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1.6: LCAO and Huckel Theory 1 (Eigenfunctions)

A common approximation employed in the construction of molecular orbitals (MOs) is the linear combination of atomic orbitals
(LCAO:s). In the LCAO method, the k™ molecular orbital, 1, is expanded in an atomic orbital basis,

|91) = Catpa + oy + ... Cihi (1.6.1)
where the ¢;s are normalized atomic wavefunctions and . Solving Schrodinger’s equation and substituting for vy, yields,
Hypy, = Evy,
|H —Elyy) =0
Substitute Equation 1.6.1
|H — Elcoda +cpp+...+cip) =0 (1.6.2)

Left-multiplying by each ¢; yields a set of i linear homogeneous equations,

Ca (¢a|H—E|¢a) +cp (pa| H—E[gp) +... +ci (¢a|H—E[p;) =0
Ca (@p|H — E|¢pa) +cp (¢p| H— E|dp) +. .. +ci (¢p| H — E|¢;) =0

Ca (@i H — E|¢a) +cb (¢i| H = E|dp) +. .. +-ci(di|H - E|¢s) =0

Solving the secular determinant,

Haa - Esaa Hab - ESab o o Hai - ESai

Hp. —ESp. Hp, —ESp, -+ -+ Hyp —ESy
|=0

Hi, —ES;a  Hp—ESyp - - Hi—ESy

where H,'j = f¢H¢dT, S” = fqbqde = 1; Hij = f¢H¢de; Sij = f¢¢]d‘r
In the Hiickel approximation,

b Hiv =

e H;; =0 for ¢; not adjacent to ¢;
e H;; = for ¢; not adjacent to ¢;
e S;i=1

e 5;;=0

The foregoing approximation is the simplest. Different computational methods treat these integrals differently. Extended Hiickel
Theory (EHT) includes all valence orbitals in the basis (as opposed to the highest energy atomic orbitals), all S;;s are calculated, the
Hiis are estimated from spectroscopic data (as opposed to a constant, «) and Hj;s are estimated from a simple function of .S;;, Hj;
and H;; (zero differential overlap approximation).

The EHT (and other Hiickel methods) are termed semi—empirical because they rely on experimental data for quantification of
parameters. Other semi-empirical methods include CNDO, MINDO, INDO, etc. in which more care is taken in evaluating Hj;
(these methods are based on self-consistent field procedures). Still higher level computational methods calculate the pertinent
energies from first principles — ab initio and DFT. Here core potentials must be included and high order basis sets are used for the
valence orbitals.

Benzene

As an example of the Hiickel method, we will examine the frontier orbitals (i.e. determine eigenfunctions) and their associated
orbital energies (i.e. eigenvalues) of benzene. The highest energy atomic orbitals of benzene are the C pm orbitals. Hence, it is
reasonable to begin the analysis by assuming that the frontier MO’s will be composed of LCAO of the C 2pm orbitals:
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o b4
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The matrix representations for this orbital basis in Dy, s,
[ b1 ] [1 0 0 0 0 07 [¢1] [ 1]
b2 01 0 0 0 Of]¢2 ¢2
001 00O
g9 _ ¢s| _ |93 -
b4 000 1 0 Of /¢ P4
&5 0 00 01 O0f]e¢s o5
(#6] LO 0 0 0 O 1] [d6] L
[ 1] [0 1 0 0 0 07 [¢1] [ 2]
o 0 01 0 0 Of|¢ ®3
b3 000 10 0f]¢s P4
Cs - = = Ttrace =0
N 0 00 0 1 Of(¢s o5
b5 00000 1|]¢s b6
[#6] L1 0 0 0 0 Of [#6] L[]
(] [-1 0 0 0o 0 0][a] [%
o 0 0 0 0 0 -1|]|¢ b6
0o o0 o0 0 -1 o0
Cé . ¢3 = ¢3 = ?5 Ttrace = —2
o4 0 0 0 -1 0 Of ¢ o4
o5 0 0 -1 0 0 Of/|¢s b3
| &6 L 0 -1 0 0 0 0] L¢s. b,

The only orbitals that contribute to the trace are those that transform into +1 or —1 themselves (i.e. in phase or with opposite phase,
respectively). Thus the trace of the remaining characters of the pn basis may be determined by inspection:

D¢n |[E 2Cs 2C; C, 3C, 3Cy i 2S; 2S¢ on 30, 304
Ty [6 0 0 0 -2 0 0 0 0 —6 2 0

(1.6.3)

The T, representation is a reducible basis that must be decomposed into irreducible representations.

