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3.8: Fourier Transform IR Spectroscopy
The invention of the FFT algorithm lead to its practical application to IR Spectroscopy. Today, an inexpensive 4000-400 cm  FTIR
can compute a spectrum in ~0.2s. In contrast to the frequency domain spectrometers discussed in class regarding, the FTIR
measures the data in time and converts it to frequency. In mathematics, Fourier analysis is a subject area which grew out of the
study of Fourier series. The subject began with trying to understand when it was possible to represent general functions by sums of
simpler trigonometric functions. The attempt to understand functions (or other objects) by breaking them into basic pieces that are
easier to understand is one of the central themes in Fourier analysis. http://www.newport.com/store/genContent.aspx/Introduction-
to-FT-IR-Spectroscopy/405840/1033

Most often, the unqualified term Fourier transform refers to the transform of functions of a continuous real argument, such as time
(t). In this case the Fourier transform describes a function ƒ(t) in terms of basic complex exponentials of various frequencies. In
terms of ordinary frequency ν, the Fourier transform is given by the complex number:

The inverse FT is

There are differing expressions of this depending on how you want to normalize, or if you are talking in terms of angular frequency
(  or natural frequency , with ).

The FT can be expanded into a sum of two functions: the cosine and the sine via the Euler equation:

Combining Equations  and  results in

This can be re-written using simple trig properties (to avoid unnecessary negative signs) to

What does this mean? The function  can be converted from a basis that is in localized  functions (e.g. the value of  at the
exact point  with no width associated with it) to a different basis set consisting of delocalized sinusoids sines and cosines). This is
a transform and there are many other basis sets out there to transform data (e.g. Lorentz transform with exponential decays or
wavelets which use localized trig functions etc.).

Now back to instrumentation. How do we measure IR spectra in time? With an interferometer with works as follows.
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Figure : (left) A dispersive IR instrument and (right) A FTIR instrument

For example, a single wavelength, λ, from the source and the beam is split by a ½ reflection mirror (a beam splitter). ½ of the
output goes to a stationary mirror and the other ½ goes to a moving mirror. Both halves are reflected back to the beam splitter
resulting in some of the light going to the sample and detector.

Interferometer for FTIR (Public Domain; Sanchonx via Wikipedia)

If the pathlength is equal (  = retardation = optical phase difference (OPD) = 0), then the beams (or specifically the oscillating light
from each path) recombine in phase and we have a maximum at the detector (ignoring the sample). If the movable mirror is
displaced by , then  and the beams are out of phase and no or little light is measured at the detector. When 

, we have constructive interference again, etc. If we plot , the intensity measured on the detector vs.  we get a cosine
plot of wavelength .

3.8.1

δ

λ/4 = x δ = 2x = λ/2

δ = λ I(δ) δ

λ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/367045?pdf
https://en.wikipedia.org/wiki/User:Sanchonx
https://commons.wikimedia.org/wiki/File:FTIR_Interferometer.png


3.8.3 https://chem.libretexts.org/@go/page/367045

Figure : Schematic representation of waves and their phases, input, output, and the two arms of the interferometer as the scan
goes from zero path difference condition to . (a)  case. (b)  case. (c)  case. (d)  case. (e)  case.

That was with one monochromatic light source, whereby physically moving the moving arm of the interferometer tells you about
the wavelength of the incident light. Now what about more colors (wavelengths):

Figure : Two wavelength sources.

Now  is the inverse of , the wavenumber of the measured light, just as velocity and time are inverses of each other. The
retardation and  are relate by a Fourier Transform. Let  be the Fourier Transform of the interferogram .
(https://www.colby.edu/chemistry/NMR/...erfourier.html)

A Dichromatic FTIR Spectrometer 

Imagine a light source that emits only two discreet frequencies of light  and  of equal intensity (Figure 1).
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Figure : Dichromatic spectrum. . Passing these two frequencies through the Interferometer (without an
absorbing sample), and measuring the interference with a light sensitive detector gives the intensity interferogram shown in red in
Figure 2. The horizontal axis in Figure two is the delay of the movable mirror in the interferometer (z), and the vertical axis is
arbitrary.

Figure : Interferogram (red), and the two frequencies (blue and green). The total distance on the movable mirror delay axis is 
 or .

Now imagine we place an absorbing sample in our interferometer, and that it absorbs light at either  or , although we do not
know which one yet. The result on the measured interferogram is given in blue in Figure 3 (with the reference interferogram from
Figure 2 given in green).

Figure : Interferogram with absorbing sample (blue), and background interferogram (green). Notice there is a clear difference
when one of the frequencies is partially absorbed.

These two interferograms are all we need from the instrument! Now comes the FT of the FTIR. Fourier transforms will be covered
in more detail in the next section. For now just think of it as a black box function in which you plug in an interferogram and get out
a spectrum. Figure 1, therefore, is the Fourier transform of the red interferogram in Figure 2. Performing a Fourier transform on the
measured blue interferogram in Figure 3 gives the spectrum in Figure 4.

