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CHAPTER OVERVIEW

1: Fundamental 1 - Measurable Properties
1.1: Non-Ideal Gas Behavior
1.2: Virial Equations

This page titled 1: Fundamental 1 - Measurable Properties is shared under a not declared license and was authored, remixed, and/or curated by
Andrea Allgood Carter.
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1.1: Non-Ideal Gas Behavior

Describe the physical factors that lead to deviations from ideal gas behavior
Explain how these factors are represented in the van der Waals equation
Define compressibility (Z) and describe how its variation with pressure reflects non-ideal behavior
Quantify non-ideal behavior by comparing computations of gas properties using the ideal gas law and the van der Waals
equation

The ideal gas law, PV = nRT, can been applied to a variety of different types of problems, ranging from reaction stoichiometry and
empirical and molecular formula problems to determining the density and molar mass of a gas. However, the behavior of a gas is
often non-ideal, meaning that the observed relationships between its pressure, volume, and temperature are not accurately described
by the gas laws. In this section, the reasons for these deviations from ideal gas behavior are considered.

One way in which the accuracy of PV = nRT can be judged is by comparing the actual volume of 1 mole of gas (its molar volume, 
) to the molar volume of an ideal gas at the same temperature and pressure. This ratio is called the compressibility factor (Z)

with:

Ideal gas behavior is therefore indicated when this ratio is equal to 1, and any deviation from 1 is an indication of non-ideal
behavior. Figure  shows plots of Z over a large pressure range for several common gases.

Figure : A graph of the compressibility factor (Z) vs. pressure shows that gases can exhibit significant deviations from the
behavior predicted by the ideal gas law.

As is apparent from Figure , the ideal gas law does not describe gas behavior well at relatively high pressures. To determine
why this is, consider the differences between real gas properties and what is expected of a hypothetical ideal gas.

Particles of a hypothetical ideal gas have no significant volume and do not attract or repel each other. In general, real gases
approximate this behavior at relatively low pressures and high temperatures. However, at high pressures, the molecules of a gas are
crowded closer together, and the amount of empty space between the molecules is reduced. At these higher pressures, the volume
of the gas molecules themselves becomes appreciable relative to the total volume occupied by the gas (Figure ). The gas
therefore becomes less compressible at these high pressures, and although its volume continues to decrease with increasing
pressure, this decrease is not proportional as predicted by Boyle’s law.

Learning Objectives

V̄

Z = =
molar volume of gas at same T and P

molar volume of ideal gas at same T and P
( )

P V̄
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Figure : Raising the pressure of a gas increases the fraction of its volume that is occupied by the gas molecules and makes the
gas less compressible.

At relatively low pressures, gas molecules have practically no attraction for one another because they are (on average) so far apart,
and they behave almost like particles of an ideal gas. At higher pressures, however, the force of attraction is also no longer
insignificant. This force pulls the molecules a little closer together, slightly decreasing the pressure (if the volume is constant) or
decreasing the volume (at constant pressure) (Figure ). This change is more pronounced at low temperatures because the
molecules have lower KE relative to the attractive forces, and so they are less effective in overcoming these attractions after
colliding with one another.

Figure : (a) Attractions between gas molecules serve to decrease the gas volume at constant pressure compared to an ideal gas
whose molecules experience no attractive forces. (b) These attractive forces will decrease the force of collisions between the
molecules and container walls, therefore reducing the pressure exerted compared to an ideal gas.

There are several different equations that better approximate gas behavior than does the ideal gas law. The first, and simplest, of
these was developed by the Dutch scientist Johannes van der Waals in 1879. The van der Waals equation improves upon the ideal
gas law by adding two terms: one to account for the volume of the gas molecules and another for the attractive forces between
them.

The constant a corresponds to the strength of the attraction between molecules of a particular gas, and the constant b corresponds to

the size of the molecules of a particular gas. The “correction” to the pressure term in the ideal gas law is , and the “correction”

to the volume is nb. Note that when V is relatively large and n is relatively small, both of these correction terms become negligible,
and the van der Waals equation reduces to the ideal gas law, PV = nRT. Such a condition corresponds to a gas in which a relatively
low number of molecules is occupying a relatively large volume, that is, a gas at a relatively low pressure. Experimental values for
the van der Waals constants of some common gases are given in Table .
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Table : Values of van der Waals Constants for Some Common Gases

Gas a (L  atm/mol ) b (L/mol)

N 1.39 0.0391

O 1.36 0.0318

CO 3.59 0.0427

H O 5.46 0.0305

He 0.0342 0.0237

CCl 20.4 0.1383

At low pressures, the correction for intermolecular attraction, a, is more important than the one for molecular volume, b. At high
pressures and small volumes, the correction for the volume of the molecules becomes important because the molecules themselves
are incompressible and constitute an appreciable fraction of the total volume. At some intermediate pressure, the two corrections
have opposing influences and the gas appears to follow the relationship given by PV = nRT over a small range of pressures. This
behavior is reflected by the “dips” in several of the compressibility curves shown in Figure . The attractive force between
molecules initially makes the gas more compressible than an ideal gas, as pressure is raised (Z decreases with increasing P). At
very high pressures, the gas becomes less compressible (Z increases with P), as the gas molecules begin to occupy an increasingly
significant fraction of the total gas volume.

Strictly speaking, the ideal gas equation functions well when intermolecular attractions between gas molecules are negligible and
the gas molecules themselves do not occupy an appreciable part of the whole volume. These criteria are satisfied under conditions
of low pressure and high temperature. Under such conditions, the gas is said to behave ideally, and deviations from the gas laws are
small enough that they may be disregarded—this is, however, very often not the case.

A 4.25-L flask contains 3.46 mol CO  at 229 °C. Calculate the pressure of this sample of CO :

a. from the ideal gas law
b. from the van der Waals equation
c. Explain the reason(s) for the difference.

Solution

(a) From the ideal gas law:

(b) From the van der Waals equation:

1.1.1

2 2

2

2

2

2

4

1.1.1

Example : Comparison of Ideal Gas Law and van der Waals Equation1.1.1

2 2

P = = = 33.5 atm
nRT

V

3.46 ×0.08206 atm ×502mol L mol−1 K−1 K
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This finally yields P = 32.4 atm.

(c) This is not very different from the value from the ideal gas law because the pressure is not very high and the temperature is
not very low. The value is somewhat different because CO  molecules do have some volume and attractions between
molecules, and the ideal gas law assumes they do not have volume or attractions.

A 560-mL flask contains 21.3 g N  at 145 °C. Calculate the pressure of N :

a. from the ideal gas law
b. from the van der Waals equation
c. Explain the reason(s) for the difference.

Answer a

46.562 atm

Answer b

46.594 atm

Answer c

The van der Waals equation takes into account the volume of the gas molecules themselves as well as intermolecular
attractions.

Contributors and Attributions 

Summary 
Gas molecules possess a finite volume and experience forces of attraction for one another. Consequently, gas behavior is not
necessarily described well by the ideal gas law. Under conditions of low pressure and high temperature, these factors are negligible,
the ideal gas equation is an accurate description of gas behavior, and the gas is said to exhibit ideal behavior. However, at lower
temperatures and higher pressures, corrections for molecular volume and molecular attractions are required to account for finite
molecular size and attractive forces. The van der Waals equation is a modified version of the ideal gas law that can be used to
account for the non-ideal behavior of gases under these conditions.

Key Equations

Glossary 

compressibility factor (Z)
ratio of the experimentally measured molar volume for a gas to its molar volume as computed from the ideal gas equation

van der Waals equation
modified version of the ideal gas equation containing additional terms to account for non-ideal gas behavior

(P + )×(V −nb) = nRT ⟶ P = −
an

2

V 2

nRT

(V −nb)

an
2

V 2

P = −
3.46 mol ×0.08206 L atm mo ×502 Kl−1 K−1

(4.25 L −3.46 mol ×0.0427 L mo )l−1

(3.46 mol ×3.59 atm mo)2 L2 l2

(4.25 L)2

2

Exercise 1.1.1
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Z = =
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1.2: Virial Equations
It is often useful to fit accurate pressure-volume-temperature data to polynomial equations. The experimental data can be used to
compute a quantity called the compressibility factor, , which is defined as the pressure–volume product for the real gas divided
by the pressure–volume product for an ideal gas at the same temperature.

We have

Letting P and V represent the pressure and volume of the real gas, and introducing the molar volume, , we have

Since  if the real gas behaves exactly like an ideal gas, experimental values of Z will tend toward unity under conditions in
which the density of the real gas becomes low and its behavior approaches that of an ideal gas. At a given temperature, we can

conveniently ensure that this condition is met by fitting the Z values to a polynomial in P or a polynomial in . The coefficients
are functions of temperature. If the data are fit to a polynomial in the pressure, the equation is

For a polynomial in , the equation is

These empirical equations are called virial equations. As indicated, the parameters are functions of temperature. The values of 
, , , …, and , , ,…, must be determined for each real gas at every temperature. (Note also

that , , , etc. However, it is true that .) Values for these parameters
are tabulated in various compilations of physical data. In these tabulations,  and  are called the second virial coefficient
and third virial coefficient, respectively.

This page titled 1.2: Virial Equations is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via
source content that was edited to the style and standards of the LibreTexts platform.

2.13: Virial Equations by Paul Ellgen is licensed CC BY-SA 4.0. Original source: https://www.amazon.com/Thermodynamics-Chemical-
Equilibrium-Paul-Ellgen/dp/1492114278.
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CHAPTER OVERVIEW

2: Extension 1.1 - Kinetic Molecular Theory
2.1: Kinetic Molecular Theory

This page titled 2: Extension 1.1 - Kinetic Molecular Theory is shared under a not declared license and was authored, remixed, and/or curated by
Andrea Allgood Carter.
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2.1: Kinetic Molecular Theory

To understand the significance of the kinetic molecular theory of gases.

The laws that describe the behavior of gases were well established long before anyone had developed a coherent model of the
properties of gases. In this section, we introduce a theory that describes why gases behave the way they do. The theory we
introduce can also be used to derive laws such as the ideal gas law from fundamental principles and the properties of individual
particles.

A Molecular Description 

The kinetic molecular theory of gases explains the laws that describe the behavior of gases. Developed during the mid-19th century
by several physicists, including the Austrian Ludwig Boltzmann (1844–1906), the German Rudolf Clausius (1822–1888), and the
Englishman James Clerk Maxwell (1831–1879), who is also known for his contributions to electricity and magnetism, this theory
is based on the properties of individual particles as defined for an ideal gas and the fundamental concepts of physics. Thus the
kinetic molecular theory of gases provides a molecular explanation for observations that led to the development of the ideal gas
law. The kinetic molecular theory of gases is based on the following four postulates:

1. A gas is composed of a large number of particles called molecules (whether monatomic or polyatomic) that move randomly
in straight-line, continuous motion.

2. Gas molecules collide with one another and with the walls of the container, but these collisions are perfectly elastic; that is,
they do not change the average kinetic energy of the molecules.

3. Because the distance between gas molecules is much greater than the size of the molecules, the volume of the molecules is
negligible. They are considered "point" particles.

4. Intermolecular interactions, whether repulsive or attractive, are so weak that they are also negligible.

Although the molecules of real gases have nonzero volumes and exert both attractive and repulsive forces on one another, for the
moment we will focus on how the kinetic molecular theory of gases relates to the properties of gases we have been discussing. In
the following sections, we explain how this theory must be modified to account for the behavior of real gases.

Figure : Visualizing molecular motion. Molecules of a gas are in constant motion and collide with one another and with the
container wall.

Postulates 1 and 2 state that gas molecules are in constant motion and collide frequently with the walls of their containers. The
collision of molecules with their container walls results in a momentum transfer (impulse) from molecules to the walls (Figure 

).

Learning Objectives

four postulates of Kinetic Molecular Theory
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Figure : Momentum transfer (impulse) from a molecule to the container wall as it bounces off the wall.  and  are the 
component of the molecular velocity and the momentum transferred to the wall, respectively. The wall is perpendicular to  axis.
Since the collisions are elastic, the molecule bounces back with the same velocity in the opposite direction.

The momentum transfer to the wall perpendicular to  axis as a molecule with an initial velocity  in  direction hits is
expressed as:

The collision frequency, a number of collisions of the molecules to the wall per unit area and per second, increases with the
molecular speed and the number of molecules per unit volume.

The pressure the gas exerts on the wall is expressed as the product of impulse and the collision frequency.

At any instant, however, the molecules in a gas sample are traveling at different speed. Therefore, we must replace  in the
expression above with the average value of , which is denoted by . The overbar designates the average value over all
molecules.

The exact expression for pressure is given as :

Finally, we must consider that there is nothing special about  direction. We should expect that

Here the quantity  is called the mean-square speed defined as the average value of square-speed ( ) over all molecules.
Since

for each molecule, then

By substituting  for  in the expression above, we can get the final expression for the pressure:
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Because volumes and intermolecular interactions are negligible, postulates 3 and 4 state that all gaseous particles behave
identically, regardless of the chemical nature of their component molecules. This is the essence of the ideal gas law, which treats all
gases as collections of particles that are identical in all respects except mass. Postulate 3 also explains why it is relatively easy to
compress a gas; you simply decrease the distance between the gas molecules.

Additionally, the average kinetic energy of the molecules of any gas depends on only the temperature, and at a given temperature,
all gaseous molecules have exactly the same average kinetic energy. This is sometimes considered Postulate 5 of Kinetic Molecular
Theory.  This postulate provides a molecular explanation for the temperature of a gas. It refers to the average translational kinetic
energy of the molecules of a gas , which can be represented as and states that at a given Kelvin temperature , all gases
have the same value of

where  is the Avogadro's constant. The total translational kinetic energy of 1 mole of molecules can be obtained by multiplying
the equation by :

where  is the molar mass of the gas molecules and is related to the molecular mass by . By rearranging the equation,
we can get the relationship between the root-mean square speed ( ) and the temperature. The rms speed ( ) is the square root
of the sum of the squared speeds divided by the number of particles:

where  is the number of particles and  is the speed of particle .

The relationship between  and the temperature is given by:

In Equation ,  has units of meters per second; consequently, the units of molar mass  are kilograms per mole,
temperature  is expressed in kelvins, and the ideal gas constant  has the value 8.3145 J/(K•mol). Equation  shows that 

 of a gas is proportional to the square root of its Kelvin temperature and inversely proportional to the square root of its molar
mass. The root mean-square speed of a gas increase with increasing temperature. At a given temperature, heavier gas molecules
have slower speeds than do lighter ones.

The rms speed and the average speed do not differ greatly (typically by less than 10%). The distinction is important, however,
because the rms speed is the speed of a gas particle that has average kinetic energy. Particles of different gases at the same
temperature have the same average kinetic energy, not the same average speed. In contrast, the most probable speed (vp) is the
speed at which the greatest number of particles is moving. If the average kinetic energy of the particles of a gas increases linearly
with increasing temperature, then Equation  tells us that the rms speed must also increase with temperature because the mass
of the particles is constant. At higher temperatures, therefore, the molecules of a gas move more rapidly than at lower temperatures,
and vp increases.

At a given temperature, all gaseous particles have the same average kinetic energy but
not the same average speed.

The speeds of eight particles were found to be 1.0, 4.0, 4.0, 6.0, 6.0, 6.0, 8.0, and 10.0 m/s. Calculate their average speed ( )
root mean square speed ( ), and most probable speed ( ).

Given: particle speeds
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Asked for: average speed ( ), root mean square speed ( ), and most probable speed ( )

Strategy:

Use Equation  to calculate the average speed and Equation  to calculate the rms speed. Find the most probable
speed by determining the speed at which the greatest number of particles is moving.

Solution:

The average speed is the sum of the speeds divided by the number of particles:

The rms speed is the square root of the sum of the squared speeds divided by the number of particles:

The most probable speed is the speed at which the greatest number of particles is moving. Of the eight particles, three have
speeds of 6.0 m/s, two have speeds of 4.0 m/s, and the other three particles have different speeds. Hence  m/s. The 

 of the particles, which is related to the average kinetic energy, is greater than their average speed.

Distributions of Molecular Speeds 
At any given time, what fraction of the molecules in a particular sample has a given speed? Some of the molecules will be moving
more slowly than average, and some will be moving faster than average, but how many in each situation? Answers to questions
such as these can have a substantial effect on the amount of product formed during a chemical reaction. This problem was solved
mathematically by Maxwell in 1866; he used statistical analysis to obtain an equation that describes the distribution of molecular
speeds at a given temperature. Typical curves showing the distributions of speeds of molecules at several temperatures are
displayed in Figure . Increasing the temperature has two effects. First, the peak of the curve moves to the right because the
most probable speed increases. Second, the curve becomes broader because of the increased spread of the speeds. Thus increased
temperature increases the value of the most probable speed but decreases the relative number of molecules that have that speed.
Although the mathematics behind curves such as those in Figure  were first worked out by Maxwell, the curves are almost
universally referred to as Boltzmann distributions, after one of the other major figures responsible for the kinetic molecular theory
of gases.

Figure  The Distributions of Molecular Speeds for a Sample of Nitrogen Gas at Various Temperatures. Increasing the
temperature increases both the most probable speed (given at the peak of the curve) and the width of the curve.

The Relationships among Pressure, Volume, and Temperature 

We now describe how the kinetic molecular theory of gases explains some of the important relationships we have discussed
previously.

vav vrms vm

2.1.9 2.1.11

= = 5.6 m/svav

(1.0 +4.0 +4.0 +6.0 +6.0 +6.0 +8.0 +10.0) m/s

8

= = 6.2 m/soumbervrms

( + + + + + + + ) /1.02 4.02 4.02 6.02 6.02 6.02 8.02 10.02 m2 s2

8

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Pressure versus Volume: At constant temperature, the kinetic energy of the molecules of a gas and hence the rms speed remain
unchanged. If a given gas sample is allowed to occupy a larger volume, then the speed of the molecules does not change, but the
density of the gas (number of particles per unit volume) decreases, and the average distance between the molecules increases.
Hence the molecules must, on average, travel farther between collisions. They therefore collide with one another and with the
walls of their containers less often, leading to a decrease in pressure. Conversely, increasing the pressure forces the molecules
closer together and increases the density, until the collective impact of the collisions of the molecules with the container walls
just balances the applied pressure.
Volume versus Temperature: Raising the temperature of a gas increases the average kinetic energy and therefore the rms
speed (and the average speed) of the gas molecules. Hence as the temperature increases, the molecules collide with the walls of
their containers more frequently and with greater force. This increases the pressure, unless the volume increases to reduce the
pressure, as we have just seen. Thus an increase in temperature must be offset by an increase in volume for the net impact
(pressure) of the gas molecules on the container walls to remain unchanged.
Pressure of Gas Mixtures: Postulate 4 of the kinetic molecular theory of gases states that gas molecules exert no attractive or
repulsive forces on one another. If the gaseous molecules do not interact, then the presence of one gas in a gas mixture will have
no effect on the pressure exerted by another, and Dalton’s law of partial pressures holds.

The temperature of a 4.75 L container of N  gas is increased from 0°C to 117°C. What is the qualitative effect of this change
on the

a. average kinetic energy of the N  molecules?
b. rms speed of the N  molecules?
c. average speed of the N  molecules?
d. impact of each N  molecule on the wall of the container during a collision with the wall?
e. total number of collisions per second of N  molecules with the walls of the entire container?
f. number of collisions per second of N  molecules with each square centimeter of the container wall?
g. pressure of the N  gas?

Given: temperatures and volume

Asked for: effect of increase in temperature

Strategy:

Use the relationships among pressure, volume, and temperature to predict the qualitative effect of an increase in the
temperature of the gas.

Solution:

a. Increasing the temperature increases the average kinetic energy of the N  molecules.
b. An increase in average kinetic energy can be due only to an increase in the rms speed of the gas particles.
c. If the rms speed of the N  molecules increases, the average speed also increases.
d. If, on average, the particles are moving faster, then they strike the container walls with more energy.
e. Because the particles are moving faster, they collide with the walls of the container more often per unit time.
f. The number of collisions per second of N  molecules with each square centimeter of container wall increases because the

total number of collisions has increased, but the volume occupied by the gas and hence the total area of the walls are
unchanged.

g. The pressure exerted by the N  gas increases when the temperature is increased at constant volume, as predicted by the
ideal gas law.

A sample of helium gas is confined in a cylinder with a gas-tight sliding piston. The initial volume is 1.34 L, and the
temperature is 22°C. The piston is moved to allow the gas to expand to 2.12 L at constant temperature. What is the qualitative
effect of this change on the

a. average kinetic energy of the He atoms?

Example 2.1.2
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b. rms speed of the He atoms?
c. average speed of the He atoms?
d. impact of each He atom on the wall of the container during a collision with the wall?
e. total number of collisions per second of He atoms with the walls of the entire container?
f. number of collisions per second of He atoms with each square centimeter of the container wall?
g. pressure of the He gas?

Answer a

no change

Answer b

no change

Answer c

no change

Answer d

no change

Answer e

decreases

Answer f

decreases

Answer g

decreases

Summary 
The kinetic molecular theory of gases provides a molecular explanation for the observations that led to the development of the
ideal gas law.
Average kinetic energy:

Root mean square speed:

Kinetic molecular theory of gases:

The behavior of ideal gases is explained by the kinetic molecular theory of gases. Molecular motion, which leads to collisions
between molecules and the container walls, explains pressure, and the large intermolecular distances in gases explain their high
compressibility. Although all gases have the same average kinetic energy at a given temperature, they do not all possess the same
root mean square (rms) speed (v ). The actual values of speed and kinetic energy are not the same for all particles of a gas but
are given by a Boltzmann distribution, in which some molecules have higher or lower speeds (and kinetic energies) than average.

2.1: Kinetic Molecular Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
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CHAPTER OVERVIEW
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3.1: Van der Waals' Equation

This page titled 3: Extension 1.2 - Microscopic Gas Models is shared under a not declared license and was authored, remixed, and/or curated by
Andrea Allgood Carter.

https://libretexts.org/
https://chem.libretexts.org/@go/page/236427?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/03%3A_Extension_1.2_-_Microscopic_Gas_Models
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/03%3A_Extension_1.2_-_Microscopic_Gas_Models/3.01%3A_Van_der_Waals'_Equation
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/03%3A_Extension_1.2_-_Microscopic_Gas_Models
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/03%3A_Extension_1.2_-_Microscopic_Gas_Models?no-cache
https://www.meredith.edu/directory/andrea-carter


3.1.1 https://chem.libretexts.org/@go/page/236428

3.1: Van der Waals' Equation
An equation due to van der Waals extends the ideal gas equation in a straightforward way. Van der Waals’ equation is

It fits pressure-volume-temperature data for a real gas better than the ideal gas equation does. The improved fit is obtained by
introducing two parameters (designated “ ” and “ ”) that must be determined experimentally for each gas. Van der Waals’ equation
is particularly useful in our effort to understand the behavior of real gases, because it embodies a simple physical picture for the
difference between a real gas and an ideal gas.

In deriving Boyle’s law from Newton’s laws, we assume that the gas molecules do not interact with one another. Simple arguments
show that this can be only approximately true. Real gas molecules must interact with one another. At short distances they repel one
another. At somewhat longer distances, they attract one another. The ideal gas equation can also be derived from the basic
assumptions that we make in §10 by an application of the theory of statistical thermodynamics. By making different assumptions
about molecular properties, we can apply statistical thermodynamics to derive  van der Waals’ equation. The required assumptions
are that the molecules occupy a finite volume and that they attract one another with a force that varies as the inverse of a power of
the distance between them. (The attractive force is usually assumed to be proportional to .)

To recognize that real gas molecules both attract and repel one another, we need only remember that any gas can be liquefied by
reducing its temperature and increasing the pressure applied to it. If we cool the liquid further, it freezes to a solid. Now, two
distinguishing features of a solid are that it retains its shape and that it is almost incompressible. We attribute the incompressibility
of a solid to repulsive forces between its constituent molecules; they have come so close to one another that repulsive forces
between them have become important. To compress the solid, the molecules must be pushed still closer together, which requires
inordinate force. On the other hand, if we throw an ice cube across the room, all of its constituent water molecules fly across the
room together. Evidently, the water molecules in the solid are attracted to one another, otherwise they would all go their separate
ways—throwing the ice cube would be like throwing a handful of dry sand. But water molecules are the same molecules whatever
the temperature or pressure, so if there are forces of attraction and repulsion between them in the solid, these forces must be present
in the liquid and gas phases also.

In the gas phase, molecules are far apart; in the liquid or the solid phase, they are packed together. At its boiling point, the volume
of a liquid is much less than the volume of the gas from which it is condensed. At the freezing point, the volume of a solid is only
slightly different from the volume of the liquid from which it is frozen, and it is certainly greater than zero. These commonplace
observations are readily explained by supposing that any molecule has a characteristic volume. We can understand this, in turn, to
be a consequence of the nature of the intermolecular forces; evidently, these forces become stronger as the distance between a pair
of molecules decreases. Since a liquid or a solid occupies a definite volume, the repulsive force must increase more rapidly than the
attractive force when the intermolecular distance is small. Often it is useful to talk about the molar volume of a condensed phase.
By molar volume, we mean the volume of one mole of a pure substance. The molar volume of a condensed phase is determined by
the intermolecular distance at which there is a balance between intermolecular forces of attraction and repulsion.

Evidently molecules are very close to one another in condensed phases. If we suppose that the empty spaces between molecules are
negligible, the volume of a condensed phase is approximately equal to the number of molecules in the sample multiplied by the
volume of a single molecule. Then the molar volume is Avogadro’s number times the volume occupied by one molecule. If we
know the density, D, and the molar mass, , we can find the molar volume, , as

The volume occupied by a molecule, V , becomes

The pressure and volume appearing in van der Waals’ equation are the pressure and volume of the real gas. We can relate the terms
in van der Waals’ equation to the ideal gas equation: It is useful to think of the terms  and  as the pressure
and volume of a hypothetical ideal gas. That is
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Then we have

We derive the ideal gas equation from a model in which the molecules are non-interacting point masses. So the volume of an ideal
gas is the volume occupied by a gas whose individual molecules have zero volume. If the individual molecules of a real gas
effectively occupy a volume , then  moles of them effectively occupy a volume

Van der Waals’ equation says that the volume of a real gas is the volume that would be occupied by non-interacting point masses, 
, plus the effective volume of the gas molecules themselves. (When data for real gas molecules are fit to the van der

Waals’ equation, the value of  is usually somewhat greater than the volume estimated from the liquid density and molecular
weight. See problem 24.)

Similarly, we have

We can understand this as a logical consequence of attractive interactions between the molecules of the real gas. With , it
says that the pressure of the real gas is less than the pressure of the hypothetical ideal gas, by an amount that is proportional to 

. The proportionality constant is . Since  is the molar density (moles per unit volume) of the gas molecules, it is a
measure of concentration. The number of collisions between molecules of the same kind is proportional to the square of their
concentration. (We consider this point in more detail in Chapters 4 and 5.) So  is a measure of the frequency with which the
real gas molecules come into close contact with one another. If they attract one another when they come close to one another, the
effect of this attraction should be proportional to . So van der Waals’ equation is consistent with the idea that the pressure
of a real gas is different from the pressure of the hypothetical ideal gas by an amount that is proportional to the frequency and
strength of attractive interactions.

But why should attractive interactions have this effect; why should the pressure of the real gas be less than that of the hypothetical
ideal gas? Perhaps the best way to develop a qualitative picture is to recognize that attractive intermolecular forces tend to cause
the gas molecules to clump up. After all, it is these attractive forcesattractive force that cause the molecules to aggregate to a liquid
at low temperatures. Above the boiling point, the ability of gas molecules to go their separate ways limits the effects of this
tendency; however, even in the gas, the attractive forces must act in a way that tends to reduce the volume occupied by the
molecules. Since the volume occupied by the gas is dictated by the size of the container—not by the properties of the gas itself—
this clumping-up tendency finds expression as a decrease in pressure.
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Figure 5. Potential energy versus distance for "hard sphere molecules."

It is frequently useful to describe the interaction between particles or chemical moieties in terms of a potential energy versus
distance diagram. The van der Waals’ equation corresponds to the case that the repulsive interaction between molecules is non-
existent until the molecules come into contact. Once they come into contact, the energy required to move them still closer together
becomes arbitrarily large. Often this is described by saying that they behave like “hard spheres”. The attractive force between two
molecules decreases as the distance between them increases. When they are very far apart the attractive interaction is very small.
We say that the energy of interaction is zero when the molecules are infinitely far apart. If we initially have two widely separated,
stationary, mutually attracting molecules, they will spontaneously move toward one another, gaining kinetic energy as they go.
Their potential energy decreases as they approach one another, reaching its smallest value when the molecules come into contact.
Thus, van der Waals’ equation implies the potential energy versus distance diagram sketched in Figure 5.

This page titled 3.1: Van der Waals' Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen
via source content that was edited to the style and standards of the LibreTexts platform.

2.12: Van der Waals' Equation by Paul Ellgen is licensed CC BY-SA 4.0. Original source: https://www.amazon.com/Thermodynamics-
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4.1: The Distribution Function as a Summary of Experimental Results
In Section 2.10, we derive Boyle’s law from Newton’s laws using the assumption that all gas molecules move at the same speed at
a given temperature. This is a poor assumption. Individual gas molecules actually have a wide range of velocities. In Chapter 4, we
derive the Maxwell–Boltzmann distribution law for the distribution of molecular velocities. This law gives the fraction of gas
molecules having velocities in any range of velocities. Before developing the Maxwell–Boltzmann distribution law, we need to
develop some ideas about distribution functions. Most of these ideas are mathematical. We discuss them in a non-rigorous way,
focusing on understanding what they mean rather than on proving them.