Decomposition of reducible representations may be accomplished with the following relation:

/—“ no. of members in the class

the number of times —» a, = lZ[xR .xiR .c“}
a I'i» contributes to h3

[red R /

order

character of I'y,
character of IN.gq under operation R
under operation

Returning to the above example,
1
ap, = 5[6- 1-14+0-0-0+4(-2)(1)(3)+0+0+0+0+(—6)(1)(1)+2-1-3+0] =0
thus A1g does not contribute to I'py

How about a4, ?

Gty = 5706 114000+ (~2)(~1)(3) +0+0+0+0+(~6)(1)(~1)+2-1-3+0] =1
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Continuing the procedure, one finds,
Fprr :A2u+BZQ +E19 + Ey, (164)
these are the symmetries of the MO’s formed by the LCAO of pn orbitals in benzene.

With symmetries established, LCAOs may be constructed by “projecting out” the appropriate linear combination. A projection
operator, PO, allows the linear combination of the ih irreducible representation to be determined,

dimension of I ,\ /operator
pi = b z [ X(I)(R)]O R
order __j character of I', under operator R

A drawback of projecting out of the Dg}, point group is the large number of operators. The problem can be simplified by dropping
to the pure rotational subgroup, Cg. In this point group, the full extent of mixing among ¢ through ¢ is maintained; however the
inversion center, and hence u and g symmetry labels are lost. Thus in the final analysis, the I'is in Cg will have to be correlated to
those in Dgp. Reformulating in Cg,

E G C C C? G
M| 6 0 0 0 0 0

Fpn=A+B+E1+E2

P L o

AZu BZg Elg E2u
The projection of the SALC that from ¢; transforms as A is,

PRy = [1 E-¢+1.Co-¢+1-Cs 6 +1-Cs -, +1.Cs* -0 +1-C65-¢1]
[l

drop constant since LCAO will be normalized

Continuing,
. P(B¢>1 b1 — P2+ d3 — Py +Ps5 — s
o P =y tegy—c"ds—dy—cds+e s
. P(E16)¢1 1+ Py —eP3 — s — " P5 +egs
o PERG = —c*py —ed3 + Py —*p5 — g
o PEx)g) =) —edy—e*p3+ s — s — g

The projections contain imaginary components; the real component of the linear combination may be realized by taking + linear
combinations:

For ¢ (E1,) SALC’s:

Vs (Bra) +9) (Bp) =2¢1 + (e +€*) pa — (e +€%) p3 —2¢4 — (e +€*) ¢p5 + (e +€*) ¢
Yy (Bra) =9y (Bp) = (e—€") o+ (e —€") p3+(e" —€) d5 + (" —¢) do
where in the Cg point group,

s-exp( )’L—COS2——’I,SIII2

6 6

. * 2T

.Et+e —cos?—zs1n—+cos—+zsm?=2cos 6
e* —s——cos—+zs1n26”—cos +isin 2% = 2isin 2¢ —z\/_
e—¢* —cos%—zsm%—(cos?—i—zsm%):—2zs1n———zf

.. the E;, LCAO’s reduce to (again ignoring the constant prefactor),

Y3 (E1) = ¥ (Bra) + 9y (E1p) = 2¢1 + 2 — d3 — 24 — 5 + b6
s (B1) =y (E1a) — ) (B1p) = ¢2 + b3 — 5 — d6
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Similarly for the ys(E2) and wg(E2) LCAQ’s... normalizing the SALC’s
Y1(4) = T5 (b1 + 2 + 63+ da + &5 + do) ¥2(B) =
Y3 (El)Zﬁ(2¢1+¢2—¢3—2¢4—¢5+¢6) Yy (Br) =
Y5 (E2)=ﬁ(2¢1—¢2—¢3 +2¢s =5 —d6) Yo (E2)

The pictorial representation of the SALC’s are,

(1 — 2 + P3 — Py + b5 + d6)
(2 + @3 — b5 — )
(2 — ¢3 + 5 — ¢6)

s

[ N )

W(ExP)
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