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1.14: Angular Overlap Method and M-L Diatomics
The Wolfsberg-Hembholtz approximation (Lecture 10) provided the LCAO-MO energy between metal and ligand to be,
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Note that Ey;, E; and AEy,;, in the above expressions are constants. Hence, the MO within the Wolfsberg-Hembholtz framework
scales directly with the overlap integral, Sy,
~ En? 83y
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where 3 and "are constants. Thus by determining the overlap integral, Sy, the energies of the MOs may be ascertained relative to

the metal and ligand atomic orbitals.
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The Angular Overlap Method (AOM), provides a measure of Sy, and hence MO energy levels. In AOM, the overlap integral is
also factored into a radial and angular product,

SmL=S(r)F(6,®)
Analyzing S(r) as a function of the M—L internuclear distance,

value of S(r)isset = 1 at
M-L internuclear distance

______ ) S(r) approaches 0 as M-L
M L intermuclear distance
approaches infinity

Under the condition of a fixed M-L distance, S(r) is invariant, and therefore the overlap integral, Sy, will depend only on the
angular dependence, i.e., on F(6,0).

Because the o orbital is symmetric, the angular dependence, F(6,p), of the overlap integral mirrors the angular dependence of the
central orbital.

p-orbital

...is defined angularly by a cos 6 function. Hence, the angular dependence of a ¢ orbital as it angularly rotates about a p-orbital
reflects the cos 6 angular dependence of the p-orbital.
0

cos 0 @

0 I -
0 20

F(.)

Similarly, the other orbitals take on the angular dependence of the central metal orbital. Hence, for a
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ML Diatomic Complexes

To begin, let’s determine the energy of the d-orbitals for a M-L diatomic defined by the following coordinate system,

~—=nN

There are three types of overlap interactions based on o, 7 and § ligand orbital symmetries. For a o orbital, the interaction is defined
as,

E(d.:) =S¥(0) =B-F,*(6,4) =B-1=ec (1.14.3)

The energy for maximum overlap, at 8 = 0 (see above) is set equal to 1. This energy is defined as eo. The metal orbital bears the
antibonding interaction, hence d,2 is destablized by ec (the corresponding L orbital is stabilized by (B’)2 « 1 = ec’).

For orbitals of m and § symmetry, the same holds...maximum overlap is set equal to 1, and the energies are en and e§, respectively.

E(dyz):E(dxz):SMLZ(T[):(:-'TT E(dxy):E(dxz-yz):SMLZ(S):e6

As with the o interaction, the (M-Lm)* interaction for the d-orbitals is de-stabilizing and the metal-based orbital is destablized by e,
whereas the Lt ligands are stabilized by ern. The same case occurs for a ligand possessing a 6 orbital, with the only difference being
an energy of stabilization of e for the L.§ orbital and the energy of de-stabilization of e§ for the § metal-based orbitals.

Smr(8) is small compared to Sy () or Syp.(0). Moreover, there are few ligands with § orbital symmetry (if they exist, the 6
symmetry arises from the pri-systems of organic ligands). For these reasons, the Sy (6) overlap integral and associated energy is not
included in most AOM treatments.

Returning to the problem at hand, the overall energy level diagrams for a M-L diatomic molecule for the three ligand classes are:

@ 0 a @ 1.14.2 https://chem.libretexts.org/@go/page/221682


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/221682?pdf

LibreTextsw

n-donor a-only

L= (p2) Lo (pz)

MLg¢ Octahedral Complexes

Of course, there is more than 1 ligand in a typical coordination compound. The power of AOM is that the ec and em (and ed),

energies are additive. Thus, the MO energy levels of coordination compounds are determined by simply summing ec and en for
each M(d)-L interaction.

Consider a ligand positioned arbitrarily about the metal,

.L (XL Y 20)

We can imagine placing the ligand on the metal z axis (with x and y axes of M and L also aligned) and then rotate it on the surface
of a sphere (thus maintaining M-L distance) to its final coordinate position. Within the reference frame of the ligand,
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related by a coordinate transformation
Sy in complex = » Sy (ocandm) =1

F(8,0)

Note, the coordinate transformation lines up the ligand of interest on the z axis so that the normalized energies, ec and e (and ed)
may be normalized to 1. The transformation matrix for the coordinate transformation is:

z5° Y2Z2 X222 X2¥2 xp° _YZ2
22 1(1+3cos26) 0 —Psin26 0 Y2 (1 — cos 26)
yz gsinqbsin% cos¢cosf sin ¢ cos 26 —cos¢sinf —%sin¢sin29
5 1.14.4
Xz %cos¢sin 20 —sin¢gcosf cos ¢ cos26 sin ¢ sin 6 —%cos¢sin29 ( )
Xy ?sin&,b(l —cos260) cos2¢sinf %sin2¢ sin20  cos2¢cosf isin2¢(3 +cos 26)
x? —y? %cos2¢(1 —co0s20) —sin2¢sind %cos2¢ sin20 —sin2¢cosf Fcos24(3 +cos26)
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Ligand [1 2 3 4 5 6
9 [0 90 90 90 90 180°
¢ |0 0 90 180 270 0

