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General Remarks
The field of Statistical Thermodynamics is probably the branch of physical chemistry whose coverage in textbooks is most diverse.
A canonical way of teaching this subject still appears to be missing, which is partially due to the fact that practitioners have not
completely agreed on interpretation of the probabilistic character, on the postulates, and on the way how the mathematical
apparatus is derived from a set of postulates. While this may appear troublesome, actually there exists rarely any problem in
applying statistical thermodynamics . Accordingly, textbooks usually ignore the more problematic aspects and try to give reasons
why the interpretation and formulation used by the respective author should be the preferred one. This being an advanced lecture
course, we shall not do so, but we shall still present an apparatus that is ready-made for application.

The basic idea of statistical thermodynamics is simple: On the one hand we have Newtonian and quantum mechanics and we know
that molecules should adhere to it, and on the other hand we know that systems consisting of many molecules can be adequately
described by phenomenological (or classical) thermodynamics. Now let’s try to derive the latter theory from the former one. Some
care will have to be taken for systems that are subject to quantum statistics, but we might expect that straightforward application of
probability theory will provide the required connection. Chapter will discuss this basic idea in some more detail and will present a
set of postulates due to Oliver Penrose . The discussion of these postulates clarifies what the remaining mathematical problem is
and how we avoid it in applications.

In this course we do not assume that students are already familiar with probability theory, rather we will introduce its most
important concepts in Chapter . We do assume that the concepts of phenomenological thermodynamics are known, although we
shall shortly explain them on first use in these lecture notes. The most important new concept in this course is the one of an
ensemble description, which will be introduced in Chapter first only for classical particles. This will set the stage for discussing the
concepts of irreversibility and entropy in Chapter . We will complete the foundations part with a discussion of quantum ensembles
in Chapter . This Chapter will also make the transition to applications, by treating first the harmonic oscillator and second the
Einstein model of a crystal with the apparatus that we command at that point.

We shall then illustrate the relation to phenomenological thermodynamics by discussing the partition functions of gases and by
computing thermodynamical state functions from these partition functions in Chapter . The final Chapter will shortly discuss the
consequences of statistical thermodynamics for macromolecular systems and introduce the concepts of lattice models, random
walks, and entropic elasticity.

The time available for this course does not permit to treat all aspects of statistical thermodynamics and statistical mechanics that are
important in physical chemistry, chemical physics, polymer physics, and biophysics, let alone in solid-state physics. The most
important omissions are probably kinetic aspects of chemical reactions, which are treated in detail in a lecture course on Advanced
Kinetics, and the topic of phase transitions, including the famous Ising chain model. We believe that the foundations laid in the
present course will allow students to understand these topics from reading in the textbooks listed in the following Section.
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Suggested Reading
General textbooks on physical chemistry, such as provide some overview of the most important concepts of statistical
thermodynamics as well as some of the key formulas, but they are not quite on the level of this advanced course. If you already
own these books, it might still be useful to read what they write on the topic. If you have the choice, Engel/Reid is better on this
topic than Atkins . The best introduction in a general physical chemistry textbook can be found in the German book by Wedler and
Freund .

A rather good and modern introduction at an advanced level has been published in English language by Swendsen . Swendsen
introduces statistical thermodynamics together with phenomenological thermodynamics and covers more examples than we can
treat in this course. He does not introduce some concepts that are widely used in the field, because he dislikes them. In this course
we do introduce these concepts and discuss the problems associated with them.

A modern German-language introduction is the one by Schwabl , which caters more to the physicist than to the physical chemist.
Schwabl is stronger on phase transitions and dynamic phenomena, but probably harder to read than Swendsen, even if German is
your native language. For Chapter , but only for this Chapter, Maczek’s book from the Oxford Chemistry Primers series can be
quite useful. Several topics that are not or only superficially covered in my lecture notes are treated in the notes by Cohen from Ben
Gurion University , which are strongly focused on quantum applications. Finally, I want to mention Penrose’s book , which is
certainly not an introductory textbook and may be most appealing to the strongly mathematically or philosophically inclined. If you
look for guidance on applying statistical thermodynamics to real systems this book is certainly deficient, but from an
epistemological point of view it is probably the best one.

For many of the central concepts I have looked up (English) Wikipedia articles and have found that these articles are, on average,
of rather good quality. They do differ quite strongly from each other in style and notation. When using only Wikipedia or other
internet resources it is difficult to fit the pieces of information together. If, on the other hand, you already do have a basic level of
understanding, but some difficulties with a particular concept, such sources may provide just the missing piece of information. The
NIST guide for computing thermodynamical state functions from the results of ab initio computations is a particularly good
example for a useful internet resource .
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1.1: Basic Assumptions of Statistical Thermodynamics

Thermodynamics Based on Statistical Mechanics 

Phenomenological thermodynamics describes relations between observable quantities that characterize macroscopic material
objects. We know that these objects consist of a large number of small particles, molecules or atoms, and, for all we know, these
small particles adhere to the laws of quantum mechanics and often in good approximation to the laws of Newtonian mechanics.
Statistical mechanics is the theory that explains macroscopic properties, not only thermodynamic state functions, by applying
probability theory to the mechanic equations of motion for a large ensemble of systems of particles. In this lecture course we are
concerned with the part of statistical mechanics that relates to phenomenological thermodynamics.

In spite of its name, phenomenological (equilibrium) thermodynamics is essentially a static theory that provides an observational,
macroscopic description of matter. The underlying mechanical description is dynamical and microscopic, but it is observational
only for systems consisting of a small number of particles. To see this, we consider a system of  identical classical point particles
that adhere to Newton’s equations of motion.

With particle mass , Cartesian coordinates   and velocity coordinates , a system of  identical
classical point particles evolves by

where  is the potential energy function.

The dynamical state or microstate of the system at any instant is defined by the  Cartesian and velocity coordinates, which
span the dynamical space of the system. The curve of the system in dynamical space is called a trajectory.

The concept extends easily to atoms with different masses . If we could, at any instant, precisely measure all  dynamical
coordinates, i.e., spatial coordinates and velocities, we could precisely predict the future trajectory. The system as described by the
Newtonian equations of motions behaves deterministically.

For any system that humans can see and handle directly, i.e., without complicated technical devices, the number  of particles is
too large (at least of the order of ) for such complete measurements to be possible. Furthermore, for such large systems even
tiny measurement errors would make the trajectory prediction useless after a rather short time. In fact, atoms are quantum objects
and the measurements are subject to the Heisenberg uncertainty principle, and even the small uncertainty introduced by that would
make a deterministic description futile.

We can only hope for a theory that describes what we can observe. The number of observational states or macrostates that can be
distinguished by the observer is much smaller than the number of dynamical states. Two classical systems in the same dynamical
state are necessarily also in the same observational state, but the converse is not generally true. Furthermore, the observational state
also evolves with time, but we have no equations of motion for this state (but see Section [Liouville]). In fact we cannot have
deterministic equations of motion for the observational state of an individual system, precisely because the same observational state
may correspond to different dynamical states that will follow different trajectories.

Still we can make predictions, only these predictions are necessarily statistical in nature. If we consider a large ensemble of
identical systems in the same observational state we can even make fairly precise predictions about the outcome. Penrose gives the
example of a women at a time when ultrasound diagnosis can detect pregnancy, but not sex of the fetus. The observational state is
pregnancy, the two possible dynamical states are on path to a boy or girl. We have no idea what will happen in the individual case,
but if the same diagnosis is performed on a million of women, we know that about 51-52% will give birth to a boy.

How then can we derive stable predictions for an ensemble of systems of molecules? We need to consider probabilities of the
outcome and these probabilities will become exact numbers in the limit where the number  of particles (or molecules) tends to
infinity. The theory required for computing such probabilities will be treated in Chapter .

N

 Concept : Newtonian Equations of Motion1.1.1

m qi (i = 1, 2, … , 3N) q̇ i N

m = − V ( , … , )  ,
d2qi

dt2

∂

∂qi

q1 q3N (1.1.1)

V ( , … , )q1 q3N

 Notation 1.1.1

6N

mi 6N

N

1018

N
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Our current usage of the term ensemble is loose. We will devote the whole Chapter to clarifying what types of ensembles we
use in computations and why.

The Markovian Postulate 
There are different ways for defining and interpreting probabilities. For abstract discussions and mathematical derivations the most
convenient definition is the one of physical or frequentist probability.

Given a reproducible trial  of which  is one of the possible outcomes, the physical probability  of the outcome  is
defined as

where  is the number of times the outcome  is observed in the first  trials.

A trial  conforming to this definition is statistically regular, i.e., the limit exists and is the same for all infinite series of the same
trial. If the physical probability is assumed to be a stable property of the system under study, it can be measured with some
experimental error. This experimental error has two contributions: (i) the actual error of the measurement of the quantity  and (ii)
the deviation of the experimental frequency of observing  from the limit defined in Equation . Contribution (ii) arises from
the experimental number of trials  not being infinite.

Figure : A statistically regular trial consists of a preparation period, after which the system always ends up in the same
observational state , an evolution state, where the macrostate can change, and a measurement.

We need some criterion that tells us whether  is statistically regular. For this we split the trial into a preparation period, an
evolution period, and the observation itself (Figure ). The evolution period is a waiting time during which the system is under
controlled conditions. Together with the preparation period it needs to fulfill the Markovian postulate.

A trial  that invariably ends up in the observational state  of the system after the preparation stage is called statistically regular.
The start of the evolution period is assigned a time .

Note that the system can be in different observational states at the time of observation; otherwise the postulate would correspond to
a trivial experiment. The Markovian postulate is related to the concept of a Markovian chain of events. In such a chain the outcome
of the next event depends only on the current state of the system, but not on states that were encountered earlier in the chain.
Processes that lead to a Markovian chain of events can thus be considered as memoryless.

This page titled 1.1: Basic Assumptions of Statistical Thermodynamics is shared under a CC BY-NC 3.0 license and was authored, remixed,
and/or curated by Gunnar Jeschke via source content that was edited to the style and standards of the LibreTexts platform.

 Note

 Definition: Physical Probability

T A P A

P (A|T ) = lim
N→∞

n(A,N , T )

N
(1.1.2)

n(A,N , T ) A N

T

A

A 1.1.2

N

1.1.1
O

T
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t = 0
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1.2: Phase space

Hamiltonian Equations of Motion 

The Newtonian equations of motion are very convenient for atomistic molecular dynamics (MD) computations. Statistical analysis
of trajectories encountered during such MD simulations can be analyzed in terms of thermodynamic quantities, such as free energy.
However, for analyzing evolution of the system in terms of spectroscopic properties, the Newtonian description is very
inconvenient. Since spectroscopic measurements can provide the most stringent tests of theory, we shall use the Hamiltonian
formulation of mechanics in the following. This formulation is particularly convenient for molecules that also have rotational
degrees of freedom. For that, we replace the velocity coordinates by momentum coordinates , where index  runs over
all atoms and for each atom over the three Cartesian coordinates. Furthermore, we assume  identical molecules, with each of
them having  degrees of freedom, so that the total number of degrees of freedom is . Such as system can be described by

 differential equations

With the single-molecule Hamiltonian  the equations of motion for  non-interacting identical molecules with 
degrees of freedom for each molecule read

where . Each of the dynamical variables  and  is a vector of length . The  dynamical variables span the
phase space.

Phase space is the space where microstates of a system reside. Sometimes the term is used only for problems that can be
described in spatial and momentum coordinates, sometimes for all problems where some type of a Hamiltonian equation of
motion applies. Sometimes the term state space is used for the space of microstates in problems that cannot be described by
(only) spatial and momentum coordinates.

If the molecule is just a single atom, we have only  translational degrees of freedom and the Hamiltonian is given by

describing translation. For molecules with  atoms, three of the  degrees of freedom are translational, two or three are
rotational for linear and non-linear molecules, respectively, and the remaining  or  degrees of freedom are
vibrational.

The Liouville Equation 

Our observations do not allow us to specify phase space trajectories, i.e. the trajectory of microstates for a single system. Instead,
we consider an ensemble of identical systems that all represent the same (observational) macrostate  but may be in different
microstates. At a given time we can characterize such an ensemble by a probability density  in phase space, where  and 

 are the vectors of all momentum and spatial coordinates in the system, respectively. We are interested in an equation of motion
for this probability density , which corresponds to the full knowledge that we have on the system. This equation can be derived
from an integral representation of  and the Hamiltonian equations of motion .

The probability density  in phase space evolves in time according to

=pj mj q̇ j j

M

f F = fM

2F

 Concept : Hamiltonian Equations of Motion1.2.1

H( , )pi qi M f
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With the Poisson brackets

this Liouville equation can be expressed as

For the probability density along a phase space trajectory, i.e., along a trajectory that is taken by microstates, we find

If we consider a uniformly distributed number  of ensemble members in a volume element  in phase space at time 
and ask about the volume element  in which these ensemble members are distributed at a later time, we find

This is the Liouville theorem of mechanics.

Quantum Systems 

Hamiltonian mechanics can be applied to quantum systems, with the Hamiltonian equations of motion being replaced by the time-
dependent Schrödinger equation. The probability density in phase space is replaced by the density operator  and the Liouville
equation by the Liouville-von-Neumann equation

In quantum mechanics, observables are represented by operators . The expectation value of an observable can be computed from
the density operator that represents the distribution of the ensemble in phase space,

We note that the Heisenberg uncertainty relation does not introduce an additional complication in statistical mechanics.
Determinism had been lost before and the statistical character of the measurement on an individual system is unproblematic, as we
seek only statistical predictions for a large ensemble. In the limit of an infinite ensemble, , there is no uncertainty and the
expectation values of incompatible observables are well defined and can be measured simultaneously. Such an infinitely large
system is not perturbed by the act of observing it. The only difference between the description of classical and quantum systems
arises from their statistical behavior on permutation of the coordinates of two particles, see Section [section:quantum_statistics].

This page titled 1.2: Phase space is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke via
source content that was edited to the style and standards of the LibreTexts platform.
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1.3: Statistical Mechanics Based on Postulates

The Penrose Postulates 

Penrose has made the attempt to strictly specify what results can be expected from statistical mechanics if the theory is based on a
small number of plausible postulates.

1. Macroscopic physical systems are composed of molecules that obey classical or quantum mechanical equations of motion
(dynamical description of matter).

2. An observation on such a macroscopic system can be idealized as an instantaneous, simultaneous measurement of a set of
dynamical variables, each of which takes the values 1 or 0 only (observational description of matter).

3. A measurement on the system has no influence whatsoever on the outcome of a later measurement on the same system
(compatibility).

4. The Markovian postulate. (Concept [concept:Markovian])
5. Apart from the Bose and Fermi symmetry conditions for quantum systems, the whole phase space can, in principle, be accessed

by the system (accessibility).

After the discussion above, only the second of these postulates may not immediately appear plausible. In the digital world of today
it appears natural enough: Measurements have resolution limits and their results are finally represented in a computer by binary
numbers, which can be taken to be the dynamical variables in this postulate.

Implications of the Penrose Postulates 
Entropy is one of the central quantities of thermodynamics, as it tells in which direction a spontaneous process in an isolated
system will proceed. For closed systems that can exchange heat and work with their environment, such predictions on spontaneous
processes are based on free energy, of which the entropy contribution is usually an important part. To keep such considerations
consistent, entropy must have two fundamental properties

1. If the system does not exchange energy with its environment, its entropy cannot decrease. (non-decrease).
2. The entropy of two systems considered together is the sum of their separate entropies. (additivity).

Based on the Penrose postulates it can be shown that the definition of Boltzmann entropy (Chapter ) ensures both properties, but
that statistical expressions for entropy ensure only the non-decrease property, not in general the additivity property. This appears to
leave us in an inconvenient situation. However, it can also be shown that for large systems, in the sense that the number of
macrostates is much smaller than the number of microstates, the term that quantifies non-additivity is negligibly small compared to
the total entropy . The problem is thus rather a mathematical beauty spot than a serious difficulty in application of the theory.

This page titled 1.3: Statistical Mechanics Based on Postulates is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or
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2.1: Discrete Probability Theory

Discrete Random Variables 

Consider a trial  where the observation is a measurement of the  component  of spin angular momentum of a spin 
. There are just six possible outcomes (events) that can be labeled with the magnetic spin quantum number  or indexed

by integer numbers 1, 2,  6. In general, the probabilities of the six possible events will differ from each other. They will depend
on preparation and may depend on evolution time before the observation. To describe such situations, we define a set of elementary
events

where in our example index  runs from 1 to 6, whereas in general it runs from 1 to the number  of possible events. Each of the
events is assigned a probability . Impossible events (for a given preparation) have probability zero and a certain
event has probability 1. Since one and only one of the events must happen in each trial, the probabilities are normalized, 

. A simplified model of our example trial is the rolling of a die. If the die is fair, we have the special situation of a
uniform probability distribution, i.e.,  for all .

A set of random events with their associated probabilities is called a random variable. If the number of random events is countable,
the random variable is called discrete. In a computer, numbers can be assigned to the events, which makes the random variable a
random number. A series of trials can then be simulated by generating a series of  pseudo-random numbers that assign the events
observed in the  trials. Such simulations are called Monte Carlo simulations. Pseudo-random numbers obtained from a computer
function need to be adjusted so that they reproduce the given or assumed probabilities of the events. [concept:random_variable]

Using the Matlab function rand , which provides uniformly distributed random numbers in the open interval , write a
program that simulates throwing a die with six faces. The outer function should have trial number  as an input and a vector of the
numbers of encountered ones, twos, ... and sixes as an output. It should be based on an inner function that simulates a single throw
of the die. Test the program by determining the difference from the expectation  for ever larger numbers of trials.

