part V: Ways to Draw Conclusions from Data.

This page titled 6.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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CHAPTER OVERVIEW

7: Testing the Significance of Data
A confidence interval is a useful way to report the result of an analysis because it sets limits on the expected result. In the absence
of determinate error, or bias, a confidence interval based on a sample’s mean indicates the range of values in which we expect to
find the population’s mean. When we report a 95% confidence interval for the mass of a penny as 3.117 g ± 0.047 g, for example,
we are stating that there is only a 5% probability that the penny’s expected mass is less than 3.070 g or more than 3.164 g.

Because a confidence interval is a statement of probability, it allows us to consider comparative questions, such as these:

“Are the results for a newly developed method to determine cholesterol in blood significantly different from those obtained using a
standard method?”

“Is there a significant variation in the composition of rainwater collected at different sites downwind from a coal-burning utility
plant?”

In this chapter we introduce a general approach that uses experimental data to ask and answer such questions, an approach we call
significance testing.

The reliability of significance testing recently has received much attention—see Nuzzo, R. “Scientific Method: Statistical Errors,”
Nature, 2014, 506, 150–152 for a general discussion of the issues—so it is appropriate to begin this chapter by noting the need to
ensure that our data and our research question are compatible so that we do not read more into a statistical analysis than our data
allows; see Leek, J. T.; Peng, R. D. “What is the Question? Science, 2015, 347, 1314-1315 for a useful discussion of six common
research questions.

In the context of analytical chemistry, significance testing often accompanies an exploratory data analysis

"Is there a reason to suspect that there is a difference between these two analytical methods when applied to a common sample?"

or an inferential data analysis.

"Is there a reason to suspect that there is a relationship between these two independent measurements?"

A statistically significant result for these types of analytical research questions generally leads to the design of additional
experiments that are better suited to making predictions or to explaining an underlying causal relationship. A significance test is the
first step toward building a greater understanding of an analytical problem, not the final answer to that problem!

7.1: Significance Testing
7.2: Significance Tests for Normal Distributions
7.3: Analysis of Variance
7.4: Non-Parametric Significance Tests
7.5: Using R for Significance Testing and Analysis of Variance
7.6: Exercises

This page titled 7: Testing the Significance of Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
David Harvey.
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7.1: Significance Testing
Let’s consider the following problem. To determine if a medication is effective in lowering blood glucose concentrations, we collect
two sets of blood samples from a patient. We collect one set of samples immediately before we administer the medication, and we
collect the second set of samples several hours later. After we analyze the samples, we report their respective means and variances.
How do we decide if the medication was successful in lowering the patient’s concentration of blood glucose?

One way to answer this question is to construct a normal distribution curve for each sample, and to compare the two curves to each
other. Three possible outcomes are shown in Figure . In Figure , there is a complete separation of the two normal
distribution curves, which suggests the two samples are significantly different from each other. In Figure , the normal
distribution curves for the two samples almost completely overlap each other, which suggests the difference between the samples is
insignificant. Figure , however, presents us with a dilemma. Although the means for the two samples seem different, the
overlap of their normal distribution curves suggests that a significant number of possible outcomes could belong to either
distribution. In this case the best we can do is to make a statement about the probability that the samples are significantly different
from each other.

Figure : Three examples of the possible relationships between the normal distribution curves for two samples. In (a) the curves
do not overlap, which suggests the samples are significantly different from each other. In (b) the two curves are almost identical,
suggesting the samples are indistinguishable. The partial overlap of the curves in (c) means that the best we can do is evaluate the
probability that there is a difference between the samples.

The process by which we determine the probability that there is a significant difference between two samples is called significance
testing or hypothesis testing. Before we discuss specific examples let's first establish a general approach to conducting and
interpreting a significance test.

Constructing a Significance Test 
The purpose of a significance test is to determine whether the difference between two or more results is sufficiently large that we are
comfortable stating that the difference cannot be explained by indeterminate errors. The first step in constructing a significance test
is to state the problem as a yes or no question, such as

“Is this medication effective at lowering a patient’s blood glucose levels?”

A null hypothesis and an alternative hypothesis define the two possible answers to our yes or no question. The null hypothesis, H , is
that indeterminate errors are sufficient to explain any differences between our results. The alternative hypothesis, H , is that the
differences in our results are too great to be explained by random error and that they must be determinate in nature. We test the null
hypothesis, which we either retain or reject. If we reject the null hypothesis, then we must accept the alternative hypothesis and
conclude that the difference is significant.

Failing to reject a null hypothesis is not the same as accepting it. We retain a null hypothesis because we have insufficient evidence
to prove it incorrect. It is impossible to prove that a null hypothesis is true. This is an important point and one that is easy to forget.
To appreciate this point let’s use this data for the mass of 100 circulating United States pennies.

Table . Masses for a Sample of 100 Circulating U. S. Pennies

Penny Weight (g) Penny Weight (g) Penny Weight (g) Penny Weight (g)

1 3.126 26 3.073 51 3.101 76 3.086

2 3.140 27 3.084 52 3.049 77 3.123

3 3.092 28 3.148 53 3.082 78 3.115

4 3.095 29 3.047 54 3.142 79 3.055
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5 3.080 30 3.121 55 3.082 80 3.057

6 3.065 31 3.116 56 3.066 81 3.097

7 3.117 32 3.005 57 3.128 82 3.066

8 3.034 33 3.115 58 3.112 83 3.113

9 3.126 34 3.103 59 3.085 84 3.102

10 3.057 35 3.086 60 3.086 85 3.033

11 3.053 36 3.103 61 3.084 86 3.112

12 3.099 37 3.049 62 3.104 87 3.103

13 3.065 38 2.998 63 3.107 88 3.198

14 3.059 39 3.063 64 3.093 89 3.103

15 3.068 40 3.055 65 3.126 90 3.126

16 3.060 41 3.181 66 3.138 91 3.111

17 3.078 42 3.108 67 3.131 92 3.126

18 3.125 43 3.114 68 3.120 93 3.052

19 3.090 44 3.121 69 3.100 94 3.113

20 3.100 45 3.105 70 3.099 95 3.085

21 3.055 46 3.078 71 3.097 96 3.117

22 3.105 47 3.147 72 3.091 97 3.142

23 3.063 48 3.104 73 3.077 98 3.031

24 3.083 49 3.146 74 3.178 99 3.083

25 3.065 50 3.095 75 3.054 100 3.104

After looking at the data we might propose the following null and alternative hypotheses.

H : The mass of a circulating U.S. penny is between 2.900 g and 3.200 g

H : The mass of a circulating U.S. penny may be less than 2.900 g or more than 3.200 g

To test the null hypothesis we find a penny and determine its mass. If the penny’s mass is 2.512 g then we can reject the null
hypothesis and accept the alternative hypothesis. Suppose that the penny’s mass is 3.162 g. Although this result increases our
confidence in the null hypothesis, it does not prove that the null hypothesis is correct because the next penny we sample might weigh
less than 2.900 g or more than 3.200 g.

After we state the null and the alternative hypotheses, the second step is to choose a confidence level for the analysis. The confidence
level defines the probability that we will incorrectly reject the null hypothesis when it is, in fact, true. We can express this as our
confidence that we are correct in rejecting the null hypothesis (e.g. 95%), or as the probability that we are incorrect in rejecting the
null hypothesis. For the latter, the confidence level is given as , where

For a 95% confidence level,  is 0.05.

The third step is to calculate an appropriate test statistic and to compare it to a critical value. The test statistic’s critical value defines
a breakpoint between values that lead us to reject or to retain the null hypothesis, which is the fourth, and final, step of a significance
test. As we will see in the sections that follow, how we calculate the test statistic depends on what we are comparing.

The four steps for a statistical analysis of data using a significance test:
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1. Pose a question, and state the null hypothesis, H , and the alternative hypothesis, H .
2. Choose a confidence level for the statistical analysis.
3. Calculate an appropriate test statistic and compare it to a critical value.
4. Either retain the null hypothesis, or reject it and accept the alternative hypothesis.

One-Tailed and Two-tailed Significance Tests 
Suppose we want to evaluate the accuracy of a new analytical method. We might use the method to analyze a Standard Reference
Material that contains a known concentration of analyte, . We analyze the standard several times, obtaining a mean value, , for
the analyte’s concentration. Our null hypothesis is that there is no difference between  and 

If we conduct the significance test at , then we retain the null hypothesis if a 95% confidence interval around  contains .
If the alternative hypothesis is

then we reject the null hypothesis and accept the alternative hypothesis if  lies in the shaded areas at either end of the sample’s
probability distribution curve (Figure ). Each of the shaded areas accounts for 2.5% of the area under the probability
distribution curve, for a total of 5%. This is a two-tailed significance test because we reject the null hypothesis for values of  at
either extreme of the sample’s probability distribution curve.

Figure : Examples of (a) two-tailed, and (b, c) one-tailed, significance test of  and . The probability distribution curves,
which are normal distributions, are based on the sample’s mean and standard deviation. For  = 0.05, the blue areas account for 5%
of the area under the curve. If the value of  falls within the blue areas, then we reject the null hypothesis and accept the alternative
hypothesis. We retain the null hypothesis if the value of  falls within the unshaded area of the curve.

We can write the alternative hypothesis in two additional ways

rejecting the null hypothesis if  falls within the shaded areas shown in Figure  or Figure , respectively. In each case the
shaded area represents 5% of the area under the probability distribution curve. These are examples of a one-tailed significance test.

For a fixed confidence level, a two-tailed significance test is the more conservative test because rejecting the null hypothesis requires
a larger difference between the results we are comparing. In most situations we have no particular reason to expect that one result
must be larger (or must be smaller) than the other result. This is the case, for example, when we evaluate the accuracy of a new
analytical method. A two-tailed significance test, therefore, usually is the appropriate choice.

We reserve a one-tailed significance test for a situation where we specifically are interested in whether one result is larger (or
smaller) than the other result. For example, a one-tailed significance test is appropriate if we are evaluating a medication’s ability to
lower blood glucose levels. In this case we are interested only in whether the glucose levels after we administer the medication are
less than the glucose levels before we initiated treatment. If a patient’s blood glucose level is greater after we administer the
medication, then we know the answer—the medication did not work—and we do not need to conduct a statistical analysis.

Errors in Significance Testing 
Because a significance test relies on probability, its interpretation is subject to error. In a significance test,  defines the probability
of rejecting a null hypothesis that is true. When we conduct a significance test at , there is a 5% probability that we will
incorrectly reject the null hypothesis. This is known as a type 1 error, and its risk is always equivalent to . A type 1 error in a two-
tailed or a one-tailed significance tests corresponds to the shaded areas under the probability distribution curves in Figure .
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A second type of error occurs when we retain a null hypothesis even though it is false. This is a type 2 error, and the probability of its
occurrence is . Unfortunately, in most cases we cannot calculate or estimate the value for . The probability of a type 2 error,
however, is inversely proportional to the probability of a type 1 error.

Minimizing a type 1 error by decreasing  increases the likelihood of a type 2 error. When we choose a value for  we must
compromise between these two types of error. Most of the examples in this text use a 95% confidence level ( ) because this
usually is a reasonable compromise between type 1 and type 2 errors for analytical work. It is not unusual, however, to use a more
stringent (e.g. ) or a more lenient (e.g. ) confidence level when the situation calls for it.

This page titled 7.1: Significance Testing is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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7.2: Significance Tests for Normal Distributions
A normal distribution is the most common distribution for the data we collect. Because the area between any two limits of a normal
distribution curve is well defined, it is straightforward to construct and evaluate significance tests.

You can review the properties of a normal distribution in Chapter 5 and Chapter 6.

Comparing  to  

One way to validate a new analytical method is to analyze a sample that contains a known amount of analyte, . To judge the
method’s accuracy we analyze several portions of the sample, determine the average amount of analyte in the sample, , and use a
significance test to compare  to . The null hypothesis is that the difference between  and  is explained by indeterminate
errors that affect our determination of . The alternative hypothesis is that the difference between  and  is too large to be
explained by indeterminate error.

The test statistic is t , which we substitute into the confidence interval for 

Rearranging this equation and solving for 

gives the value for  when  is at either the right edge or the left edge of the sample's confidence interval (Figure ).

Figure : Relationship between a confidence interval and the result of a significance test. (a) The shaded area under the normal
distribution curve shows the sample’s confidence interval for  based on t . The solid bars in (b) and (c) show the expected
confidence intervals for  explained by indeterminate error given the choice of  and the available degrees of freedom, . For (b)
we reject the null hypothesis because portions of the sample’s confidence interval fall outside the confidence interval explained by
indeterminate error. In the case of (c) we retain the null hypothesis because the confidence interval explained by indeterminate error
completely encompasses the sample’s confidence interval.

To determine if we should retain or reject the null hypothesis, we compare the value of t  to a critical value, , where  is
the confidence level and  is the degrees of freedom for the sample. The critical value  defines the largest confidence
interval explained by indeterminate error. If , then our sample’s confidence interval is greater than that explained by
indeterminate errors (Figure b). In this case, we reject the null hypothesis and accept the alternative hypothesis. If 

, then our sample’s confidence interval is smaller than that explained by indeterminate error, and we retain the null
hypothesis (Figure c). Example  provides a typical application of this significance test, which is known as a t-test of 
to . You will find values for  in Appendix 2.
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Before determining the amount of Na CO  in a sample, you decide to check your procedure by analyzing a standard sample
that is 98.76% w/w Na CO . Five replicate determinations of the %w/w Na CO  in the standard gives the following results

Using , is there any evidence that the analysis is giving inaccurate results?

Solution

The mean and standard deviation for the five trials are

Because there is no reason to believe that the results for the standard must be larger or smaller than , a two-tailed t-test is
appropriate. The null hypothesis and alternative hypothesis are

The test statistic, t , is

The critical value for t(0.05, 4) from Appendix 2 is 2.78. Since t  is greater than t(0.05, 4), we reject the null hypothesis and
accept the alternative hypothesis. At the 95% confidence level the difference between  and  is too large to be explained by
indeterminate sources of error, which suggests there is a determinate source of error that affects the analysis.

There is another way to interpret the result of this t-test. Knowing that t  is 3.91 and that there are 4 degrees of freedom, we
use Appendix 2 to estimate the value of  that corresponds to a t( , 4) of 3.91. From Appendix 2, t(0.02, 4) is 3.75 and t(0.01,
4) is 4.60. Although we can reject the null hypothesis at the 98% confidence level, we cannot reject it at the 99% confidence
level. For a discussion of the advantages of this approach, see J. A. C. Sterne and G. D. Smith “Sifting the evidence—what’s
wrong with significance tests?” BMJ 2001, 322, 226–231.

Earlier we made the point that we must exercise caution when we interpret the result of a statistical analysis. We will keep returning
to this point because it is an important one. Having determined that a result is inaccurate, as we did in Example , the next step
is to identify and to correct the error. Before we expend time and money on this, however, we first should critically examine our
data. For example, the smaller the value of s, the larger the value of t . If the standard deviation for our analysis is unrealistically
small, then the probability of a type 2 error increases. Including a few additional replicate analyses of the standard and reevaluating
the t-test may strengthen our evidence for a determinate error, or it may show us that there is no evidence for a determinate error.

Comparing  to  
If we analyze regularly a particular sample, we may be able to establish an expected variance, , for the analysis. This often is the
case, for example, in a clinical lab that analyzes hundreds of blood samples each day. A few replicate analyses of a single sample
gives a sample variance, s , whose value may or may not differ significantly from .

We can use an F-test to evaluate whether a difference between s  and  is significant. The null hypothesis is  and the
alternative hypothesis is . The test statistic for evaluating the null hypothesis is F , which is given as either

depending on whether s  is larger or smaller than . This way of defining F  ensures that its value is always greater than or
equal to one.

If the null hypothesis is true, then F  should equal one; however, because of indeterminate errors, F , usually is greater than
one. A critical value, , is the largest value of F  that we can attribute to indeterminate error given the specified

 Example 7.2.1

2 3
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significance level, , and the degrees of freedom for the variance in the numerator, , and the variance in the denominator,
. The degrees of freedom for s  is n – 1, where n is the number of replicates used to determine the sample’s variance, and the

degrees of freedom for  is defined as infinity, . Critical values of F for  are listed in Appendix 3 for both one-tailed
and two-tailed F-tests.

A manufacturer’s process for analyzing aspirin tablets has a known variance of 25. A sample of 10 aspirin tablets is selected
and analyzed for the amount of aspirin, yielding the following results in mg aspirin/tablet.

Determine whether there is evidence of a significant difference between the sample’s variance and the expected variance at 
.

Solution

The variance for the sample of 10 tablets is 4.3. The null hypothesis and alternative hypotheses are

and the value for F  is

The critical value for F(0.05, , 9) from Appendix 3 is 3.333. Since F is greater than F(0.05, , 9), we reject the null
hypothesis and accept the alternative hypothesis that there is a significant difference between the sample’s variance and the
expected variance. One explanation for the difference might be that the aspirin tablets were not selected randomly.

Comparing Variances for Two Samples 
We can extend the F-test to compare the variances for two samples, A and B, by rewriting our equation for F  as

defining A and B so that the value of F  is greater than or equal to 1.

The table below shows results for two experiments to determine the mass of a circulating U.S. penny. Determine whether there
is a difference in the variances of these analyses at .

First Experiment Second Experiment

Penny Mass (g) Penny Mass (g)

1 3.080 1 3.052

2 3.094 2 3.141

3 3.107 3 3.083

4 3.056 4 3.083

5 3.112 5 3.048

6 3.174

7 3.198

Solution

α νnum

νden
2

σ2 ∞ α = 0.05

 Example 7.2.2

254 249 252 252 249 249 250 247 251 252

α = 0.05

:  = :  ≠H0 s2 σ2 HA s2 σ2

exp

= = = 5.8Fexp
σ2

s2

25

4.3

∞ exp ∞

exp

=Fexp

s2
A

s2
B

exp

 Example 7.2.3
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The standard deviations for the two experiments are 0.051 for the first experiment (A) and 0.037 for the second experiment (B).
The null and alternative hypotheses are

and the value of F  is

From Appendix 3 the critical value for F(0.05, 6, 4) is 9.197. Because F  < F(0.05, 6, 4), we retain the null hypothesis. There
is no evidence at  to suggest that the difference in variances is significant.

Comparing Means for Two Samples 
Three factors influence the result of an analysis: the method, the sample, and the analyst. We can study the influence of these
factors by conducting experiments in which we change one factor while holding constant the other factors. For example, to
compare two analytical methods we can have the same analyst apply each method to the same sample and then examine the
resulting means. In a similar fashion, we can design experiments to compare two analysts or to compare two samples.

Before we consider the significance tests for comparing the means of two samples, we need to understand the difference between
unpaired data and paired data. This is a critical distinction and learning to distinguish between these two types of data is important.
Here are two simple examples that highlight the difference between unpaired data and paired data. In each example the goal is to
compare two balances by weighing pennies.

Example 1: We collect 10 pennies and weigh each penny on each balance. This is an example of paired data because we use the
same 10 pennies to evaluate each balance.
Example 2: We collect 10 pennies and divide them into two groups of five pennies each. We weigh the pennies in the first group
on one balance and we weigh the second group of pennies on the other balance. Note that no penny is weighed on both
balances. This is an example of unpaired data because we evaluate each balance using a different sample of pennies.

In both examples the samples of 10 pennies were drawn from the same population; the difference is how we sampled that
population. We will learn why this distinction is important when we review the significance test for paired data; first, however, we
present the significance test for unpaired data.

One simple test for determining whether data are paired or unpaired is to look at the size of each sample. If the samples are of
different size, then the data must be unpaired. The converse is not true. If two samples are of equal size, they may be paired or
unpaired.

Unpaired Data 

Consider two analyses, A and B, with means of  and , and standard deviations of s  and s . The confidence intervals for 
and for  are

where n  and n  are the sample sizes for A and for B. Our null hypothesis, , is that any difference between  and 
 is the result of indeterminate errors that affect the analyses. The alternative hypothesis, , is that the difference

between and  is too large to be explained by indeterminate error.

To derive an equation for t , we assume that  equals , and combine the equations for the two confidence intervals
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Solving for  and using a propagation of uncertainty, gives

Finally, we solve for t

and compare it to a critical value, , where  is the probability of a type 1 error, and  is the degrees of freedom.

Thus far our development of this t-test is similar to that for comparing  to , and yet we do not have enough information to
evaluate the t-test. Do you see the problem? With two independent sets of data it is unclear how many degrees of freedom we have.

Suppose that the variances  and  provide estimates of the same . In this case we can replace  and  with a pooled
variance, , that is a better estimate for the variance. Thus, our equation for  becomes

where s , the pooled standard deviation, is

The denominator of this equation shows us that the degrees of freedom for a pooled standard deviation is , which also
is the degrees of freedom for the t-test. Note that we lose two degrees of freedom because the calculations for  and  require
the prior calculation of  amd .

So how do you determine if it is okay to pool the variances? Use an F-test.

If  and  are significantly different, then we calculate t  using the following equation. In this case, we find the degrees of
freedom using the following imposing equation.

Because the degrees of freedom must be an integer, we round to the nearest integer the value of  obtained from this equation.

The equation above for the degrees of freedom is from Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 2nd Ed.,
Ellis-Horward: Chichester, UK, 1988. In the 6th Edition, the authors note that several different equations have been suggested
for the number of degrees of freedom for t when s  and s  differ, reflecting the fact that the determination of degrees of
freedom an approximation. An alternative equation—which is used by statistical software packages, such as R, Minitab, Excel
—is
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For typical problems in analytical chemistry, the calculated degrees of freedom is reasonably insensitive to the choice of
equation.

Regardless of whether how we calculate t , we reject the null hypothesis if t  is greater than  and retain the null
hypothesis if t  is less than or equal to .

Example  provides results for two experiments to determine the mass of a circulating U.S. penny. Determine whether
there is a difference in the means of these analyses at .

Solution

First we use an F-test to determine whether we can pool the variances. We completed this analysis in Example , finding
no evidence of a significant difference, which means we can pool the standard deviations, obtaining

with 10 degrees of freedom. To compare the means we use the following null hypothesis and alternative hypotheses

Because we are using the pooled standard deviation, we calculate t  as

The critical value for t(0.05, 10), from Appendix 2, is 2.23. Because t  is less than t(0.05, 10) we retain the null hypothesis.
For  we do not have evidence that the two sets of pennies are significantly different.

One method for determining the %w/w Na CO  in soda ash is to use an acid–base titration. When two analysts analyze the
same sample of soda ash they obtain the results shown here.

Analyst A: 

Analyst B: 

Determine whether the difference in the mean values is significant at .

Solution

We begin by reporting the mean and standard deviation for each analyst.

To determine whether we can use a pooled standard deviation, we first complete an F-test using the following null and
alternative hypotheses.

Calculating F , we obtain a value of

Because F  is larger than the critical value of 7.15 for F(0.05, 5, 5) from Appendix 3, we reject the null hypothesis and accept
the alternative hypothesis that there is a significant difference between the variances; thus, we cannot calculate a pooled
standard deviation.

exp exp t(α, ν)
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To compare the means for the two analysts we use the following null and alternative hypotheses.

Because we cannot pool the standard deviations, we calculate t  as

and calculate the degrees of freedom as

From Appendix 2, the critical value for t(0.05, 5) is 2.57. Because t  is greater than t(0.05, 5) we reject the null hypothesis
and accept the alternative hypothesis that the means for the two analysts are significantly different at .

Paired Data 

Suppose we are evaluating a new method for monitoring blood glucose concentrations in patients. An important part of evaluating
a new method is to compare it to an established method. What is the best way to gather data for this study? Because the variation in
the blood glucose levels amongst patients is large we may be unable to detect a small, but significant difference between the
methods if we use different patients to gather data for each method. Using paired data, in which the we analyze each patient’s blood
using both methods, prevents a large variance within a population from adversely affecting a t-test of means.

Typical blood glucose levels for most non-diabetic individuals ranges between 80–120 mg/dL (4.4–6.7 mM), rising to as high
as 140 mg/dL (7.8 mM) shortly after eating. Higher levels are common for individuals who are pre-diabetic or diabetic.

When we use paired data we first calculate the individual differences, d , between each sample's paired resykts. Using these
individual differences, we then calculate the average difference, , and the standard deviation of the differences, s . The null
hypothesis, , is that there is no difference between the two samples, and the alternative hypothesis, , is that
the difference between the two samples is significant.

The test statistic, t , is derived from a confidence interval around 

where n is the number of paired samples. As is true for other forms of the t-test, we compare t  to , where the degrees of
freedom, , is n – 1. If t  is greater than , then we reject the null hypothesis and accept the alternative hypothesis. We
retain the null hypothesis if t  is less than or equal to t(a, o). This is known as a paired t-test.

Marecek et. al. developed a new electrochemical method for the rapid determination of the concentration of the antibiotic
monensin in fermentation vats [Marecek, V.; Janchenova, H.; Brezina, M.; Betti, M. Anal. Chim. Acta 1991, 244, 15–19]. The
standard method for the analysis is a test for microbiological activity, which is both difficult to complete and time-consuming.
Samples were collected from the fermentation vats at various times during production and analyzed for the concentration of
monensin using both methods. The results, in parts per thousand (ppt), are reported in the following table.

Sample Microbiological Electrochemical

1 129.5 132.3

:  = :  ≠H0 X¯ ¯¯̄
A X¯ ¯¯̄

B HA X¯ ¯¯̄
A X¯ ¯¯̄

B

exp

= = 4.62texp
|86.83 −82.71|

+
(0.32)2

6

(2.16)2

6

− −−−−−−−−−−
√

ν = −2 = 5.3 ≈ 5

( + )
(0.32)

2

6

(2.16)
2

6

2

+
( )

(0.32)2

6

2

6+1

( )
(2.16)2

6

2

6+1

exp
α = 0.05

 Note

i

d
¯̄̄

d
: d = 0H0 : d ≠ 0HA

exp d
¯̄̄

=texp
| |d
¯̄̄

n−−√

sd

exp t(α, ν)
ν exp t(α, ν)

exp

 Example 7.2.6

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/221819?pdf


7.2.8 https://chem.libretexts.org/@go/page/221819

2 89.6 91.0

3 76.6 73.6

4 52.2 58.2

5 110.8 104.2

6 50.4 49.9

7 72.4 82.1

8 141.4 154.1

9 75.0 73.4

10 34.1 38.1

11 60.3 60.1

Is there a significant difference between the methods at ?

Solution

Acquiring samples over an extended period of time introduces a substantial time-dependent change in the concentration of
monensin. Because the variation in concentration between samples is so large, we use a paired t-test with the following null
and alternative hypotheses.

Defining the difference between the methods as

we calculate the difference for each sample.

sample 1 2 3 4 5 6 7 8 9 10 11

2.8 1.4 –3.0 6.0 –6.6 –0.5 9.7 12.7 –1.6 4.0 –0.2

The mean and the standard deviation for the differences are, respectively, 2.25 ppt and 5.63 ppt. The value of t  is

which is smaller than the critical value of 2.23 for t(0.05, 10) from Appendix 2. We retain the null hypothesis and find no
evidence for a significant difference in the methods at .

One important requirement for a paired t-test is that the determinate and the indeterminate errors that affect the analysis must be
independent of the analyte’s concentration. If this is not the case, then a sample with an unusually high concentration of analyte
will have an unusually large d . Including this sample in the calculation of  and s  gives a biased estimate for the expected mean
and standard deviation. This rarely is a problem for samples that span a limited range of analyte concentrations, such as those in
Example  or Exercise . When paired data span a wide range of concentrations, however, the magnitude of the
determinate and indeterminate sources of error may not be independent of the analyte’s concentration; when true, a paired t-test
may give misleading results because the paired data with the largest absolute determinate and indeterminate errors will dominate .
In this situation a regression analysis, which is the subject of the next chapter, is more appropriate method for comparing the data.

The importance of distinguishing between paired and unpaired data is worth examining more closely. The following is data
from some work I completed with a colleague in which we were looking at concentration of Zn in Lake Erie at the air-water
interface and the sediment-water interface.

α = 0.05
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sample site ppm Zn at air-water interface ppm Zn at the sediment-water interface

1 0.430 0.415

2 0.266 0.238

3 0.457 0.390

4 0.531 0.410

5 0.707 0.605

6 0.716 0.609

The mean and the standard deviation for the ppm Zn at the air-water interface are 0.5178 ppm and 0.01732 ppm, and the mean
and the standard deviation for the ppm Zn at the sediment-water interface are 0.4445 ppm and 0.1418 ppm. We can use these
values to draw normal distributions for both by letting the means and the standard deviations for the samples,  and , serve
as estimates for the means and the standard deviations for the population,  and . As we see in the following figure

the two distributions overlap strongly, suggesting that a t-test of their means is not likely to find evidence of a difference. And
yet, we also see that for each site, the concentration of Zn at the sediment-water interface is less than that at the air-water
interface. In this case, the difference between the concentration of Zn at individual sites is sufficiently large that it masks our
ability to see the difference between the two interfaces.

If we take the differences between the air-water and sediment-water interfaces, we have values of 0.015, 0.028, 0.067, 0.121,
0.102, and 0.107 ppm Zn, with a mean of 0.07333 ppm Zn and a standard deviation of 0.04410 ppm Zn. Superimposing all
three normal distributions

X¯ ¯¯̄ s

μ σ
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shows clearly that most of the normal distribution for the differences lies above zero, suggesting that a t-test might show
evidence that the difference is significant.

Outliers 
In chapter 7.1 we examined a data set consisting of the masses of 100 circulating United States penny. Table  provides one
more data set. Do you notice anything unusual in this data? Of the 100 pennies included in the earlier table, no penny has a mass of
less than 3 g. In this table, however, the mass of one penny is less than 3 g. We might ask whether this penny’s mass is so different
from the other pennies that it is in error.

Table . Mass (g) for Additional Sample of Circulating U. S. Penniese

3.067 2.514 3.094

3.049 3.048 3.109

3.039 3.079 3.102

A measurement that is not consistent with other measurements is called an outlier. An outlier might exist for many reasons: the
outlier might belong to a different population

Is this a Canadian penny?

or the outlier might be a contaminated or an otherwise altered sample

Is the penny damaged or unusually dirty?

or the outlier may result from an error in the analysis

Did we forget to tare the balance?

Regardless of its source, the presence of an outlier compromises any meaningful analysis of our data. There are many significance
tests that we can use to identify a potential outlier, three of which we present here.

Dixon's Q-Test 

One of the most common significance tests for identifying an outlier is Dixon’s Q-test. The null hypothesis is that there are no
outliers, and the alternative hypothesis is that there is an outlier. The Q-test compares the gap between the suspected outlier and its
nearest numerical neighbor to the range of the entire data set (Figure ).

7.2.1

7.2.1

7.2.2
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Figure : Dotplots showing the distribution of two data sets containing a possible outlier. In (a) the possible outlier’s value is
larger than the remaining data, and in (b) the possible outlier’s value is smaller than the remaining data.

The test statistic, Q , is

This equation is appropriate for evaluating a single outlier. Other forms of Dixon’s Q-test allow its extension to detecting multiple
outliers [Rorabacher, D. B. Anal. Chem. 1991, 63, 139–146].

The value of Q  is compared to a critical value, , where  is the probability that we will reject a valid data point (a type 1
error) and n is the total number of data points. To protect against rejecting a valid data point, usually we apply the more
conservative two-tailed Q-test, even though the possible outlier is the smallest or the largest value in the data set. If Q  is greater
than , then we reject the null hypothesis and may exclude the outlier. We retain the possible outlier when Q  is less than
or equal to . Table  provides values for  for a data set that has 3–10 values. A more extensive table is in
Appendix 4. Values for  assume an underlying normal distribution.

Table : Dixon's Q-Test

n Q(0.05, n)

3 0.970

4 0.829

5 0.710

6 0.625

7 0.568

8 0.526

9 0.493

10 0.466

Grubb's Test 

Although Dixon’s Q-test is a common method for evaluating outliers, it is no longer favored by the International Standards
Organization (ISO), which recommends the Grubb’s test. There are several versions of Grubb’s test depending on the number of
potential outliers. Here we will consider the case where there is a single suspected outlier.