The overriding idea is that we have a real-world source of data. We call this source of data the distribution. We can collect data
from this source to whatever extent we please. The datum that we collect is called the distribution’s random variable. We call each
possible value of the random variable an outcome. The process of gathering a set of particular values of the random variable from a
distribution is often called sampling or drawing a sample. The set of values that is collected is called the sample. The set of values
that comprise the sample is often called “the data.” In scientific applications, the random variable is usually a number that results
from making a measurement on a physical system. Calling this process “drawing a sample” can be inappropriate. Often we call the
process of getting a value for the random variable “doing an experiment”, “doing a test”, or “making a trial”.

As we collect increasing amounts of data, the accumulation quickly becomes unwieldy unless we can reduce it to a mathematical
model. We call the mathematical model we develop a distribution function, because it is a function that expresses what we are able
to learn about the data source—the distribution. A distribution function is an equation that summarizes the results of many
measurements; it is a mathematical model for a real-world source of data. Specifically, it models the frequency of an event with
which we obtain a particular outcome. We usually believe that we can make our mathematical model behave as much like the real-
world data source as we want if we use enough experimental data in developing it.

Often we talk about statistics. By a statistic, we mean any mathematical entity that we can calculate from data. Broadly speaking a
distribution function is a statistic, because it is obtained by fitting a mathematical function to data that we collect. Two other
statistics are often used to characterize experimental data: the mean and the variance. The mean and variance are defined for any
distribution. We want to see how to estimate the mean and variance from a set of experimental data collected from a particular
distribution.

We distinguish between discrete and continuous distributions. A discrete distribution is a real-world source of data that can
produce only particular data values. A coin toss is a good example. It can produce only two outcomes—heads or tails. A
continuous distribution is a real-world source of data that can produce data values in a continuous range. The speed of an
automobile is a good example. An automobile can have any speed within a rather wide range of speeds. For this distribution, the
random variable is automobile speed. Of course we can generate a discrete distribution by aggregating the results of sampling a
continuous distribution; if we lump all automobile speeds between 20 mph and 30 mph together, we lose the detailed information
about the speed of each automobile and retain only the total number of automobiles with speeds in this interval.

This page titled 4.1: The Distribution Function as a Summary of Experimental Results is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Outcomes, Events, and Probability
We also need to introduce the idea that a function that successfully models the results of past experiments can be used to predict
some of the characteristics of future results.

We reason as follows: We have results from drawing many samples of a random variable from some distribution. We suppose that a
mathematical representation has been found that adequately summarizes the results of these experiences. If the underlying
distribution—the physical system in scientific applications—remains the same, we expect that a long series of future results would
give rise to essentially the same mathematical representation. If 25% of many previous results have had a particular characteristic,
we expect that 25% of a large number of future trials will have the same characteristic. We also say that there is one chance in four
that the next individual result will have this characteristic; when we say this, we mean that 25% of a large number of future trials
will have this characteristic, and the next trial has as good a chance as any other to be among those that do. The probability that an
outcome will occur in the future is equal to the frequency with which that outcome has occurred in the past.

Given a distribution, the possible outcomes must be mutually exclusive; in any given trial, the random variable can have only one
of its possible values. Consequently, a discrete distribution is completely described when the probability of each of its outcomes is
specified. Many distributions are comprised of a finite set of N mutually exclusive possible outcomes. If each of these outcomes is
equally likely, the probability that we will observe any particular outcome in the next trial is .

We often find it convenient to group the set of possible outcomes into subsets in such a way that each outcome is in one and only
one of the subsets. We say that such assignments of outcomes to subsets are exhaustive, because every possible outcome is
assigned to some subset; we say that such assignments are mutually exclusive, because no outcome belongs to more than one
subset. We call each such subset an event. When we partition the possible outcomes into exhaustive and mutually exclusive events,
we can say the same things about the probabilities of events that we can say about the probabilities of outcomes. In our discussions,
the term “events” will always refer to an exhaustive and mutually exclusive partitioning of the possible outcomes. Distinguishing
between outcomes and events just gives us some language conventions that enable us to create alternative groupings of the same set
of real world observations.

Suppose that we define a particular event to be a subset of outcomes that we denote as U. If in a large number of trials, the fraction
of outcomes that belong to this subset is F, we say that the probability is F that the outcome of the next trial will belong to this
event. To express this in more mathematical notation, we write . When we do so, we mean that the fraction of a large
number of future trials that belong to this subset will be F, and the next trial has as good a chance as any other to be among those
that do. In a sample comprising M observations, the best forecast we can make of the number of occurrences of U is ,
and we call this the expected number of occurrences of U in a sample of size M.

The idea of grouping real world observations into either outcomes or events is easy to remember if we keep in mind the example of
tossing a die. The die has six faces, which are labeled with 1, 2, 3, 4, 5, or 6 dots. The dots distinguish one face from another. On
any given toss, one face of the die must land on top. Therefore, there are six possible outcomes. Since each face has as good a
chance as any other of landing on top, the six possible outcomes are equally probable. The probability of any given outcome is .
If we ask about the probability that the next toss will result in one of the even-numbered faces landing on top, we are asking about
the probability of an event—the event that the next toss will have the characteristic that an even-numbered face lands on top. Let us
call this event . That is, event  occurs if the outcome is a 2, a 4, or a 6. These are three of the six equally likely outcomes.
Evidently, the probability of this event is .

Having defined event  as the probability of an even-number outcome, we still have several alternative ways to assign the odd-
number outcomes to events. One assignment would be to say that all of the odd-number outcomes belong to a second event—the
event that the outcome is odd. The events “even outcome” and “odd outcome” are exhaustive and mutually exclusive. We could
create another set of events by assigning the outcomes 1 and 3 to event , and the outcome 5 to event . Events , , and  are
also exhaustive and mutually exclusive.

We have a great deal of latitude in the way we assign the possible outcomes to events. If it suits our purposes, we can create many
different exhaustive and mutually exclusive partitionings of the outcomes of a given distribution. We require that each partitioning
of outcomes into events be exhaustive and mutually exclusive, because we want to apply the laws of probability to events.

This page titled 4.2: Outcomes, Events, and Probability is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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4.3: Some Important Properties of Events
If we know the probabilities of the possible outcomes of a trial, we can calculate the probabilities for combinations of outcomes.
These calculations are based on two rules, which we call the laws of probability. If we partition the outcomes into exhaustive and
mutually exclusive events, the laws of probability also apply to events. Since, as we define them, “events” is a more general term
than “outcomes,” we call them the law of the probability of alternative events and the law of the probability of compound events.
These laws are valid so long as three conditions are satisfied. We have already discussed the first two of these conditions, which are
that the outcomes possible in any individual trial must be exhaustive and mutually exclusive. The third condition is that, if we make
more than one trial, the outcomes must be independent; that is, the outcome of one trial must not be influenced by the outcomes of
the others.

We can view the laws of probability as rules for inferring information about combinations of events. The law of the probability of
alternative events applies to events that belong to the same distribution. The law of the probability of compound events applies to
events that can come from one or more distributions. An important special case occurs when the compound events are 
successive samplings of a given distribution that we identify as the parent distribution. If the random variable is a number, and we
average the numbers that we obtain from  successive samplings of the parent distribution, these “averages-of- ” themselves
constitute a distribution. If we know certain properties of the parent distribution, we can calculate corresponding properties of the
“distribution of averages-of-  values obtained by sampling the parent distribution.” These calculations are specified by the central
limit theorem, which we discuss in Section 3.11.

In general, when we combine events from two distributions, we can view the result as an event that belongs to a third distribution.
At first encounter, the idea of combining events and distributions may seem esoteric. A few examples serve to show that what we
have in mind is very simple.

Since an event is a set of outcomes, an event occurs whenever any of the outcomes in the set occurs. Partitioning the outcomes of
tossing a die into “even outcomes” and “odd outcomes” illustrates this idea. The event “even outcome” occurs whenever the
outcome of a trial is ,  or . The probability of an event can be calculated from the probabilities of the underlying outcomes. We
call the rule for this calculation the law of the probabilities of alternative events. (We create the opportunity for confusion here
because we are illustrating the idea of alternative events by using an example in which we call the alternatives “alternative
outcomes” rather than “alternative events.” We need to remember that “event” is a more general term than “outcome.” One possible
partitioning is that which assigns every outcome to its own event.) We discuss the probabilities of alternative events further below.

To illustrate the idea of compound events, let us consider a first distribution that comprises “tossing a coin” and a second
distribution that comprises “drawing a card from a poker deck.” The first distribution has two possible outcomes; the second
distribution has  possible outcomes. If we combine these distributions, we create a third distribution that comprises “tossing a
coin and drawing a card from a poker deck.” The third distribution has  possible outcomes. If we know the probabilities of the
outcomes of the first distribution and the probabilities of the outcomes of the second distribution, and these probabilities are
independent of one another, we can calculate the probability of any outcome that belongs to the third distribution. We call the rule
for this calculation the law of the probability of compound events. We discuss it further below.

A similar situation occurs when we consider the outcomes of tossing two coins. We assume that we can tell the two coins apart.
Call them coin  and coin . We designate heads and tails for coins  and  as , , , and , respectively. There are four
possible outcomes in the distribution we call “tossing two coins:” , , , and . (If we could not tell the coins
apart,  would be the same thing as ; there would be only three possible outcomes.) We can view the distribution
“tossing two coins” as being a combination of the two distributions that we can call “tossing coin ” and “tossing coin .” We can
also view the distribution “tossing two coins” as a combination of two distributions that we call “tossing a coin a first time” and
“tossing a coin a second time.” We view the distribution “tossing two coins” as being equivalent to the distribution “tossing one
coin twice.” This is an example of repeated trials, which is a frequently encountered type of distribution. In general, we call such a
distribution a “distribution of events from a trial repeated N times,” and we view this distribution as being completely equivalent
to N simultaneous trials of the same kind. Chapter 19 considers the distribution of outcomes when a trial is repeated many times.
Understanding the properties of such distributions is the single most essential element in understanding the theory of statistical
thermodynamics. The central limit theorem relates properties of the repeated-trials distribution to properties of the parent
distribution.

N

N N

N
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The Probability of Alternative Events
If we know the probability of each of two mutually exclusive events that belong to an exhaustive set, the probability that one or the
other of them will occur in a single trial is equal to the sum of the individual probabilities. Let us call the independent events A and
B, and represent their probabilities as  and , respectively. The probability that one of these events occurs is the same
thing as the probability that either A occurs or B occurs. We can represent this probability as . The probability of this
combination of events is the sum: . That is,

Above we define Y as the event that a single toss of a die comes up either  or . Because each of these outcomes is one of six,
mutually-exclusive, equally-likely outcomes, the probability of either of them is : .
From the law of the probability of alternative events, we have

We define  as the event that a single toss of a die comes up even. From the law of the probability of alternative events, we have

We define  as the event that a single toss comes up .

If there are  independent events (denoted ), the law of the probability of alternative events asserts that the
probability that one of these events will occur in a single trial is

If these  independent events encompass all of the possible outcomes, the sum of their individual probabilities must be unity.

Figure 1. A simple case that illustrates the laws of probability.

The Probability of Compound Events

Let us now suppose that we make two trials in circumstances where event  is possible in the first trial and event  is possible in
the second trial. We represent the probabilities of these events by  and  and stipulate that they are independent of one
another; that is, the probability that  occurs in the second trial is independent of the outcome of the first trial. Then, the
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probability that  occurs in the first trial and  occurs in the second trial, , is equal to the product of the individual
probabilities.

To illustrate this using outcomes from die-tossing, let us suppose that event  is tossing a  and event  is tossing a . Then, 
 and . The probability of tossing a 1 in a first trial and tossing a  in a second trial is then

If we want the probability of getting one  and one  in two tosses, we must add to this the probability of tossing a  first and a 
second.

If there are  independent events (denoted ), the law of the probability of compound events asserts that the
probability that  will occur in a first trial, and  will occur in a second trial, etc., is

This page titled 4.3: Some Important Properties of Events is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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4.4: Applying the Laws of Probability
The laws of probability apply to events that are independent. If the result of one trial depends on the result of another trial, we may
still be able to use the laws of probability. However, to do so, we must know the nature of the interdependence.

If the activity associated with event C precedes the activity associated with event D, the probability of D may depend on whether C
occurs. Suppose that the first activity is tossing a coin and that the second activity is drawing a card from a deck; however, the deck
we use depends on whether the coin comes up heads or tails. If the coin is heads, we draw a card from an ordinary deck; if the coin
is tails, we draw a coin from a deck with the face cards removed. Now we ask about the probability of drawing an ace. If the coin is
heads, the probability of drawing an ace is . If the coin is tails, the probability of drawing an ace is . The
combination coin is heads and card is ace has probability: . The combination coin is tails and card is ace has
probability . In this

case, the probability of drawing an ace depends on the modification we make to the deck based on the outcome of the coin toss.

Applying the laws of probability is straightforward. An example that illustrates the application of these laws in a transparent way is
provided by villages First, Second, Third, and Fourth, which are separated by rivers. (See Figure 1.) Bridges , , and  span the
river between First and Second. Bridges  and  span the river between Second and Third. Bridges , , , and  span the river
between Third and Fourth. A traveler from First to Fourth who is free to take any route he pleases has a choice from among 

 possible combinations. Let us consider the probabilities associated with various events:

There are 24 possible routes. If a traveler chooses his route at random, the probability that he will take any particular route is 
. This illustrates our assumption that each event in a set of  exhaustive and mutually exclusive events occurs with

probability .
If he chooses a route at random, the probability that he goes from First to Second by either bridge  or bridge  is 

. This illustrates the calculation of the probability of alternative events.
The probability of the particular route  is , and we calculate
the same probability for any other route from First to Fourth. This illustrates the calculation of the probability of a compound
event.
If he crosses bridge , the probability that his route will be  is zero, of course. The probability of an event that has
already occurred is 1, and the probability of any alternative is zero. If he crosses bridge  , and .
Given that a traveler has used bridge , the probability of the route  becomes the probability of path , which
is . Since , the probability of the compound event  is the
probability of the compound event .

The outcomes of rolling dice, rolling provide more illustrations. If we roll two dice, we can classify the possible outcomes
according to the sums of the outcomes for the individual dice. There are thirty-six possible outcomes. They are displayed in Table
1.

Table 1: Outcomes from tossing two dice

Outcome for first die

Outcome for
second die

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Let us consider the probabilities associated with various dice-throwing events:

The probability of any given outcome, say the first die shows  and the second die shows , is .

4/52 = 1/13 4/40 = 1/10

(1/2) (1/13) = 1/26

(1/2) (1/10) = 1/20

1 2 3

a b A B C D

3 ×2 ×4 = 24

1/24 N

1/N

1 2

P (1) +P (2) =  1/3 +1/3 = 2/3

2 → a → C P (2) ×P (a) ×P (C) = (1/3) (1/2) (1/4) = 1/24

1 2 → a → C

1, P (1) = 1 P (2) = P (3) = 0

1 1 → a → C a → C

P (a) ×P (C) = (1/2) (1/4) = 1/8 P (1) = 1 1 → a → C

a → C
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Since the probability that the first die shows  while the second die shows  is also , the probability that one die shows 
and the other shows  is

Four different outcomes correspond to the event that the score is . Therefore, the probability of rolling  is

The probability of rolling a score of three or less is the probability of rolling , plus the probability of rolling  which is 

Suppose we roll the dice one at a time and that the first die shows . The probability of rolling  when the second die is thrown
is now , because only rolling a  can make the score 7, and there is a probability of  that a  will come up when the
second die is thrown.
Suppose the first die is red and the second die is green. The probability that the red die comes up  and the green die comes up 

 is .

Above we looked at the number of outcomes associated with a score of  to find that the probability of this event is . We can
use another argument to get this result. The probability that two dice roll a score of three is equal to the probability that the first die
shows  or  times the probability that the second die shows whatever score is necessary to make the total equal to three. This is:

Application of the laws of probability is frequently made easier by recognizing a simple restatement of the requirement that events
be mutually exclusive. In a given trial, either an event occurs or it does not. Let the probability that an event A occurs be . Let
the probability that event A does not occur be . Since in any given trial, the outcome must belong either to event A or to
event , we have

For example, if the probability of success in a single trial is , the probability of failure is . If we consider the outcomes of
two successive trials, we can group them into four events.

Event SS: First trial is a success; second trial is a success.
Event SF: First trial is a success; second trial is a failure.
Event FS: First trial is a failure; second trial is a success.
Event FF: First trial is a failure; second trial is a failure.

Using the laws of probability, we have

where  and  are the probability of event  in the first and second trials, respectively.

This situation can be mapped onto a simple diagram. We represent the possible outcomes of the first trial by line segments on one
side of a unit square . We represent the outcomes of the second trial by line segments along an adjoining side
of the unit square. The four possible events are now represented by the areas of four mutually exclusive and exhaustive portions of
the unit square as shown in Figure 2.

3 2 1/36 2

3
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5 5
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Figure 2. Success and failure in successive trials.
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4.5: Combinatorics and Multiplicity

Definitions 

Combinatorics: a branch of mathematics that deals with the rules for combining different outcomes and events and calculating the
probabilities of these combinations.

Probability: The probability of an outcome is a measure of the likelihood that the outcome will occur in comparison to all possible
outcomes.

Permutation: one “way” in which all or part of a set of objects can be ordered or arranged.

Combination: one “way” of selecting all or part of a set of objects without regard to the order in which the objects are selected.

Multiplicity: the multiplicity of events is the total number of “ways” in which different outcomes can possibly occur.  Represented
by the symbol W, and also called ways, permutations, sequences, degeneracy, weight, arrangements, thermodynamic probability,
etc. depending on the context.

As you can see from these definitions, combinatorics is the branch of math related to counting events and outcomes, while
multiplicity is the statistical thermodynamics variable equal to the number of possible outcomes.  They are intricately connected.

Depending on the situation, this number of possible outcomes (multiplicity) could be calculated using the fundamental principles of
counting, permutation formulas, or combination formulas from the field of combinatorics.  Below is a detailed explanation and
example of each of these counting methods and when they can be applied.

The Fundamental Principles of Counting 

The Multiplication Principle 
During restaurant week, you go out to eat for dinner.  The restaurant week menu gives you the option to choose between three
appetizers, four entrées, and two desserts.  You feel a bit overwhelmed by the number of possibilities; how many different meal
options are there?

Each of these selection events has a different number of possible outcomes or options:
Appetizer selection = 3 options
Entrée selection = 4 options
Dessert event = 2 options

Because you will choose one appetizer AND one entrée AND one dessert, the total number of different ways your meal could
be prepared is:

One of the Fundamental Principles of Counting, the Multiplication Principle states that if there are n possible outcomes for each
event type, i, in a sequence, then the total number of possible outcomes is equal to the values of n multiplied together:

where  symbol is the product operator (similar to  symbol for the sum operator).
In this context, each  represents the number of possible outcomes for each event.  Therefore, the multiplicity of each event
type, , is equal to , and the total multiplicity, , can be determined by:

The Addition Principle 
You are looking to buy a new binder to store your class notes.  You’re torn between a 1” binder and a 1.5” binder.  The 1” binder
comes in 5 colors and the 1.5” binder comes in 3.  How many total binder options are you considering?

W = 3 ×4 ×2 = 24 (4.5.1)

W = ⋯ =n1n2 nt ∏
i=1

t

ni (4.5.2)

∏ ∑

ni

Wi ni Wtotal

= ⋯ =Wtotal W1W2 W3 ∏
i=1

t

Wi (4.5.3)
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The two binders each has a different number of possible outcomes:
1” binder = 5 outcomes
1.5” binder = 3 outcomes

Because you will choose a 1” binder OR a 1.5” binder, the total number of different outcomes you are considering is:

One of the Fundamental Principles of Counting, the Addition Principle states that if there are n possible outcomes for each
event, i, and we cannot do both at the same time, then the total number of possible outcomes is equal to the values of n added
together:

Permutations 

Permutations of distinguishable outcomes without repetition: ALL outcomes selected 
You decide to take on the challenge of trying each of CookOut’s 40 flavors of milkshakes!  If you have a different milkshake each
day until you’ve tried them all (no repeats!), how many different sequences of milkshakes (i.e., orders or arrangements) are
possible?

Since you are not repeating any milkshakes during this time, you will choose from 40 milkshakes on day one AND 39 on day
two AND 38 on day three, etc.  According to the Multiplication Principle above, the total number of sequences is:

The order of the milkshakes matters in this question but no milkshakes are repeated; this is called a permutation without
repetition:

where  is the total number of possible outcomes and all possible outcomes are sampled (i.e., you will keep selecting
milkshakes until you’ve tried all the milkshakes).  Because you can identify which milkshake you are trying each day, the
outcomes or options are considered distinguishable.

Permutations of distinguishable outcomes without repetition: SOME outcomes only 
On second thought, having a different milkshake every day for 40 days may be a bit much…  Instead, you decide to have a
different milkshake every day for a week.  (Then you’ll take a break and come back to tackle the rest of the menu in the future!) 
How many different arrangements or sequences are possible during the first week?

The math is similar to the previous question, except that we only need to multiply the first seven of the numbers in the factorial
for the first seven days:

A more general expression for this permutation without repetition includes the total number of possible outcomes, N, and the
total number of selection events, r, which is expressed as “ , take ” (or you may want to think of it as “ , arrange ”):

 where  is a common notation for permutation without repetition.
For our example, this would be:

The previous example (with all 40 milkshakes) can also be depicted this way, however, since all items are selected,  and  are
equal:

W = 5 +3 = 8 (4.5.4)

W = + + ⋯ =n1 n2 n3 ∑
i=1

t

ni (4.5.5)

W = 40 ×39 ×38 ×37 ×⋯ ×2 ×1 = 40! = 8.16 ×1047 (4.5.6)

W = N ! (4.5.7)

N

W = 40 ×39 ×38 ×37 ×36 ×35 ×34 = 93963542400 (4.5.8)

N r N r
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N !
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Permutations of distinguishable outcomes with repetition 
To help power you through finals, you decide to have a milkshake every day during finals week, but you are not going to bother
with trying different ones; you may just decide to have the same one every day!  What would the total number of milkshake
sequences be in this case?

If every day you have the option of 40 different milkshakes, the number of possible sequences is:

This is a permutation with repetition, and the equation gives the number of possible sequences for r events that each have N
possible outcomes:

The term repetition indicates that an outcome or object is not removed from the available pool after selection.  Another way to
refer to this concept is as permutation with replacement; after selecting a particular outcome, that outcome is returned to the
selection pool so that the available selection options are always the same.

Permutations of indistinguishable outcomes 

Over winter break, you purchase an 11 oz bag of Holiday Milk Chocolate Hershey’s Kisses.  In the bag of 72 kisses, you have 25
red, 23 silver, and 24 green kisses.  If you pull the kisses out of the bag one at a time, how many different sequences of holiday
colors are possible?

It may seem that this description also refers to calculating the number of permutations for items that repeat (since there are
multiple kisses of each wrapper color), and in fact, some resources do refer to the equation that way.  However, this scenario
does not repeat in the same way as the previous example. 

The term repetition is used for a series of events or set of objects where the outcomes are allowed to repeat after being
selected (i.e., the selection pool does not change because the selected outcome is replaced by another outcome of the same
type).
In the current scenario, the selected individual kisses do not “repeat” because they are not returned to the bag; as each kiss is
removed, the available selection pool decreases.  Instead, there are simply multiple indistinguishable items in the selection
pool before the selections begin.  This makes a difference in terms of how many items of each type (i.e., kisses of each
color) are available to be selected.

If our kisses were labeled so that each kiss was distinguishable from the others, then our total number of permutations would be
calculated as described previously:

 However, this calculation will count  followed by  as a different sequence from  followed by .  These two
outcomes are indistinguishable without the A and B labels, so the number of unique sequences must be determined by
factoring out the number of identical or redundant arrangements.
The number of possible arrangements for each individual type of kiss is:

Therefore, our number of unique sequences or arrangements is:

Another way to refer to this type of permutation is a multiset permutation because the overall set is composed of smaller subsets
of indistinguishable outcomes.  The general expression for a multiset permutation is:

W = = = = 40!40P40
40!

(40 −40)!

40!

0!
(4.5.11)

W = 40 ×40 ×40 ×40 ×40 ×40 ×40 = = 163840000000407 (4.5.12)

W = N r (4.5.13)

W = 72! (4.5.14)

redA redB redB redA

= 25!nred (4.5.15)
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W = =
N !

! ! !nred nsilver ngreen

72!

25!23!24!
(4.5.18)

https://libretexts.org/
https://chem.libretexts.org/@go/page/236434?pdf


4.5.4 https://chem.libretexts.org/@go/page/236434

where each  is the number of possible outcomes for each selection type, , and the total number of outcomes or objects, , is:

Combinations 

Combinations without repetition 
In the spring semester, you decide you’ve had enough CookOut milkshakes for a while.  You buy Blue Bell ice cream from the
grocery store instead!  You stock 5 flavors: cookies and cream (CC), mint chocolate chip (M), strawberry (S), Dutch chocolate
(DC), and banana pudding (B).  If you always get three scoops of different flavors, how many different combinations are possible?

Let’s list our five available flavors of ice cream:

Assume we choose B for the first scoop.  If we cannot have each flavor more than once (i.e., without repetition), then B is no
longer an option for the remaining scoops.  Therefore, the second scoop only has four choices available to it:

We choose S for the second scoop, and remove it from the available flavors:

Lastly, we choose DC for the third scoop:

Thus far, this process looks like a permutation without repeats, and the permutation equation would yield:

However, the combination {B, S, DC} is indistinguishable from other combinations of B, S, and DC scooped in a different order. 
Once in the bowl, order does not matter.  The permutation equation would count each sequence of B, S, and DC separately, so we
need to correct for the number of duplicate or indistinguishable combinations.

We can illustrate this point further by looking at the example of B, S, and DC in more details:

W =
N !

! ! ⋯ !n1 n2 nt

(4.5.19)

ni i N

N =∑
i=1

t

ni (4.5.20)

= = = 5 ×4 ×3 = 605P3
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There are six distinguishable sequences that produce indistinguishable combinations.  We could also calculate this value using the
permutation without repetition for the number of scoops:

To determine the number of unique or distinguishable combinations (where order does not matter), we need to divide our
number of distinguishable sequences by the number of sequences that produce indistinguishable combinations:

The general equation for this combination without repetition, which is referred to as “ , choose ” (or in our case “5 ice cream
flavors, choose 3”) is:

where  and  are common notations for combination without repetition.

Combinations with repetition 

Instead of always doing three different scoops, how many different combinations are possible if you do include repetitions (i.e.
combinations with more than one scoop of a particular flavor)?

This concept is called combination with repetition or combination with replacement.  In this case, it’s easier to think about as
replacement.

Let’s list our five flavors of ice cream again:

Assume we choose B for the first scoop.  However, unlike before, after B has been taken from the available flavors, we will replace
it with another B, leaving the selection options the same:

We choose a second scoop of B next, replacing it again with another B:

Lastly, we choose DC for the last scoop:

What you can see is that, if you have repetition or replacements, you do not end up with “5, choose 3.”  Instead, because of the
replacements after the first two scoops, you had 7 total available choices during the selection process, making “7, choose 3.”

In considering this more generally, hopefully you can recognize that, regardless of whatever number of  options you
started with, if you allow replacements, you will end up adding  additional options (one fewer then the number of

= = = 3! = 6 3P3
3!

(3 −3)!

3!

0!
(4.5.22)
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selections) by your final choice.  Your final number of available options, therefore, becomes:

We can take this expression for the final number of available choices and substitute it into the combination formula from the
previous example:

We can rearrange this equation as:

where the notation  is used to denote a combination with replacement and is called “ , multichoose .”

This new expression resembles a permutation for two items with indistinguishable outcomes: there are 
 indistinguishable outcomes of one item and  of the other.  This is from where the line/dot representation comes.

We will develop the system as having  lines and  dots.  Therefore, for our 5 ice cream flavors and 3 scoops, we will
use 4 lines and 3 dots:

While this equation gives the correct answer, it may still seem strange to recast the problem in this way.  Let’s look at it one
more time: pretend you had an ice cream scooping machine, and you gave this machine instructions in a code of lines and dots. 
Each dot represents one scoop of ice cream, and each line separates (or partitions) one flavor from another.  In order to
communicate the combination of {B, B, DC} to the machine, you send the following code (remembering that order does not
matter):

 

If you wanted {CC, M, DC}, it would be:

And if you wanted all CC:

To demonstrate that the line/dot method works generally, recognize that, for  options, there will always be 
 lines needed to separate them from one another.  For  choices, you will always need a total of  dots, one for each

choice. It works to use three dots placed among four lines that separate the five flavors!

Therefore, the “ , multichoose ” combination with replacement equation is equal to the permutation equation for 
 lines and  dots, where the lines and dots are indistinguishable:

= +(r−1)Nfinal Ninitial (4.5.27)
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CHAPTER OVERVIEW

5: Fundamental 4 - Heat Transfer
5.1: Energy Basics
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5.1: Energy Basics

Define energy, distinguish types of energy, and describe the nature of energy changes that accompany chemical and
physical changes
Distinguish the related properties of heat, thermal energy, and temperature
Define and distinguish specific heat and heat capacity, and describe the physical implications of both
Perform calculations involving heat, specific heat, and temperature change

Chemical changes and their accompanying changes in energy are important parts of our everyday world (Figure ). The
macronutrients in food (proteins, fats, and carbohydrates) undergo metabolic reactions that provide the energy to keep our bodies
functioning. We burn a variety of fuels (gasoline, natural gas, coal) to produce energy for transportation, heating, and the
generation of electricity. Industrial chemical reactions use enormous amounts of energy to produce raw materials (such as iron and
aluminum). Energy is then used to manufacture those raw materials into useful products, such as cars, skyscrapers, and bridges.