Multiple Discrete Random Variables 
For two sets of events  and  and their probabilities, we define a joint probability  that is the probability of observing
both  and  in the same trial. An example is the throwing of two dice, one black and one red, and asking about the probability
that the black die shows a 2 and the red die a 3. A slightly more complicated example is the measurement of the individual 
components of spin angular momentum of two coupled spins  and . Like individual probabilities, joint
probabilities fall in the closed interval . Joint probabilities are normalized,

Note that we have introduced a brief notation that suppresses indices  and . This notation is often encountered because of its
convenience in writing.

If we know the probabilities  for all  possible combinations of the two events, we can compute the probability of a
single event, for instance ,

where  is the marginal probability of event .

The unfortunate term ’marginal’ does not imply a small probability. Historically, these probabilities were calculated in the margins
of probability tables .

Another quantity of interest is the conditional probability  of an event , provided that  has happened. For instance, if we
call two cards from a full deck, the probability of the second card being a Queen is conditional on the first card having been a
Queen. With the definition for the conditional probability we have
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If the marginal probability of event  is not zero, the conditional probability of event  given  is

Bayes’ theorem is the basis of Bayesian inference, where the probability of proposition  is sought given prior knowledge (short:
the prior) . Often Bayesian probability is interpreted subjectively, i.e., different persons, because they have different prior
knowledge , will come to different assessments for the probability of proposition . This interpretation is incompatible with
theoretical physics, where, quite successfully, an objective reality is assumed. Bayesian probability theory can also be applied with
an objective interpretation in mind and is nowadays used, among else, in structural modeling of biomacromolecules to assess
agreement of a model (the proposition) with experimental data (the prior).

In experimental physics, biophysics, and physical chemistry, Bayes’ theorem can be used to assign experimentally informed
probabilities to different models for reality. For example assume that a theoretical modeling approach, for instance an MD
simulation, has provided a set of conformations  of a protein molecule and associated probabilities . The
probabilities are related, via the Boltzmann distribution, to the free energies of the conformations (this point is discussed later in the
lecture course). We further assume that we have a measurement  with output  and we know the marginal probability  of
encountering this output for a random set of conformations of the protein molecule. Then we need only a physical model that
provides the conditional probabilities  of measuring  given the conformations  and can compute the probability 

 that the true conformation is , given the result of our measurement, via Bayes’ theorem. Equation ). This
procedure can be generalized to multiple measurements. The required  depend on measurement errors. The approach
allows for combining possibly conflicting modeling and experimental results to arrive at a ’best estimate’ for the distribution of
conformations.

The events associated with two random variables can occur completely independent of each other. This is the case for throwing two
dice: the number shown on the black die does not depend on the number shown on the red die. Hence, the probability to observe a
2 on the black and a 3 on the red die is . In general, joint probabilities of independent events factorize into the
individual (or marginal) probabilities, which leads to huge simplifications in computations. In the example of two coupled spins 

 and  the two random variables  and  may or may not be independent. This is decided by the
strength of the coupling, the preparation of trial , and the evolution time  before observation.

If two random variables are independent, the joint probability of two associated events is the product of the two marginal
probabilities,

As a consequence, the conditional probability  equals the marginal probability of  (and vice versa),

[concept:independent_variables]

For a set of more than two random variables two degrees of independence can be established, a weak type of pairwise
independence and a strong type of mutual independence. The set is mutually independent if the marginal probability distribution in
any subset, i.e. the set of marginal probabilities for all event combinations in this subset, is given by the product of the
corresponding marginal distributions for the individual events.  This corresponds to complete independence. Weaker pairwise
independence implies that the marginal distributions for any pair of random variables are given by the product of the two
corresponding distributions. Note that even weaker independence can exist within the set, but not throughout the set. Some, but not
all pairs or subsets of random variables can exhibit independence.

Another important concept for multiple random variables is whether or not they are distinguishable. In the example above we used
a black and a red die to specify our events. If both dice would be black, the event combinations  and  would be
indistinguishable and the corresponding composite event of observing a 2 and a 3 would have a probability of , i.e. the product
of the probability  of the basic composite event with its multiplicity 2. In general, if  random variables are indistinguishable,
the multiplicity equals the number of permutations of the  variables, which is .

 Theorem : Bayes’ theorem2.1.1
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Functions of Discrete Random Variables 

We consider an event  that depends on two other events  and . For example, we ask for the probability that the sum of the
numbers shown by the black and red die is , where  can range from 2 to 12, given that we know the probabilities , which
in our example all have the value 1/36. In general, the probability distribution of random variable  can be computed by

where  is an arbitrary function of  and  and the Kronecker delta  assumes the value one if  and zero
otherwise. In our example,  will assume the value of 5 for the event combinations 
and no others. Hence, . There is only a single combination for , hence , and there are 6
combinations for , hence . Although the probability distributions for the individual random numbers  and 
are uniform, the one for  is not. It peaks at the value of  that has the most realizations. Such peaking of probability
distributions that depend on multiple random variables occurs very frequently in statistical mechanics. The peaks tend to become
the sharper the larger the number of random variables that contribute to the sum. If this number  tends to infinity, the distribution
of the sum  is so sharp that the distribution width (to be specified below) is smaller than the error in the measurement of the mean
value  (see Section [section:prob_dist_sum]). This effect is the very essence of statistical thermodynamics: Although
quantities for a single molecule may be broadly distributed and unpredictable, the mean value for a large number of molecules, let’s
say  of them, is very well defined and perfectly predictable.

In a numerical computer program, Equation ) for only two random variables can be implemented very easily by a loop over
all possible values of  with inner loops over all possible values of  and . Inside the innermost loop,  is computed and
compared to loop index  to add or not add  to the bin corresponding to value . Note however that such an approach does
not carry to large numbers of random variables, as the number of nested loops increases with the number of random variables and
computation time thus increases exponentially. Analytical computations are simplified by the fact that  usually deviates
from zero only within certain ranges of the summation indexes  (for ) and  (for ). The trick is then to find the proper
combinations of index ranges.

Compute the probability distribution for the sum  of the numbers shown by two dice in two ways. First, write a computer program
using the approach sketched above. Second, compute the probability distribution analytically by making use of the uniform
distribution for the individual events (  for all . For this, consider index ranges that lead to a given value of the
sum .

Discrete Probability Distributions 
In most cases random variables are compared by considering the mean values and widths of their probability distributions. As a
measure of the width, the standard deviation  of the values from the mean value is used, which is the square root of the variance 

. The concept can be generalized by considering functions  of the random variable. In the following expressions, 
 provides the mean value and standard deviation of the original random variable .

For any function  of a random variable , the mean value  is given by,

The standard deviation, which characterizes the width of the distribution of the function values , is given by,

The mean value is the first moment of the distribution, with the  moment being defined by

The  central moment is
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 Theorem : Mean value and standard deviation2.1.1
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For the variance, which is the second central moment, we have

Assume that we know the mean values for functions  and  of two random variables as well as the mean value  of
their product, which we can compute if the joint probability function  is known. We can then compute a correlation function

which takes the value of zero, if  and  are independent random numbers.

Compute the probability distribution for the normalized sum  of the numbers obtained on throwing  dice in a single
trial. Start with  and proceed via  to . Find out how many Monte Carlo trials  you
need to guess the converged distribution. What is the mean value ? What is the standard deviation ? How do they
depend on ?

Probability Distribution of a Sum of Random Numbers 

If we associate the random numbers with  molecules, identical or otherwise, we will often need to compute the sum over all
molecules. This generates a new random number

whose mean value is the sum of the individual mean values,

If motion of the individual molecules is uncorrelated, the individual random numbers  are independent. It can then be shown that
the variances add ,

For identical molecules, all random numbers have the same mean  and variance  and we find

This result relates to the concept of peaking of probability distributions for a large number of molecules that was introduced above
on the example of the probability distribution for sum of the numbers shown by two dice. The width of the distribution normalized
to its mean value,

scales with the inverse square root of . For  molecules, this relative width of the distribution is one billion times smaller than
for a single molecule. Assume that for a certain physical quantity of a single molecule the standard deviation is as large as the mean
value. No useful prediction can be made. For a macroscopic sample, the same quantity can be predicted with an accuracy better
than the precision that can be expected in a measurement.
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Binomial Distribution 

We consider the measurement of the  component of spin angular momentum for an ensemble of  spins .  The random
number associated with an individual spin can take only two values,  or . Additive and multiplicative constants can be
taken care of separately and we can thus represent each spin by a random number  that assumes the value  (for 

) with probability  and, accordingly, the value  (for ) with probability . This is a very
general problem, which also relates to the second postulate of Penrose (see Section [Penrose_postulates]). A simplified version
with  is given by  flips of a fair coin. A fair coin or a biased coin with  can be easily implemented in a
computer, for instance by using a = floor(rand+P)  in Matlab. For the individual random numbers we find  and 

, so that the relative standard deviation for the ensemble with  members becomes 
.

To compute the explicit probability distribution of the sum of the random numbers for the whole ensemble, we realize that the
probability of a subset of  ensemble members providing a 1 and  ensemble members providing a 0 is . The
value of the sum associated with this probability is .

Now we still need to consider the phenomenon already encountered for the sum of the numbers on the black and red dice: Different
numbers  have different multiplicities. We have  permutations of the ensemble members. Let us assign a 1 to the first 
members of each permutation. For our problem, it does not matter in which sequence these  members are numbered and it does
not matter in which sequence the remaining  members are numbered. Hence, we need to divide the total number of
permutations  by the numbers of permutations in each subset,  and  for the first and second subset, respectively. The
multiplicity that we need is the number of combinations of  elements to the  class, which is thus given by the binomial
coefficient,

providing the probability distribution

For large values of  the binomial distribution tends to a Gaussian distribution,

As we already know the mean value  and variance , we can immediately write down the
approximation

As shown in Figure  the Gaussian approximation of the binomial distribution is quite good already at .

z N S = 1/2 4

−ℏ/2 +ℏ/2
A a = 1

= +1/2mS P a = 0 = −1/2mS 1 −P

P = 1 −P = 0.5 N P ≠ 0.5
⟨A⟩ = P

= P (1 −P )σ2
A N

/⟨S⟩ =σS (1 −P )/(N ⋅ P )
− −−−−−−−−−−−−
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N nth
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(2.1.23)

(n) =( ) (1 −P  .PS

N
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P n )N−n (2.1.24)
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1
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Figure : Gaussian approximation of the binomial distribution. (A) Gaussian approximation (red dashed line) and binomial
distribution (black solid line) for  and . (B) Error of the Gaussian approximation relative to the maximum
value of the binomial distribution.

In fact, the Gaussian (or normal) distribution is a general distribution for the arithmetic mean of a large number of independent
random variables:

Suppose that a large number  of observations has been made with each observation corresponding to a random number that is
independent from the random numbers of the other observations. According to the central limit theorem, the mean value  of
the sum of all these random numbers is approximately normally distributed, regardless of the probability distribution of the
individual random numbers, as long all the probability distributions of all individual random numbers are identical.  The central
limit theorem applies, if each individual random variable has a well-defined mean value (expectation value) and a well-defined
variance. These conditions are fulfilled for statistically regular trials . [concept:central_limit_theorem]

Stirling’s Formula 
The number  of permutations increases very fast with , leading to numerical overflow in calculators and computers at values
of  that correspond to nanoclusters rather than to macroscopic samples. Even binomial coefficients, which grow less strongly
with increasing ensemble size, cannot be computed with reasonable precision for . Furthermore, the factorial  is
difficult to handle in calculus. The scaling problem can be solved by taking the logarithm of the factorial,

For large numbers  the natural logarithm of the factorial can be approximated by Stirling’s formula

which amounts to the approximation

for the factorial itself. For large numbers  it is further possible to neglect 1 in the sum and approximate .

The absolute error of this approximation for  looks gross and increases fast with increasing , but because  grows much
faster, the relative error becomes insignificant already at moderate . For  it is closely approximated by . In fact,
an even better approximation has been found by Gosper ,

Gosper’s approximation is useful for considering moderately sized systems, but note that several of our other assumptions and
approximations become questionable for such systems and much care needs to be taken in interpreting results. For the macroscopic
systems, in which we are mainly interested here, Stirling’s formula is often sufficiently precise and Gosper’s is not needed.

Slightly better than Stirling’s original formula, but still a simple approximation is

2.1.1
P = 0.37 N = 1000

N

⟨S⟩/N

6

T

N ! N

N

N ≫ 1000 N !

lnN ! = ln( n) = lnn .∏
n=1

N

∑
n=1

N

(2.1.27)

N

lnN ! ≈ N lnN −N +1 , (2.1.28)

N ! ≈ exp(1 −N)N N (2.1.29)

N lnN ! ≈ N lnN −N

N ! N N !
N lnN ! −0.55/N

lnN ! ≈ N lnN −N + ln[(2N + )π] .
1

2

1
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2.2: Continuous Probability Theory

Probability Density 

Although the outcomes of measurements can be discretized, and in fact, are invariably discretized when storing the data, in theory
it is convenient to work with continuous variables where physical quantities are assumed to be continuous. For instance, spatial
coordinates in phase space are assumed to be continuous, as are the momentum coordinates for translational motion in free space.

To work with continuous variables, we assume that an event can return a real number instead of an integer index. The real number
with its associated probability density  is a continuous random number. Note the change from assigning a probability to an event
to assigning a probability density. This is necessary as real numbers are not countable and thus the number of possible events is
infinite. If we want to infer a probability in the usual sense, we need to specify an interval  between a lower bound  and an
upper bound . The probability that trial  will turn up a real number in this closed interval is given by

The probability density must be normalized,

A probability density distribution can be characterized by its moments.

The  moment of a probability density distribution is defined as,

The first moment is the mean of the distribution. With the mean , the central moments are defined

The second central moment is the variance  and its square root  is the standard deviation. [concept:moment_analysis]

Probability density is defined along some dimension , corresponding to some physical quantity. The average of a function 
of this quantity is given by

In many books and articles, the same symbol  is used for probabilities and probability densities. This is pointed out by Swendsen
who decided to do the same, pointing out that the reader must learn to deal with this. In the next section he goes on to confuse
marginal and conditional probability densities with probabilities himself. In these lecture notes we use  for probabilities, which
are always unitless, finite numbers in the interval  and  for probability densities, which are always infinitesimally small and
may have a unit. Students are advised to keep the two concepts apart, which means using different symbols.

ρ

[l, u] l

u T
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u

l

(2.2.1)

ρ(x)dx = 1 .∫
∞

−∞
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Figure : Generation of random numbers that conform to a given probability density distribution. (A) Cumulative probability
distribution  for  (blue). A pseudo-random number with uniform distribution in , here
0.75, selects the ordinate of  (red dashed horizontal line). The corresponding abscissa, here  (red dashed vertical
line), is an instance of a random number with probability density distribution . (B) Distribution of  random numbers (grey
line) and target probability density distribution  (black line).

Computer representations of probability densities by a vector or array are discretized. Hence, the individual values are finite. We
now consider the problem of generating a stream of random numbers that conforms to a given discretized probability density .
Modern programming languages or mathematical libraries include functions that provide uniformly distributed pseudo-random
numbers in the interval  (Matlab: rand ) or pseudo-random numbers with a Gaussian (normal) distribution with mean 0
and standard deviation 1 (Matlab: randn ). A stream of uniformly distributed pseudo-random numbers in  can be
transformed to a stream of numbers with probability density conforming to  by selecting for each input number the abscissa where
the cumulative sum of  (Matlab: cumsum(rho) ) most closely matches the input number (Figure ). Note that  must be
normalized (Matlab: rho = rho/sum(rho) ). Since a random number generator is usually called very often in a Monte Carlo
simulation, the cumulative sum cumsum_rho  should be computed once for all before the loop over all trials. With this,
generation of the abscissa index poi  becomes a one-liner in Matlab: [~,poi] = min(abs(cumsum_rho - rand));

Coming back to physical theory, the concept of probability density can be extended to multiple dimensions, for instance to the
 dimensions of phase space. Probability then becomes a volume integral in this hyperspace. A simple example of a

multidimensional continuous problem is the probability of finding a classical particle in a box. The probability to find it at a given
point is infinitely small, as there are infinitely many of such points. The probability density is uniform, since all points are equally
likely for a classical (unlike a quantum) particle. With the volume  of the box, this uniform probability density is  if we have
a single particle in the box. This follows from the normalization condition, which is . Note that a probability density has
a unit, in our example m . In general, the unit is the inverse of the product of the units of all dimensions.

The marginal probability density for a subset of the events is obtained by ’integrating out’ the other events. Let us assume a particle
in a two-dimensional box with dimensions  and  and ask about the probability density along . It is given by

Likewise, the conditional probability density  is defined at all points where ,

If two continuous random numbers are independent, their joint probability density is the product of the two individual probability
densities,

2.2.1
P (x) = ρ(ξ)dξ∫

x
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Figure : Monte Carlo simulation of a two-dimensional probability density distribution. (A) Two-dimensional probability
density distribution corresponding to the first-order membrane function used in the Matlab logo. (B) Distribution of  random
numbers conforming to the probability density distribution shown in (A).

Write a Matlab program that generates random numbers conforming to a two-dimensional probability density distribution 
 that resembles the Matlab logo (Figure ). The (not yet normalized) distribution  is obtained with the function

call L = membrane(1,resolution,9,9); . Hint: You can use the reshape  function to generate a vector from a
two-dimensional array as well as for reshaping a vector into a two-dimensional array. That way the two-dimensional problem
(or, in general, a multi-dimensional problem) can be reduced to the problem of a one-dimensional probability density
distribution.

Selective Integration of Probability Densities 

We already know how to compute probability from probability density for a simply connected parameter range. Such a range can
be an interval  for a probability density depending on only one parameter  or a simply connected volume element for a
probability density depending on multiple parameters. In a general problem, the points that contribute to the probability of interest
may not be simply connected. If we can find a function  that is zero at the points that should contribute, we can solve this
problem with the Dirac delta function, which is the continuous equivalent of the Kronecker delta that was introduced above.