For details on this recommendation, see International Standards ISO Guide 5752-2 “Accuracy (trueness and precision) of
measurement methods and results–Part 2: basic methods for the determination of repeatability and reproducibility of a standard
measurement method,” 1994.

The test statistic for Grubb’s test, G , is the distance between the sample’s mean, , and the potential outlier, , in terms of
the sample’s standard deviation, s.

7.2.2

exp

= =Qexp
gap

range

|outlier's value −nearest value|

largest value −smallest value

exp Q(α,n) α

exp
Q(α,n) exp

Q(α,n) 7.2.2 Q(α,n)
Q(α,n)

7.2.2

 Note

exp X¯ ¯¯̄ Xout
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We compare the value of G  to a critical value , where  is the probability that we will reject a valid data point and n is
the number of data points in the sample. If G  is greater than , then we may reject the data point as an outlier, otherwise
we retain the data point as part of the sample. Table  provides values for G(0.05, n) for a sample containing 3–10 values. A
more extensive table is in Appendix 5. Values for  assume an underlying normal distribution.

Table : Grubb's Test

n G(0.05, n)

3 1.115

4 1.481

5 1.715

6 1.887

7 2.020

8 2.126

9 2.215

10 2.290

Chauvenet's Criterion 

Our final method for identifying an outlier is Chauvenet’s criterion. Unlike Dixon’s Q-Test and Grubb’s test, you can apply this
method to any distribution as long as you know how to calculate the probability for a particular outcome. Chauvenet’s criterion
states that we can reject a data point if the probability of obtaining the data point’s value is less than , where n is the size of
the sample. For example, if n = 10, a result with a probability of less than , or 0.05, is considered an outlier.

To calculate a potential outlier’s probability we first calculate its standardized deviation, z

where  is the potential outlier,  is the sample’s mean and s is the sample’s standard deviation. Note that this equation is
identical to the equation for G  in the Grubb’s test. For a normal distribution, we can find the probability of obtaining a value of z
using the probability table in Appendix 1.

Table  contains the masses for nine circulating United States pennies. One entry, 2.514 g, appears to be an outlier.
Determine if this penny is an outlier using a Q-test, Grubb’s test, and Chauvenet’s criterion. For the Q-test and Grubb’s test, let 

.

Solution

For the Q-test the value for  is

From Table , the critical value for Q(0.05, 9) is 0.493. Because Q  is greater than Q(0.05, 9), we can assume the penny
with a mass of 2.514 g likely is an outlier.

For Grubb’s test we first need the mean and the standard deviation, which are 3.011 g and 0.188 g, respectively. The value for
G  is

=Gexp
| − |Xout X¯ ¯¯̄

s

exp G(α,n) α

exp G(α,n)
7.2.3

G(α,n)

7.2.3

(2 )n−1

(2 ×10)−1

z =
| − |Xout X

¯ ¯¯̄

s

Xout X
¯ ¯¯̄

exp

 Example 7.2.7

7.2.1

α = 0.05

Qexp

= = 0.882Qexp
|2.514 −3.039|

3.109 −2.514

7.2.2 exp

exp

= = 2.64Gexp
|2.514 −3.011|

0.188
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Using Table , we find that the critical value for G(0.05, 9) is 2.215. Because G  is greater than G(0.05, 9), we can
assume that the penny with a mass of 2.514 g likely is an outlier.

For Chauvenet’s criterion, the critical probability is , or 0.0556. The value of z is the same as G , or 2.64. Using
Appendix 1, the probability for z = 2.64 is 0.00415. Because the probability of obtaining a mass of 0.2514 g is less than the
critical probability, we can assume the penny with a mass of 2.514 g likely is an outlier.

You should exercise caution when using a significance test for outliers because there is a chance you will reject a valid result. In
addition, you should avoid rejecting an outlier if it leads to a precision that is much better than expected based on a propagation of
uncertainty. Given these concerns it is not surprising that some statisticians caution against the removal of outliers [Deming, W. E.
Statistical Analysis of Data; Wiley: New York, 1943 (republished by Dover: New York, 1961); p. 171].

You also can adopt a more stringent requirement for rejecting data. When using the Grubb’s test, for example, the ISO 5752
guidelines suggest retaining a value if the probability for rejecting it is greater than , and flagging a value as a
“straggler” if the probability for rejecting it is between  and . A “straggler” is retained unless there is
compelling reason for its rejection. The guidelines recommend using  as the minimum criterion for rejecting a
possible outlier.

On the other hand, testing for outliers can provide useful information if we try to understand the source of the suspected outlier. For
example, the outlier in Table  represents a significant change in the mass of a penny (an approximately 17% decrease in
mass), which is the result of a change in the composition of the U.S. penny. In 1982 the composition of a U.S. penny changed from
a brass alloy that was 95% w/w Cu and 5% w/w Zn (with a nominal mass of 3.1 g), to a pure zinc core covered with copper (with a
nominal mass of 2.5 g) [Richardson, T. H. J. Chem. Educ. 1991, 68, 310–311]. The pennies in Table , therefore, were drawn
from different populations.

This page titled 7.2: Significance Tests for Normal Distributions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by David Harvey.
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7.3: Analysis of Variance
Consider the following data, which shows the stability of a reagent under different conditions for storing samples; all values are
percent recoveries, so a result of 100 indicates that the reagent's concentration remains unchanged and that there was no
degradation.

trial/treatment A (total dark) B (subdued light) C (full light)

1 101 100 90

2 101 99 92

3 104 101 94

To determine if light has a significant affect on the reagent’s stability, we might choose to perform a series of t–tests, comparing all
possible mean values; in this case we need three such tests:

compare A to B
compare A to C
compare B to C

Each such test has a probability of a type I error of . The total probability of a type I error across k tests, , is

For three such tests using , we have

or a 14.3% proability of a type I error. The relationship between the number of conditions, n, and the number of tests, k, is

which means that k grows quickly as n increases, as shown in Figure .

Figure : Plot that shows the growth in the number of tests needed to complete a significance test for every possible pair of
conditions.

and that the magnitude of a type I error increases quickly as well, as seen in Figure .

αtest αtotal

= 1 −(1 −αtotal αtest )k

α = 0.05

= 1 −(1 −0.05 = 0.143αtotal )3

k =
n(n−1)

2

7.3.1

7.3.1

7.3.2
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Figure : Plot that shows the increase in  when we complete a significance test for every possible pair of conditions.

We can compensate for this problem by decreasing  for each independent test so that  is equal to our desired probability;
thus, for  we have , and to achieve an  of 0.05 each individual value of  be

Values of  decrease quickly, as seen in Figure .

Figure : Plot that shows the value of  for individual significance tests to achieve an  of 0.05 based on the number of
conditions being compared.

The problem here is that we are searching for a significant difference on a pair-wise basis without any evidence that the overall
variation in the data across all conditions (also known as treatments) is sufficiently large that it cannot be explained by
experimental uncertainty (that is, random error) only. One way to determine if there is a systematic error in the data set, without
identifying the source of the systematic error, is to compare the variation within each treatment to the variation between the

7.3.2 αtotal

αtest αtotal

n = 3 k = 3 αtotal αtest

= 1 −(1 −0.05 = 0.017αtest )1/3

αtest 7.3.3

7.3.2 αtest αtotal
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treatments. We assume that the variation within each treatment reflects uncertainty in the analytical method (random errors) and
that the variation between the treatments includes both the method’s uncertainty and any systematic errors in the individual
treatments. If the variation between the treatments is significantly greater than the variation within the treatments, then a systematic
error seems likely. We call this process an analysis of variance, or ANOVA; for one independent variable (the amount of light in
this case), it is a one-way analysis of variance.

The basic details of a one-way ANOVA calculation are as follows:

Step 1: Treat the data as one large data set and calculate its mean and its variance, which we call the global mean, , and the global

variance, .

where  is the number of treatments,  is the number of replicates for the  treatment, and  is the total number of
measurements.

Step 2: Calculate the within-sample variance, , using the mean for each treatment, , and the replicates for that treatment.

Step 3: Calculate the between-sample variance, , using the means for each treatment and the global mean

Step 4: If there is a significant difference between the treatments, then  should be significantly greater than , which we
evaluate using a one-tailed -test where

 

Step 5: If there is a significant difference, then we estimate  and  as

 

 
 
where  is the average number of replicates per treatment.

This seems like a lot of work, but we can simplify the calculations by noting that
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and that  and  are relatively easy to calculate, where  is short for sum-of-squares. Table  gathers these equations
together

Table . Summary of Calculations Needed to Complete an Analysis of Variance

source of variance sum-of-squares degrees of freedom variance

between samples

within samples

total

Chemical reagents have a limited shelf-life. To determine the effect of light on a reagent's stability, a freshly prepared solution
is stored for one hour under three different light conditions: total dark, subdued light, and full light. At the end of one hour,
each solution was analyzed three times, yielding the following percent recoveries; a recovery of 100% means that the measured
concentration is the same as the actual concentration.The null hypothesis is that there is there is no difference between the
different treatments, and the alternative hypothesis is that at least one of the treatments yields a result that is significantly
different than the other treatments.

trial/condition A (total dark) B (subdued light) C (full light)

1 101 100 90

2 101 99 92

3 104 101 94

Solution

First, we treat the data as one large data set of nine values and calculate the global mean, , and the global variance, ; these
are 98 and 23.75, respectively. We also calculate the mean for each of the three treatments, obtaining a value of 102.0 for
treatment A, 100.0 for treatment B, and 92.0 for treatment C.

Next, we calculate the total sum-of-squares, 

the between sample sum-of-squares, 

and the within sample sum-of-squares, 

The variance between the treatments,  is

and the variance within the treatments,  is

Finally, we complete an F-test, calculating F

S = S +SStotal Sw Sb

SStotal SSb SS 7.3.1

7.3.1
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 Example 7.3.1
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and compare it to the critical value for F(0.05, 2, 6) = 5.143 from Appendix 3. Because F  > F(0.05, 2, 6), we reject the null
hypothesis and accept the alternative hypothesis that at least one of the treatments yields a result that is significantly different
from the other treatments. We can estimate the variance due to random errors as

and the variance due to systematic errors as

Having found evidence for a significant difference between the treatments, we can use individual t-tests on pairs of treatments
to show that the results for treatment C are significantly different from the other two treatments.

This page titled 7.3: Analysis of Variance is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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7.4: Non-Parametric Significance Tests
The significance tests described in Chapter 7.2 assume that we can treat the individual samples as if they are drawn from a
population that is normally distributed. Although often a reasonable assumption, there are times when this is a poor assumption,
such as when there is a likely outlier that we are not inclined to remove. Non-parametric significance tests allow us to compare data
sets, but without making implicit assumptions about our data's distribution. In this section we will consider two non-parametric
tests, the Wicoxson signed rank test, which we can use in place of a paired t-test, and the Wilcoxon rank sum test, which we can use
in place of an unpaired t-test.

Wilcoxson Signed Rank Test 
When we use paired data we first calculate the difference, d , between each sample's paired values. We then subtract the expected
difference from each d and then sort these adjusted differences from smallest-to-largest without considering the sign. We then
assign each difference a rank (1, 2, 3, ...) and add back its sign. If two or more entries have the same absolute difference, then we
average their ranks. Finally, we add together the positive ranks and add together the negative ranks. If there is no difference in the
two data sets, then we expect that these two sums should be similar in value. If the smaller of the two ranks is less than a critical
value, then there is reason to believe that the two data sets are significantly different from each other; see Appendix 6 for a table of
critical values.

Marecek et. al. developed a new electrochemical method for the rapid determination of the concentration of the antibiotic
monensin in fermentation vats [Marecek, V.; Janchenova, H.; Brezina, M.; Betti, M. Anal. Chim. Acta 1991, 244, 15–19]. The
standard method for the analysis is a test for microbiological activity, which is both difficult to complete and time-consuming.
Samples were collected from the fermentation vats at various times during production and analyzed for the concentration of
monensin using both methods. The results, in parts per thousand (ppt), are reported in the following table. This is the same data
as in Example 7.2.6.

Sample Microbiological Electrochemical

1 129.5 132.3

2 89.6 91.0

3 76.6 73.6

4 52.2 58.2

5 110.8 104.2

6 50.4 49.9

7 72.4 82.1

8 141.4 154.1

9 75.0 73.4

10 34.1 38.1

11 60.3 60.1

Is there a significant difference between the methods at ?

Solution

Defining the difference between the methods as

we calculate the difference for each sample.

i

i 

 Example 7.4.1

α = 0.05

= ( −(di Xelect)i Xmicro)i
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sample 1 2 3 4 5 6 7 8 9 10 11

2.8 1.4 –3.0 6.0 –6.6 –0.5 9.7 12.7 –1.6 4.0 –0.2

Next, we order the individual differences from smallest-to-largest without considering the sign

–0.2 –0.5 1.4 –1.6 2.8 –3.0 4.0 6.0 –6.6 9.7 12.7

We then assign each individual difference a rank, retaining the sign; thus

–1 –2 3 –4 5 –6 7 8 –9 10 11

The sum of the negative ranks is 22 and the sum of the positive ranks is 44. The critical value for 11 samples and  is
10. As the smaller of our two ranks, 22, is greater than 10, there is no evidence to suggest that there is a difference between the
two methods.

Wilcoxson Rank Sum Test 
The Wilcoxon rank sum test (also know as the Mann-Whitney U test) is used to compare two unpaired data sets. The values in the
two data sets are sorted from smallest-to-largest, maintaining sample identity. After sorting, each value is assigned a rank (1, 2, 3,
...), again, maintaining sample identity. If two or more entries have the same absolute difference, then their ranks are averaged.
Next, we add up the ranks for each sample. If there is no difference in the two data sets, then we expect that the positive and
negative ranks should be similar in value. To account for differences in the size of each sample, we subtract

from each sum where  is the size of the sample. If the smaller of the two ranks is less than a critical value, then there is reason to
believe that the two data sets are significantly different from each other; see Appenidx 7 for a table of critical values.

To compare two production lots of aspirin tablets, you collect samples from each and analyze them, obtaining the following
results (in mg aspirin/tablet).

Lot 1: 256, 248, 245, 244, 248, 261

Lot 2: 241, 258, 241, 256, 254

Is there any evidence at  that there is a significant difference between these two sets of results?

Solution

First, we sort the results from smallest-to-largest. To distinguish between the two samples, those from Lot 1 are shown in bold.

241, 241, 244, 245, 248, 248, 254, 256, 256, 258, 261

Next we assign ranks, identifying those samples from Lot 1 by underlying them.

1.5, 1.5, 3, 4, 5.5, 5.5, 7, 8.5, 8.5, 10, 11

The sum of the ranks for Lot 1 is 37.5 and the sum of the ranks for Lot 2 is 28.5. After adjusting for the size of each sample,
we have

for Lot 1 and

di

di

di

α = 0.05

( +1)ni ni

2

ni

 Example 7.4.2

α = 0.05

37.5 − = 16.5
6(6 +1)

2

28.5 − = 13.5
(5)(5 +1)

2
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for Lot 2. From Appendix 7, the critical value for  is 3. As the smaller of our two ranks, 13.5, is greater than 3, there
is no evidence to suggest that there is a difference between the two methods.

This page titled 7.4: Non-Parametric Significance Tests is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David Harvey.
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7.5: Using R for Significance Testing and Analysis of Variance
The base installation of R has functions for most of the significance tests covered in Chapter 7.2 - Chapter 7.4.

Using R to Compare Variances 
The R function for comparing variances is var.test() which takes the following form

var.test(x, y, ratio = 1, alternative = c("two.sided", "less", "greater"), conf.level
= 0.95, ...)

where x  and y  are numeric vectors that contain the two samples, ratio  is the expected ratio for the null hypothesis (which
defaults to 1), alternative  is a character string that states the alternative hypothesis (which defaults to two-sided  or
two-tailed), and a conf.level  that gives the size of the confidence interval, which defaults to 0.95, or 95%, or . We
can use this function to compare the variances of two samples,  vs , but not the variance of a sample and the variance for a
population  vs .

Let's use R on the data from Example 7.2.3, which considers two sets of United States pennies.

# create vectors to store the data

sample1 = c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)

sample2 = c(3.052, 3.141, 3.083, 3.083, 3.048)

# run two-sided variance test with alpha = 0.05 and null hypothesis that variances are
equal

var.test(x = sample1, y = sample2, ratio = 1, alternative = "two.sided",
conf.level = 0.95)

The code above yields the following output

F test to compare two variances

data: sample1 and sample2

F = 1.8726, num df = 6, denom df = 4, p-value = 0.5661

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.2036028 11.6609726

sample estimates: ratio of variances

1.872598

Two parts of this output lead us to retain the null hypothesis of equal variances. First, the reported p-value of 0.5661 is larger than
our critical value for  of 0.05, and second, the 95% confidence interval for the ratio of the variances, which runs from 0.204 to
11.7 includes the null hypothesis that it is 1.

R does not include a function for comparing  to .

Using R to Compare Means 
The R function for comparing means is t.test() and takes the following form

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0,

paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)

where x  is a numeric vector that contains the data for one sample and y  is an optional vector that contains data for a second
sample, alternative  is a character string that states the alternative hypothesis (which defaults to two-tailed), mu  is either
the population's expected mean or the expected difference in the means of the two samples, paired  is a logical value that
indicates whether the data is paired , var.equal is a logical value that indicates whether the variances for two samples are
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s
2
1

s
2
2

s
2

σ
2

α

s
2

σ
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/222325?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/07%3A_Testing_the_Significance_of_Data/7.05%3A_Using_R_for_Significance_Testing_and_Analysis_of_Variance


7.5.2 https://chem.libretexts.org/@go/page/222325

treated as equal or unequal (based on a prior var.test() ), and conf.level  gives the size of the confidence interval
(which defaults to 0.95, or 95%, or ).

Using R to Compare  to  

Let's use R on the data from Example 7.2.1, which considers the determination of the  in a standard sample that is
known to be 98.76 % w/w .

# create vector to store the data

na2co3 = c(98.71, 98.59, 98.62, 98.44, 98.58)

# run a two-sided t-test, using mu to define the expected mean; because the default
values

# for paired and var.equal are FALSE, we can omit them here

t.test(x = na2co3, alternative = "two.sided", mu = 98.76, conf.level = 0.95)

The code above yields the following output

One Sample t-test

data: na2co3

t = -3.9522, df = 4, p-value = 0.01679

alternative hypothesis: true mean is not equal to 98.76

95 percent confidence interval:

98.46717 98.70883

sample estimates:

mean of x

98.588

Two parts of this output lead us to reject the null hypothesis of equal variances. First, the reported p-value of 0.01679 is less than
our critical value for  of 0.05, and second, the 95% confidence interval for the experimental mean of 98.588, which runs from
98.467 to 98.709, does not includes the null hypothesis that it is 98.76.

Using R to Compare Means for Two Samples 

When comparing the means for two samples, we have to be careful to consider whether the data is unpaired or paired, and for
unpaired data we must determine whether we can pool the variances for the two samples.

Unpaired Data 

Let's use R on the data from Example 7.2.4, which considers two sets of United States pennies. This data is unpaired and, as we
showed earlier, there is no evidence to suggest that the variances of the two samples are different.

# create vectors to store the data

sample1 = c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)

sample2 = c(3.052, 3.141, 3.083, 3.083, 3.048)

# run a two-sided t-test, setting mu to 0 as the null hypothesis is that the means are
the same, and setting var.equal to TRUE

t.test(x = sample1, y = sample2, alternative = "two.sided", mu = 0, var.equal =
TRUE, conf.level = 0.95)

The code above yields the following output

Two Sample t-test

data: sample1 and sample2

α = 0.05

X
¯ ¯¯̄

μ

%Na2CO3

Na2CO3

α
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t = 1.3345, df = 10, p-value = 0.2116

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.02403040 0.09580182

sample estimates:

mean of x mean of y

3.117286 3.081400

Two parts of this output lead us to retain the null hypothesis of equal means. First, the reported p-value of 0.2116 is greater than our
critical value for  of 0.05, and second, the 95% confidence interval for the difference in the experimental means, which runs from
-0.0240 to 0.0958, includes the null hypothesis that it is 0.

Paired Data 

Let's use R on the data from Example 7.2.1, which compares two methods for determining the concentration of the antibiotic
monensin in fermentation vats.

# create vectors to store the data

microbiological = c(129.5, 89.6, 76.6, 52.2, 110.8, 50.4, 72.4, 141.4, 75.0, 34.1,
60.3)

electrochemical = c(132.3, 91.0, 73.6, 58.2, 104.2, 49.9, 82.1, 154.1, 73.4, 38.1,
60.1)

# run a two-tailed t-test, setting mu to 0 as the null hypothesis is that the means
are the same, and setting paired to TRUE

t.test(x = microbiological, y = electrochemical, alternative = "two.sided", mu = 0,
paired = TRUE, conf.level = 0.95)

The code above yields the following output

Paired t-test

data: microbiological and electrochemical

t = -1.3225, df = 10, p-value = 0.2155

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-6.028684 1.537775

sample estimates:

mean of the differences

-2.245455

Two parts of this output lead us to retain the null hypothesis of equal means. First, the reported p-value of 0.2155 is greater than our
critical value for  of 0.05, and second, the 95% confidence interval for the difference in the experimental mean, which runs from
-6.03 to 1.54, includes the null hypothesis that it is 0.

Using R to Detect Outliers 

The base installation of R does not include tests for outliers, but the outliers  package provided functions for Dixon's Q-test
and Grubb's test. To install the package, use the following lines of code

install.packages("outliers")

library(outliers)

α

α
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You only need to install the package once, but you must use library()  to make the package available when you begin a new
R session.

Dixon Q-test 

The R function for Dixon's Q-test is dixon.test() and takes the following form

dixon.test(x, type, two.sided)

where x  is a numeric vector with the data we are considering, type  defines the specific value(s) that we are testing (we will
use type = 10 , which tests for a single outlier on either end of the ranked data), and two.sided , which indicates whether
we use a one-tailed or two-tailed test (we will use two.sided = FALSE as we are interested in whether the smallest value is
too small or the largest value is too large).

Let's use R on the data from Example 7.2.7, which considers the masses of a set of United States pennies.

penny = c(3.067, 2.514, 3.094, 3.049, 3.048, 3.109, 3.039, 3.079, 3.102)

dixon.test(x = penny, two.sided = FALSE, type = 10)

The code above yields the following output

Dixon test for outliers

data: penny Q = 0.88235, p-value < 2.2e-16

alternative hypothesis: lowest value 2.514 is an outlier

The reported p-value of less than  is less than our critical value for  of 0.05, which suggests that the penny with a
mass of 2.514 g is drawn from a different population than the other pennies.

Grubb's Test 

The R function for the Grubb's test is grubbs.test() and takes the following form

gurbbs.test(x, type, two.sided)

where x  is a numeric vector with the data we are considering, type  defines the specific value(s) that we are testing (we will
use type = 10 , which tests for a single outlier on either end of the ranked data), and two.sided , which indicated whether
we use a one-tailed or two-tailed test (we will use two.sided = FALSE as we are interested in whether the smallest value is
too small or the largest value is too large).

Let's use R on the data from Example 7.2.7, which considers the masses of a set of United States pennies.

penny = c(3.067, 2.514, 3.094, 3.049, 3.048, 3.109, 3.039, 3.079, 3.102)

grubbs.test(x = penny, two.sided = FALSE, type = 10)

The code above yields the following output

Grubbs test for one outlier

data: penny

G = 2.64300, U = 0.01768, p-value = 9.69e-07

alternative hypothesis: lowest value 2.514 is an outlier

The reported p-value of  is less than our critical value for  of 0.05, which suggests that the penny with a mass of
2.514 g is drawn from a different population than the other pennies.

Using R to Complete Non-Parametric Significance Tests 

The R function for completing the Wilcoxson signed rank test and the Wilcoxson rank sum test is wilcox.test() , which
takes the following form

wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0,

paired = FALSE, conf.level = 0.95, ...)

2.2 ×10−16
α

9.69 ×10−7
α
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where x  is a numeric vector that contains the data for one sample and y  is an optional vector that contains data for a second
sample, alternative  is a character string that states the alternative hypothesis (which defaults to two-tailed), mu  is either
the population's expected mean or the expected difference in the means of the two samples, paired  is a logical value that
indicates whether the data is paired , and conf.level  gives the size of the confidence interval (which defaults to 0.95, or 95%,
or ).

Using R to Complete a Wilcoxson Signed Rank Test 

Let's use R on the data from Example 7.3.1, which compares two methods for determining the concentration of the antibiotic
monensin in fermentation vats.

# create vectors to store the data

microbiological = c(129.5, 89.6, 76.6, 52.2, 110.8, 50.4, 72.4, 141.4, 75.0, 34.1,
60.3)

electrochemical = c(132.3, 91.0, 73.6, 58.2, 104.2, 49.9, 82.1, 154.1, 73.4, 38.1,
60.1)

# run a two-tailed wilcoxson signed rank test, setting mu to 0 as the null hypothesis
is that

# the means are the same and setting paired to TRUE

wilcox.test(x = microbiological, y = electrochemical, alternative = "two.sided", mu =
0, paired = TRUE, conf.level = 0.95)

The code above yields the following output

Wilcoxon signed rank test

data: microbiological and electrochemical

V = 22, p-value = 0.3652

alternative hypothesis: true location shift is not equal to 0

where the value V is the smaller of the two signed ranks. The reported p-value of 0.3652 is greater than our critical value for  of
0.05, which means we do not have evidence to suggest that there is a difference between the mean values for the two methods.

Using R to Complete a Wilcoxson Rank Sum Test 

Let's use R on the data from Example 7.3.2, which compares two methods for determining the amount of aspirin in tablets from
two production lots.

# create vectors to store the data

lot1 = c(256, 248, 245, 244, 248, 261)

lot2= c(241, 258, 241, 256, 254)

# run a two-tailed wilcoxson signed rank test, setting mu to 0 as the null hypothesis
is

# that the means are the same, and setting paired to TRUE

wilcox.test(x = lot1, y = lot2, alternative = "two.sided", mu = 0, paired = FALSE,
conf.level = 0.95)

The code above yields the following output

Wilcoxon rank sum test with continuity correction

data: lot1 and lot2

W = 16.5, p-value = 0.8541

alternative hypothesis: true location shift is not equal to 0

Warning message:

α = 0.05

α
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In wilcox.test.default(x = lot1, y = lot2, alternative = "two.sided", : cannot compute
exact p-value with ties

where the value W is the larger of the two ranked sums. The reported p-value of 0.8541 is greater than our critical value for  of
0.05, which means we do not have evidence to suggest that there is a difference between the mean values for the two methods.
Note: we can ignore the warning message here as our calculated value for p is very large relative to an  of 0.05.

Using R to Complete an Analysis of Variance 
Let's use the data in Example 7.3.1 to show how to complete an analysis of variance in R. First, we need to create individual
numerical vectors for each treatment and then combine these vectors into a single numerical vector, which we will call recovery,
that contains the results for each treatment.

a = c(101, 101, 104)

b = c(100, 98, 102)

c = c(90, 92, 94)

recovery = c(a, b, c)

We also need to create a vector of character strings that identifies the individual treatments for each element in the vector recovery.

treatment = c(rep("a", 3), rep("b", 3), rep("c", 3))

The R function for completing an analysis of variance is aov() , which takes the following form

aov(formula, ...)

where formula is a way of telling R to "explain this variable by using that variable." We will examine formulas in more detail in
Chapter 8, but in this case the syntax is recovery ~ treatment  , which means to model the recovery based on the
treatment. In the code below, we assign the output of the aov()  function to a variable so that we have access to the results of
the analysis of variance

aov_output = aov(recovery ~ treatment)

through the summary() function

summary(aov_output)

Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 168 84.00 22.91 0.00155 **

Residuals 6 22 3.67

--- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that what we earlier called the between variance is identified here as the variance due to the treatments, and that we earlier
called the within variance is identified her as the residual variance. As we saw in Example 7.3.1, the value for F  is significantly
greater than the critical value for F at .

Having found evidence that there is a significant difference between the treatments, we can use R's TukeyHSD()  function to
identify the source(s) of that difference (HSD stands for Honest Significant Difference), which takes the general form

TukeyHSD(x, conf.level = 0.95, ...)

where x  is an object that contains the results of an analysis of variance.

TukeyHSD(aov_output)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = recovery ~ treatment)

$treatment

diff lwr upr p adj

α

α

exp
α = 0.05
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b-a -2 -6.797161 2.797161 0.4554965

c-a -10 -14.797161 -5.202839 0.0016720

c-b -8 -12.797161 -3.202839 0.0052447

The table at the end of the output shows, for each pair of treatments, the difference in their mean values, the lower and the upper
values for the confidence interval about the mean, and the value for , which in R is listed as an adjusted p-value, for which we can
reject the null hypothesis that the means are identical. In this case, we can see that the results for treatment C are significantly
different from both treatments A and B.

We also can view the results of the TukeyHSD analysis visually by passing it to R's plot()  function.

plot(TukeyHSD(aov_output))

Figure : Plot of the TukeyHSD results. The horizontal segments show the lower boundary and the upper boundary for the
confidence interval about the difference between the mean values for each pair of treatments. The vertical dashed line shows a
difference of zero. Those pairs of treatments with confidence intervals that do not include a difference of zero are significantly
different from each other. Here we see evidence that treatment C is significantly different from both treatments A and B, but no
evidence that treatments A and B are significantly different from each other.

This page titled 7.5: Using R for Significance Testing and Analysis of Variance is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by David Harvey.
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7.6: Exercises
1. Use this link to access a case study on data analysis and complete the last investigation in Part V: Ways to Draw Conclusions
from Data.

2. Ketkar and co-workers developed an analytical method to determine trace levels of atmospheric gases. An analysis of a sample
that is 40.0 parts per thousand (ppt) 2-chloroethylsulfide gave the following results from Ketkar, S. N.; Dulak, J. G.; Dheandhanou,
S.; Fite, W. L. Anal. Chim. Acta 1991, 245, 267–270.

43.3 34.8 31.9

37.8 34.4 31.9

42.1 33.6 35.3

Determine whether there is a significant difference between the experimental mean and the expected value at .

3. To test a spectrophotometer’s accuracy a solution of 60.06 ppm K Cr O  in 5.0 mM H SO  is prepared and analyzed. This
solution has an expected absorbance of 0.640 at 350.0 nm in a 1.0-cm cell when using 5.0 mM H SO  as a reagent blank. Several
aliquots of the solution produce the following absorbance values.

0.639 0.638 0.640 0.639 0.640 0.639 0.638

Determine whether there is a significant difference between the experimental mean and the expected value at .

4. Monna and co-workers used radioactive isotopes to date sediments from lakes and estuaries. To verify this method they analyzed
a Po standard known to have an activity of 77.5 decays/min, obtaining the following results.

77.09 75.37 72.42 76.84 77.84 76.69

78.03 74.96 77.54 76.09 81.12 75.75

Determine whether there is a significant difference between the mean and the expected value at . The data in this problem
are from Monna, F.; Mathieu, D.; Marques, A. N.; Lancelot, J.; Bernat, M. Anal. Chim. Acta 1996, 330, 107–116.

5. A 2.6540-g sample of an iron ore, which is 53.51% w/w Fe, is dissolved in a small portion of concentrated HCl and diluted to
volume in a 250-mL volumetric flask. A spectrophotometric determination of the concentration of Fe in this solution yields results
of 5840, 5770, 5650, and 5660 ppm. Determine whether there is a significant difference between the experimental mean and the
expected value at .

6. Horvat and co-workers used atomic absorption spectroscopy to determine the concentration of Hg in coal fly ash. Of particular
interest to the authors was developing an appropriate procedure for digesting samples and releasing the Hg for analysis. As part of
their study they tested several reagents for digesting samples. Their results using HNO  and using a 1 + 3 mixture of HNO  and
HCl are shown here. All concentrations are given as ppb Hg sample.

