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3.5: Applications - Kinetics of Catalytic Reactions
It is possible to predict how the kinetics of certain heterogeneously-catalyzed reactions might vary with the partial pressures of the
reactant gases above the catalyst surface by using the Langmuir isotherm expression for equilibrium surface coverages.

Unimolecular Decomposition 
Consider the surface decomposition of a molecule A, i.e. the process

Let us assume that:

1. The decomposition reaction occurs uniformly across the surface sites at which molecule A may be adsorbed and is not restricted
to a limited number of special sites.

2. The products are very weakly bound to the surface and, once formed, are rapidly desorbed.
3. The rate determining step (rds) is the surface decomposition step.

Under these circumstances, the molecules of A adsorbed on the surface are in equilibrium with those in the gas phase and we may
predict the surface concentration of A from the Langmuir isotherm, i.e.

The rate of the surface decomposition (and hence of the reaction) is given by an expression of the form

This is assuming that the decomposition of A(ads) occurs in a simple unimolecular elementary reaction step and that the kinetics
are first order with respect to the surface concentration of this adsorbed intermediate). Substituting for the coverage, θ, gives us the
required expression for the rate in terms of the pressure of gas above the surface

It is useful to consider two extremes:

Low Pressure/Binding Limit 

This is the low pressure (or weak binding. i.e., small ) limit: under these conditions the steady state surface coverage, , of the
reactant molecule is very small.

then

and Equation  can be simplified to

Under this limiting case, the kinetics follow a first order reaction (with respect to the partial pressure of ) with an apparent first
order rate constant .

High Pressure/Binding Limit 

This is the high pressure (or strong binding, i.e., large ) limit: under these conditions the steady state surface coverage, , of the
reactant molecule is almost unity and

then

⇌ → ProductsA(g) A(ads) (3.5.1)

θ =
bP

1 +bP
(3.5.2)

rate = kθ (3.5.3)

rate =
kbP

1 +bP
(3.5.4)

b θ

bP ≪ 1 (3.5.5)

1 +bP ≈ 1 (3.5.6)

3.5.4

rate ≈ kbP (3.5.7)

A

= kbk′

b θ

bP ≫ 1 (3.5.8)

1 +bP ≈ bP (3.5.9)
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and Equation  can be simplified to

under this limiting case, the kinetics follow a zero order reaction (with respect to the partial pressure of ). The rate shows the
same pressure variation as does the surface coverage, but this hardly surprising since it is directly proportional to θ.

These two limiting cases can be identified in the general kinetics from Equation  in Figure 3.5.1.

Figure 3.5.1:

Bimolecular Reaction (between molecular adsorbates) 
Consider a Langmuir-Hinshelwood reaction of the following type:

We will further assume, as noted in the above scheme, that the surface reaction between the two adsorbed species (left side of
Equation  is the rate determining step.

If the two adsorbed molecules are mobile on the surface and freely intermix then the rate of the reaction will be given by the
following rate expression for the bimolecular surface combination step

For a single molecular adsorbate the surface coverage (as given by the standard Langmuir isotherm) is

Where two molecules (  &  ) are competing for the same adsorption sites then the relevant expressions are (see derivation):

and

Substituting these into the rate expression gives:

Once again, it is interesting to look at several extreme limits

Low Pressure/Binding Limit 

and

3.5.4

rate ≈ k (3.5.10)

A

3.5.4

⇌A(g) A(ads) (3.5.11)

⇌B(g) B(ads) (3.5.12)

+ A AA(ads) B(ads) ⟶
slow

B(ads) ⟶
fast

B(g) (3.5.13)

3.5.13

Rate = kθAθB (3.5.14)

θ =
bP

1 +bP
(3.5.15)

A B

=θA
bAPA

1 + +bAPA bBPB

(3.5.16)

=θB
bBPB

1 + +bAPA bBPB

(3.5.17)

Rate = k =θAθB
kbAPAbBPB

(1 + +bAPA bBPB)2
(3.5.18)

≪ 1bAPA (3.5.19)
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In this limit that  &  are both very low, and

i.e. first order in both reactants

Mixed Pressure/Binding Limit 

In this limit , , and

i.e. first order in , but negative first order in 

Clearly, depending upon the partial pressure and binding strength of the reactants, a given model for the reaction scheme can give
rise to a variety of apparent kinetics: this highlights the dangers inherent in the reverse process - namely trying to use kinetic data to
obtain information about the reaction mechanism.

On precious metal surfaces (e.g. Pt), the  oxidation reaction is generally believed to by a Langmuir-Hinshelwood
mechanism of the following type:

As CO  is comparatively weakly-bound to the surface, the desorption of this product molecule is relatively fast and in many
circumstances it is the surface reaction between the two adsorbed species that is the rate determining step.

If the two adsorbed molecules are assumed to be mobile on the surface and freely intermix then the rate of the reaction will be
given by the following rate expression for the bimolecular surface combination step

Where two such species (one of which is molecularly adsorbed, and the other dissociatively adsorbed) are competing for the
same adsorption sites then the relevant expressions are (see derivation):

and

Substituting these into the rate expression gives:

Once again, it is interesting to look at certain limits. If the  is much more strongly bound to the surface such that

then

≪ 1bBPB (3.5.20)

θA θB

rate → k =bAPAbBPB k′PAPB (3.5.21)

≪ 1 ≪bAPA bBPB (3.5.22)

→ 0θA → 1θB

Rate → =
kbAPA

bBPB

k′PA

PB

(3.5.23)

A B

 Example 3.5.1: CO Oxidation Reaction

CO

C ⇌ CO(g) O(ads) (3.5.24)

⇌ 2O2(g) O(ads) (3.5.25)

C + C CO(ads) O(ads) ⟶
slow

O2(ads)⟶
fast

O2(g) (3.5.26)

2

Rate = k θCO θO (3.5.27)

=θCO
bCOPCO

1 + +bOPO2

− −−−−
√ bCOPCO

(3.5.28)

=θO
bOPO2

− −−−−
√

1 + +bOPO2

− −−−−
√ bCOPCO

(3.5.29)

rate = k =θCOθO
kbCOPCO bOPO2

− −−−−
√

(1 + +bOPO2

− −−−−
√ bCOPCO)2

(3.5.30)

CO

≫ 1 +bCOPCO bOPO2

− −−−−
√ (3.5.31)
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and the Equation  simplifies to give

In this limit the kinetics are half-order with respect to the gas phase pressure of molecular oxygen, but negative order with
respect to the  partial pressure, i.e.  acts as a poison (despite being a reactant) and increasing its pressure slows down
the reaction. This is because the CO is so strongly bound to the surface that it blocks oxygen adsorbing, and without sufficient
oxygen atoms on the surface the rate of reaction is reduced.

This page titled 3.5: Applications - Kinetics of Catalytic Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Roger Nix.

1 + + ≈bOPO2

− −−−−
√ bCOPCO bCOPCO (3.5.32)

3.5.30

rate ≈ =
k bOPO2

− −−−−
√

bCOPCO

k′
P

1/2
O2

PCO

(3.5.33)

CO CO
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