Figure : The energy involved in chemical changes is important to our daily lives: (a) A cheeseburger for lunch provides the
energy you need to get through the rest of the day; (b) the combustion of gasoline provides the energy that moves your car (and
you) between home, work, and school; and (c) coke, a processed form of coal, provides the energy needed to convert iron ore into
iron, which is essential for making many of the products we use daily. (credit a: modification of work by “Pink Sherbet
Photography”/Flickr; credit b: modification of work by Jeffery Turner).

 

Over 90% of the energy we use comes originally from the sun. Every day, the sun provides the earth with almost 10,000 times the
amount of energy necessary to meet all of the world’s energy needs for that day. Our challenge is to find ways to convert and store
incoming solar energy so that it can be used in reactions or chemical processes that are both convenient and nonpolluting. Plants
and many bacteria capture solar energy through photosynthesis. We release the energy stored in plants when we burn wood or plant
products such as ethanol. We also use this energy to fuel our bodies by eating food that comes directly from plants or from animals
that got their energy by eating plants. Burning coal and petroleum also releases stored solar energy: These fuels are fossilized plant
and animal matter.

This chapter will introduce the basic ideas of an important area of science concerned with the amount of heat absorbed or released
during chemical and physical changes—an area called thermochemistry. The concepts introduced in this chapter are widely used in
almost all scientific and technical fields. Food scientists use them to determine the energy content of foods. Biologists study the
energetics of living organisms, such as the metabolic combustion of sugar into carbon dioxide and water. The oil, gas, and
transportation industries, renewable energy providers, and many others endeavor to find better methods to produce energy for our
commercial and personal needs. Engineers strive to improve energy efficiency, find better ways to heat and cool our homes,
refrigerate our food and drinks, and meet the energy and cooling needs of computers and electronics, among other applications.
Understanding thermochemical principles is essential for chemists, physicists, biologists, geologists, every type of engineer, and
just about anyone who studies or does any kind of science.

Energy

Energy can be defined as the capacity to supply heat or do work. One type of work (w) is the process of causing matter to move
against an opposing force. For example, we do work when we inflate a bicycle tire—we move matter (the air in the pump) against
the opposing force of the air surrounding the tire.

 Learning Objectives

5.1.1
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Like matter, energy comes in different types. One scheme classifies energy into two types: potential energy, the energy an object
has because of its relative position, composition, or condition, and kinetic energy, the energy that an object possesses because of its
motion. Water at the top of a waterfall or dam has potential energy because of its position; when it flows downward through
generators, it has kinetic energy that can be used to do work and produce electricity in a hydroelectric plant (Figure ). A
battery has potential energy because the chemicals within it can produce electricity that can do work.

Figure : (a) Water that is higher in elevation, for example, at the top of Victoria Falls, has a higher potential energy than water
at a lower elevation. As the water falls, some of its potential energy is converted into kinetic energy. (b) If the water flows through
generators at the bottom of a dam, such as the Hoover Dam shown here, its kinetic energy is converted into electrical energy.
(credit a: modification of work by Steve Jurvetson; credit b: modification of work by “curimedia”/Wikimedia commons).
Two pictures are shown and labeled a and b. Picture a shows a large waterfall with water falling from a high elevation at the top of
the falls to a lower elevation. The second picture is a view looking down into the Hoover Dam. Water is shown behind the high
wall of the dam on one side and at the base of the dam on the other.

Energy can be converted from one form into another, but all of the energy present before a change occurs always exists in some
form after the change is completed. This observation is expressed in the law of conservation of energy: during a chemical or
physical change, energy can be neither created nor destroyed, although it can be changed in form. (This is also one version of the
first law of thermodynamics, as you will learn later.)

When one substance is converted into another, there is always an associated conversion of one form of energy into another. Heat is
usually released or absorbed, but sometimes the conversion involves light, electrical energy, or some other form of energy. For
example, chemical energy (a type of potential energy) is stored in the molecules that compose gasoline. When gasoline is
combusted within the cylinders of a car’s engine, the rapidly expanding gaseous products of this chemical reaction generate
mechanical energy (a type of kinetic energy) when they move the cylinders’ pistons.

According to the law of conservation of matter (seen in an earlier chapter), there is no detectable change in the total amount of
matter during a chemical change. When chemical reactions occur, the energy changes are relatively modest and the mass changes
are too small to measure, so the laws of conservation of matter and energy hold well. However, in nuclear reactions, the energy
changes are much larger (by factors of a million or so), the mass changes are measurable, and matter-energy conversions are
significant. This will be examined in more detail in a later chapter on nuclear chemistry. To encompass both chemical and nuclear
changes, we combine these laws into one statement: The total quantity of matter and energy in the universe is fixed.

Thermal Energy, Temperature, and Heat
Thermal energy is kinetic energy associated with the random motion of atoms and molecules. Temperature is a quantitative
measure of “hot” or “cold.” When the atoms and molecules in an object are moving or vibrating quickly, they have a higher
average kinetic energy (KE), and we say that the object is “hot.” When the atoms and molecules are moving slowly, they have
lower KE, and we say that the object is “cold” (Figure ). Assuming that no chemical reaction or phase change (such as
melting or vaporizing) occurs, increasing the amount of thermal energy in a sample of matter will cause its temperature to increase.
And, assuming that no chemical reaction or phase change (such as condensation or freezing) occurs, decreasing the amount of
thermal energy in a sample of matter will cause its temperature to decrease.

5.1.2

5.1.2

5.1.3
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Figure : (a) The molecules in a sample of hot water move more rapidly than (b) those in a sample of cold water.
Two molecular drawings are shown and labeled a and b. Drawing a is a box containing fourteen red spheres that are surrounded by
lines indicating that the particles are moving rapidly. This drawing has a label that reads “Hot water.” Drawing b depicts another
box of equal size that also contains fourteen spheres, but these are blue. They are all surrounded by smaller lines that depict some
particle motion, but not as much as in drawing a. This drawing has a label that reads “Cold water.”

 States of Matter: Bas

 States 
 Phase Change

5.1.3
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Measuring Energy and Heat Capacity
Historically, energy was measured in units of calories (cal). A calorie is the amount of energy required to raise one gram of water
by 1 degree C (1 kelvin). However, this quantity depends on the atmospheric pressure and the starting temperature of the water.
The ease of measurement of energy changes in calories has meant that the calorie is still frequently used. The Calorie (with a
capital C), or large calorie, commonly used in quantifying food energy content, is a kilocalorie. The SI unit of heat, work, and
energy is the joule. A joule (J) is defined as the amount of energy used when a force of 1 newton moves an object 1 meter. It is
named in honor of the English physicist James Prescott Joule. One joule is equivalent to 1 kg m /s , which is also called 1 newton–
meter. A kilojoule (kJ) is 1000 joules. To standardize its definition, 1 calorie has been set to equal 4.184 joules.

We now introduce two concepts useful in describing heat flow and temperature change. The heat capacity (C) of a body of matter is
the quantity of heat (q) it absorbs or releases when it experiences a temperature change (ΔT) of 1 degree Celsius (or equivalently, 1
kelvin)

Heat capacity is determined by both the type and amount of substance that absorbs or releases heat. It is therefore an extensive
property—its value is proportional to the amount of the substance.

For example, consider the heat capacities of two cast iron frying pans. The heat capacity of the large pan is five times greater than
that of the small pan because, although both are made of the same material, the mass of the large pan is five times greater than the
mass of the small pan. More mass means more atoms are present in the larger pan, so it takes more energy to make all of those
atoms vibrate faster. The heat capacity of the small cast iron frying pan is found by observing that it takes 18,150 J of energy to
raise the temperature of the pan by 50.0 °C

The larger cast iron frying pan, while made of the same substance, requires 90,700 J of energy to raise its temperature by 50.0 °C.
The larger pan has a (proportionally) larger heat capacity because the larger amount of material requires a (proportionally) larger
amount of energy to yield the same temperature change:

The specific heat capacity (c) of a substance, commonly called its “specific heat,” is the quantity of heat required to raise the
temperature of 1 gram of a substance by 1 degree Celsius (or 1 kelvin):

Specific heat capacity depends only on the kind of substance absorbing or releasing heat. It is an intensive property—the type, but
not the amount, of the substance is all that matters. For example, the small cast iron frying pan has a mass of 808 g. The specific
heat of iron (the material used to make the pan) is therefore:

The large frying pan has a mass of 4040 g. Using the data for this pan, we can also calculate the specific heat of iron:

Although the large pan is more massive than the small pan, since both are made of the same material, they both yield the same
value for specific heat (for the material of construction, iron). Note that specific heat is measured in units of energy per temperature
per mass and is an intensive property, being derived from a ratio of two extensive properties (heat and mass). The molar heat
capacity, also an intensive property, is the heat capacity per mole of a particular substance and has units of J/mol °C (Figure ).

2 2

C =
q

ΔT
(5.1.1)

= = 363 J/°CCsmall pan
18, 140 J

50.0 °C
(5.1.2)

= = 1814 J/°CClarge pan
90, 700 J

50.0 °C
(5.1.3)

c =
q

mΔT
(5.1.4)

= = 0.449 J/g °Cciron
18, 140 J

(808 g)(50.0 °C)
(5.1.5)

= = 0.449 J/g °Cciron
90, 700 J

(4, 040 g)(50.0 °C)
(5.1.6)
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Figure : Due to its larger mass, a large frying pan has a larger heat capacity than a small frying pan. Because they are made of
the same material, both frying pans have the same specific heat. (credit: Mark Blaser).

The picture shows two black metal frying pans sitting on a flat surface. The left pan is about half the size of the right pan.

Liquid water has a relatively high specific heat (about 4.2 J/g °C); most metals have much lower specific heats (usually less than 1
J/g °C). The specific heat of a substance varies somewhat with temperature. However, this variation is usually small enough that we
will treat specific heat as constant over the range of temperatures that will be considered in this chapter. Specific heats of some
common substances are listed in Table .

Table : Specific Heats of Common Substances at 25 °C and 1 bar

Substance Symbol (state) Specific Heat (J/g °C)

helium He(g) 5.193

water H O(l) 4.184

ethanol C H O(l) 2.376

ice H O(s) 2.093 (at −10 °C)

water vapor H O(g) 1.864

nitrogen N (g) 1.040

air  1.007

oxygen O (g) 0.918

aluminum Al(s) 0.897

carbon dioxide CO (g) 0.853

argon Ar(g) 0.522

iron Fe(s) 0.449

copper Cu(s) 0.385

lead Pb(s) 0.130

gold Au(s) 0.129

silicon Si(s) 0.712

If we know the mass of a substance and its specific heat, we can determine the amount of heat, q, entering or leaving the substance
by measuring the temperature change before and after the heat is gained or lost:

In this equation,  is the specific heat of the substance, m is its mass, and ΔT (which is read “delta T”) is the temperature change,
T  − T . If a substance gains thermal energy, its temperature increases, its final temperature is higher than its initial

5.1.7

5.1.1

5.1.1

2

2 6

2

2

2

2

2

q

q

= (specific heat) ×(mass of substance) ×(temperature change)

= c ×m ×ΔT

= c ×m ×( − )Tfinal Tinitial

c

final initial
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temperature, T  − T  has a positive value, and the value of q is positive. If a substance loses thermal energy, its temperature
decreases, the final temperature is lower than the initial temperature, T  − T  has a negative value, and the value of q is
negative.

 

A flask containing  of water is heated, and the temperature of the water increases from 21 °C to 85 °C. How much
heat did the water absorb?

Solution
To answer this question, consider these factors:

the specific heat of the substance being heated (in this case, water)
the amount of substance being heated (in this case, 800 g)
the magnitude of the temperature change (in this case, from 21 °C to 85 °C).

The specific heat of water is 4.184 J/g °C, so to heat 1 g of water by 1 °C requires 4.184 J. We note that since 4.184 J is
required to heat 1 g of water by 1 °C, we will need 800 times as much to heat 800 g of water by 1 °C. Finally, we observe that
since 4.184 J are required to heat 1 g of water by 1 °C, we will need 64 times as much to heat it by 64 °C (that is, from 21 °C to
85 °C).

This can be summarized using the equation:

Because the temperature increased, the water absorbed heat and  is positive.

How much heat, in joules, must be added to a  iron skillet to increase its temperature from 25 °C to 250 °C? The
specific heat of iron is 0.451 J/g °C.

 Answer

Note that the relationship between heat, specific heat, mass, and temperature change can be used to determine any of these
quantities (not just heat) if the other three are known or can be deduced.

A piece of unknown metal weighs 348 g. When the metal piece absorbs 6.64 kJ of heat, its temperature increases from 22.4 °C
to 43.6 °C. Determine the specific heat of this metal (which might provide a clue to its identity).

Solution
Since mass, heat, and temperature change are known for this metal, we can determine its specific heat using the relationship:

Substituting the known values:

final initial

final initial

 Example : Measuring Heat5.1.1

8.0 × g102

q = c ×m ×ΔT

= c ×m ×( − )Tfinal Tinitial

= (4.184 J/ °C) ×(800 ) ×(85 −21)°Cg g

= (4.184 J/ ° ) ×(800 ) ×(64)°g C g C

= 210, 000 J(= 210 kJ)

q

 Exercise 5.1.1

5.00 × g102

5.05 × J104

 Example : Determining Other Quantities5.1.2

q = c ×m ×ΔT

= c ×m ×( − )Tfinal Tinitial
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Solving:

Comparing this value with the values in Table , this value matches the specific heat of aluminum, which suggests that the
unknown metal may be aluminum.

A piece of unknown metal weighs 217 g. When the metal piece absorbs 1.43 kJ of heat, its temperature increases from 24.5 °C
to 39.1 °C. Determine the specific heat of this metal, and predict its identity.

 

Answer

; the metal is likely to be iron from checking Table .

Solar Thermal Energy Power Plants
The sunlight that reaches the earth contains thousands of times more energy than we presently capture. Solar thermal systems
provide one possible solution to the problem of converting energy from the sun into energy we can use. Large-scale solar thermal
plants have different design specifics, but all concentrate sunlight to heat some substance; the heat “stored” in that substance is then
converted into electricity.

The Solana Generating Station in Arizona’s Sonora Desert produces 280 megawatts of electrical power. It uses parabolic mirrors
that focus sunlight on pipes filled with a heat transfer fluid (HTF) (Figure ). The HTF then does two things: It turns water into
steam, which spins turbines, which in turn produces electricity, and it melts and heats a mixture of salts, which functions as a
thermal energy storage system. After the sun goes down, the molten salt mixture can then release enough of its stored heat to
produce steam to run the turbines for 6 hours. Molten salts are used because they possess a number of beneficial properties,
including high heat capacities and thermal conductivities.

Figure : This solar thermal plant uses parabolic trough mirrors to concentrate sunlight. (credit a: modification of work by
Bureau of Land Management)
This figure has two parts labeled a and b. Part a shows rows and rows of trough mirrors. Part b shows how a solar thermal plant
works. Heat transfer fluid enters a tank via pipes. The tank contains water which is heated. As the heat is exchanged from the pipes
to the water, the water becomes steam. The steam travels to a steam turbine. The steam turbine begins to turn which powers a
generator. Exhaust steam exits the steam turbine and enters a cooling tower.

The 377-megawatt Ivanpah Solar Generating System, located in the Mojave Desert in California, is the largest solar thermal power
plant in the world (Figure ). Its 170,000 mirrors focus huge amounts of sunlight on three water-filled towers, producing steam
at over 538 °C that drives electricity-producing turbines. It produces enough energy to power 140,000 homes. Water is used as the
working fluid because of its large heat capacity and heat of vaporization.

6, 640 J = c ×(348 g) ×(43.6 −22.4) °C

c = = 0.900 J/g °C
6, 640 J

(348 g) ×(21.2°C)

5.1.1

 Exercise 5.1.2

c = 0.45 J/g °C 5.1.1

5.1.8

5.1.8

5.1.9
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Figure : (a) The Ivanpah solar thermal plant uses 170,000 mirrors to concentrate sunlight on water-filled towers. (b) It covers
4000 acres of public land near the Mojave Desert and the California-Nevada border. (credit a: modification of work by Craig
Dietrich; credit b: modification of work by “USFWS Pacific Southwest Region”/Flickr)

Two pictures are shown and labeled a and b. Picture a shows a thermal plant with three tall metal towers. Picture b is an arial
picture of the mirrors used at the plant. They are arranged in rows.

Summary
Energy is the capacity to do work (applying a force to move matter). Kinetic energy (KE) is the energy of motion; potential energy
is energy due to relative position, composition, or condition. When energy is converted from one form into another, energy is
neither created nor destroyed (law of conservation of energy or first law of thermodynamics). Matter has thermal energy due to the
KE of its molecules and temperature that corresponds to the average KE of its molecules. Heat is energy that is transferred between
objects at different temperatures; it flows from a high to a low temperature. Chemical and physical processes can absorb heat
(endothermic) or release heat (exothermic). The SI unit of energy, heat, and work is the joule (J). Specific heat and heat capacity
are measures of the energy needed to change the temperature of a substance or object. The amount of heat absorbed or released by
a substance depends directly on the type of substance, its mass, and the temperature change it undergoes.

Key Equations

Glossary

calorie (cal)
unit of heat or other energy; the amount of energy required to raise 1 gram of water by 1 degree Celsius; 1 cal is defined as
4.184 J

endothermic process
chemical reaction or physical change that absorbs heat

energy
capacity to supply heat or do work

exothermic process
chemical reaction or physical change that releases heat

heat (q)
transfer of thermal energy between two bodies

heat capacity (C)
extensive property of a body of matter that represents the quantity of heat required to increase its temperature by 1 degree
Celsius (or 1 kelvin)

joule (J)
SI unit of energy; 1 joule is the kinetic energy of an object with a mass of 2 kilograms moving with a velocity of 1 meter per
second, 1 J = 1 kg m /s and 4.184 J = 1 cal

5.1.9

q = c ×m ×ΔT = c ×m ×( − )Tfinal Tinitial
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kinetic energy

energy of a moving body, in joules, equal to  (where m = mass and v = velocity)

potential energy
energy of a particle or system of particles derived from relative position, composition, or condition

specific heat capacity (c)
intensive property of a substance that represents the quantity of heat required to raise the temperature of 1 gram of the substance
by 1 degree Celsius (or 1 kelvin)

temperature
intensive property of matter that is a quantitative measure of “hotness” and “coldness”

thermal energy
kinetic energy associated with the random motion of atoms and molecules

thermochemistry
study of measuring the amount of heat absorbed or released during a chemical reaction or a physical change

work (w)
energy transfer due to changes in external, macroscopic variables such as pressure and volume; or causing matter to move
against an opposing force
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CHAPTER OVERVIEW

6: Fundamental 5 - Entropy
6.1: Entropy
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6.1: Entropy

Define entropy
Explain the relationship between entropy and the number of microstates
Predict the sign of the entropy change for chemical and physical processes

In 1824, at the age of 28, Nicolas Léonard Sadi Carnot (Figure ) published the results of an extensive study regarding the
efficiency of steam heat engines. In a later review of Carnot’s findings, Rudolf Clausius introduced a new thermodynamic property
that relates the spontaneous heat flow accompanying a process to the temperature at which the process takes place. This new
property was expressed as the ratio of the reversible heat (q ) and the kelvin temperature (T). The term reversible process refers to
a process that takes place at such a slow rate that it is always at equilibrium and its direction can be changed (it can be “reversed”)
by an infinitesimally small change is some condition. Note that the idea of a reversible process is a formalism required to support
the development of various thermodynamic concepts; no real processes are truly reversible, rather they are classified as
irreversible.

Figure : (a) Nicholas Léonard Sadi Carnot’s research into steam-powered machinery and (b) Rudolf Clausius’s later study of
those findings led to groundbreaking discoveries about spontaneous heat flow processes.

Similar to other thermodynamic properties, this new quantity is a state function, and so its change depends only upon the initial and
final states of a system. In 1865, Clausius named this property entropy (S) and defined its change for any process as the following:

The entropy change for a real, irreversible process is then equal to that for the theoretical reversible process that involves the same
initial and final states.

Entropy and Microstates 

Following the work of Carnot and Clausius, Ludwig Boltzmann developed a molecular-scale statistical model that related the
entropy of a system to the number of microstates possible for the system. A microstate is a specific configuration of the locations
and energies of the atoms or molecules that comprise a system like the following:

Here  is the Boltzmann constant and has a value of  and  is the microscopic multiplicity.

As for other state functions, the change in entropy for a process is the difference between its final ( ) and initial ( ) values:

For processes involving an increase in the number of microstates of the system, , the entropy of the system increases, 
. Conversely, processes that reduce the number of microstates in the system, , yield a decrease in system entropy,
. This molecular-scale interpretation of entropy provides a link to the probability that a process will occur as illustrated in

the next paragraphs.

Learning Objectives

6.1.2

rev

6.1.1

ΔS =
qrev

T
(6.1.1)

S = k lnW (6.1.2)

k 1.38 × J/K10−23 W

Sf Si

ΔS = −Sf Si

= k ln −k lnWf Wi

= k ln
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Figure : The sixteen microstates associated with placing four particles in two boxes are shown. The microstates are collected
into five distributions—(a), (b), (c), (d), and (e)—based on the numbers of particles in each box.

Consider the general case of a system comprised of N particles distributed among n boxes. The number of microstates possible for
such a system is n . For example, distributing four particles among two boxes will result in 2  = 16 different microstates as
illustrated in Figure . Microstates with equivalent particle arrangements (not considering individual particle identities) are
grouped together and are called distributions (sometimes called macrostates or configurations). The probability that a system will
exist with its components in a given distribution is proportional to the number of microstates within the distribution. Since entropy
increases logarithmically with the number of microstates, the most probable distribution is therefore the one of greatest entropy.

For this system, the most probable configuration is one of the six microstates associated with distribution (c) where the particles are
evenly distributed between the boxes, that is, a configuration of two particles in each box. The probability of finding the system in
this configuration is

 

The least probable configuration of the system is one in which all four particles are in one box, corresponding to distributions (a)
and (e), each with a probability of

The probability of finding all particles in only one box (either the left box or right box) is then

 

As you add more particles to the system, the number of possible microstates increases exponentially (2 ). A macroscopic
(laboratory-sized) system would typically consist of moles of particles (N ~ 10 ), and the corresponding number of microstates
would be staggeringly huge. Regardless of the number of particles in the system, however, the distributions in which roughly equal
numbers of particles are found in each box are always the most probable configurations.

The most probable distribution is therefore the one of greatest entropy.
The previous description of an ideal gas expanding into a vacuum is a macroscopic example of this particle-in-a-box model. For
this system, the most probable distribution is confirmed to be the one in which the matter is most uniformly dispersed or distributed
between the two flasks. The spontaneous process whereby the gas contained initially in one flask expands to fill both flasks equally
therefore yields an increase in entropy for the system.

6.1.2
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Figure : This shows a microstate model describing the flow of heat from a hot object to a cold object. (a) Before the heat flow
occurs, the object comprised of particles A and B contains both units of energy and as represented by a distribution of three
microstates. (b) If the heat flow results in an even dispersal of energy (one energy unit transferred), a distribution of four
microstates results. (c) If both energy units are transferred, the resulting distribution has three microstates.

A similar approach may be used to describe the spontaneous flow of heat. Consider a system consisting of two objects, each
containing two particles, and two units of energy (represented as “*”) in Figure . The hot object is comprised of particles A
and B and initially contains both energy units. The cold object is comprised of particles C and D, which initially has no energy
units. Distribution (a) shows the three microstates possible for the initial state of the system, with both units of energy contained
within the hot object. If one of the two energy units is transferred, the result is distribution (b) consisting of four microstates. If both
energy units are transferred, the result is distribution (c) consisting of three microstates. And so, we may describe this system by a
total of ten microstates. The probability that the heat does not flow when the two objects are brought into contact, that is, that the
system remains in distribution (a), is . More likely is the flow of heat to yield one of the other two distribution, the combined
probability being . The most likely result is the flow of heat to yield the uniform dispersal of energy represented by distribution
(b), the probability of this configuration being . As for the previous example of matter dispersal, extrapolating this treatment to
macroscopic collections of particles dramatically increases the probability of the uniform distribution relative to the other
distributions. This supports the common observation that placing hot and cold objects in contact results in spontaneous heat flow
that ultimately equalizes the objects’ temperatures. And, again, this spontaneous process is also characterized by an increase in
system entropy.

Consider the system shown here. What is the change in entropy for a process that converts the system from distribution (a) to
(c)?

Solution

We are interested in the following change:

The initial number of microstates is one, the final six:

The sign of this result is consistent with expectation; since there are more microstates possible for the final state than for the
initial state, the change in entropy should be positive.

6.1.3
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Example : Determination of ΔS6.1.1

ΔS = k ln
Wc

Wa

= 1.38 × J/K×ln10−23 6

1

= 2.47 × J/K10−23
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Consider the system shown in Figure . What is the change in entropy for the process where all the energy is transferred
from the hot object (AB) to the cold object (CD)?

Answer

0 J/K

Predicting the Sign of ΔS 
The relationships between entropy, microstates, and matter/energy dispersal described previously allow us to make generalizations
regarding the relative entropies of substances and to predict the sign of entropy changes for chemical and physical processes.
Consider the phase changes illustrated in Figure . In the solid phase, the atoms or molecules are restricted to nearly fixed
positions with respect to each other and are capable of only modest oscillations about these positions. With essentially fixed
locations for the system’s component particles, the number of microstates is relatively small. In the liquid phase, the atoms or
molecules are free to move over and around each other, though they remain in relatively close proximity to one another. This
increased freedom of motion results in a greater variation in possible particle locations, so the number of microstates is
correspondingly greater than for the solid. As a result, S  > S  and the process of converting a substance from solid to liquid
(melting) is characterized by an increase in entropy, ΔS > 0. By the same logic, the reciprocal process (freezing) exhibits a decrease
in entropy, ΔS < 0.

Figure : The entropy of a substance increases (ΔS > 0) as it transforms from a relatively ordered solid, to a less-ordered liquid,
and then to a still less-ordered gas. The entropy decreases (ΔS < 0) as the substance transforms from a gas to a liquid and then to a
solid.

Now consider the vapor or gas phase. The atoms or molecules occupy a much greater volume than in the liquid phase; therefore
each atom or molecule can be found in many more locations than in the liquid (or solid) phase. Consequently, for any substance,
S  > S  > S , and the processes of vaporization and sublimation likewise involve increases in entropy, ΔS > 0. Likewise, the
reciprocal phase transitions, condensation and deposition, involve decreases in entropy, ΔS < 0.

According to kinetic-molecular theory, the temperature of a substance is proportional to the average kinetic energy of its particles.
Raising the temperature of a substance will result in more extensive vibrations of the particles in solids and more rapid translations
of the particles in liquids and gases. At higher temperatures, the distribution of kinetic energies among the atoms or molecules of
the substance is also broader (more dispersed) than at lower temperatures. Thus, the entropy for any substance increases with
temperature (Figure  ).

Exercise 6.1.1

6.1.3

6.1.4

liquid solid

6.1.4

gas liquid solid

6.1.5
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Figure : Entropy increases as the temperature of a substance is raised, which corresponds to the greater spread of kinetic
energies. When a substance melts or vaporizes, it experiences a significant increase in entropy.

The entropy of a substance is influenced by structure of the particles (atoms or molecules) that comprise the substance. With regard
to atomic substances, heavier atoms possess greater entropy at a given temperature than lighter atoms, which is a consequence of
the relation between a particle’s mass and the spacing of quantized translational energy levels (which is a topic beyond the scope of
our treatment). For molecules, greater numbers of atoms (regardless of their masses) increase the ways in which the molecules can
vibrate and thus the number of possible microstates and the system entropy.

Finally, variations in the types of particles affects the entropy of a system. Compared to a pure substance, in which all particles are
identical, the entropy of a mixture of two or more different particle types is greater. This is because of the additional orientations
and interactions that are possible in a system comprised of nonidentical components. For example, when a solid dissolves in a
liquid, the particles of the solid experience both a greater freedom of motion and additional interactions with the solvent particles.
This corresponds to a more uniform dispersal of matter and energy and a greater number of microstates. The process of dissolution
therefore involves an increase in entropy, ΔS > 0.

Considering the various factors that affect entropy allows us to make informed predictions of the sign of ΔS for various chemical
and physical processes as illustrated in Example .

Predict the sign of the entropy change for the following processes. Indicate the reason for each of your predictions.

a. One mole liquid water at room temperature  one mole liquid water at 50 °C
b. 

c. 

d. 

Solution

a. positive, temperature increases
b. negative, reduction in the number of ions (particles) in solution, decreased dispersal of matter
c. negative, net decrease in the amount of gaseous species
d. positive, phase transition from solid to liquid, net increase in dispersal of matter

Predict the sign of the enthalpy change for the following processes. Give a reason for your prediction.

a. 
b. the freezing of liquid water
c. 
d. 

Answer a

6.1.5

Example : Predicting the Sign of ∆S6.1.2

⟶

(aq) + (aq)⟶ AgCl(s)Ag+ Cl−

(l) + (g)⟶ 6 (g) +3 O(l)C6H6

15

2
O2 CO2 H2

(s)⟶ (l)NH3 NH3

Exercise 6.1.2

(s)⟶ (aq) + (aq)NaNO3 Na+ NO−
3

(s)⟶ (g)CO2 CO2

CaCO(s)⟶ CaO(s) + (g)CO2
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Positive; The solid dissolves to give an increase of mobile ions in solution.

Answer b

Negative; The liquid becomes a more ordered solid.

Answer c

Positive; The relatively ordered solid becomes a gas

Answer d

Positive; There is a net production of one mole of gas.