HNO : 161 165 160 167 166

1 + 3 HNO  –
HCl:

159 145 140 147 143 156

Determine whether there is a significant difference between these methods at . The data in this problem are from Horvat,
M.; Lupsina, V.; Pihlar, B. Anal. Chim. Acta 1991, 243, 71–79.

7. Lord Rayleigh, John William Strutt (1842-1919), was one of the most well known scientists of the late nineteenth and early
twentieth centuries, publishing over 440 papers and receiving the Nobel Prize in 1904 for the discovery of argon. An important
turning point in Rayleigh’s discovery of Ar was his experimental measurements of the density of N . Rayleigh approached this
experiment in two ways: first by taking atmospheric air and removing O  and H ; and second, by chemically producing N  by
decomposing nitrogen containing compounds (NO, N O, and NH NO ) and again removing O  and H . The following table shows

α = 0.05
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his results for the density of N , as published in Proc. Roy. Soc. 1894, LV, 340 (publication 210); all values are the grams of gas at
an equivalent volume, pressure, and temperature.

atmospheric origin chemical origin

2.31017 2.30143

2.30986 2.29890

2.31010 2.29816

2.31001 2.30182

2.31024 2.29869

2.31010 2.29940

2.31028 2.29849

2.29889

Explain why this data led Rayleigh to look for and to discover Ar. You can read more about this discovery here: Larsen, R. D. J.
Chem. Educ. 1990, 67, 925–928.

8. Gács and Ferraroli reported a method for monitoring the concentration of SO  in air. They compared their method to the standard
method by analyzing urban air samples collected from a single location. Samples were collected by drawing air through a
collection solution for 6 min. Shown here is a summary of their results with SO  concentrations reported in μL/m .

standard method new method

21.62 21.54

22.20 20.51

24.27 22.31

23.54 21.30

24.25 24.62

23.09 25.72

21.02 21.54

Using an appropriate statistical test, determine whether there is any significant difference between the standard method and the new
method at . The data in this problem are from Gács, I.; Ferraroli, R. Anal. Chim. Acta 1992, 269, 177–185.

9. One way to check the accuracy of a spectrophotometer is to measure absorbances for a series of standard dichromate solutions
obtained from the National Institute of Standards and Technology. Absorbances are measured at 257 nm and compared to the
accepted values. The results obtained when testing a newly purchased spectrophotometer are shown here. Determine if the tested
spectrophotometer is accurate at .

standard measured absorbance expected absorbance

1 0.2872 0.2871

2 0.5773 0.5760

3 0.8674 0.8677

4 1.1623 1.1608

5 1.4559 1.4565

2

2

2
3

α = 0.05

α = 0.05
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10. Maskarinec and co-workers investigated the stability of volatile organics in environmental water samples. Of particular interest
was establishing the proper conditions to maintain the sample’s integrity between its collection and its analysis. Two preservatives
were investigated—ascorbic acid and sodium bisulfate—and maximum holding times were determined for a number of volatile
organics and water matrices. The following table shows results for the holding time (in days) of nine organic compounds in surface
water.

compound Ascorbic Acid Sodium Bisulfate

methylene chloride 77 62

carbon disulfide 23 54

trichloroethane 52 51

benzene 62 42

1,1,2-trichlorethane 57 53

1,1,2,2-tetrachloroethane 33 85

tetrachloroethene 32 94

chlorbenzene 36 86

Determine whether there is a significant difference in the effectiveness of the two preservatives at . The data in this
problem are from Maxkarinec, M. P.; Johnson, L. H.; Holladay, S. K.; Moody, R. L.; Bayne, C. K.; Jenkins, R. A. Environ. Sci.
Technol. 1990, 24, 1665–1670.

11. Using X-ray diffraction, Karstang and Kvalhein reported a new method to determine the weight percent of kaolinite in complex
clay minerals using X-ray diffraction. To test the method, nine samples containing known amounts of kaolinite were prepared and
analyzed. The results (as % w/w kaolinite) are shown here.

actual 5.0 10.0 20.0 40.0 50.0 60.0 80.0 90.0 95.0

found 6.8 11.7 19.8 40.5 53.6 61.7 78.9 91.7 94.7

Evaluate the accuracy of the method at . The data in this problem are from Karstang, T. V.; Kvalhein, O. M. Anal. Chem.
1991, 63, 767–772.

12. Mizutani, Yabuki and Asai developed an electrochemical method for analyzing l-malate. As part of their study they analyzed a
series of beverages using both their method and a standard spectrophotometric procedure based on a clinical kit purchased from
Boerhinger Scientific. The following table summarizes their results. All values are in ppm. The data in this problem are from
Mizutani, F.; Yabuki, S.; Asai, M. Anal. Chim. Acta 1991, 245,145–150.

Sample Electrode Spectrophotometric

Apple Juice 1 34.0 33.4

Apple Juice 2 22.6 28.4

Apple Juice 3 29.7 29.5

Apple Juice 4 24.9 24.8

Grape Juice 1 17.8 18.3

Grape Juice 2 14.8 15.4

Mixed Fruit Juice 1 8.6 8.5

Mixed Fruit Juice 2 31.4 31.9

White Wine 1 10.8 11.5

α = 0.10

α = 0.05
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White Wine 2 17.3 17.6

White Wine 3 15.7 15.4

White Wine 4 18.4 18.3

13. Alexiev and colleagues describe an improved photometric method for determining Fe  based on its ability to catalyze the
oxidation of sulphanilic acid by KIO . As part of their study, the concentration of Fe  in human serum samples was determined by
the improved method and the standard method. The results, with concentrations in μmol/L, are shown in the following table.

Sample Improved Method Standard Method

1 8.25 8.06

2 9.75 8.84

3 9.75 8.36

4 9.75 8.73

5 10.75 13.13

6 11.25 13.65

7 13.88 13.85

8 14.25 13.43

Determine whether there is a significant difference between the two methods at . The data in this problem are from
Alexiev, A.; Rubino, S.; Deyanova, M.; Stoyanova, A.; Sicilia, D.; Perez Bendito, D. Anal. Chim. Acta, 1994, 295, 211–219.

14. Ten laboratories were asked to determine an analyte’s concentration of in three standard test samples. Following are the results,
in μg/mL.

Laboratory Sample 1 Sample 2 Sample 3

1 22.6 13.6 16.0

2 23.0 14.2 15.9

3 21.5 13.9 16.9

4 21.9 13.9 16.9

5 21.3 13.5 16.7

6 22.1 13.5 17.4

7 23.1 13.5 17.5

8 21.7 13.5 16.8

9 22.2 12.9 17.2

10 21.7 13.8 16.7

Determine if there are any potential outliers in Sample 1, Sample 2 or Sample 3. Use all three methods—Dixon’s Q-test, Grubb’s
test, and Chauvenet’s criterion—and compare the results to each other. For Dixon’s Q-test and for the Grubb’s test, use a
significance level of . The data in this problem are adapted from Steiner, E. H. “Planning and Analysis of Results of
Collaborative Tests,” in Statistical Manual of the Association of Official Analytical Chemists, Association of Official Analytical
Chemists: Washington, D. C., 1975.

15. Use an appropriate non-parametric test to reanalyze the data in some or all of Exercises 7.6.2 to 7.6.14.

3+

4
3+

α = 0.05

α = 0.05

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/222326?pdf


7.6.5 https://chem.libretexts.org/@go/page/222326

16. The importance of between-laboratory variability on the results of an analytical method are determined by having several
laboratories analyze the same sample. In one such study, seven laboratories analyzed a sample of homogenized milk for a selected
aflatoxin [data from Massart, D. L.; Vandeginste, B. G. M; Deming, S. N.; Michotte, Y.; Kaufman, L. Chemometrics: A Textbook,
Elsevier: Amsterdam, 1988]. The results, in ppb, are summarized below.

lab A lab B lab C lab D lab E lab F lab G

1.6 4.6 1.2 1.5 6.0 6.2 3.3

2.9 2.8 1.9 2.7 3.9 3.8 3.8

3.5 3.0 2.9 3.4 4.3 5.5 5.5

4.5 4.5 1.1 2.0 5.8 4.2 4.9

2.2 3.1 2.9 3.4 4.0 5.3 4.5

(a) Determine if the between-laboratory variability is significantly greater than the within-laboratory variability at . If the
between-laboratory variability is significant, then determine the source(s) of that variability.

(b) Estimate values for  and for .

This page titled 7.6: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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1

CHAPTER OVERVIEW

8: Calibrating Data
A calibration curve is one of the most important tools in analytical chemistry as it allows us to determine the concentration of an
analyte in a sample by measuring the signal it generates when placed in an instrument, such as a spectrophotometer. To determine
the analyte's concentration we must know the relationship between the signal we measure , , and the analyte's concentration, ,
which we can write as

where  is the calibration curve's sensitivity and  is the signal in the absence of analyte.

How do we find the best estimate for this relationship between the signal and the concentration of analyte? When a calibration
curve is a straight-line, we represent it using the following mathematical model

where y is the analyte’s measured signal, S, and x is the analyte’s known concentration, , in a series of standard solutions. The
constants  and  are, respectively, the calibration curve’s expected y-intercept and its expected slope. Because of uncertainty in
our measurements, the best we can do is to estimate values for  and , which we represent as b  and b . The goal of a linear
regression analysis is to determine the best estimates for b  and b .

8.1: Unweighted Linear Regression With Errors in y
8.2: Weighted Linear Regression with Errors in y
8.3: Weighted Linear Regression With Errors in Both x and y
8.4: Curvilinear, Multivariable, and Multivariate Regression
8.5: Using R for a Linear Regression Analysis
8.6: Exercises

This page titled 8: Calibrating Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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8.1: Unweighted Linear Regression With Errors in y
The most common method for completing a linear regression makes three assumptions:

1. the difference between our experimental data and the calculated regression line is the result of indeterminate errors that affect y
2. any indeterminate errors that affect y are normally distributed
3. that indeterminate errors in y are independent of the value of x

Because we assume that the indeterminate errors are the same for all standards, each standard contributes equally in our estimate of
the slope and the y-intercept. For this reason the result is considered an unweighted linear regression.

The second assumption generally is true because of the central limit theorem, which we considered in Chapter 5.3. The validity of
the two remaining assumptions is less obvious and you should evaluate them before you accept the results of a linear regression. In
particular the first assumption is always suspect because there certainly is some indeterminate error in the measurement of x. When
we prepare a calibration curve, however, it is not unusual to find that the uncertainty in the signal, S, is significantly greater than the
uncertainty in the analyte’s concentration, . In such circumstances the first assumption usually is reasonable.

How a Linear Regression Works 
To understand the logic of a linear regression consider the example in Figure , which shows three data points and two possible
straight-lines that might reasonably explain the data. How do we decide how well these straight-lines fit the data, and how do we
determine which, if either, is the best straight-line?

Figure : Illustration showing three data points and two possible straight-lines that might explain the data. The goal of a linear
regression is to find the one mathematical model, in this case a straight-line, that best explains the data.

Let’s focus on the solid line in Figure . The equation for this line is

where b  and b  are estimates for the y-intercept and the slope, and  is the predicted value of y for any value of x. Because we
assume that all uncertainty is the result of indeterminate errors in y, the difference between y and  for each value of x is the
residual error, r, in our mathematical model.

Figure  shows the residual errors for the three data points. The smaller the total residual error, R, which we define as

the better the fit between the straight-line and the data. In a linear regression analysis, we seek values of b and b that give the
smallest total residual error.

The reason for squaring the individual residual errors is to prevent a positive residual error from canceling out a negative
residual error. You have seen this before in the equations for the sample and population standard deviations introduced in
Chapter 4. You also can see from this equation why a linear regression is sometimes called the method of least squares.

CA
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8.1.2

R = ( −∑
i=1

n

yi ŷ i)
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Figure : Illustration that shows the evaluation of a linear regression in which we assume that all uncertainty is the result of
indeterminate errors in y. The points in blue, y , are the original data and the points in red, , are the predicted values from the
regression equation, .The smaller the total residual error, the better the fit of the straight-line to the data.

Finding the Slope and y-Intercept for the Regression Model 

Although we will not formally develop the mathematical equations for a linear regression analysis, you can find the derivations in
many standard statistical texts [ See, for example, Draper, N. R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New
York, 1998]. The resulting equation for the slope, b , is

and the equation for the y-intercept, b , is

Although these equations appear formidable, it is necessary only to evaluate the following four summations

Many calculators, spreadsheets, and other statistical software packages are capable of performing a linear regression analysis based
on this model; see Section 8.5 for details on completing a linear regression analysis using R. For illustrative purposes the necessary
calculations are shown in detail in the following example.

Using the calibration data in the following table, determine the relationship between the signal, , and the analyte's
concentration, , using an unweighted linear regression.

Solution

We begin by setting up a table to help us organize the calculation.

0.000 0.00 0.000 0.000

0.100 12.36 1.236 0.010

0.200 24.83 4.966 0.040

0.300 35.91 10.773 0.090

0.400 48.79 19.516 0.160

0.500 60.42 30.210 0.250

Adding the values in each column gives

8.1.2
ŷ i

= + xŷ b0 b1

1

=b1
n −∑n

i=1 xiyi ∑n
i=1 xi∑

n
i=1 yi

n −∑n
i=1 x

2
i ( )∑n

i=1 xi
2

0
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n

∑
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Substituting these values into the equations for the slope and the y-intercept gives

The relationship between the signal, , and the analyte's concentration, , therefore, is

For now we keep two decimal places to match the number of decimal places in the signal. The resulting calibration curve is
shown in Figure .

Figure : Calibration curve for the data in Example .

Uncertainty in the Regression Model 

As we see in Figure , because of indeterminate errors in the signal, the regression line does not pass through the exact center
of each data point. The cumulative deviation of our data from the regression line—the total residual error—is proportional to the
uncertainty in the regression. We call this uncertainty the standard deviation about the regression, s , which is equal to

where y is the i  experimental value, and  is the corresponding value predicted by the regression equation . Note
that the denominator indicates that our regression analysis has n – 2 degrees of freedom—we lose two degree of freedom because
we use two parameters, the slope and the y-intercept, to calculate .

A more useful representation of the uncertainty in our regression analysis is to consider the effect of indeterminate errors on the
slope, b , and the y-intercept, b , which we express as standard deviations.

We use these standard deviations to establish confidence intervals for the expected slope, , and the expected y-intercept, 

where we select t for a significance level of  and for n – 2 degrees of freedom. Note that these equations do not contain the factor
of  seen in the confidence intervals for  in Chapter 6.2; this is because the confidence interval here is based on a single
regression line.
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Calculate the 95% confidence intervals for the slope and y-intercept from Example .

Solution

We begin by calculating the standard deviation about the regression. To do this we must calculate the predicted signals,  ,
using the slope and the y-intercept from Example , and the squares of the residual error, . Using the last
standard as an example, we find that the predicted signal is

and that the square of the residual error is

The following table displays the results for all six solutions.

0.000 0.00 0.209 0.0437

0.100 12.36 12.280 0.0064

0.200 24.83 24.350 0.2304

0.300 35.91 36.421 0.2611

0.400 48.79 48.491 0.0894

0.500 60.42 60.562 0.0202

Adding together the data in the last column gives the numerator in the equation for the standard deviation about the regression;
thus

Next we calculate the standard deviations for the slope and the y-intercept. The values for the summation terms are from
Example .

Finally, the 95% confidence intervals ( , 4 degrees of freedom) for the slope and y-intercept are

where t(0.05, 4) from Appendix 2 is 2.78. The standard deviation about the regression, s , suggests that the signal, S , is
precise to one decimal place. For this reason we report the slope and the y-intercept to a single decimal place.

Using the Regression Model to Determine a Value for x Given a Value for y 
Once we have our regression equation, it is easy to determine the concentration of analyte in a sample. When we use a normal
calibration curve, for example, we measure the signal for our sample, S , and calculate the analyte’s concentration, C , using the
regression equation.

 Example 8.1.2

8.1.1
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What is less obvious is how to report a confidence interval for C  that expresses the uncertainty in our analysis. To calculate a
confidence interval we need to know the standard deviation in the analyte’s concentration, , which is given by the following
equation

where m is the number of replicates we use to establish the sample’s average signal, S , n is the number of calibration standards,
S  is the average signal for the calibration standards, and  and  are the individual and the mean concentrations for the
calibration standards. Knowing the value of , the confidence interval for the analyte’s concentration is

where  is the expected value of C  in the absence of determinate errors, and with the value of t is based on the desired level of
confidence and n – 2 degrees of freedom.

A close examination of these equations should convince you that we can decrease the uncertainty in the predicted concentration of
analyte,  if we increase the number of standards, , increase the number of replicate samples that we analyze, , and if the
sample’s average signal, , is equal to the average signal for the standards, . When practical, you should plan your
calibration curve so that S  falls in the middle of the calibration curve. For more information about these regression equations
see (a) Miller, J. N. Analyst 1991, 116, 3–14; (b) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Chemometrics, Wiley-Interscience:
New York, 1986, pp. 126-127; (c) Analytical Methods Committee “Uncertainties in concentrations estimated from calibration
experiments,” AMC Technical Brief, March 2006.

The equation for the standard deviation in the analyte's concentration is written in terms of a calibration experiment. A more
general form of the equation, written in terms of x and y, is given here.

Three replicate analyses for a sample that contains an unknown concentration of analyte, yields values for S  of 29.32, 29.16
and 29.51 (arbitrary units). Using the results from Example  and Example , determine the analyte’s concentration,
C , and its 95% confidence interval.

Solution

The average signal, , is 29.33, which, using the slope and the y-intercept from Example , gives the analyte’s
concentration as

To calculate the standard deviation for the analyte’s concentration we must determine the values for  and for 
. The former is just the average signal for the calibration standards, which, using the data in Table ,

is 30.385. Calculating  looks formidable, but we can simplify its calculation by recognizing that this sum-
of-squares is the numerator in a standard deviation equation; thus,
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where  is the standard deviation for the concentration of analyte in the calibration standards. Using the data in Table 
we find that  is 0.1871 and

Substituting known values into the equation for  gives

Finally, the 95% confidence interval for 4 degrees of freedom is

Figure  shows the calibration curve with curves showing the 95% confidence interval for C .

Figure : Example of a normal calibration curve with a superimposed confidence interval for the analyte’s concentration. The
points in blue are the original data from Table . The black line is the normal calibration curve as determined in Example .
The red lines show the 95% confidence interval for C  assuming a single determination of S .

Evaluating a Regression Model 
You should never accept the result of a linear regression analysis without evaluating the validity of the model. Perhaps the simplest
way to evaluate a regression analysis is to examine the residual errors. As we saw earlier, the residual error for a single calibration
standard, r , is

If the regression model is valid, then the residual errors should be distributed randomly about an average residual error of zero,
with no apparent trend toward either smaller or larger residual errors (Figure ). Trends such as those in Figure  and
Figure  provide evidence that at least one of the model’s assumptions is incorrect. For example, a trend toward larger residual
errors at higher concentrations, Figure , suggests that the indeterminate errors affecting the signal are not independent of the
analyte’s concentration. In Figure , the residual errors are not random, which suggests we cannot model the data using a
straight-line relationship. Regression methods for the latter two cases are discussed in the following sections.
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Figure : Plots of the residual error in the signal, S , as a function of the concentration of analyte, C , for an unweighted
straight-line regression model. The red line shows a residual error of zero. The distribution of the residual errors in (a) indicates
that the unweighted linear regression model is appropriate. The increase in the residual errors in (b) for higher concentrations of
analyte, suggests that a weighted straight-line regression is more appropriate. For (c), the curved pattern to the residuals suggests
that a straight-line model is inappropriate; linear regression using a quadratic model might produce a better fit.

Use your results from Exercise  to construct a residual plot and explain its significance.

Solution

To create a residual plot, we need to calculate the residual error for each standard. The following table contains the relevant
information.

0.000 0.000 0.0015 –0.0015

0.050 0.0473 0.0027

0.093 0.0949 –0.0019

0.143 0.1417 0.0013

0.188 0.1890 –0.0010

0.236 0.2357 0.0003

The figure below shows a plot of the resulting residual errors. The residual errors appear random, although they do alternate in
sign, and they do not show any significant dependence on the analyte’s concentration. Taken together, these observations
suggest that our regression model is appropriate.

8.1: Unweighted Linear Regression With Errors in y is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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8.2: Weighted Linear Regression with Errors in y
Our treatment of linear regression to this point assumes that any indeterminate errors that affect y are independent of the value of x.
If this assumption is false, then we must include the variance for each value of y in our determination of the y-intercept, b , and the
slope, b ; thus

where w  is a weighting factor that accounts for the variance in y

and  is the standard deviation for y . In a weighted linear regression, each xy-pair’s contribution to the regression line is inversely
proportional to the precision of y ; that is, the more precise the value of y, the greater its contribution to the regression.

Shown here are data for an external standardization in which s  is the standard deviation for three replicate determination of
the signal. This is the same data used in the examples in Section 8.1 with additional information about the standard deviations
in the signal.

 (arbitrary units)  (arbitrary units)

0.000 0.00 0.02

0.100 12.36 0.02

0.200 24.83 0.07

0.300 35.91 0.13

0.400 48.79 0.22

0.500 60.42 0.33

Determine the calibration curve’s equation using a weighted linear regression. As you work through this example, remember
that x corresponds to C , and that y corresponds to S .

Solution

We begin by setting up a table to aid in calculating the weighting factors.

 (arbitrary units)  (arbitrary units)

0.000 0.00 0.02 2500.00 2.8339

0.100 12.36 0.02 2500.00 2.8339

0.200 24.83 0.07 204.08 0.2313

0.300 35.91 0.13 59.17 0.0671

0.400 48.79 0.22 20.66 0.0234

0.500 60.42 0.33 9.18 0.0104

Adding together the values in the fourth column gives
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which we use to calculate the individual weights in the last column. As a check on your calculations, the sum of the individual
weights must equal the number of calibration standards, n. The sum of the entries in the last column is 6.0000, so all is well.
After we calculate the individual weights, we use a second table to aid in calculating the four summation terms in the equations
for the slope, , and the y-intercept, .

0.000 0.00 2.8339 0.0000 0.0000 0.0000 0.0000

0.100 12.36 2.8339 0.2834 35.0270 0.0283 3.5027

0.200 24.83 0.2313 0.0463 5.7432 0.0093 1.1486

0.300 35.91 0.0671 0.0201 2.4096 0.0060 0.7229

0.400 48.79 0.0234 0.0094 1.1417 0.0037 0.4567

0.500 60.42 0.0104 0.0052 0.6284 0.0026 0.3142

Adding the values in the last four columns gives

which gives the estimated slope and the estimated y-intercept as

The calibration equation is

Figure  shows the calibration curve for the weighted regression determined here and the calibration curve for the
unweighted regression in from Section 8.2. Although the two calibration curves are very similar, there are slight differences in
the slope and in the y-intercept. Most notably, the y-intercept for the weighted linear regression is closer to the expected value
of zero. Because the standard deviation for the signal, S , is smaller for smaller concentrations of analyte, C , a weighted
linear regression gives more emphasis to these standards, allowing for a better estimate of the y-intercept.

Figure : A comparison of the unweighted and the weighted normal calibration curves. See Example  for details of the
unweighted linear regression and Example  for details of the weighted linear regression.

Equations for calculating confidence intervals for the slope, the y-intercept, and the concentration of analyte when using a weighted
linear regression are not as easy to define as for an unweighted linear regression [Bonate, P. J. Anal. Chem. 1993, 65, 1367–1372].
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The confidence interval for the analyte’s concentration, however, is at its optimum value when the analyte’s signal is near the
weighted centroid, y  , of the calibration curve.

8.2: Weighted Linear Regression with Errors in y is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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8.3: Weighted Linear Regression With Errors in Both x and y
If we remove our assumption that indeterminate errors affecting a calibration curve are present only in the signal (y), then we also
must factor into the regression model the indeterminate errors that affect the analyte’s concentration in the calibration standards (x).
The solution for the resulting regression line is computationally more involved than that for either the unweighted or weighted
regression lines. Although we will not consider the details in this textbook, you should be aware that neglecting the presence of
indeterminate errors in x can bias the results of a linear regression.

See, for example, Analytical Methods Committee, “Fitting a linear functional relationship to data with error on both variable,”
AMC Technical Brief, March, 2002), as well as this chapter’s Additional Resources.

8.3: Weighted Linear Regression With Errors in Both x and y is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by LibreTexts.
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8.4: Curvilinear, Multivariable, and Multivariate Regression
A straight-line regression model, despite its apparent complexity, is the simplest functional relationship between two variables.
What do we do if our calibration curve is curvilinear—that is, if it is a curved-line instead of a straight-line? One approach is to try
transforming the data into a straight-line. Logarithms, exponentials, reciprocals, square roots, and trigonometric functions have
been used in this way. A plot of log(y) versus x is a typical example. Such transformations are not without complications, of which
the most obvious is that data with a uniform variance in y will not maintain that uniform variance after it is transformed.

It is worth noting here that the term “linear” does not mean a straight-line. A linear function may contain more than one
additive term, but each such term has one and only one adjustable multiplicative parameter. The function

is an example of a linear function because the terms x and x  each include a single multiplicative parameter, a and b,
respectively. The function

is nonlinear because b is not a multiplicative parameter; it is, instead, a power. This is why you can use linear regression to fit a
polynomial equation to your data.

Sometimes it is possible to transform a nonlinear function into a linear function. For example, taking the log of both sides of
the nonlinear function above gives a linear function.

Another approach to developing a linear regression model is to fit a polynomial equation to the data, such as .
You can use linear regression to calculate the parameters a, b, and c, although the equations are different than those for the linear
regression of a straight-line. If you cannot fit your data using a single polynomial equation, it may be possible to fit separate
polynomial equations to short segments of the calibration curve. The result is a single continuous calibration curve known as a
spline function. The use of R for curvilinear regression is included in Chapter 8.5.

For details about curvilinear regression, see (a) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Chemometrics, Wiley-
Interscience: New York, 1986; (b) Deming, S. N.; Morgan, S. L. Experimental Design: A Chemometric Approach, Elsevier:
Amsterdam, 1987.

The regression models in this chapter apply only to functions that contain a single dependent variable and a single independent
variable. One example is the simplest form of Beer's law in which the absorbance, , of a sample at a single wavelength, ,
depends upon the concentration of a single analyte, 

where  is the analyte's molar absorptivity at the selected wavelength and  is the pathlength through the sample. In the presence
of an interferent, , however, the signal may depend on the concentrations of both the analyte and the interferent

where  is the interferent’s molar absorptivity and C  is the interferent’s concentration. This is an example of multivariable
regression, which is covered in more detail in Chapter 9 when we consider the optimization of experiments where there is a single
dependent variable and two or more independent variables.

 Note

y = ax +bx2

2

y = xb

log(y) = b log(x)

y = a +bx +cx2

 Note

A λ

CA

= bAλ ϵλ,A CA

ϵλ,A b

I

= b + bAλ ϵλ,A CA ϵλ,I CI

ϵλ,I I
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For more details on Beer's law, see Chapter 10 of Analytical Chemistry 2.1.

In multivariate regression we have both multiple dependent variables, such as the absorbance of samples at two or more
wavelengths, and multiple independent variables, such as the concentrations of two or more analytes in the samples. As discussed
in Chapter 0.2, we can represent this using matrix notation

where there are  wavelengths,  samples, and  analytes. Each column in the  matrix, for example, holds the  value for a
different analyte at one of  wavelengths, and each row in the  matrix is the concentration of one of the  analytes in one of the 
samples. We will consider this approach in more detail in Chapter 11.

For a nice discussion of the difference between multivariable regression and multivariate regression, see Hidalgo, B.;
Goodman, M. "Multivariate or Multivariable Regression," Am. J. Public Health, 2013, 103, 39-40.

8.4: Curvilinear, Multivariable, and Multivariate Regression is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by LibreTexts.
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8.5: Using R for a Linear Regression Analysis
In Section 8.1 we used the data in the table below to work through the details of a linear regression analysis where values of  are
the concentrations of analyte, , in a series of standard solutions, and where values of , are their measured signals, . Let’s use
R to model this data using the equation for a straight-line.

Table : Calibration Data From Worked Example in Section 8.1.

0.000 0.00

0.100 12.36

0.200 24.83

0.300 35.91

0.400 48.79

0.500 60.42

Entering Data into R 

To begin, we create two objects, one that contains the concentration of the standards and one that contains their corresponding
signals.

conc = c(0, 0.1, 0.2, 0.3, 0.4, 0.5)

signal = c(0, 12.36, 24.83, 35.91, 48.79, 60.42)

Creating a Linear Model in R 

A linear model in R is defined using the general syntax

dependent variable ~ independent variable(s)

For example, the syntax for a model with the equation , where  and  are the model's adjustable parameters, is 
. Table  provides some additional examples where  and  are independent variables, such as the concentrations of two

analytes, and  is a dependent variable, such as a measured signal.

Table : Syntax for Selected Linear Models in R.

model syntax comments on model

straight-line forced through (0, 0)

stright-line with a y-intercept

first-order in A and B

first-order in A and B with AB interaction

AB interaction only

second-order polynomial

The last formula in this table, , includes the I() , or AsIs function. One complication with writing
formulas is that they use symbols that have different meanings in formulas than they have in a mathematical equation. For
example, take the simple formula  that corresponds to the model . Note that the plus sign
here builds a formula that has an intercept and a term for  and a term for . But what if we wanted to build a model that used

xi

CA yi S

y = + xβ0 β1

8.5.1

xi yi

y = + xβ0 β1 β0 β1

y ∼ x 8.5.2 A B

y

8.5.2

y = Aβa y ∼ 0 + A

y = + Aβ0 βa y ∼ A

y = + A+ Bβ0 βa βb y ∼ A+ B

y = + A+ B + ABβ0 βa βb βab y ∼ A∗ B

y = + ABβ0 βab y ∼ A : B

y = + A+β0 βa βaaA2 y ∼ A+ I(A^2)

 Note

y ∼ A +I(A^2)

y ∼ A +B y = + A + Bβ0 βa βb

A B
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the sum of  and  as the variable. Wrapping  inside of the I() function accomplishes this; thus  builds
the model .

To create our model we use the lm()  function—where lm stands for linear model—assigning the results to an object so that we
can access them later.

calcurve = lm(signal ~ conc)

Evaluating the Linear Regression Model 

To evaluate the results of a linear regression we need to examine the data and the regression line, and to review a statistical
summary of the model. To examine our data and the regression line, we use the plot()  function, first introduced in Chapter 3,
which takes the following general form

plot(x, y, ...)

where x  and y  are the objects that contain our data and the ...  allow for passing optional arguments to control the plot's
style. To overlay the regression curve, we use the abline()  function

abline(object, ...)

object  is the object that contains the results of the linear regression model and the ...  allow for passing optional
arguments to control the model's style. Entering the commands

plot(conc, signal, pch = 19, col = "blue", cex = 2)

abline(calcurve, col = "red", lty = 2, lwd = 2)

creates the plot shown in Figure .

The abline() function works only with a straight-line model.

Figure : Example of a regression plot in R showing the data (in blue) and the regression line (in red). You can customize your
plot by adjusting the plot command’s optional arguments; see Chapter 3.3 for details.

To review a statistical summary of the regression model, we use the summary()  function.

summary(calcurve)

The resulting output, which is shown below, contains three sections.

Call:

lm(formula = signal ~ conc)

Residuals:

1 2 3 4 5 6

-0.20857 0.08086 0.48029 -0.51029 0.29914 -0.14143

Coefficients:

A B A +B y ∼ I(A +B)

y = + (A +B)β0 βa+b

8.5.1

 Note

8.5.1
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2086 0.2919 0.715 0.514

conc 120.7057 0.9641 125.205 2.44e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4033 on 4 degrees of freedom

Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997

F-statistic: 1.568e+04 on 1 and 4 DF, p-value: 2.441e-08

The first section of this summary lists the residual errors. To examine a plot of the residual errors, use the command

plot(calcurve, which = 1)

which produces the result shown in Figure . Note that R plots the residuals against the predicted (fitted) values of y instead of
against the known values of x, as we did in Section 8.1; the choice of how to plot the residuals is not critical. The line in Figure 

 is a smoothed fit of the residuals.