The Dirac delta function is a generalized function with the following properties

1. The function  is zero everywhere except at .
2. .

The function can be used to select the value  of another continuous function ,

This concept can be used, for example, to compute the probability density of a new random variable  that is a function of two
given random variables  and  with given joint probability density . The probability density  corresponding to 

 is given by

Note that the probability density  computed that way is automatically normalized.

2.2.2
107

Exercise 2.2.1

ρmem 2.2.2 ρmem
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 Concept : Dirac delta function2.2.1
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∞
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Figure : Probability density distributions for two continuous random numbers  and  that are uniformly distributed in the
interval  and have zero probability density outside this interval. a) Marginal probability density . b) Marginal probability
density . c) Joint probability density . In the light blue area, , outside . The orange line corresponds to 

 and the green line to .

We now use the concept of selective integration to compute the probability density  for the sum  of the numbers
shown by two continuous dice, with each of them having a uniform probability density in the interval  (Figure ). We have

The argument of the delta function in the inner integral over  can be zero only for , since otherwise no value of 
exists that leads to . It follows that  and . For  (orange line in Fig. [fig:cont_sum]c) the former
condition sets the upper limit of the integration. Obviously, this is true for any  with . For  (orange line in Fig.
[fig:cont_sum]c) the condition  sets the lower limit of the integration, as is also true for any  with . The
lower limit is 0 for  and the upper limit is 6 for . Hence,

and

From the graphical representation in Fig. [fig:cont_sum]c it is clear that  is zero at  and , assumes a maximum of 
 at , increases linearly between  and  and decreases linearly between  and .

This page titled 2.2: Continuous Probability Theory is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by
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3.1: Statistical Ensembles

Concept of an Ensemble 

Probability densities in phase space cannot be computed by considering only a single system at a single instant in time. Such a
system will be in some random microstate, but what we need is the statistics of such microstates. This problem was solved by
Gibbs, who considered ensembles that consist of a very large number of identical systems in possibly different microstates. The
microstates for a system with  molecules with  degrees of freedom each are points in -dimensional phase space. If we
have information on the probability density assigned to such points, we can use probability theory to compute thermodynamical
state functions.

Ergodicity 
Instead of considering a large ensemble of systems at the same time (ensemble average), we could also consider a long trajectory of
a single system in phase space. The single system will go through different microstates and if we observe it for a sufficiently long
time, we might expect that it visits all accessible points in phase space with a frequency that corresponds to the associated
probability density. This idea is the basis of analyzing MD trajectories in terms of thermodynamic state functions. The ensemble
average  is replaced by the time average . We assume

Systems where this assumption holds are called ergodic systems.

Often, experiments are performed on a large ensemble of identical systems. An example is a spectroscopic experiment on a dilute
solution of chromophores: Each chromophore can be considered as an individual system and their number may be of the order of 

 or higher. In some cases an equivalent experiment can be performed on a single chromophore, but such single-molecule
experiments require many repetitions and measure a time-average. The results of ensemble and single-molecule experiments are
equivalent if the system is ergodic and the measurement time in the single-molecule experiment is sufficiently long.

Whether or not a system is ergodic depends on kinetic accessibility of the whole thermodynamically accessible phase space. We
shall see later that thermodynamic accessibility is related to temperature and to the energy assigned to points in phase space. Points
are accessible if their energy is not too much higher than the energy minimum in phase space. Whether a single dynamic system
visits all these points at the same given temperature- and what time it needs to sample phase space- depends on energy barriers. In
MD simulations sampling problems are often encountered, where molecular conformations that are thermodynamically accessible
are not accessed within reasonable simulation times. A multitude of techniques exists for alleviating such sampling problems, none
of them perfect. In general, time-average methods, be they computational or experimental, should be interpreted only with care in
terms of thermodynamics. In this lecture course we focus on ensemble-average methods, which suffer from a loss in dynamic
information, but get the thermodynamic state functions right.

This page titled 3.1: Statistical Ensembles is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke
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3.2: Microcanonical Ensemble
Assume that we have an isolated system with  particles in a fixed volume . Because the system is isolated, the total energy 
must also be fixed. If we know that the energy must be in an interval  the probability density in phase space must be
zero everywhere outside the region between the two hypersurfaces with constant energies  and . We call this region the
energy shell in which the system is confined. If the system is in equilibrium, i.e., the probability density  is stationary,  must be
uniform in this energy shell, i.e., it must not depend on  and  within this shell. We can see this from the Liouville equation
([eq:Liouville_short]), whose left-hand side must be zero for a stationary probability density. The Poisson bracket on the right-hand
side will vanish if  is uniform.

An ensemble with a constant number  of particles in a constant volume  and with constant total energy  has a uniform
probability density  in the part of phase space, where it can reside, which is the energy hypersurface at energy . Such an
ensemble is called a microcanonical ensemble.

We are left with computing this constant probability density . As the energy is given by the Hamiltonian function , we
can formally write  for an infinitely thin energy shell (  as

where the statistical weight  depends on energy, volume, and number of particles , but at constant energy does not depend on
momentum  or spatial coordinates . Since the probability density is normalized, we have

The probability density in phase space of the microcanonical ensemble is thus relatively easy to compute. However, the restriction
to constant energy, i.e. to an isolated system, severely limits application of the microcanonical ensemble. To see this, we consider
the simplest system, an electron spin  in an external magnetic field . This system is neither classical nor describable in
phase space, but it will nicely serve our purpose. The system has a state space consisting of only two states  and  with
energies  and .  In magnetic resonance spectroscopy, one would talk of an ensemble of
’isolated’ spins, if the individual spins do not interact with each other. We shall see shortly that this ensemble is not isolated in a
thermodynamical sense, and hence not a microcanonical ensemble.

The essence of the microcanonical ensemble is that all systems in the ensemble have the same energy , this restricts probability
density to the hypersurface with constant . If our ensemble of  spins would be a microcanonical ensemble, this energy would
be either  or  and all spins in the ensemble would have to be in the same state, i.e., the
ensemble would be in a pure state. In almost any experiment on spins  the ensemble is in a mixed state and the populations
of states  and  are of interest. The system is not isolated, but, via spin relaxation processes, in thermal contact with its
environment. To describe this situation, we need another type of ensemble.

This page titled 3.2: Microcanonical Ensemble is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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3.3: Canonical Ensemble
Equilibrium thermodynamics describes systems that are in thermal equilibrium. In an ensemble picture, this can be considered by
assuming that the system is in contact with a very large— for mathematical purposes infinitely large— heat bath. Because of this,
the individual systems in the ensemble can differ in energy. However, the probability density distribution in phase space or state
space must be consistent with constant temperature , which is the temperature of the heat bath. In experiments, it is the
temperature of the environment.

An ensemble with a constant number  of particles in a constant volume  and at thermal equilibrium with a heat bath at
constant temperature  can be considered as an ensemble of microcanonical subensembles with different energies . The
energy dependence of probability density conforms to the Boltzmann distribution. Such an ensemble is called a canonical
ensemble.

Because each system can exchange heat with the bath and thus change its energy, systems will transfer between subensembles
during evolution. This does not invalidate the idea of microcanonical subensembles with constant particle numbers . For a
sufficiently large ensemble at thermal equilibrium the  are constants of motion.

There are different ways of deriving the Boltzmann distribution. Most of them are rather abstract and rely on a large mathematical
apparatus. The derivation gets lengthy if one wants to create the illusion that we know why the constant  introduced below always
equals , where  is the Boltzmann constant, which in turn is the ratio of the universal gas constant  and the
Avogadro constant . Here we follow a derivation that is physically transparent and relies on a minimum of mathematical
apparatus that we have already introduced.

Boltzmann Distribution 

Here we digress from the ensemble picture and use a system of  particles that may exist in  different states with energies  with
. The number of particles with energy  is . The particles do not interact, they are completely independent from

each other. We could therefore associate theses particles with microcanonical subensembles of a canonical ensemble, but the
situation is easier to picture with particles. The probability  to find a particle with energy  can be associated with the
probability density for the microcanonical subensemble at energy . The difference between this simple derivation and the more
elaborate derivation for a canonical ensemble is thus essentially the difference between discrete and continuous probability theory.
We further assume that the particles are classical particles and thus distinguishable.

To compute the probability distribution , we note that

and

where  is a constant total energy of the system. We need to be careful in interpreting the latter equation in the ensemble picture.
The quantity  corresponds to the energy of the whole canonical ensemble, which is indeed a constant of motion, if we consider a
sufficiently large number of systems in contact with a thermal bath. We can thus use our simple model of  particles for guessing
the probability density distribution in the canonical ensemble.

What we are looking for is the most likely distribution of the  particles on the  energy levels. This is equivalent to putting 
distinguishable balls into  boxes. We did already solve the problem of distributing  objects to 2 states when considering the
binomial distribution in Section [binomial_distribution]. The statistical weight of a configuration with  objects in the first state
and  objects in the second state was . With this information we would already be able to solve the problem of a canonical

T
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ensemble of  spins  in thermal contact with the environment, disregarding for the moment differences between classical
and quantum statistics (see Section [section:quantum_statistics]).

Coming back to  particles and  energy levels, we still have  permutations. If we assign the first  particles to the state with
energy , the next  particles to  and so on, we need to divide each time by the number of permutations  in the same energy
state, because the sequence of particles with the same energy does not matter. We call the vector of the occupation numbers  a
configuration. The configuration specifies one particular macrostate of the system and the relative probability of the macrostates
for distinguishable particles and non-degenerate states is given by their statistical weights,

The case with degenerate energy levels is treated in Section [sec:Maxwell-Boltzmann].

The most probable macrostate is the one with maximum statistical weight . Because of the peaking of probability distributions for
large , we need to compute only this most probable macrostate; it is representative for the whole ensemble. Instead of
maximizing  we can as well maximize , as the natural logarithm is a strictly monotonous function. This allows us to apply
Stirling’s formula,

By inserting Equation  we find

Note that the second term on the right-hand side of Equation  has some similarity to the entropy of mixing, which suggests
that  is related to entropy.

At the maximum of  the derivative of  with respect to the  must vanish,

In addition, we need to consider the boundary conditions of constant particle number, Equation ,

and constant total energy, Equation ,

It might appear that Equation  could be used to cancel a term in Equation , but this would be wrong as Equation  is
a constraint that must be fulfilled separately. For the constrained maximization we can use the method of Lagrange multipliers.

The maximum or minimum of a function  of  variables is a stationary point that is attained at

We now consider the case where the possible sets of the  variables are constrained by  additional equations

where index  runs over the  constraints ( ). Each constraint introduces another equation of the same form as the one of
Equation ,

N S = 1/2

N r N ! N0

ϵ0 N1 ϵ1 !Ni

Ni

Ω =  .
N !

! ! … !N0 N1 Nr−1
(3.3.3)
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The constraints can be introduced by multiplying each of the  equations by a multiplier  and subtracting it from the equation for
the stationary point without the constraints,

If a set of variables  solves the constrained problem then there exists a set  for which 
 also corresponds to a stationary point of the Lagrangian function . Note that not all

stationary points of the Lagrangian function are necessarily solutions of the constrained problem. This needs to be checked
separately. [concept:Lagrangian_multipliers]

With this method, we can write

The two boundary conditions fix only two of the population numbers . We can choose the multipliers  and  in a way that 
 for these two , which ensures that the partial derivatives of  with respect to these two 

vanishes. The other  population numbers can, in principle, be chosen freely, but again we must have

for all  to make sure that we find a maximum with respect to variation of any of the  population numbers. This gives

with . We can eliminate  by using Equation ,

giving

and finally leading to

For many problems in statistical thermodynamics, the Lagrange multiplier  is related to the chemical potential by .
The Lagrange multiplier  must have the reciprocal dimension of an energy, as the exponent must be dimensionless. As indicated
above, we cannot at this stage prove that  is the same energy for all problems of the type that we have posed here, let alone for all
of the analogous problems of canonical ensembles. The whole formalism can be connected to phenomenological thermodynamics
via Maxwell’s kinetic gas theory (see also Section [subsection:equipartition]). For this problem one finds

For a classical canonical ensemble with energy levels  the probability distribution for the level populations is given by the
Boltzmann distribution

δ = ∂ = 0 .gj ∑
i=1

n
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∂gj
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xi (3.3.12)
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The sum over states

required for normalization is called canonical partition function.  The partition function is a thermodynamical state function.

For the partition function, we use the symbol  relating to the German term Zustandssumme("sum over states"), which is a more
lucid description of this quantity.

Equipartition Theorem 

Comparison of Maxwell’s kinetic theory of gases with the state equation of the ideal gas from phenomenological thermodynamics
provides a mean kinetic energy of a point particle of . This energy corresponds to

i.e., it is quadratic in the velocity coordinates of dynamic space or the momentum coordinates of phase space. Translational energy
is distributed via three degrees of freedom, as the velocities or momenta have components along three pairwise orthogonal
directions in space. Each quadratic degree of freedom thus contributes a mean energy of .

If we accept that the Lagrange multiplier  assumes a value , we find a mean energy  of an harmonic oscillator in the
high-temperature limit . Such an oscillator has two degrees of freedom that contribute quadratically in the degrees of freedom to
energy,

where  is the reduced mass and  the force constant. The first term contributes to kinetic energy, the second to potential energy. In
the time average, each term contributes the same energy and assuming ergodicity this means that each of the two degrees of
freedom contributes with  to the average energy of a system at thermal equilibrium.

The same exercise can be performed for rotational degrees of freedom with energy

where  is angular momentum and  angular frequency. Each rotational degree of freedom, being quadratic in  again contributes
a mean energy of .

Based on Equation  it can be shown that for an energy

where index  runs over the individual degrees of freedom, the number of molecules that contribute energy  does not depend on
the terms  with . It can be further shown that

for all terms that contribute quadratically to energy.

This result has two consequences. First, we can generalize , which we strictly knew only for translational degrees of
freedom, to any canonical ensemble for which all individual energy contributions are quadratic along one dimension in phase
space. Second, we can formulate the

Each degree of freedom, whose energy scales quadratically with one of the coordinates of state space, contributes a mean energy of
.
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The equipartition theorem applies to all degrees of freedom that are activated. Translational degrees of freedom are always
activated and rotational degrees of freedom are activated at ambient temperature, which corresponds to the high-temperature limit
of rotational dynamics. To vibrational degrees of freedom the equipartition theorem applies only in the high-temperature limit. In
general, the equipartition theorem fails for quantized degrees of freedom if the quantum energy spacing is comparable to  or
exceeds this value. We shall come back to this point when discussing the vibrational partition function.

Internal Energy and Heat Capacity of the Canonical Ensemble 

The internal energy  of a system consisting of  particles that are distributed to  energy levels can be identified as the total
energy  of the system considered in Section ([subsection:Boltzmann]). Using Eqs.  and  we find

The sum in the numerator can be expressed by the partition function, since

Thus we obtain

Again the analogy of our simple system to the canonical ensemble holds. At this point we have computed one of the state functions
of phenomenological thermodynamics from the set of energy levels. The derivation of the Boltzmann distribution has also
indicated that , and thus the partition function  are probably related to entropy. We shall see in Section
[section:state_fct_partition_fct] that this is indeed the case and that we can compute all thermodynamic state functions from .

Here we can still derive the heat capacity  at constant volume, which is the partial derivative of internal energy with respect to
temperature. To that end we note that the partition function for the canonical ensemble relates to constant volume and constant
number of particles.

In the last line of Equation  we have substituted the molecular partition function  by the partition function for the whole
system, . Note that this implies a generalization. Before, we were considering a system of  identical particles. Now
we implicitly assume that Equation , as well as  will hold for any system, as long as we correctly derive the
system partition function .

We note here that the canonical ensemble describes a closed system that can exchange heat with its environment, but by definition
it cannot exchange work, because its volume  is constant. This does not present a problem, since the state functions can be
computed at different . In particular, pressure  can be computed from the partition function as well (see Section
[section:state_fct_partition_fct]). However, because the canonical ensemble is closed, it cannot easily be applied to all problems
that involve chemical reactions. For this we need to remove the restriction of a constant number of particles in the systems that
make up the ensemble.

This page titled 3.3: Canonical Ensemble is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke
via source content that was edited to the style and standards of the LibreTexts platform.
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3.4: Grand Canonical Ensemble
For the description of an open system in the thermodynamical sense, i.e., a system that can exchange not only heat, but also matter
with its environment, we need to replace particle number  with another constant of motion. If we would fail to introduce a new
constant of motion, we would end up with a system that is not at equilibrium and thus cannot be fully described by time-
independent state functions. If we assume that the system is in chemical as well as thermal equilibrium with its environment, the
new constant of motion is the chemical potential , or more precisely, a vector  of the chemical potentials  of all components.

An ensemble with constant chemical potential  of all components, and constant volume  that is at thermal equilibrium with
a heat bath at constant temperature  and in chemical equilibrium with its environment is called a grand canonical ensemble.
It can be considered as consisting of canonical subensembles with different particle numbers . The grand canonical state
energies and partition function contain an additional chemical potential term. With this additional term the results obtained for
the canonical ensemble apply to the grand canonical ensemble, too.

The partition function for the grand canonical ensemble is given by

whereas the probability distribution over the levels and particle numbers is

Note that the index range  is much larger than for a canonical ensemble, because each microstate is now characterized by a set of
particle numbers , where  runs over the components.

At this point we are in conflict with the notation that is often used in other course. For example, we often define the chemical
potential  as a molar quantity, here it is a molecular quantity. The relation is . Using the PC I notation in the
current lecture notes would be confusing in other ways, as  is generally used in statistical thermodynamics for the molecular
chemical potential. A similar remark applies to capital letters for state functions. Capital letters denote either a molecular quantity
or a molar quantity. The difference will be clear from the context. We note that in general small letters for state functions (except
for pressure ) denote extensive quantities and capital letters (except for volume ) denote intensive quantities.