Contributors and Attributions 

Summary 
Entropy ( ) is a state function that can be related to the number of microstates for a system (the number of ways the system can be
arranged) and to the ratio of reversible heat to kelvin temperature. It may be interpreted as a measure of the dispersal or distribution
of matter and/or energy in a system, and it is often described as representing the “disorder” of the system. For a given substance, 

 in a given physical state at a given temperature, entropy is typically greater for heavier atoms or more
complex molecules. Entropy increases when a system is heated and when solutions form. Using these guidelines, the sign of
entropy changes for some chemical reactions may be reliably predicted.

Key Equations

Glossary 

entropy (S)
state function that is a measure of the matter and/or energy dispersal within a system, determined by the number of system
microstates often described as a measure of the disorder of the system

microstate (W)
possible configuration or arrangement of matter and energy within a system

reversible process
process that takes place so slowly as to be capable of reversing direction in response to an infinitesimally small change in
conditions; hypothetical construct that can only be approximated by real processes removed

Contributors and Attributions 
Paul Flowers (University of North Carolina - Pembroke), Klaus Theopold (University of Delaware) and Richard Langley
(Stephen F. Austin State University) with contributing authors. Textbook content produced by OpenStax College is licensed
under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/85abf193-
2bd...a7ac8df6@9.110).

This page titled 6.1: Entropy is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.
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7.1: The Molecular Basis for Understanding Simple Entropy Change

Quantization of the motional energy of molecules 

Early in their discussion of kinetic-molecular theory, most general chemistry texts have a Figure of the greatly increased
distribution of molecular speeds at higher temperatures in gases than at moderate temperatures.

Figure : Generalized plot of molecules at 300 K vs. 1000K (100m/sec = 224mph) Heavier molecules have broader peaks at
both temperatures.

When the temperature of a gas is raised (by transfer of energy from the surroundings of the system), there is a great increase in the
velocity, , of many of the gas molecules (Figure ). From 1/2mv , this means that there has also been a great increase in the
translational energies of those faster moving molecules. Finally, we can see that an input of energy not only causes the gas
molecules in the system to move faster — but also to move at very many different fast speeds. (Thus, the energy in a heated system
is more dispersed, spread out in being in many separate speeds rather than more localized in fewer moderate speeds.)

A symbolic indication of the different distributions of the translational energy of each molecule of a gas on low to high energy
levels in a 36-molecule system is in Figure , with the lower temperature gas as Figure  and the higher temperature gas
as Figure .

Figure : [2A] is a distribution of gas molecules on specific energy levels at 300 K and [2B] is the same group of gas molecules
on energy levels at 1000 K.

These and later Figures in this section are symbolic because, in actuality, this small number of molecules is not enough to exhibit
thermodynamic temperature. For further simplification, rotational energies that range from zero in monatomic molecules to about
half the total translational energy of di- and tri-atomic molecules (and more for most polyatomic) at 300 K are not shown in the
Figures. If those rotational energies were included, they would constitute a set of energy levels (corresponding to a spacing of ~10

 J) each with translational energy distributions of the 36 molecules (corresponding to a spacing of ~10  J). These numbers show
why translational levels, though quantized, are considered virtually continuous compared to the separation of rotational energies.
The details of vibrational energy levels — two at moderate temperatures (on the ground state of which would be almost all the
rotational and translational levels populated by the molecules of a symbolic or real system) — can also be postponed until physical
chemistry. At this point in the first year course, depending on the instructor's preference, only a verbal description of rotational and
vibrational motions and energy level spacing need be introduced.
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By the time in the beginning course that students reach thermodynamics, five to fifteen chapters later than kinetic theory, they can
accept the concept that the total motional energies of molecules includes not just translational but also rotational and vibrational
movements (that can be sketched simply below).

Figure  and  can be viewed as prototypes of more complex diagrams of molecular energies on specific levels, with
additional higher energy levels populated (as well as prior higher energy levels more populated) when the temperature of a system
is raised. Further, students can sense that, at the same temperature as in gases, molecules in liquids move, and rotate, and vibrate
internally with the same total energy, but just do not travel as far before colliding.

A microstate is one of many arrangements of the molecular energies (i.e., ‘the molecules on each particular energy level') for the
total energy of a system. Thus, Figure  is one microstate for a system with a given energy and Figure  is a microstate
of the same system but with a greater total energy. Figure  (just a repeat of Figure , for convenience) is a different
microstate than the microstate for the same system shown in Figure ; the total energy is the same in  and , but
in Figure  the arrangement of energies has been changed because two molecules have changed their energy levels, as
indicated by the arrows.

Figure : [3A] is the same as [2A], one microstate of molecules at 300 K. [3B] is a different microstate than [3A] of the same
system of 300 K molecules — the same total energy but two molecules in [3B] having different energies than they had in the
arrangement of [3A], as indicated by the arrows.

A possible scenario for that different microstate in Figure  is that these two molecules on the second energy level collided at a
glancing angle such that one gained enough energy to be on the third energy level, while the other molecule lost the same amount
of energy and dropped down to the lowest energy level. In the light of that result of a single collision and the billions of collisions
of molecules per second in any system at room temperature, there can be a very large number of microstates even for this system of
just 36 molecules in Figures  and . (This is true despite the fact that not every collision would change the energy of the
two molecules involved, and thus not change the numbers on a given energy level. Glancing collisions could occur with no change
in the energy of either participant.) For any real system involving 6 x 10  molecules, however, the number of microstates becomes
humanly incomprehensible for any system, even though we can express it in numbers, as will now be developed.
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The quantitative entropy change in a reversible process is given by

(Irreversible processes involving temperature or volume change or mixing can be treated by calculations from incremental steps
that are reversible.) According to the Boltzmann entropy relationship,

where  is Boltzmann's constant and  or  is the count of how many microstates correspond to the Final or Initial
macrostates, respectively.

The number of microstates for a system determines the number of ways in any one of which that the total energy of a macrostate
can be at one instant. Thus, an increase in entropy means a greater number of microstates for the Final state than for the Initial. In
turn, this means that there are more choices for the arrangement of a system's total energy at any one instant, far less possibility of
localization (such as cycling back and forth between just 2 microstates), i.e., greater dispersal of the total energy of a system
because of so many possibilities.

An increase in entropy means a greater number of microstates for the Final state than for
the Initial. In turn, this means that there are more choices for the arrangement of a
system's total energy at any one instant.

Delocalization vs. Dispersal
Some instructors may prefer “delocalization” to describe the status of the total energy of a system when there are a greater
number of microstates rather than fewer, as an exact synonym for “dispersal” of energy as used here in this article for other
situations in chemical thermodynamics. The advantage of uniform use of ‘dispersal' is its correct common-meaning applicability
to examples ranging from motional energy becoming literally spread out in a larger volume to the cases of thermal energy
transfer from hot surroundings to a cooler system, as well as to distributions of molecular energies on energy levels for either of
those general cases. Students of lesser ability should be able to grasp what ‘dispersal' means in three dimensions, even though
the next steps of abstraction to what it means in energy levels and numbers of microstates may result in more of a ‘feeling' than
a preparation for physical chemistry that it can be for the more able.

Of course, dispersal of the energy of a system in terms of microstates does not mean that the energy is smeared or spread out over
microstates like peanut butter on bread! All the energy of the macrostate is always in only one microstate at one instant. It is the
possibility that the total energy of the macrostate can be in any one of so many more different arrangements of that energy at the
next instant — an increased probability that it could not be localized by returning to the same microstate — that amounts to a
greater dispersal or spreading out of energy when there are a larger number of microstates 
 
(The numbers of microstates for chemical systems above 0 K are astounding. For any substance at a temperature about 1-4 K, there
are 10  microstates (5). For a mole of water at 273.15 K, there are 10  microstates
and when it is heated to be just one degree warmer, that number is increased 10  times to 10
microstates. For comparison, an estimate of the number of atoms in the entire universe is ‘only' about 10 , while a googol,
considered a large number in mathematics, is `only' 10 .)

Summarizing, when a substance is heated, its entropy increases because the energy acquired and that previously within it can be far
more dispersed on the previous higher energy levels and on those additional high energy levels that now can be occupied. This in
turn means that there are many many more possible arrangements of the molecular energies on their energy levels than before and
thus, there is a great increase in accessible microstates for the system at higher temperatures. A concise statement would be that
when a system is heated, there are many more microstates accessible and this amounts to greater delocalization or dispersal of its
total energy. (The common comment "heating causes or favors molecular disorder" is an anthropomorphic labeling of molecular
behavior that has more flaws than utility. There is virtual chaos, so far as the distribution of energy for a system (its number of
microstates) is concerned, before as well as after heating at any temperature above 0 K and energy distribution is at the heart of the
meaning of entropy and entropy change. ) (5).
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8.1: Work
Learning Objectives

To know the relationship between energy, work, and heat.

One definition of energy is the capacity to do work. There are many kinds of work, including mechanical work, electrical work,
and work against a gravitational or a magnetic field. Here we will consider only mechanical work and focus on the work done
during changes in the pressure or the volume of a gas.

Mechanical Work 

The easiest form of work to visualize is mechanical work (Figure ), which is the energy required to move an object a distance
d when opposed by a force F, such as gravity:

with

 is work
 is opposing force
 is distance

Figure 7.4.1: One form of energy is mechanical work, the energy required to move an object of mass  a distance d when opposed
by a force , such as gravity.

Because the force (F) that opposes the action is equal to the mass (m) of the object times its acceleration ( ), Equation  can be
rewritten to:

with

 is work
 is mass

 is a acceleration, and
 is distance
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Recall from that weight is a force caused by the gravitational attraction between two masses, such as you and Earth. Hence for
works against gravity (on Earth),  can be set to . Consider the mechanical work required for you to travel from the
first floor of a building to the second. Whether you take an elevator or an escalator, trudge upstairs, or leap up the stairs two at a
time, energy is expended to overcome the opposing force of gravity. The amount of work done (w) and thus the energy required
depends on three things:

1. the height of the second floor (the distance \(d\));
2. your mass, which must be raised that distance against the downward acceleration due to gravity; and
3. your path.

Pressure-Volume (PV) Work 
To describe this pressure–volume work (  work), we will use such imaginary oddities as frictionless pistons, which involve no
component of resistance, and ideal gases, which have no attractive or repulsive interactions. Imagine, for example, an ideal gas,
confined by a frictionless piston, with internal pressure ( ) and initial volume  (Figure 7.4.2). If , the system is at
equilibrium; the piston does not move, and no work is done. If the external pressure on the piston ( ) is less than , however,
then the ideal gas inside the piston will expand, forcing the piston to perform work on its surroundings; that is, the final volume (

) will be greater than . If , then the gas will be compressed, and the surroundings will perform work on the system.

Figure 7.4.2: PV Work. Using a frictionless piston, if the external pressure is less than P  (a), the ideal gas inside the piston will
expand, forcing the piston to perform work on its surroundings. The final volume (V ) will be greater than V . Alternatively, if the
external pressure is greater than P  (b), the gas will be compressed, and the surroundings will perform work on the system.

If the piston has cross-sectional area , the external pressure exerted by the piston is, by definition, the force per unit area:

The volume of any three-dimensional object with parallel sides (such as a cylinder) is the cross-sectional area times the height (
). Rearranging to give  and defining the distance the piston moves ( ) as , we can calculate the magnitude

of the work performed by the piston by substituting into Equation 7.4.1:

a g = 9.8 m/ )s2

PV

Pint Vi =Pext Pint

Pext Pint

Vf Vi >Pext Pint

int
f i

int
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The change in the volume of the cylinder ( ) as the piston moves a distance d is , as shown in Figure 7.4.3. The
work performed is thus

The units of work obtained using this definition are correct for energy: pressure is force per unit area (newton/m ) and volume has
units of cubic meters, so

 

Figure 7.4.3: Work Performed with a change in volume. The change in the volume (ΔV) of the cylinder housing a piston is ΔV =
AΔh as the piston moves. The work performed by the surroundings on the system as the piston moves inward is given by w =
P ΔV.

If we use atmospheres for P and liters for V, we obtain units of L·atm for work. These units correspond to units of energy, as shown
in the different values of the ideal gas constant R:

Thus 0.08206 L·atm = 8.314 J and 1 L·atm = 101.3 J.

Whether work is defined as having a positive sign or a negative sign is a matter of convention. Heat flow is defined from a system
to its surroundings as negative; using that same sign convention, we define work done by a system on its surroundings as having a
negative sign because it results in a transfer of energy from a system to its surroundings. This is an arbitrary convention and one
that is not universally used. Some engineering disciplines are more interested in the work done on the surroundings than in the
work done by the system and therefore use the opposite convention. Because  > 0 for an expansion, Equation 7.4.4 must be
written with a negative sign to describe PV work done by the system as negative:

The work done by a gas expanding against an external pressure is therefore negative, corresponding to work done by a system on
its surroundings. Conversely, when a gas is compressed by an external pressure, ΔV < 0 and the work is positive because work is
being done on a system by its surroundings.

Note: A Matter of Convention
Heat flow is defined from the system to its surroundings as negative
Work is defined as by the system on its surroundings as negative

Outside Links 
Gasparro, Frances P. "Remembering the sign conventions for q and w in deltaU = q - w." J. Chem. Educ. 1976: 53, 389.
Koubek, E. "PV work demonstration (TD)." J. Chem. Educ. 1980: 57, 374. '
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8.2: Gas Expansion
In Gas Expansion, we assume Ideal behavior for the two types of expansions:

Isothermal Expansion

This shows the expansion of gas at constant temperature against weight of an object's mass (m) on the piston. Temperature is held
constant, therefore the change in energy is zero (U=0). So, the heat absorbed by the gas equals the work done by the ideal gas on its
surroundings. Enthalpy change is also equal to zero because the change in energy zero and the pressure and volume is constant.

Isothermal Irreversible/Reversible process

The graphs clearly show work done (area under the curve) is greater in a reversible process.

Adiabatic Expansions

Adiabatic means when no heat exchange occurs during expansion between system and surrounding and the temperature is no
longer held constant.

Reversible Adiabatic Expansion

This equation shows the relationship between PV and is useful only when it applies to ideal gas and reversible adiabatic change.
The equation is very similar to Boyle's law except it has exponent (gamma) due to change in temperature. The work done by an
adiabatic reversible process is given by the following equation:

where T  is less than T . The internal energy of the system decreases as the gas expands. The work can be calculated in two ways
because the Internal energy (U) does not depend on path. The graph shows that less work is done in an adiabatic reversible process
than an Isothermal reversible process.

2 1
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9.1: Partial Differentiation
The development of thermodynamics would have been unthinkable without calculus in more than one dimension (multivariate
calculus) and partial differentiation is essential to the theory.

'Active' Variables 
When applying partial differentiation it is very important to keep in mind, which symbol is the variable and which ones are the
constants. Mathematicians usually write the variable as x or y and the constants as a, b or c but in Physical Chemistry the symbols
are different. It sometimes helps to replace the symbols in your mind.

For example the van der Waals equation can be written as:

Suppose we must compute the partial differential

In this case molar volume is the variable 'x' and the pressure is the function , the rest is just constants, so Equation  can be
rewritten in the form

When calculating

should look at Equation  as:

The active variable 'x' is now the temperature T and all the rest is just constants. It is useful to train your eye to pick out the one
active one from all the inactive ones. Use highlighters, underline, rewrite, do whatever helps you best.

9.1: Partial Differentiation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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9.2: Functions of Two Independent Variables
A (real) function of one variable, , defines a curve in the plane. The first derivative of a function of one variable can be
interpreted graphically as the slope of a tangent line, and dynamically as the rate of change of the function with respect to the
variable Figure .

Figure : Geometric interpretation of a derivative. (CC BY-NC-SA; Marcia Levitus)

A function of two independent variables, , defines a surface in three-dimensional space. For a function of two or more
variables, there are as many independent first derivatives as there are independent variables. For example, we can differentiate the
function  with respect to  keeping  constant. This derivative represents the slope of the tangent line shown in Figure 

. We can also take the derivative with respect to  keeping  constant, as shown in Figure .

Figure : Geometric interpretation of a partial derivative. (CC BY-NC-SA; Marcia Levitus)

For example, let’s consider the function . We can take the derivative of this function with respect to  treating 
 as a constant. The result is . This is the partial derivative of the function with respect to , and it is written:

where the small subscripts indicate which variables are held constant. Analogously, the partial derivate of  with respect to  is:

We can extend these ideas to functions of more than two variables. For example, consider the function . We can
differentiate the function with respect to  keeping  and  constant to obtain:

y = f(x)

9.2.1

9.2.1

z = f(x, y)

z = f(x, y) x y

9.2.2A y x 9.2.2B

9.2.2

z = 3 − +2xyx2 y2 x

y 6x +2y x

= 6x +2y( )
∂z

∂x y

z y

= 2x −2y( )
∂z

∂y x

f(x, y, z) = y/zx2

x y z

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/238249?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/09%3A_Fundamental_7_-_Variable_Changes/9.02%3A_Functions_of_Two_Independent_Variables
https://sms.asu.edu/marcia_levitus
https://sms.asu.edu/marcia_levitus


9.2.2 https://chem.libretexts.org/@go/page/238249

We can also differentiate the function with respect to  keeping  and  constant:

and differentiate the function with respect to  keeping  and  constant:

Functions of two or more variables can be differentiated partially more than once with respect to either variable while holding the
other constant to yield second and higher derivatives. For example, the function  can be differentiated with
respect to  two times to obtain:

We can also differentiate with respect to  first and  second:

Check the videos below if you are learning this for the first time, or if you feel you need to refresh the concept of partial
derivatives.

Partial derivatives: http://patrickjmt.com/derivatives-finding-partial-derivatives (don’t get confused by the different
notation!)
Partial derivatives: http://www.youtube.com/watch?v=vxJR5graUfI
Higher order partial derivatives: http://www.youtube.com/watch?v=3itjTS2Y9oE

If a function of two or more variables and its derivatives are single-valued and continuous, a property normally attributed to
physical variables, then the mixed partial second derivatives are equal (Euler reciprocity):

For example, for :

Another useful property of the partial derivatives is the so-called reciprocal identity, which holds when the same variables are held
constant in the two derivatives:

For example, for :
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Finally, let’s mention the cycle rule. For a function :

We can construct other versions as follows:

Figure : The chain rule: Start with any partial derivative, and follow the pattern to construct the rest (CC BY-NC-SA; Marcia
Levitus)

For example, for :

Before discussing partial derivatives any further, let’s introduce a few physicochemical concepts to put our discussion in context.

This page titled 9.2: Functions of Two Independent Variables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform.

8.1: Functions of Two Independent Variables by Marcia Levitus is licensed CC BY-NC-SA 4.0. Original source:
https://www.public.asu.edu/~mlevitus/chm240/book.pdf.
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9.3: The Total Differential
In Chapter 8 we learned that partial derivatives indicate how the dependent variable changes with one particular independent
variable keeping the others fixed. In the context of an equation of state , the partial derivative of  with respect to 

 at constant  and  is:

and physically represents how the pressure varies as we change the volume at constant temperature and constant .

The partial derivative of  with respect to  at constant  and  is:

and physically represents how the pressure varies as we change the temperature at constant volume and constant .

What happens with the dependent variable (in this case ) if we change two or more independent variables simultaneously? For an
infinitesimal change in volume and temperature, we can write the change in pressure as:

Equation  is called the total differential of P, and it simply states that the change in  is the sum of the individual
contributions due to the change in  at constant  and the change in  at constant . This equation is true for infinitesimal
changes. If the changes are not infinitesimal we will integrate this expression to calculate the change in .[differentials_position1]

Let’s now consider the volume of a fluid, which is a function of pressure, temperature and the number of moles: .
The total differential of , by definition, is:

If we want to calculate the change in volume in a fluid upon small changes in  and , we could use:

Of course, if we know the function , we could also calculate  as , where the final and initial volumes
are calculated using the final and initial values of  and . This seems easy, so why do we need to bother with Equation ?
The reason is that sometimes we can measure the partial derivatives experimentally, but we do not have an equation of the type 

 to use. For example, the following quantities are accessible experimentally and tabulated for different fluids and
materials (Fig. [fig:diff_tables]):

 (coefficient of thermal expansion)

 (isothermal compressibility)[differentials:compressibility]

 (molar volume)

Using these definitions, Equation  becomes:

You can find tables with experimentally determined values of  and  under different conditions, which you can use to calculate
the changes in . Again, as we will see later in this chapter, this equation will need to be integrated if the changes are not small. In
any case, the point is that you may have access to information about the derivatives of the function, but not to the function itself (in
this case  as a function of ).

In general, for a function , we define the total differential of  as:
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Calculate the total differential of the function .

Solution
By definition, the total differential is:

For the function given in the problem,

and

and therefore,

du = d + d +. . . + d( )
∂u

∂x1 ...x2 xn

x1 ( )
∂u

∂x2 , ...x1 x3 xn

x2 ( )
∂u
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xn (9.3.5)
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Figure : Tables of isothermal compressibilities and expansion coefficients of different fluids (top) and sodium chloride
solutions (bottom). Source: CRC Handbook of Physics and Chemistry (CC BY-NC-SA; Marcia Levitus)

Want to see more examples?

Example 1: http://www.youtube.com/watch?v=z0TxZ0EHzIg Notice that she calls it ’the differential’, but I prefer ’the total
differential’.

This page titled 9.3: The Total Differential is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia
Levitus via source content that was edited to the style and standards of the LibreTexts platform.

9.1: The Total Differential by Marcia Levitus is licensed CC BY-NC-SA 4.0. Original source:
https://www.public.asu.edu/~mlevitus/chm240/book.pdf.
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CHAPTER OVERVIEW
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10.1: Exact Differentials
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10.1: Exact Differentials
In general, if a differential can be expressed as

the differential will be an exact differential if it follows the Euler relation

In order to illustrate this concept, consider  using the ideal gas law.

The total differential of  can be written

Example : Euler Relation
Does Equation  follow the Euler relation (Equation )?

Solution

Let’s confirm!

 is, in fact, an exact differential.

The differentials of all of the thermodynamic functions that are state functions will be exact. Heat and work, which are path
functions, are not exact differential and  and  are called inexact differentials instead.

Contributors and Attributions 
Patrick E. Fleming (Department of Chemistry and Biochemistry; California State University, East Bay)

This page titled 10.1: Exact Differentials is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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11.1: Internal Energy
The internal energy of a system is identified with the random, disordered motion of molecules; the total (internal) energy in a
system includes potential and kinetic energy. This is contrast to external energy which is a function of the sample with respect to
the outside environment (e.g. kinetic energy if the sample is moving or potential energy if the sample is at a height from the ground
etc). The symbol for Internal Energy Change is .

Energy on a smaller scale

Internal energy includes energy on a microscopic scale
It is the sum of all the microscopic energies such as:

1. translational kinetic energy
2. vibrational and rotational kinetic energy
3. potential energy from intermolecular forces

Example

One gram of water at zero °Celsius compared with one gram of copper at zero °Celsius do NOT have the same internal energy because
even though their kinetic energies are equal, water has a much higher potential energy causing its internal energy to be much greater
than the copper's internal energy.

Internal Energy Change Equations 

The first law of thermodynamics states:

where  is heat and  is work.

An isolated system cannot exchange heat or work with its surroundings making the change in internal energy equal to zero:

Therefore, in an isolated system:

Energy is Conserved 

The signs of internal energy 
Energy entering the system is POSITIVE (+), meaning heat is absorbed, q>0. Work is thus done on the system, w>0
Energy leaving the system is NEGATIVE (-), meaning heat is given off by the system, q<0 and work is done by the system,
w<0

ΔU

dU = dq+dw (11.1.1)

dq dw

d = 0Uisolated system (11.1.2)

dq = −dw (11.1.3)

d = d +dUisolated system Usystem Usurroundings (11.1.4)

d = −dUsystem Usurroundings (11.1.5)
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Quick Notes 
A system contains ONLY Internal Energy
A system does NOT contain energy in the form of heat or work
Heat and work only exist during a change in the system; they are path functions
Internal energy is a state function

Outside Links 
Levine, Ira N. "Thermodynamic internal energy of an ideal gas of rigid rotors." J. Chem. Educ. 1985: 62, 53.

Contributors 
Lorraine Alborzfar (UCD)
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11.2: Total Differential of the Internal Energy

One Component, Closed Systems 

Consider a closed system of one chemical component (e.g., a pure substance) in a single homogeneous phase. The only kind of
work is expansion work, with  as the work variable. This kind of system has two independent variables. During a reversible
process in this system, the heat is , the work is , and an infinitesimal internal energy change is given by

The appearance of the intensive variables  and  in  implies, of course, that the temperature and pressure are uniform
throughout the system during the process. If they were not uniform, the phase would not be homogeneous and there would be more
than two independent variables. The temperature and pressure are strictly uniform only if the process is reversible; it is not
necessary to include “reversible” as one of the conditions of validity.

A real process approaches a reversible process in the limit of infinite slowness. For all practical purposes, therefore, we may apply 
 to a process obeying the conditions of validity and taking place so slowly that the temperature and pressure remain

essentially uniform—that is, for a process in which the system stays very close to thermal and mechanical equilibrium.

Because the system under consideration has two independent variables,  is an expression for the total differential of  with 
 and  as the independent variables. In general, an expression for the differential  of a state function  is a total differential if

1. it is a valid expression for  consistent with the physical nature of the system and any conditions and constraints;
2. it is a sum with the same number of terms as the number of independent variables;
3. each term of the sum is a function of state functions multiplied by the differential of one of the independent variables.

Note that the work coordinate of any kind of dissipative work—work without a reversible limit—cannot appear in the expression
for a total differential, because it is not a state function.

We may identify the coefficient of each term in an expression for the total differential of a state function as a partial derivative of
the function. We identify the coefficients on the right side of  as follows:

One Component, Open Systems 
Now let us consider some of the ways a system might have more than two independent variables. Suppose the system has one
phase and one substance, with expansion work only, and is open so that the amount  of the substance can vary. Such a system has
three independent variables. Let us write the formal expression for the total differential of  with , , and  as the three
independent variables:

We have seen above that if the system is closed, the partial derivatives are  and . Since both of
these partial derivatives are for a closed system in which  is constant, they are the same as the first two partial derivatives on the
right side of .

The quantity given by the third partial derivative, , is represented by the symbol  (mu). This quantity is an intensive
state function called the chemical potential.

With these substitutions,  becomes

and this is a valid expression for the total differential of  under the given conditions.

V

dq = T dS dw = −P dV

dU = T dS −P dV (11.2.1)

T P 11.2.1

11.2.1

11.2.1 U

S V dX X

dX

11.2.1

T =( )
∂U

∂S V

(11.2.2)

−P =( )
∂U

∂V S

(11.2.3)

N

U S V N

dU = dS + dV + dn( )
∂U

∂S V,n

( )
∂U

∂V S,n

( )
∂U

∂n S,V

(11.2.4)

(∂U/∂S = T)V (∂U/∂V = −P)S

N

11.2.4

(∂U/∂N)S,V μ

11.2.4

dU = T dS −P dV +μdN (11.2.5)

U

https://libretexts.org/
https://chem.libretexts.org/@go/page/238254?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/11%3A_Fundamental_8_-_Energy_Transformations/11.02%3A_Total_Differential_of_the_Internal_Energy


11.2.2 https://chem.libretexts.org/@go/page/238254

Multiple Component, Open Systems 

If a system contains a mixture of  different substances in a single phase, and the system is open so that the amount of each
substance can vary independently, there are  independent variables and the total differential of  can be written

The coefficient  is the chemical potential of substance . We identify it as the partial derivative .
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M

2 +M U

dU = T dS −P dV + d∑
i=1

M

μi Ni (11.2.6)

μi i (∂U/∂ )Ni S,V,Nj≠i
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12.1: Reversible and Irreversible Pathways
The most common example of work in the systems discussed in this book is the work of expansion. It is also convenient to use the
work of expansion to exemplify the difference between work that is done reversibly and that which is done irreversibly. The
example of expansion against a constant external pressure is an example of an irreversible pathway. It does not mean that the gas
cannot be re-compressed. It does, however, mean that there is a definite direction of spontaneous change at all points along the
expansion.

Imagine instead a case where the expansion has no spontaneous direction of change as there is no net force push the gas to seek a
larger or smaller volume. The only way this is possible is if the pressure of the expanding gas is the same as the external pressure
resisting the expansion at all points along the expansion. With no net force pushing the change in one direction or the other, the
change is said to be reversible or to occur reversibly. The work of a reversible expansion of an ideal gas is fairly easy to calculate.

If the gas expands reversibly, the external pressure ( ) can be replaced by a single value ( ) which represents both the internal
pressure of the gas and the external pressure.

or

But now that the external pressure is not constant,  cannot be extracted from the integral. Fortunately, however, there is a simple
relationship that tells us how  changes with changing  – the equation of state! If the gas is assumed to be an ideal gas

Constant Temperature (Isothermal) Pathways 
If the temperature is held constant (so that the expansion follows an isothermal pathway) the nRT term can be extracted from the
integral.

Equation  is derived for ideal gases only; a van der Waal gas would result in a different version.

What is the work done by 1.00 mol an ideal gas expanding reversibly from a volume of 22.4 L to a volume of 44.8 L at a
constant temperature of 273 K?

Solution:

Using Equation  to calculate this

Note: A reversible expansion will always require more work than an irreversible expansion (such as an expansion against a
constant external pressure) when the final states of the two expansions are the same!