The reason for including the argument which = 1  is not immediately obvious. When you use R’s plot()  function on
an object created using lm() , the default is to create four charts that summarize the model’s suitability. The first of these
charts is the residual plot; thus, which = 1  limits the output to this plot.

Figure : Example showing R’s plot of a regression model’s residual error.

The second section of the summary provides estimate's for the model’s coefficients—the slope, , and the y-intercept, —along
with their respective standard deviations (Std. Error). The column t value and the column Pr(>|t|) are the p-values for the
following t-tests.

slope: 

y-intercept: 

The results of these t-tests provide convincing evidence that the slope is not zero and no evidence that the y-intercept differs
significantly from zero.

The last section of the summary provides the standard deviation about the regression (residual standard error), the square of the
correlation coefficient (multiple R-squared), and the result of an F-test on the model’s ability to explain the variation in the y
values.

The value for F-statistic is the result of an F-test of the following null and alternative hypotheses.

H : the regression model does not explain the variation in y

H : the regression model does explain the variation in y

The value in the column for Significance F is the probability for retaining the null hypothesis. In this example, the probability is 
, which is strong evidence for rejecting the null hypothesis and accepting the regression model. As is the case with the

8.5.2

8.5.2

 Note

8.5.2

β1 β0

:  = 0 :  ≠ 0H0 β1 HA β1

:  = 0 :  ≠ 0H0 β0 HA β0

0

A

2.5 ×10−8
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correlation coefficient, a small value for the probability is a likely outcome for any calibration curve, even when the model is
inappropriate. The probability for retaining the null hypothesis for the data in Figure , for example, is .

The correlation coefficient is a measure of the extent to which the regression model explains the variation in y. Values of r range
from –1 to +1. The closer the correlation coefficient is to +1 or to –1, the better the model is at explaining the data. A correlation
coefficient of 0 means there is no relationship between x and y. In developing the calculations for linear regression, we did not
consider the correlation coefficient. There is a reason for this. For most straight-line calibration curves the correlation coefficient is
very close to +1, typically 0.99 or better. There is a tendency, however, to put too much faith in the correlation coefficient’s
significance, and to assume that an r greater than 0.99 means the linear regression model is appropriate. Figure  provides a
useful counterexample. Although the regression line has a correlation coefficient of 0.993, the data clearly is curvilinear. The take-
home lesson is simple: do not fall in love with the correlation coefficient!

Figure : Example of fitting a straight-line (in red) to curvilinear data (in blue).

Predicting the Uncertainty in  Given  

Although R's base installation does not include a command for predicting the uncertainty in the independent variable, , given a
measured value for the dependent variable, , the chemCal package does. To use this package you need to install it by entering
the following command.

install.packages("chemCal")

Once installed, which you need to do just once, you can access the package's functions by using the library()  command.

library(chemCal)

The command for predicting the uncertainty in C  is inverse.predict() and takes the following form for an unweighted
linear regression

inverse.predict(object, newdata, alpha = value)

where object  is the object that contains the regression model’s results, new-data  is an object that contains one or more
replicate values for the dependent variable and value  is the numerical value for the significance level. Let’s use this command
to complete the calibration curve example from Section 8.1 in which we determined the concentration of analyte in a sample using
three replicate analyses. First, we create an object that contains the replicate measurements of the signal

rep_signal = c(29.32, 29.16, 29.51)

and then we complete the computation using the following command

inverse.predict(calcurve, rep_signal, alpha = 0.05)

which yields the results shown here

$Prediction

[1] 0.2412597

$`Standard Error`

[1] 0.002363588

$Confidence

[1] 0.006562373

8.5.3 9.0 ×10−5

8.5.3

8.5.3

x y

x

y

A
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$`Confidence Limits`

[1] 0.2346974 0.2478221

The analyte’s concentration, C , is given by the value $Prediction , and its standard deviation, , is shown as 
$`Standard Error` . The value for $Confidence is the confidence interval, , for the analyte’s concentration,

and $`Confidence Limits`  provides the lower limit and upper limit for the confidence interval for C .

Using R for a Weighted Linear Regression 

R’s command for an unweighted linear regression also allows for a weighted linear regression if we include an additional argument,
weights , whose value is an object that contains the weights.

lm(y ~ x, weights = object)

Let’s use this command to complete the weighted linear regression example in Section 8.2 First, we need to create an object that
contains the weights, which in R are the reciprocals of the standard deviations in y, . Using the data from the earlier
example, we enter

syi = c(0.02, 0.02, 0.07, 0.13, 0.22, 0.33)

w =1/syi^2

to create the object, w , that contains the weights. The commands

weighted_calcurve = lm(signal ~ conc, weights = w)

summary(weighted_calcurve)

generate the following output.

Call:

lm(formula = signal ~ conc, weights = w)

Weighted Residuals:

1 2 3 4 5 6

-2.223 2.571 3.676 -7.129 -1.413 -2.864

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.04446 0.08542 0.52 0.63

conc 122.64111 0.93590 131.04 2.03e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.639 on 4 degrees of freedom

Multiple R-squared: 0.9998, Adjusted R-squared: 0.9997

F-statistic: 1.717e+04 on 1 and 4 DF, p-value: 2.034e-08

Any difference between the results shown here and the results in Section 8.2 are the result of round-off errors in our earlier
calculations.

You may have noticed that this way of defining weights is different than that shown in Section 8.2 In deriving equations for a
weighted linear regression, you can choose to normalize the sum of the weights to equal the number of points, or you can
choose not to—the algorithm in R does not normalize the weights.

A sCA

±tsCA

A

(syi
)−2

 Note
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Using R for a Curvilinear Regression 

As we see in this example, we can use R to model data that is not in the form of a straight-line by simply adjusting the linear
model.

Use the data below to explore two models for the data in the table below, one using a straight-line, , and one that
is a second-order polynomial, .

0.00 0.00

1.00 0.94

2.00 2.15

3.00 3.19

4.00 3.70

5.00 4.21

Solution

First, we create objects to store our data.

x = c(0, 1.00, 2.00, 3.00, 4.00, 5.00) 
y = c(0, 0.94, 2.15, 3.19, 3.70, 4.21)

Next, we build our linear models for a straight-line and for a curvilinear fit to the data

straight_line = lm(y ~ x)

curvilinear = lm(y ~ x + I(x^2))

and plot the data and both linear models on the same plot. Because abline()  only works for a straight-line, we use our
curvilinear model to calculate sufficient values for x and y that we can use to plot the curvilinear model. Note that the
coefficients for this model are stored in curvilinear$coefficients with the first value being , the second value being , and
the third value being .

plot(x, y, pch = 19, col = "blue", ylim = c(0,5), xlab = "x", ylab = "y")

abline(straight_line, lwd = 2, col = "blue", lty = 2)

x_seq = seq(-0.5, 5.5, 0.01)

y_seq = curvilinear$coefficients[1] + curvilinear$coefficients[2] * x_seq +
curvilinear$coefficients[3] * x_seq^2

lines(x_seq, y_seq, lwd = 2, col = "red", lty = 3)

legend(x = "topleft", legend = c("straight-line", "curvilinear"), col = c("blue",
"red"), lty = c(2, 3), lwd = 2, bty = "n")

The resulting plot is shown here.

 Example 8.5.1

y = + xβ0 β1

y = + x +β0 β1 β2x2

xi yi

β0 β1

β2
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8.6: Exercises
1. The following data are for a series of external standards of Cd  buffered to a pH of 4.6.

[Cd ] (nM) 15.4 30.4 44.9 59.0 72.7 86.0

 (nA) 4.8 11.4 18.2 26.6 32.3 37.7

(a) Use a linear regression analysis to determine the equation for the calibration curve and report confidence intervals for the slope
and the y-intercept.

(b) Construct a plot of the residuals and comment on their significance.

At a pH of 3.7 the following data were recorded for the same set of external standards.

[Cd ] (nM) 15.4 30.4 44.9 59.0 72.7 86.0

 (nA) 15.0 42.7 58.5 77.0 101 118

(c) How much more or less sensitive is this method at the lower pH?

(d) A single sample is buffered to a pH of 3.7 and analyzed for cadmium, yielding a signal of 66.3 nA. Report the concentration of
Cd  in the sample and its 95% confidence interval.

The data in this problem are from Wojciechowski, M.; Balcerzak, J. Anal. Chim. Acta 1991, 249, 433–445.

2. Consider the following three data sets, each of which gives values of y for the same values of x.

x y y y

10.00 8.04 9.14 7.46

8.00 6.95 8.14 6.77

13.00 7.58 8.74 12.74

9.00 8.81 8.77 7.11

11.00 8.33 9.26 7.81

14.00 9.96 8.10 8.84

6.00 7.24 6.13 6.08

4.00 4.26 3.10 5.39

12.00 10.84 9.13 8.15

7.00 4.82 7.26 6.42

5.00 5.68 4.74 5.73

(a) An unweighted linear regression analysis for the three data sets gives nearly identical results. To three significant figures, each
data set has a slope of 0.500 and a y-intercept of 3.00. The standard deviations in the slope and the y-intercept are 0.118 and 1.125
for each data set. All three standard deviations about the regression are 1.24. Based on these results for a linear regression analysis,
comment on the similarity of the data sets.

(b) Complete a linear regression analysis for each data set and verify that the results from part (a) are correct. Construct a residual
plot for each data set. Do these plots change your conclusion from part (a)? Explain.

(c) Plot each data set along with the regression line and comment on your results.

(d) Data set 3 appears to contain an outlier. Remove the apparent outlier and reanalyze the data using a linear regression. Comment
on your result.
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(e) Briefly comment on the importance of visually examining your data.

These three data sets are taken from Anscombe, F. J. “Graphs in Statistical Analysis,” Amer. Statis. 1973, 27, 17-21.

3. Fanke and co-workers evaluated a standard additions method for a voltammetric determination of Tl. A summary of their results
is tabulated in the following table.

ppm Tl added Instrument Response (μμA)

0.000 2.53 2.50 2.70 2.63 2.70 2.80 2.52

0.387 8.42 7.96 8.54 8.18 7.70 8.34 7.98

1.851 29.65 28.70 29.05 28.30 29.20 29.95 28.95

5.734 84.8 85.6 86.0 85.2 84.2 86.4 87.8

Use a weighted linear regression to determine the standardization relationship for this data. The data in this problem are from
Franke, J. P.; de Zeeuw, R. A.; Hakkert, R. Anal. Chem. 1978, 50, 1374–1380.

8.6: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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CHAPTER OVERVIEW

9: Optimizing Data
In the presence of H O  and H SO , a solution of vanadium forms a reddish brown color that is believed to be a compound with the
general formula (VO) (SO ) . The intensity of the solution’s color depends on the concentration of vanadium, which means we can
use its absorbance at a wavelength of 450 nm to develop a quantitative method for vanadium. The intensity of the solution’s color
also depends on the amounts of H O  and H SO  that we add to the sample—in particular, a large excess of H O  decreases the
solution’s absorbance as it changes from a reddish brown color to a yellowish color [Vogel’s Textbook of Quantitative Inorganic
Analysis, Longman: London, 1978, p. 752.]. Developing a standard method for vanadium based on this reaction requires that we
optimize the amount of H O  and H SO  added if we want to maximize the absorbance at 450 nm. Using the terminology of
statisticians, we call the solution’s absorbance the system’s response. Hydrogen peroxide and sulfuric acid are factors whose
concentrations, or factor levels, determine the system’s response. To optimize the method we need to find the best combination of
factor levels. Usually we seek a maximum response, as is the case for the quantitative analysis of vanadium as (VO) (SO ) . In
other situations, such as minimizing an analysis’s percent error, we seek a minimum response. How we design experiments to
optimize the response is the subject of this chapter.

9.1: Response Surfaces
9.2: Searching Algorithms
9.3: One-Factor-at-a-Time Optimizations
9.4: Simplex Optimization
9.5: Mathematical Models of Response Surfaces
9.6: Using R to Model a Response Surface (Multiple Regression)
9.7: Exercises
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9.1: Response Surfaces
One of the most effective ways to think about an optimization is to visualize how a system’s response changes when we increase or
decrease the levels of one or more of its factors. We call a plot of the system’s response as a function of the factor levels a response
surface. The simplest response surface has one factor and is drawn in two dimensions by placing the responses on the y-axis and
the factor’s levels on the x-axis. The calibration curve in Figure  is an example of a one-factor response surface. We also can
define the response surface mathematically. The response surface in Figure , for example, is

where A is the absorbance and C  is the analyte’s concentration in ppm.

Figure . A calibration curve is an example of a one-factor response surface. The responses (absorbance) are plotted on the y-
axis and the factor levels (concentration of analyte) are plotted on the x-axis.

For a two-factor system, such as the quantitative analysis for vanadium described earlier, the response surface is a flat or curved
plane in three dimensions. As shown in Figure , we place the response on the z-axis and the factor levels on the x-axis and the
y-axis. Figure  shows a pseudo-three dimensional wireframe plot for a system that obeys the equation

where R is the response, and A and B are the factors. We also can represent a two-factor response surface using the two-
dimensional level plot in Figure , which uses a color gradient to show the response on a two-dimensional grid, or using the
two-dimensional contour plot in Figure , which uses contour lines to display the response surface.

Figure . Three examples of a two-factor response surface displayed as (a) a pseudo-three-dimensional wireframe plot, (b) a
two-dimensional level plot, and (c) a two-dimensional contour plot. We call the display in (a) a pseudo-three dimensional response
surface because we show the presence of three dimensions on the page’s flat, two-dimensional surface.

The response surfaces in Figure  cover a limited range of factor levels (0 ≤ A ≤ 10, 0 ≤ B ≤ 10), but we can extend each to
more positive or to more negative values because there are no constraints on the factors. Most response surfaces of interest to an
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analytical chemist have natural constraints imposed by the factors, or have practical limits set by the analyst. The response surface
in Figure , for example, has a natural constraint on its factor because the analyte’s concentration cannot be less than zero; that
is, .

If we have an equation for the response surface, then it is relatively easy to find the optimum response. Unfortunately, we rarely
know any useful details about the response surface. Instead, we must determine the response surface’s shape and locate its optimum
response by running appropriate experiments. The focus of this chapter is on useful experimental methods for characterizing a
response surface. These experimental methods are divided into two broad categories: searching methods, in which an algorithm
guides a systematic search for the optimum response, and modeling methods, in which we use a theoretical model or an empirical
model of the response surface to predict the optimum response.

This page titled 9.1: Response Surfaces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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9.2: Searching Algorithms
Figure  shows a portion of the South Dakota Badlands, a barren landscape that includes many narrow ridges formed through
erosion. Suppose you wish to climb to the highest point on this ridge. Because the shortest path to the summit is not obvious, you
might adopt the following simple rule: look around you and take one step in the direction that has the greatest change in elevation,
and then repeat until no further step is possible. The route you follow is the result of a systematic search that uses a searching
algorithm. Of course there are as many possible routes as there are starting points, three examples of which are shown in Figure 

. Note that some routes do not reach the highest point—what we call the global optimum. Instead, many routes end at a local
optimum from which further movement is impossible.

Figure . Finding the highest point on a ridge using a searching algorithm is one useful method for locating the optimum on a
response surface. The path on the far right reaches the highest point, or the global optimum. The other two paths reach local
optima. Searching algorithms have names: the one described here is the method of steepest ascent.

We can use a systematic searching algorithm to locate the optimum response. We begin by selecting an initial set of factor levels
and measure the response. Next, we apply the rules of our searching algorithm to determine a new set of factor levels and measure
its response, continuing this process until we reach an optimum response. Before we consider two common searching algorithms,
let’s consider how we evaluate a searching algorithm.

Effectiveness and Efficiency 
A searching algorithm is characterized by its effectiveness and its efficiency. To be effective, a searching algorithm must find the
response surface’s global optimum, or at least reach a point near the global optimum. A searching algorithm may fail to find the
global optimum for several reasons, including a poorly designed algorithm, uncertainty in measuring the response, and the presence
of local optima. Let’s consider each of these potential problems.

A poorly designed algorithm may prematurely end the search before it reaches the response surface’s global optimum. As shown in
Figure , when you climb a ridge that slopes up to the northeast, an algorithm is likely to fail it if limits your steps only to the
north, south, east, or west. An algorithm that cannot respond to a change in the direction of steepest ascent is not an effective
algorithm.
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Figure . Example that shows how a poorly designed searching algorithm—limited to moving only north, south, east, or west
—can fail to find a response surface’s global optimum.

All measurements contain uncertainty, or noise, that affects our ability to characterize the underlying signal. When the noise is
greater than the local change in the signal, then a searching algorithm is likely to end before it reaches the global optimum. Figure 

, which provides a different view of Figure , shows us that the relatively flat terrain leading up to the ridge is heavily
weathered and very uneven. Because the variation in local height (the noise) exceeds the slope (the signal), our searching algorithm
ends the first time we step up onto a less weathered local surface that is higher than the immediately surrounding surfaces.

Figure . Another view of the ridge in Figure  that shows the weathered terrain leading up to the ridge. The yellow rod at
the bottom of the figure, which marks the trail, is about 18 in high.

Finally, a response surface may contain several local optima, only one of which is the global optimum. If we begin the search near
a local optimum, our searching algorithm may never reach the global optimum. The ridge in Figure , for example, has many
peaks. Only those searches that begin at the far right will reach the highest point on the ridge. Ideally, a searching algorithm should
reach the global optimum regardless of where it starts.

A searching algorithm always reaches an optimum. Our problem, of course, is that we do not know if it is the global optimum. One
method for evaluating a searching algorithm’s effectiveness is to use several sets of initial factor levels, find the optimum response
for each, and compare the results. If we arrive at or near the same optimum response after starting from very different locations on
the response surface, then we are more confident that is it the global optimum.

Efficiency is a searching algorithm’s second desirable characteristic. An efficient algorithm moves from the initial set of factor
levels to the optimum response in as few steps as possible. In seeking the highest point on the ridge in Figure , we can
increase the rate at which we approach the optimum by taking larger steps. If the step size is too large, however, the difference
between the experimental optimum and the true optimum may be unacceptably large. One solution is to adjust the step size during
the search, using larger steps at the beginning and smaller steps as we approach the global optimum.
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9.3: One-Factor-at-a-Time Optimizations
A simple algorithm for optimizing the quantitative method for vanadium described earlier is to select initial concentrations for
H O  and H SO  and measure the absorbance. Next, we optimize one reagent by increasing or decreasing its concentration—
holding constant the second reagent’s concentration—until the absorbance decreases. We then vary the concentration of the second
reagent—maintaining the first reagent’s optimum concentration—until we no longer see an increase in the absorbance. We can stop
this process, which we call a one-factor-at-a-time optimization, after one cycle or repeat the steps until the absorbance reaches a
maximum value or it exceeds an acceptable threshold value.

A one-factor-at-a-time optimization is consistent with a notion that to determine the influence of one factor we must hold constant
all other factors. This is an effective, although not necessarily an efficient experimental design when the factors are independent
[see Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Chemometrics, Wiley-Interscience: New York, 1986]. Two factors are
independent when a change in the level of one factor does not influence the effect of a change in the other factor’s level. Table 

 provides an example of two independent factors.

Table . Example of Two Independent Factors

factor A factor B response

40

80

60

100

If we hold factor B at level B , changing factor A from level A  to level A  increases the response from 40 to 80, or a change in
response,  of

If we hold factor B at level B , we find that we have the same change in response when the level of factor A changes from A  to A .

We can see this independence visually if we plot the response as a function of factor A’s level, as shown in Figure . The
parallel lines show that the level of factor B does not influence factor A’s effect on the response.

Figure . Factor effect plot for two independent factors. Note that the two lines are parallel, indicating that the level for factor B
does not influence how factor A’s level affects the response.

Mathematically, two factors are independent if they do not appear in the same term in the equation that describes the response
surface. Figure , for example, shows the resulting pseudo-three-dimensional surface and a contour map for the equation

which describes a response surface with independent factors because no term in the equation includes both factor A and factor B.
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Figure . The response surface for two independent factors based on the equation 
 and displayed as (a) a wireframe, and as (b) an overlaid contour plot and level

plot. The orange lines in (b) show the progress of one-factor-at-a-time optimizations beginning from two starting points (•) and
optimizing factor A first (solid line) or factor B first (dashed line). All four trials reach the optimum response of (2,8) in a single
cycle.

The easiest way to follow the progress of a searching algorithm is to map its path on a contour plot of the response surface.
Positions on the response surface are identified as (a, b) where a and b are the levels for factor A and for factor B. The contour plot
in Figure , for example, shows four one-factor-at-a-time optimizations of the response surface in Figure . The
effectiveness and efficiency of this algorithm when optimizing independent factors is clear—each trial reaches the optimum
response at (2, 8) in a single cycle.

Unfortunately, factors often are not independent. Consider, for example, the data in Table 

Table . Example of Two Dependent Factors

factor A factor B response

20

80

60

80

where a change in the level of factor B from level B  to level B  has a significant effect on the response when factor A is at level A

but no effect when factor A is at level A .

Figure  shows this dependent relationship between the two factors.
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Figure . Factor effect plot for two dependent factors. Note that the two lines are not parallel, indicating that the level for factor
A influences how factor B’s level affects the response.

Factors that are dependent are said to interact and the equation for the response surface includes an interaction term that contains
both factor A and factor B. The final term in this equation

for example, accounts for the interaction between factor A and factor B. Figure  shows the resulting pseudo-three-dimensional
surface and a contour map for the response surface defined by this equation. The progress of a one-factor-at-a-time optimization for
this response surface is shown in Figure . Although the optimization for dependent factors is effective, it is less efficient than
that for independent factors. In this case it takes four cycles to reach the optimum response of (3, 7) if we begin at (0, 0).

Figure . The response surface for two dependent factors based on equation 
 and displayed as (a) a wireframe, and as (b) an overlaid contour plot

and level plot. The orange lines in (b) show the progress of one-factor-at-a-time optimization beginning from the starting point (•)
and optimizing factor A first. The red dot (•) marks the end of the first cycle. It takes four cycles to reach the optimum response of
(3, 7) as shown by the green dot (•).

This page titled 9.3: One-Factor-at-a-Time Optimizations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David Harvey.
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9.4: Simplex Optimization
One strategy for improving the efficiency of a searching algorithm is to change more than one factor at a time. A convenient way to
accomplish this when there are two factors is to begin with three sets of initial factor levels arranged as the vertices of a triangle
(Figure . After measuring the response for each set of factor levels, we identify the combination that gives the worst response
and replace it with a new set of factor levels using a set of rules. This process continues until we reach the global optimum or until
no further optimization is possible. The set of factor levels is called a simplex. In general, for k factors a simplex is a 
dimensional geometric figure [see Spendley, W.; Hext, G. R.; Himsworth, F. R. Technometrics 1962, 4, 441–461, and Deming, S.
N.; Parker, L. R. CRC Crit. Rev. Anal. Chem. 1978 7(3), 187–202]. Thus, for two factors the simplex is a triangle. For three factors
the simplex is a tetrahedron.

Figure . Example of a two-factor simplex. The original simplex is formed by the green, orange, and red vertices. Replacing
the worst vertex with a new vertex moves the simplex to a new position on the response surface.

To place the initial two-factor simplex on the response surface, we choose a starting point (a, b) for the first vertex and place the
remaining two vertices at (a + s , b) and (a + 0.5s , b + 0.87s ) where s  and s  are step sizes for factor A and for factor B [see, for
example, Long, D. E. Anal. Chim. Acta 1969, 46, 193–206]. The following set of rules moves the simplex across the response
surface in search of the optimum response:

Rule 1. Rank the vertices from best (v ) to worst (v ).

Rule 2. Reject the worst vertex (v ) and replace it with a new vertex (v ) by reflecting the worst vertex through the midpoint of the
remaining vertices. The new vertex’s factor levels are twice the average factor levels for the retained vertices minus the factor
levels for the worst vertex. For a two-factor optimization, the equations are shown here where v  is the third vertex.

Rule 3. If the new vertex has the worst response, then return to the previous vertex and reject the vertex with the second worst
response, (v ) calculating the new vertex’s factor levels using rule 2. This rule ensures that the simplex does not return to the
previous simplex.

Rule 4. Boundary conditions are a useful way to limit the range of possible factor levels. For example, it may be necessary to limit
a factor’s concentration for solubility reasons, or to limit the temperature because a reagent is thermally unstable. If the new vertex
exceeds a boundary condition, then assign it the worst response and follow rule 3.

Because the size of the simplex remains constant during the search, this algorithm is called a fixed-sized simplex optimization. The
following example illustrates the application of these rules.

Find the optimum for the response surface described by the equation

using the fixed-sized simplex searching algorithm. Use (0, 0) for the initial factor levels and set each factor’s step size to 1.00.

9.4.1

k +1

9.4.1

a a b a b

b w

w n

s

= 2( )−avn

+avb
avs

2
avw

= 2( )−bvn

+bvb
bvs

2
bvw

s
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Solution

Letting a = 0, b =0, s  = 1.00, and s  = 1.00 gives the vertices for the initial simplex as

The responses for the three vertices are shown in the following table

vertex a b response

0 0 5.50

1.00 0 6.85

0.50 0.87 6.68

with  giving the worst response and  the best response. Following Rule 1, we reject  and replace it with a new vertex;
thus

The following table gives the vertices of the second simplex.

vertex a b response

1.00 0 6.85

0.50 0.87 6.68

1.50 0.87 7.80

with  giving the worst response and  the best response. Following Rule 1, we reject  and replace it with a new vertex;
thus

The following table gives the vertices of the third simplex.

vertex a b response

1.00 0 6.85

1.50 0.87 7.80

2.00 0 7.90

The calculation of the remaining vertices is left as an exercise. Figure  shows the progress of the complete optimization.
After 29 steps the simplex begins to repeat itself, circling around the optimum response of (3, 7).

a b

vertex 1:(a, b) = (0, 0)

vertex 2:(a + , b) = (1.00, 0)sa

vertex 3:(a +0.5 , b +0.87 ) = (0.50, 0.87)sa sb

v1

v2

v3

v1 v3 v1

= 2( )−0 = 1.50av4

1.00 +0.50

2

= 2( )−0 = 0.87bv4

0 +0.87

2

v2

v3

v4

v3 v4 v3

= 2( )−0.50 = 2.00av5

1.00 +1.50

2

= 2( )−0.87 = 0bv5

0 +0.87

2

v2

v4

v5
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Figure . Progress of the fixed-size simplex optimization in Example . The green dot (•) marks the optimum response of
(3,7). Optimization ends when the simplexes begin to circle around a single vertex.

The size of the initial simplex ultimately limits the effectiveness and the efficiency of a fixed-size simplex searching algorithm. We
can increase its efficiency by allowing the size of the simplex to expand or to contract in response to the rate at which we approach
the optimum. For example, if we find that a new vertex is better than any of the vertices in the preceding simplex, then we expand
the simplex further in this direction on the assumption that we are moving directly toward the optimum. Other conditions might
cause us to contract the simplex—to make it smaller—to encourage the optimization to move in a different direction. We call this a
variable-sized simplex optimization. Consult this chapter’s additional resources for further details of the variable-sized simplex
optimization.

This page titled 9.4: Simplex Optimization is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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9.5: Mathematical Models of Response Surfaces
A response surface is described mathematically by an equation that relates the response to its factors. If we measure the response
for several combinations of factor levels, then we can use a regression analysis to build a model of the response surface. There are
two broad categories of models that we can use for a regression analysis: theoretical models and empirical models.

Theoretical Models of the Response Surface 
A theoretical model is derived from the known chemical and physical relationships between the response and its factors. In
spectrophotometry, for example, Beer’s law is a theoretical model that relates an analyte’s absorbance, A, to its concentration, C

where  is the molar absorptivity and b is the pathlength of the electromagnetic radiation passing through the sample. A Beer’s law
calibration curve, therefore, is a theoretical model of a response surface. In Chapter 8 we learned how to use linear regression to
build a mathematical model based on a theoretical relationship.

Empirical Models of the Response Surface 

In many cases the underlying theoretical relationship between the response and its factors is unknown. We still can develop a model
of the response surface if we make some reasonable assumptions about the underlying relationship between the factors and the
response. For example, if we believe that the factors A and B are independent and that each has only a first-order effect on the
response, then the following equation is a suitable model.

where R is the response, A and B are the factor levels, and , , and  are adjustable parameters whose values are determined by
a linear regression analysis. Other examples of equations include those for dependent factors

and those with higher-order terms.

Each of these equations provides an empirical model of the response surface because it has no rigorous basis in a theoretical
understanding of the relationship between the response and its factors. Although an empirical model may provide an excellent
description of the response surface over a limited range of factor levels, it has no basis in theory and we cannot reliably extend it to
unexplored parts of the response surface.

Factorial Designs 

To build an empirical model we measure the response for at least two levels for each factor. For convenience we label these levels
as high, H , and low, L , where f is the factor; thus H  is the high level for factor A and L  is the low level for factor B. If our
empirical model contains more than one factor, then each factor’s high level is paired with both the high level and the low level for
all other factors. In the same way, the low level for each factor is paired with the high level and the low level for all other factors.
As shown in Figure , this requires 2  experiments where k is the number of factors. This experimental design is known as a 2
factorial design.

A

A = ϵbCA

ϵ

R = + A + Bβ0 βa βb

β0 βa βb

R = + A + B + ABβ0 βa βb βab

R = + A + B + +β0 βa βb βaaA2 βbbB2

f f A B

9.5.1 k k
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Figure . 2  factorial designs for (top) k = 2, and for (bottom) k = 3. A 2  factorial design requires four experiments and a 2
factorial design requires eight experiments.

Another system of notation is to use a plus sign (+) to indicate a factor’s high level and a minus sign (–) to indicate its low
level.

Determining the Empirical Model 
A 2  factorial design requires four experiments and allows for an empirical model with four variables.

With four experiments, we can use a 2  factorial design to create an empirical model that includes four variables: an intercept, first-
order effects in A and B, and an interaction term between A and B

The following example walks us through the calculations needed to find this model.

Suppose we wish to optimize the yield of a synthesis and we expect that the amount of catalyst (factor A with units of mM)
and the temperature (factor B with units of °C) are likely important factors. The response, , is the reaction's yield in mg. We
run four experiments and obtain the following responses:

run A B R

1 15 20 145

2 25 20 158

3 15 30 135

4 25 30 150

Determine an equation for a response surface that provides a suitable model for predicting the effect of the catalyst and
temperture on the reaction's yield.

Solution

Examining the data we see from runs 1 & 2 and from runs 3 & 4, that increasing factor A while holding factor B constant
results in an increase in the response; thus, we expect that higher concentrations of the catalyst have a favorable affect on the
reaction's yield. We also see from runs 1 & 3 and from runs 2 & 4, that increasing factor B while holding factor A constant
results in a decrease in the response; thus, we expect that an increase in temperature has an unfavorable affect on the reaction's
yield. Finally, we also see from runs 1 & 2 and from runs 3 & 4, that  is more positive when factor B is at its higher level;

9.5.1 k 2 3

 Note

2

2

R = + A + B + ABβ0 βa βb βab

 Example 9.5.1
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thus, we expect that there is a positive interaction between factors A and B. With four experiments, we are limited to a model
that considers an intercept, first-order effects in A and B, and an interaction term between A and B

We can work out values for this model's coefficients by solving the following set of simultaneous equations:

To solve this set of equations, we subtract the first equation from the second equation and subtract the third equation from the
fourth equation, leaving us with the following two equations

Next, subtracting the first of these equations from the second gives

or . Substituting back gives

or . Subtracting the equation for the first experiment from the equation for the third experiment gives

Substituting in 0.02 for  and solving gives . Finally, substituting in our values for , , and  into any of the
first four equations gives . Our final model is

When we consider how to interpret our empirical equation for the response surface, we need to consider several important
limitations:

1. The intercept in our model represents a condition far removed from our experiments: In this case, the intercept gives the
reaction's yield in the absence of catalyst and at a temperature of 0°C, either of which we may not be useful conditions. In
general, it is never a good idea to extrapolate a model far beyond the conditions used to define the model.

