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2.2: Vibronic Transitions
As mentioned Earlier, electronic excitations occur with wavelengths in the visible and ultraviolet regions of the EM spectrum.
Transitions also usually involve vibrational excitations (as previously discussed with the diatomic molecule). Plot the total energy
of molecule (except for nuclear translational kinetic energy) vs. , the intermolecular distance. This is effectively, the potential
energy function, , for the intramolecular nuclear motion (vibration). This is due to the Born-Oppenheimer approximation.
Often, we introduce vibrations as a quadratic function (Harmonic Oscillator), however, a Morse potential function gives a good fit
to the true potential (within the BO approximation).

where  is the dissociation energy,  is the reduced mass,  is the equilibrium bond length and  is the fundamental vibrational
frequency.

Figure : Copy and Paste Caption here. (CC BY-SA 4.0; Somoza via Wikipedia)

The actual energy levels for the molecule are shown by the horizontal lines. These lie above  and represent the contributions
of nuclear kinetics energy of the total energy of the molecule. The classical turning points for a given vibrational state ( ) are
shown by point A and B. At these points, classically, the nuclear kinetic energy is 0 and the vibrational energy is all potential. At 

, the kinetic Energy of the nuclear, classically, is at the maximum, which is where  is 0.

In quantum mechanics, it does not quite work that way. The only things we know is that  on the average. Note that the
spacing between the vibration energy levels decrease with increasing vibrational energy. If enough energy is absorbed, the
molecule will dissociate into atoms. The vibration spacing becomes smaller since the bond is not an ideal Hook’s law spring: 

, and becomes weaker as it is stretched, thus  decreases between adjacent energy levels.
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Figure : First six wavefunctions of the quantum harmonic oscillator. (Public Domain; AkanoToE via Wikipedia)

Each bound state also can be described by a different (in general) Morse potential curve, displaced upwards by the electronic
energy different. , , and  will differ in principle for each vibration (if more than two atoms in the molecule) in each
electronic state (Figure ).

Figure : Franck–Condon principle energy diagram. Since electronic transitions are very fast compared with nuclear motions,
the vibrational states to and from which absorption and emission occur are those that correspond to a minimal change in the nuclear
coordinates. As a result, both absorption and emission produce molecules in vibrationally excited states. The potential wells are
shown favoring transitions with changes in . (CC BY-SA 4.0; Original author was Samoza and was converted to SVG
by Frenzie23 via Wikipedia)

Transitions usually originate from the v=0 (because they are not thermally occupied at kT=200 cm ), but can end up in , 
,  etc. No selection rules on this transition. Electronic transitions in molecules are governed by the Frank-Condon

approximation. Since an electronic transition task place in a short time (1fs), the nuclei do not have time to move during an
electronic transition (similar separation of velocities as in the Born Oppenheimer approximation, but that did not involve
spectroscopic transitions). Thus, all transitions are vertical on a potential energy diagram (plotted energy versus nuclear position)
=  is fixed in a diatomic. Note: the vibrational wavefunctions are drawn above.

The Born-Oppenheimer approximation allows us to write the wavefunction of a state as
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where Q is the nuclear distances or positions. To be more exact, we should

with  representing the electron distances (or positions). The semi-colon represents a parametric dependence on .

The separation of the internal wavefunction (excluding transitional effects) into a product of two functions is the same as splitting
the Hamiltonian into a sum of two components

and the corresponding energies

If  is the interaction of the electromagnetic radiation with the electrons, then the integral

can be factored and do NOT depend on vibration (just parametrically). So

And the transition probability is

The last term is the square of the nuclear overlap integral and is call the Frank-Condon (FC) Factor. This first term is an integral
over the electronic wavefunction as this does not depend strongly on the nuclear coordinate (well, parametrically). So the intensity
of the v=0 to v’=0, v=0 to v’=1, and v=0 to v’=2, transitions is mainly controlled by the Franck-Condon factor also referred to as 

.