This page titled 3.4: Grand Canonical Ensemble is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
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4.1: Swendsen’s Postulates of Thermodynamics

Cautionary Remarks on Entropy 

You will search in vain for a mathematical derivation or clear condensed explanation of entropy in textbooks and textbook chapters
on statistical thermodynamics.. There is a simple reason for it: no such derivation or explanation exists. With entropy being a
central concept, probably the central concept of the theory, this may appear very strange. However, the situation is not as bad as it
may appear. The theory and the expressions that can be derived work quite well and have predictive power. There are definitions of
entropy in statistical thermodynamics (unfortunately, more than one) and they make some sense. Hence, while it may be unnerving
that we cannot derive the central state function from scratch, we can still do many useful things and gain some understanding.

Textbooks tend to sweep the problem under the rug. We won’t do that here. We try to make an honest attempt to clarify what we do
know and what we don’t know about entropy before accepting one working definition and base the rest of theory on this definition.
It is probably best to start with a set of postulates that explains what we expect from the quantity that we want to define.

Swendsen’s Postulates 

The following postulates are introduced and shortly discussed in Section 9.6 of Swendsen’s book . We copy the long form of these
postulates verbatim with very small alterations that improve consistency or simplify the expression.

1. There exist equilibrium states of a macroscopic system that are characterized uniquely by a small number of extensive
variables.

2. The values assumed at equilibrium by the extensive variables of an isolated system in the absence of internal constraints are
those that maximize the entropy over the set of all constrained macroscopic states.

3. The entropy of a composite system is additive over the constituent subsystems.
4. For equilibrium states the entropy is a monotonically increasing function of the energy.
5. The entropy is a continuous and differentiable function of the extensive variables.

We have omitted Swendsen’s last postulate (The entropy is an extensive function of the extensive variables), because, strictly
speaking, it is superfluous. If the more general third postulate of additivity is fulfilled, entropy is necessarily an extensive property.

Swendsen’s first postulate (Equilibrium States) establishes the formalism of thermodynamics, while all the remaining postulates
constitute a wish list for the quantity entropy that we need to predict the equilibrium states. They are a wish list in the sense that we
cannot prove that a quantity with all these properties must exist. We can, however, test any proposed definition of entropy against
these postulates.

Some points need explanation. First, the set of postulates defines entropy as a state function, although this may be hidden. The first
postulate implies that in equilibrium thermodynamics some extensive variables are state functions and that a small set of such state
functions completely specifies all the knowledge that we can have about a macroscopic system. Because entropy in turn specifies
the other state functions for an isolated system at equilibrium, according to the second postulate (Entropy Maximization), it must be
a state function itself. It must be an extensive state function because of the third postulate (Additivity), but the third postulate
requires more, namely that entropies can be added not only for subsystems of the same type in the same state, but also for entirely
different systems. This is required if we want to compute a new equilibrium state (or entropy change) after unifying different
systems. Otherwise, the simple calorimetry experiment of equilibrating a hot piece of copper with a colder water bath would
already be outside our theory. The fourth postulate (Monotonicity) is new compared to what we discussed in phenomenological
thermodynamics. For a classical ideal gas this postulate can be shown to hold. This postulate is needed because it ensures that
temperature is positive. The fifth postulate is a matter of mathematical convenience, although it may come as a surprise in a theory
based on integer numbers of particles. We assume, as at many other points, that the system is sufficiently large for neglecting any
errors that arise from treating particle number as a real rather than an integer number. In other words, these errors must be smaller
than the best precision that we can achieve in experiments. As we already know from phenomenological thermodynamics, the fifth
postulate does not apply to first-order phase transitions, where entropy has a discontinuity. We further note that the second postulate
is an alternative way of writing the Second Law of Thermodynamics. The term ’in the absence of internal constraints’ in the second
postulate ensures that the whole state space (or, for systems fully described by Hamiltonian equations of motion, the whole phase
space) is accessible.
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Entropy in Phenomenological Thermodynamics 

Textbook authors are generally much more comfortable in discussing entropy as an abstract state function in phenomenological
thermodynamics than in discussing its statistical thermodynamics aspects. We recall that the concept of entropy is not
unproblematic in phenomenological thermodynamics either. We had accepted the definition of Clausius entropy,

where  is the differentially exchanged heat for a reversible process that leads to the same differential change in other state
variables as an irreversible process under consideration and  is the temperature. We could then show that entropy is a state
function (Carnot process and its generalization) and relate entropy via its total differential to other state functions. With this
definition we could further show that for closed systems, which can exchange heat, but not volume work with their environment (

), minimization of Helmholtz free energy  provides the equilibrium state and that for closed systems at
constant pressure ( ), minimization of Gibbs free energy  provides the equilibrium state. Partial molar Gibbs free
energy is the chemical potential  and via  it is related to terms in the partition function of the
grand canonical ensemble, where we have abbreviated  as  (Section [section:grand_canonical]).

We were unable in phenomenological thermodynamics to prove that the definition given in Equation  ensures fulfillment of
the Second Law. We were able to give plausibility arguments why such a quantity should increase in some spontaneous processes,
but not more.

Boltzmann’s Entropy Definition 

Boltzmann provided the first statistical definition of entropy, by noting that it is the logarithm of probability, up to a multiplicative
and an additive constant. The formula  by Planck, which expresses Boltzmann’s definition, omits the additive constant.
We shall soon see why.

We now go on to test Boltzmann’s definition against Swendsen’s postulates. From probability theory and considerations on
ensembles we know that for a macroscopic system, probability density distributions for an equilibrium state are sharply peaked at
their maximum. In other words, the macrostate with largest probability is such a good representative for the equilibrium state that it
serves to predict state variables with better accuracy that the precision of experimental measurements. It follows strictly that any
definition of entropy that fulfills Swendsen’s postulates must make  a monotonously increasing function of probability density
for an isolated system.

Why the logarithm? Let us express probability (for the moment discrete again) by the measure of the statistical weights of
macrostates. We consider the isothermal combination of two independent systems A with entropies  and  to a total system
with entropy . The equation for total entropy is a direct consequence of Swendsen’s third postulate. On combination,
the statistical weights  and  multiply, since the subsystems are independent. Hence, with the monotonously increasing
function  we must have

The only solutions of this functional equation are logarithm functions. What logarithm we choose will only influence the
multiplicative constant. Hence, we can write

where, for the moment, constant  is unknown. Boltzmann’s possible additive constant must vanish at this point, because with such
a constant, the functional equation ([eq:s_additivity]), which specifies additivity of entropy, would not have a solution.

It is tempting to equate  in Equation  in the context of phase space problems with the volume of phase space occupied by the
system. Indeed, this concept is known as Gibbs entropy (see Section [Gibbs_entropy]). It is plausible, since the phase space volume
specifies a statistical weight for a continuous problem. No problem arises if Gibbs entropy is used for equilibrium states as it then
coincides with Boltzmann entropy. There exists a conceptual problem, however, if we consider approach to equilibrium. The
Liouville theorem (see Section [Liouville]) states that the volume in phase space taken up by a system is a constant of motion. .
Hence, Gibbs entropy is a constant of motion for an isolated system and the equilibrium state would be impossible to reach from
any non-equilibrium state, which would necessarily occupy a smaller phase space volume. This leads to the following cautionary
remark:
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Statistical thermodynamics, as we introduce it in this text, does not describe dynamics that leads from non-equilibrium to
equilibrium states. Different equilibrium states can be compared and the equilibrium state can be determined, but we have
made a number of assumptions that do not allow us to apply our expressions and concepts to non-equilibrium states without
further thought. Non-equilibrium statistical thermodynamics is explicitly outside the scope of the theory that we present here.

A conceptual complication with Boltzmann’s definition is that one might expect  to be maximal at equilibrium for a closed
system, too, not only for an isolated system. In classical thermodynamics we have seen, however, that the equilibrium condition for
a closed system is related to free energy. Broadly, we could say that for a closed system probability must be maximized for the
system and its environment together. Unfortunately, this cannot be done mathematically as the environment is very large (in fact,
for mathematical purposes infinite). The solution to this problem lies in the treatment of the canonical ensemble (Section
[section_canonical]). In that treatment we have seen that energy enters into the maximization problem via the boundary condition
of constant total energy of the system that specifies what exactly is meant by thermal contact between the system and its
environment. We can, therefore, conclude that Boltzmann’s entropy definition, as further specified in Equation , fulfills those
of Swendsen’s postulates that we have already tested and that the core idea behind it, maximization of probability (density) at
equilibrium is consistent with our derivation of the partition function for a canonical ensemble at thermal equilibrium. We can thus
fix  in Equation ) by deriving  from the partition function.

This page titled 4.1: Swendsen’s Postulates of Thermodynamics is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or
curated by Gunnar Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: The Relation of State Functions to the Partition Function

Entropy and the Partition Function 

We recall that we already computed internal energy  and heat capacity  at constant volume from the system partition function 
(Section [section:u_and_cv_from_z]). For a canonical system ( ), which is by definition at thermal equilibrium
(reversible), we can identify  in Equation  with

Definite integration with substitution of  by Equation  gives ,

Partial integration provides

where we have used Equation  to substitute the first term on the right hand side of Equation . If we assume that 
, the entropy at an absolute temperature of zero can be identified as . If there are no degenerate

ground states,  in agreement with Nernst’s theorem (Third Law of Thermodynamics), as will be discussed in Section
[subsection:z_accessible]. Thus, by associating  with  we obtain

We see that under the assumptions that we have made the entropy can be computed from the partition function. In fact, there should
be a unique mapping between the two quantities, as both the partition function and the entropy are state functions and thus must be
uniquely defined by the state of the system.

We now proceed with computing constant  in the mathematical definition of Boltzmann entropy, Equation . By inserting
Equation  into Equation  we have

We have neglected the term  on the right-hand side of Equation ), as is permissible if the number  of particles is much larger
than the number  of energy levels. Furthermore, according to Equation ) and the definition of the partition function, we have 
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where we have used the definition of the partition function of going from Equation  to . Using Equation  for
substitution in the last term on the right-hand side of Equation ), we find

Comparison of Equation  with Equation  gives two remarkable results. First, the multiplicative constant  in
Boltzmann’s entropy definition can be identified as . Second, for the system of  identical, distinguishable
classical particles, we must have

In other words, the partition function of a system of  identical, distinguishable, non-interacting particles is the  power of the
molecular partition function.

It turns out that Equation  leads to a contradiction if we apply it to an ideal gas. Assume that we partition the system into two
subsystems with particle numbers . The internal-energy dependent term in Equation  obviously will not change
during this partitioning. For the partition-function dependent term we have  for the total system and  for the
sum of the two subsystems. The molecular partition function in the subsystems differs, because volume available to an individual
particle is only half as large as in the total system. For the inverse process of unifying the two subsystems we would thus obtain a
mixing entropy, although the gases in the subsystems are the same. This appearance of a mixing entropy for two identical ideal
gases is called the Gibbs paradox. The Gibbs paradox can be healed by treating the particles as indistinguishable. This reduces the
statistical weight  by  for the total system and by  for each subsystem, which just offsets the volume effect. Hence, for
an ideal gas we have

It may appear artificial to treat classical particles as indistinguishable, because the trajectory of each particle could, in principle, be
followed if they adhere to classical mechanics equations of motion, which we had assumed. Note, however, that we discuss a
macrostate and that we have explicitly assumed that we cannot have information on the microstates, i.e., on the trajectories. In the
macrostate picture, particles in an ideal gas are, indeed, indistinguishable. For an ideal crystal, on the other hand, each particle
could be individually addressed, for instance, by high resolution microscopy. In this case, we need to use Equation .

Helmholtz Free Energy 
Helmholtz free energy (German: Freie Energie)  is defined as

This equation has a simple interpretation. From phenomenological thermodynamics we know that the equilibrium state of a closed
systems corresponds to a minimum in free energy. Among all macrostates with the same energy  at a given temperature , the
equilibrium state is the one with maximum entropy . Furthermore, using Equation  we have

We note that this value of , which can be computed from only the canonical partition function and temperature, corresponds to the
global minimum over all macrostates. This is not surprising. After all, the partition function was found in a maximization of the
probability of the macrostate.
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Gibbs Free Energy, Enthalpy, and Pressure 

All ensembles that we have defined correspond to equilibrium states at constant volume. To make predictions for processes at
constant pressure or to compute enthalpies  and Gibbs free energies  we need to compute pressure from
the partition function. The simplest way is to note that . With Equation  it then follows that

where we have skipped the lower index  indicating constant molar amount. This is permissible for the canonical ensemble, where
the number of particles is constant by definition. From Equation  it follows that

and

Connoisseurs will notice the beautiful symmetry of this equation.

With Equation  we can also compute Gibbs free energy (German: freie Enthalpie),

This page titled 4.2: The Relation of State Functions to the Partition Function is shared under a CC BY-NC 3.0 license and was authored, remixed,
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4.3: Irreversibility

Historical Discussion 

Daily experience tells us that some processes are irreversible. Phenomenological thermodynamics had provided recipes for
recognizing such processes by an increase in entropy for an isolated system or decrease of free energy for a closed system. When
Boltzmann suggested a link between classical mechanics of molecules on a microscopic level and irreversibility of processes on the
macroscopic level, many physicists were irritated nevertheless. In retrospect it is probably fair to say that a controversial discussion
of Boltzmann’s result could only ensue because atomistic or molecular theory of matter was not yet universally accepted at the
time. It is harder to understand why this discussion is still going on in textbooks. Probably this is related to the fact that physicists
in the second half of the  and first half of the  believed that pure physics has implications in philosophy, beyond the
obvious ones in epistemology applied to experiments in the sciences. If statistical mechanics is used to predict the future of the
universe into infinite times, problems ensue. If statistical mechanics is properly applied to well-defined experiments there are no
such problems.

Classical mechanics of particles does not involve irreversibility. The equations of motion have time reversal symmetry and the
same applies to quantum-mechanical equations of motion. If the sign of the Hamiltonian can be inverted, the system will evolve
backwards along the same trajectory in phase space (or state space) that it followed to the point of inversion. This argument is
called Umkehreinwand or Loschmidt paradox and was brought up (in its classical form) by Loschmidt. The argument can be
refined and is then known as the central paradox: Each microstate can be assigned a time-reversed state that evolves, under the
same Hamiltonian, backwards along the same trajectory. The two states should have the same probability. The central paradox
confuses equilibrium and non-equilibrium dynamics. At equilibrium a state and the corresponding time-reversed state indeed have
the same probability, which explains that the macrostate of the system does not change and why processes that can be
approximated by a series of equilibrium states are reversible. If, on the other hand, we are not at equilibrium, there is no reason for
assuming that the probabilities of any two microstates are related. The system is at some initial condition with a given set of
probabilities and we are not allowed to pose symmetry requirements to this initial condition.

The original Umkehreinwand, which is based on sign inversion of the Hamiltonian rather then the momenta of microstates, is more
serious than the central paradox. Time-reversal experiments of this type can be performed, for instance, echo experiments in
magnetic resonance spectroscopy and optical spectroscopy. In some of these echo experiments, indeed the Hamiltonian is sign-
inverted, in most of these experiments application of a perturbation Hamiltonian for a short time (pulse experiment) causes sign
inversion of the density matrix. Indeed, the first paper on observation of such a spin echo by Erwin Hahn was initially rejected with
the argument that he could not have observed what he claimed, as this would have violated the Second Law of Thermodynamics. A
macroscopic ’time-reversal’ experiment that creates a ’colorant echo’ in corn syrup can be based on laminar flow . We note here
that all these time-reversal experiments are based on preparing a system in a non-equilibrium state. To analyze them, changes in
entropy or Helmholtz free energy must be considered during the evolution that can be reversed. These experiments do not touch the
question whether or not the same system will irreversibly approach an equilibrium state if left to itself for a sufficiently long time.
We can see this easily for the experiment with colorants and corn syrup. If, after setup of the initial state and evolution to the point
of time reversal, a long time would pass, the colorant echo would no longer be observed, because diffusion of the colorants in corn
syrup would destroy spatial correlation. The echo relies on the fact that diffusion of the colorants in corn syrup can be neglected on
the time scale of the experiment, i.e., that equilibrium cannot be reached. The same is true for the spin echo experiment, which fails
if the evolution time is much longer than the transverse relaxation time of the spins.

Another argument against irreversibility was raised by Zermelo, based on a theorem by Poincaré. The theorem states that any
isolated classical system will return repeatedly to a point in phase space that is arbitrarily close to the starting point. This argument
is known as Wiederkehreinwand or Zermelo paradox. We note that such quasi-periodicity is compatible with the probability density
formalism of statistical mechanics. The probability density distribution is very sharply peaked at the equilibrium state, but it is not
zero at the starting point in phase space. The system fluctuates around the equilibrium state and, because the distribution is sharply
peaked, these fluctuations are very small most of the time. Once in a while the fluctuation is sufficiently large to revisit even a very
improbable starting point in phase space, but for a macroscopic system this while is much longer than the lifetime of our galaxy.
For practical purposes such large fluctuations can be safely neglected, because they occur so rarely. That a system will never
evolve far from the equilibrium state once it had attained equilibrium is an approximation, but the approximation is better than
many other approximations that we use in physics. The statistical error that we make is certainly much smaller than our
measurement errors.
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Irreversibility as an Approximation 

If the whole of phase space is accessible the system will always tend to evolve from a less probable macrostate to a more probable
macrostate, until it has reached the most probable macrostate, which is the equilibrium state. Equilibrium is dynamic. The
microstate of each individual system evolves in time. However, for most microstates the values of all state variables are the same as
for equilibrium within experimental uncertainty. In fact, the fraction of such microstates does not significantly differ from unity.
Hence, a system that has attained equilibrium once will be found at equilibrium henceforth, as long as none of the external
parameters is changed on which the probability density distribution in phase space depends. In that sense, processes that run from a
non-equilibrium state to an equilibrium state are irreversible.