2. The sign for a factor's first-order effects may be misleading if there is a significant interaction between it and other factors.
Although our model shows that factor B (the temperature) has a negative first-order effect, the positive interaction between the
two factors means there are conditions where an increase in B will increase the reaction's yield.

3. It is difficult to judge the relative importance of two or more factors by examining their coefficients if their scales are not the
same. This could present a problem, for example, if we reported the amount of catalyst (factor A) using molar concentrations as
these values would be three-orders of magnitude smaller than the reported temperatures.

4. When the number of variables is the same as the number of experiments, as is the case here, then there are no degrees of
freedom and we have no simple way to test the model's suitability.

Determining the Empirical Model Using Coded Factor Levels 
We can address two of the limitations described above by using coded factor levels in which we assign  for a high level and 
for a low level. Defining the upper limit and the lower limit of the factors as  and  does two things for us: it places the
intercept at the center of our experiments, which avoids the concern of extrapolating our model; and it places all factors on a
common scale, and which makes it easier to compare the relative effects of the factors. Coding also makes it easier to determine the
empirical model's equation when we complete calculations by hand.

R = + A + B + ABβ0 βa βb βab

+15 +20 +(15)(20) = +15 +20 +300 = 145β0 βa βb βab β0 βa βb βab

+25 +20 +(25)(20) = +25 +20 +500 = 158β0 βa βb βab β0 βa βb βab

+15 +30 +(15)(30) = +15 +30 +450 = 135β0 βa βb βab β0 βa βb βab

+25 +30 +(25)(30) = +25 +30 +750 = 150β0 βa βb βab β0 βa βb βab

10 +200 = 13βa βab

10 +300 = 15βa βab

100 = 2βab

= 0.02βab

10 +200 ×0.02 = 13βa

= 0.9βa

10 +150 = −10βb βab

βab = −1.3βb βa βb βab

= 151.5β0

R = 151.5 +0.9A −1.3B +0.02AB

+1 −1
+1 −1
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To explore the effect of temperature on a reaction, we assign 30 C to a coded factor level of  and assign a coded level  to
a temperature of 50 C. What temperature corresponds to a coded level of  and what is the coded level for a temperature of
60 C?

Solution

The difference between  and  is 2, and the difference between 30 C and 50 C is 20 C; thus, each unit in coded form is
equivalent to 10 C in uncoded form. With this information, it is easy to create a simple scale between the coded and the
uncoded values, as shown in Figure . A temperature of 35 C corresponds to a coded level of  and a coded level of 

 corresponds to a temperature of 60 C.

Figure . The relationship between the coded factor levels and the uncoded factor levels for Example . The numbers in
red are the values defined in the 2  factorial design.

As we see in the following example, factor levels simplify the calculations for an empirical model.

Rework Example  using coded factor levels.

Solution

The table below shows the original factor levels (A and B), their corresponding coded factor levels (A* and B*) and A*B*,
which is the empirical model's interaction term.

run A B A* B* A*B* R

1 15 20 145

2 25 20 158

3 15 30 135

4 25 30 150

The empirical equation has four unknowns—the four beta terms—and Table  describes the four experiments. We have
just enough information to calculate values for , , , and . When working with the coded factor levels, the values of
these parameters are easy to calculate using the following equations, where n is the number of runs.

Solving for the estimated parameters using the data in Table 

 Example 9.5.2

o −1 +1
o −0.5

o

−1 +1 o o o

o

9.5.2 o −0.5
+2 o
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 Example 9.5.3
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leaves us with the coded empirical model for the response surface.

Do you see why the equations for calculating , , , and  work? Take the equation for  as an example

where

The first and the third terms in this equation give the response when  is at its low level, and the second and fourth terms in
this equation give the response when  is at its high level. In the two terms where  is at its low level,  is at both its low
level (first term) and its high level (third term), and in the two terms where  is at its high level,  is at both its low level
(second term) and its high level (fourth term). As a result, the contribution of  is removed from the calculation. The same
holds true for the effect of , although this is left for you to confirm.

We can transform the coded model into a non-coded model by noting that  and that , solving for 
and , to obtain  and , and substituting into the coded model and simplifying.

Note that this is the same equation that we derived in Example  using uncoded values for the factors.

Although we can convert this coded model into its uncoded form, there is no need to do so. If we want to know the response for a
new set of factor levels, we just convert them into coded form and calculate the response. For example, if A is 23 and B is 22, then 

 and  and

We can extend this approach to any number of factors. For a system with three factors—A, B, and C—we can use a 2  factorial
design to determine the parameters in the following empirical model

where A, B, and C are the factor levels. The terms , , , and  are estimated using the following eight equations.

= = 7ba

−145 +158 −135 +150

4

= = 5.0bb

−145 −11.5 +135 +150

4

= = 0.5bab

145 −158 −135 +150

4

R = 147 +7 −4.5 +0.5A∗ B∗ A∗B∗

 Note

b0 ba bb bab ba

≈ =βa ba

1

n
∑
i=1

n

A∗
i Ri

= = 7ba

−145 +158 −135 +150

4

A∗

A∗ A∗ B∗

A∗ B∗

B∗

A∗B∗

A = 20 +5A∗ B = 25 +5B∗ A∗

B∗ = 0.2A −4A∗ = 0.2B −5B∗

R = 147 +7(0.2A −4) −4.5(0.2B −5) +0.5(0.2A −4)(0.2A −5)

R = 147 +1.4A −28 −0.9B +22.5 +0.02AB −0.5A −0.4B +10

R = 151.5 +0.9A −1.3B +0.02AB

9.5.1

= 02 ×23 −4 = 0.6A∗ = 0.2 ×22 −5 = −0.6B∗

R = 147 +7 ×0.6 −4.5 ×(−0.6) +0.5 ×0.6 ×(−0.6) = 153.72 ≈ 154 mg

3

R = + A + B + C + AB + AC + BC + ABCβ0 βa βb βc βab βac βbc βabc

β0 βa βb βab
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The following table lists the uncoded factor levels, the coded factor levels, and the responses for a 2  factorial design.

run A B C A* B* C* A*B* A*C* B*C* A*B*C* R

1 15 30 45
 

 137.5

2 15 30 15 54.75

3 15 10 45 73.75

4 15 10 15 30.25

5 5 30 45 61.75

6 5 30 15 30.25

7 5 10 45 41.25

8 5 10 15 18.75

Determine the coded empirical model for the response surface based on the following equation.

What is the expected response when A is 10, B is 15, and C is 50?

Solution

The equation for the empirical model has eight unknowns—the eight beta terms—and the table above describes eight
experiments. We have just enough information to calculate values for , , , , , , and ; these values are

≈ =βb bb

1
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B∗
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≈ =βab bab

1
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∑
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∑
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C ∗
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1
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1
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 Example 9.5.4

3

+1 +1 +1
+1

+1
+1 +1

+1 +1 −1 +1 −1 −1 −1

+1 −1 +1 −1 +1 −1 −1

+1 −1 −1 −1 −1 +1 +1

−1 +1 +1 −1 −1 +1 −1

−1 +1 −1 −1 +1 −1 +1

−1 −1 +1 +1 −1 −1 +1

−1 −1 −1 +1 +1 +1 −1

R = + A + B + C + AB + AC + BC + ABCβ0 βa βb βc βab βac βbc βabc

β0 βa βb βab βac βbc βabc

= ×(137.25 +54.75 +73.75 +30.25 +61.75 +30.25 +41.25 +18.75) = 56.0b0
1

8

= ×(137.25 +54.75 +73.75 +30.25 −61.75 −30.25 −41.25 −18.75) = 18.0ba

1

8

= ×(137.25 +54.75 −73.75 −30.25 +61.75 +30.25 −41.25 −18.75) = 15.0bb

1

8

= ×(137.25 −54.75 +73.75 −30.25 +61.75 −30.25 +41.25 −18.75) = 22.5bc

1

8
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The coded empirical model, therefore, is

To find the response when A is 10, B is 15, and C is 50, we first convert these values into their coded form. Figure  helps
us make the appropriate conversions; thus, A* is 0, B* is , and C* is . Substituting back into the empirical model
gives a response of

Figure . The relationship between the coded factor levels and the uncoded factor levels for Example . The numbers in
red are the values defined in the 2  factorial design.

Evaluating an Empirical Model 

A 2  factorial design can model only a factor’s first-order effect, including first-order interactions, on the response. A 2  factorial
design, for example, includes each factor’s first-order effect (  and ) and a first-order interaction between the factors ( ). A 2
factorial design cannot model higher-order effects because there is insufficient information. Here is a simple example that
illustrates the problem. Suppose we need to model a system in which the response is a function of a single factor, A. Figure 
shows the result of an experiment using a 2  factorial design. The only empirical model we can fit to the data is a straight line.

Figure . A curved one-factor response surface, in red, showing (a) the limitation of using a 2  factorial design, which can fit
only a straight-line to the data, and (b) the application of a 3  factorial design that takes into account second-order effects.

If the actual response is a curve instead of a straight-line, then the empirical model is in error. To see evidence of curvature we must
measure the response for at least three levels for each factor. We can fit the 3  factorial design in Figure  to an empirical
model that includes second-order factor effects.

In general, an n-level factorial design can model single-factor and interaction terms up to the (n – 1)  order.

= ×(137.25 +54.75 −73.75 −30.25 −61.75 −30.25 +41.25 +18.75) = 7.0bab

1

8

= ×(137.25 −54.75 +73.75 −30.25 −61.75 +30.25 −41.25 +18.75) = 9.0bac

1

8

= ×(137.25 −54.75 −73.75 +30.25 +61.75 −30.25 −41.25 +18.75) = 6.0bbc

1

8

= ×(137.25 −54.75 −73.75 +30.25 −61.75 +30.25 +41.25 −18.75) = 3.75babc

1

8

R = 56.0 +18.0 +15.0 +22.5 +7.0 +9.0 +6.0 +3.75A∗ B∗ C ∗ A∗B∗ A∗C ∗ B∗C ∗ A∗B∗C ∗

9.5.3
−0.5 +1.33

R = 56.0 +18.0(0) +15.0(−0.5) +22.5(+1.33) +7.0(0)(−0.5) +9.0(0)(+1.33) +6.0(−0.5)(+1.33)

+3.75(0)(−0.5)(+1.33) = 74.435 ≈ 74.4
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We can judge the effectiveness of a first-order empirical model by measuring the response at the center of the factorial design. If
there are no higher-order effects, then the average response of the trials in a 2  factorial design should equal the measured response
at the center of the factorial design. To account for influence of random errors we make several determinations of the response at
the center of the factorial design and establish a suitable confidence interval. If the difference between the two responses is
significant, then a first-order empirical model probably is inappropriate.

One of the advantages of working with a coded empirical model is that b  is the average response of the 2  k trials in a 2
factorial design.

One method for the quantitative analysis of vanadium is to acidify the solution by adding H SO and oxidizing the vanadium
with H O  to form a red-brown soluble compound with the general formula (VO) (SO ) . Palasota and Deming studied the
effect of the relative amounts of H SO and H O  on the solution’s absorbance, reporting the following results for a 2  factorial
design [Palasota, J. A.; Deming, S. N. J. Chem. Educ. 1992, 62, 560–563].

H SO H O absorbance

0.330

0.359

0.293

0.420

Four replicate measurements at the center of the factorial design give absorbances of 0.334, 0.336, 0.346, and 0.323. Determine
if a first-order empirical model is appropriate for this system. Use a 90% confidence interval when accounting for the effect of
random error.

Solution

We begin by determining the confidence interval for the response at the center of the factorial design. The mean response is
0.335 with a standard deviation of 0.0094, which gives a 90% confidence interval of

The average response, , from the factorial design is

Because  exceeds the confidence interval’s upper limit of 0.346, we can reasonably assume that a 2  factorial design and a
first-order empirical model are inappropriate for this system at the 95% confidence level.

Central Composite Designs 
One limitation to a 3  factorial design, which would allow us to use an empirical model with second-order effects, is the number of
trials we need to run. As shown in Figure , a 3  factorial design requires 9 trials. This number increases to 27 for three factors
and to 81 for 4 factors.

k

 Note

0 × k

 Example 9.5.5

2 4 

2 2 2 4 3

2 4 2 2
2

2 4 2 2

+1 +1

+1 −1

−1 +1

−1 −1

μ = ± = 0.335 ± = 0.335 ±0.011X¯ ¯¯̄ ts

n−−√

(2.35)(0.0094)

4
–

√

R
¯ ¯¯̄

= = 0.350R¯ ¯¯̄ 0.330 +0.359 +0.293 +0.420

4

R¯ ¯¯̄ 2

k

9.5.5 2
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Figure . A 3  factorial design for k = 2.

A more efficient experimental design for a system that contains more than two factors is a central composite design, two examples
of which are shown in Figure . The central composite design consists of a 2  factorial design, which provides data to estimate
each factor’s first-order effect and interactions between the factors, and a star design that has  points, which provides data to
estimate second-order effects. Although a central composite design for two factors requires the same number of trials, nine, as a 3
factorial design, it requires only 15 trials and 25 trials when using three factors or four factors. See this chapter’s additional
resources for details about the central composite designs.

Figure . Two examples of a central composite design for (a) k = 2 and (b) k = 3. The points in blue are a 2  factorial design,
and the points in red are a star design.

This page titled 9.5: Mathematical Models of Response Surfaces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by David Harvey.

9.5.5 k

9.5.6 k

+12k

2

9.5.5 k

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/290713?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/09%3A_Gathering_Data/9.05%3A_Mathematical_Models_of_Response_Surfaces
https://creativecommons.org/licenses/by-nc-sa/4.0
http://dpuadweb.depauw.edu/harvey_web/Index.html


9.6.1 https://chem.libretexts.org/@go/page/290715

9.6: Using R to Model a Response Surface (Multiple Regression)
The calculations for determining an empirical model of a response surface using a 2  factorial design, as outlined in Section 9.5, are
relatively easy to complete for a small number of factors and for experimental designs without replication where the number of
experiments is equal to the number of parameters in the model. If we wish to work with more factors, if we wish to explore other
experimental designs, and if we wish to build replication into the experimental design so that we can better evaluate our empirical
model, then we need to do so by building a regression model, as we did earlier in Chapter 8.

Creating Empirical Models Using R 
To illustrate how we can use R to create an empirical model, let's use data from an experiment exploring how to optimize a
Grignard reaction leading to the synthesis of benzyl-1-cyclopentan-1-ol [Bouzidi, N.; Gozzi, C. J. Chem. Educ. 2008, 85, 1544–
1547]. In this study, students begin by studying the effect of six possible factors on the reaction's yield: the volume of diethyl ether
used to prepare a solution of benzyl chloride, , the time over which benzyl chloride is added to the reaction mixture, , the
stirring time used to prepare the benzyl magnesium chloride, , the relative excess of benzyl chloride to cyclopentanone, , the
relative excess of magnesium turnings to benzyl chloride, , and the reaction time, .

With six factors to consider, a full 2  factorial design requires 32 experiments, which is labor intensive. Instead, the students begin
with a screening study that uses eight experiments to model only the first-order effects of the six factors, as outlined in the
following two tables.

Table : Factor Levels for Screening Study

factor low level high levcel

: volume of diethyl ether in mL 18 50

: addition time in min 60 90

: stirring time in min 20 40

: relative excess of benzyl chloride as % 20 30

: relative excess of magnesium as % 12.5 25

: reaction time in min 30 60

Table : Experimental Design Showing Coded Factor Levels and Responses

run percent yield

1 72

2 33

3 29

4 74

5 31

6 52

7 47

8 27

To carry out the calculations in R we first create vectors for the coded factor levels and the responses.

k

x1 x2

x3 x4

x5 x6

k

9.6.1

x1

x2

x3

x4

x5

x6

9.6.2

x1 x2 x3 x4 x5 x6

+1 +1 +1 −1 +1 −1

−1 +1 +1 +1 −1 +1

−1 −1 +1 +1 +1 −1

+1 −1 −1 +1 +1 +1

−1 +1 −1 −1 +1 +1

+1 +1 +1 −1 −1 +1

+1 −1 −1 +1 −1 −1

−1 −1 −1 −1 −1 −1
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x1 = c(1,-1,-1,1,-1,1,1,-1) 
x2 = c(1,1,-1,-1,1,-1,1,-1) 
x3 = c(1,1,1,-1,-1,1,-1,-1) 
x4 = c(-1,1,1,1,-1,-1,1,-1) 
x5 = c(1,-1,1,1,1,-1,-1,-1) 
x6 = c(-1,1,-1,1,1,1,-1,-1) 
yield = c(72,33,29,74,31,52,47,27)

Next, we use the lm()  function to build a linear regression model that includes just the first-order effects of the factors (see
Chapter 8.5 to review the syntax for this function), and the summary()  function to review the resulting model.

screening = lm(yield ~ x1 + x2 + x3 + x4 + x5 + x6) 
summary(screening)

Call:

lm(formula = yield ~ x1 + x2 + x3 + x4 + x5 + x6)

Residuals:

1 2 3 4 5 6 7 8

5.875 5.875 -5.875 5.875 -5.875 -5.875 -5.875 5.875

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 45.625 5.875 7.766 0.0815 .

x1 15.625 5.875 2.660 0.2290

x2 0.125 5.875 0.021 0.9865

x3 0.875 5.875 0.149 0.9059

x4 0.125 5.875 0.021 0.9865

x5 5.875 5.875 1.000 0.5000

x6 1.875 5.875 0.319 0.8033

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.62 on 1 degrees of freedom

Multiple R-squared: 0.8913, Adjusted R-squared: 0.239

F-statistic: 1.366 on 6 and 1 DF, p-value: 0.5749

Because we have one more experiment than there are variables in our empirical model, the summary provides some information on
the significance of the model's parameters; however, with just one degree of freedom this information is not really reliable. In
addition to the intercept, the three factors with the largest coefficients are the volume of diethyl ether, , the relative excess of
magnesium, , and the reaction time, .

Having identified three factors for further investigation, the students use a 2  factorial design to explore interactions between these
three factors using the experimental design in the following table (see Table  for the actual factor levels.

Table : Coded Factor Levels and Response for a  Factorial Design

run percent yield

1 28.5

2 55.5

3 38

x1

x5 x6

3

9.6.1

9.6.3 23

x1 x5 x6

−1 −1 −1

+1 −1 −1

−1 +1 −1
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run percent yield

4 68

5 49

6 66

7 31.5

8 72

As before, we create vectors for our factors and the response and then use the lm()  and the summary()  functions to
complete and evaluate the resulting empirical model.

x1 = c(-1,1,-1,1,-1,1,-1,1) 
x5 = c(-1,-1,1,1,-1,-1,1,1) 
x6 = c(-1,-1,-1,-1,1,1,1,1) 
yield = c(28.5,55.5,38,68,49,66,31.5,72) 
fact23 = lm(yield ~ x1 * x5 * x6) 
summary(fact23)

Call:

lm(formula = yield ~ x1 * x5 * x6)

Residuals:

ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.0625 NA NA NA

x1 14.3125 NA NA NA

x5 1.3125 NA NA NA

x6 3.5625 NA NA NA

x1:x5 3.3125 NA NA NA

x1:x6 0.0625 NA NA NA

x5:x6 -4.1875 NA NA NA

x1:x5:x6 2.5625 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 7 and 0 DF, p-value: NA

With eight experiments and eight variables in the empirical model, we do not have any ability to evaluate the model statistically. Of
the three first-order effects, we see that the volume of diethyl ether, , and reaction time, , are more important than the relative
excess of magnesium, . We also see that the interaction between  and  is positive (high values for both favor an increased
yield) and that the interaction between  and  is negative (yields improve when one factor is high and the other is low).

Finally, the students use a central composite model—which allows for adding second-order effects and curvature in the response
surface—to study the effect of the volume of diethyl ether, , and reaction time, , on the percent yield. The relative excess of
magnesium,  was set at its high level for this study because this provides for greater percent yields (compare the results for runs
4 and 6 to the results for runs 3 and 5 in Table ). The following tables provides the experimental design.

Table : Coded Factor Levels and Responses for a Central Composite Experimental Design

x1 x5 x6

+1 +1 −1

−1 −1 +1

+1 −1 +1

−1 +1 +1

+1 +1 +1

x1 x6

x5 x1 x5

x5 x6

x1 x6

x5

9.6.3

9.6.4
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run percent yieldrun percent yield

1 39

2 66.5

3 22

4 72.5

5 0 10.5

6 0 72.5

7 0 38

8 0 70

9 0 0 59

10 0 0 57

11 0 0 54.5

12 0 0 63

As before, we create vectors for our factors and the response, and then use the lm()  and the summary()  functions to
complete and evaluate the resulting empirical model.

x1 = c(-1,1,-1,1,-1.414,1.414,0,0,0,0,0,0) 
x6 = c(-1,-1,1,1,0,0,-1.414,1.414,0,0,0,0) 
yield = c(39,66.5,22,72.5,10.5,72.5,38,70,59,57,54.5,63) 
centcomp = lm(yield ~ x1 * x6 + I(x1^2) + I(x6^2)) 
summary(centcomp)

Call:

lm(formula = yield ~ x1 * x6 + I(x1^2) + I(x6^2))

Residuals:

Min 1Q Median 3Q Max

-11.0724 -4.0794 -0.3938 5.2056 9.3695

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 58.375 4.360 13.389 1.07e-05 ***

x1 20.712 3.083 6.718 0.000529 ***

x6 4.282 3.083 1.389 0.214267

I(x1^2) -7.876 3.447 -2.285 0.062398 .

I(x6^2) -1.625 3.447 -0.471 0.654130

x1:x6 5.750 4.360 1.319 0.235317

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.72 on 6 degrees of freedom

Multiple R-squared: 0.9, Adjusted R-squared: 0.8167

F-statistic: 10.8 on 5 and 6 DF, p-value: 0.005835

xx11 xx66

−1 −1

+1 −1

−1 +1

+1 +1

−1.414

+1.414

−1.414

+1.414
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With 12 experiments and just six variables, our model has sufficient degrees of freedom to suggest that it provides a reasonable
picture of how the reaction time and the volume of diethyl ether affect the reaction's yield even if the residual errors in the
responses range from a minimum of -11.7 to a maximum +9.37. The middle 50% of residual errors range between -4.1 to +5.2 with
a median residual error of -0.4. We can compare the actual experimental yields to the yields predicted by the model by combining
them into a data frame.

centcomp_results = data.frame(yield, centcomp$fitted.values, yield -
centcomp$fitted.values) 
colnames(centcomp_results) = c("expt yield", "pred yield", "residual error") 
centcomp_results

expt yield pred yield residual error

1 39.0 29.63046 9.3695385

2 66.5 59.55372 6.9462836

3 22.0 26.69375 -4.6937546

4 72.5 79.61701 -7.1170095

5 10.5 13.34036 -2.8403635

6 72.5 71.91285 0.5871540

7 38.0 49.07236 -11.0723566

8 70.0 61.18085 8.8191471

9 59.0 58.37466 0.6253402

10 57.0 58.37466 -1.3746598

11 54.5 58.37466 -3.8746598

12 63.0 58.37466 4.6253402

Using R to Visualize the Response Surface 
The plot3D  package provides several functions that we can use to visualize a response surface defined by two factors. Here we
consider three functions, one for drawing a two-dimensional contour plot of the response surface, one for drawing a three-
dimensional surface plot of the response, and one for plotting a three-dimensional scatter plot of the responses. To begin, we use
the library()  function to make the package available to us (note: you may need to first install the plot3D  package; see
Chapter 1 for details on how to do this).

library(plot3D)

Let's begin by creating a two-dimensional contour plot of our response surface that places the volume of diethyl ether, , on the x-
axis and the reaction time,  on the y-axis, and using calculated responses from the model to draw the contour lines. First, we
create vectors with values for the x-axis and the y-axis

x1_axis = seq(-1.5, 1.5, 0.1) 
x6_axis = seq(-1.5 ,1.5, 0.1)

Next, we create a function that uses our empirical model to calculate the response for every combination of x1_axis  and 
x6_axis

response = function(x,y){coef(centcomp)[1] + coef(centcomp)[2]*x + coef(centcomp)[3]*y
+ coef(centcomp)[4]*x^2 + coef(centcomp)[5]*y^2 + coef(centcomp)[6]*x*y}

where coef(centcomp)[i]  is used to extract the i  coefficient from our empirical model. Now we use R's outer()
function to calculate the response for every combination of the variables x1_axis  and x6_axis

z_axis = outer(X = x1_axis,Y = x6_axis, response)

Finally, we use the contour2D()  function to create the contour plot in Figure .

x1

x6

th
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contour2D(x = x1_axis,y = x6_axis, z = z_axis, xlab = "x1: volume", ylab = "x6: time",
clab = "yield")

Figure : Contour plot for the response surface predicting the percent yield in a Grignard reaction as a function of the volume
of diethyl ether and the reaction time. The x-axis and the y-axis values are coded factor levels.

Next, let's create a three-dimensional surface plot of our response surface that places the volume of diethyl ether, , on the x-axis,
the reaction time,  on the y-axis, and the calculated responses from the model on the z-axis. For this, we use the persp3D()
function

persp3D(x = x1_axis, y = x6_axis, z = z_axis, ticktype = "detailed", phi = 15, theta =
25, xlab = "x1: volume", ylab = "x6: time", zlab = "yield", clab = "yield", contour =
TRUE, cex.axis = 0.75, cex.lab = 0.75)

where phi  and theta  adjust the angle at which we view the response surface—you will have to play with these values to
create a plot that is pleasing to look at—and ticktype  controls how much information is displayed on the axes. The 
cex.axis  and cex.lab  commands adjust the size of the text displayed on the axes, and countour = TRUE  places a

contour plot on the figure's bottom side. Figure  shows the result.

Figure : Three-dimensional surface (perspective) plot for the response surface predicting the percent yield in a Grignard
reaction as a function of the volume of diethyl ether and the reaction time. The x-axis and the y-axis values are coded factor levels.

Finally, let's use the type = "h"  option to overlay a scatterplot of the data used to build the empirical model on top of the
three-dimensional surface plot.

9.6.1

x1

x6

9.6.2

9.6.2
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scatter3D(x = x1, y = x6, z = yield, add = TRUE, type = "h", pch = 19, col = "black",
lwd = 2, colkey = FALSE)

Figure : Three-dimensional surface (perspective) plot for the response surface predicting the percent yield in a Grignard
reaction as a function of the volume of diethyl ether and the reaction time showing the original data used to build the empirical
model. The x-axis and the y-axis values are coded factor levels.

Figure  shows the result using the data from Table . Although the general shape of the response surface is consistent with
the underlying data, there is sufficient experimental uncertainty in the results of the four replicate experiments used to create this
empirical model, as shown by the standard deviation for runs 9—12, to explain why some of the predicted yields have large errors.

sd(yield[9:12])

[1] 3.591077

This page titled 9.6: Using R to Model a Response Surface (Multiple Regression) is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by David Harvey.
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9.7: Exercises
1. For each of the following equations determine the optimum response using a one-factor-at-a-time searching algorithm. Begin the
search at (0,0) by first changing factor A, using a step-size of 1 for both factors. The boundary conditions for each response surface
are 0 ≤ A ≤ 10 and 0≤ B ≤ 10. Continue the search through as many cycles as necessary until you find the optimum response.
Compare your optimum response for each equation to the true optimum. Note: These equations are from Deming, S. N.; Morgan,
S. L. Experimental Design: A Chemometric Approach, Elsevier: Amsterdam, 1987, and pseudo-three dimensional plots of the
response surfaces can be found in their Figures 11.4, 11.5 and 11.14.

(a) R = 1.68 + 0.24A + 0.56B – 0.04A – 0.04B  μ = (3,7)

(b) R = 4.0 – 0.4A + 0.08AB μ = (10,10)

(c) R = 3.264 + 1.537A + 0.5664B – 0.1505A – 0.02734B – 0.05785AB μ = (3.91,6.22)

2. Use a fixed-sized simplex searching algorithm to find the optimum response for the equation in Problem 1c. For the first
simplex, set one vertex at (0,0) with step sizes of one. Compare your optimum response to the true optimum.

3. A 2  factorial design was used to determine the equation for the response surface in Problem 1b. The uncoded levels, coded
levels, and the responses are shown in the following table. Determine the uncoded equation for the response surface.

A B A* B* response

8 8 +1 +1 5.92

8 2 +1 –1 2.08

2 8 –1 +1 4.48

2 2 –1 –1 3.52

4. Koscielniak and Parczewski investigated the influence of Al on the determination of Ca by atomic absorption spectrophotometry
using the 2  factorial design shown in the following table [data from Koscielniak, P.; Parczewski, A. Anal. Chim. Acta 1983, 153,
111–119].

[Ca ] (ppm) [Al ] (ppm) Ca* Al* response

10 160 +1 +1 54.92

10 0 +1 –1 98.44

4 16 –1 +1 19.18

4 0 –1 –1 38.52

(a) Determine the uncoded equation for the response surface.

(b) If you wish to analyze a sample that is 6.0 ppm Ca , what is the maximum concentration of Al  that can be present if the error
in the response must be less than 5.0%?

5. Strange [Strange, R. S. J. Chem. Educ. 1990, 67, 113–115] studied a chemical reaction using the following 2  factorial design.

factor high (+1) level low (–1) level

X: temperature 140 C 120 C

Y: catalyst type B type A

Z: [reactant] 0.50 M 0.25 M

run X* Y* Z* % yield

1 –1 –1 –1 28

2 2
opt 

opt 

2 2 
opt 

k

k

2+ 3+

2+ 3+

3

o o
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run X* Y* Z* % yield

2 +1 –1 –1 17

3 –1 +1 –1 41

4 +1 +1 –1 34

5 –1 –1 +1 56

6 +1 –1 +1 51

7 –1 +1 +1 42

8 +1 +1 +1 36

(a) Determine the coded equation for this data.

(b) If  terms of less than  are insignificant, what main effects and what interaction terms in the coded equation are important?
Write down this simpler form for the coded equation.

(c) Explain why the coded equation for this data can not be transformed into an uncoded form.

(d) Which is the better catalyst, A or B?

(e) What is the yield if the temperature is set to 125 C, the concentration of the reactant is 0.45 M, and we use the appropriate
catalyst?

6. Pharmaceutical tablets coated with lactose often develop a brown discoloration. The primary factors that affect the discoloration
are temperature, relative humidity, and the presence of a base acting as a catalyst. The following data have been reported for a 2
factorial design [Armstrong, N. A.; James, K. C. Pharmaceutical Experimental Design and Interpretation, Taylor and Francis:
London, 1996 as cited in Gonzalez, A. G. Anal. Chim. Acta 1998, 360, 227–241].

factor high (+1) level low (–1) level

X: benzocaine present absent

Y: temperature 40 C 25 C

Z: relative humidity 75% 50%

run X* Y* Z* color (arb. unit)

1 –1 –1 –1 1.55

2 +1 –1 –1 5.40

3 –1 +1 –1 3.50

4 +1 +1 –1 6.75

5 –1 –1 +1 2.45

6 +1 –1 +1 3.60

7 –1 +1 +1 3.05

8 +1 +1 +1 7.10

(a) Determine the coded equation for this data.

(b) If  terms of less than 0.5 are insignificant, what main effects and what interaction terms in the coded equation are important?
Write down this simpler form for the coded equation.