To see which vibrational mode changes can accompany an electronic transition, we need to look at the Franck-Condon (FC)
factors

Franck-Condon Progressions 

To understand the significance of the above formula for the FC factor, let us examine a ground and excited state potential energy
surface at  Kelvin. Shown below are two states separated by 8,000 cm  in energy. This is energy separation between the
bottoms of their potential wells, but also between the respective zero-point energy levels. Let us assume that the wavenumber of the
vibrational mode is 1,000 cm  and that the bond length is increased due to the fact that an electron is removed from a bonding
orbital and placed in an anti-bonding orbital upon electronic excitation.
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Figure : Wavefunctions transitions for a harmonic oscillator model system with moderate displacement (S=1). (Stefan
Franzen)

According to the above model for the Franck-Condon factor we would generate a "stick" spectrum (Figure ) where each
vibrational transition is infinitely narrow and transition can only occur when  exactly. For example, the potential energy
surfaces were given for  and the transition probability at each level is given by the sticks (black) in Figure .

Figure : Stick spectrum, dressed with Gaussians, for the moderate displacement (S=1) harmonic oscillator system from Figure
. (Stefan Franzen)

The dotted Gaussians that surround each stick give a more realistic picture of what the absorption spectrum should look like. In this
first place each energy level (stick) will be given some width by the fact that the state has a finite lifetime. Such broadening is
called homogeneous broadening since it affects all of the molecules in the ensemble in a similar fashion. There is also broadening
due to small differences in the environment of each molecule. This type of broadening is called inhomogeneous broadening.
Regardless of origin the model above was created using a Gaussian broadening

The nuclear displacement between the ground and excited state determines the shape of the absorption spectrum. Let us examine
both a smaller and a large excited state displacement. If  and the potential energy surfaces in this case are:

Figure : Wavefunctions transitions for a harmonic oscillator model system with small displacement (S=1/2). (Stefan Franzen)

For this case the "stick" spectrum has the appearance in Figure 
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Figure : Stick spectrum, dressed with Gaussians, for the small displacement (S=1/2) harmonic oscillator system from Figure
. (Stefan Franzen)

Note that the zero-zero or  vibrational transition is much large in the case where the displacement is small.

As a general rule of thumb the  constant gives the ratio of the intensity of the  transition to the  transition. In this
case since , the  transition is 0.5 the intensity of  transition.

As an example of a larger displacement the disposition of the potential energy surfaces for S = 2 is shown below.

Figure : Wavefunctions transitions for a harmonic oscillator model system with strong displacement (S=2). (Stefan Franzen)

The larger displacement results in decreased overlap of the ground state level with the v = 0 level of the excited state. The
maximum intensity will be achieved in higher vibrational levels as shown in the stick spectrum.

Figure : Stick spectrum, dressed with Gaussians, for the large displacement (S=2) harmonic oscillator system from Figure 
. (Stefan Franzen)

The absorption spectra plotted below all have the same integrated intensity, however their shapes are altered because of the
differing extent of displacement of the excited state potential energy surface.

Figure : Stick spectra, dressed with Gaussians, for the small to large displacements in harmonic oscillator system described
above. (Stefan Franzen)
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So the nature of the relative vibronic band intensities can tell us whether there is a displacement of the equilibrium nuclear
coordinate that accompanied a transition. When will there be an increase in bond length (i.e., )? This occurs when an
electron is promoted from a bonding molecular orbital to a non-bonding or anti-bonding molecular orbitals (i.e., when the bond
order is less in the excited state than the ground state).

Non-bonding molecular orbital  bonding molecular orbital
Anti-bonding molecular orbital  bonding molecular orbital
Anti-bonding molecular orbital  non-bonding molecular orbital

In short, when the bond order is lower in the excited state than in the ground state, then ; an increase in bond length will
occur when this happens.

2.2: Vibronic Transitions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Stefan Franzen.
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