Consider the overlap of Ligand 2 in the transformed coordinate space; the contribution of the overlap of Ligand 2 with each metal
orbital must be considered. This orbital interaction is given by the transformation matrix above. By substituting the 8 = 90 and ¢ = 0
for Ligand 2 into the above transformation matrix, one finds,

for d,2 for L,

1
ds = 7(1+300520)d.2 +0dy,., - ?sin%dzm +0d,,,, + ? (1—cos26)d,;

1 3
= _Edzzz -‘1-0dy222 +0dg, ., +0dz2y2 + gd:ﬂ%,yg
Thus the d,2 orbital in the transformed coordinate, d,»2, has a contribution from d,2 and dx2_y2. Recall that energy of the orbital is
defined by the square of the overlap integral. Thus the above coefficients are squared to give the energy of the d,2 orbital as a result

of its interaction with Ligand 2 to be,
E(de)L2 = SMLZ(O') =8 Fi(@, ¢) = % dZ22 + % deZ,yzz = %ea + %e&

Visually, this result is logical. In the coordinate transformation, a o ligand residing on the z-axis (of energy eo) is overlapping with
d,2. This is the energy for L1. The normalized energy for L2 is its overlap with the coordinate transformed d,2 2:

z

Zz F4
bring L2 up to dz X
y y in the 22 rransformed v
R(6) R(d) f coordinate system |
- X X X

Note, the d,2 orbital is actually 2z> —x? —y? , which is a linear combination of z> —x* and z? —y? . Thus in the coordinate transformed
system, L2, as compared to L1, is looking at the x? contribution of the wavefunction to o bonding. Since it is % the electron density
of that on the z-axis, it is % the energy (i.e., the square of the coefficient) on the o-axis, hence % ec. The § component of the
transformation comes from the 2z> —(x? +y? ) orbital functional form. Thus if L2 has an orbital of § symmetry, then it will have an

energy of % eé.

The transformation properties of the other d-orbitals, as they pertain to L2 orbital overlap, may be ascertained by completing the
transformation matrix for 8 = 90 and ¢ = 0,

d,e [0 0 o0 L[ dp
dy, 00 0 —-1 0 dy,z,
dxz = 00 -1 0 0 dx2z2 (1145)
dyy 01 0 0 0 dy,y,
deyp] |2 0 0 0 1f[dgy

The energy contribution from L2 to the d-orbital levels as defined by AOM is,
E(dy,) =ed; E(dyg)=em; E(dy)=em; E(dz,)=3es+1ed

Until this point, only the L2 ligand has been treated. The overlap of the d-orbitals with the other five ligands also needs to be
determined. The elements of the transformation matrices for these ligands are,

@ 0 g @ 1.14.4 https://chem.libretexts.org/@go/page/221682



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/221682?pdf

LibreTextsw

_ i 37 i 3]
100 0 0 1 0 00 2 ~1 900 ¥
01 00O 0 0 -1 0 0 0 001 O
L;:10 01 0 0 Ls: 0 0 01 0 Ly: | 0 01 0 O
00 010 0 -1 0 0 0 0 1.0 0 O
0 00 01 V3 1 V3 1
i -5 0 0 0 —3] |5 0 0 0 3 |
-1 0 B 1 00 00
0 1 0 0 0 -1 0 0 0
Ls : 0 0 0 -1 0 Ls: |0 0 1 0 0
0 -1 0 0 0 0 00 -1 0
V3 1 1
| -5 0 0 0 —1] 0 00 0
Squaring the coefficients for each of the ligands and then summing the total energy of each d-orbital,
L1 L2 L3 14 L5 16 E_TOTAL
E(dp) €o %ea—w—%e& iea—l—%eé %ea—l—%e& %ea—i—%eé ec =3e0+3ed
E (dy,) em ed em ed em er =dem+2ed (1.14.6)
E (dx.) erm erm ed em ed er =demr+2ed
E (dyy) ed em em em erm ed =dem+2ed
E(d:_ y2) ed %ea—w—%e& %ea—l—%eé %eo—l—%e& %ea—i—%eé ed =3eoc+3ed

As mentioned above, e << e or e;... thus e; may be ignored. The Oy, energy level diagram is:
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Note the d-orbital splitting is the same result obtained from the crystal field theory (CFT) model taught in freshman chemistry. In
fact the energy parametrization scales directly between CFT and AOM

10 Dq = AO = 3ec — 4en

This page titled 1.14: Angular Overlap Method and M-L Diatomics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Daniel Nocera via source content that was edited to the style and standards of the LibreTexts platform.
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