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1.3: Irreducible Representations and Character Tables
Similarity transformations yield irreducible representations, Γ , which lead to the useful tool in group theory – the character
table. The general strategy for determining Γ  is as follows: A, B and C are matrix representations of symmetry operations of an
arbitrary basis set (i.e., elements on which symmetry operations are performed). There is some similarity transform operator such
that

where v uniquely produces block-diagonalized matrices, which are matrices possessing square arrays along the diagonal and zeros
outside the blocks

Matrices A, B, and C are reducible. Sub-matrices A , B  and C  obey the same multiplication properties as A, B and C. If
application of the similarity transform does not further block-diagonalize A’, B’ and C’, then the blocks are irreducible
representations. The character is the sum of the diagonal elements of Γ .

As an example, let’s continue with our exemplary group: E, C , C   , σ , σ ’, σ ” by defining an arbitrary basis … a triangle

The basis set is described by the triangles vertices, points A, B and C. The transformation properties of these points under the
symmetry operations of the group are:

These matrices are not block-diagonalized, however a suitable similarity transformation will accomplish the task,

Applying the similarity transformation with C  as the example,
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= ⋅ A ⋅ vAA′ v−1 A

= ⋅ B ⋅ vBB′ v−1 B

= ⋅ C ⋅ vCC ′ v−1 C
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if v ⋅ C * ⋅ v is applied again, the matrix is not block diagonalized any further. The same diagonal sum is obtained *though off-
diagonal elements may change). In this case, C * is an irreducible representation, Γ .

The similarity transformation applied to other reducible representations yields:

As above, the block-diagonalized matrices do not further reduce under reapplication of the similarity transform. All are .

 

Thus a 3 × 3 reducible representation, Γ , has been decomposed under a similarity transformation into a 1 (1 × 1) and 1 (2 × 2)
block-diagonalized irreducible representations, Γi. The traces (i.e. sum of diagonal matrix elements) of the Γ ’s under each
operation yield the characters (indicated by χ) of the representation. Taking the traces of each of the blocks:

This collection of characters for a given irreducible representation, under the operations of a group is called a character table. As
this example shows, from a completely arbitrary basis and a similarity transform, a character table is born.

The triangular basis set does not uncover all Γ  of the group defined by {E, C , C  , σ , σ ’, σ ’’}. A triangle represents Cartesian
coordinate space (x,y,z) for which the Γ s were determined. May choose other basis functions in an attempt to uncover other Γ s.
For instance, consider a rotation about the z-axis,
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The transformation properties of this basis function, R , under the operations of the group (will choose only 1 operation from each
class, since characters of operators in a class are identical):

E: 

Note, these transformation properties give rise to a Γ  that is not contained in a triangular basis. A new (1 x 1) basis is obtained, Γ ,
which describes the transform properties for R . A summary of the Γ  for the group defined by E, C , C  , σ , σ ’, σ ” is:

Is this character table complete? Irreducible representations and their characters obey certain algebraic relationships. From these 5
rules, we can ascertain whether this is a complete character table for these 6 symmetry operations.

Five important rules govern irreducible representations and their characters:

Rule 1

The sum of the squares of the dimensions, , of irreducible representation Γ  is equal to the order, h, of the group,

Since the character under the identity operation is equal to the dimension of Γ (since E is always the unit matrix), the rule can be
reformulated as,

Rule 2

The sum of squares of the characters of irreducible representation Γ  equals h

Rule 3

Vectors whose components are characters of two different irreducible representations are orthogonal

 for 

Rule 4

For a given representation, characters of all matrices belonging to operations in the same class are identical

Rule 5

z
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The number of Γ s of a group is equal to the number of classes in a group.

With these rules one can algebraically construct a character table. Returning to our example, let’s construct the character table in
the absence of an arbitrary basis:

Rule 5: E (C , C  ) (σ , σ ’, σ ”) … 3 classes ∴ 3 Γ s

Rule 1: 

Rule 2: All character tables have a totally symmetric representation. Thus one of the irreducible representations, Γ , possesses
the character set χ (E) = 1, χ (C , C ) = 1, χ (σ , σ ’, σ ”) = 1. Applying Rule 2, we find for the other irreducible
representation of dimension 1,

Since χ (E) = 1,

For the case of Γ  (  = 2) there is not a unique solution to Rule 2

However, application of Rule 2 to Γ  gives us one equation for two unknowns. Have several options to obtain a second
independent equation:

Rule 1: 

Rule 3:  
or 

Solving simultaneously yields 

Thus the same result shown on pg 4 is obtained:

Note, the derivation of the character table in this section is based solely on the properties of characters; the table was derived
algebraically. The derivation on pg 4 was accomplished from first principles.

The complete character table is:

• Γ s of:
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 or  
 

A is symmetric (+1) with respect to C
B is antisymmetric (–1) with respect to C

subscripts 1 and 2 designate Γ s that are symmetric and antisymmetric, respectively to ⊥C s; if ⊥C s do not exist, then with
respect to σ
primes ( ’ ) and double primes ( ” ) attached to Γ s that are symmetric and antisymmetric, respectively, to σ
for groups containing i, g subscript attached to Γis that are symmetric to i whereas u subscript designates Γis that are
antisymmetic to i

This page titled 1.3: Irreducible Representations and Character Tables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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