We should note at this point that all our considerations in this lecture course assume systems under thermodynamic control. If
microstate dynamics in phase space is slow compared to the time scale of the experiment or simulation, the equilibrium state may
not be reached. This may also happen if dynamics is fast in the part of phase space where the initial state resides but exchange
dynamics is too slow between this part of phase space and the part of phase space where maximum probability density is located.

This page titled 4.3: Irreversibility is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke via
source content that was edited to the style and standards of the LibreTexts platform.
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4.4: Entropy and Information

Gibbs Entropy 

For a system with a countable number of microstates an ensemble entropy can be defined by a weighted sum over entropies of all
microstates that are in turn expressed as , which is analogous to Boltzmann’s entropy definition for a macrostate.

This is the definition of Gibbs entropy, while Boltzmann entropy is assigned to an individual microstate. Note that we have used a
capital  because Gibbs entropy is a molecular entropy. Using Equation , we obtain for the system entropy ,

where we have assumed distinguishable particles, so that . We have recovered Equation  that we had derived for
the system entropy starting from Boltzmann entropy and assuming a canonical ensemble. For a canonical ensemble of
distinguishable particles, either concept can be used. As noted above, Gibbs entropy leads to the paradox of a positive mixing
entropy for combination of two subsystems made up by the same ideal gas. More generally, Gibbs entropy is not extensive if the
particles are indistinguishable. The problem can be solved by redefining the system partition function as in Equation .

This problem suggests that entropy is related to the information we have on the system. Consider mixing of  with .
At a time when nuclear isotopes were unknown, the two gases could not be distinguished and mixing entropy was zero. With a
sufficiently sensitive spectrometer we could nowadays observe the mixing process by  NMR. We will observe spontaneous
mixing. Quite obviously, the mixing entropy is not zero anymore.

This paradox cautions against philosophical interpretation of entropy. Entropy is a quantity that can be used for predicting the
outcome of physical experiments. It presumes an observer and depends on the information that the observer has or can obtain.
Statistical mechanics provides general recipes for defining entropy, but the details of a proper definition depend on experimental
context.

Unlike the system entropy derived from Boltzmann entropy via the canonical ensemble, Gibbs entropy is, in principle, defined for
non-equilibrium states. Because it is based on the same probability concept, Gibbs entropy in an isolated system is smaller for non-
equilibrium states than for equilibrium states.

Von Neumann Entropy 

The concept of Gibbs entropy for a countable set of discrete states and their probabilities is easily extended to continuous phase
space and probability densities. This leads to the von Neumann entropy,

where  is the density matrix. Some physics textbooks don’t distinguish von Neumann entropy from Gibbs entropy . Von Neumann
entropy is a constant of motion if an ensemble of classical systems evolves according to the Liouville equation or a quantum
mechanical system evolves according to the Liouville-von-Neumann equation. It cannot describe the approach of an isolated system
to equilibrium. Coupling of the quantum mechanical system to an environment can be described by the stochastic Liouville
equation

where  is a Markovian operator and  the density matrix at equilibrium. This equation of motion can describe quantum
dissipative systems, i.e., the approach to equilibrium, without relying explicitly on the concept of entropy, except for the
computation of , which relies on generalization of the Boltzmann distribution (see Section [subsection:q_partition]). However,

to derive the Markovian operator , explicit assumptions on the coupling between the quantum mechanical system and its
environment must be made, which is beyond the scope of this lecture course.
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Shannon Entropy 

The concept of entropy has also been introduced into information theory. For any discrete random number that can take values 
with probabilities , the Shannon entropy is defined as

A logarithm to the basis of 2 is used here as the information is assumed to be coded by binary numbers. Unlike for discrete states in
statistical mechanics, an event may be in the set but still have a probability . In such cases,  is set to
zero. Shannon entropy is the larger the ’more random’ the distribution is, or, more precisely, the closer the distribution is to a
uniform distribution. Information is considered as deviation from a random stream of numbers or characters. The higher the
information content is, the lower the entropy.

Shannon entropy can be related to reduced Gibbs entropy . It is the amount of Shannon information that is required to
specify the microstate of the system if the macrostate is known. When expressed with the binary logarithm, this amount of Shannon
information specifies the number of yes/no questions that would have to be answered to specify the microstate. We note that this is
exactly the type of experiment presumed in the second Penrose postulate (Section [Penrose_postulates]). The more microstates are
consistent with the observed macrostate, the larger is this number of questions and the larger are Shannon and Gibbs entropy. The
concept applies to non-equilibrium states as well as to equilibrium states. It follows, what was stated before Shannon by G. N.
Lewis: "Gain in entropy always means loss of information, and nothing more". The equilibrium state is the macrostate that lacks
most information on the underlying microstate.

We can further associate order with information, as any ordered arrangement of objects contains information on how they are
ordered. In that sense, loss of order is loss of information and increase of disorder is an increase in entropy. The link arises via
probability, as the total number of arrangements is much larger than the number of arrangements that conform to a certain order
principle. Nevertheless, the association of entropy with disorder is only colloquial, because in most cases we do not have
quantitative descriptions of order.

This page titled 4.4: Entropy and Information is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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5.1: Quantum Canonical Ensemble

Density Matrix 

We have occasionally referred to the quantum-mechanical density matrix  in previous sections. Before we discuss quantum
ensembles, we need to fully specify this concept.

The microstates that can be assumed by a system in a quantum ensemble are specified by a possible set of wavefunctions 
. The probability or population of the  microstate is denoted as , and for the continuous case the probability

density for a given wavefunction is denoted as . The density operator is then given by

Note that the discrete case is closely related to the problem with  energy levels that we discussed in deriving the Boltzmann
distribution for a classical canonical ensemble. The density operator can be expressed as a density matrix  with respect to a set of
basis functions . For exact computations the basis functions must form a countable complete set that allows for expressing the
system wavefunctions  as linear combinations of basis functions. For approximate computations, it suffices that this linear
combination is a good approximation. The matrix elements of the density matrix are then given by

With the complex coefficients  in the linear combination representation , the matrix elements are

where the asterisk denotes the complex conjugate and the bar for once denotes the ensemble average. It follows that diagonal
elements ( ) are necessarily real,  and that  is the complex conjugate of . Therefore, the density matrix is
Hermitian and the density operator is self-adjoint. The matrix dimension is the number of basis functions. It is often convenient to
use the eigenfunctions of the system Hamiltonian  as the basis functions, but the concept of the density matrix is not limited to
this choice. The meaning of elemnts of the density matrix is visualized in Figure .

That the density matrix can be expressed in the basis of eigenstates does not imply that the ensemble can be represented as
consisting of only eigenstates, as erroneously stated by Swendsen . Off-diagonal elements of the density matrix denote coherent
superpositions of eigenstates, or short coherences. This is not apparent in Swendsen’s simple example where coherence is averaged
to zero by construction. The ensemble can be represented as consisting of only eigenstates if coherence is absent. In that case the
density matrix is diagonal in the eigenbasis. Diagonal elements of the density matrix denote populations of basis states.

ρ

 (i = 1… r)ψi ith Pi
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r−1

Pi ψi ψi
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ψ
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Figure : Density matrix for a system with  states numbered , , … . The columns correspond to kets, the rows to
bras of the wavefunctions corresponding to these states. Diagonal elements  denote state populations and are real
numbers. Off-diagonal elements  are complex numbers and denote coherent superpositions of states  and  or,
short, coherences.

In quantum mechanics, it is well defined what information we can have about the macrostate of a system, because quantum
measurements are probabilistic even for a microstate. We can observe only quantities that are quantum-mechanical observables and

these observables are represented by operators . It can be shown that the expectation value  of any observable can be

computed from the density matrix by

where we have used operator notation for  to point out that  and  must be expressed in the same basis.

Since the expectation values of all observables are the full information that we can have on a quantum system, the density matrix
specifies the full information that we can have on the ensemble. However, the density matrix does not fully specify the ensemble
itself, i.e., we cannot infer the probabilities  or probability density function  from the density matrix (Swendsen gives a
simple example ). This is another example for the information loss on microstates that comes about when we can only observe
macrostates and that is conceptually equivalent to entropy. The von-Neumann entropy can be computed from the density matrix by
Equation ).

We note that there is one important distinction between classical and quantum-mechanical observations for an individual system. In
the quantum case we can specify only an expectation value, and the second and third Penrose postulates (Section
[Penrose_postulates]) do not apply: neither can we simultaneously measure all observables (they may be incompatible), nor is the
outcome of a later measurement independent of the current measurement. However, quantum uncertainty is much smaller than
measurement errors for the large ensembles that we treat by statistical thermodynamics. Hence, the Penrose postulates apply to the
quantum-mechanical ensembles that represent macrostates, although they do not apply to the microstates.

If all systems in a quantum ensemble populate the same microstate, i.e., they correspond to the same wavefunction, the ensemble is
said to be in a pure state. A pure state corresponds to minimum rather than maximum entropy. Otherwise the system is said to be in
a mixed state.

Quantum Partition Function 
Energy quantization leads to a difficulty in using the microcanonical ensemble. The difficulty arises because the microcanonical
ensemble requires constant energy, which restricts our abilities to assign probabilities in a set of discrete energy levels. However, as
we derived the Boltzmann distribution, partition function, entropy and all other state functions for classical systems from the
canonical ensemble anyway, we can simply ignore this problem. The canonical ensemble is considered to be at thermal equilibrium
with a heat bath (environment) of infinite size. It does not matter whether this heat bath is of classical or quantum mechanical
nature. For an infinitely sized quantum system, the energy spectrum is continuous, which allows us to exchange energy between the
bath and any constituent system of the quantum canonical ensemble at will.
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=pk ρkk
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We can derive Boltzmann distribution and partition function for the density matrix by analogy to the classical case. For that we
consider the density matrix in the eigenbasis. The energies of the eigenstates are the eigenvalues  of the Hamiltonian . All
arguments and mathematical steps from Section [subsection:Boltzmann] still apply, with a single exception: Quantum mechanics
allows for microstates that are coherent superpositions of eigenstates. The classical derivation carries over if and only if we can be
sure that the equilibrium density matrix can be expressed without contributions from such microstates, which would lead to off-
diagonal elements in the representation in the eigenbasis of . This argument can indeed be made. Any superposition of two
eigenstates  and  with amplitudes  and  can be realized with arbitrary phase difference  between the two
eigenfunctions. The microstates with the same  and  but different  all have the same energy. The entropy of a
subensemble that populates these microstates is maximal if the distribution of phase differences  is uniform in the interval 

. In that case  vanishes, i.e., such subensembles will not contribute off-diagonal elements to the equilibrium density
matrix.

We can now arrange the  in matrix form,

with the matrix elements  and  for . The partition function is the sum of all the diagonal elements of this
matrix, i.e. the trace of . Hence,

where we have used operator notation. This implies that Equation  can be evaluated in any basis, not only the eigenbasis of 
. In a different basis,  needs to be computed as a matrix exponential and, in general, the density matrix  will have

non-zero off-diagonal elements in such a different basis.

The quantum-mechanical partition function,

is independent of the choice of basis, as the trace of a matrix is invariant under unitary transformations. Note that we have used a
capital  for a molecular partition function. This is appropriate, as the trace of  in Equation  is unity. In the eigenbasis, the
diagonal elements of  are the populations of the eigenstates at thermal equilibrium. There is no coherence for a sufficiently large
quantum ensemble at thermal equilibrium.

We note that the density matrix at thermal equilibrium can be derived in a more strict manner by explicitly considering a system
that includes both the canonical ensemble and the heat bath and by either tracing out the degrees of freedom of the heat bath or
relying on a series expansion that reduces to only two terms in the limit of an infinite heat bath .

When approaching zero absolute temperature, the matrix element of  in the eigenbasis that corresponds to the lowest energy 
becomes much larger than all the others. At , the corresponding ground state is exclusively populated and the ensemble is in
a pure state if there is just one state with this energy. For  on the other hand, differences between the diagonal matrix
elements vanish and all states are equally populated. The ensemble is in a maximally mixed state.

This page titled 5.1: Quantum Canonical Ensemble is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.

ϵi H

Ĥ
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ξ =  ,e− / TĤ kB (5.1.7)

=ξii e− / Tϵi kB = 0ξij i ≠ j

ξ

=  ,ρ̂eq

e− / TĤ kB
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5.2: Quantum and Classical Statistics

Types of Permutation Symmetry 

Classical particles are either distinguishable or non-distinguishable, a difference that influences the relation between the system
partition function and the molecular partition function (Section [s_from_z]). Quantum particles are special. They are always
indistinguishable, but there exist two types that behave differently when two particles are permuted. For bosons, the wavefunction
is unchanged on such permutation, whereas for fermions the wavefunction changes sign. This sign change does not make the
particles distinguishable, as absolute phase of the wavefunction does not correspond to an observable. However, it has important
consequences for the population of microstates. Two (or more) bosons can occupy the same energy level. In the limit  they
will all occupy the ground state and form a Bose-Einstein condensate. Bosons are particles with integer spin, with the composite
boson  (two protons, two neutrons, two electrons) probably being the most famous example. In contrast, two fermions
(particles with half-integer spin) cannot occupy the same state, a fact that is known as Pauli exclusion principle. Protons, neutrons,
and electrons are fermions (spin 1/2), whereas photons are bosons (spin 1).

This difference in permutation symmetry influences the distribution of particles over energy levels. The simplest example is the
distribution of two particles to two energy levels  (for ’left’) and  (for ’right’) . For distinguishable classical particles four
possible configurations exist:

1.  is doubly occupied
2.  is occupied by particle A and  is occupied by particle B
3.  is occupied by particle B and  is occupied by particle A
4.  is doubly occupied.

For bosons and for indistinguishable classical particles as well, the second and third configuration above cannot be distinguished.
Only three configurations exist:

1.  is doubly occupied
2.  is occupied by one particle and  is occupied by one particle
3.  is doubly occupied.

For fermions, the first and third configuration of the boson case are excluded by the Pauli principle. Only one configuration is left:

1.  is occupied by one particle and  is occupied by one particle.

Since the number of configurations enters into all probability considerations, we shall find different probability distributions for
systems composed of bosons, fermions, or distinguishable classical particles. The situation is most transparent for an ideal gas, i.e. 

 non-interacting point particles that have only translational degrees of freedom . For such a system the spectrum of energy levels
is continuous.

Bose-Einstein Statistics 
We want to derive the probability distribution for the occupation of energy levels by bosons. To that end, we first pose the question
how many configurations exist for distributing  particles to  energy levels in the interval between  and . Each level
can be occupied by an arbitrary number of particles. We picture the problem as a common set of particles  and
levels  that has  elements. Now we consider all permutations in this set and use the convention that
particles that stand left from a level are assigned to this level. For instance, the permutation  for three
particles and three levels denotes a state where level  s occupied by particles  and , level  is occupied by particle  and
level  is empty. With this convention the last energy level is necessarily the last element of the set (any particle standing right
from it would not have an associated level), hence only  such permutations exist. Each permutation also encodes a
sequence of particles, but the particles are indistinguishable. Thus we have to divide by  in order to not double count
configurations that we cannot distinguish. It also does not matter in which sequence we order the levels with their associated
subsets of particles. Without losing generality, we can thus consider only the sequence with increasing level energy, so that the
level standing right (not included in the number of permutations ) is the level with the highest energy. For the
remaining  lower levels we have counted  permutations, but should have counted only the properly ordered one.
Hence, we also have to divide by . Therefore, the number of configurations and thus the number of microstates in the
interval between  and  is

T →0
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The configurations in energy intervals with different indices  are independent of each other. Hence, the statistical weight of a
macrostate is

As the number of energy levels is, in practice, infinite, we can choose the  sufficiently large for neglecting the 1 in . In an
exceedingly good approximation we can thus write

The next part of the derivation is the same as for the Boltzmann distribution in Section [subsection:Boltzmann], i.e., it relies on
maximization of  using the Stirling formula and considering the constraints of conserved total particle number 
and conserved total energy of the system . The initial result is of the form

where  is related to the Lagrange multiplier  by  and thus to the chemical potential by . After a rather
tedious derivation using the definitions of Boltzmann entropy and  we can identify  with . We refrain
from reproducing this derivation here, as the argument is circular: It uses the identification of  with  in the definition of
Boltzmann entropy that we had made earlier on somewhat shaky grounds. We accept the identification of  with  as
general for this type of derivations, so that we finally have

Up to this point we have supposed nothing else than a continuous, or at least sufficiently dense, energy spectrum and identical
bosons. To identify  we must have information on this energy spectrum and thus specify a concrete physical problem. When
using the density of states for an ideal gas consisting of quantum particles with mass  in a box with volume  (see Section
[section:gas_translation] for derivation),

we find, for the special case ,

Fermi-Dirac Statistics 
The number  of fermions in an energy interval with  levels cannot exceed . The number of allowed configurations is now
given by the number of possibilities to select  out of  levels that are populated, whereas the remaining levels remain empty.
As each level can exist in only one of two conditions, populated or empty, this is a binomial distribution problem as we have solved
in Section [binomial_distribution]. In Equation ) we need to substitute  by  and  by . Hence, the number of allowed
configurations in the energy interval between  and  is given by

and, considering mutual independence of the configurations in the individual energy intervals, the statistical weight of a macrostate
for fermions is
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Again, the next step of the derivation is analogous to derivation of the Boltzmann distribution in Section [subsection:Boltzmann] .
We find

For the special case ,  is again given by Equation . Comparison of Equation  with Equation 
reveals as the only difference the sign of the additional number 1 in the denominator on the right-hand side of the equations. In the
regime , for which we have specified , this difference is negligible.