β ±1
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7. The following data for a 2  factorial design were collected during a study of the effect of temperature, pressure, and residence
time on the % yield of a reaction [Akhnazarova, S.; Kafarov, V. Experimental Optimization in Chemistry and Chemical
Engineering, MIR Publishers: Moscow, 1982 as cited in Gonzalez, A. G. Anal. Chim. Acta 1998, 360, 227–241].

factor high (+1) level low (–1) level

X: temperature 200 C 100 C

Y: pressure 0.6 MPa 0.2 MPa

Z: residence time 20 min 10 min

run X* Y* Z* % yield

1 –1 –1 –1 2

2 +1 –1 –1 6

3 –1 +1 –1 4

4 +1 +1 –1 8

5 –1 –1 +1 10

6 +1 –1 +1 18

7 –1 +1 +1 8

8 +1 +1 +1 12

(a) Determine the coded equation for this data.

(b) If  terms of less than 0.5 are insignificant, what main effects and what interaction terms in the coded equation are important?
Write down this simpler form for the coded equation.

(c) Three runs at the center of the factorial design—a temperature of 150 C, a pressure of 0.4 MPa, and a residence time of 15 min
—give percent yields of 8%, 9%, and 8.8%. Determine if a first-order empirical model is appropriate for this system at .

8. Duarte and colleagues used a factorial design to optimize a flow-injection analysis method for determining penicillin [Duarte, M.
M. M. B.; de O. Netro, G.; Kubota, L. T.; Filho, J. L. L.; Pimentel, M. F.; Lima, F.; Lins, V. Anal. Chim. Acta 1997, 350, 353–357].
Three factors were studied: reactor length, carrier flow rate, and sample volume, with the high and low values summarized in the
following table.

factor high (+1) level low (–1) level

X: reactor length 1.3 cm 2.0 cm

Y: carrier flow rate 1.6 mL/min 2.2 mL/min

Z: sample volume 100 μL 150 μL

The authors determined the optimum response using two criteria: the greatest sensitivity, as determined by the change in potential
for the potentiometric detector, and the largest sampling rate. The following table summarizes their optimization results.

run X* Y* Z*  (mV) sample/h

1 –1 –1 –1 37.45 21.5

2 +1 –1 –1 31.70 26.0

3 –1 +1 –1 32.10 30.0

4 +1 +1 –1 27.30 33.0

3

o o

β

o

α = 0.05
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5 –1 –1 +1 39.85 21.0

6 +1 –1 +1 32.85 19.5

7 –1 +1 +1 35.00 30.0

8 +1 +1 +1 32.15 34.0

(a) Determine the coded equation for the response surface where  is the response.

(b) Determine the coded equation for the response surface where sample/h is the response.

(c) Based on the coded equations in (a) and in (b), do conditions that favor sensitivity also improve the sampling rate?

(d) What conditions would you choose if your goal is to optimize both sensitivity and sampling rate?

9. Here is a challenge! McMinn, Eatherton, and Hill investigated the effect of five factors for optimizing an H -atmosphere flame
ionization detector using a 2  factorial design [McMinn, D. G.; Eatherton, R. L.; Hill, H. H. Anal. Chem. 1984, 56, 1293–1298].
The factors and their levels were

factor high (+1) level low (–1) level

A: H  flow rate 1460 mL/min 1382 mL/min

B: SiH 20.0 ppm 12.2 ppm

C: O + N  flow rate 255 mL/min 210 mL/min

D: O /N  ratio 1.36 1.19

E: electrode height 75 (arb. unit) 55 (arb. unit)

The coded (“+” = +1, “–” = –1) factor levels and responses, R, for the 32 experiments are shown in the following table

run A* B* C* D* E* R run A* B* C* D* E* R

1 – – – – – 0.36 17 – – – – + 0.39

2 + – – – – 0.51 18 + – – – + 0.45

3 – + – – – 0.15 19 – + – – + 0.32

4 + + – – – 0.39 20 + + – – + 0.25

5 – – + – – 0.79 21 – – + – + 0.18

6 + – + – – 0.83 22 + – + – + 0.29

7 – + + – – 0.74 23 – + + – + 0.07

8 + + + – – 0.69 24 + + + – + 0.19

9 – – – + – 0.60 25 – – – + + 0.53

10 + – – + – 0.82 26 + – – + + 0.60

11 – + – + – 0.42 27 – + – + + 0.36

12 + + – + – 0.59 28 + + – + + 0.43

13 – – + + – 0.96 29 – – + + + 0.23

14 + – + + – 0.87 30 + – + + + 0.51

15 – + + + – 0.76 31 – + + + + 0.13

16 + + + + – 0.74 32 + + + + + 0.43

ΔE
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(a) Determine the coded equation for this response surface, ignoring  terms less than .

(b) A simplex optimization of this system finds optimal values for the factors of A = 2278 mL/min, B = 9.90 ppm, C = 260.6
mL/min, and D = 1.71. The value of E was maintained at its high level. Are these values consistent with your analysis of the
factorial design.

10. A good empirical model provides an accurate picture of the response surface over the range of factor levels within the
experimental design. The same model, however, may yield an inaccurate prediction for the response at other factor levels. For this
reason, an empirical model, is tested before it is extrapolated to conditions other than those used in determining the model. For
example, Palasota and Deming studied the effect of the relative amounts of H SO  and H O  on the absorbance of solutions of
vanadium using the following central composite design [data from Palasota, J. A.; Deming, S. N. J. Chem. Educ. 1992, 62, 560–
563].

run drops of 1% H SO drops of 20% H O

1 15 22

2 10 20

3 20 20

4 8 15

5 15 15

6 15 15

7 15 15

8 15 15

9 22 15

10 10 10

11 20 10

12 15 8

The reaction of H SO  and H O  generates a red-brown solution whose absorbance is measured at a wavelength of 450 nm. A
regression analysis on their data yields the following uncoded equation for the response (absorbance  1000).

where X  is the drops of H O , and X  is the drops of H SO . Calculate the predicted absorbances for 10 drops of H O  and 0 drops
of H SO , 0 drops of H O  and 10 drops of H SO , and for 0 drops of each reagent. Are these results reasonable? Explain. What
does your answer tell you about this empirical model?
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CHAPTER OVERVIEW

10: Cleaning Up Data
When we try to calibrate an analytical method (Chapter 8) or to optimize an analytical system (Chapter 9), our ability to do so
successfully is limited by the uncertainty, or noise, in our measurements and by background signals that interfere with our ability to
measure the signal of interest to us. In this chapter we will consider ways to clean up our data by decreasing the contribution of
noise to our measurements and by correcting for the presence of background signals.

10.1: Signals and Noise
10.2: Improving the Signal-to-Noise Ratio
10.3: Background Removal
10.4: Using R to Clean Up Data
10.5: Exercises
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10.1: Signals and Noise
When we make a measurement it is the sum of two parts, a determinate, or fixed contribution that arises from the analyte and an
indeterminate, or random, contribution that arises from uncertainty in the measurement process. We call the first of these the signal
and we call the latter the noise. There are two broad categories of noise: that associated with obtaining samples and that associated
with making measurements. Our interest here is in the latter.

What is Noise? 
Noise is a random event characterized by a mean and standard deviation. There are many types of noise, but we will limit ourselves
for now to noise that is stationary, in that its mean and its standard deviation are independent of time, and that is heteroscedastic, in
that its mean and its variance (and standard deviation) are independent of the signal's magnitude. Figure  shows an example
of a noisy signal that meets these criteria. The x-axis here is shown as time—perhaps a chromatogram—but other units, such as
wavelength or potential, are possible. Figure  shows the underlying noise and Figure  shows the underlying signal.
Note that the noise in Figure  appears consistent in its central tendency (mean) and its spread (variance) along the x-axis and
is independent of the signal's strength.

Figure : Plots showing (a) the signal and the noise in blue with the signal superimposed as a smooth line; (b) the noise only;
and (c) the signal only. The signal consists of three peaks at times of 250, 500, and 750, and with maximum values of 100, 60, and
30, respectively. The noise is drawn at random from a normal distribution with a mean of 0 and a standard deviation of 10.

How Do We Characterize the Signal and the Noise? 

Although we characterize noise by its mean and its standard deviation, the most important benchmark is the signal-to-noise ratio, 
, which we define as

where  is the signal's value at particular location on the x-axis and  is the standard deviation of the noise using a
signal-free portion of the data. As general rules-of-thumb, we can measure the signal with some confidence when  and we
can detect the signal with some confidence when . For the data in Figure , and using the information in the
figure caption, the signal-to-noise ratios are, from left-to-right, 10, 6, and 3.

10.1.1a

10.1.1b 10.1.1c

10.1.1b

10.1.1

S/N

S/N =
Sanalyte

snoise

Sanalyte snoise

S/N ≥ 3

3 ≥ S/N ≥ 2 10.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/291712?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/10%3A_Cleaning_Up_Data/10.1%3A_Signals_and_Noise


10.1.2 https://chem.libretexts.org/@go/page/291712

To measure the signal with confidence implies we can use the signal's value in a calculation, such as constructing a calibration
curve. To detect the signal with confidence means we are certain that a signal is present (and that an analyte responsible for the
signal is present) even if we cannot measure the signal with sufficient confidence to allow for a meaningful calculation.

How Can We Improve the  Ratio? 

There are two broad approaches that we can use to improve the signal-to-noise ratio: hardware and software. Hardware approaches
are built into the instrument and include decisions on how the instrument is set-up for making measurements (for example, the
choice of a scan rate or a slit width), and how the signal is processed by the instrument (for example, using electronic filters); such
solutions are not of interest to us here in a textbook with a focus on chemometrics. Software solutions are computational
approaches in which we manipulate the data either while we are collecting it or after data acquisition is complete.

This page titled 10.1: Signals and Noise is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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10.2: Improving the Signal-to-Noise Ratio
In this section we will consider three common computational tools for improving the signal-to-noise ratio: signal averaging, digital
smoothing, and Fourier filtering.

Signal Averaging 
The most important difference between the signal and the noise is that a signal is determinate (fixed in value) and the noise is
indeterminate (random in value). If we measure a pure signal several times, we expect its value to be the same each time; thus, if
we add together n scans, we expect that the net signal, , is defined as

where  is the signal for a single scan. Because noise is random, its value varies from one run to the next, sometimes with a value
that is larger and sometimes with a value that is smaller, and sometimes with a value that is positive and sometimes with a value
that is negative. On average, the standard deviation of the noise increases as we make more scans, but it does so at a slower rate
than for the signal

where  is the standard deviation for a single scan and  is the standard deviation after n scans. Combining these two equations,
shows us that the signal-to-noise ratio, , after n scans increases as

where  is the signal-to-noise ratio for the initial scan. Thus, when  the signal-to-noise ratio improves by a factor of
2, and when  the signal-to-noise ratio increases by a factor of 4. Figure  shows the improvement in the signal-to-noise
ratio for 1, 2, 4, and 8 scans.

Figure : Improvement in the signal-to-noise ratio through signal averaging using 1, 2, 4, and 8 scans. Each plot shows the
noisy signal in blue with the pure signal superimposed in black. The total signal is divided by the number of scans so that each y-
axis has the same scale.

Signal averaging works well when the time it takes to collect a single scan is short and when the analyte's signal is stable with
respect to time both because the sample is stable and the instrument is stable; when this is not the case, then we risk a time-
dependent change in  and/or  Because the equation for  is proportional to the , the relative improvement in

Sn

= nSSn

S

= ssn n
−−

√

s sn

S/N

(S/N = = = (S/N)n
Sn

sn

nS

sn
−−

√
n
−−

√ )n=1

(S/N)n=1 n = 4
n = 16 10.2.1

10.2.1

Sanalyte snoise (S/N)n n
−−

√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/291714?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/10%3A_Cleaning_Up_Data/10.2%3A_Signal_Averaging


10.2.2 https://chem.libretexts.org/@go/page/291714

the signal-to-noise ratio decreases as  increases; for example, 16 scans gives a  improvement in the signal-to-noise ratio, but it
takes an additional 48 scans (for a total of 64 scans) to achieve a  improvement in the signal-to-noise ratio.

Digital Smoothing Filters 

One characteristic of noise is that its magnitude fluctuates rapidly in contrast to the underlying signal. We see this, for example, in
Figure  where the underlying signal either remains constant or steadily increases or decreases while the noise fluctuates
chaotically. Digital smoothing filters take advantage of this by using a mathematical function to average the data for a small range
of consecutive data points, replacing the range's middle value with the average signal over that range.

Moving Average Filters 

For a moving average filter, we replace each point by the average signal for that point and an equal number of points on either side;
thus, a moving average filtee has a width, , of 3, 5, 7, ... points. For example, suppose the first five points in a sequence are

0.80 0.30 0.80 0.20 1.00

then a three-point moving average (  returns values of

NA 0.63 0.43 0.67 NA

where, for example, 0.63 is the average of 0.80, 0.30, and 0.80. Note that we lose  points at each end
of the data set because we do not have a sufficient number of data points to complete a calculation for the first and the last point.
Figure  shows the improvement in the  ratio when using moving average filters with widths of 5, 9, and 13.

Figure : Improvement in the signal-to-noise ratio using moving average filters with ranges of 5, 9, and 13 on the original data
shown in the upper left quadrant. Each plot shows the noisy signal in blue with the pure signal superimposed in black.

One limitation to a moving average filter is that it distorts the original data by removing points from both ends, although this is not
a serious concern if the points in question are just noise. Of greater concern is the distortion in a signal's height if we use a range
that is too wide; for example, Figure , shows how a 23-point moving average filter (shown in blue) applied to the noisy
signal in the upper left quadrant of Figure , reduces the height of the original signal (shown in black). Because the filter's
width—shown by the red bar—is similar to the peak's width, as the filter passes through the peak it systematically reduces the
signal by averaging together values that are mostly smaller than the maximum signal.
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Figure : Example that shows how a moving average filter can distort the signal when applied to the noisy signal in the upper
left quadrant of Figure . The original pure signal is shown in black and the signal after applying a 23-point moving average
filter is shown in blue. The width of the moving average filter is shown by the red bar.

Savitzky-Golay Filters 

A moving average filter weights all points equally; that is, points near the edges of the filter contribute to the average as a level
equal to points near the filter's center. A Savitzky-Golay filter uses a polynomial model that weights each point differently, placing
more weight on points near the center of the filter and less weight on points at the edge of the filter. Specific values depend on the
size of the window and the polynomial model; for example, a five-point filter using a second-order polynomial has weights of

For example, suppose the first five points in a sequence are

0.80 0.30 0.80 0.20 1.00

then this Savitzky-Golay filter returns values of

NA NA 0.41 NA NA

where, for example, the value for the middle point is

Note that we lose  points at each end of the data set, where w is the filter's range, because we do not
have a sufficient number of data points to complete the calculations. For other Savitzky-Golay smoothing filters, see Savitzky, A.;
Golay, M. J. E. Anal Chem, 1964, 36, 1627-1639. Figure  shows the improvement in the  ratio when using Savitzky-
Golay filters using a second-order polynomial with 5, 9, and 13 points.
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Figure : Improvement in the signal-to-noise ratio using Savitzky-Golay filters of ranges of 5, 9, and 13 on the original data
shown in the upper left quadrant. Each plot shows the noisy signal in blue with the pure signal superimposed in black.

Because a Savitzky-Golay filter weights points differently than does a moving average smoothing filter, a Savitzky-Golay filter
introduces less distortion to the signal, as we see in the following figure.

Figure : A Savitzky-Golay filter is less aggressive than a moving average filter. Applying a 23-point Savitzky-Golay filter to
the noisy signal in the upper left quadrant of Figure  results in little distortion of the signal. Contrast this with Figure 
where a 23-point moving average filter results in substantial distortion of the signal. The original pure signal is shown in black and
the signal after applying a 23-point Savitzky-Golay filter is shown in blue. The width of the Savitzky-Golay filter is shown by the
red bar.

Fourier Filtering 
This approach to improving the signal-to-noise ratio takes advantage of a mathematical technique called a Fourier transform (FT).
The basis of a Fourier transform is that we can express a signal in two separate domains. In the first domain the signal is
characterized by one or more peaks, each defined by its position, its width, and its area; this is called the frequency domain. In the
second domain, which is called the time domain, the signal consists of a set of oscillations, each defined by its frequency, its
amplitude, and its decay rate. The Fourier transform—and the inverse Fourier transform—allow us to move between these two
domains.
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The mathematical details behind the Fourier transform are beyond the level of this textbook; for a more in-depth treatment,
consult this chapter's resources.

Figure  shows a single peak in the frequency domain and Figure  shows its equivalent time domain signal. There are
correlations between the two domains:

the further a peak in the frequency domain is from the origin, the greater it corresponding oscillation frequency in the time
domain
the broader a peak's width in the frequency domain, the faster its decay rate in the time domain
the greater the area under a peak in the frequency domain, the higher its initial intensity in the time domain

Figure : The plot in (a) shows a frequency domain consisting of a single peak defined by its position along the x-axis, its
width, and its area. The plot in (b) shows the corresponding time domain that consists of a single oscillating signal defined by its
oscillation frequency, its initial intensity, and its decay rate.

We can use a Fourier transform to improve the signal-to-noise ratio because the signal is a single broad peak and the noise appears
as a multitude of very narrow peaks. As noted above, a broad peak in the frequency domain has a fast decaying signal in the time
domain, which means that while the beginning of the time domain signal includes contributions from the signal and the noise, the
latter part of the time domain signal includes contributions from noise only. The figure below shows how we can take advantage of
this to reduce the noise and improve the signal-to-noise ratio for the noisy signal in Figure , which has 256 points along the
x-axis and has a signal-to-noise ratio of 5.1. First, we use the Fourier transform to convert its original domain into the new domain,
the first 128 points of which are shown in Figure  (note: the first half of the data contains the same information as the
second half of the data, so we only need to look at the first half of the data). The points at the beginning are dominated by the
signal, which is why there is a systematic decrease in the intensity of the oscillations; the remaining points are dominated by noise,
which is why the variation in intensity is random. To filter out the noise we retain the first 24 points as they are and set the
intensities of the remaining points to zero (the choice of how many points to retain may require some adjustment). As shown in
Figure , we repeat this for the remaining 128 points, retaining the last 24 points as they are. Finally, we use an inverse
Fourier transform to return to our original domain, with the result in Figure , with the signal-to-noise ratio improving from
5. 1 for the original noisy signal to 11.2 for the filtered signal.
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Figure : Example of removing noise using a Fourier filter. The original noisy signal with  is shown in (a) and is
similar to the noisy signal in Figure  and Figure . The first half of the Fourier transformed data is shown in (b). The
Fourier transformed data is shown in (c) after zeroing out all but the first and the last 24 points. Returning to the original domain
gives the final filtered signal with .

This page titled 10.2: Improving the Signal-to-Noise Ratio is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by David Harvey.
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10.3: Background Removal
Another form of noise is a systematic background signal on which the analytical signal of interest is overlaid. For example, the
following figure shows a Gaussian signal with a maximum value of 50 centered at  superimposed on an exponential
background. The dotted line is the Gaussian signal, which has a maximum value of 50 at , and the solid line is the signal as
measured, which has a maximum value of 57 at .

Figure : A Gaussian signal (dotted line) superimposed on an exponential background, which gives rise to the measured
signal (solid line).

If the background signal is consistent across all samples, then we can analyze the data without first removing its contribution. For
example, the following figure shows a set of calibration standards and their resulting calibration curve, for which the y-intercept of
7 gives the offset introduced by the background.

Figure : When the background is the same for all calibration standards and samples, then we can construct a calibration
curve without taking into account the presence of the background.

But background signals often are not consistent across samples, particularly when the source of the background is a property of the
samples we collect (natural water samples, for example, may have variations in color due to differences in the concentration of
dissolved organic matter) or a property of the instrument we are using (such as a variation in source intensity over time). When
true, our data may look more like what we see in the following figure, which leads to a calibration curve with a greater uncertainty.

x = 125

x = 125

x = 125
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Figure : When the background is not the same for all calibration standards, the quality of the calibration curves suffers,
making it less useful for the analysis of samples.

Because the background changes gradually with the values for x while the analyte's signal changes quickly, we can use a derivative
to the distinguish between the two. One approach is to use a Savitzky-Golay derivative filter using the same approach described in
the last section. For example, applying a 7-point first-derivative Savitzky-Golay filter with weights of

to the data in Figure  gives the results shown below. The calibration signal in this case is the difference between the
maximum signal and the minimum signal, which are shown by the dotted red lines in the top part of the figure. The fit of the
calibration curve to the data and the calibration curve's y-intercept of zero shows that we have successfully compensated for the
background signals.

Figure : Applying a Savitzky-Golay derivative filter to the calibration curve data in Figure  corrects for the differences
in the background signals, yielding an improved calibration curve.

For other Savitzky-Golay derivative filters, including second-derivative filters, see Savitzky, A.; Golay, M. J. E. Anal Chem, 1964,
36, 1627-1639.

This page titled 10.3: Background Removal is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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10.4: Using R to Clean Up Data
R has two useful functions, filter()  and fft() , that we can use to smooth or filter noise and to remove background
signals. To explore their use, let's first create two sets of data that we can use as examples: a noisy signal and a pure signal
superimposed on an exponential background. To create the noisy signal, we first create a vector of 256 values that defines the x-
axis; although we will not specify a unit here, these could be times or frequencies. Next we use R's dnorm()  function to
generate a pure Gaussian signal with a mean of 125 and a standard deviation of 10, and R's rnorm()  function to generate 256
points of random noise with a mean of zero and a standard deviation of 10. Finally, we add the pure signal and the noise to arrive at
our noisy signal and then plot the noisy signal and overlay the pure signal.

x = seq(1,256,1) 
gaus_signal = 1250 * dnorm(x, mean = 125, sd = 10) 
noise = rnorm(256, mean = 0, sd = 10) 
noisy_signal = gaus_signal + noise 
plot(x = x, y = noisy_signal, type = "l", lwd = 2, col = "blue", xlab = "x", ylab =
"signal") 
lines(x = x, y = gaus_signal, lwd = 2)

Figure : Example of a noisy signal with a signal-to-noise ratio of 5.1. Figure , Figure , and Figures  show
this same figure after applying a seven-point moving average filter, a seven-point Savitizky-Golay smoothing filter, and a Fourier
filter.

To estimate the signal-to-noise ratio, we use the maximum of the pure signal and the standard deviation of the noisy signal as
determined using 100 points divided evenly between the two ends.

s_to_n = max(gaus_signal)/sd(noisy_signal[c(1:50,201:250)]) 
s_to_n

[1] 5.14663

To create a signal superimposed on an exponential background, we use R's exp()  function to generate 256 points for the
background's signal, add that to our pure Gaussian signal, and plot the result.

exp_bkgd = 30*exp(-0.01 * x) 
plot(x,exp_bkgd,type = "l") 
signal_bkgd = gaus_signal + exp_bkgd 
plot(x = x, y = signal_bkgd, type = "l", lwd = 2, col = "blue", xlab = "x", ylab =
"signal", ylim = c(0,60)) 
lines(x = x, y = gaus_signal, lwd = 2, lty = 2)

10.4.1 10.4.3 10.4.4 10.4.8

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292497?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/10%3A_Cleaning_Up_Data/10.4%3A_Using_R_to_Clean_Up_Data


10.4.2 https://chem.libretexts.org/@go/page/292497

Figure : Example of a pure Gaussian signal superimposed on an exponential background. Figure  shows this same
figure after using a seven-point first-derivative Savitzky-Golay filter to remove the background.

Using R's filter()  Function to Smooth Noise and Remove Background Signals 

R's filter()  function takes the general form

filter(x, filter)

where x  is the object being filtered and filter  is an object that contains the filter's coefficients. To create a seven-point
moving average filter, we use the rep()  function to create a vector that has seven identical values, each equal to 1/7.

mov_avg_7 = rep(1/7, 7)

Applying this filter to our noisy signal returns the following result

noisy_signal_movavg = filter(noisy_signal, mov_avg_7) 
plot(x = x, y = noisy_signal_movavg, type = "l", lwd = 2, col = "blue", xlab = "x",
ylab = "signal") 
lines(x = x, y = gaus_signal, lwd = 2)

with the signal-to-noise ratio improved to

s_to_n_movavg = max(gaus_signal)/sd(noisy_signal_movavg[c(1:50,200:250)], na.rm =
TRUE) 
s_to_n_movavg

[1] 11.29943

Note that we must add na.rm = TRUE  to the sd()  function because applying a seven-point moving average filter replaces
the first three and the last three points with values of NA  which we must tell the sd()  function to ignore.

Figure : The result of using R's filter()  function to apply a seven-point moving average filter to the noisy signal in
Figure .
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To create a seven-point Savitzky-Golay smoothing filter, we create a vector to store the coefficients, obtaining the values from the
original paper (Savitzky, A.; Golay, M. J. E. Anal Chem, 1964, 36, 1627-1639) and then apply it to our noisy signal, obtaining the
results below.

sg_smooth_7 = c(-2,3,6,7,6,5,-2)/21 
noisy_signal_sg = filter(noisy_signal, sg_smooth_7) 
plot(x = x, y = noisy_signal_sg, type = "l", lwd = 2, col = "blue", xlab = "x", ylab =
"signal") 
lines(x = x, y = gaus_signal, lwd = 2) 
s_to_n_movavg = max(gaus_signal)/sd(noisy_signal_sg[c(1:50,200:250)], na.rm = TRUE) 
s_to_n_movavg

[1] 7.177931

Figure : The result of using R's filter()  function to apply a seven-point Savitizky-Golay smooting filter to the noisy
signal in Figure .

To remove a background from a signal, we use the same approach, substituting a first-derivative (or higher order) Savitxky-Golay
filter.

sg_fd_7 = c(22, -67, -58, 0, 58, 67, -22)/252 
signal_bkgd_sg = filter(signal_bkgd, sg_fd_7) 
plot(x = x, y = signal_bkgd_sg, type = "l", lwd = 2, col = "blue", xlab = "x", ylab =
"signal")

Figure : The result of using R's filter()  function to apply a seven-point first-derivative Savitzky-Golay filter to the
noisy signal in Figure .

Using R's fft()  Function for Fourier Filtering 

To complete a Fourier transform in R we use the fft()  function, which takes the form fft(z, inverse = FALSE)
where z  is the object that contains the values to which we wish to apply the Fourier transform and where setting 
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inverse = TRUE  allows for an inverse Fourier transform. Before we apply Fourier filtering to our noisy signal, let's first
apply the fft() function to a vector that contains the integers 1 through 8. First we create a vector to hold our values and the
apply the fft()  function to the vector, obtaining the following results

test_vector = seq(1, 8, 1) 
test_vector_ft = fft(test_vector) 
test_vector_ft

[1] 36+0.000000i -4+9.656854i -4+4.000000i -4+1.656854i -4+0.000000i -4-1.656854i

[7] -4-4.000000i -4-9.656854i

Each of the eight results is a complex number with a real and an imaginary component. Note that the real component of the first
value is 36, which is the sum of the elements in our test vector. Note, also, the symmetry in the remaining values where the second
and eighth values, the third and seventh values, and the fourth and sixth values are identical except for a change in sign for the
imaginary component.

Taking the inverse Fourier transform returns the original eight values (note that the imaginary terms are now zero), but each is eight
times larger in value than in our original vector.

test_vector_ifft = fft(test_vector_ft, inverse = TRUE) 
test_vector_ifft

[1] 8+0i 16-0i 24+0i 32+0i 40+0i 48+0i 56-0i 64+0i

To compensate for this, we divide by the length of our vector

test_vector_ifft = fft(test_vector_ft, inverse = TRUE)/length(test_vector) 
test_vector_ifft

[1] 1+0i 2-0i 3+0i 4+0i 5+0i 6+0i 7-0i 8+0i

which returns our original vector.

With this background in place, let's use R to complete a Fourier filtering of our noisy signal. First, we complete the Fourier
transform of the noisy signal and examine the values for the real component, using R's Re()  function to extract them. Because
of the symmetry noted above, we need only look at the first half of the real components (x = 1 to x = 128).

noisy_signal_ft = fft(noisy_signal) 
plot(x = x[1:128], y = Re(noisy_signal_ft)[1:128], type = "l", col = "blue", xlab =
"", ylab = "intensity", lwd = 2)

Figure : Plot showing the first 128 real components of the data from Figure  after completing a Fourier transform.

Next, we look for where the signal's magnitude has decayed to what appears to be random noise and set these values to zero. In this
example, we retain the first 24 points (and the last 24 points; remember the symmetry noted above) and set both the real and the
imaginary components to 0 + 0i.
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noisy_signal_ft[25:232] = 0 + 0i 
plot(x = x, y = Re(noisy_signal_ft), type = "l", col = "blue", xlab = "", ylab =
"intensity", lwd = 2)

Figure : Plot showing the real components of the data from Figure  after completing a Fourier transform and zeroing
out all values other than the first 24 and the last 24 points. Here we are assuming that these points are dominated by the original
signal, while the remaining points are mostly from the noise.

Finally, we take the inverse Fourier transform and display the resulting filtered signal and report the signal-to-noise ratio.

noisy_signal_ifft = fft(noisy_signal_ft, inverse = TRUE)/length(noisy_signal_ft) 
plot(x = x, y = Re(noisy_signal_ifft), type = "l", col = "blue", xlab = "", ylab =
"intensity", ylim = c(-20,60), lwd = 3) 
lines(x = x,y = gaus_signal,lwd =2, col = "black")

s_to_n = 50/sd(Re(noisy_signal_ifft)[c(1:50,200:250)], na.rm = TRUE) 
s_to_n

[1] 9.695329

Figure : The final result of Fourier filtering the data from Figure .

This page titled 10.4: Using R to Clean Up Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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10.5: Exercises
1. The goal when smoothing data is to improve the signal-to-noise ratio without distorting the underlying signal. The data in the file
problem10_1.csv consists of four columns of data: the vector x, which contains 200 values for plotting on the x-axis; the vector y,
which contains 200 values for a step-function that satisfies the following criteria

the vector n, which contains 200 values drawn from random normal distribution with a mean of 0 and standard deviation of 0.1,
and the vector s, which is the sum of y and n. In essence, y is the pure signal, n is the noise, and s is a noisy signal. Using this data,
complete the following tasks:

(a) Determine the mean signal, the standard deviation of the noise, and the signal-to-noise ratio for the noisy signal using just
the data in the object s.

(b) Explore the effect of applying to the noisy signal, one pass each of moving average filters of widths 5, 7, 9, 11, 13, 15,
and 17. For each moving average filter, determine the mean signal, the standard deviation of the noise, and the signal-to-
noise ratio. Organize these measurements using a table and comment on your results. Prepare a single plot that displays the
original noisy signal and the smoothed signals using widths of 5, 9, 13, and 17, off-setting each so that all five signals are
displayed. Comment on your results.

(c) Repeat the calculations in (b) using Savitzky-Golay quadratic/cubic smoothing filters of widths 5, 7, 9, 11, 13, 15, and 17;
see the original paper for each filter's coefficients.

(d) Considering your results for (b) and for (c), what filter and what width provides the greatest improvement in the signal-
to-noise ratio with the least distortion of the original signal’s step-function? Be sure to justify your choice.

2. The file problem10_2.csv consists of two columns, each with 1024 points: x is an index for the x-axis and y is noisy data with a
hint of a signal. Show that there is a signal in this file by using any one moving average or Savitzky-Golay smoothing filter of your
choice and using a Fourier filter. Present your results in a single figure that shows the original signal, the signal after smoothing,
and the signal after Fourier filtering. Comment on your results.

3. The file problem 10_3.csv consists of six columns: x is an index for the x-axis and y1, y2, y3, y4, and y5 are signals
superimposed on a variable background. Use a Savitzky-Golay nine-point cubic second-derivative filter to remove the background
from the data and then build a calibration model using these results, and report the calibration equation and a plot of the calibration
curve. See the original paper for the filter's coefficients.

This page titled 10.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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CHAPTER OVERVIEW

11: Finding Structure in Data
One of the more intriguing aspects of chemometrics is the ability to discover and extract information from a large data set that
appears, at first glance, to lack any defined order. And yet, it is likely that there are determinate factors that explain the data.
Consider a data set that consists of the daily concentration of NOX—the combined amounts of NO  and of NO in the air expressed
as µg/m —in samples of urban air. Although a plot of the concentration of NOX as a function of time likely appears noisy, we can
easily identify variables that might affect the daily measurements:

temperature: we need more energy on colder days, which increases the use of fuels that generate NOX emissions
day of the week: perhaps more traffic on work days than on weekends
atmospheric conditions: stronge winds may disperse NOX emissions and stagnation may concentrate NOX emissions
location of air samplers: samplers at busy intersections may give different results from samplers located in city parks

The chemometric methods introduced in this chapter—cluster analysis, principal component analysis, and multivariate linear
regression—provide ways to probe the underlying factors that provide structure to our data.

