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1.3: NETZSCH ThermoKinetics Software

The NETZSCH software suite intended for use in kinetic calculations from thermoanalytical data is based on the above principles.
It naturally has specific features and computational procedure. Let us consider the software design philosophy and operational
principles. In this workbook, Netzsch Proteus® 4.8.3 and Netzsch Thermokinetics® 3.0 versions are used to demonstrate main
operating procedures. As Netzsch continuously improve software, we strongly recommend using actual versions of Proteus® and
Thermokinetics®. New versions of software always include basic procedures presented in this workbook, as well as new useful
functions.

3.1 Inverse Kinetic Problem

The inverse kinetic problem is solved with the use of model-free Friedman [6] methods and Ozawa—Flynn—Wall [7,8] methods. The
model-free methods (Friedman analysis, Ozawa—Flynn—Wall analysis, evaluation according to ASTM E698) are applied to non-
isothermal kinetic analysis when experimental data is represented as the set of measurements at different heating rates. The model-
free methods provide information on kinetic parameters, such as the activation energy and preexponential factor, without
determining a concrete kinetic model. The Arrhenius parameters obtained by these methods are used as starting approximations in
solving the direct kinetic problem. This solution makes it possible to find the type of function approximating the experimental data
and to refine the Arrhenius parameters.

In thermal analysis, the concept of conversion is used. NETZSCH ThermoKinetics software operates with partial mass loss (for
thermogravimetry), and partial area (for DSC, DTA and mass spectrometry) rather than with the common term conversion degree.

For integral measurements (thermogravimetry, dilatometry), the measured curve is converted to the plot of conversion a; versus
time t; by Equation 3.1:
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where (t;) is the signal at the starting moment of time t;, m(t;) is the signal at the ith moment of time t;, and m(ty) is the signal at the
final moment of time ty.

For differential measurements (DSC, DTA, mass spectrometry), the conversion is calculated by Equation 3.2:
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where S(t) is the signal at the moment of time ¢ and B(t) is the baseline at the moment of time t.
3.1.1 Friedman Method
The Friedman method is a differential one, where the initial experimental parameter is the instantaneous rate day/dt;.
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Figure 3.1: Friedman analysis for the simulated set of data for heating rates of 0.25, 1.0, 5.0, and 20.0 K/min (Reprinted with
permission from [9] © NETZSCH-Gerdtebau GmbH).
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Providing several measurements at different heating rates one can plot a linear dependence of the logarithm of rate on inverse
temperature for given o;. As we notice above, Equation 1.4 can be easily linearized for any f(a) a linear dependence of the
logarithm of rate on inverse temperature for given ;. In the Friedman method, the slope m = E/R of this line is found. Thus, the
activation energy for each conversion rate can be calculated from the slope of the In(da/dT) vs 1/T curve. The conversion rate on
the left-hand side of the equation is found directly from the initial measured curve (e.g., thermogravimetric) by its differentiation
with respect to time. This procedure is performed with the NETZSCH Proteus software used for processing the experimental data.
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The second Arrhenius parameter, the logarithm of the preexponential factor, is also calculated from Equation 3.3.

Thus, the software allows the calculation of both Arrhenius parameters, the activation energy, and the logarithm of the
preexponential factor. The calculation results are given in the tabulated form as the dependence of Arrhenius parameters on the
conversion, as well as in the graphical form.

3.1.2 Ozawa—Flynn—-Wall Method

The Ozawa method uses the integral dependence for solving Equation 1.3. Integration of the Arrhenius equation leads to Equation

3.4:
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If T, is lower than the temperature at which the reaction occurs actively, the lower integration limit can be taken as zero, T, = 0,
and after integration, Equation 3.5 takes the form of Equation 3.6:

A E
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dz where z = E/RT.

(3.6)

Analytical calculation of the integral in Equation 3.6 is impossible, therefore, it is determined as follows: Using the DOYLE
approximation [7] (In p(z) = -5.3305 + 1.052z), we reduce Equation 3.5 to Equation 3.7:
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It follows from Equation 3.7 that, for a series of measurements with different heating rates at the fixed conversion value a=ay, the
plot of the dependence

Infi = £ (1/Tue)
(3.8)

is a straight line with the slope m = —1.052 E/R. Tj is the temperature at which the conversion ay is achieved at the heating rate f3;.
It is evident that the slope of the linear dependence is directly proportional to the activation energy. If the activation energy has the
same value at different o values, we can state with confidence that the reaction is one-stage. Otherwise, a change in the activation
energy with an increase in the conversion is evidence that the process is multistep. The separation of the variables in Equation 1.3
is thus impossible.