It is therefore of interest when this regime applies. As  in the ideal gas problem, we have , so that  is
sufficient for the regime to apply. Wedler and Freund have computed values of  according to Equation  for the lightest ideal
gas, H , and have found  for  bar down to  K and at ambient temperature for pressures up to  bar. For
heavier molecules,  is larger under otherwise identical conditions. Whether a gas atom or molecule is a composite boson or
fermion thus does not matter, except at very low temperatures and very high pressures. However, if conduction electrons in a metal,
for instance in sodium, are considered as a gas, their much lower mass and higher number density  leads to  at ambient
temperature and even at temperatures as high as 1000 K. Therefore, a gas model for conduction electrons (spin 1/2) must be set up
with Fermi-Dirac statistics.

Maxwell-Boltzmann Statistics 

In principle, atoms and molecules are quantum objects and not classical particles. This would suggest that the kinetic theory of
gases developed by Maxwell before the advent of quantum mechanics is deficient. However, we have already seen that for particles
as heavy as atoms and molecules and number densities as low as in gases at atmospheric pressure or a bit higher, the difference
between Bose-Einstein and Fermi-Dirac statistics vanishes, unless temperature is very low. This suggests that, perhaps, classical
Maxwell-Boltzmann statistics is indeed adequate for describing gases under common experimental conditions.

We assume distinguishable particles. Each of the  particles can be freely assigned to one of the  energy levels. All these
configurations can be distinguished from each other, as we can picture each of the particles to have an individual tag. Therefore,

configurations can be distinguished in the energy interval between  and . Because the particles are distinguishable
(’tagged’), the configurations in the individual intervals are generally not independent from each other, i.e. the total number of
microstates does not factorize into the individual numbers of microstates in the intervals. We obtain more configurations than that
because we have the additional choice of distributing the  ’tagged’ particles to  intervals. We have already solved this problem
in Section [subsection:Boltzmann], the solution is Equation ). By considering the additional number of choices, which enters
multiplicatively, we find for the statistical weight of a macrostate

It appears that we have assumed a countable number  of intervals, but as in the derivations for the Bose-Einstein and Fermi-Dirac
statistics, nothing prevents us from making the intervals arbitrarily narrow and their number arbitrarily large.

Again, the next step in the derivation is analogous to derivation of the Boltzmann distribution in Section [subsection:Boltzmann] .
All the different statistics differ only in the expressions for , constrained maximization of  uses the same Lagrange ansatz.
We end up with

Comparison of Equation  with Equation  and  reveals that, again, only the 1 in the denominator on the right-hand
side makes the difference, now it is missing. In the regime, where Bose-Einstein and Fermi-Dirac statistics coincide to a good
approximation, both of them also coincide with Maxwell-Boltzmann statistics.
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There exist two caveats. First, we already know that the assumption of distinguishable particles leads to an artificial mixing entropy
for two subsystems consisting of the same ideal gas or, in other words, to entropy not being extensive. This problem does not,
however, influence the probability distribution, it only influences scaling of entropy with system size. We can solve it by an ad hoc
correction when computing the system partition function from the molecular partition function. Second, to be consistent we should
not use the previous expression for , because it was derived under explicit consideration of quantization of momentum.
However, for Maxwell-Boltzmann statistics  can be eliminated easily. With  we have from Equation 

which gives

With this, we can express the distribution function as

Comparison of Equation  with the Boltzmann distribution given by Equation  reveals the factors  as the only
difference. Thus, the probability distribution for Maxwell-Boltzmann statistics deviates from the most common form by the degree
of degeneracy  of the individual levels. This degeneracy entered the derivation because we assumed that within the intervals
between  and  several levels exist. If  is finite, we speak of near degeneracy. For quantum systems, degeneracy of
energy levels is a quite common phenomenon even in small systems where the energy spectrum is discrete. In order to describe
such systems, the influence of degeneracy on the probability distribution must be taken into account.

In quantum systems with discrete energy levels there may exist  quantum states with the same energy  that do not coincide
in all their quantum numbers. This phenomenon is called degeneracy and  the degree of degeneracy. A set of  degenerate
levels can be populated by up to  fermions. In the regime, where Boltzmann statistics is applicable to the quantum system,
the probability distribution considering such degeneracy is given by

and the molecular partition function by

The condition that degenerate levels do not coincide in all quantum numbers makes sure that the Pauli exclusion principle does not
prevent their simultaneous population with fermions.

At this point we can summarize the expected number of particles with chemical potential  at level  with energy  and arbitrary
degeneracy  for Bose-Einstein, Fermi-Dirac, and Boltzmann statistics:

Note that the chemical potential  in these equations is determined by the condition . The constant  in the derivations
above is given by . If  is not constant, we have  and thus .
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5.3: Simple Quantum Systems

Spin S = 1/2 

The simplest quantum system is a two-level system and probably the best approximation to isolated two-level systems is found in
magnetic resonance spectroscopy of dilute  spin systems. The Hamiltonian for an electron spin  in an external
magnetic field along  is given by

where  is the gyromagnetic ratio and  is the magnetic field expressed in units of 1 Tesla. The two states are
designated by magnetic spin quantum number  and have energies . The partition function is

and the expectation value of , which is proportional to longitudinal magnetization, by

Usually one has , which is called the high-temperature approximation. The series expansion of the hyperbolic
tangent,

can then be restricted to the leading term, which gives

Harmonic Oscillator 

A diatomic molecule has one vibrational mode along the bond direction . If we assign masses  and  to the two atoms and a
force constant  to the bond, we can write the Hamiltonian as

where the reduced mass  is

and where the first term on the right-hand side of Equation  corresponds to potential energy and the second term to kinetic
energy.

Equation  can be cast in the form

where we have substituted  by the deviation of the atom-atom distance  from the bond length  and introduced the angular
oscillation frequency  of a classical oscillator with

S = 1/2 S = 1/2
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Equation  produces an infinite number of eigenstates with energies

where  is the vibrational quantum number. All energies are positive, even the one of the ground state with .
This residual zero-point vibration can be considered as a consequence of Heisenberg’s uncertainty principle, since for a non-
oscillating diatomic molecule atom coordinates as well as momentum would be sharply defined, which would violate that principle.
In the context of statistical thermodynamics the unfortunate consequence is that for an ensemble of  diatomic molecules for 

 the vibrational contribution to the internal energy  approaches  and thus the term  in the entropy
expression (Equation ) approaches infinity. We ignore this problem for the moment.

The partition function of the harmonic oscillator is an infinite series,

where we have substituted  and  to obtain the last line. Since for finite temperatures , the
infinite series  converges to . Hence,

We can again discuss the behavior for . In the denominator, the argument of the exponential function approaches , so
that the denominator approaches unity. In the numerator the argument of the exponential function also approaches , so that the
partition function approaches zero and Helmholtz free energy  can only be computed as a limiting value. The term 

 in the entropy Equation  approaches .

This problem can be healed by shifting the energy scale by . We then have

With this shift, the partition function and the population of the ground state  both approach 1 when the temperature
approaches zero. For the term  in the entropy expression we still need to consider a limiting value, but it can be shown that 

. Since  for , entropy of an ensemble of harmonic oscillators vanishes at the zero point in

agreement with Nernst’s theorem. Helmholtz free energy  approaches zero.

For computing a Boltzmann distribution we can shift all energy levels by the same offset  without influencing the , as such a
shift leads to a multiplication by the same factor of the numerator and of all terms contributing to the partition function. Such a shift
can remove an infinity of the partition function.

This partition function can also be expressed with a characteristic vibrational temperature

This temperature is usually higher than room temperature. We have
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Thus,  at room temperature, which implies that only the vibrational ground state is significantly populated. Vibration does
not significantly contribute to entropy at room temperature.

Einstein and Debye Models of a Crystal 

The considerations on the harmonic oscillator can be extended to a simple model for vibrations in a crystal. If we assume that all
atoms except one are fixed at their average locations, the potential at the unique atom is parabolic. This assumption made by
Einstein may at first sight violate his own dictum that "Everything should be made as simple as possible, but not simpler.". We shall
come back to this point below. For the moment we consider Einstein’s approach as a very simple mean field approach. Instead of
the one-dimensional harmonic oscillator treated in Section [section:harmonic_oscillator], we now have a three-dimensional
harmonic oscillator. For sufficiently high point symmetry at the unique atom, we can assume an isotropic force constant . Each
atom is then described by three independent harmonic oscillators along three orthogonal directions. The harmonic oscillators of
different atoms are also independent by construction. Because we want to compute an absolute internal energy we revert to the
partition function of the harmonic oscillator without energy shift given in Equation . The partition function for a crystal with 

 atoms, considering that the atoms in a crystal lattice are distinguishable and that thus Equation  applies, is then given by

Internal energy can be computed by Equation ,

With the characteristic vibrational temperature  introduced in Equation  and by setting  to obtain a molar
quantity, we find

The molar heat capacity of an Einstein solid is the derivative of  with respect to . We note that we do not need to specify
constant volume or constant pressure, since this simple model depends on neither of these quantities. We find

According to the rule of Dulong and Petit we should obtain the value  for . Since the expression becomes indeterminate 
, we need to compute a limiting value, which is possible with the approach of de l’Hospital where we separately differentiate

the numerator and denominator. The derivation is lengthy but it indeed yields the limiting value :
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In Equation  in the numerator and in going from Equation  to  we have set  to 1, as we may for .
As the expression was still indeterminate, we have computed the derivatives of numerator and denominator once again in going
from Equation  to  and finally we have once more set  to 1 in going from Equation  to \refeq:x04}. We
see that Einstein’s very simple model agrees with the rule of Dulong and Petit.

The model of the Einstein solid differs from a model of  one-dimensional harmonic oscillators according to Section
[section:harmonic_oscillator] only by a power of 3 in the partition function, which, after computing the logarithm, becomes a
factor of 3 in the temperature-dependent term of  and thus in . Hence, in the high-temperature limit the vibrational
contribution to the molar heat capacity of a gas consisting of diatomic molecules is equal to . It follows that, in this limit,
each molecule contributes an energy  to the internal energy, i.e. each of the two degrees of freedom (potential and kinetic
energy of the vibration) that are quadratic in the coordinates contributes a term . This agrees with the equipartition
theorem. Likewise, the Einstein solid agrees with this theorem.

From experiments it is known that molar heat capacity approaches zero when temperature approaches zero. Again the limiting
value can be computed by the approach of de ’l Hospital , where this time we can neglect the 1 in , as  tends to
infinity for . In the last step we obtain

Thus, the Einstein solid also agrees with the limiting behavior of heat capacity at very low temperatures.

Nevertheless the model is ’too simple’, and Einstein was well aware of that. Vibrations of the individual atoms are not independent,
but rather collective. The lattice vibrations, called phonons, have a spectrum whose computation is outside the scope of the Einstein
model. A model that can describe this spectrum has been developed by Debye based on the density of states of frequencies . This
density of states in turn has been derived by Rayleigh and Jeans based on the idea that the phonons are a system of standing waves
in the solid. It is given by

Debye replaced  by a mean velocity of wave propagation in the solid, considered one longitudinal and two transverse waves and
only the  states with the lowest frequencies, as the solid has only  vibrational degrees of freedom. These considerations lead
to a maximum phonon frequency  and, after resubstitution of the mean velocity, to a frequency spectrum that is still
proportional to  and scales with . Instead of the characteristic vibration temperature, it is now convenient to define the
Debye temperature

In this model the molar heat capacity of the solid becomes

lim
T→∞

Cvib = 3Rlim
T→∞

( /T )Θvib
2e /TΘvib

( −1)e /TΘvib
2

= 3R lim
T→∞

2 ( /T )(− / )Θvib Θvib T 2

2 (1− ) ( ) (− / )e− /TΘvib e /TΘvib Θvib T 2

= 3R lim
T→∞

( /T )Θvib

(1− )e− /TΘvib

= 3R lim
T→∞

(− / )Θvib T 2

− (− / )e− /TΘvib Θvib T 2

= 3R .

(5.3.28)

(5.3.29)

(5.3.30)

(5.3.31)

(5.3.32)

5.3.28 5.3.29 5.3.30 e /TΘvib T →∞

5.3.30 5.3.31 e− /TΘvib 5.3.31

 Note

NAv

Uvib Cvib

R

TkB

T/2kB

−1e /TΘvib e /TΘvib

T →0

= 6R = 0 .lim
T→0

Cvib lim
T→0

1

e /TΘvib
(5.3.33)

ν

D (ν) = V  .
4πν2

c3
(5.3.34)

c

3N 3N

νmax

ν2 ν−3
max

=  .ΘD
hνmax

kB
(5.3.35)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/3.0/
https://chem.libretexts.org/@go/page/285774?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/07%3A_State_Functions_and_The_First_Law/7.14%3A_Heat_Capacities_of_Solids-_the_Law_of_Dulong_and_Petit


5.3.5 https://chem.libretexts.org/@go/page/285774

The integral can be evaluated numerically after series expansion and finally Debye’s  law,

results. This law does not only correctly describe that the heat capacity vanishes at absolute zero, it also correctly reproduces the
scaling law, i.e., the  dependence that is found experimentally. The high-temperature limit can also be obtained by series
expansion and is again Dulong-Petit’s value of .

The Debye model is still an approximation. Phonon spectra of crystalline solids are not featureless. They are approximated, but not
fully reproduced, by a  dependence. The deviations from the Debye model depend on the specific crystal structure.

This page titled 5.3: Simple Quantum Systems is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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6.1: Separation of Contributions

Collective Degrees of Freedom 

In Section [subsection:Einstein_Debye] we have seen that the treatment of condensed phases can be complicated by collective
motion of particles. Such effects are absent in an ideal gas that consists of point particles, a model that is reasonable for noble gases
far from condensation. For gases consisting of molecules, it does not suffice to consider only translational motion as in Maxwell’s
kinetic theory of gases. We see this already when considering H  gas, where each molecule can be approximated by a harmonic
oscillator (Section [section:harmonic_oscillator]). Neglect of the vibrational degrees of freedom will lead to wrong results for
internal energy, heat capacity, the partition function, and entropy, at least at high temperatures. In fact, an H  molecule is not only
an oscillator, it is also a rotor. As a linear molecule it has two rotational degrees of freedom, which also contribute to internal
energy and to the partition function.

In principle, we could try to ignore all this and treat each atom as one particle. If the Hamiltonian includes the potentials that
characterize interaction between the particles, our equations of motion would be correct. In practice, such a treatment is
inconvenient and it is better to group the spatial degrees of freedom according to the type of motion. The H  molecule has 3
translational degrees of freedom, 2 rotational degrees of freedom, and 1 vibrational degree of freedom in the collective motion
picture. The sum is 6, as expected for two atoms with each of them having 3 translational degrees of freedom in an ’independent’
motion picture. In general, a molecule with  atoms has  spatial degrees of freedom, 3 of which are translational, 3 are
rotational, except for linear molecules, which have only 2 rotation degrees of freedom, and the rest are vibrational. We note that the
number of degrees of freedom in phase space is  because each spatial degree of freedom is also assigned a momentum
degree of freedom.

These considerations take care of particle motion. Further contributions to internal energy and to the partition function can arise
from spin. In both closed-shell and open-shell molecules, nuclear spin can play a role. This is indeed the case for H , which can
exist in ortho and para states that differ in correlation of the nuclear spins of the two hydrogen atoms. For open-shell molecules
electron spin degrees of freedom must be considered. This is the case, for instance, for O , which has a triplet ground state. In this
case, rotational and spin degrees of freedom correspond to similar energies and couple. Finally, at sufficiently high temperatures
electronic excitation becomes possible and then also makes a contribution to the partition function.

Factorization of Energy Modes 
In many cases, the individual contributions are separable, i.e. the modes corresponding to different types of motions can be treated
independently. Roughly speaking, this results from a separation of energy ranges (frequency bands) of the modes and a
corresponding separation of time scales. Nuclear spin degrees of freedom have much lower energy than rotational degrees of
freedom which usually have much lower energy than vibrational degrees of freedom which have much lower energies than
electronic excitation. The independence of nuclear and electron motion is basis of the Born-Oppenheimer approximation and the
independence of rotational and vibrational motion is invoked when treating a molecule as a rigid rotor. Separability of energy
modes leads to a sum rule for the energy contributions for a single closed-shell molecule ,

where , , , , and  are the translational, nuclear spin, rotational, vibrational, and electronic contributions,
respectively. For a monoatomic molecule (atom)  and  vanish. If both the number of neutrons and of protons in the
nucleus is even, the nucleus has spin . In that case the nuclear spin contribution vanishes for an atom, even in the presence of
an external magnetic field. If all nuclei have spin zero, the nuclear spin contribution also vanishes for a diatomic or multi-atomic
molecule.

If we assume the equipartition theorem to hold, or even more generally, the whole system to attain thermal equilibrium, there must
be some coupling between the different modes. If we say that the energy modes are separable, we assume weak coupling, which
means that for statistical purposes we can assume the modes to be independent of each other. The consequence for the computation
of the partition function can be seen by considering a system of  particles with an  mode associated with quantum number 
and an  mode associated with quantum number . The total energy of a single molecule of this type is  The
molecular partition function is given by
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This sum can be rewritten as

We see that the total partition function is the product of the partition functions corresponding to the individual modes. This
consideration can be extended to multiple modes. With Equation  it follows that

By considering Equation  or Equation  we see that we can also compute the partition function for a given mode for all 
particles before multiplying the modes. We have already seen that we must set  to heal the Gibbs paradox. What
about the other, internal degrees of freedom? If two particles with different internal states are exchanged, they must be considered
distinguishable, exactly because their internal state ’tags’ them. Hence, for all the other modes we have . Thus,

Accordingly, we can consider each of the partition functions in turn. We also note that separability of the energies implies
factorization of the molecular wavefunction,

This page titled 6.1: Separation of Contributions is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
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6.2: Translational Partition Function
First, we derive the density of states that we had already used in computing the distribution functions for quantum gases. We
consider a quantum particle in a three-dimensional cubic box with edge length . The energy is quantized with integer quantum
numbers , , and  corresponding to the three pairwise orthogonal directions that span the cube,

It follows that momentum is also quantized with  ( ). It is convenient to consider momentum in a
Cartesian frame where  is the unit along the , , and  axes. Each state characterized by a unique set of translational
quantum numbers  ’owns’ a small cube with volume  in the octant with , , and . Since
momentum can also be negative, we need to consider all eight octants, so that each state owns a cell in momentum space with
volume . In order to go to phase space, we need to add the spatial coordinates. The particle can move throughout the whole
cube with volume . Hence, each state owns a phase space volume of .

