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1.2: Operator Properties and Mathematical Groups
The inverse of A (defined as (A) ) is B if A ⋅ B = E

For each of the five symmetry operations:

 
 

 
 

e.g.  since  
 

Two operators commute when A ⋅ B = B ⋅ A

Example: Do C (z) and σ(xz) commute?

… or analyzing with matrix representations,

C (z) ⋅ σ  = σ ´

Now applying the operations in the inverse order,
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… or analyzing with matrix representations,

σ ⋅ C (z) = σ

A collection of operations are a mathematical group when the following conditions are met:

closure: all binary products must be members of the group
identity: a group must contain the identity operator
inverse: every operator must have an inverse
associativity: associative law of multiplication must hold

(note: commutation not required… groups in which all operators do commute are called Abelian)

Consider the operators C  and σ . These do not constitute a group because identity criterion is not satisfied. Do E, C , σ  form a
group? To address this question, a stereographic projection (featuring critical operators) will be used:

So how about closure?

C ⋅ C  = C   (so C   needs to be included as part of the group)
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∴ (z)σ(xz) = ≠ σ(xz) (z) = ⇒  so  (z) does not commute with σ(xz)C4 σ
′
d

C4 σd C4 (1.2.1)

(A ⋅B) ⋅C = A ⋅ (B ⋅C (1.2.2)
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Thus E, C  and σ  are not closed and consequently these operators do not form a group. Is the addition of C   and σ ´ sufficient to
define a group? In other terms, are there any other operators that are generated by C  and σ ?

… the proper rotation axis, C :

 
 

 

etc.

 is the generator of  and , note: these three operators form a group

… for the plane of reflection, σ

 
 

etc. 
So we obtain no new information here. But there is more information to be gained upon considering C  and σ . Have already seen
that C  ⋅ σ  = σ ’ … how about σ  ⋅ C

Will discover that no new operators may be generated. Moreover one finds

The above group is closed, i.e. it contains the identity operator and meets inverse and associativity conditions. Thus the above set
of operators constitutes a mathematical group (note that the group is not Abelian).
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Some definitions:

Operators C  and σ are called generators for the group since every element of the group can be expressed as a product of these
operators (and their inverses).

The order of the group, designated h, is the number of elements. In the above example, h = 6.

Groups defined by a single generator are called cyclic groups.

Example: C  → E, C , C  

As mentioned above, E, C , and C  meet the conditions of a group; they form a cyclic group. Moreover these three operators are a
subgroup of E, C , C  , σ , σ ’,σ ”. The order of a subgroup must be a divisor of the order of its parent group. (Example h
= 3, h  = 6 … a divisor of 2.)

A similarity transformation is defined as: v  ⋅ A ⋅ ν = B where B is designated the similarity transform of A by x and A and B
are conjugates of each other. A complete set of operators that are conjugates to one another is called a class of the group.

Let’s determine the classes of the group defined by E, C , C   , σ , σ ’,σ ”… the analysis is facilitated by the construction of a
multiplication table

may construct easily using stereographic projections

 
 

 
 

 

∴ C  and C   from a class

Performing a similar analysis on σ will reveal that σ , σ ’ and σ ’’ form a class and E is in a class by itself. Thus there are three
classes:

Additional properties of transforms and classes are:

no operator occurs in more than one class
order of all classes must be integral factors of the group’s order
in an Abelian group, each operator is in a class by itself.

This page titled 1.2: Operator Properties and Mathematical Groups is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Daniel Nocera via source content that was edited to the style and standards of the LibreTexts platform.
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