11.1: What Do We Mean By Structure?
11.2: Cluster Analysis
11.3: Principal Component Analysis
11.4: Multivariate Linear Regression
11.5: Using R for a Cluster Analysis
11.6: Using R for a Principal Component Analysis
11.7: Using R for a Multivariate Linear Regression
11.8: Exercises

This page titled 11: Finding Structure in Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David
Harvey.
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11.1: What Do We Mean By Structure?
The signals we measure include contributions from determinate and indeterminate sources, with the determinate components
resulting from the analytes in our sample and with the indeterminate sources resulting from noise. When we describe our data as
having structure, or that we are looking for structure in our data, our interest is in the determinate contributions to the signal.
Consider, for example, the data in the following figure, which shows the visible spectra for 24 samples at 635 wavelengths.

Figure : Visible spectra for 24 samples recorded at 635 wavelengths between 380.5 nm and 889.5 nm. The spectrum in red
highlights one of the 24 spectra included in this data set.

Each curve in this figure, such as the one shown in red, is one of the 24 samples that make up this data set and shows the extent to
which each of the 635 discrete wavelengths of light are absorbed by that sample: this is the determinate contribution to the data.
Looking closely at the spectrum shown in red, we see small variations in the absorbance superimposed on the determinate signal:
this is the indeterminate contribution to the data.

Although when first examined, the 24 spectra in Figure  may create a sense of disorder, there is a clear underlying structure
to the data. For example, there are four apparent peaks centered at wavelengths around 400 nm, 500 nm, 580 nm, and 800 nm. Each
of the individual spectra include one or more of these peaks. Further, at a wavelength of 800 nm, we see that some samples show
no absorbance, and presumably lack whatever analyte is responsible for this peak; other samples, however, clearly include
contributions from this analyte. This is what we mean by finding structure in data. In this chapter we explore three tools for finding
structure in data—cluster analysis, principal component analysis, and multivariate linear regression—that allow us to make sense of
that structure.

This page titled 11.1: What Do We Mean By Structure? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by David Harvey.
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11.2: Cluster Analysis
In the previous section we examined the spectra of 24 samples at 635 wavelengths, displaying the data by plotting the absorbance
as a function of wavelength. Another way to examine the data is to plot the absorbance of each sample at one wavelength against
the absorbance of the same sample at a second wavelength, as we see in the following figure using wavelengths of 403.3 nm and
508.7 nm. Note that this plot suggests an underlying structure to our data as the 24 points occupy a triangular-shaped space. defined
by the samples identified as 1, 2, and 3.

Figure : Plot showing the absorbance values for the 24 samples from Figure 11.1.1 at wavelengths of 400.3 nm and 508.7
nm. The numbers next to the points are index values for the samples.

We can extend this analysis to three wavelengths, as we see in the following figure, and, to as many as all 635 wavelengths (Of
course we cannot examine a plot of this as it exists in 635-dimensional space!).

Figure : Plot showing the absorbance values for the 24 samples from Figure 11.1.1 at wavelengths of 400.3 nm, 508.7 nm,
and 801.8 nm. The color of the points shows the absorbance at 801.8 nm, which is the z-axis. The numbers next to the points are
index values for the samples. Note that the 24 points here also reside in a triangular-shaped space.

In both Figure  and Figure  (and the higher dimensional plots that we cannot display), some samples are closer to each
other in space than are other points. For example, in Figure , samples 7 and 20 are closer to each other than any other pair of
samples; samples 2 and 3, however, are further from each other than any other pair of samples.
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How Does a Cluster Analysis Work? 

A cluster analysis is a way to examine our data in terms of the similarity of the samples to each other. Figure  outlines the
steps using a small set of six points defined by two variables, a and b. Panel (a) shows the six data points. The two points closest in
distance are 3 and 4, which make the first cluster and which we replace with the red point midway between them, as seen in panel
(b). The next two points closest in distance are 2 and 6, which make the second cluster and which we replace with the red point
between them, as seen in panel (c). Continuing in this way yields the results in panel (d) where the third cluster brings together
points 2, 3, 4, and 6, the fourth cluster brings together points 1, 2, 3, 4, and 6, and the final cluster brings together all six points.

Figure : Example of how cluster analysis works. See the text for details.

To visualize the clusters, in terms of the identify of the points in the clusters, the order in which the clusters form, and the relative
similarity of difference between points and clusters, we display the information in Figure  as the dendrogram shown in
Figure , which shows, for example, that the clusters of points 3 and 4, and of 2 and 6 are more similar to each other than they
are to point 1 and to point 6. The vertical scale, which is identified as Height, provides a measure of the distance of the individual
points or clusters of points from each other.

Figure : The results of the cluster analysis in Figure  displayed as a dendrogram.
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How Do We Interpret the Results of a Cluster Analysis? 

A cluster analysis of the 24 samples from Figure 11.1.1 is shown in Figure  using 40 equally-spaced wavelengths. There is
much we can learn from this diagram about the structure of these samples, which we can divide into three distinct clusters of
samples, as shown by the boxes. The samples within each cluster are more similar to each other than they are to samples in other
clusters. One possible explanation for this structure is that the 24 samples are comprised of three analytes, where, for each cluster,
one of the analytes is present at a higher concentration than the other two analytes.

Figure : Cluster analysis of the 24 samples from Figure 11.1.1. The boxes divide the 24 samples into three distinct clusters.

This page titled 11.2: Cluster Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

11.2.5

11.2.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/292603?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/11%3A_Finding_Structure_in_Data/11.02%3A_Cluster_Analysis
https://creativecommons.org/licenses/by-nc-sa/4.0
http://dpuadweb.depauw.edu/harvey_web/Index.html


11.3.1 https://chem.libretexts.org/@go/page/292606

11.3: Principal Component Analysis
The figure below—which is similar in structure to Figure 11.2.2 but with more samples—shows the absorbance values for 80
samples at wavelengths of 400.3 nm, 508.7 nm, and 801.8 nm. Although the axes define the space in which the points appear, the
individual points themselves are, with a few exceptions, not aligned with the axes. The cloud of 80 points has a global mean
position within this space and a global variance around the global mean (see Chapter 7.3 where we used these terms in the context
of an analysis of variance).

Figure : Scatterplot showing the absorbance values for 80 samples at three wavelengths: 400.3 nm, 508.7 nm, and 801.8 nm.
Figure 11.2.2 shows a subset of this data using 24 samples of the 80 samples.

Suppose we leave the points in space as they are and rotate the three axes. We might rotate the three axes until one passes through
the cloud in a way that maximizes the variation of the data along that axis, which means this new axis accounts for the greatest
contribution to the global variance. Having aligned this primary axis with the data, we then hold it in place and rotate the remaining
two axes around the primary axis until one them passes through the cloud in a way that maximizes the data's remaining variance
along that axis; this becomes the secondary axis. Finally, the third, or tertiary axis, is left, which explains whatever variance
remains. In essence, this is what comprises a principal component analysis (PCA).

How Does a Principal Component Analysis Work? 
One of the challenges with understanding how PCA works is that we cannot visualize our data in more than three dimensions. The
data in Figure , for example, consists of spectra for 24 samples recorded at 635 wavelengths. To visualize all of this data
requires that we plot it along 635 axes in 635-dimensional space! Let's consider a much simpler system that consists of 21 samples
for each of which we measure just two properties that we will call the first variable and the second variable. Figure  shows
our data, which we can express as a matrix with 21 rows, one for each of the 21 samples, and 2 columns, one for each of the two
variables.

Figure : The scatterplot of our 21 samples as a function of their values for first variable and the second variable.
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Next, we complete a linear regression analysis on the data and add the regression line to the plot; we call this the first principal
component.

Figure : The data from Figure  showing the regression line that is the first principal component axis.

Projecting our data (the blue points) onto the regression line (the red points) gives the location of each point on the first principal
component's axis; these values are called the scores, . The cosines of the angles between the first principal component's axis and
the original axes are called the loadings, . We can express the relationship between the data, the scores, and the loadings using
matrix notation. Note that from the dimensions of the matrices for , , and , each of the 21 samples has a score and each of the
two variables has a loading.

Figure : The projections (red dots) onto the first principal component axis of the original data (blue dots) provide the scores,
which are a measure of the distance of the projections from the origin.

Next, we draw a line perpendicular to the first principal component axis, which becomes the second (and last) principal component
axis, project the original data onto this axis (points in green) and record the scores and loadings for the second principal
component.

In matrix multiplication the number of columns in the first matrix must equal the number of rows in the second matrix. The
result of matrix multiplication is a new matrix that has a number of rows equal to that of the first matrix and that has a number
of columns equal to that of the second matrix; thus multiplying together a matrix that is  with one that is  gives a
matrix that is .

11.3.3 11.3.2

S

L

D S L

[D = [S ×[L]21×2 ]21×1 ]1×2

11.3.4

[D = [S ×[L]21×2 ]21×2 ]2×2

 Note

5 ×4 4 ×8
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Figure : The projections (green dots) of the original data (blue dots) onto the second, and final, principal component's axis.

If we were working with 21 samples and 10 variables, then we would do this:

1. plot the data for the 21 samples in 10-dimensional space where each variable is an axis
2. find the first principal component's axis and make note of the scores and loadings
3. project the data points for the 21 samples onto the 9-dimensional surface that is perpendicular to the first principal component's

axis
4. find the second principal component's axis and make note of the scores and loading
5. project the data points for the 21 samples onto the 8-dimensional surface that is perpendicular to the second (and the first)

principal component's axis
6. repeat until all 10 principal components are identified and all scores and loadings reported

How Do We Interpret the Results of a Principal Component Analysis? 

The results of a principal component analysis are given by the scores and the loadings. Let's return to the data from Figure ,
but to make things more manageable, we will work with just 24 of the 80 samples and expand the number of wavelengths from
three to 16 (a number that is still a small subset of the 635 wavelengths available to us). The figure below shows the full spectra for
these 24 samples and the specific wavelengths we will use as dotted lines; thus, our data is a matrix with 24 rows and 16 columns, 

. A principal component analysis of this data will yield 16 principal component axes.

Figure : The spectra for 24 samples. The dotted lines shown the 16 individual wavelengths, which are 380.5 nm, 414.9 nm,
449.3 nm, 483.7 nm, 517.9 nm, 5506 nm, 538.2 nm, 613.3 nm, 642.9 nm, 672.7 nm, 703.3 nm, 735.5 nm, 767.8 nm, 800.2 nm,
832.6 nm, and 868.6 nm. This is the same data used to illustrate cluster analysis.

Each principal component accounts for a portion of the data's overall variances and each successive principal component accounts
for a smaller proportion of the overall variance than did the preceding principal component. Those principal components that
account for insignificant proportions of the overall variance presumably represent noise in the data; the remaining principal
components presumably are determinate and sufficient to explain the data. The following table provides a summary of the
proportion of the overall variance explained by each of the 16 principal components.

Table : The Proportion of Overall Variance Explained by the Principal Components for the Data in Figure .
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

standard
deviation

3.3134 2.1901 0.42561 0.17585 0.09384 0.04607 0.04026 0.01253

proportion
of variance

0.6862 0.2998 0.01132 0.00193 0.00055 0.00013 0.00010 0.00001

cumulative
proportion

0.6862 0.9859 0.99725 0.99919 0.99974 0.99987 0.99997 0.99998

PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16

standard
deviation

0.01049 0.009211 0.007084 0.004478 0.00416 0.003039 0.002377 0.001504

proportion
of variance

0.00001 0.000010 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

cumulative
proportion

0.99999 0.999990 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

The first principal component accounts for 68.62% of the overall variance and the second principal component accounts for
29.98% of the overall variance. Collectively, these two principal components account for 98.59% of the overall variance; adding a
third component accounts for more than 99% of the overall variance. Clearly we need to consider at least two components (maybe
three) to explain the data in Figure . The remaining 14 (or 13) principal components simply account for noise in the original
data. This leaves us with the following equation relating the original data to the scores and loadings

where  is the number of components needed to explain the data, in this case two or three.

To examine the principal components more closely, we plot the scores for PC1 against the scores for PC2 to give the scores plot
seen below, which shows the scores occupying a triangular-shaped space.

Figure : The scores plot for 24 samples showing their scores along the first principal component's axis and the second
principal component's axis.

Because our data are visible spectra, it is useful to compare the equation

to Beer's Law, which in matrix form is

where  gives the absorbance values for the 24 samples at 16 wavelengths,  gives the concentrations of the two or three
components that make up the samples, and  gives the products of the molar absorptivity and the pathlength for each of the two

11.3.1

[D = [S ×[L]24×16 ]24×n ]n×16

n

11.3.7

[D = [S ×[L]24×16 ]24×n ]n×16

[A = [C ×[ϵb]24×16 ]24×n ]n×16

[A] [C]
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or three components at each of the 16 wavelengths. Comparing these two equations suggests that the scores are related to the
concentrations of the  components and that the loadings are related to the molar absorptivities of the  components. Furthermore,
we can explain the pattern of the scores in Figure  if each of the 24 samples consists of a 1–3 analytes with the three vertices
being samples that contain a single component each, the samples falling more or less on a line between two vertices being binary
mixtures of the three analytes, and the remaining points being ternary mixtures of the three analytes.

 
Figure : The scores plot from Figure  color coded to show samples that contain one component, samples that contain
two components, and samples that contain three components. Note that the binary mixtures fall along a line (or gently curving arc)
that connects two single component samples, and that the ternary mixtures occupy the innermost interior space defined by the
single component samples and binary mixtures.

If there are three components in our 24 samples, why are two components sufficient to account for almost 99% of the over
variance? Suppose we prepared each sample by using a volumetric digital pipet to combine together aliquots drawn from
solutions of the pure components, diluting each to a fixed volume in a 10.00 mL volumetric flask. For example, to make a
ternary mixture we might pipet in 5.00 mL of component one and 4.00 mL of component two. If we are diluting to a final
volume of 10 mL, then the volume of the third component must be less than 1.00 mL to allow for diluting to the mark. Because
the volume of the third component is limited by the volumes of the first two components, two components are sufficient to
explain most of the data.

The loadings, as noted above, are related to the molar absorptivities of our sample's components, providing information on the
wavelengths of visible light that are most strongly absorbed by each sample. We can overlay a plot of the loadings on our scores
plot (this is a called a biplot), as shown here.

Figure : Biplot showing the scores (dots) and loadings (arrows) for our 24 samples and 16 wavelengths. The position of the
loadings relative to the scores provides information about the relationship between the two. For example, the loading for a
wavelength of 703.3 nm aligns almost perfectly with the scores for sample 1, suggesting that this wavelength is absorbed by
essentially only the single component that makes up this sample. Light with a wavelength of 642.9 nm, however, has a loading that
falls in between the scores for samples 1 and 2, suggesting it is absorbed by the single component that makes up sample 1 and the
single component that makes up sample 2.

n n
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Each arrow is identified with one of our 16 wavelengths and points toward the combination of PC1 and PC2 to which it is most
strongly associated. For example, although difficult to read here, all wavelengths from 672.7 nm to 868.7 nm (see the caption for
Figure  for a complete list of wavelengths) are strongly associated with the analyte that makes up the single component
sample identified by the number one, and the wavelengths of 380.5 nm, 414.9 nm, 583.2 nm, and 613.3 nm are strongly associated
with the analyte that makes up the single component sample identified by the number two.

If we have some knowledge about the possible source of the analytes, then we may be able to match the experimental loadings to
the analytes. The samples in Figure  were made using solutions of several first row transition metal ions. Figure 
shows the visible spectra for four such metal ions. Comparing these spectra with the loadings in Figure  shows that Cu
absorbs at those wavelengths most associated with sample 1, that Cr  absorbs at those wavelengths most associated with sample 2,
and that Co  absorbs at wavelengths most associated with sample 3; the last of the metal ions, Ni , is not present in the samples

Figure : The visible spectra for the four metal ions that might be in the 24 samples. Of these metal ions, Ni (aq) is not
present in the samples.

This page titled 11.3: Principal Component Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
David Harvey.
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11.4: Multivariate Linear Regression
In Chapter 11.2 we used a cluster analysis of the spectra for 24 samples measured at 16 wavelengths to show that we could divide
the samples into three distinct groups, speculating that the samples contained three analytes and that in each group one of the
analytes was present at a concentration greater than that of the other two analytes. In Chapter 11.3 we used a principal component
analysis of the same set of samples to suggest that the three analytes are Cu , Cr , and Co . In this section we will use a
multivariate linear regression analysis to determine the concentration of these analytes in each of the 24 samples.

How Does a Calibration Using Multivariate Regression Work? 
In a simple linear regression analysis, as outlined in Chapter 8, we model the relationship between a single dependent variable, y,
and a single dependent variable, x, using the equation

where y is a vector of measured responses for the dependent variable, where x is a vector of values for the independent variable,
where  is the expected y-intercept, and where  is the expected slope. For example, to complete a Beer's law calibration curve
for a single analyte, where A is the absorbance and C is the analyte's concentration

we prepare a set of n standard solutions, each with a known concentration of the analyte and measure the absorbance for each of the
standard solutions at a single wavelength. A linear regression analysis returns values for , allowing us to determine the
concentration of analyte in a sample by measuring its absorbance. See Chapter 8 for a review of how to complete a linear
regression analysis using R.

In a multivariate linear regression we have j dependent variables, Y, and k independent variables, X, and we measure the dependent
variable for each of the n values for the independent variables; we can represent this using matrix notation as

In this case, to complete a Beer's law calibration curve we prepare a set of n standard solutions, each of which contains known
concentrations of the k analytes, and measure the absorbance of each standard at each of the j wavelengths

where [A] is a matrix of absorbance values, [C] is a matrix of concentrations, and [ ] is a matrix of  values for each analyte at
each wavelength.

Because matrix algebra does not allow for division, we solve for [ ] by first pre-multiplying both sides of the equation by the
transpose of the matrix of concentrations

and then pre-multiplying both sides of the equation by  to give

Multiplying  by  is equivalent to multiplying a value by its inverse, which is equal to 1;
thus, we have

With the  matrix in hand, we can determine the concentration of the analytes in a set of samples using the same general approach,
as shown here

2+ 3+ 2+

y = + xβ0 β1

β0 β1

A = ϵbC

ϵb
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[A = [C ×[ϵb]n×j ]n×k ]k×j

ϵb ϵb

ϵb

[C ×[A = [C ×[C ×[ϵb]Tk×n ]n×j ]Tk×n ]n×k ]k×j

([C ×[C )]T
k×n

]n×k
−1

×[C ×[A = ×[C ×[C ×[ϵb([C ×[C )]T
k×n

]n×k
−1

]T
k×n

]n×j ([C ×[C )]T
k×n

]n×k
−1

]T
k×n

]n×k ]k×j

([C ×[C )]T
k×n

]n×k
−1 ([C ×[C )]T

k×n
]n×k

×[C ×[A = [ϵb([C ×[C )]T
k×n

]n×k
−1

]T
k×n

]n×j ]k×j

ϵb

[A = [C ×[ϵb]n×j ]n×k ]k×j

[A ×[ϵb = [C ×[ϵb ×[ϵb]n×j ]Tj×k ]n×k ]k×j ]Tj×k

[A ×[ϵb × = [C ×[ϵb ×[ϵb ×]n×j ]Tj×k ([ϵb ×[ϵb )]k×j ]Tj×k

−1

]n×k ]k×j ]Tj×k ([ϵb ×[ϵb )]k×j ]Tj×k

−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/329316?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/11%3A_Finding_Structure_in_Data/11.04%3A_Multivariate_Regression


11.4.2 https://chem.libretexts.org/@go/page/329316

Completing these calculations by hand is a chore; see Chapter 11.7 to see how you can complete a multivariate linear
regression using R.

How Do We Evaluate the Results of a Calibration Using a Multivariate Linear Regression? 

One way to evaluate the results of a calibration based on a multivariate linear regression is to use it to examine the values for each
analyte's  values from the calibration and compare them to the spectra of the individual analytes; the shape of the two plots
should be similar. Another way to evaluate a calibration based on a multivariate regression calibration is to use it to analyze a set of
samples with known concentrations of the analytes.

11.4: Multivariate Linear Regression is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

[A ×[ϵb × = [C]n×j ]Tj×k ([ϵb ×[ϵb )]k×j ]Tj×k

−1

]n×k

 Note

ϵb

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/329316?pdf
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)/11%3A_Finding_Structure_in_Data/11.04%3A_Multivariate_Regression
https://creativecommons.org/licenses/by-nc-sa/4.0


11.5.1 https://chem.libretexts.org/@go/page/293730

11.5: Using R for a Cluster Analysis
To illustrate how we can use R to complete a cluster analysis: use this link and save the file � allSpec.csv  to your working
directory. The data in this file consists of 80 rows and 642 columns. Each row is an independent sample that contains one or more
of the following transition metal cations: Cu , Co , Cr , and Ni . The first seven columns provide information about the
samples:

a sample id (in the form custd_1 for a single standard of Cu  or nicu_mix1 for a mixture of Ni  and Cu )
a list of the analytes in the sample (in the form cuco for a sample that contains Cu  and Co )
the number of analytes in the sample (a number from 1 to 4 and labeled as dimensions)
the molar concentration of Cu  in the sample
the molar concentration of Co  in the sample
the molar concentration of Cr  in the sample
the molar concentration of Ni  in the sample

The remaining columns contain absorbance values at 635 wavelengths between 380.5 nm and 899.5 nm.

First, we need to read the data into R, which we do using the read.csv()  function

spec_data <- read.csv("allSpec.csv", check.names = FALSE)

where the option check.names = FALSE  overrides the function's default to not allow a column's name to begin with a
number. Next, we will create a subset of this large data set to work with

wavelength_ids = seq(8, 642, 40) 
sample_ids = c(1, 6, 11, 21:25, 38:53) 
cluster_data = spec_data[sample_ids, wavelength_ids ]

where wavelength_ids  is a vector that identifies the 16 equally spaced wavelengths, sample_ids  is a vector that
identifies the 24 samples that contain one or more of the cations Cu , Co , and Cr , and cluster_data is a data frame that contains
the absorbance values for these 24 samples at these 16 wavelengths.

Before we can complete the cluster analysis, we first must calculate the distance between the  points that make up
our data. To do this, we use the dist()  function, which takes the general form

dist(object, method)

where object  is a data frame or matrix with our data. There are a number of options for method, but we will use the default,
which is euclidean.

cluster_dist = dist(cluster_data, method = "euclidean") 
cluster_dist

1 6 11 21 22 23 24 25

6 1.53328104

11 1.73128979 0.96493008

21 1.48359716 0.24997370 0.77766228

22 1.49208058 0.32863786 0.68852029 0.09664215

23 1.49457333 0.42903074 0.57495499 0.21089686 0.11755129

24 1.51211374 0.52218072 0.47457024 0.31016429 0.21830998 0.10205547

25 1.55862311 0.61154277 0.39798649 0.39406580 0.30194838 0.19121251 0.09771283

38 1.17069314 0.38098750 0.96982420 0.34254297 0.38830178 0.45418483 0.53114050
0.61729900

Only a small portion of the values in cluster_dist are shown here; each entry shows the distance between two of the 24 samples.

With distances calculated, we can use R's hclust()  function to complete the cluster analysis. The general form of the function
is

2+ 2+ 3+ 2+

2+ 2+ 2+

2+ 2+

2+

2+

3+

2+

2+ 2+ 3+

24 ×16 = 384
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hclust(object, method)

where object is the output created using dist()  that contains the distances between points. There are a number of options for
method—here we use the ward.D  method—saving the output to the object cluster_results  so that we have access to
the results.

cluster_results = hclust(cluster_dist, method = "ward.D")

To view the cluster diagram, we pass the object cluster_results  to the plot()  function where hang = -1  extends
each vertical line to a height of zero. By default, the labels at the bottom of the dendrogram are the sample ids; cex  adjusts the
size of these labels.

plot(cluster_results, hang = -1, cex = 0.75)

With a few lines of code we can add useful details to our plot. Here, for example, we determine the the fraction of the stock Cu
solution in each sample and use these values as labels, and divide the 24 samples into three large clusters using the 
rect.clust()  function where k  is the number of clusters to highlight and which  indicates which of these clusters to

display using a rectangular box.

cluster_copper = spec_data$concCu/spec_data$concCu[1] 
plot(cluster_results, hang = -1, labels = cluster_copper[sample_ids], main = "Copper",
xlab = "fraction of stock in sample", sub = "", cex = 0.75) 
rect.hclust(cluster_results, k = 3, which = c(1,2,3), border = "blue")

The following code shows how we can use the same data set of 24 samples and 16 wavelength to complete a cluster diagram for
the wavelengths. The use of the t()  function within the dist()  function takes the transpose of our data so that the rows are
the 16 wavelengths and the columns are the 24 samples. We do this because the dist()  function calculates distances using the
rows.
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wavelength_dist = dist(t(cluster_data)) 
wavelength_clust = hclust(wavelength_dist, method = "ward.D") 
plot(wavelength_clust, hang = -1, main = "wavelengths strongly associated with
copper") 
rect.hclust(wavelength_clust, k = 2, which = 2, border = "blue")

The figure below highlights the cluster of wavelengths most strongly associated with the absorption by Cu .

This page titled 11.5: Using R for a Cluster Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
David Harvey.
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11.6: Using R for a Principal Component Analysis
To illustrate how we can use R to complete a cluster analysis: use this link and save the file � allSpec.csv  to your working
directory. The data in this file consists of 80 rows and 642 columns. Each row is an independent sample that contains one or more
of the following transition metal cations: Cu , Co , Cr , and Ni . The first seven columns provide information about the
samples:

a sample id (in the form custd_1 for a single standard of Cu  or nicu_mix1 for a mixture of Ni  and Cu )
a list of the analytes in the sample (in the form cuco for a sample that contains Cu  and Co )
the number of analytes in the sample (a number from 1 to 4 and labeled as dimensions)
the molar concentration of Cu  in the sample
the molar concentration of Co  in the sample
the molar concentration of Cr  in the sample
the molar concentration of Ni  in the sample

The remaining columns contain absorbance values at 635 wavelengths between 380.5 nm and 899.5 nm.

First, we need to read the data into R, which we do using the read.csv()  function

spec_data <- read.csv("allSpec.csv", check.names = FALSE)

where the option check.names = FALSE  overrides the function's default to not allow a column's name to begin with a
number. Next, we will create a subset of this large data set to work with

wavelength_ids = seq(8, 642, 40) 
sample_ids = c(1, 6, 11, 21:25, 38:53) 
pca_data = spec_data[sample_ids, wavelength_ids ]

where wavelength_ids  is a vector that identifies the 16 equally spaced wavelengths, sample_ids  is a vector that
identifies the 24 samples that contain one or more of the cations Cu , Co , and Cr , and cluster_data is a data frame that contains
the absorbance values for these 24 samples at these 16 wavelengths.

To complete the principal component analysis we will use R's prcomp()  function, which takes the general form

prcomp(object, center, scale)

where object  is a data frame or matrix that contains our data, and center  and scale  are logical values that indicate if
we should first center and scale the data before we complete the analysis. When we center and scale our data each variable (in this
case, the absorbance at each wavelength) is adjusted so that its mean is zero and its variance is one. This has the effect of placing
all variables on a common scale, which ensures that any difference in the relative magnitude of the variables does not affect the
principal component analysis.

pca_results = prcomp(pca_data, center = TRUE, scale = TRUE)

The prcomp()  function returns a variety of information that we can use to examine the results, including the standard deviation
for each principal component, sdev , a matrix with the loadings, rotation , a matrix with the scores, x , and the values
use to center  and scale  the original data. The summary()  function, for example, returns the standard deviations for
and the proportion of the overall variance explained by each principal component, and the cumulative proportion of variance
explained by the principal components.

summary(pca_results)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard deviation 3.3134 2.1901 0.42561 0.17585 0.09384 0.04607 0.04026 0.01253
0.01049

Proportion of Variance 0.6862 0.2998 0.01132 0.00193 0.00055 0.00013 0.00010 0.00001
0.00001
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Cumulative Proportion 0.6862 0.9859 0.99725 0.99919 0.99974 0.99987 0.99997 0.99998
0.99999

PC10 PC11 PC12 PC13 PC14 PC15 PC16

Standard deviation 0.009211 0.007084 0.004478 0.00416 0.003039 0.002377 0.001504

Proportion of Variance 0.000010 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000

Cumulative Proportion 0.999990 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000

We can also examine each principal component's variance (the square of its standard deviation) in the form of a bar plot by passing
the results of the principal component analysis to the plot()  function.

plot(pca_results)

As noted above, the 24 samples include one, two, or three of the cations Cu , Co , and Cr , which is consistent with our results
if individual solutions are made by combining together aliquots of stock solutions of Cu , Co , and Cr  and diluting to a
common volume. In this case, the volume of stock solution for one cation places limits on the volumes of the other cations such
that a three-component mixture essentially has two independent variables.

To examine the scores for the principal component analysis, we pass the scores to the plot()  function, here using 
pch = 19  to display them as filled points.

plot(pca_results$x, pch = 19)

By default, the plot()  function displays the values for the first two principal components, with the first (PC1) placed on the x-
axis and the second (PC2) placed on the y-axis. If we wish to examine other principal components, then we must specify them
when calling the plot()  function; the following command, for example, uses the scores for the second and the third principal
components.

plot(x = pca_results$x[,2], y = pca_results$x[,3], pch = 19, xlab = "PC2", ylab =
"PC3")
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If we wish to display the first three principal components using the same plot, then we can use the scatter3D()  function
from the plot3D  package, which takes the general form

library(plot3D) 
scatter3D(x = pca_results$x[,1], y = pca_results$x[,2], z = pca_results$x[,3], pch =
19, type = "h", theta = 25, phi = 20, ticktype = "detailed", colvar = NULL)

where we use the library()  function to load the package into our R session (note: this assumes you have installed the 
plot3D  package). The option type = "h"  drops a horizontal line from each point down to the plane for PC1 and PC2,

which helps us orient the points in space. By default, the plot uses color to show each points value of the third principal component
(displayed on the z-axis); here we set colvar = NULL  to display all points using the same color.

Although the plots are not not shown here, we can use the same commands, replacing x  with rotation , to display the
loadings.

plot(pca_results$rotation, pch = 19)

plot(x = pca_results$rotation[,2], y = pca_results$rotation[,3], pch = 19, xlab =
"PC2", ylab = "PC3")

scatter3D(x = pca_results$rotation[,1], y = pca_results$rotation[,2], z =
pca_results$rotation[,3], pch = 19, type = "h", theta = 25, phi = 20, ticktype =
"detailed", colvar = NULL)

Another way to view the results of a principal component analysis is to display the scores and the loadings on the same plot, which
we can do using the biplot()  function.

biplot(pca_results, cex = c(2, 0.6), xlabs = rep("•", 24))

where the option xlabs = rep("•", 24)  overrides the function's default to display the scores as numbers, replacing them
with dots, and cex = c(2, 0.6)  is used to increase the size of the dots and decrease the size of the labels for the loadings.
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In this biplot, the scores are displayed as dots and the loadings are displayed as arrows that begin at the origin and point toward the
individual loadings, which are indicated by the wavelengths associated with the loadings. For this set of data, scores and loadings
that are co-located with each other represent samples and wavelengths that are strongly correlated with each other. For example, the
sample whose score is in the upper right corner is strongly associated with absorbance of light with wavelengths of 613.3 nm, 583.2
nm, 380.5 nm, and 414.9 nm.