By rearranging Equation  we can obtain an equation that must be fulfilled by the quantum numbers,

and by using Equation  we can convert it to an equation that must be fulfilled by the components of the momentum vector,

All states with quantum numbers that make the expression on the left-hand side of Equation  or Equation  smaller than 1
correspond to energies that are smaller than . The momentum associated with these states lies in the sphere defined by Equation 

) with radius  and volume . With cell size  in momentum space the number of cells with energies
smaller than  is

where we have substituted  by volume  of the box. The number of states in an energy interval between  and  is the first
derivative of  with respect to  and is the sought density of states,

Partition Function and Accessible States 

This density of states is very high, so that we can replace the sum over the quantum numbers  in the partition function of the
canonical ensemble by an integral ,

The contributions along orthogonal spatial coordinates are also independent of each other and factorize. Hence,

where we have again substituted  by  and, as by now usual, also  by . The corresponding molar partition function is
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At this point it is useful to introduce another concept:

The molecular canonical partition function  is a measure for the number of states that are accessible to the molecule at a given
temperature. [concept:accessible_states]

This can be easily seen when considering

and . If we consider a mole of  (bosons) at 4.2 K, where it liquifies, we find that , which is not a
large number . This indicates that we are close to breakdown of the regime where Bose-Einstein statistics can be approximated by
Boltzmann statistics.

For  only the  lowest energy states are populated. In the absence of ground-state degeneracy, , we find  and
with an energy scale where  we have  in agreement with Nernst’s theorem.

An expression for the translational contribution to the entropy of an ideal gas can be derived from Equation ), Equation ),
and Equation ). We know that , so that we only need to compute ,

where we have used Stirling’s formula to resolve the factorial. Thus we find

By using Equation ) we finally obtain the Sackur-Tetrode equation

To obtain the molar entropy ,  has to be replaced by . Volume can be substituted by pressure and temperature, by noting
that the molar volume is given by . With  and the molar mass  we obtain

This page titled 6.2: Translational Partition Function is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by
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6.3: Nuclear Spin Partition Function

High-Temperature Limit 

In the absence of a magnetic field, all nuclear spin states are degenerate,  except for the very tiny splittings that arise from 
couplings between the nuclear spins themselves. Even if we consider the largest magnetic fields available, it is safe to assume that
all nuclear spin states are equally populated down to temperatures of at least 1.5 K and that the contribution of nuclear spins to the
total energy is negligibly small. Of course, NMR spectroscopy relies on the fact that these states are not exactly equally populated,
but in the context of statistical thermodynamics, the contribution to internal energy and the population differences are negligible.

Hence, in this high-temperature limit all nuclear spin states are fully accessible and the number of accessible states equals the total
number of nuclear spin states. This gives

where the  are the nuclear spin quantum numbers for nuclei in the molecule. Magnetic equivalence leads to degeneracy of nuclear
spin levels, but does not influence the total number of nuclear spin states. Since the term  in Equation ) is negligible and 

, we have

This contribution to entropy is not generally negligible. Still it is generally ignored in textbooks, which usually does not cause
problems, as the contribution is constant under most conditions where experiments are conducted and does not change during
chemical reactions.

Symmetry Requirements 

Nuclear spin states have another, more subtle effect that may prevent separation of state spaces. We consider this effect for H . In
this molecule, the electron wavefunction arises from two electrons, which are fermions, and must thus be antisymmetric with
respect to exchange of the two electrons. In quantum-chemical computations this is ensured by using a Slater determinant.
Likewise, the nuclear wavefunction must be antisymmetric with respect to exchange of the two protons, which are also fermions.
The spin part is antisymmetric for the singlet state with total nuclear spin quantum number ,

and symmetric for the triplet state with , as can be seen by the wavefunctions of each of the three triplet substates:

The translational, vibrational, and electron wavefunction are generally symmetric with respect to the exchange of the two nuclei.
The rotational wavefunction is symmetric for even rotational quantum numbers  and antisymmetric for odd quantum numbers.
Hence, to ensure that the generalized Pauli principle holds and the total wavefunction is antisymmetric with respect to exchange of
indistinguishable nuclei, even  can only be combined with the antisymmetric nuclear spin singlet state and odd  only with the
symmetric triplet state. The partition functions for these two cases must be considered separately. For H  we have

where  is the degeneracy of the rotational states and  is the moment of inertia, and

where  is the degeneracy of the nuclear spin states.
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For H  the  state is called para-hydrogen and the  state ortho-hydrogen. At ambient temperature,
both the  state and the  state are, approximately, fully populated and thus, the four nuclear spin
substates described by Eqs. ([eq:singlet]-[eq:triplet_m]) are equally populated. Statistics then dictates a para-hydrogen to ortho-
hydrogen ratio of 1:3 and no macroscopic spin polarization in a magnetic field. The splitting between the two states is

where we have introduced a characteristic rotational temperature analogous to the characteristic vibrational temperature for the
harmonic oscillator in Equation ). At temperatures well below this energy splitting, para-hydrogen is strongly enriched with
respect to ortho-hydrogen. Equilibration in a reasonable time requires a catalyst. Still, no macroscopic spin polarization in a
magnetic field is observed, as the two nuclear spins are magnetically equivalent and align antiparallel. If, however, para-hydrogen
is reacted with a molecule featuring a multiple bond, magnetic equivalence of the two hydrogen atoms can be removed and in that
case enhanced nuclear spin polarization is observable (para-hydrogen induced polarization, PHIP ). We note that for  the
combination of nuclear spin states and rotational states to an allowed state reverses, as deuterons are bosons.

This page titled 6.3: Nuclear Spin Partition Function is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by
Gunnar Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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6.4: Rotational Partition Function

Rigid Rotor Assumption and Rotamers 

Separation of the rotational partition function from the partition functions of other degrees of freedom does not only require
consideration of nuclear spin states, but also the assumption that the moment of inertia is the same for all rotational states. This is
generally true if the molecule behaves as a rigid rotor. For small molecules consisting of only a few atoms, this is often a good
approximation. Larger molecules feature internal rotations, where a group of atoms rotates with respect to the rest of the molecule.
In general, internal rotations are torsions about rotatable bonds, which are often not freely rotatable. The torsion potential has
several minima and these minima are separated by energy barriers with heights that are larger, but not much larger than . If we
denote the number of potential minima for the  rotatable bond with , the total number of rotameric states, short rotamers is

Each rotamer has it’s own moment of inertia and, hence, its own set of states with respect to total rotation of the molecule. Because
the energy scales of internal and total rotations are not well separated and because in larger molecules some vibrational modes may
also have energies in this range, the partition function is not usually separable for large molecules. In such cases, insight into
statistical thermodynamics can be best obtained by MD simulations. In the following, we consider small molecules that can be
assumed to behave as a rigid rotor. We first consider diatomic molecules, where it certainly applies on the level of precision that we
seek here.

The energy levels of a rigid rotor of a diatomic molecule are quantized by the rotational quantum number  and given by

where

is the moment of inertia with the reduced mass  and

is the rotational constant. After introducing the characteristic rotational temperature,

we have

As already mentioned, each rotational level has a degeneracy . If all nuclei in the molecules are distinguishable
(magnetically not equivalent), there is no correlation with nuclear spin states. In that case we have

For sufficiently high temperatures and a sufficiently large moment of inertia, the density of states is sufficiently large for replacing
the sum by an integral,

Deviations between the partition functions computed by Equation ) and Equation ) are visualized in Figure . As
state functions depend on , the continuum approximation is good for , which applies to all gases, except at low
temperatures for those that contain hydrogen. At ambient temperature it can be used in general, except for a further correction that
we need to make because of symmetry considerations.
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Accessible States and Symmetry 

Even if all nuclei are magnetically inequivalent and, hence, distinguishable, rotational states may be not. For heteronuclear
diatomic molecules they are, but for homonuclear diatomic molecules, they are not. To see this, we consider a symmetrical linear
molecule that rotates by 180  about an axis perpendicular to the bond axis and centered in the middle of the bond. This rotation
produces a configuration that is indistinguishable from the original configuration. In other words, the nuclear wavefunction is
symmetric with respect to this rotation. For a homonuclear diatomic molecule, half of the rotational states are symmetric and half
are antisymmetric. For nuclei that are bosons, such as  in dioxygen, only the former states are allowed, for nuclei that are
fermions, only the latter are allowed. Hence, we need to divide the partition function, which counts accessible states, by two. In this
example, we have deliberately chosen a case with only one nuclear spin state. If nuclear spin states with different symmetry exist,
all rotational states are accessible, but correlated to the nuclear spin states, as we have seen before for dihydrogen. In the following
we consider the situation with only one nuclear spin state or for a fixed nuclear spin state.

Figure : Continuum approximation for the rotational partition function. (A) Rotational partition function obtained by the sum
expression (Equation ) (black line) and by the integral expression (Equation ) corresponding to the continuum
approximation (red line). (B) Logarithm of the ratio between the rotational partition functions obtained by the continuum
approximation (Equation ) and the exact sum formula (Equation ).

Table : Symmetry numbers  corresponding to symmetry point groups . [table:sigma]

Group Group Group Group

, , , 
1 2 , 12 24

, , 
, , 

60

Although we still did not discuss other complications for multi-atomic molecules, we generalize this concept of symmetry-
accessible states by introducing a symmetry number . In general,  is the number of distinct orientations of a rigid molecule that
are distinguished only by interchange of identical atoms. For an NH  molecule, rotation about the  axis by 120  generates one
such orientation from the other. No other rotation axis exists. Hence,  for NH . In general, the symmetry number can be
obtained from the molecule’s point group , as shown in Table .

With the symmetry number, the continuum approximation (Equation  becomes

where we still assume that symmetry is sufficiently high for assigning a single characteristic temperature.

We further find
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and with this

On going from Equation  to  we could drop the second term on the right-hand side of Equation , as this term
does not depend on temperature. This is a general principle: Constant factors in the partition function do not contribute to internal
energy. The result can be generalized to multi-atomic linear molecules that also have two rotational degrees of freedom. This result
is expected from the equipartition theorem, as each degree of freedom should contribute a term  to the molecular or a term 

 to the molar internal energy. However, if we refrain from the continuum approximation in Equation ) and numerically
evaluate Equation ) instead, we find a lower contribution for temperatures lower than or comparable to . This is also a
general principle: Contributions of modes to internal energy and, by inference, to heat capacity, are fully realized only at
temperatures much higher than their characteristic temperature and are negligible at temperatures much lower than their
characteristic temperature.

For the rotation contribution to molar heat capacity at constant volume of a linear molecule we obtain

A non-linear multi-atomic molecule has, in general, three independent rotational moments of inertia corresponding to three
pairwise orthogonal directions . With

one finds for the partition function

For spherical-top molecules, all three moments of inertia are equal, , and hence all three characteristic temperatures
are equal. For symmetric-top molecules, .

The general equations for  and  at sufficiently high temperature  are

where  for a free internal rotation (e.g., about a C C bond),  for linear, and  for non-linear molecules. We note
that the contribution of a free internal rotation needs to be added to the contribution from total rotation of the molecule.

The expressions for the rotational contributions to molar entropy are a bit lengthy and do not provide additional physical insight.
They can be easily derived from the appropriate expressions for the rotational partition function and internal energy using Equation

). We note, however, that the contribution from the  term in the entropy expression is  and the contribution from 
is positive. Hence, at temperatures where the continuum approximation is valid, the rotational contribution to entropy is larger than 

.
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6.5: Vibrational Partition Function

The Harmonic Oscillator Extended 

Vibration in a diatomic molecule can be described by the 1D harmonic oscillator that we have considered in Section
[section:harmonic_oscillator]. In a multi-atomic molecule the  (linear) or  (non-linear) normal modes can be treated
independently,

Normal mode energies are no longer independent and the partition function is no longer factorisable if anharmonicity of the
vibration needs to be included, which is the case only at very high temperatures. We ignore this and ask about the limiting behavior
of  for a diatomic molecule or  for an individual normal mode at high temperatures. In the denominator of Equation 
we can make the approximation , if . We obtain

Vibrational temperatures for most normal modes are much higher than ambient temperature. Hence, at 298 K we have often 
. Appreciable deviations are observed for vibrations that involve heavy atoms, for instance  at  K

for .

Vibrational Contributions to U, C , and S 
The vibrational partition function for a system consisting of  diatomic molecules is

With  we obtain the vibrational contribution to the molar internal energy

For multi-atomic molecules the contributions from the individual normal modes with characteristic vibrational temperatures 
must be summed. Equation ) neglects the zero-point energy, as we had defined the partition function for an energy scaled by
the zero-point energy. On an absolute energy scale, where  corresponds to the minimum of the Born-Oppenheimer potential
energy hypersurface, an additional term  needs to be added for each normal mode, with  being the frequency of
the normal mode.

The vibrational contribution to molar heat capacity at constant volume is

which is called the Einstein equation. With the Einstein function,

it can be written as

3n −5 3n −6

= = .Zvib ∏
i=1

3n−5∨3n−6

Zvib,i ∏
i=1
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For computing the vibrational contribution to molar entropy we revert to the shifted energy scale. This is required, as inclusion of
the zero-point contribution to  would leave us with an infinity. We find

Again contributions from individual normal modes add up. For , which is the usual case, both terms in the brackets
are much smaller than unity, so that the contribution of any individual normal mode to entropy is much smaller than . Hence, at
ambient temperature the vibrational contribution to entropy is negligible compared to the rotational contribution unless the
molecule contains heavy nuclei.
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6.6: Electronic Partition Function
Atoms and molecules can also store energy by populating excited electronic states. For the hydrogen atom or any system that
contains only a single electron, the energy levels can be given in closed form, based on the Bohr model,

where  is the principal quantum number,  the nuclear charge, and  the Rydberg constant. However, this is an
exception. For molecules and all other neutral atoms closed expressions for the energy levels cannot be found.

In most cases, the problem can be reduced to considering either only the electronic ground state with energy  or to considering
only excitation to the first excited state with energy . If we use an energy shift to redefine , we can define a
characteristic electronic temperature

Characteristic electronic temperatures are usually of the order of several thousand Kelvin. Hence, in most cases,  applies,
only the electronic ground state is accessible, and thus

where  is the degeneracy of the electronic ground state. We note that spatial degeneracy of the electronic ground state cannot
exist in non-linear molecules, according to the Jahn-Teller theorem. However, a spatially non-degenerate ground state can still be
spin-degenerate.

In molecules, total orbital angular momentum is usually quenched ( ,  ground state). In that case

where  is the electron spin quantum number. For the singlet ground state of a closed-shell molecule ( ) we have ,
which means that the electronic contribution to the partition function is negligible. The contribution to internal energy and heat
capacity is generally negligible for . The electronic contribution to molar entropy,

is not negligible for open-shell molecules or atoms with . At high magnetic fields and low temperatures, e.g. at  K
and  T, where the high-temperature approximation for electron spin states does no longer apply, the electronic partition
function and corresponding energy contribution are smaller than given in Equation ). For a doublet ground state ( )
the problem can be solved with the treatment that we have given in Section [subsection_doublet]. For  the spin substates
of the electronic ground state are not strictly degenerate even at zero magnetic field, but split by the zero-field splitting, which may
exceed thermal energy in some cases. In that case Equation ) does not apply and the electronic contribution to the partition
function depends on temperature. Accordingly, there is a contribution to internal energy and to heat capacity.

For a  species with term symbol , each  component is doubly degenerate. For instance, for NO with a  ground
state ( ), both the  and the  state are doubly degenerate. As the  state is only 125 cm  above the ground
state, the characteristic temperature for electronic excitation is  K. In this situation, Equation ) does not apply at
ambient temperature. The energy gap to the next excited state, on the other hand, is very large. Thus, we have

This equation is fairly general, higher excited states rarely need to be considered. The electronic contribution to the heat capacity of
NO derived from Equation ) is in good agreement with experimental data from Eucken and d’Or .
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6.7: Equilibrium Constant for Gas Reactions
For clarity, we use an example reaction

with adaptation to other reactions being straightforward. At equilibrium we must have

hence

where the  are molar chemical potentials. To solve this problem, we do not need to explicitly work with the grand canonical
ensemble, as we can compute the  from the results that we have already obtained for the canonical ensemble. According to one
of Gibbs’ fundamental equations, which we derived in the lecture course on phenomenological thermodynamics, we have

Comparison of coefficients with the total differential of  reveals that

a result that we had also obtained in the lecture course on phenomenological thermodynamics. Using Equation ), Equation 
), and Stirling’s formula, we obtain for the contribution  of an individual chemical species to Helmholtz free energy

where  is the amount of substance (mol). Equation ) then gives

Equation ) expresses the dependence of the chemical potential, a molar property, on the molecular partition function. It may
appear odd that this property depends on the absolute number of molecules , but exactly this introduces the contribution of
mixing entropy that counterbalances the differences in standard chemical potentials . Because of our habit of shifting energies
by  and by the zero-point vibration energies, we cannot directly apply Equation ). We can avoid explicit dependence on
the  and the zero-point vibrational energies by relying on Hess’ law and referencing energies of all molecules to the state
where they are fully dissociated into atoms. The energies  for the dissociated states can be defined at 0 K. We find

where index  runs over the states of molecule .
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With this correction we have

For our example reaction, the equilibrium condition is

which gives

and can be rearranged to

and further rearranged to

In Equation ) we can make the identifications

where  is a volume-dependent equilibrium constant expressed with particle numbers, and, since dissociation energies
are negative energies of formation,

where  is the molar reaction energy at 0 K. Hence, we have

The dependence on volume arises from the dependence of the canonical partition functions on volume.