Pex P

dw = −PdV (12.1.1)

w = −∫ PdV (12.1.2)

P

P V

w = −∫ PdV −∫ ( ) dV
nRT

V
(12.1.3)

w = −nRT = −nRT ln( )∫
V2

V1

dV

V

V1

V2
(12.1.4)

12.1.4

Example : Gas Expansion12.1.1

12.1.4

w = −(1.00 )(8.314 ) (273 ) ln( )mol
J

mol K
K

44.8 L

22.4 L

= −1570 J = 1.57 kJ
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The work of expansion can be depicted graphically as the area under the P-V curve depicting the expansion. Comparing examples 
 and , for which the initial and final volumes were the same, and the constant external pressure of the irreversible

expansion was the same as the final pressure of the reversible expansion, such a graph looks as follows.

The work is depicted as the shaded portion of the graph. It is clear to see that the reversible expansion (the work for which is
shaded in both light and dark gray) exceeds that of the irreversible expansion (shaded in dark gray only) due to the changing
pressure of the reversible expansion. In general, it will always be the case that the work generated by a reversible pathway
connecting initial and final states will be the maximum work possible for the expansion.

It should be noted (although it will be proven in a later chapter) that  for an isothermal reversible process involving only P-V
work is 0 for an ideal gas. This is true because the internal energy, U, is a measure of a system’s capacity to convert energy into
work. In order to do this, the system must somehow store that energy. The only mode in which an ideal gas can store this energy is
in the translational kinetic energy of the molecules (otherwise, molecular collisions would not need to be elastic, which as you
recall, was a postulate of the kinetic molecular theory!) And since the average kinetic energy is a function only of the temperature,
it (and therefore ) can only change if there is a change in temperature. Hence, for any isothermal process for an ideal gas, 

. And, perhaps just as usefully, for an isothermal process involving an ideal gas, , as any energy that is expended
by doing work must be replaced with heat, lest the system temperature drop.

Constant Volume (Isochoric) Pathways 
One common pathway which processes can follow is that of constant volume. This will happen if the volume of a sample is
constrained by a great enough force that it simply cannot change. It is not uncommon to encounter such conditions with gases
(since they are highly compressible anyhow) and also in geological formations, where the tremendous weight of a large mountain
may force any processes occurring under it to happen at constant volume.

If reversible changes in which the only work that can be done is that of expansion (so-called P-V work) are considered, the
following important result is obtained:

However,  since the volume is constant! As such,  can be expressed only in terms of the heat that flows into or out of
the system at constant volume

Recall that  can be found by

This suggests an important definition for the constant volume heat capacity ( ) which is

When Equation  is integrated the

12.1.1 3.1.2

ΔU

U

ΔU = 0 q = −w

dU = dq+dw = dq−PdV (12.1.5)

dV = 0 dU

dU = dqv (12.1.6)

dq

dq = dT = C dt
dq

∂T
(12.1.7)

CV

≡CV ( )
∂U

∂T V

(12.1.8)

12.1.7
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Consider 1.00 mol of an ideal gas with  that undergoes a temperature change from 125 K to 255 K at a constant
volume of 10.0 L. Calculate , , and  for this change.

Solution:

Since this is a constant volume process

Equation  is applicable for an isochoric process,

Assuming  is independent of temperature:

Since this a constant volume pathway,

Constant Pressure (Isobaric) Pathways 
Most laboratory-based chemistry occurs at constant pressure. Specifically, it is exposed to the constant air pressure of the
laboratory, glove box, or other container in which reactions are taking place. For constant pressure changes, it is convenient to
define a new thermodynamic quantity called enthalpy.

or

For reversible changes at constant pressure ( ) for which only P-V work is done

And just as in the case of constant volume changes, this implies an important definition for the constant pressure heat capacity

q = n dt∫
T2

T1

CV (12.1.9)

Example : Isochoric Pathway12.1.2

= 3/2RCV

ΔU q w

w = 0

12.1.9

q = n dt∫
T2

T1

CV

CV

q = n dtCV ∫
T2

T1

= n ( − )CV T2 T1

= (1.00 mol)( 8.314 ) (255 K−125 K)
3

2

J

molK

= 1620 J = 1.62 kJ

ΔU = q+ w

= 1.62 kJ

H ≡ U +pV

dH ≡ dU +d(pV )

= dU +pdV +V dp

dp = 0

dH = dq+dw+pdV +V dp

= dq− + +pdV pdV V dp
0

= dq

(12.1.10)

(12.1.11)

(12.1.12)

≡Cp ( )
∂H

∂T p

(12.1.13)
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Consider 1.00 mol of an ideal gas with  that changes temperature change from 125 K to 255 K at a constant
pressure of 10.0 atm. Calculate , , , and  for this change.

Solution:

assuming  is independent of temperature:

So via Equation  (specifically the integrated version of it using differences instead of differentials)

Now that  and  are determined, then work can be calculated

It makes sense that  is negative since this process is an gas expansion.

Calculate , , , and  for 1.00 mol of an ideal gas expanding reversibly and isothermally at 273 K from a volume of
22.4 L and a pressure of 1.00 atm to a volume of 44.8 L and a pressure of 0.500 atm.

Solution

Since this is an isothermal expansion, Equation  is applicable

Since this is an isothermal expansion

where  due to Boyle’s Law!

Example : Isobaric Gas Expansion12.1.3

= 5/2RCp

ΔU ΔH q w

q = n dT∫
T2

T1

Cp

Cp

q = n dTCp ∫
T2

T1

= n ( − )Cp T2 T1

= (1.00 mol)( 8.314 ) (255 K−125 K) = 2700 J = 1.62 kJ
5

2

J

molK

12.1.12

ΔH = q = 1.62 kJ

ΔU = ΔH −Δ(pV )

= ΔH −nRΔT

= 2700 J −(1.00 mol)(8.314 ) (255 K−125 K)
J

molK

= 1620 J = 1.62 kJ

ΔU q

w = ΔU −q

= 1.62 kJ −2.70 kJ = −1.08 kJ

w

Example : Isothermal Gas Expansion12.1.4

q w ΔU ΔH

12.1.4

w

ΔU

q

= −nRT ln
V2

V1

= (1.00 mol)(8.314 ) (255 K) ln( )
J

molK

44.8 L

22.4 L

= 1572 J = 1.57 kJ

= q+w

= q+1.57 KJ

= 0

= −1.57 kJ

ΔH = ΔU +Δ(pV ) = 0 +0

Δ(pV ) = 0
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Adiabatic Pathways 

An adiabatic pathway is defined as one in which no heat is transferred ( ). Under these circumstances, if an ideal gas expands,
it is doing work ( ) against the surroundings (provided the external pressure is not zero!) and as such the internal energy must
drop ( ). And since  is negative, there must also be a decrease in the temperature ( ). How big will the decrease
in temperature be and on what will it depend? The key to answering these questions comes in the solution to how we calculate the
work done.

If the adiabatic expansion is reversible and done on an ideal gas,

and

Equating these two terms yields

Using the ideal gas law for an expression for  ( )

And rearranging to gather the temperature terms on the right and volume terms on the left yields

This expression can be integrated on the left between  and  and on the right between  and . Assuming that  is
independent of temperature over the range of integration, it can be pulled from the integrand in the term on the right.

The result is

or

or

or

Once  is known, it is easy to calculate ,  and .

1.00 mol of an ideal gas (C  = 3/2 R) initially occupies 22.4 L at 273 K. The gas expands adiabatically and reversibly to a final
volume of 44.8 L. Calculate , , , , and  for the expansion.

Solution

q = 0

w < 0

ΔU < 0 ΔU ΔT < 0

dw = −PdV (12.1.14)

dw = dU = n dTCv (12.1.15)

−PdV = n dTCv (12.1.16)

P P = nRT/V

− dV = n dT
nRT

V
Cv (12.1.17)

= −
dV

V

CV

R

dT

T
(12.1.18)

V1 V2 T1 T2 /nRCv

= −∫
V2

V1

dV

V

CV

R
∫

T2

T1

dT

T
(12.1.19)

ln( ) = − ln( )
V2

V1

CV

R

T2

T1

(12.1.20)

( ) =
V2

V1
( )
T2

T1

−
CV

R

(12.1.21)

=V1T

CV

R

1 V2T

CV

R

2 (12.1.22)

=T1( )
V1

V2

−
R

CV

T2 (12.1.23)

ΔT w ΔU ΔH

Example :12.1.5

V
ΔT q w ΔU ΔH
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Since the pathway is adiabatic:

Using Equation 

So

For calculating work, we integrate Equation  to get

The following table shows recipes for calculating , , , and  for an ideal gas undergoing a reversible change along the
specified pathway.

Table 3.2.1: Thermodynamics Properties for a Reversible Expansion or Compression

Pathway

Isothermal 0 0

Isochoric 0

Isobaric

Adiabatic 0

Contributors and Attributions 

Patrick E. Fleming (Department of Chemistry and Biochemistry; California State University, East Bay)

This page titled 12.1: Reversible and Irreversible Pathways is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.

q = 0

12.1.23

T2 = T1( )
V1

V2

−
R

C
V

= (273 K)( )
22.4 L

44.8 L

2/3

= 172 K

ΔT = 172 K−273 K = −101 K

12.1.15

w = ΔU = n ΔTCv

= (1.00 mol)( 8.314 ) (−101 K)
3

2

J

molK

= 1.260 kJ

ΔH = ΔU +nRΔT

= −1260 J +(1.00 mol)( 8.314 ) (−101 K)
3

2

J

molK

= −2100 J

q w ΔU ΔH

q w ΔU ΔH

nRT ln( / )V2 V1 −nRT ln( / )V2 V1

ΔTCV ΔTCV ΔT +VΔpCV

ΔTCp −pΔV ΔT − pΔVCp ΔTCp

ΔTCV ΔTCV ΔTCp
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13.1: Carnot Cycle
In the early 19th century, steam engines came to play an increasingly important role in industry and transportation. However, a
systematic set of theories of the conversion of thermal energy to motive power by steam engines had not yet been developed.
Nicolas Léonard Sadi Carnot (1796-1832), a French military engineer, published Reflections on the Motive Power of Fire in 1824.
The book proposed a generalized theory of heat engines, as well as an idealized model of a thermodynamic system for a heat
engine that is now known as the Carnot cycle. Carnot developed the foundation of the second law of thermodynamics, and is often
described as the "Father of thermodynamics."

The Carnot Cycle
The Carnot cycle consists of the following four processes:

I. A reversible isothermal gas expansion process. In this process, the ideal gas in the system absorbs  amount heat from a heat
source at a high temperature , expands and does work on surroundings.

II. A reversible adiabatic gas expansion process. In this process, the system is thermally insulated. The gas continues to expand
and do work on surroundings, which causes the system to cool to a lower temperature, .

III. A reversible isothermal gas compression process. In this process, surroundings do work to the gas at , and causes a loss of
heat, .

IV. A reversible adiabatic gas compression process. In this process, the system is thermally insulated. Surroundings continue to do
work to the gas, which causes the temperature to rise back to .

Figure : An ideal gas-piston model of the Carnot cycle. (CC BY 4.0; XiSen Hou via Hope College)

P-V Diagram

The P-V diagram of the Carnot cycle is shown in Figure . In isothermal processes I and III, ∆U=0 because ∆T=0. In
adiabatic processes II and IV, q=0. Work, heat, ∆U, and ∆H of each process in the Carnot cycle are summarized in Table .

Figure : A P-V diagram of the Carnot Cycle.
Table : Work, heat, ∆U, and ∆H in the P-V diagram of the Carnot Cycle.
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Tlow
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qout
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Process w q ΔU ΔHProcess w q ΔU ΔH

I 0 0

II 0

III 0 0

IV 0

Full Cycle 0 0

T-S Diagram

The T-S diagram of the Carnot cycle is shown in Figure . In isothermal processes I and III, ∆T=0. In adiabatic processes II
and IV, ∆S=0 because dq=0. ∆T and ∆S of each process in the Carnot cycle are shown in Table .

Figure : A T-S diagram of the Carnot Cycle. (CC BY 4.0; XiSen Hou via Hope College)
Table : Work, heat, and ∆U in the T-S diagram of the Carnot Cycle.

Process ΔT ΔS

I 0

II 0

III 0

IV 0

Full Cycle 0 0

Efficiency
The Carnot cycle is the most efficient engine possible based on the assumption of the absence of incidental wasteful processes such
as friction, and the assumption of no conduction of heat between different parts of the engine at different temperatures. The
efficiency of the carnot engine is defined as the ratio of the energy output to the energy input.
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Since processes II (2-3) and IV (4-1) are adiabatic,

and

And since T  = T  and T  = T ,

Therefore,

Summary
The Carnot cycle has the greatest efficiency possible of an engine (although other cycles have the same efficiency) based on the
assumption of the absence of incidental wasteful processes such as friction, and the assumption of no conduction of heat between
different parts of the engine at different temperatures.

Problems
1. You are now operating a Carnot engine at 40% efficiency, which exhausts heat into a heat sink at 298 K. If you want to increase

the efficiency of the engine to 65%, to what temperature would you have to raise the heat reservoir?
2. A Carnot engine absorbed 1.0 kJ of heat at 300 K, and exhausted 400 J of heat at the end of the cycle. What is the temperature

at the end of the cycle?
3. An indoor heater operating on the Carnot cycle is warming the house up at a rate of 30 kJ/s to maintain the indoor temperature

at 72 ºF. What is the power operating the heater if the outdoor temperature is 30 ºF?
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13.2: Entropy
In addition to learning that the efficiency of a Carnot engine depends only on the high and low temperatures, more interesting
things can be derived through the exploration of this system. For example, consider the total heat transferred in the cycle:

Making the substitution

the total heat flow can be seen to be given by

It is clear that the two terms do not have the same magnitude, unless . This is sufficient to show that  is not a state
function, since it’s net change around a closed cycle is not zero (as any value of a state function must be.) However, consider what
happens when the sum of  is considered:

This is the behavior expected for a state function! It leads to the definition of entropy in differential form,

In general,  will be larger than  (since the reversible pathway defines the maximum heat flow.) So, it is easy to calculate
entropy changes, as one needs only to define a reversible pathway that connects the initial and final states, and then integrate 
over that pathway. And since  is defined using  for a reversible pathway,  is independent of the actual path a system
follows to undergo a change.
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14.1: Helmholtz Energy
We have answered the question: what is entropy, but we still do not have a general criterion for spontaneity, just one that works in
an isolated system. We will consider what happens when we hold volume and temperature constant. As discussed previously, the
expression for the change in internal energy:

is only valid for reversible changes. Let us consider a spontaneous change. If we assume constant volume, the  work term

drops out. From the Clausius inequality  we get:

Consider a new state function, Helmholtz energy, A:

If we also set  constant, we see that Equation  becomes

This means that the Helmholtz energy, , is a decreasing quantity for spontaneous processes (regardless of isolation!) when  and
 are held constant.  becomes constant once a reversible equilibrium is reached.

A good example is the case of the mixing of two gases. Let's assume isothermal conditions and keep the total volume constant.
For this process,  is zero (isothermal, ideal) but the

This means that

This is a negative quantity because the mole ratios are smaller than unity. So yes this spontaneous process has a negative .
If we look at  we should see that the latter term is the same thing as  So we have :

This is however the maximal work that a system is able to produce and so the Helmholtz energy is a direct measure of how
much work one can get out of a system.  is therefore often called the Helmholtz free energy. Interestingly this work cannot
be volume work as volume is constant. so it stands for the maximal other work (e.g. electrical work) that can be obtained under
the unlikely condition that volume is constant.

Natural variables of A

Because  we can write

The natural variables of  are volume  and temperature .

dU = TdS−PdV

−PdV

dS >
δq

T

dU ≤ TdS
constant V

dU −TdS ≤ 0
constant V

A ≡ U −TS

dA = dU −TdS−SdT (14.1.1)

T 14.1.1

dA = dU −TdS ≤ 0
constant V and T

A T

V A
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15.1: Differential Forms of Fundamental Equations
The fundamental thermodynamic equations follow from five primary thermodynamic definitions and describe internal energy,
enthalpy, Helmholtz energy, and Gibbs energy in terms of their natural variables. Here they will be presented in their differential
forms.

Introduction 
The fundamental thermodynamic equations describe the thermodynamic quantities U, H, G, and A in terms of their natural
variables. The term "natural variable" simply denotes a variable that is one of the convenient variables to describe U, H, G, or A.
When considered as a whole, the four fundamental equations demonstrate how four important thermodynamic quantities depend on
variables that can be controlled and measured experimentally. Thus, they are essentially equations of state, and using the
fundamental equations, experimental data can be used to determine sought-after quantities like  or .

First Law of Thermodynamics 

The first law of thermodynamics is represented below in its differential form

where

 is the internal energy of the system,
 is heat flow of the system, and
 is the work of the system.

Recall that  is a state function, while  and  are path functions. The first law states that internal energy changes occur only as a
result of heat flow and work done.

It is assumed that w refers only to PV work, where

The Principle of Clausius 

The Principle of Clausius states that the entropy change of a system is equal to the ratio of heat flow in a reversible process to the
temperature at which the process occurs. Mathematically this is written as

where

 is the entropy of the system,
 is the heat flow of a reversible process, and

 is the temperature in Kelvin.

Internal Energy 
The fundamental thermodynamic equation for internal energy follows directly from the first law and the principle of Clausius:

we have

Since only  work is performed,

G H

dU = dq+dw (15.1.1)

U

q

w

U q w

w = −∫ PdV (15.1.2)

dS =
dqrev

T
(15.1.3)

S

qrev
T

dU = dq+dw (15.1.4)

dS =
dqrev

T
(15.1.5)

dU = TdS+dw (15.1.6)

PV

dU = TdS−PdV (15.1.7)
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The above equation is the fundamental equation for  with natural variables of entropy  and volume .

Enthalpy 

Mathematically, enthalpy is defined as

where  is enthalpy of the system, p is pressure, and V is volume. The fundamental thermodynamic equation for enthalpy follows
directly from it definition (Equation ) and the fundamental equation for internal energy (Equation ) :

Because , the enthalpy equation becomes: 

The above equation is the fundamental equation for H. The natural variables of enthalpy are S and P, entropy and pressure.

Gibbs Energy 
The mathematical description of Gibbs energy is as follows

where  is the Gibbs energy of the system. The fundamental thermodynamic equation for Gibbs Energy follows directly from its
definition  and the fundamental equation for enthalpy :

Since ,

The above equation is the fundamental equation for G. The natural variables of Gibbs energy are P and T, pressure and
temperature.

Helmholtz Energy 
Mathematically, Helmholtz energy is defined as

where  is the Helmholtz energy of the system, which sometimes also written as the symbol . The fundamental thermodynamic
equation for Helmholtz energy follows directly from its definition (Equation ) and the fundamental equation for internal
energy (Equation ):

Since ,

The above equation is the fundamental equation for A with natural variables of  and .

U S V

H = U +PV (15.1.8)

H

15.1.8 15.1.7

dH = dU +d(PV ) (15.1.9)

dH = dU +PdV +V dP (15.1.10)

dU = TdS−PdV

dH = TdS−PdV +PdV +V dP (15.1.11)

dH = TdS+V dP (15.1.12)

G= U +PV −TS = H −TS (15.1.13)

G

15.1.13 15.1.8

dG= dH −d(TS) (15.1.14)

dG= dH −TdS−SdT (15.1.15)

dH = TdS+V dP

dG= TdS+V dP −TdS−SdT (15.1.16)

dG= V dP −SdT (15.1.17)

A = U −TS (15.1.18)

A F

15.1.18

15.1.7

dA = dU −d(TS) (15.1.19)

dA = dU −TdS−SdT (15.1.20)

dU = TdS−PdV

dA = TdS−PdV −TdS−SdT (15.1.21)

dA = −PdV −SdT (15.1.22)

V T
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Importance/Relevance of Fundamental Equations 

The differential fundamental equations describe U, H, G, and A in terms of their natural variables. The natural variables become
useful in understanding not only how thermodynamic quantities are related to each other, but also in analyzing relationships
between measurable quantities (i.e. P, V, T) in order to learn about the thermodynamics of a system. Below is a table summarizing
the natural variables for U, H, G, and A:

Thermodynamic Quantity Natural Variables

U (internal energy) S, V

H (enthalpy) S, P

G (Gibbs energy) T, P

A (Helmholtz energy) T, V

For these definitions to hold, it is assumed that only PV work is done and that only reversible processes are used. These
assumptions are required for the first law and the principle of Clausius to remain valid. Also, these equations do not account
include , the number of moles, as a variable. When  is included, the equations appear different, but the essence of their meaning
is captured without including the -dependence.

References 
1. DOI: 10.1063/1.1749582
2. DOI: 10.1063/1.1749549
3. DOI:10.1103/PhysRev.3.273
4. A Treatise on Physical Chemistry, 3rd ed.; Taylor, H. S. and Glasstone, S., Eds.; D. Van Nostrand Company: New York, 1942;

Vol. 1; p 454-485.

Problems 
1. If the assumptions made in the derivations above were not made, what would effect would that have? Try to think of examples

were these assumptions would be violated. Could the definitions, principles, and laws used to derive the fundamental equations
still be used? Why or why not?

2. For what kind of system does the number of moles not change? This said, do the fundamental equations without n-dependence
apply to a wide range of processes and systems?

3. Derive the Maxwell Relations.
4. Derive the expression

Then apply this equation to an ideal gas. Does the result seem reasonable? 
5. Using the definition of Gibbs energy and the conditions observed at phase equilibria, derive the Clapeyron equation.

Answers 
1. If it was not assumed that PV-work was the only work done, then the work term in the second law of thermodynamics equation

would include other terms (e.g. for electrical work, mechanical work). If reversible processes were not assumed, the Principle of
Clausius could not be used. One example of such situations could the movement of charged particles towards a region of like
charge (electrical work) or an irreversible process like combustion of hydrocarbons or friction.

2. In general, a closed system of non-reacting components would fit this description. For example, the number of moles would not
change for a closed system in which a gas is sealed (to prevent leaks) in a container and allowed to expand/is contracted.

3. See the Maxwell Relations section.

4.  for an ideal gas. Since there are no interactions between ideal gas molecules, changing the pressure will not

involve the formation or breaking of any intermolecular interactions or bonds.

n n

n

= −T +V( )
∂H

∂P T ,n

( )
∂V

∂T P,n

(15.1.23)

( = 0
∂H

∂P
)T ,n
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5. See the third outside link.
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16.1: Expressions for Heat Capacity
The heat capacity of a closed system is defined as the ratio of an infinitesimal quantity of heat transferred across the boundary

under specified conditions and the resulting infinitesimal temperature change: . The heat capacities of
isochoric (constant volume) and isobaric (constant pressure) processes are of particular interest.

The heat capacity at constant volume, , is the ratio  for a process in a closed constant-volume system with no
nonexpansion work—that is, no work at all. The first law shows that under these conditions the internal energy change equals the
heat: . We can replace  by  and write  as a partial derivative:

If the closed system has more than two independent variables, additional conditions are needed to define 
unambiguously. For instance, if the system is a gas mixture in which reaction can occur, we might specify that the
system remains in reaction equilibrium as  changes at constant .

 does not require the condition  (no nonexpansion work), because all quantities appearing in the
equation are state functions whose relations to one another are fixed by the nature of the system and not by the path.
Thus, if heat transfer into the system at constant  causes  to increase at a certain rate with respect to , and this
rate is defined as , the performance of electrical work on the system at constant  will cause the same rate of
increase of  with respect to  and can equally well be used to evaluate .

Note that  is a state function whose value depends on the state of the system—that is, on , , and any additional independent
variables.  is an extensive property: the combination of two identical phases has twice the value of  that one of the phases has
by itself.

For a phase containing a pure substance, the molar heat capacity at constant volume is defined by .  is an
intensive property.

If the system is an ideal gas, its internal energy depends only on , regardless of whether  is constant, and  can be
simplified to

Thus the internal energy change of an ideal gas is given by , as mentioned earlier.

The heat capacity at constant pressure, , is the ratio  for a process in a closed system with a constant, uniform pressure
and with expansion work only. Under these conditions, the heat  is equal to the enthalpy change , and we obtain a relation
analogous to :

 is an extensive state function. For a phase containing a pure substance, the molar heat capacity at constant pressure is 

, an intensive property.

Since the enthalpy of a fixed amount of an ideal gas depends only on , we can write a relation analogous to : 
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heat capacity dq/dT=
 def 

CV dq/dT

dU = dq dq dU CV

=CV ( )
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∂T V

(16.1.1)
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16.2: The Third Law of Thermodynamics
Learning Objectives

The absolute entropy of a pure substance at a given temperature is the sum of all the entropy it would acquire on warming
from absolute zero (where ) to the particular temperature.
Calculate entropy changes for phase transitions and chemical reactions under standard conditions

The atoms, molecules, or ions that compose a chemical system can undergo several types of molecular motion, including
translation, rotation, and vibration (Figure ). The greater the molecular motion of a system, the greater the number of
possible microstates and the higher the entropy. A perfectly ordered system with only a single microstate available to it would have
an entropy of zero. The only system that meets this criterion is a perfect crystal at a temperature of absolute zero (0 K), in which
each component atom, molecule, or ion is fixed in place within a crystal lattice and exhibits no motion (ignoring quantum zero
point motion).

Figure : Molecular Motions. Vibrational, rotational, and translational motions of a carbon dioxide molecule are illustrated
here. Only a perfectly ordered, crystalline substance at absolute zero would exhibit no molecular motion (classically; there will
always be motion quantum mechanically) and have zero entropy. In practice, this is an unattainable ideal. (CC BY-SA-NC;
Anonymous by request)

This system may be described by a single microstate, as its purity, perfect crystallinity and complete lack of motion (at least
classically, quantum mechanics argues for constant motion) means there is but one possible location for each identical atom or
molecule comprising the crystal ( ). According to the Boltzmann equation, the entropy of this system is zero.

In practice, absolute zero is an ideal temperature that is unobtainable, and a perfect single crystal is also an ideal that cannot be
achieved. Nonetheless, the combination of these two ideals constitutes the basis for the third law of thermodynamics: the entropy of
any perfectly ordered, crystalline substance at absolute zero is zero.

Definition: Third Law of Thermodynamics

The entropy of a pure, perfect crystalline substance at 0 K is zero.

The third law of thermodynamics has two important consequences: it defines the sign of the entropy of any substance at
temperatures above absolute zero as positive, and it provides a fixed reference point that allows us to measure the absolute entropy
of any substance at any temperature. In this section, we examine two different ways to calculate ΔS for a reaction or a physical
change. The first, based on the definition of absolute entropy provided by the third law of thermodynamics, uses tabulated values of
absolute entropies of substances. The second, based on the fact that entropy is a state function, uses a thermodynamic cycle similar
to those discussed previously.

S = 0

16.2.1

16.2.1

W = 1

S = k lnW

= k ln(1)

= 0
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Standard-State Entropies 

One way of calculating  for a reaction is to use tabulated values of the standard molar entropy ( ), which is the entropy of 1
mol of a substance under standard pressure (1 bar). Often the standard molar entropy is given at 298 K and is often demarked as 

. The units of  are J/(mol•K). Unlike enthalpy or internal energy, it is possible to obtain absolute entropy values by
measuring the entropy change that occurs between the reference point of 0 K (corresponding to ) and 298 K (Tables T1 and
T2).

As shown in Table , for substances with approximately the same molar mass and number of atoms,  values fall in the
order

For instance,  for liquid water is 70.0 J/(mol•K), whereas  for water vapor is 188.8 J/(mol•K). Likewise,  is 260.7
J/(mol•K) for gaseous  and 116.1 J/(mol•K) for solid . This order makes qualitative sense based on the kinds and extents of
motion available to atoms and molecules in the three phases (Figure ). The correlation between physical state and absolute
entropy is illustrated in Figure , which is a generalized plot of the entropy of a substance versus temperature.

Figure : A Generalized Plot of Entropy versus Temperature for a Single Substance. Absolute entropy increases steadily with
increasing temperature until the melting point is reached, where it jumps suddenly as the substance undergoes a phase change from
a highly ordered solid to a disordered liquid (ΔS ). The entropy again increases steadily with increasing temperature until the
boiling point is reached, where it jumps suddenly as the liquid undergoes a phase change to a highly disordered gas (ΔS ). (CC
BY-SA-NC; anonymous).

The Third Law Lets us Calculate Absolute Entropies 
The absolute entropy of a substance at any temperature above 0 K must be determined by calculating the increments of heat 
required to bring the substance from 0 K to the temperature of interest, and then summing the ratios . Two kinds of
experimental measurements are needed:

1. The enthalpies associated with any phase changes the substance may undergo within the temperature range of interest. Melting
of a solid and vaporization of a liquid correspond to sizeable increases in the number of microstates available to accept thermal
energy, so as these processes occur, energy will flow into a system, filling these new microstates to the extent required to
maintain a constant temperature (the freezing or boiling point); these inflows of thermal energy correspond to the heats of
fusion and vaporization. The entropy increase associated with transition at temperature  is

ΔS S
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2. The heat capacity  of a phase expresses the quantity of heat required to change the temperature by a small amount , or
more precisely, by an infinitesimal amount . Thus the entropy increase brought about by warming a substance over a range
of temperatures that does not encompass a phase transition is given by the sum of the quantities  for each increment of
temperature . This is of course just the integral

Because the heat capacity is itself slightly temperature dependent, the most precise determinations of absolute entropies require that
the functional dependence of  on  be used in the integral in Equation , i.e.,:

When this is not known, one can take a series of heat capacity measurements over narrow temperature increments  and measure
the area under each section of the curve. The area under each section of the plot represents the entropy change associated with
heating the substance through an interval . To this must be added the enthalpies of melting, vaporization, and of any solid-solid
phase changes.