Finally, we can use use color to highlight features from our data set. For example, the following lines of code creates a scores plot
that uses a color pallet to indicate the relative concentration of Cu  in the sample.

cu_palette = colorRampPalette(c("white", "blue")) 
cu_color = cu_pallete(50)[as.numeric(cut(spec_data$concCu[sample_ids], breaks = 50))]

The colorRampPalette()  function takes a vector of colors—in this case white and blue—and returns a function that we
can use to create a palette of colors that runs from pure white to pure blue. We then use this function to create 50 shades of white
and blue

cu_palette(50)

[1] "#FFFFFF" "#F9F9FF" "#F4F4FF" "#EFEFFF" "#EAEAFF" "#E4E4FF" "#DFDFFF" "#DADAFF"

[9] "#D5D5FF" "#D0D0FF" "#CACAFF" "#C5C5FF" "#C0C0FF" "#BBBBFF" "#B6B6FF" "#B0B0FF"

[17] "#ABABFF" "#A6A6FF" "#A1A1FF" "#9C9CFF" "#9696FF" "#9191FF" "#8C8CFF" "#8787FF"

[25] "#8282FF" "#7C7CFF" "#7777FF" "#7272FF" "#6D6DFF" "#6868FF" "#6262FF" "#5D5DFF"

[33] "#5858FF" "#5353FF" "#4E4EFF" "#4848FF" "#4343FF" "#3E3EFF" "#3939FF" "#3434FF"

[41] "#2E2EFF" "#2929FF" "#2424FF" "#1F1FFF" "#1A1AFF" "#1414FF" "#0F0FFF" "#0A0AFF"

[49] "#0505FF" "#0000FF"

where #FFFFFF is the hexadecimal code for pure white and #0000FF is the hexadecimal code for pure blue. The latter part of this
line of code

cu_color = cu_pallete(50)[as.numeric(cut(spec_data$concCu[sample_ids], breaks = 50))]

retrieves the concentrations of copper in each of our 24 samples and assigns a hexadecimal code for a shade of blue that indicates
the relative concentration of copper in the sample. Here we see that the first sample has a hexadecimal code of #0000FF for pure
blue, which means this sample has the largest concentration of copper and samples 2–8 have hexademical codes of #FFFFFF for
pure white, which means these samples do not contain any copper.

cu_color

[1] "#0000FF" "#FFFFFF" "#FFFFFF" "#FFFFFF" "#FFFFFF" "#FFFFFF" "#FFFFFF" "#FFFFFF"

[9] "#D0D0FF" "#B6B6FF" "#9C9CFF" "#8282FF" "#6868FF" "#D0D0FF" "#B6B6FF" "#9C9CFF"

[17] "#8282FF" "#6868FF" "#EAEAFF" "#EAEAFF" "#B6B6FF" "#B6B6FF" "#8282FF" "#8282FF"
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Finally, we create the scores plot, using pch = 21  for an open circle whose background color we designate using 
bg = cu_color and where we use cex = 2  to increase the size of the points.

plot(pca_results$x, pch = 21, bg = cu_color, cex = 2)

This page titled 11.6: Using R for a Principal Component Analysis is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by David Harvey.
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11.7: Using R for a Multivariate Linear Regression
To illustrate how we can use R to complete a multivariate linear regression, use this link and save the file � allSpec.csv  to
your working directory. The data in this file consists of 80 rows and 642 columns. Each row is an independent sample that contains
one or more of the following transition metal cations: Cu , Co , Cr , and Ni . The first seven columns provide information
about the samples:

a sample id (in the form custd_1 for a single standard of Cu  or nicu_mix1 for a mixture of Ni  and Cu )
a list of the analytes in the sample (in the form cuco for a sample that contains Cu  and Co )
the number of analytes in the sample (a number from 1 to 4 and labeled as dimensions)
the molar concentration of Cu  in the sample
the molar concentration of Co  in the sample
the molar concentration of Cr  in the sample
the molar concentration of Ni  in the sample

The remaining columns contain absorbance values at 635 wavelengths between 380.5 nm and 899.5 nm. We will use a subset of
this data that is identical to that used to illustrate a cluster analysis and a principal component analysis.

First, we need to read the data into R, which we do using the read.csv()  function

spec_data <- read.csv("allSpec.csv", check.names = FALSE)

where the option check.names = FALSE  overrides the function's default to not allow a column's name to begin with a
number. Next, we will create objects to hold the concentrations and absorbances for standard solutions of Cu , Cr , and Co ,
which are the three analytes

wavelength_ids = seq(8, 642, 40) 
abs_stds = spec_data[1:15, wavelength_ids] 
conc_stds = data.frame(spec_data[1:15, 4], spec_data[1:15, 5], spec_data[1:15, 6]) 
abs_samples = spec_data[c(1, 6, 11, 21:25, 38:53), wavelength_ids]

where wavelength_ids  is a vector that identifies the 16 equally spaced wavelengths, abs_stds  is a data frame that
gives the absorbance values for 15 standard solutions of the three analytes Cu , Cr , and Co  at the 16 wavelengths, 
conc_stds  is a data frame that contains the concentrations of the three analytes in the 15 standard solutions, and 
abs_samples  is a data frame that contains the absorbances of the 24 sample at the 16 wavelengths. This is the same data used

to illustrate cluster analysis and principal component analysis.

To solve for the  matrix we will write and source the following function that takes two objects—a data frame of absorbance
values and a data frame of concentrations—and returns a matrix of  values.

findeb = function(abs, conc){ 
abs.m = as.matrix(abs) 
conc.m = as.matrix(conc) 
ct = t(conc.m) 
ctc = ct %*% conc.m 
invctc = solve(ctc) 
eb = invctc %*% ct %*% abs.m 
output = eb 
invisible(output) 
}

Passing abs_stds and conc_stds to the function

eb_pred = findeb(abs_stds, conc_stds)

returns the predicted values for  that make up our calibration. As we see below, a plot of the  values for Cu  has the same
shape as a plot of the absorbance values for one of the Cu  standards.
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wavelengths = as.numeric(colnames(spec_data[8:642])) 
old.par = par(mfrow = c(2,1)) 
plot(x = wavelengths[wavelength_ids], y = eb_pred[1,], type = "b", 
xlab = "wavelength (nm)", ylab = "eb", lwd = 2, col = "blue") 
plot(x = wavelengths, y = spec_data[1,8:642], type = "l", 
xlab = "wavelength (nm)", ylab = "absorbance", lwd = 2, col = "blue") 
par(old.par)

Having completed the calibration, we can determine the concentrations of the three analytes in the 24 samples using the following
function, which takes as inputs thea data frame of absobance values and the  matrix returned by the function findeb

findconc = function(abs, eb){ 
abs.m = as.matrix(abs) 
eb.m = as.matrix(eb) 
ebt = t(eb.m) 
ebebt = eb %*% ebt
invebebt = solve(ebebt) 
pred_conc = round(abs.m %*% ebt %*% invebebt, digits = 5) 
output = pred_conc
invisible(output) 
} 
pred_conc = findconc(abs_samples, eb_pred)

To determine the error in the predicted concentrations, we first extract the actual concentrations from the original data set as a data
frame, adjusting the column names for clarity.

real_conc = data.frame(spec_data[c(1, 6, 11, 21:25, 38:53), 4], 
spec_data[c(1, 6, 11, 21:25, 38:53), 5], 
spec_data[c(1, 6, 11, 21:25, 38:53), 6]) 
colnames(real_conc) = c("copper", "cobalt", "chromium")

and determine the difference between the actual concentrations and the predicted concentrations

conc_error = real_conc - pred_conc

Finally, we can report the mean error, the standard deviation, and the 95% confidence interval for each analyte.
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means = apply(conc_error, 2, mean) 
round(means, digits = 6)

copper cobalt chromium

-0.000280 -0.000153 -0.000210

sds = apply(conc_error, 2, sd) 
round(sds, digits = 6)

copper cobalt chromium

0.001037 0.000811 0.000688

conf.it = abs(qt(0.05/2, 20)) * sds 
round(conf.it, digits = 6)

copper cobalt chromium

0.002163 0.001693 0.001434

Compared to the ranges of concentrations for the three analytes in the 24 samples

range(real_conc$copper)

[1] 0.00 0.05

range(real_conc$cobalt)

[1] 0.0 0.1

range(real_conc$chromium)

[1] 0.0000 0.0375

the mean errors and confidence intervals are sufficiently small that we have confidence in the results.

11.7: Using R for a Multivariate Linear Regression is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
LibreTexts.
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11.8: Exercises
The file � rare_earths.csv contains data for the 17 rare earth elements, which consists of the lanthanides (La  Lu) plus Sc and Y.
The data is from Horovitz, O.; Sârbu, C. "Characterization and Classification of Lanthanides by Multivariate-Analysis Methods," J.
Chem. Educ. 2005, 82, 473-483. Each row in the file contains data for one element; the columns in the file provide values for the
following 16 properties:

mass: atomic mass (g/mol)
density: ( )
radius: atomic radius (pm)
en: electronegativity (Pauling scale)
ionenergy_1: first ionization energy (kJ/mol)
ionenergy_2: second ionization energy (kJ/mol)
ionenergy_3: third ionization energy (kJ/mol)
mp: melting point (K)
bp: boiling point (K)
h_fusion: enthalpy of fusion (kJ/mol)
h_atom: enthalpy of atomization (kJ/mol)
entropy: absolute entropy (J/mol•K)
sp_heat: specific heat (J/g•K)
resist: electrical resistivity ( )
head_cond: heat conductivity ( )
gibbs: Gibbs free energy of formation (kJ/mol)

Two variables included in the original paper—the enthalpy of vaporization and the surface tension at the melting point—are
omitted from this data set as they include missing values. Problems 1-3 draw upon the data in this file.

1. Perform a cluster analysis for the 17 elements in the file rare_earths.csv and comment on the results paying particular attention to
the positions of Sc and Y, and the 15 lanthanides. You may wish to compare your results with those reported in the paper cited
above.

2. Perform a cluster analysis for the 16 properties in the file rare_earths.csv and comment on the results. You may wish to compare
your results with those reported in the paper cited above.

3. Complete a principal component analysis for the 17 elements in the file rare_earths.csv. Create two-dimensional scores plots that
compare PC1 to PC2, PC1 to PC3, and PC2 to PC3, and a three-dimensional scores plot for the first three principal components.
Comment on your results paying particular attention to the positions of Sc and Y, and the 15 lanthanides. You may wish to compare
your results to those from Exercise 11.1 and the results reported in the paper cited above. Create two-dimensional loadings plots
that compare PC1 to PC2, PC1 to PC3, and PC2 to PC3, and a three-dimensional loadings plot for the first three principal
components. Comment on your results. You may wish to compare your results to those from Exercise 11.2 and the results reported
in the paper cited above.

4. The files � mvr_abs and � mvr_conc contain absorbance values for 10 samples that contain one or more the analytes Co , Cu ,
and Ni  at five wavelengths, and the mM concentrations of the same analytes in the 10 samples. The data are from Dado, G.;
Rosenthal, J. "Simultaneous Determination of Cobalt, Copper, and Nickel by Multivariate Linear Regression," J. Chem. Educ.
1990, 67, 797-800. Use the first seven samples as calibration standards and use a multivariate linear regression to determine the
concentrations of the analytes in the last three samples. You may wish to compare your results with those reported in the paper
cited above.

This page titled 11.8: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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12.1: Single-Sided Normal Distribution
Table , at the bottom of this appendix, gives the proportion, P, of the area under a normal distribution curve that lies to the right of
a deviation, z

where X is the value for which the deviation is defined,  is the distribution’s mean value and  is the distribution’s standard deviation.
For example, the proportion of the area under a normal distribution to the right of a deviation of 0.04 is 0.4840 (see entry in red in the
table), or 48.40% of the total area (see the area shaded blue in Figure ). The proportion of the area to the left of the deviation is 1
– P. For a deviation of 0.04, this is 1 – 0.4840, or 51.60%.

 

Figure . Normal distribution curve showing the area under a curve greater than a deviation of +0.04 (blue) and with a deviation
less than –0.04 (green).

When the deviation is negative—that is, when X is smaller than —the value of z is negative. In this case, the values in the table give
the area to the left of z. For example, if z is –0.04, then 48.40% of the area lies to the left of the deviation (see area shaded green in
Figure .

To use the single-sided normal distribution table, sketch the normal distribution curve for your problem and shade the area that
corresponds to your answer (for example, see Figure , which is for Example 4.4.2).

Figure . Normal distribution for the population of aspirin tablets in Example 4.4.2. The population’s mean and standard deviation
are 250 mg and 5 mg, respectively. The shaded area shows the percentage of tablets containing between 243 mg and 262 mg of aspirin.

This divides the normal distribution curve into three regions: the area that corresponds to our answer (shown in blue), the area to the
right of this, and the area to the left of this. Calculate the values of z for the limits of the area that corresponds to your answer. Use the
table to find the areas to the right and to the left of these deviations. Subtract these values from 100% and, voilà, you have your answer.

Table : Values for a Single-Sided Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4365 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4502 0.4013 0.3974 0.3396 0.3897 0.3859

12.1.1
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X −μ

σ

μ σ
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0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.7 0.0466 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.00964 0.00914 0.00866

2.4 0.00820 0.00776 0.00734 0.00695 0.00657

2.5 0.00621 0.00587 0.00554 0.00523 0.00494

2.6 0.00466 0.00440 0.00415 0.00391 0.00368

2.7 0.00347 0.00326 0.00307 0.00289 0.00272

2.8 0.00256 0.00240 0.00226 0.00212 0.00199

2.9 0.00187 0.00175 0.00164 0.00154 0.00144

3.0 0.00135

3.1 0.000968

3.2 0.000687

3.3 0.000483

3.4 0.000337

3.5 0.000233

3.6 0.000159

3.7 0.000108

3.8 0.0000723

3.9 0.0000481
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4.0 0.0000317
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12.2: Critical Values for t-Test
Assuming we have calculated t , there are two approaches to interpreting a t-test. In the first approach we choose a value of  for
rejecting the null hypothesis and read the value of  from the table below. If , we reject the null hypothesis and
accept the alternative hypothesis. In the second approach, we find the row in the table below that corresponds to the available
degrees of freedom and move across the row to find (or estimate) the a that corresponds to ; this establishes largest
value of  for which we can retain the null hypothesis. Finding, for example, that  is 0.10 means that we retain the null
hypothesis at the 90% confidence level, but reject it at the 89% confidence level. The examples in this textbook use the first
approach.

Table : Critical Values of t for the t-Test

Values of t for…

…a confidence interval of: 90% 95% 98% 99%

…an  value of: 0.10 0.05 0.02 0.01

Degrees of Freedom

1 6.314 12.706 31.821 63.657

2 2.920 4.303 6.965 9.925

3 2.353 3.182 4.541 5.841

4 2.132 2.776 3.747 4.604

5 2.015 2.571 3.365 4.032

6 1.943 2.447 3.143 3.707

7 1.895 2.365 2.998 3.499

8 1.860 2.306 2.896 3.255

9 1.833 2.262 2.821 3.250

10 1.812 2.228 2.764 3.169

12 1.782 2.179 2.681 3.055

14 1.761 2.145 2.624 2.977

16 1.746 2.120 2.583 2.921

18 1.734 2.101 2.552 2.878

20 1.725 2.086 2.528 2.845

30 1.697 2.042 2.457 2.750

50 1.676 2.009 2.311 2.678

1.645 1.960 2.326 2.576

The values in this table are for a two-tailed t-test. For a one-tailed test, divide the  values by 2. For example, the last column has
an  value of 0.005 and a confidence interval of 99.5% when conducting a one-tailed t-test.

12.2: Critical Values for t-Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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12.3: Critical Values for F-Test
The following tables provide values for  for one-tailed and for two-tailed F-tests. To use these tables, we first decide whether the situation calls for a one-
tailed or a two-tailed analysis and calculate F

where  is greater than . Next, we compare Fexp to  and reject the null hypothesis if . You may replace s with  if you
know the population’s standard deviation.

Table : Critical Values of F for a One-Tailed F-Test

1 2 3 4 5 6 7 8 9 10 15 20

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 245.9 248.0 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.50

3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.703 8.660 8.526

4 7.709 6.994 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.858 5.803 5.628

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.722 4.753 4.619 4.558 4.365

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 3.938 3.874 3.669

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.511 3.445 3.230

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.218 3.150 2.928

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.006 2.936 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.845 2.774 2.538

11 4.844 3.982 3.587 3.257 3.204 3.095 3.012 2.948 2.896 2.854 2.719 2.646 2.404

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.617 2.544 2.296

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.533 2.459 2.206

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.463 2.388 2.131

15 4.534 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.403 2.328 2.066

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.352 2.276 2.010

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.308 2.230 1.960

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.269 2.191 1.917

19 4.381 3.552 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.234 2.155 1.878

20 4,351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.203 2.124 1.843

3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 1.666 1.570 1.000

Table : Critical Values of F for a Two-Tailed F-Test

1 2 3 4 5 6 7 8 9 10 15 20

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 984.9 993.1 1018

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.50

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.17 13.90

4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.444 8.657 8.560 8.257

5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 6.015

6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 4.894

7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 4.142

8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.259 4.101 3.999 3.670

9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 3.333

10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 3.080

11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.644 3.588 3.526 3.330 3.226 2.883

12 6.544 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 2.725

13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 2.596

14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 2.487

15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 2.395
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16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 2.316

17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 2.247

18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 2.187

19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 2.133

20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 2.085

5.024 3.689 3.116 2.786 2.567 2.408 2.288 2.192 2.114 2.048 1.833 1.708 1.000

12.3: Critical Values for F-Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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12.4: Critical Values for Dixon's Q-Test
The following table provides critical values for , where  is the probability of incorrectly rejecting the suspected outlier
and  is the number of samples in the data set. There are several versions of Dixon’s Q-Test, each of which calculates a value for
Q  where i is the number of suspected outliers on one end of the data set and j is the number of suspected outliers on the opposite
end of the data set. The critical values for Q here are for a single outlier, Q , where

The suspected outlier is rejected if Q  is greater than . For additional information consult Rorabacher, D. B. “Statistical
Treatment for Rejection of Deviant Values: Critical Values of Dixon’s ‘Q’ Parameter and Related Subrange Ratios at the 95%
confidence Level,” Anal. Chem. 1991, 63, 139–146.

Table : Critical Values for Dixon's Q-Test

0.1 0.05 0.04 0.02 0.01

3 0.941 0.970 0.976 0.988 0.994

4 0.765 0.829 0.846 0.889 0.926

5 0.642 0.710 0.729 0.780 0.821

6 0.560 0.625 0.644 0.698 0.740

7 0.507 0.568 0.586 0.637 0.680

8 0.468 0.526 0.543 0.590 0.634

9 0.437 0.493 0.510 0.555 0.598

10 0.412 0.466 0.483 0.527 0.568

12.4: Critical Values for Dixon's Q-Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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12.5: Critical Values for Grubb's Test
The following table provides critical values for , where  is the probability of incorrectly rejecting the suspected outlier
and n is the number of samples in the data set. There are several versions of Grubb’s Test, each of which calculates a value for G
where i is the number of suspected outliers on one end of the data set and j is the number of suspected outliers on the opposite end
of the data set. The critical values for G given here are for a single outlier, G , where

The suspected outlier is rejected if G  is greater than .

Table : Critical Values for the Grubb's Test

0.05 0.01

3 1.155 1.155

4 1.481 1.496

5 1.715 1.764

6 1.887 1.973

7 2.202 2.139

8 2.126 2.274

9 2.215 2.387

10 2.290 2.482

11 2.355 2.564

12 2.412 2.636

13 2.462 2.699

14 2.507 2.755

15 2.549 2.755

12.5: Critical Values for Grubb's Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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12.6: Critical Values for the Wilcoxson Signed Rank Test
The following table provides critical values at  for the Wilcoxson signed rank test where n is the number of samples in the
data set. An entry of NA means the test cannot be applied. The null hypothesis of no difference between the samples can be
rejected when the test statistic is less than or equal to the critical values for the number of samples.

Table : Critical Values for Wilcoxson Signed Rank Test with 

n one-tailed test two-tailed test

5 0 NA

6 2 0

7 3 2

8 5 3

9 8 5

10 10 8

11 13 10

12 17 13

13 21 17

14 25 21

15 30 25

16 35 30

17 41 35

18 47 40

19 53 46

20 60 52

12.6: Critical Values for the Wilcoxson Signed Rank Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by LibreTexts.
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12.7: Critical Values for the Wilcoxson Ranked Sum Test
The following table provides critical values at  for the Wilcoxson ranked sum test where  and  are the number of
samples in the two sets of data where . An entry of NA means the test cannot be applied. The null hypothesis of no
difference between the samples can be rejected when the test statistic is less than or equal to the critical values for the number of
samples.

: Critical Values for Wilcoxson Ranked Sum Test with 

one-tailed test two-tailed test

3 3 0 NA

3 4 0 NA

3 5 1 0

3 6 2 1

4 4 1 0

4 5 2 1

4 6 3 2

4 7 4 3

5 5 4 2

5 6 5 3

5 7 6 5

5 8 8 6

6 6 7 5

6 7 8 6

6 8 10 8

6 9 12 10

7 7 11 8

7 8 13 10

7 9 15 12

7 10 17 14

12.7: Critical Values for the Wilcoxson Ranked Sum Test is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by LibreTexts.
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13.1: Chemometric Resources

Books 

The following small collection of books provide a broad introduction to chemometric methods of analysis. The text by Miller and
Miller is a good entry-level textbook suitable for the undergraduate curriculum. The text by Massart, et. al. is a particularly
comprehensive resource.

Anderson, R. L. Practical Statistics for Analytical Chemists, Van Nostrand Reinhold: New York; 1987.
Beebe, K. R.; Pell, R. J.; Seasholtz, M. B. Chemometrics: A Practical Guide, Wiley, 1998.
Brereton, Richard G. Data Driven Extraction for Science, 2nd Edition, Wiley, 2018.
Graham, R. C. Data Analysis for the Chemical Sciences, VCH Publishers: New York; 1993.
Larose, D. T.; Larose, C. D. Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, 2014.
Mark, H.; Workman, J. Statistics in Spectroscopy, Academic Press: Boston; 1991.
Massart, D. L.; Vandeginste, B. G. M.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A
and Part B, Elsevier, 1997.
Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 7th Edition, Pearson, 2018.
Schutt, R.; O'Neil, C. Doing Data Science: Straight Talk From the Frontline, O'Reilly, 2014.
Sharaf, M. H.; Illman, D. L.; Kowalski, B. R. Chemometrics, Wiley-Interscience: New York; 1986.

Although not resources on chemometrics, the following books provide a broad introduction to the statistical methods that underlie
chemometrics.

Boslaugh, S. Statistics in a Nutshell: A Desktop Quick Reference, O'Reilly, 2013.
Larose, D. T.; Larose, C. D. Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, 2014.
Schutt, R.; O'Neil, C. Doing Data Science: Straight Talk From the Frontline, O'Reilly, 2014.
van Belle, G. Statistical Rules of Thumb, Wiley, 2008.

The following books provide more specialized coverage of topics relevant to chemometrics.

Mason, R. L.; Gunst, R. F.; Hess, J. L. Statistical Design and Analysis of Experiments; Wiley: New York, 1989.
Myers, R. H.; Montgomery, D. C. Response Surface Methodology, Wiley, 2002.

The following books provide guidance on the visualization of data, both in figures and in tables.

Bertin, J. Semiology of Graphics, esri press, 1983.
Few, S. Now You See It, Analytics Press, 2009.
Few, S. Show Me the Numbers, Analytics Press, 2012.
Few, S. Information Dashboard Design, Analytics Press, 2013.
Robins, N. B. Creating More Effective Graphs, Charthouse, 2013.
Tufte, E. R. Envisioning Information, Graphics Press, 1990.
Tufte, E. R. Visual Explanations Graphics Press, 1997.
Tufte, E. R. The Visual Display of Quantitative Information, Graphics Press, 2001.
Tufte, E. R. Beautiful Evidence, Graphics Press, 2006.

The following textbook provides a broad introduction to analytical chemistry, including sections on chemometric topics.

Harvey, D. T. Analytical Chemistry 2.1 (available here and here).

Articles 
The following paper provides a general theory of types of measurements.

Stevens, S. S. "On the Theory of Scales of Measurements," Science, 1946, 103, 677-680.

The detection of outliers, particularly when working with a small number of samples, is discussed in the following papers.

Analytical Methods Committee “Robust Statistics—How Not To Reject Outliers Part 1. Basic Concepts,” Analyst 1989, 114,
1693–1697.
Analytical Methods Committee “Robust Statistics—How Not to Reject Outliers Part 2. Inter-laboratory Trials,” Analyst 1989,
114, 1699–1702.
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Analytical Methods Committee “Rogues and Suspects: How to Tackle Outliers,” AMCTB 39, 2009.
Analytical Methods Committee “Robust statistics: a method of coping with outliers,” AMCTB 6, 2001.
Analytical Methods Committee “Using the Grubbs and Cochran tests to identify outliers,” Anal. Methods, 2015, 7, 7948–7950.
Efstathiou, C. “Stochastic Calculation of Critical Q-Test Values for the Detection of Outliers in Measurements,” J. Chem. Educ.
1992, 69, 773–736.
Efstathiou, C. “Estimation of type 1 error probability from experimental Dixon’s Q parameter on testing for outliers within
small data sets,” Talanta 2006, 69, 1068–1071.
Kelly, P. C. “Outlier Detection in Collaborative Studies,” Anal. Chem. 1990, 73, 58–64.
Mitschele, J. “Small Sample Statistics,” J. Chem. Educ. 1991, 68, 470–473.

The following papers provide additional information on error and uncertainty.

Analytical Methods Committee “Optimizing your uncertainty—a case study,” AMCTB 32, 2008.
Analytical Methods Committee “Dark Uncertainty,” AMCTB 53, 2012.
Analytical Methods Committee “What causes most errors in chemical analysis?” AMCTB 56, 2013.
Andraos, J. “On the Propagation of Statistical Errors for a Function of Several Variables,” J. Chem. Educ. 1996, 73, 150–154.
Donato, H.; Metz, C. “A Direct Method for the Propagation of Error Using a Personal Computer Spreadsheet Program,” J.
Chem. Educ. 1988, 65, 867–868.
Gordon, R.; Pickering, M.; Bisson, D. “Uncertainty Analysis by the ‘Worst Case’ Method,” J. Chem. Educ. 1984, 61, 780–781.
Guare, C. J. “Error, Precision and Uncertainty,” J. Chem. Educ. 1991, 68, 649–652.
Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J. “Statistical Analysis of Errors: A Practical
Approach for an Undergraduate Chemistry Lab Part 1. The Concept,” J. Chem. Educ. 1993, 70, 776–779
Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J. “Statistical Analysis of Errors: A Practical
Approach for an Undergraduate Chemistry Lab Part 2. Some Worked Examples,” J. Chem. Educ. 1993, 70, 838–841.
Heydorn, K. “Detecting Errors in Micro and Trace Analysis by Using Statistics,” Anal. Chim. Acta 1993, 283, 494–499.
Hund, E.; Massart, D. L.; Smeyers-Verbeke, J. “Operational definitions of uncertainty,” Trends Anal. Chem. 2001, 20, 394–406.
Kragten, J. “Calculating Standard Deviations and Confidence Intervals with a Universally Applicable Spreadsheet Technique,”
Analyst 1994, 119, 2161–2165.
Taylor, B. N.; Kuyatt, C. E. “Guidelines for Evaluating and Expressing the Uncertainty of NIST Mea- surement Results,” NIST
Technical Note 1297, 1994.
Van Bramer, S. E. “A Brief Introduction to the Gaussian Distribution, Sample Statistics, and the Student’s t Statistic,” J. Chem.
Educ. 2007, 84, 1231.
Yates, P. C. “A Simple Method for Illustrating Uncertainty Analysis,” J. Chem. Educ. 2001, 78, 770–771.

The following articles provide thoughts on the limitations of statistical analysis based on significance testing.

Analytical Methods Committee “Significance, importance, and power,” AMCTB 38, 2009.
Analytical Methods Committee “An introduction to non-parametric statistics,” AMCTB 57, 2013.
Berger, J. O.; Berry, D. A. “Statistical Analysis and the Illusion of Objectivity,” Am. Sci. 1988, 76, 159–165.
Kryzwinski, M. “Importance of being uncertain,” Nat. Methods 2013, 10, 809–810.
Kryzwinski, M. “Significance, P values, and t-tests,” Nat. Methods 2013, 10, 1041–1042.
Kryzwinski, M. “Power and sample size,” Nat. Methods 2013, 10, 1139–1140.
Leek, J. T.; Peng, R. D. “What is the question?,” Science 2015, 347, 1314–1315.

The following papers provide insight into organizing data in spreadsheets and visualizing data.

Analytical Methods Committee “Representing data distributions with kernel density estimates,” AMC Technical Brief, March
2006.
Broman, K. W.; Woo, K. H. "Data Organiztion in Spreadsheets," The American Statistician, 2018, 72, 2-10.
Frigge, M.; Hoaglin, D. C.; Iglewicz, B. “Some Implementations of the Boxplot,” The American Statistician 1989, 43, 50–54.
Midway, S. R. "Principles of Effective Data Visualizations," PATTER, 2020, 1(9).
Schwabish, J. A. "Ten Guidelines for Better Tables," J. Benefit Cost Anal. 2020, 11, 151-178.

Websites 
NIST Engineering Statistics HandbookST (https://www.itl.nist.gov/div898/handbook/)
Rice Virtual Lab in Statistics (https://onlinestatbook.com/rvls.html)
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https://www.itl.nist.gov/div898/handbook/
https://onlinestatbook.com/rvls.html


13.1.3 https://chem.libretexts.org/@go/page/317997

Statistics for Analytical Chemistry (https://science.widener.edu/svb/stats/stats.html)
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13.2: R Resources

Books 

The following books, which I have found useful, either provide a broad introduction to the R programming language, or a more
targeted coverage of a particular application. The texts published by O'Reilly have on-line versions made available for free; there
entries here provide links to the on-line versions.

Chambers, J. M. Software for Data Analysis: Programming with R, Springer: New York, 2008.
Chang, W. R Graphics Cookbook, O'Reilly, 2013.
Gardner, M. Beginning R: The Statistical Programming Language, Wiley, 2012.
Gillespie, C.; Lovelace, R. Efficient R Programming, O'Reilly, 2020.
Grolemund, G. Hands-On Programming with R, O'Reilly, 2014.
Horton, N. J.; Kleinman, K. Using R and RStudio for Data Management, Statistical Analysis, and Graphics, 2nd Edition,
CRC Press, 2015.
James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, Springer,
2013.
Lander, J. P. R for Everyone: Advanced Analytics and Graphics, Addison Wesley, 2014.
Kabacoff, Robert I. R in Action: Data Analysis and Graphics with R, Manning, 2011.
Maindonald, J.; Braun, J. Data Analysis and Graphics Using R, Cambridge University Press: Cambridge, UK, 2003.
Matloff, N. The Art of R Programming, No Starch Press, 2011.
Sarkar, D. Lattice: Multivariate Data Visualization With R, Springer: New York, 2008.
Vaughn, S. Scientific Inference, Cambridge, 2013.
Wickham, H. ggplot2, Springer, 2009.
Wickham, H.; Grolemund, G. R for Data Science, O'Reilly, 2017.

Articles 
Doi, J.; Potter, G.; Wong, J. "Web Application Teaching Tools for Statistics Using R and Shiny", Technology Innovations in
Statistics Education, 2016, 9.

Websites 
CRANberries (http://dirk.eddelbuettel.com/cranberries/)

The R Project for Statistical Computing (https://www.r-project.org/)

The R Graph Gallery (http://www.r-graph-gallery.com/)

R-Bloggers (https://www.r-bloggers.com/)

RStudio (https://www.rstudio.com/products/rstudio/)

RStudio Packages (https://www.rstudio.com/products/rpackages/)

RWeekly (https://rweekly.org/)

Stackoverflow (https://stackoverflow.com/questions/tagged/r)

This page titled 13.2: R Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.
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