3.8.1 − = 0.1u2̄ u1̄

3.8.2
10λ1 (λ2

u1̄ u2̄

3.8.3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/367045?pdf


3.8.5 https://chem.libretexts.org/@go/page/367045

Figure : Spectrum that reached the detector after the absorbing sample. This spectrum is the Fourier transform of the blue
curve in Figure 3. Comparing this spectrum to the one in Figure 1 shows a clear absorption at .

By comparing the spectrum in Figure 4 to Figure 1, we can immediately deduce that our absorbing sample absorbs light at
frequency , and the FTIR spectrometer has done its job. Fundamentally thats all there is to it. The FTIR spectrometer takes light
of various wavelengths, and measures an reference interferogram. You then place your absorbing sample into the interferometer
and measure the interferogram again. Finally you Fourier transform both interferograms, and compare the spectra to determine
what frequencies of light the sample is absorbing.

The next sections work on developing a more complete description of the the measured spectra, and the instrument nuances that
factor into your data manipulation. To do this, however, we will need to open up the black box we put the Fourier transform in, and
get an idea of how it works.

Fourier Transforms 
From the previous section we saw that Fourier Transforms (in the context of FTIR) take an interferogram and produce a spectrum.
The last section also implicitly presented the idea that the interferogram measured by an FTIR interferometer is just the sum of the
interferograms of all the constituent frequencies present in the source. The Fourier transform, then, must break down the
interferogram to reveal these constituent frequencies telling us which are present and in what amount.

To make this as easy on ourselves as possible, the first step we can take is to shift a maximum value of the interferogram to the
origin. This ensures that it will be inherently cosine in nature (cos(0) = 1 vs sin(0)=0). As we will see in the phase error section
below, this also assumes a symmetric interferogram, which you will not generally have.

Now that our interferogram is symmetric about the origin, all we need to do (all the Fourier transform does) is product it with a
large variety of cosines to see which fit. The idea behind this is quite simple. If we luck out and hit our interferogram with a cosine
that exactly matches one of our constituent frequencies, we will get a  which is positive for all values of x. If we add up our

 over all values of x we will get a large positive value.

All other cosines not equal to a cosine present in the interferogram will be positive for some x and negative for the rest. Adding the
positive and the negative together for all x will give zero. Lets look at the simple case of an  interferogram tried against three
different cosines and one cosine that exactly matches (Figure 5):
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Figure 5a is shown. Notice that only the top (teal) curve has a large and positive area when measured over the entire window.

As you can see in 5b every cosine but the one that exactly matches the interferogram spends an equal amount of time above and
below 0; such that if we were to add up the area under these curves, only the top (teal) one would be non-zero. We can also look at
various test cosines against the interferogram from Figure 2, again ending in a cosine that matches one of the two frequencies
present in that interferogram (Figure 6):

Polychromatic Light Sources 

So far all we have considered are monochromatic and dichromatic FTIR spectrometers that have allowed us to use very simple
interferograms. It might occur to you, however, that such instruments would not be terribly useful. We would need our samples to
just happen to absorb at whatever frequency of light we selected for our interferometer. Real FTIR spectrometers don't use just two
frequencies, but a whole continuum of light typically generated from a black body source (more on instrumentation here).

To get an idea of what this looks like for an interferogram lets see what happens when 5 and 50 frequencies of light interfere with
equal intensities (Figure 7):

Figure 7b (right) shows the interference of 50 frequencies of with intensity.
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Figure 7b already has the well defined centerburst of an actual interferogram. We have, however, left out a very important feature
of blackbody sources. A blackbody source emits radiation in a continuous envelope described by Planks law, and this modifies our
interferogram in a significant way (Figure 8).

If the source is continuous, as in a blackbody radiator, which is usually used, then we have the cosine transform of the Fourier
Transform:

This is carried out by sampling the  through a sample window (range of δ). Then carry out the Fourier transform (or the cosine
transform via the Fast Fourier Transform (FFT) algorithm.

 is approximated by the FFT is the emission spectrum of the source. We then put in a sample, measure an interferogram – then
do a FFT and subtract the two FT’s to give the absorption spectrum by the difference.

What is the maximum frequency measured in this setup? This in Fourier Analysis is called the Nyquist wavenumber,  and is
the highest frequency that you can measure in a FFT of a sample. This is given by

where  is the retardation sampling frequency (i.e. how often you sample).

What is the ultimate resolution of ? Via Fourier analysis, this is giving via the length of the sampling window In this case,

And the best we can do is

Recall that time à frequency Fourier Transform:

This is the instrumentation limit in FTIR.
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and this is divided into 4096 (2 ) position slots, then

and therefore

The resolution is ~2 cm .

3.8: Fourier Transform IR Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Travis Wright.
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