Figure : Heat capacity/temperature as a function of temperature. (CC BY; Stephan Lower)

Values of  for temperatures near zero are not measured directly, but can be estimated from quantum theory. The cumulative areas
from 0 K to any given temperature (Figure ) are then plotted as a function of , and any phase-change entropies such as

are added to obtain the absolute entropy at temperature . As shown in Figure  above, the entropy of a substance increases
with temperature, and it does so for two reasons:

As the temperature rises, more microstates become accessible, allowing thermal energy to be more widely dispersed. This is
reflected in the gradual increase of entropy with temperature.
The molecules of solids, liquids, and gases have increasingly greater freedom to move around, facilitating the spreading and
sharing of thermal energy. Phase changes are therefore accompanied by massive and discontinuous increase in the entropy.

Calculating  

We can make careful calorimetric measurements to determine the temperature dependence of a substance’s entropy and to derive
absolute entropy values under specific conditions. Standard molar entropies are given the label  for values determined for one
mole of substance at a pressure of 1 bar and a temperature of 298 K. The standard entropy change ( ) for any process may be
computed from the standard molar entropies of its reactant and product species like the following:

Here,  represents stoichiometric coefficients in the balanced equation representing the process. For example,  for the
following reaction at room temperature

is computed as the following:
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Table  lists some standard molar entropies at 298.15 K. You can find additional standard molar entropies in Tables T1 and T2

Gases Liquids Solids

Table : Standard Molar Entropy Values of Selected Substances at 25°C

Substance  [J/(mol•K)] Substance  [J/(mol•K)] Substance  [J/(mol•K)]

He 126.2 H O 70.0 C (diamond) 2.4

H 130.7 CH OH 126.8 C (graphite) 5.7

Ne 146.3 Br 152.2 LiF 35.7

Ar 154.8 CH CH OH 160.7 SiO  (quartz) 41.5

Kr 164.1 C H 173.4 Ca 41.6

Xe 169.7 CH COCl 200.8 Na 51.3

H O 188.8
C H

(cyclohexane)
204.4 MgF 57.2

N 191.6 C H  (isooctane) 329.3 K 64.7

O 205.2   NaCl 72.1

CO 213.8   KCl 82.6

I 260.7   I 116.1

A closer examination of Table  also reveals that substances with similar molecular structures tend to have similar  values.
Among crystalline materials, those with the lowest entropies tend to be rigid crystals composed of small atoms linked by strong,
highly directional bonds, such as diamond ( ). In contrast, graphite, the softer, less rigid allotrope of carbon,
has a higher  (5.7 J/(mol•K)) due to more disorder (microstates) in the crystal. Soft crystalline substances and those with larger
atoms tend to have higher entropies because of increased molecular motion and disorder. Similarly, the absolute entropy of a
substance tends to increase with increasing molecular complexity because the number of available microstates increases with
molecular complexity. For example, compare the  values for CH OH(l) and CH CH OH(l). Finally, substances with strong
hydrogen bonds have lower values of , which reflects a more ordered structure.

Entropy increases with softer, less rigid solids, solids that contain larger atoms, and solids
with complex molecular structures.

To calculate  for a chemical reaction from standard molar entropies, we use the familiar “products minus reactants” rule, in
which the absolute molar entropy of each reactant and product is multiplied by its stoichiometric coefficient in the balanced
chemical equation. Example  illustrates this procedure for the combustion of the liquid hydrocarbon isooctane ( ;
2,2,4-trimethylpentane).

Example 

Use the data in Table  to calculate  for the reaction of liquid isooctane with  to give  and  at
298 K.

Given: standard molar entropies, reactants, and products

Asked for: ΔS°

Strategy:

Write the balanced chemical equation for the reaction and identify the appropriate quantities in Table . Subtract the sum
of the absolute entropies of the reactants from the sum of the absolute entropies of the products, each multiplied by their
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appropriate stoichiometric coefficients, to obtain  for the reaction.

Solution:

The balanced chemical equation for the complete combustion of isooctane (C H ) is as follows:

We calculate  for the reaction using the “products minus reactants” rule, where m and n are the stoichiometric
coefficients of each product and each reactant:

 is positive, as expected for a combustion reaction in which one large hydrocarbon molecule is converted to many
molecules of gaseous products.

Exercise 

Use the data in Table  to calculate  for the reaction of  with liquid benzene (C H ) to give cyclohexane
(C H ) at 298 K.

Answer:

361.1 J/K

Example : Determination of ΔS°

Calculate the standard entropy change for the following process at 298 K:

Solution

The value of the standard entropy change at room temperature, , is the difference between the standard entropy of the
product, H O(l), and the standard entropy of the reactant, H O(g).

The value for  is negative, as expected for this phase transition (condensation), which the previous section discussed.

Exercise 

Calculate the standard entropy change for the following process at 298 K:

Answer

−120.6 J mol  K

Example : Determination of ΔS°
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Example : Determination of ΔS

Calculate the standard entropy change for the combustion of methanol, CH OH at 298 K:

Solution

The value of the standard entropy change is equal to the difference between the standard entropies of the products and the
entropies of the reactants scaled by their stoichiometric coefficients. The standard entropy of formations are found in Table 

.

Exercise 

Calculate the standard entropy change for the following reaction at 298 K:

Answer

24.7 J/mol•K

Summary

Energy values, as you know, are all relative, and must be defined on a scale that is completely arbitrary; there is no such thing as
the absolute energy of a substance, so we can arbitrarily define the enthalpy or internal energy of an element in its most stable form
at 298 K and 1 atm pressure as zero. The same is not true of the entropy; since entropy is a measure of the “dilution” of thermal
energy, it follows that the less thermal energy available to spread through a system (that is, the lower the temperature), the smaller
will be its entropy. In other words, as the absolute temperature of a substance approaches zero, so does its entropy. This principle is
the basis of the Third law of thermodynamics, which states that the entropy of a perfectly-ordered solid at 0 K is zero.

In practice, chemists determine the absolute entropy of a substance by measuring the molar heat capacity ( ) as a function of
temperature and then plotting the quantity  versus . The area under the curve between 0 K and any temperature T is the
absolute entropy of the substance at . In contrast, other thermodynamic properties, such as internal energy and enthalpy, can be
evaluated in only relative terms, not absolute terms.

The second law of thermodynamics states that a spontaneous process increases the entropy of the universe, ΔS  > 0. If ΔS  < 0,
the process is nonspontaneous, and if ΔS  = 0, the system is at equilibrium. The third law of thermodynamics establishes the zero
for entropy as that of a perfect, pure crystalline solid at 0 K. With only one possible microstate, the entropy is zero. We may
compute the standard entropy change for a process by using standard entropy values for the reactants and products involved in the
process.
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CHAPTER OVERVIEW

17: Extension 12 - Working Equations
17.1: The Maxwell Relations
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17.1: The Maxwell Relations
Modeling the dependence of the Gibbs and Helmholtz functions behave with varying temperature, pressure, and volume is
fundamentally useful. But in order to do that, a little bit more development is necessary. To see the power and utility of these
functions, it is useful to combine the First and Second Laws into a single mathematical statement. In order to do that, one notes that
since

for a reversible change, it follows that

And since

for a reversible expansion in which only P-V works is done, it also follows that (since ):

This is an extraordinarily powerful result. This differential for  can be used to simplify the differentials for , , and . But
even more useful are the constraints it places on the variables T, S, P, and V due to the mathematics of exact differentials!

Maxwell Relations 

The above result suggests that the natural variables of internal energy are  and  (or the function can be considered as ).
So the total differential ( ) can be expressed:

Also, by inspection (comparing the two expressions for ) it is apparent that:

and

But the value doesn’t stop there! Since  is an exact differential, the Euler relation must hold that

By substituting Equations  and , we see that

or

This is an example of a Maxwell Relation. These are very powerful relationship that allows one to substitute partial derivatives
when one is more convenient (perhaps it can be expressed entirely in terms of  and/or  for example.)

A similar result can be derived based on the definition of .

dS =
dq

T
(17.1.1)

dq = TdS (17.1.2)

dw = −PdV (17.1.3)

dU = dq+dw

dU = TdS−PdV (17.1.4)
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Differentiating (and using the chain rule on ) yields

Making the substitution using the combined first and second laws ( ) for a reversible change involving on
expansion (P-V) work

This expression can be simplified by canceling the  terms.

And much as in the case of internal energy, this suggests that the natural variables of  are  and . Or

Comparing Equations  and  show that

and

It is worth noting at this point that both (Equation )

and (Equation )

are equation to . So they are equation to each other

Moreover, the Euler Relation must also hold

so

This is the Maxwell relation on . Maxwell relations can also be developed based on  and . The results of those derivations are
summarized in Table 6.2.1..

Table 6.2.1: Maxwell Relations

Function Differential Natural Variables Maxwell Relation

d(PV )

dH = dU +PdV +V dP (17.1.12)

dU = TdS–PdV

dH = TdS– + +V dPPdV PdV (17.1.13)

PdV

dH = TdS+V dP (17.1.14)
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Function Differential Natural Variables Maxwell Relation

The Maxwell relations are extraordinarily useful in deriving the dependence of thermodynamic variables on the state variables of P,
T, and V.

Example 
Show that

Solution:

Start with the combined first and second laws:

Divide both sides by  and constraint to constant :

Noting that

The result is

Now, employ the Maxwell relation on  (Table 6.2.1)

to get

and since

It is apparent that
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Note: How cool is that? This result was given without proof in Chapter 4, but can now be proven analytically using the Maxwell
Relations!
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18.1: Partial Molar Quantities
Because they are easy to control in typical laboratory experiments, pressure, temperature, and the number of moles of each
component are the independent variables that we find useful most often. Partial derivatives of thermodynamic quantities, taken
with respect to the number of moles of a component, at constant pressure and temperature, are given a special designation; they
are called partial molar quantities. That is,

is the partial molar energy of component ,

is the partial molar Gibbs free energy, etc. All partial molar quantities are intensive variables.

Because partial molar quantities are particularly useful, it is helpful to have a distinctive symbol to represent them. We use a
horizontal bar over a thermodynamic variable to represent a partial molar quantity. (We have been using the horizontal over-bar to
mean simply per mole. When we use it to designate a partial molar quantity, it means per mole of a specific component.) Thus, we
write

etc.

In Sections 14.1 and 14.2, we introduce the chemical potential for substance , , and find that the chemical potential of substance 
 is equivalently expressed by several partial derivatives. In particular, we have

that is, the chemical potential is also the partial molar Gibbs free energy.

It is important to recognize that the other partial derivatives that we can use to calculate the chemical potential are not partial molar
quantities. Thus,

That is, . Similarly, , , and .

We can think of a thermodynamic variable as a manifold—a “surface” in a multidimensional space. If there are two independent
variables, the dependent thermodynamic variable is a surface in a three-dimensional space. Then we can visualize the partial
derivative of the dependent thermodynamic variable with respect to an independent variable as the slope of a line tangent to the
surface. This tangent lies in a plane in which the other independent variable is constant. If the independent variables are pressure,
temperature, and compositions, the slope of the tangent line at  is the value of a partial molar quantity at
that point.

A more concrete way to think of a partial molar quantity for component  is to view it as the change in that quantity when we add
one mole of  to a very large system having the specified pressure, temperature, and composition. When we add one mole of  to
this system, the relative change in any of the system’s properties is very small; for example, the ratio of the final volume to the
initial volume is essentially unity. Nevertheless, the volume of the system changes by a finite amount. This amount approximates
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the partial molar volume of substance . This approximation becomes better as the size of the system becomes larger. We expect the
change in the volume of the system to be approximately equal to the volume of one mole of pure , but we know that in general it
will be somewhat different because of the effects of attractive and repulsive forces between the additional  molecules and the
molecules comprising the original system.

Partial molar quantities can be expressed as functions of other thermodynamic variables. Because pressure and temperature are
conveniently controlled variables, functions involving partial molar quantities are particularly useful for describing chemical
change in systems that conform to the assumptions that we introduce in §1. Because the chemical potential is the same thing as the
partial molar Gibbs free energy, it plays a prominent role in these equations.

To use these equations to describe a real system, we must develop empirical models that relate the partial molar quantities to the
composition of the system. In general, these empirical models are non-linear functions of the system composition. However, simple
approximations are sometimes adequate. The simplest approximation is a case we have already considered. If we can ignore the
attractive and repulsive interactions among the molecules comprising the system, the effect of increasing  by a small amount, 

, is simply the effect of adding  moles of pure component  to the system. If we let  be the energy per mole of pure
component , the contribution to the energy of the system, at constant temperature and pressure, is

In Chapter 12, we apply the thermodynamic criteria for change to the equilibria between phases of a pure substance. To do so, we
use the Gibbs free energies of the pure phases. In Chapter 13, we apply these criteria to chemical reactions of ideal gases, using the
Gibbs free energies of the pure gases. In these cases, the properties of a phase of a pure substance are independent of the amounts
of any other substances that are present. That is, we use the approximation

albeit without using the over-bar or the bullet superscript to indicate that we are using the partial molar Gibbs free energy of the
pure substance. In Section 14.1, we develop the principle that  are general criteria for change that are applicable
not only to closed systems but also to open systems composed of homogeneous phases.

Thus far in this chapter, we have written each partial derivative with a complete list of the variables that are held constant. This is
typographically awkward. Clarity seldom requires that we include the work-related variables and composition variables, , in this
list. From here on, we usually omit them.

This page titled 18.1: Partial Molar Quantities is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen
via source content that was edited to the style and standards of the LibreTexts platform.

i

i

i

ni

dni dni i U
¯ ¯¯̄ ∗

i

i

d =  d( )
∂U

∂ni P,T ,nj≠i

ni U
¯ ¯¯̄ ∗

i ni (18.1.8)

d =  d( )
∂G

∂ni P,T ,nj≠i

ni G
¯ ¯¯̄ ∗

i ni (18.1.9)

≤ 0∑N
i=1 μidni

ni

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/238235?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/12%3A_Applications_of_the_Thermodynamic_Criteria_for_Change
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/13%3A_Equilibria_in_Reactions_of_Ideal_Gases
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/14%3A_Chemical_Potential_-_Extending_the_Scope_of_the_Fundamental_Equation/14.01%3A_Dependence_of_the_Internal_Energy_on_the_Composition_of_the_System
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Chemical_Thermodynamics_(Supplement_to_Shepherd_et_al.)/18%3A_Fundamental_13_-_Composition_Changes/18.01%3A_Partial_Molar_Quantities
https://creativecommons.org/licenses/by-sa/4.0
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278
https://www.amazon.com/Thermodynamics-Chemical-Equilibrium-Paul-Ellgen/dp/1492114278


18.2.1 https://chem.libretexts.org/@go/page/238263

18.2: Chemical Potential
In much the same fashion as the partial molar volume is defined, the partial molar Gibbs function is defined for compound  in a
mixture:

This particular partial molar function is of particular importance, and is called the chemical potential. The chemical potential tells
how the Gibbs function will change as the composition of the mixture changes. And since systems tend to seek a minimum
aggregate Gibbs function, the chemical potential will point to the direction the system can move in order to reduce the total Gibbs
function. In general, the total change in the Gibbs function ( ) can be calculated from

Or, by substituting the definition for the chemical potential, and evaluating the pressure and temperature derivatives as was done in
Chapter 6:

But as it turns out, the chemical potential can be defined as the partial molar derivative of any of the four major thermodynamic
functions , , , or :

Table : Chemical potential can be defined as the partial molar derivative any of the four major thermodynamic functions

The last definition, in which the chemical potential is defined as the partial molar Gibbs function is the most commonly used, and
perhaps the most useful (Equation ). As the partial molar Gibbs function, it is easy to show that

where  is the molar volume, and  is the molar entropy. Using this expression, it is easy to show that

and so at constant temperature

So that for a substance for which the molar volume is fairly independent of pressure at constant temperature (i. e.,  is very small,
as in a solid or liquid), therefore Equation  becomes
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or

Where  is a reference pressure (generally the standard pressure of 1 bar) and  is the chemical potential at the standard
pressure. If the substance is highly compressible (such as a gas) the pressure dependence of the molar volume is needed to
complete the integral. If the substance is an ideal gas

So at constant temperature, Equation  then becomes

or
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18.3: ∆rG is the rate at which the Gibbs Free Energy Changes with The Extent of
Reaction
For the reaction , let us call the consumption of  moles of  one “unit of reaction.”  corresponds
to the actual Gibbs free energy change for one unit of reaction only in the limiting case where the reaction occurs in an arbitrarily
large system. For a closed system of specified initial composition, , , , and , whose composition at any time is specified
by , , , and , the extent of reaction, , is

At constant pressure and temperature, every possible state of this system is represented by a point on a plot of  versus . Every
such state is also represented by a point on a plot of  versus .

From the general result that  if and only if the system is at equilibrium, it follows that  if and only
if  specifies the equilibrium state. (We can arrive at the same conclusion by considering the heat exchanged for one unit of
reaction in an infinitely large system at equilibrium. This process is reversible, and it occurs at constant pressure and temperature,
so we have , , and .)

Below, we show that

for any value of . (In Section 15.9, we use essentially the same argument to show that this conclusion is valid for any reaction
among any substances.) Given this result, we see that the equilibrium composition corresponds to the extent of reaction, , for
which the Gibbs free energy change for one unit of the reaction is zero

and

So that the Gibbs free energy of the system is a minimum.

In the next section, we show that the condition  makes it easy to calculate the equilibrium extent of reaction, .
Given the stoichiometry and initial composition, the equation for  specifies the equilibrium composition and the partial
pressures , , , and . This is the usual application of these results. Setting  enables us to answer the question:
If we initiate reaction at a given composition, what will be the equilibrium composition of the system? Usually this is what we want
to know. The amount by which the Gibbs free energy changes as the reaction goes to equilibrium is seldom of interest.

To show that  for any reaction, it is helpful to introduce modified stoichiometric coefficients, , defined such
that  if the j-th species is a product and  if the j-th species is a reactant. That is, for the reaction 

, we define , , , and . Associating successive integers with the
reactants and products, we represent the j-th chemical species as  and an arbitrary reaction as

Let the initial number of moles of ideal gas  be ; then . (For species that are present but do not participate in
the reaction, we have .)

We have shown that the Gibbs free energy of a mixture of ideal gases is equal to the sum of the Gibbs free energies of the
components. In calculating , we assume that this is as true for a mixture undergoing a spontaneous reaction as it is for a
mixture at equilibrium. In doing so, we assume that the reacting system is homogeneous and that its temperature and pressure are
well defined. In short, we assume that the Gibbs free energy of the system is the same continuous function of temperature, pressure,
and composition, , whether the system is at equilibrium or undergoing a spontaneous reaction. For the
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equilibrium system, we have  and . When we assume that these functions are the same for
a spontaneously changing system as they are for a reversible system, it follows that

whether the system is at equilibrium or undergoing spontaneous change. At constant temperature and pressure, when pressure–
volume work is the only work, the thermodynamic criteria for change,  become

When a reaction occurs in the system, the composition is a continuous function of the extent of reaction. We have 
. At constant temperature and pressure, the dependence of the Gibbs free energy on the

extent of reaction is

Since

and

it follows that

Moreover, we have

The criteria for change, , become

From our definition of , we have  for a process that proceeds spontaneously from left to right, so the criteria become

or, equivalently,
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18.4: Molar Reaction Enthalpy
Recall that  is a molar integral reaction enthalpy equal to , and that  is a molar differential reaction
enthalpy defined by  and equal to .

Molar reaction enthalpy and heat 

During a process in a closed system at constant pressure with expansion work only, the enthalpy change equals the energy
transferred across the boundary in the form of heat: . Thus for the molar reaction enthalpy , which
refers to a process not just at constant pressure but also at constant temperature, we can write

Note that when there is nonexpansion work ( ), such as electrical work, the enthalpy change is not equal to the heat. For example,
if we compare a reaction taking place in a galvanic cell with the same reaction in a reaction vessel, the heats at constant  and 
for a given change of  are different, and may even have opposite signs. The value of  is the same in both systems, but the
ratio of heat to extent of reaction, , is different.

An exothermic reaction is one for which  is negative, and an endothermic reaction is one for which  is positive. Thus in
a reaction at constant temperature and pressure with expansion work only, heat is transferred out of the system during an
exothermic process and into the system during an endothermic process. If the process takes place at constant pressure in a system
with thermally-insulated walls, the temperature increases during an exothermic process and decreases during an endothermic
process.

These comments apply not just to chemical reactions, but to the other chemical processes at constant temperature and pressure
discussed in this chapter.

Standard molar enthalpies of reaction and formation 
A standard molar reaction enthalpy, , is the same as the molar integral reaction enthalpy  for the reaction taking
place under standard state conditions (each reactant and product at unit activity) at constant temperature.

At constant temperature, partial molar enthalpies depend only mildly on pressure. It is therefore usually safe to assume that unless
the experimental pressure is much greater than , the reaction is exothermic if  is negative and endothermic if  is
positive.

The formation reaction of a substance is the reaction in which the substance, at a given temperature and in a given physical state,
is formed from the constituent elements in their reference states at the same temperature. The reference state of an element is
usually chosen to be the standard state of the element in the allotropic form and physical state that is stable at the given temperature
and the standard pressure. For instance, at 298.15 K and 1 bar the stable allotrope of carbon is crystalline graphite rather than
diamond.

Phosphorus is an exception to the rule regarding reference states of elements. Although red phosphorus is the stable allotrope at
298.15 K, it is not well characterized. Instead, the reference state is white phosphorus (crystalline P ) at 1 bar.

At 298.15 K, the reference states of the elements are the following:

For H , N , O , F , Cl , and the noble gases, the reference state is the ideal gas at 1 bar.
For Br  and Hg, the reference state is the liquid at 1 bar.
For P, as mentioned above, the reference state is crystalline white phosphorus at 1 bar.
For all other elements, the reference state is the stable crystalline allotrope at 1 bar.

The standard molar enthalpy of formation (or standard molar heat of formation), , of a substance is the enthalpy change
per amount of substance produced in the formation reaction of the substance in its standard state. Thus, the standard molar enthalpy
of formation of gaseous methyl bromide at 298.15 K is the molar reaction enthalpy of the reaction

The value of  for a given substance depends only on . By definition,  for the reference state of an element is zero.

ΔH
¯ ¯¯̄¯

rxn Δ /ΔξHrxn HΔr

 ∑i νi H
¯ ¯¯̄¯

i (∂H/∂ξ)T ,P

dH = dq H = (∂H/∂ξΔr )T ,P

H =Δr ( )
dq

dξ T ,P,w′

(18.4.1)
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A principle called Hess’s law can be used to calculate the standard molar enthalpy of formation of a substance at a given
temperature from standard molar reaction enthalpies at the same temperature, and to calculate a standard molar reaction enthalpy
from tabulated values of standard molar enthalpies of formation. The principle is an application of the fact that enthalpy is a state
function. Therefore,  for a given change of the state of the system is independent of the path and is equal to the sum of 
values for any sequence of changes whose net result is the given change. (We may apply the same principle to a change of any state
function.)

For example, the following combustion reactions can be carried out experimentally in a bomb calorimeter, yielding the values
shown below of standard molar reaction enthalpies (at , ):

(Note that the first reaction, in addition to being the combustion reaction of graphite, is also the formation reaction of carbon
dioxide.) The change resulting from the first reaction followed by the reverse of the second reaction is the formation reaction of
carbon monoxide:

It would not be practical to measure the molar enthalpy of this last reaction by allowing graphite to react with oxygen in a
calorimeter, because it would be difficult to prevent the formation of some CO . From Hess’s law, the standard molar enthalpy of
formation of CO is the sum of the standard molar enthalpies of the reactions that have the formation reaction as the net result:

This value is one of the many standard molar enthalpies of formation to be found in compilations of thermodynamic properties of
individual substances. We may use the tabulated values to evaluate the standard molar reaction enthalpy  of a reaction using
a formula based on Hess’s law. Imagine the reaction to take place in two steps: First each reactant in its standard state changes to
the constituent elements in their reference states (the reverse of a formation reaction), and then these elements form the products in
their standard states. The resulting formula is:

where  is the standard molar enthalpy of formation of substance . Recall that the stoichiometric number  of each reactant
is negative and that of each product is positive, so according to Hess’s law the standard molar reaction enthalpy is the sum of the
standard molar enthalpies of formation of the products minus the sum of the standard molar enthalpies of formation of the
reactants. Each term is multiplied by the appropriate stoichiometric coefficient from the reaction equation.

A standard molar enthalpy of formation can be defined for a solute in solution to use in . For instance, the formation reaction
of aqueous sucrose is:

and  for C H O (aq) is the enthalpy change per amount of sucrose formed when the reactants and product are in their
standard states. Note that this formation reaction does not include the formation of the solvent H O from H  and O . Instead, the
solute once formed combines with the amount of pure liquid water needed to form the solution. If the aqueous solute is formed in
its standard state, the amount of water needed is very large so as to have the solute exhibit infinite-dilution behavior.

There is no ordinary reaction that would produce an individual ion in solution from its element or elements without producing other
species as well. We can, however, prepare a consistent set of standard molar enthalpies of formation of ions by assigning a value to
a single reference ion. We can use these values for ions in  just like values of  for substances and nonionic solutes.
Aqueous hydrogen ion is the usual reference ion, to which is assigned the arbitrary value

To see how we can use this reference value, consider the reaction for the formation of aqueous HCl (hydrochloric acid):

ΔH ΔH

T = 298.15 K P = = 1 barP ∘

C(s,  graphite ) + (g)O2

CO(g) + (g)
1

2
O2

→ (g)CO2

→ (g)CO2

ΔrH
∘

ΔrH
∘

= −393.51 kJ mol−1

= −282.98 kJ mol−1
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1

2
O2

2
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∘ = (−393.51 +282.98) kJ mol−1
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νiΔf H ∘
i (18.4.2)

Δf H ∘
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The standard molar reaction enthalpy at 298.15 K for this reaction is known, from reaction calorimetry, to have the value 
. The standard states of the gaseous H  and Cl  are, of course, the pure gases acting ideally at

pressure , and the standard state of each of the aqueous ions is the ion at the standard molality and standard pressure, acting as if
its activity coefficient on a molality basis were . From , we equate the value of  to the sum

But the first three terms of this sum are zero. Therefore, the value of (Cl , aq) is .

Next we can combine this value of (Cl , aq) with the measured standard molar enthalpy of formation of aqueous sodium
chloride

to evaluate the standard molar enthalpy of formation of aqueous sodium ion. By continuing this procedure with other reactions, we
can build up a consistent set of  values of various ions in aqueous solution.

Molar reaction heat capacity 

The molar reaction enthalpy  is in general a function of , , and . Using the relations  and 
, we can write

where  is the molar reaction heat capacity at constant pressure, equal to the rate at which the heat capacity  changes with 
 at constant  and .

Under standard state conditions,  becomes

Effect of temperature on reaction enthalpy 
Consider a reaction occurring with a certain finite change of the extent of reaction in a closed system at temperature  and at
constant pressure. The reaction is characterized by a change of the extent of reaction from  to , and the integral reaction
enthalpy at this temperature is denoted . We wish to find an expression for the reaction enthalpy  for the
same values of  and  at the same pressure but at a different temperature, .

The heat capacity of the system at constant pressure is related to the enthalpy: . We integrate 
from  to  at constant  and , for both the final and initial values of the extent of reaction:

Subtracting  from , we obtain

where  is the difference between the heat capacities of the system at the final and initial values of , a function of : 
.  is the Kirchhoff equation.

When  is essentially constant in the temperature range from  to , the Kirchhoff equation becomes

(g) + (g) → (aq) + (aq)
1

2
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1

2
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2 2
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Figure : Dependence of reaction enthalpy on temperature at constant pressure.

Figure  illustrates the principle of the Kirchhoff equation as expressed by .  equals the difference in the slopes of
the two dashed lines in the figure, and the product of  and the temperature difference  equals the change in the value
of . The figure illustrates an exothermic reaction with negative , resulting in a more negative value of  at the
higher temperature.

We can also find the effect of temperature on the molar differential reaction enthalpy . From , we have 
. Integration from temperature  to temperature  yields the relation

This relation is analogous to , using molar differential reaction quantities in place of integral reaction quantities.
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19.1: How The Enthalpy Change for a Reaction Depends on Temperature
Previously, we saw how to use tabulated enthalpies of formation to calculate the enthalpy change for a particular chemical reaction.
Such tables typically give enthalpies of formation at a number of different temperatures, so that the enthalpy change for a given
reaction can also be calculated at these different temperatures; it is just a matter of repeating the same calculation at each
temperature.

We often need to find the enthalpy change associated with increasing the temperature of a substance at constant pressure. This
enthalpy change is readily calculated by integrating the heat capacity over the temperature change. We may want to know, for
example, the enthalpy change for increasing the temperature of one mole of methane from 300 K to 400 K, with the pressure held
constant at one bar. From the table, we find

We might be tempted to think that the difference represents the enthalpy change associated with heating the methane. This is not
so! The reason becomes immediately apparent if we consider a cycle in which we go from the elements to a compound at two
different temperatures. For methane, this cycle is shown in Figure .

Figure : A thermochemical cycle relating  at two temperatures.

The difference between the standard enthalpies of formation of methane at 300 K and 400 K reflects the enthalpy change for
increasing the temperatures of all of the reactants and products from 300 K to 400 K. That is,

Over the temperature range from 300 K to 400 K, the heat capacities of carbon, hydrogen, and methane are approximated by 
, with values of  and  given in Table 1. From this information, we calculate the enthalpy change for increasing the

temperature of one mole of each substance from 300 K to 400 K at 1 bar: , 
, and . Thus, from the cycle, we calculate:

The tabulated value is . The two values differ by , or about 0.04%. This difference arises from the
limitations of the two-parameter heat-capacity equations.

As another example of a thermochemical cycle, let us consider the selective oxidation of methane to methanol at 300 K and 400 K.
From the enthalpies of formation in Table 1, we calculate the enthalpies for the reaction to be 

 and . As in the previous example, we use the
tabulated heat-capacity parameters to calculate the enthalpy change for increasing the temperature of one mole of each of these
gases from 300 K to 400 K at 1 bar. We find: , , and 

.