Figure 3.2: Dependences of the logarithm of rate on inverse temperature according to the Ozawa—Flynn—Wall procedure (Reprinted
with permission from [9] © NETZSCH-Gerédtebau GmbH).

If E, ay, and z; are known, InA can be calculated by Equation 3.9:
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Figure 3.2 shows the plots of instantaneous rate versus inverse temperature obtained by this method. The resulting Arrhenius
parameters are then used as a zero approximation in solving the direct kinetic problem.

E
InAd = InG (a) — InE + Inf — Inp(z),

The presence of several extreme points on the experimental TA curves is unambiguous evidence of the multistep character of the
process. In this case, the use of the NETZSCH Peak Separation program makes it possible to separate individual stages and to
estimate the Arrhenius parameters for each stage. The Peak Separation program is discussed below.

3.2 Direct Kinetic Problem

The direct kinetic problem is solved by the linear least-squares method for one-stage reactions or by the nonlinear least-squares
method for multistage processes. For one-stage reactions, it is necessary to choose the type of function that best approximates
(from the statistical viewpoint) the experimental curves for all heating rates used. The NETZSCH Thermokinetics software
includes a set of basic equations describing the macrokinetics of processes to be analyzed [10].

Each stage of a process can correspond to one (or several) of the equations listed in Table 3.1. The type of f(a) function depends on
the nature of the process and is usually selected a priori. For the users convenience, the notation of parameters and variables in
Table 3.1 is the same as in the Thermokinetics software. Here, the p parameter corresponds to the conversion, p = a, ande = 1 —a.

If the type of function corresponding to the process under consideration is unknown, the program performs calculations for the
entire set of functions presented in Table 3.1. Then, on the basis of statistical criteria, the function is selected that best approximates
the experimental data.

This approach is a formal statistical-geometric method and, to a first approximation, the type of function approximating the
experimental curves for all heating rates has no physical meaning. Even for quasi-one-stage processes where the chemical
conversion stage has been separated, the equations presented in Table 3.1 can be correlated with a change in the morphology of the
initial reagent, but no unambiguous conclusions can be drawn about the types of chemical transformations responsible for the
nucleation of the reaction product. It often occurs that several functions adequately describe the experiment according to statistical

Model abbreviation fle.p) Reaction type

F1 e First order

F2 e? Second order

Fn e" nth order

D1 0.5/1-e One-dimensional diffusion

D2 -1/In(e) Two-dimensional diffusion

D3 1.5eY3/(e13-1) Jander three-dimensional diffusion

D4 15/(eV3-1) ;}iifrfllslzlii(r)lng—Brounshtein three-dimensional

R2 2el? Reaction on the two-dimensional interface

R3 3e?3 Reaction on the three-dimensional interface

B1 - Autoca'talysis ac'cording to the Prout—
Tompkins equation

Bna ep? nth order auto.catalysis'according to the
Prout—Tompkins equation

C1-X e(1+KcatX) :iz(s)tr;ltzlc‘l:: ;fgsitzlfifesrils;ixziz the product in

Cn-X e"(1+KcatX) nth autocatalysis

A2 2e(-In(e))"? Two-dimensional nucleation (Avrami—

Erofeev)

https://chem.libretexts.org/@go/page/222823


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://chem.libretexts.org/@go/page/222823?pdf

LibreTextsm

Model abbreviation fle,p) Reaction type

Three-dimensional nucleation (Avrami—

2/3
A3 3e(-In(e)) Erofeev)f

-Di ional nucleation (A i—
An ne(-In(e))®-Dn n-Dimensional nucleation (Avrami:
Erofeev)

3.1 Reaction types and corresponding type of function f(a) in Equation 1.2) [10].

criteria. The choice of the function is based on the search for the physical meaning of the resulting relation. In this context, some a
priori ideas are used concerning the mechanisms of possible processes in the system under consideration. This can be literature
data, results of other physicochemical studies, or general considerations based on the theories of heterogeneous processes.
However, similar kinetic analysis provides a better insight into the effect of various external factors on the change in the
morphology of the initial reagent and on the course of the process as a whole. Let us consider in detail the procedure of kinetic
analysis based on the thermoanalytical experimental data for the dehydration of calcium oxalate monohydrate (CaC,0, - H,0).
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