(C , g, 300 K) = −74.656 kJ ΔfH
o H4 mol−1 (19.1.1)

(C , g, 400 K) = −77.703 kJ ΔfH
o H4 mol−1 (19.1.2)
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o H4 mol−1 mol−1 (19.1.5)
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o mol−1 (400 K) = −126.919 kJ ΔrH

o mol−1

ΔH (C OH) = 4, 797 J H3 mol−1 ΔH (C ) = 3, 819 J H4 mol−1
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Figure : A thermochemical cycle relating  at two temperatures.

The cycle is shown in . Inspecting this cycle, we see that we can calculate the enthalpy change for warming one mole of
methanol from 300 K to 400 K by summing the enthalpy changes around the bottom, left side, and top of the cycle; that is,

This is 3 J or about 0.06 % larger than the value obtained  by integrating the heat capacity for methanol.

This page titled 19.1: How The Enthalpy Change for a Reaction Depends on Temperature is shared under a CC BY-SA 4.0 license and was
authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.
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20.1: Prelude to Chemical Equilibria

The small is great, the great is small; all is in equilibrium in necessity... - Victor Hugo in
“Les Miserables”

As was discussed in Chapter 6, the natural tendency of chemical systems is to seek a state of minimum Gibbs function. Once the
minimum is achieved, movement in any chemical direction will not be spontaneous. It is at this point that the system achieves a
state of equilibrium.

From the diagram above, it should be clear that the direction of spontaneous change is determined by minimizing

If the slope of the curve is negative, the reaction will favor a shift toward products. And if it is positive, the reaction will favor a
shift toward reactants. This is a non-trivial point, as it underscores the importance of the composition of the reaction mixture in the
determination of the direction of the reaction.
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20.2: Chemical Potential
Equilibrium can be understood as accruing at the composition of a reaction mixture at which the aggregate chemical potential of
the products is equal to that of the reactants. Consider the simple reaction

The criterion for equilibrium will be

If the gases behave ideally, the chemical potentials can be described in terms of the mole fractions of  and 

where Dalton’s Law has been used to express the mole fractions.

Equation  can be simplified by collecting all chemical potentials terms on the left

Combining the logarithms terms and recognizing that

for the reaction, one obtains

And since the equilibrium constant is  for this reaction (assuming perfectly ideal behavior), one can write

Another way to achieve this result is to consider the Gibbs function change for a reaction mixture in terms of the reaction
quotient. The reaction quotient can be expressed as

where  are the stoichiometric coefficients for the products, and  are those for the reactants. Or if the stoichiometric coefficients
are defined by expressing the reaction as a sum

where  refers to one of the species in the reaction, and  is then the stoichiometric coefficient for that species, it is clear that 
will be negative for a reactant (since its concentration or partial pressure will reduce as the reaction moves forward) and positive
for a product (since the concentration or partial pressure will be increasing.) If the stoichiometric coefficients are expressed in this
way, the expression for the reaction quotient becomes

Using this expression, the Gibbs function change for the system can be calculated from

And since at equilibrium

A(g) ⇌ B(g) (20.2.1)

=μA μB (20.2.2)
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and

It is evident that

It is in this simple way that  and  are related.

It is also of value to note that the criterion for a spontaneous chemical process is that , rather than , as is
stated in many texts! Recall that  is a function of all of the reactants and products being in their standard states of unit
fugacity or activity. However, the direction of spontaneous change for a chemical reaction is dependent on the composition of
the reaction mixture. Similarly, the magnitude of the equilibrium constant is insufficient to determine whether a reaction will
spontaneously form reactants or products, as the direction the reaction will shift is also a function of not just the equilibrium
constant, but also the composition of the reaction mixture!

Example :

Based on the data below at 298 K, calculate the value of the equilibrium constant ( ) for the reaction

 

(
k
J
/
m
o
l
)

8
6
.
5
5

51.53

Solution:

First calculate the value of  from the  data.

And now use the value to calculate  using Equation .

Note: as expected for a reaction with a very large negative , the equilibrium constant is very large, favoring the formation
of the products.
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Δ = 2 ×(51.53 kJ/mol) −2 ×(86.55 kJ/mol) = −70.04 kJ/molGo
rxn (20.2.17)

Kp 20.2.15
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CHAPTER OVERVIEW
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21.1: Temperature Dependence of Equilibrium Constants - the van’t Hoff Equation
The value of  is independent of pressure, although the composition of a system at equilibrium may be very much dependent on
pressure. Temperature dependence is another matter. Because the value of  is dependent on temperature, the value of  is
as well. The form of the temperature dependence can be taken from the definition of the Gibbs function. At constant temperature
and pressure

Substituting

For the two values of  and using the appropriate temperatures, yields

And simplifying the expression so that only terms involving  are on the left and all other terms are on the right results in the van
’t Hoff equation, which describes the temperature dependence of the equilibrium constant.

Because of the assumptions made in the derivation of the Gibbs-Helmholtz equation, this relationship only holds if  is
independent of temperature over the range being considered. This expression also suggests that a plot of  as a function of 

 should produce a straight line with a slope equal to . Such a plot is known as a van ’t Hoff plot, and can be used to
determine the reaction enthalpy.

A certain reaction has a value of  at 25 °C and . Calculate the value of  at 37 °C.

Solution
This is a job for the van ’t Hoff equation!

T  = 298 K
T = 310 K

K  = 0.0260
K  = ?

So Equation  becomes

Note: the value of  increased with increasing temperature, which is what is expected for an endothermic reaction. An
increase in temperature should result in an increase of product formation in the equilibrium mixture. But unlike a change in
pressure, a change in temperature actually leads to a change in the value of the equilibrium constant!

Given the following average bond enthalpies for  and  bonds, predict whether or not an increase in temperature
will lead to a larger or smaller degree of dissociation for the reaction
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= 0.0260Kp Δ = 32.4 kJ/molH o
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ln( )
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32400 J/mol

8.314 K/(mol K)

1
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1
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= 0.0431
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 Example 21.1.2

P−Cl Cl−Cl

⇌ +PCl5 PCl3 Cl2
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X-Y D(X-Y) (kJ/mol)X-Y D(X-Y) (kJ/mol)

P-Cl 326

Cl-Cl 240

Solution
The estimated reaction enthalpy is given by the total energy expended breaking bonds minus the energy recovered by the
formation of bonds. Since this reaction involves breaking two P-Cl bonds (costing 652 kJ/mol) and the formation of one Cl-Cl
bond (recovering 240 kJ/mol), it is clear that the reaction is endothermic (by approximately 412 kJ/mol). As such, an increase
in temperature should increase the value of the equilibrium constant, causing the degree of dissociation to be increased at the
higher temperature.

This page titled 21.1: Temperature Dependence of Equilibrium Constants - the van’t Hoff Equation is shared under a CC BY-NC-SA 4.0 license
and was authored, remixed, and/or curated by Patrick Fleming.

9.6: Temperature Dependence of Equilibrium Constants - the van ’t Hoff Equation by Patrick Fleming is licensed CC BY-NC-SA 4.0.
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22.1: Fundamentals of Phase Transitions
Phase transition is when a substance changes from a solid, liquid, or gas state to a different state. Every element and substance can
transition from one phase to another at a specific combination of temperature and pressure.

Phase Changes
Each substance has three phases it can change into; solid, liquid, or gas . Every substance is in one of these three phases at certain
temperatures. The temperature and pressure at which the substance will change is very dependent on the intermolecular forces that
are acting on the molecules and atoms of the substance . There can be two phases coexisting in a single container at the same
time. This typically happens when the substance is transitioning from one phase to another. This is called a two-phase state . In
the example of ice melting, while the ice is melting, there is both solid water and liquid water in the cup.

There are six ways a substance can change between these three phases; melting, freezing, evaporating, condensing, sublimination,
and deposition . These processes are reversible and each transfers between phases differently:

Melting: The transition from the solid to the liquid phase
Freezing: The transition from the liquid phase to the solid phase
Evaporating: The transition from the liquid phase to the gas phase
Condensing:The transition from the gas phase to the liquid phase
Sublimination: The transition from the solid phase to the gas phase
Deposition: The transition from the gas phase to the solid phase

How Phase Transition works
There are two variables to consider when looking at phase transition, pressure (P) and temperature (T). For the gas state, The
relationship between temperature and pressure is defined by the equations below:

Ideal Gas Law:

van der Waals Equation of State:

Where V is volume, R is the gas constant, and n is the number of moles of gas.

The ideal gas law assumes that no intermolecular forces are affecting the gas in any way, while the van der Waals equation includes
two constants, a and b, that account for any intermolecular forces acting on the molecules of the gas.

Temperature

Temperature can change the phase of a substance. One common example is putting water in a freezer to change it into ice. In the
picture above, we have a solid substance in a container. When we put it on a heat source, like a burner, heat is transferred to the
substance increasing the kinetic energy of the molecules in the substance. The temperature increases until the substance reaches its
melting point . As more and more heat is transferred beyond the melting point, the substance begins to melt and become a
liquid . This type of phase change is called an isobaric process because the pressure of the system stays at a constant level.

(1)

(2)

(4)

(2)

P V = nRT (22.1.1)

(P +a ∗ ) (V −nb) = nRT
n

2

V 2
(22.1.2)

(2)

(3)
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Melting point (T )

Each substance has a melting point. The melting point is the temperature that a solid will become a liquid. At different pressures,
different temperatures are required to melt a substance. Each pure element on the periodic table has a normal melting point, the
temperature that the element will become liquid when the pressure is 1 atmosphere .

Boiling Point (T )

Each substance also has a boiling point. The boiling point is the temperature that a liquid will evaporate into a gas. The boiling
point will change based on the temperature and pressure. Just like the melting point, each pure element has a normal boiling point
at 1 atmosphere .

Pressure

Pressure can also be used to change the phase of the substance. In the picture above, we have a container fitted with a piston that
seals in a gas. As the piston compresses the gas, the pressure increases. Once the boiling point has been reached, the gas will
condense into a liquid. As the piston continues to compress the liquid, the pressure will increase until the melting point has been
reached. The liquid will then freeze into a solid. This example is for an isothermal process where the temperature is constant and
only the pressure is changing.

A Brief Explanation of a Phase Diagram
Phase transition can be represented with a phase diagram. A phase diagram is a visual representation of how a substance changes
phases.

This is an example of a phase diagram. Often, when you are asked about a phase transition, you will need to refer to a phase
diagram to answer it. These diagrams usually have the normal boiling point and normal melting point marked on them, and have
the pressures on the y-axis and temperatures on the x-axis. The bottom curve marks the temperature and pressure combinations in
which the substance will subliminate . The left left marks the temperature and pressure combinations in which the substance will
melt . Finally, the right line marks the conditions under which the substance will evaporate .
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Problems
1. Using the phase diagram for carbon dioxide below, explain what phase carbon dioxide is normally in at standard temperature and
pressure, 1 atm and 273.15 K.

Phase diagram for CO2.from Wikipedia.

2: Looking at the same diagram, we see that carbon dioxide does not have a normal melting point or a normal boiling point.
Explain what kind of a change carbon dioxide makes at 1 atm and estimate the temperature of this point.

Solutions
1: Before we can completely answer the question, we need to convert the given information to match the units in the diagram. First
we convert 25 degrees Kelvin into Celsius: 

Now we can look at the diagram and determine its phase. At 25 degrees Celsius and 1 atm carbon dioxide is in the gas phase.

2: Carbon dioxide sublimes at 1 atm because it transitions from the solid phase directly to the gas phase. The temperature of
sublimation at 1 atm is about -80 degrees Celsius.
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22.2: Phase Diagrams
Phase diagram is a graphical representation of the physical states of a substance under different conditions of temperature and
pressure. A typical phase diagram has pressure on the y-axis and temperature on the x-axis. As we cross the lines or curves on the
phase diagram, a phase change occurs. In addition, two states of the substance coexist in equilibrium on the lines or curves.

Introduction
A phase transition is the transition from one state of matter to another. There are three states of matter: liquid, solid, and gas.

Liquid: A state of matter that consists of loose, free moving particles which form the shape set by the boundaries of the
container in which the liquid is in. This happens because the motion of the individual particles within a liquid is much less
restricted than in a solid. One may notice that some liquids flow readily whereas some liquids flow slowly. A liquid's relative
resistance to flow is viscosity.
Solid: A state of matter with tightly packed particles which do not change the shape or volume of the container that it is in.
However, this does not mean that the volume of a solid is a constant. Solids can expand and contract when temperatures change.
This is why when you look up the density of a solid, it will indicate the temperature at which the value for density is listed.
Solids have strong intermolecular forces that keep particles in close proximity to one another. Another interesting thing to think
about is that all true solids have crystalline structures. This means that their particles are arranged in a three-dimensional,
orderly pattern. Solids will undergo phase changes when they come across energy changes.
Gas: A state of matter where particles are spread out with no definite shape or volume. The particles of a gas will take the shape
and fill the volume of the container that it is placed in. In a gas, there are no intermolecular forces holding the particles of a gas
together since each particle travels at its own speed in its own direction. The particles of a gas are often separated by great
distances.

Phase diagrams illustrate the variations between the states of matter of elements or compounds as they relate to pressure and
temperatures. The following is an example of a phase diagram for a generic single-component system:

Figure 1. General Phase diagram

Triple point – the point on a phase diagram at which the three states of matter: gas, liquid, and solid coexist
Critical point – the point on a phase diagram at which the substance is indistinguishable between liquid and gaseous states
Fusion(melting) (or freezing) curve – the curve on a phase diagram which represents the transition between liquid and solid
states
Vaporization (or condensation) curve – the curve on a phase diagram which represents the transition between gaseous and
liquid states
Sublimation (or deposition) curve – the curve on a phase diagram which represents the transition between gaseous and solid
states

Phase diagrams plot pressure (typically in atmospheres) versus temperature (typically in degrees Celsius or Kelvin). The labels on
the graph represent the stable states of a system in equilibrium. The lines represent the combinations of pressures and temperatures
at which two phases can exist in equilibrium. In other words, these lines define phase change points. The red line divides the solid
and gas phases, represents sublimation (solid to gas) and deposition (gas to solid). The green line divides the solid and liquid
phases and represents melting (solid to liquid) and freezing (liquid to solid). The blue divides the liquid and gas phases, represents
vaporization (liquid to gas) and condensation (gas to liquid). There are also two important points on the diagram, the triple point
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and the critical point. The triple point represents the combination of pressure and temperature that facilitates all phases of matter at
equilibrium. The critical point terminates the liquid/gas phase line and relates to the critical pressure, the pressure above which a
supercritical fluid forms.

With most substances, the temperature and pressure related to the triple point lie below standard temperature and pressure and the
pressure for the critical point lies above standard pressure. Therefore at standard pressure as temperature increases, most substances
change from solid to liquid to gas, and at standard temperature as pressure increases, most substances change from gas to liquid to
solid.

Exception: Water

Normally the solid/liquid phase line slopes positively to the right (as in the diagram for carbon dioxide below). However for other
substances, notably water, the line slopes to the left as the diagram for water shows. This indicates that the liquid phase is more
dense than the solid phase. This phenomenon is caused by the crystal structure of the solid phase. In the solid forms of water and
some other substances, the molecules crystalize in a lattice with greater average space between molecules, thus resulting in a solid
with a lower density than the liquid. Because of this phenomenon, one is able to melt ice simply by applying pressure and not by
adding heat.

Figure : Phase diagrams for CO
Figure :Phase diagrams for H O

Moving About the Diagram
Moving about the phase diagram reveals information about the phases of matter. Moving along a constant temperature line reveals
relative densities of the phases. When moving from the bottom of the diagram to the top, the relative density increases. Moving
along a constant pressure line reveals relative energies of the phases. When moving from the left of the diagram to the right, the
relative energies increases.

Important Definitions
Sublimation is when the substance goes directly from solid to the gas state.
Deposition occurs when a substance goes from a gas state to a solid state; it is the reverse process of sublimation.
Melting occurs when a substance goes from a solid to a liquid state.
Fusion is when a substance goes from a liquid to a solid state, the reverse of melting.
Vaporization (or evaporation) is when a substance goes from a liquid to a gaseous state.
Condensation occurs when a substance goes from a gaseous to a liquid state, the reverse of vaporization.
Critical Point – the point in temperature and pressure on a phase diagram where the liquid and gaseous phases of a substance
merge together into a single phase. Beyond the temperature of the critical point, the merged single phase is known as a
supercritical fluid.
Triple Point occurs when both the temperature and pressure of the three phases of the substance coexist in equilibrium.

22.2.2a 2
22.2.2b 2
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Problems
Imagine a substance with the following points on the phase diagram: a triple point at .5 atm and -5°C; a normal melting point at
20°C; a normal boiling point at 150°C; and a critical point at 5 atm and 1000°C. The solid liquid line is "normal" (meaning positive
sloping). For this, complete the following:

1. Roughly sketch the phase diagram, using units of atmosphere and Kelvin.

Answer

1-solid, 2-liquid, 3-gas, 4-supercritical fluid, point O-triple point, C-critical point -78.5 °C (The phase of dry ice changes from
solid to gas at -78.5 °C)

2. Rank the states with respect to increasing density and increasing energy.

3. Describe what one would see at pressures and temperatures above 5 atm and 1000°C.

Answer

One would see a super-critical fluid, when approaching the point, one would see the meniscus between the liquid and gas
disappear.

4. Describe what will happen to the substance when it begins in a vaccum at -15°C and is slowly pressurized.

Answer

The substance would begin as a gas and as the pressure increases, it would compress and eventually solidify without liquefying
as the temperature is below the triple point temperature.

5. Describe the phase changes from -80°C to 500°C at 2 atm.

Answer

The substance would melt at somewhere around, but above 20°C and then boil at somewhere around, but above 150°C. It
would not form a super-critical fluid as the neither the pressure nor temperature reach the critical pressure or temperature.

6. What exists in a system that is at 1 atm and 150°?

Answer

Depending on how much energy is in the system, there will be different amounts of liquid and gas at equilibrium. If just enough
energy was added to raise the temperature of the liquid to 150°C, there will just be liquid. If more was added, there will be some
liquid and some gas. If just enough energy was added to change the state of all of the liquid without raising the temperature of
the gas, there will just be gas.

7. Label the area 1, 2, 3, and 4 and points O and C on the diagram.

8. A sample of dry ice (solid CO ) is cooled to -100 °C, and is set on a table at room temperature (25 °C). At what temperature is
the rate of sublimation and deposition the same? (Assume pressure is held constant at 1 atm).
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23.1: Criterion for Phase Equilibrium
The thermodynamic criterion for phase equilibrium is simple. It is based upon the chemical potentials of the components in a
system. For simplicity, consider a system with only one component. For the overall system to be in equilibrium, the chemical
potential of the compound in each phase present must be the same. Otherwise, there will be some mass migration from one phase to
another, decreasing the total chemical potential of the phase from which material is being removed, and increasing the total
chemical potential of the phase into which the material is being deposited. So for each pair of phases present (  and ) the
following must be true:

Gibbs Phase Rule 
The Gibbs phase rule describes the number of compositional and phase variables that can be varied freely for a system at
equilibrium. For each phase present in a system, the mole fraction of all but one component can be varied independently. However,
the relationship

places a constraint on the last mole fraction. As such, there are  compositional degrees of freedom for each phase present,
where  is the number of components in the mixture. Similarly, all but one of the chemical potentials of each phase present must be
equal, leaving only one that can be varied independently, leading to  thermodynamic constraints placed on each component.
Finally, there are two state variables that can be varied (such as pressure and temperature), adding two additional degrees of
freedom to the system. The net number of degrees of freedom is determined by adding all of the degrees of freedom and
subtracting the number of thermodynamic constraints.

Equation  is the Gibbs phase rule.

Example :

Show that the maximum number of phases that can co-exist at equilibrium for a single component system is .

Solution:

The maximum number of components will occur when the number of degrees of freedom is zero.

Note: This shows that there can never be a “quadruple point” for a single component system!

Because a system at its triple point has no degrees of freedom, the triple point makes a very convenient physical condition at which
to define a temperature. For example, the International Practical Temperature Scale of 1990 (IPT-90) uses the triple points of
hydrogen, neon, oxygen, argon, mercury, and water to define several low temperatures. (The calibration of a platinum resistance
thermometer at the triple point of argon, for example, is described by Strouse (Strouse, 2008)). The advantage to using a triple
point is that the compound sets both the temperature and pressure, rather than forcing the researcher to set a pressure and then
measure the temperature of a phase change, introducing an extra parameter than can introduce uncertainty into the measurement.
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24.1: Ideal Solutions - Raoult's Law
When two substances whose molecules are very similar form a liquid solution, the vapor pressure of the mixture is very simply
related to the vapor pressures of the pure substances. Suppose, for example, we mix 1 mol benzene with 1 mol toluene as shown in
the figure below.

 

The mole fraction of benzene, , and the mole fraction of toluene, , are both equal to 0.5. At 79.6°C the measured vapor
pressure of this mixture is 516 mmHg, slightly less than 517 mmHg, the average of the vapor pressures of pure benzene (744
mmHg) and of pure toluene (290 mmHg) at the same temperature.

It is easy to explain this behavior if we assume that because benzene and toluene molecules are so nearly alike, they behave the
same way in solution as they do in the pure liquids. Since there are only half as many benzene molecules in the mixture as in pure
benzene, the rate at which benzene molecules escape from the surface of the solution will be half the rate at which they would
escape from the pure liquid. In consequence the partial vapor pressure of benzene above the mixture will be one-half the vapor
pressure of pure benzene. By a similar argument the partial vapor pressure of the toluene above the solution is also one-half that of
pure toluene. Accordingly, we can write

and

where  and  are the partial pressures of benzene and toluene vapors, respectively, and  and  are the vapor pressures of
the pure liquids. The total vapor pressure of the solution is

Figure : Vapor-liquid equilibria for (a) pure toluene; (b) a mixture of equal amounts of toluene and benzene: and (c) pure
benzene. In the solution (b) only half the molecules are benzene molecules, and so the concentration of benzene molecules in the
vapor phase is only half as great as above pure benzene. Note also that although the initial amounts of benzene and toluene in the
solution were equal, more benzene than toluene escapes to the gas phase because of benzene’s higher vapor pressure.

The vapor pressure of the mixture is equal to the mean of the vapor pressures of the two pure liquids.

We can generalize the above argument to apply to a liquid solution of any composition involving any two substances  and 
whose molecules are very similar. The partial vapor pressure of  above the liquid mixture, , will then be the vapor pressure of
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pure , , multiplied by the fraction of the molecules in the liquid which are of type , that is, the mole fraction of , . In
equation form

Similarly for component 

Adding these two partial pressures, we obtain the total vapor pressure

Liquid solutions which conform to Eqs.  and  are said to obey Raoult’s law and to be ideal mixtures or ideal
solutions.

In addition to its use in predicting the vapor pressure of a solution, Raoult’s law may be applied to the solubility of a gas in a liquid.
Dividing both sides of Equation  by  gives

Since the vapor pressure of any substance has a specific value at a given temperature, Equation  tells us that the mole
fraction  of a gaseous solute is proportional to the partial pressure  of that gas above the solution.

For an ideal solution the proportionality constant  is the reciprocal of the vapor pressure of the pure solute at the temperature in
question. Since vapor pressure increases as temperature increases, , which is , must decrease. Thus we expect the solubility
of a gas in a liquid to increase as the partial pressure of gas above the solution increases, but to decrease as temperature increases.
Equation  is known as Henry’s law. It also applies to gaseous solutes which do not form ideal solutions, but in such cases
the Henry’s-law constant  does not equal the reciprocal of the vapor pressure.

The video below shows the effect of varied pressure on the amount of CO  dissolved in soda. The amount of dissolved CO  is
monitored by a pH indicator. The more dissolved CO , the lower the pH (the more red the solution). Watch the video to find out
how the solubility of CO  is related to the pressure, paying particular attention to the color of the solution.

In actual fact very few liquid mixtures obey Raoult’s law exactly. Even for molecules as similar as benzene and toluene, we noted a
deviation of 517 mmHg – 516 mmHg, or 1 mmHg at 79.6°C. Much larger deviations occur if the molecules are not very similar.
These deviations are of two kinds. As can be seen from Figure  , a plot of the vapor pressure against the mole fraction of one
component yields a straight line for an ideal solution. For non-ideal mixtures the actual vapor pressure can be larger than the ideal
value (positive deviation from Raoult’s law) or smaller (negative deviation). Negative deviations correspond to cases where
attractions between unlike molecules are greater than those between like molecules.
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Figure : Deviations from Raoult's law. (a) When Raoult's law is obeyed, a plot of vapor pressure against mole fraction yields
a straight line. This is nearly true for the benzene and toluene mixture at 79.6°C. (b) A mixture of acetone and chloroform shows
negative deviations from Raoult's law at 35°C, indicating that the two different molecules prefer each other's company to their own.
(c) The opposite behavior is shown at 55°C by a benzene-methanol mixture where the polar and nonpolar molecules prefer the
company of their own kind.

In the case illustrated below, acetone (CH COCH ) and chloroform (CHCl ) can form a weak hydrogen bond:

Because of this extra intermolecular attraction, molecules have more difficulty escaping the solution and the vapor pressure is
lower. The opposite is true of a mixture of benzene and methanol. When C H  molecules are randomly distributed among CH OH
molecules, the latter cannot hydrogen bond effectively. Molecules can escape more readily from the solution, and the vapor
pressure is higher than Raoult’s law would predict.
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24.2: Thermodynamics of Mixing
When solids, liquids or gases are combined, the thermodynamic quantities of the system experience a change as a result of the
mixing. This module will discuss the effect that mixing has on a solution’s Gibbs energy, enthalpy, and entropy, with a specific
focus on the mixing of two gases.

Introduction 
A solution is created when two or more components mix homogeneously to form a single phase. Studying solutions is important
because most chemical and biological life processes occur in systems with multiple components. Understanding the
thermodynamic behavior of mixtures is integral to the study of any system involving either ideal or non-ideal solutions because it
provides valuable information on the molecular properties of the system.

Most real gases behave like ideal gases at standard temperature and pressure. This allows us to combine our knowledge of ideal
systems and solutions with standard state thermodynamics in order to derive a set of equations that quantitatively describe the
effect that mixing has on a given gas-phase solution’s thermodynamic quantities.

Gibbs Free Energy of Mixing 
Unlike the extensive properties of a one-component system, which rely only on the amount of the system present, the extensive
properties of a solution depend on its temperature, pressure and composition. This means that a mixture must be described in terms
of the partial molar quantities of its components. The total Gibbs free energy of a two-component solution is given by the
expression

where

 is the total Gibbs energy of the system,
 is the number of moles of component , and
 is the partial molar Gibbs energy of component .

The molar Gibbs energy of an ideal gas can be found using the equation

where  is the standard molar Gibbs energy of the gas at 1 bar, and P is the pressure of the system. In a mixture of ideal gases, we
find that the system’s partial molar Gibbs energy is equivalent to its chemical potential, or that

This means that for a solution of ideal gases, Equation  can become

where

 is the chemical potential of the th component,
 is the standard chemical potential of component  at 1 bar, and
 is the partial pressure of component .

Now pretend we have two gases at the same temperature and pressure, gas A and gas B. The Gibbs energy of the system before the
gases are mixed is given by Equation , which can be combined with Equation  to give the expression

If gas A and gas B are then mixed together, they will each exert a partial pressure on the total system,  and , so that 
. This means that the final Gibbs energy of the final solution can be found using the equation
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The Gibbs energy of mixing, , can then be found by subtracting  from .

where

and  is the mole fraction of gas . This equation can be simplified further by knowing that the mole fraction of a component is
equal to the number of moles of that component over the total moles of the system, or

Equation  then becomes

This expression gives us the effect that mixing has on the Gibbs free energy of a solution. Since  and  are mole fractions that
range from 0 to 1, we can conclude that  will be a negative number. This is consistent with the idea that gases mix
spontaneously at constant pressure and temperature.

Entropy of mixing 
Figure  shows that when two gases mix, it can really be seen as two gases expanding into twice their original volume. This
greatly increases the number of available microstates, and so we would therefore expect the entropy of the system to increase as
well.

Figure : The mixing of two gases can be seen as two expansions. (a) Expansion of gas A alone when the barrier is removed.
The molecules have twice as many microstates in the open box. (b) Expansion of gas B along. (c) the simultaneous expansion of
gases A and B is equivalent to mixing

Thermodynamic studies of an ideal gas’s dependence of Gibbs free energy of temperature have shown that

This means that differentiating Equation  at constant pressure with respect to temperature will give an expression for the
effect that mixing has on the entropy of a solution. We see that
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Since the mole fractions again lead to negative values for  and , the negative sign in front of the equation makes 
 positive, as expected. This agrees with the idea that mixing is a spontaneous process.

Enthalpy of mixing 
We know that in an ideal system , but this equation can also be applied to the thermodynamics of mixing and
solved for the enthalpy of mixing so that it reads

Plugging in our expressions for  (Equation ) and  (Equation ) , we get

This result makes sense when considering the system. The molecules of ideal gas are spread out enough that they do not interact
with one another when mixed, which implies that no heat is absorbed or produced and results in a  of zero. Figure 
illustrates how  and  change as a function of the mole fraction so that  of a solution will always be equal to
zero (this is for the mixing of two ideal gasses).

Figure : A graph of , , and  as a function of  for the mixing of two ideal gases.
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Problems 
1. Use Figure 2 to find the x  that has the largest impact on the thermodynamic quantities of the final solution. Explain why this is

true.
2. Calculate the effect that mixing 2 moles of nitrogen and 3 moles of oxygen has on the entropy of the final solution.
3. Another way to find the entropy of a system is using the equation ΔS = nRln(V /V ). Use this equation and the fact that volume

is directly proportional to the number of moles of gas at constant temperature and pressure to derive the final expression for 
 . (Hint: Use the derivation of  as a guide).

Answers 
1. x = 0.5
2. Increases the entropy of the system by 27.98 J/molK

S = −nR( ln + ln )Δmix XA XA X2 X2 (24.2.16)

lnXA lnXB

SΔmix

ΔG= ΔH −TΔS

H = G+T SΔmix Δmix Δmix (24.2.17)

GΔmix 24.2.12 SΔmix 24.2.16

H = nRT ( ln + ln ) +T [−nR( ln + ln )] = 0Δmix XA XA XB XB XA XA XB XB (24.2.18)
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25.1: Raoult's Law and Ideal Mixtures of Liquids
This page deals with Raoult's Law and how it applies to mixtures of two volatile liquids. It covers cases where the two liquids are
entirely miscible in all proportions to give a single liquid - NOT those where one liquid floats on top of the other (immiscible
liquids). The page explains what is meant by an ideal mixture and looks at how the phase diagram for such a mixture is built up and
used.

Ideal Mixtures 
An ideal mixture is one which obeys Raoult's Law, but I want to look at the characteristics of an ideal mixture before actually
stating Raoult's Law. The page will flow better if I do it this way around. There is actually no such thing as an ideal mixture!
However, some liquid mixtures get fairly close to being ideal. These are mixtures of two very closely similar substances.
Commonly quoted examples include:

hexane and heptane
benzene and methylbenzene
propan-1-ol and propan-2-ol

In a pure liquid, some of the more energetic molecules have enough energy to overcome the intermolecular attractions and escape
from the surface to form a vapor. The smaller the intermolecular forces, the more molecules will be able to escape at any particular
temperature.

If you have a second liquid, the same thing is true. At any particular temperature a certain proportion of the molecules will have
enough energy to leave the surface.

In an ideal mixture of these two liquids, the tendency of the two different sorts of molecules to escape is unchanged.

You might think that the diagram shows only half as many of each molecule escaping - but the proportion of each escaping is still
the same. The diagram is for a 50/50 mixture of the two liquids. That means that there are only half as many of each sort of
molecule on the surface as in the pure liquids. If the proportion of each escaping stays the same, obviously only half as many will
escape in any given time. If the red molecules still have the same tendency to escape as before, that must mean that the
intermolecular forces between two red molecules must be exactly the same as the intermolecular forces between a red and a blue
molecule.

If the forces were any different, the tendency to escape would change. Exactly the same thing is true of the forces between two blue
molecules and the forces between a blue and a red. They must also be the same otherwise the blue ones would have a different
tendency to escape than before. If you follow the logic of this through, the intermolecular attractions between two red molecules,
two blue molecules or a red and a blue molecule must all be exactly the same if the mixture is to be ideal.

This is why mixtures like hexane and heptane get close to ideal behavior. They are similarly sized molecules and so have similarly
sized van der Waals attractions between them. However, they obviously are not identical - and so although they get close to being
ideal, they are not actually ideal. For the purposes of this topic, getting close to ideal is good enough!
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Ideal Mixtures and the Enthalpy of Mixing 

When you make any mixture of liquids, you have to break the existing intermolecular attractions (which needs energy), and then
remake new ones (which releases energy). If all these attractions are the same, there won't be any heat either evolved or absorbed.
That means that an ideal mixture of two liquids will have zero enthalpy change of mixing. If the temperature rises or falls when you
mix the two liquids, then the mixture is not ideal. You may have come cross a slightly simplified version of Raoult's Law if
you have studied the effect of a non-volatile solute like salt on the vapor pressure of solvents like water. The definition
below is the one to use if you are talking about mixtures of two volatile liquids.

Definition: Raoult's Law
The partial vapor pressure of a component in a mixture is equal to the vapor pressure of the pure component at that temperature
multiplied by its mole fraction in the mixture.

Raoult's Law only works for ideal mixtures. In equation form, for a mixture of liquids  and , this reads:

In this equation,  and  are the partial vapor pressures of the components  and . In any mixture of gases,
each gas exerts its own pressure. This is called its partial pressure and is independent of the other gases present.
Even if you took all the other gases away, the remaining gas would still be exerting its own partial pressure. The total
vapor pressure of the mixture is equal to the sum of the individual partial pressures:

The  values are the vapor pressures of  and  if they were on their own as pure liquids.  and  are the mole
fractions of  and . That is exactly what it says it is - the fraction of the total number of moles present which is  or 

. You calculate mole fraction using, for example:

Example 

Suppose you had a mixture of 2 moles of methanol and 1 mole of ethanol at a particular temperature. The vapor
pressure of pure methanol at this temperature is 81 kPa, and the vapor pressure of pure ethanol is 45 kPa. What is
total vapor pressure of this solution?

Solution

There are 3 moles in the mixture in total.

2 of these are methanol. The mole fraction of methanol is 2/3.
Similarly, the mole fraction of ethanol is 1/3.

You can easily find the partial vapor pressures using Raoult's Law - assuming that a mixture of methanol and
ethanol is ideal.

First for methanol:

Then for ethanol:

A B

=PA XAP
∗

A
(25.1.1)

=PB XBP
∗

B
(25.1.2)

PA PB A B

= +Ptotal PA PB (25.1.3)

P
∗

A B XA XB

A B A

B

=XA

moles of A

total number of moles
(25.1.4)

25.1.1

= ×81 kP aPmethanol

2

3
(25.1.5)

= 54 kP a (25.1.6)

= ×45 kP aPethanol

1

3
(25.1.7)

= 15 kP a (25.1.8)
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You get the total vapor pressure of the liquid mixture by adding these together.

In practice, this is all a lot easier than it looks when you first meet the definition of Raoult's Law and the equations!

Vapor Pressure and Composition Diagrams 

Suppose you have an ideal mixture of two liquids A and B. Each of A and B is making its own contribution to the overall
vapor pressure of the mixture - as we've seen above. Let's focus on one of these liquids - A, for example. Suppose you
double the mole fraction of A in the mixture (keeping the temperature constant). According to Raoult's Law, you will
double its partial vapor pressure. If you triple the mole fraction, its partial vapor pressure will triple - and so on. In other
words, the partial vapor pressure of A at a particular temperature is proportional to its mole fraction. If you plot a graph
of the partial vapor pressure of A against its mole fraction, you will get a straight line.

Now we'll do the same thing for B - except that we will plot it on the same set of axes. The mole fraction of B falls as A increases
so the line will slope down rather than up. As the mole fraction of B falls, its vapor pressure will fall at the same rate.

Notice that the vapor pressure of pure B is higher than that of pure A. That means that molecules must break away more easily
from the surface of B than of A. B is the more volatile liquid. To get the total vapor pressure of the mixture, you need to add the
values for A and B together at each composition. The net effect of that is to give you a straight line as shown in the next diagram.

Boiling point and Composition Diagrams 
The relationship between boiling point and vapor pressure

If a liquid has a high vapor pressure at a particular temperature, it means that its molecules are escaping easily from the surface.
If, at the same temperature, a second liquid has a low vapor pressure, it means that its molecules are not escaping so easily.

= 54 kP a +15 kP a = 69kP aPtotal (25.1.9)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://chem.libretexts.org/@go/page/238275?pdf


25.1.4 https://chem.libretexts.org/@go/page/238275

What do these two aspects imply about the boiling points of the two liquids? There are two ways of looking at the above question:

Either:

If the molecules are escaping easily from the surface, it must mean that the intermolecular forces are relatively weak. That
means that you won't have to supply so much heat to break them completely and boil the liquid. Therefore, the liquid with the
higher vapor pressure at a particular temperature is the one with the lower boiling point.

Or:

Liquids boil when their vapor pressure becomes equal to the external pressure. If a liquid has a high vapor pressure at some
temperature, you won't have to increase the temperature very much until the vapor pressure reaches the external pressure. On
the other hand if the vapor pressure is low, you will have to heat it up a lot more to reach the external pressure. Therefore, the
liquid with the higher vapor pressure at a particular temperature is the one with the lower boiling point.

For two liquids at the same temperature, the liquid with the higher vapor pressure is the
one with the lower boiling point.

Constructing a boiling point / composition diagram 

To remind you - we've just ended up with this vapor pressure / composition diagram:

We're going to convert this into a boiling point / composition diagram. We'll start with the boiling points of pure A and B. Since B
has the higher vapor pressure, it will have the lower boiling point. If that is not obvious to you, go back and read the last section
again!

For mixtures of A and B, you might perhaps have expected that their boiling points would form a straight line joining the two
points we've already got. Not so! In fact, it turns out to be a curve.
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To make this diagram really useful (and finally get to the phase diagram we've been heading towards), we are going to add another
line. This second line will show the composition of the vapor over the top of any particular boiling liquid.

If you boil a liquid mixture, you would expect to find that the more volatile substance escapes to form a vapor more easily than the
less volatile one. That means that in the case we've been talking about, you would expect to find a higher proportion of B (the more
volatile component) in the vapor than in the liquid. You can discover this composition by condensing the vapor and analyzing it.
That would give you a point on the diagram.

The diagram just shows what happens if you boil a particular mixture of A and B. Notice that the vapor over the top of the boiling
liquid has a composition which is much richer in B - the more volatile component. If you repeat this exercise with liquid mixtures
of lots of different compositions, you can plot a second curve - a vapor composition line.

This is now our final phase diagram.

Using the phase diagram 
The diagram is used in exactly the same way as it was built up. If you boil a liquid mixture, you can find out the temperature it
boils at, and the composition of the vapor over the boiling liquid. For example, in the next diagram, if you boil a liquid mixture C ,
it will boil at a temperature T  and the vapor over the top of the boiling liquid will have the composition C .

All you have to do is to use the liquid composition curve to find the boiling point of the liquid, and then look at what the vapor
composition would be at that temperature. Notice again that the vapor is much richer in the more volatile component B than the
original liquid mixture was.

1

1 2
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The beginnings of fractional distillation 

Suppose that you collected and condensed the vapor over the top of the boiling liquid and reboiled it. You would now be boiling a
new liquid which had a composition C . That would boil at a new temperature T , and the vapor over the top of it would have a
composition C .

You can see that we now have a vapor which is getting quite close to being pure B. If you keep on doing this (condensing the
vapor, and then reboiling the liquid produced) you will eventually get pure B. This is obvious the basis for fractional distillation.
However, doing it like this would be incredibly tedious, and unless you could arrange to produce and condense huge amounts of
vapor over the top of the boiling liquid, the amount of B which you would get at the end would be very small. Real fractionating
columns (whether in the lab or in industry) automate this condensing and reboiling process. How these work will be explored on
another page.
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25.2: Phase Diagrams for Binary Mixtures
As suggested by the Gibbs Phase Rule, the most important variables describing a mixture are pressure, temperature and
composition. In the case of single component systems, composition is not important so only pressure and temperature are typically
depicted on a phase diagram. However, for mixtures with two components, the composition is of vital important, so there is
generally a choice that must be made as to whether the other variable to be depicted is temperature or pressure.

Temperature-composition diagrams are very useful in the description of binary systems, many of which will for two-phase
compositions at a variety of temperatures and compositions. In this section, we will consider several types of cases where the
composition of binary mixtures are conveniently depicted using these kind of phase diagrams.

Partially Miscible Liquids 

A pair of liquids is considered partially miscible if there is a set of compositions over which the liquids will form a two-phase
liquid system. This is a common situation and is the general case for a pair of liquids where one is polar and the other non-polar
(such as water and vegetable oil.) Another case that is commonly used in the organic chemistry laboratory is the combination of
diethyl ether and water. In this case, the differential solubility in the immiscible solvents allows the two-phase liquid system to be
used to separate solutes using a separatory funnel method.

Figure  :

As is the case for most solutes, their solubility is dependent on temperature. For many binary mixtures of immiscible liquids,
miscibility increases with increasing temperature. And then at some temperature (known as the upper critical temperature), the
liquids become miscible in all compositions. An example of a phase diagram that demonstrates this behavior is shown in Figure 

. An example of a binary combination that shows this kind of behavior is that of methyl acetate and carbon disufide, for
which the critical temperature is approximately 230 K at one atmosphere (Ferloni & Spinolo, 1974). Similar behavior is seen for
hexane/nitrobenzene mixtures, for which the critical temperature is 293 K.

Figure  :
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Another condition that can occur is for the two immiscible liquids to become completely miscible below a certain temperature, or
to have a lower critical temperature. An example of a pair of compounds that show this behavior is water and trimethylamine. A
typical phase diagram for such a mixture is shown in Figure . Some combinations of substances show both an upper and
lower critical temperature, forming two-phase liquid systems at temperatures between these two temperatures. An example of a
combination of substances that demonstrate the behavior is nicotine and water.

The Lever Rule 

The composition and amount of material in each phase of a two phase liquid can be determined using the lever rule. This rule can
be explained using the following diagram.

Figure  :

Suppose that the temperature and composition of the mixture is given by point b in the above diagram. The horizontal line segment
that passes through point b, is terminated at points a and c, which indicate the compositions of the two liquid phases. Point a
indicates the mole faction of compound B ( ) in the layer that is predominantly A, whereas the point c indicates the composition
(  )of the layer that is predominantly compound B. The relative amounts of material in the two layers is then inversely
proportional to the length of the tie-lines a-b and b-c, which are given by  and  respectively. In terms of mole fractions,

and

The number of moles of material in the A layer ( ) and the number of moles in the B layer ( ) are inversely proportional to the
lengths of the two lines  and .

Or, substituting the above definitions of the lengths  and , the ratio of these two lengths gives the ratio of moles in the two
phases.
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25.3: Liquid-Vapor Systems - Raoult’s Law
Liquids tend to be volatile, and as such will enter the vapor phase when the temperature is increased to a high enough value
(provided they do not decompose first!) A volatile liquid is one that has an appreciable vapor pressure at the specified temperature.
An ideal mixture continuing at least one volatile liquid can be described using Raoult’s Law.

Raoult’s Law 
Raoult’s law can be used to predict the total vapor pressure above a mixture of two volatile liquids. As it turns out, the composition
of the vapor will be different than that of the two liquids, with the more volatile compound having a larger mole fraction in the
vapor phase than in the liquid phase. This is summarized in the following theoretical diagram for an ideal mixture of two
compounds, one having a pure vapor pressure of  and the other having a pure vapor pressure of . In
Figure , the liquid phase is represented at the top of the graph where the pressure is higher.

Figure : The liquid phase is represented at the top of the graph where the pressure is higher

Oftentimes, it is desirable to depict the phase diagram at a single pressure so that temperature and composition are the variables
included in the graphical representation. In such a diagram, the vapor, which exists at higher temperatures) is indicated at the top of
the diagram, while the liquid is at the bottom. A typical temperature vs. composition diagram is depicted in Figure  for an
ideal mixture of two volatile liquids.

Figure : A typical temperature vs. composition diagram.

In this diagram,  and  represent the boiling points of pure compounds  and . If a system having the composition indicated
by  has its temperature increased to that indicated by point c, The system will consist of two phases, a liquid phase, with a
composition indicated by  and a vapor phase indicated with a composition indicated by . The relative amounts of material in
each phase can be described by the lever rule, as described previously.

Further, if the vapor with composition  is condensed (the temperature is lowered to that indicated by point b') and revaporized,
the new vapor will have the composition consistent with . This demonstrates how the more volatile liquid (the one with the
lower boiling temperature, which is A in the case of the above diagram) can be purified from the mixture by collecting and re-
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evaporating fractions of the vapor. If the liquid was the desired product, one would collect fractions of the residual liquid to achieve
the desired result. This process is known as distillation.
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26.1: Colligative Properties
Colligative properties are important properties of solutions as they describe how the properties of the solvent will change as solute
(or solutes) is (are) added. Before discussing these important properties, let us first review some definitions.

Solution – a homogeneous mixture.
Solvent – The component of a solution with the largest mole fraction
Solute – Any component of a solution that is not the solvent.

Solutions can exist in solid (alloys of metals are an example of solid-phase solutions), liquid, or gaseous (aerosols are examples of
gas-phase solutions) forms. For the most part, this discussion will focus on liquid-phase solutions.

Freezing Point Depression 
In general (and as will be discussed in Chapter 8 in more detail) a liquid will freeze when

As such, the freezing point of the solvent in a solution will be affected by anything that changes the chemical potential of the
solvent. As it turns out, the chemical potential of the solvent is reduced by the presence of a solute.

In a mixture, the chemical potential of component  can be calculated by

And because  is always less than (or equal to) 1, the chemical potential is always reduced by the addition of another component.

The condition under which the solvent will freeze is

where the chemical potential of the liquid is given by Equation , which rearrangement to

To evaluate the temperature dependence of the chemical potential, it is useful to consider the temperature derivative at constant
pressure.

Recalling that

and

Equation  becomes

And noting that in the case of the solvent freezing,  is the enthalpy of the pure solvent in solid form, and  is the enthalpy of
the solvent in the liquid solution. So

≤μsolid μliquid (26.1.1)
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Equation  then becomes

or

Separating the variables puts the equation into an integrable form.

where  is the freezing point of the pure solvent and  is the temperature at which the solvent will begin to solidify in the
solution. After integration of Equation :

This can be simplified further by noting that

where  is the difference between the freezing temperature of the pure solvent and that of the solvent in the solution. Also, for
small deviations from the pure freezing point,  can be replaced by the approximate value . So the Equation 
becomes

Further, for dilute solutions, for which , the mole fraction of the solvent is very nearly 1, then

where  is the mole fraction of the solute. After a small bit of rearrangement, this results in an expression for freezing point
depression of

The first factor can be replaced by :

which is the cryoscopic constant for the solvent.

 gives the magnitude of the reduction of freezing point for the solution. Since  and  are properties of the solvent, the
freezing point depression property is independent of the solute and is a property based solely on the nature of the solvent. Further,
since  was introduced as , it represents the sum of the mole fractions of all solutes present in the solution.

It is important to keep in mind that for a real solution, freezing of the solvent changes the composition of the solution by decreasing
the mole fraction of the solvent and increasing that of the solute. As such, the magnitude of  will change as the freezing process
continually removes solvent from the liquid phase of the solution.
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Boiling Point Elevation 

The derivation of an expression describing boiling point elevation is similar to that for freezing point depression. In short, the
introduction of a solute into a liquid solvent lowers the chemical potential of the solvent, cause it to favor the liquid phase over the
vapor phase. As such, the temperature must be increased to increase the chemical potential of the solvent in the liquid solution until
it is equal to that of the vapor-phase solvent. The increase in the boiling point can be expressed as

where

is called the ebullioscopic constant and, like the cryoscopic constant, is a property of the solvent that is independent of the solute
or solutes. A very elegant derivation of the form of the models for freezing point depression and boiling point elevation has been
shared by F. E. Schubert (Schubert, 1983).

Cryoscopic and ebullioscopic constants are generally tabulated using molality as the unit of solute concentration rather than mole
fraction. In this form, the equation for calculating the magnitude of the freezing point decrease or the boiling point increase is

or

where  is the concentration of the solute in moles per kg of solvent. Some values of  and  are shown in the table below.

Substance  (°C kg mol-1)  (°C)  (°C kg mol-1)  (°C)

Water 1.86 0.0 0.51 100.0

Benzene 5.12 5.5 2.53 80.1

Ethanol 1.99 -114.6 1.22 78.4

CCl 29.8 -22.3 5.02 76.8

Example :
The boiling point of a solution of 3.00 g of an unknown compound in 25.0 g of CCl  raises the boiling point to 81.5 °C. What is
the molar mass of the compound?

Solution:

The approach here is to find the number of moles of solute in the solution. First, find the concentration of the solution:

Using the number of kg of solvent, one finds the number for moles of solute:

The ratio of mass to moles yields the final answer:

ΔT = KbXB (26.1.20)

=
R(T o)2

ΔH¯ ¯¯̄¯
vap

Kb (26.1.21)

ΔT = mKf (26.1.22)

ΔT = mKb (26.1.23)

m Kf Kb

Kf T o
f Kb T o

b

4

26.1.1

4

(85.5 °C −76.8 °C) = (5.02 °C kg/mol)m (26.1.24)

m = 0.936 mol/kg (26.1.25)

(0.936 mol/ ) (0.02 ) = 0.0234 molkg kg (26.1.26)

= 128g/mol
3.00 g

0.0234
(26.1.27)
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Vapor Pressure Lowering 

For much the same reason as the lowering of freezing points and the elevation of boiling points for solvents into which a solute has
been introduced, the vapor pressure of a volatile solvent will be decreased due to the introduction of a solute. The magnitude of this
decrease can be quantified by examining the effect the solute has on the chemical potential of the solvent.

In order to establish equilibrium between the solvent in the solution and the solvent in the vapor phase above the solution, the
chemical potentials of the two phases must be equal.

If the solute is not volatile, the vapor will be pure, so (assuming ideal behavior)

Where  is the vapor pressure of the solvent over the solution. Similarly, for the pure solvent in equilibrium with its vapor

where  is the standard pressure of 1 bar, and  is the vapor pressure of the pure solvent. Substituting Equation  into
Equation  yields

The terms for  cancel, leaving

Subtracting  from both side produces

which rearranges to

Dividing both sides by  and then exponentiating yields

or

This last result is Raoult’s Law. A more formal derivation would use the fugacities of the vapor phases, but would look essentially
the same. Also, as in the case of freezing point depression and boiling point elevations, this derivation did not rely on the nature of
the solute! However, unlike freezing point depression and boiling point elevation, this derivation did not rely on the solute being
dilute, so the result should apply the entire range of concentrations of the solution.

Example :
Consider a mixture of two volatile liquids A and B. The vapor pressure of pure A is 150 Torr at some temperature, and that of
pure B is 300 Torr at the same temperature. What is the total vapor pressure above a mixture of these compounds with the mole
fraction of B of 0.600. What is the mole fraction of B in the vapor that is in equilibrium with the liquid mixture?

Solution:

Using Raoult’s Law (Equation )

=μvapor μsolvent (26.1.28)
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To get the mole fractions in the gas phase, one can use Dalton’s Law of partial pressures.

And, of course, it is also useful to note that the sum of the mole fractions is 1 (as it must be!)

Osmotic Pressure 
Osmosis is a process by which solvent can pass through a semi-permeable membrane (a membrane through which solvent can
pass, but not solute) from an area of low solute concentration to a region of high solute concentration. The osmotic pressure, , is
the pressure that when exerted on the region of high solute concentration will halt the process of osmosis.

The nature of osmosis and the magnitude of the osmotic pressure can be understood by examining the chemical potential of a pure
solvent and that of the solvent in a solution. The chemical potential of the solvent in the solution (before any extra pressure is
applied) is given by

And since  < 1, the chemical potential of the solvent in a solution is always lower than that of the pure solvent. So, to prevent
osmosis from occurring, something needs to be done to raise the chemical potential of the solvent in the solution. This can be
accomplished by applying pressure to the solution. Specifically, the process of osmosis will stop when the chemical potential
solvent in the solution is increased to the point of being equal to that of the pure solvent. The criterion, therefore, for osmosis to
cease is

To solve the problem to determine the magnitude of \(P\), the pressure dependence of the chemical potential is needed in addition
to understanding the effect the solute has on lowering the chemical potential of the solvent in the solution. The magnitude,
therefore, of the increase in chemical potential due to the application of excess pressure P must be equal to the magnitude of the
reduction of chemical potential by the reduced mole fraction of the solvent in the solution. We already know that the chemical
potential of the solvent in the solution is reduced by an amount given by

And the increase in chemical potential due to the application of excess pressure is given by

= (0.400)(150 Torr) = 60.0 TorrPA (26.1.37)

= (0.600)(300 Torr) = 180.0 TorrPB (26.1.38)
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The integrals on the right can be evaluated by recognizing

where  is the molar volume of the substance. Combining these expressions results in

If the molar volume of the solvent is independent of pressure (has a very small value of  – which is the case for most liquids) the
term on the right becomes.

Also, for values of  very close to 1

So, for dilute solutions

Or after rearrangement

again, where  is the molar volume of the solvent. And finally, since  is the concentration of the solute  for cases where 
. This allows one to write a simplified version of the expression which can be used in the case of very dilute solutions

When a pressure exceeding the osmotic pressure  is applied to the solution, the chemical potential of the solvent in the solution
can be made to exceed that of the pure solvent on the other side of the membrane, causing reverse osmosis to occur. This is a very
effective method, for example, for recovering pure water from a mixture such as a salt/water solution.
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27.1: Solid-Liquid Systems - Eutectic Points
A phase diagram for two immiscible solids and the liquid phase (which is miscible in all proportions) is shown in Figure .
The point labeled “e ” is the eutectic point, meaning the composition for which the mixture of the two solids has the lowest
melting point. The four main regions can be described as below:

I. Two-phase solid
II. Solid (mostly A) and liquid (A and B)

III. Solid (mostly B) and liquid (A and B)
IV. Single phase liquid (A and B)

Figure : Phase diagram of a two-component system that exhibits an eutectic point.

The unlabeled regions on the sides of the diagram indicate regions where one solid is so miscible in the other, that only a single
phase solid forms. This is different than the “two-phase solid” region where there are two distinct phases, meaning there are regions
(crystals perhaps) that are distinctly A or B, even though they are intermixed within on another. Region I contains two phases: a
solid phase that is mostly compound A, and a liquid phase which contains both A and B. A sample in region II (such as the
temperature/composition combination depicted by point b) will consist of two phases: 1 is a liquid mixture of A and B with a
composition given by that at point a, and the other is a single phase solid that is mostly pure compound B, but with traces of A
entrained within it. As always, the lever rule applies in determining the relative amounts of material in the two phases.

In the case where the widths of the small regions on either side of the phase diagram are negligibly small, a simplified diagram with
a form similar to that shown in Figure  can be used. In this case, it is assumed that the solids never form a single phase! The
tin-lead system exhibits such behavor.

Figure : A simplified phase diagram of a two-component system that exhibits an eutectic point.

Another important case is that for which the two compounds A and B can react to form a third chemical compound C. If the
compound C is stable in the liquid phase (does not decompose upon melting), the phase diagram will look like Figure .
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Figure : A simplified phase diagram of a two-component system that exhibits an eutectic point.

In this diagram, the vertical boundary at  is indicative of the compound  formed by  and . From the mole fraction
of , it is evident that the formula of compound  is . The reaction that forms compound C is

Thus, at overall compositions where  , there is excess compound A (B is the limiting reagent) and for  there is an
excess of compound  (  is now the limiting reagent.) With this in mind, the makeup of the sample in each region can be
summarized as

I. Two phase solid (A and C)
II. Two phase solid (C and B)

III. Solid A and liquid (A and C)
IV. Solid C and liquid (A and C)
V. Solid C and liquid (C and B)

VI. Solid B and liquid (C and B)
VII. liquid. Single phase liquid (A and C or C and B, depending on which is present in excess)

Zinc and Magnesium are an example of two compounds that demonstrate this kind of behavior, with the third compound having the
formula  (Ghosh, Mezbahul-Islam, & Medraj, 2011).

Incongruent Melting 
Oftentimes, the stable compound formed by two solids is only stable in the solid phase. In other words, it will decompose upon
melting. As a result, the phase diagram will take a lightly different form, as is shown in Figure .

Figure : A phase diagram of a two-component system that exhibits incongruent melting.

In this diagram, the formula of the stable compound is  (consistent with ). But you will notice that the boundary
separating the two two-phase solid regions does not extend all of the way to the single phase liquid portion of the diagram. This is

27.1.3
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because the compound will decompose upon melting. The process of decomposition upon melting is also called incongruent
melting. The makeup of each region can be summarized as

I. Two phase solid (A and C)
II. Two phase solid (C and B)

III. Solid A and liquid (A and B)
IV. Solid C and liquid (A and B)
V. Solid B and liquid (A and B)

There are many examples of pairs of compounds that show this kind of behavior. One combination is sodium and potassium, which
form a compound ( ) that is unstable in the liquid phase and so it melts incongruently (Rossen & Bleiswijk, 1912).
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27.2: Cooling Curves
The method that is used to map the phase boundaries on a phase diagram is to measure the rate of cooling for a sample of known
composition. The rate of cooling will change as the sample (or some portion of it) begins to undergo a phase change. These
“breaks” will appear as changes in slope in the temperature-time curve. Consider a binary mixture for which the phase diagram is
as shown in Figure . A cooling curve for a sample that begins at the temperature and composition given by point a is
shown in Figure .

Figure : (A) cooling of a two-component system from liquid to solid. (B) Cooresponding cooling curve for this process.

As the sample cools from point a, the temperature will decrease at a rate determined by the sample composition, and the geometry
of the experiment (for example, one expects more rapid cooling is the sample has more surface area exposed to the cooler
surroundings) and the temperature difference between the sample and the surroundings.

When the temperature reaches that at point b, some solid compound B will begin to form. This will lead to a slowing of the cooling
due to the exothermic nature of solid formation. But also, the composition of the liquid will change, becoming richer in compound
A as B is removed from the liquid phase in the form of a solid. This will continue until the liquid attains the composition at the
eutectic point (point c in the diagram.)

When the temperature reaches that at point c, both compounds A and B will solidify, and the composition of the liquid phase will
remain constant. As such, the temperature will stop changing, creating what is called the eutectic halt. Once all of the material has
solidified (at the time indicated by point c’), the cooling will continue at a rate determined by the heat capacities of the two solids A
and B, the composition, and (of course) the geometry of the experimental set up. By measuring cooling curves for samples of
varying composition, one can map the entire phase diagram.

This page titled 27.2: Cooling Curves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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