By dividing all particle numbers by  and volume , we obtain the equilibrium constant  in molar concentrations

By dividing them by the total particle number  to the power of  we obtain

which coincides with the thermodynamical equilibrium constant  at the standard pressure . The most useful equilibrium
constant for gas-phase reactions is obtained by inserting  into Equation ) :
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For each molecular species, the molecular partition function is a product of the contributions from individual modes, Equation 
), that we have discussed above. In the expression for equilibrium constants, the nuclear-spin contribution cancels out since the

number of nuclei and their spins are the same on both sides of the reaction equation. Symmetry requirements on the nuclear
wavefunction are considered in the symmetry numbers  for the rotational partition function. The electronic contribution often
reduces to the degeneracy of the electronic ground state and in the vibrational contribution, normal modes with  can be
neglected.
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7.1: Thermodynamics of Mixing
The formalism introduced in Chapter is suitable for small molecules in the gas phase, but does not easily extend to condensed
phases or to larger molecules with several rotameric states, let alone to macromolecules, such as synthetic polymers, proteins,
nucleic acids, and carbohydrates. Nevertheless, statistical thermodynamics is an important theory for understanding such systems.
In this Chapter we introduce some of the concepts of statistical thermodynamics that do not depend on explicit computation of the
partition function. We start with the entropy of mixing and, for simplicity, restrain the discussion to binary mixtures.

Entropy of Binary Mixing 
We consider mixing of two species A with volume  and B with volume  and neglect volume change, so that the total volume
is . The volume fractions of the two components in the mixture are thus given by

To consider the statistics of the problem we use a lattice model.

A lattice model is a discrete representation of a system as opposed to a continuum representation. A three-dimensional lattice
model is a regular arrangement of sites in Cartesian space, such as a crystal lattice is a regular arrangement of atoms in
Cartesian space. The state of the model is defined by the distribution of units of matter, for instance molecules or the repeat
units of a polymer (short: monomers), on the lattice sites. In statistical thermodynamics, one particular arrangement of the units
on the lattice is a microstate. Energy of the microstate depends on interactions of units between lattice sites, in the simplest
case only between direct neighbor sites. By considering the statistical distribution of microstates, thermodynamic state
functions of the macrostate of the system can be obtained.

In our example we assign the lattice site a volume , which cannot be larger than the volume required for one molecule of the
smaller component in the mixture. The other component may then also occupy a single site (similarly sized components) or several
lattice sites. A macromolecule with a large degree of polymerization consists of a large number of monomers and will thus occupy
a large number of lattice sites. The molecular volumes of the species are

where  and  are the number of sites occupied by one molecule of species A and B, respectively. We consider the three simple
cases listed in Table . Regular solutions are mixtures of two low molecular weight species with . Polymer
solutions are mixtures of one type of macromolecules ( ) with a solvent, whose molecular volume defines the lattice
site volume  ( ). Polymer blends correspond to the general case . They are mixtures of two different
species of macromolecules, so that .

Table : Number of lattice sites occupied per molecule in different types of mixtures.

Regular solutions 1 1

Polymer solutions 1

Polymer blends

The mixture occupies
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lattice sites, whereas component A occupies  of these sites. We consider a microcanonical ensemble and can thus
express entropy as

where  is the number of ways in which the molecules can be arranged on the lattice (number of microstates). In a homogeneous
mixture, a molecule or monomer of component A can occupy any of the  lattice sites. Before mixing, it can occupy only one of
the lattice sites in volume . Hence, the entropy change for one molecule of species A is

The total mixing entropy for both species is

We note the analogy with the expression that we had obtained in phenomenological thermodynamics for an ideal mixture of ideal
gases, were we had used the molar fraction  instead of the volume fraction . For ideal gases,  and thus .
Equation ) generalizes the result to any ideal mixture in condensed phase. The mixture is ideal because we did not yet
consider energy of mixing and thus could get away with using a microcanonical ensemble.

For discussion it is useful to convert the extensive quantity  to the intensive entropy of mixing per lattice site,

where we have used the number of molecules per species  and normalized by the total number  of lattice sites.

For a regular solution with  we obtain the largest entropy of mixing at given volume fractions of the components,

For a polymer solution with  and  we have

where the approximation by Equation ) holds for , i.e. for solving a polymer and even for any appreciable
swelling of a high-molecular weight polymer by a solvent. For polymer blends, Equation ) holds with .
Compared to formation of a regular solution or a polymer solution, mixing entropy for a polymer blend is negligibly small, which
qualitatively explains the difficulty of producing such polymer blends. Nevertheless, the entropy of mixing is always positive, and
thus the Helmholtz free energy  always negative, so that an ideal mixture of two polymers should form
spontaneously. To see what happens in real mixtures, we have to consider the energetics of mixing.

Before doing so, we note the limitations of the simple lattice model. We have neglected conformational entropy of the polymer,
which will be discussed in Section [subsection:conf_entropy]. This amounts to the assumption that conformational entropy does
not change on mixing. For blends of polymers, this is a very good assumption, whereas in polymers solutions there is often an
excluded volume that reduces conformational space. We have also neglected the small volume change that occurs on mixing, most
notably for regular solutions. For polymer solutions and blends this volume change is very small.

Energy of Binary Mixing 

To discuss the internal energy contribution to the free energy of mixing, we continue using the simplified lattice model. In
particular, we consider mixing at constant volume and we assume that attractive or repulsive interactions between lattice sites are
sufficiently small to not perturb random distributions of solvent molecules and monomers on lattice sites. We also ignore that the
polymer chain is connected, as this would exclude random distribution of the monomers to the lattice sites. Regular solution theory,
as we consider it here, is a mean-field approach where the interaction at a given lattice site is approximated by a mean interaction
with the other lattice sites. This neglects correlations. Although the model may appear crude (as many models in polymer physics),

/ = nVA v0 ϕA

s = lnΩ ,kB (7.1.6)
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it provides substantial insight and an expression that fits experimental data surprisingly well (as is the case for many crude models
in polymer physics).

We start by defining three pairwise interaction energies , , and  between adjacent sites of the lattice. For random
distribution, the probability that a molecule or monomer A has a neighbor A is  and the probability that it has a neighbor B is 

. We neglect boundary effects, as the ratio between the number of surface sites and inner sites is very small for a
macroscopic system. The mean-field interaction energy per lattice site occupied by an A unit is thus

and the corresponding expression for a lattice site occupied by a B unit is

To continue, we need to specify the lattice, as the number of sites  adjacent to the site under consideration depends on that. For a
cubic lattice we would have . We keep  as a parameter in the hope that we can eliminate it again at a later stage. If we
compute a weighted sum of the expressions (Equation ) and (Equation ) we double count each pairwise interaction, as
we will encounter it twice. Hence, total interaction energy of the mixture is

where we have used the probability  of encountering a site occupied by a unit A and  of encountering a site occupied
by a unit B. By inserting Eqs.  and  into Equation ) and abbreviating , we obtain

Before mixing the interaction energy per site in pure A is  and in B . Hence, the total interaction energy before
mixing is

so that we obtain for the energy change  on mixing

We again normalize by the number  of lattice sites to arrive at the energy change per site on mixing:

For discussion we need an expression that characterizes the mixing energy per lattice site as a function of composition  and that
can be easily combined with the mixing entropy to free energy. The Flory interaction parameter,

elegantly eliminates the number of adjacent lattice sites and provides just such an expression:

Introducing such a parameter is an often-used trick when working with crude models. If the parameter is determined
experimentally, the expression may fit data quite well, because part of the deviations of reality from the model can be absorbed by
the parameter and its dependence on state variables. We finally obtain the Flory-Huggins equation for the Helmholtz free energy
of mixing, ,

uAA uAB uBB
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1 −ϕA
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As the entropy contribution (first two terms in the brackets on the right-hand side of Equation ) to  is always
negative, entropy always favors mixing. The sign of  depends on the sign of the Flory parameter  and the ratio between the
energy and entropy. The Flory parameter is negative and thus favors mixing, if , i.e., if the interaction in AB
pairs is more attractive than the mean interaction in AA and and BB pairs. Such cases occur, but are rare. In most cases, the Flory
parameter is positive. Since the entropy terms are very small for polymer blends, such blends tend to phase separate. In fact, high
molecular weight poly(styrene) with natural isotope abundance phase separates from deuterated poly(styrene).

This page titled 7.1: Thermodynamics of Mixing is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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7.2: Entropic Elasticity

Ideal Chain Model 

Most polymer chains have rotatable bonds as well as bond angles along the polymer backbone that differ from 180 . This leads to
flexibility of the chain. Even if the rotations are not free, but give rise to only  rotameric states per rotatable bond, the number
of possible chain conformations becomes vast. For  rotatable bonds, the number of distinct conformations is . The
simplest useful model for such a flexible chain is the freely jointed chain model. Here we assume bond vectors that all have the
same length , where  is the bond vector of the  bond. If we further assume an angle  between consecutive bond
vectors, we can write the scalar product of consecutive bond vectors as

This scalar product is of interest, as we can use it to compute the mean-square end-to-end distance  of an ensemble of chains,
which is the simplest parameter that characterizes the spatial dimension of the chain. With the end-to-end distance vector of a chain
with  bonds,

we have

By using Equation ) we find

In the freely jointed chain model we further assume that there are no correlations between the directions of different bond vectors, 
 for . Then, the double sum in Equation ) has only  non-zero terms for  with . Hence,

This again appears to be a crude model, but we shall now rescue it by redefining . In an ideal polymer chain we can at least assume
that there is no interaction between monomers that are separated by many other monomers,

Furthermore, for a given bond vector  the sum over all correlations with other bond vectors converges to some finite number that
depends on ,

Therefore, when including the correlations, Equation ) can still be simplified to

where Flory’s characteristic ratio  is the average value of  over all backbone bonds of the chain.
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In general,  depends on , but for very long chains it converges to a value . For sufficiently long chains, we can thus
approximate

which has the same dependence on  and  as the crude model of the freely jointed chain, Equation ). Hence, we can define an
equivalent freely jointed chain with  Kuhn segments of length . From

and the length of the maximally stretched equivalent chain, the contour length ,

we obtain

and the Kuhn length

Typical values of  for synthetic polymers range from 4.6 for 1,4-poly(isoprene) to 9.5 for atactic poly(styrene) with
corresponding Kuhn lengths of 8.2 Å to 18 Å, respectively.

At this point we have found the mean-square end-to-end distance as a parameter of an equilibrium macrostate. If we stretch the
chain to a longer end-to-end distance, it is no longer at equilibrium and must have larger free energy. Part of this increase in free
energy must come from a decrease in entropy that stretching induces by reducing the number of accessible chain conformations. It
turns out that this entropic contribution is the major part of the increase in free energy, typically 90%. The tendency of polymer
chains to contract after they have been stretched is thus mainly an entropic effect. To quantify it, we need a probability distribution
for the end-to-end vectors and to that end, we introduce a concept that is widely used in natural sciences.

Random Walk 

The freely jointed chain model explicitly assumes that the direction of the next Kuhn segment is uncorrelated to the directions of all
previous Kuhn segments. Where the chain end will be located after the next step that prolongs the chain by one segment depends
only on the location of the current chain end. The freely jointed chain thus has aspects of a Markov chain. Each prolongation step is
a random event and the trajectory of the chain in space a random walk.

Many processes can be discretized into individual steps. What happens in the next step may depend on only the current state or also
on what happened in earlier steps. If it depends only on the current state, the process is memoryless and fits the definition of a
Markov chain. A Markov chain where the events are analogous steps in some parameter space can be modeled as a random walk. A
random walk is a mathematically formalized succession of random steps. A random walk on a lattice, where each step can only
lead from a lattice point to a directly neighboring lattice point is a particularly simple model. [concept:random_walk]

We can use the concept of a random walk in combination with the concepts of statistical thermodynamics in order to solve the
problem of polymer chain stretching and contraction. The problem is solved if we know the dependence of Helmholtz free energy
on the length of the end-to-end vector. This, in turn, requires that we know the entropy and thus the probability distribution of the
length of the end-to-end vector. This probability distribution is given by the number of possible random walks (trajectories) that

lead to a particular end-to-end distance .

For simplicity we start with a simpler example in one dimension that we can later extend to three dimensions. We consider the
standard example in this field, a drunkard who has just left a pub. We assume that, starting at the pub door, he makes random steps
forth and back along the road. What is the probability  that after  steps he is at a distance of  steps up the road from the
pub door? The problem is equivalent to finding the number  of trajectories of length  that end up  steps from the pub
door and dividing it by the total number of trajectories.

Any such trajectory consists of  steps up the road and  steps down the road, with the final position being .
The number of such trajectories is, again, given by a binomial distribution (see Section [binomial_distribution])
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whereas the total number of trajectories is , as the drunkard has two possibilities at each step. Hence,

leading to

The last two terms on the right-hand side can be rewritten as

which leads to

We now assume a long trajectory. In the range where , which is realized in an overwhelming fraction of all trajectories, the
numerator and denominator logarithms in the last term on the right-hand side of Equation ) can be approximated by series
expansion,  for , which gives

Hence,

Inserting Equation  into Equation ) provides,

where we recognize, in the last factor on the right-hand side, the approximation of the binomial distribution by a Gaussian
distribution that we discussed in Section [binomial_distribution]. Using the improved formula of Stirling, Equation ), for
expressing the factorials, we have
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which leads to the exceedingly simple result:

The drunkard, if given enough time and not falling into sleep, perfectly simulates a Gaussian distribution.

We may even further simplify this result by asking about the mean square displacement , which is given by

Before we go on, we need to fix a problem that occurs when we interpret the discrete probabilities computed at this point as a
continuous probability density distribution of . In the discrete case,  can be non-zero only for either even or odd ,
depending on whether  is even or odd. Thus, to arrive at the proper probability distribution we need to divide by 2. Hence, we
can express the probability density distribution for a one-dimensional random walk as

This result does no longer depend on step size, not even implicitly, because we have removed the dependence on step number .
Therefore, it can be generalized to three dimensions. Since the random walks along the three pairwise orthogonal directions in
Cartesian space are independent of each other, we have

At this point we relate the result to the conformational ensemble of an ideal polymer chain, using the Kuhn model discussed in

Section [subsection:ideal_chain]. We pose the question of the distribution of mean-square end-to-end distances  with the

Cartesian components of the end-to-end vector  being , , and . According to Equation ), we have

For symmetry reasons we have,

leading to

and analogous expressions for  and . We have reintroduced parameter , which is now the number of Kuhn
segments. Yet, by discussing a continuous probability density distribution, we have removed dependence on a lattice model. This is
necessary since the steps along dimensions , , and  differ for each Kuhn segment. By using Equation ), we find

The probability density attains a maximum at zero end-to-end vector.
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Figure : End-to-end distance distribution of an ideal chain. (A) Probability density distribution  of normalized en-
to-end distances . (B) Cumulative probability distribution indicating the probability to find a chain with end-to-end-
distance smaller than . Slightly more than 60% of all chains (red dashed horizontal line) have a normalized end-to-end
distance .

Finally, we can pose the following question: If we let all chains of the ensemble start at the same point, how are the chain ends
distributed in space? This is best pictured in a spherical coordinate system. Symmetry dictates that the distribution is uniform with
respect to polar angles  and . The polar coordinate  is equivalent to the end-to-end distance of the chain. To find the probability
distribution for this end-to-end distance we need to include area  of the spherical shells. Hence,

Because of this scaling with the volume of an infinitesimally thin spherical shell, the probability density distribution (Figure 
) for the end-to-end distance does not peak at zero distance. As seen in Figure  it is very unlikely to encounter a chain

with . Since the contour length is , we can conclude that at equilibrium almost all chains have end-to-end
distances shorter than .

We need to discuss validity of the result, because in approximating the discrete binomial distribution by a continuous Gaussian
probability distribution we had made the assumption . Within the ideal chain model, this assumption corresponds to an end-
to-end distance that is much shorter than the contour length . If  approaches , the Gaussian distribution overestimates true
probability density. In fact, the Gaussian distribution predicts a small, but finite probability for the chain to be longer than its
contour length, which is unphysical. The model can be refined to include cases of such strong stretching of the chain . For our
qualitative discussion of entropic elasticity not too far from equilibrium, we can be content with Equation ).

Conformational Entropy and Free Energy 

We may now ask the question of the dependence of free energy on chain extension . With the definition of Boltzmann entropy,
Equation ), and the usual identification  we have

The probability density distribution in Equation ) is related to the statistical weight  by

because  is the fraction of all conformations that have an end-to-end vector in the infinitesimally small interval between  and 
. Hence,
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The last two terms do not depend on  and thus constitute an entropy contribution  that is the same for all end-to-end
distances, but depends on the number of monomers ,

Since by definition the Kuhn segments of an ideal chain do not interact with each other, the internal energy is independent of .
The Helmholtz free energy  can thus be written as

It follows that the free energy of an individual chain attains a minimum at zero end-to-end vector, in agreement with our conclusion
in Section [subsection:random_walk] that the probability density is maximal for a zero end-to-end vector. At longer end-to-end
vectors, chain entropy decreases quadratically with vector length. Hence, the chain can be considered as an entropic spring.
Elongation of the spring corresponds to separating the chain ends by a distance . The force required for this elongation is
the derivative of Helmholtz free energy with respect to distance. For one dimension, we obtain

For the three-dimensional case, the force is a vector that is linear in ,

i.e., the entropic spring satisfies Hooke’s law. The entropic spring constant is .

Polymers are thus the easier to stretch the larger their degree of polymerization (proportional to ), the longer the Kuhn segment 
and the lower the temperature . In particular, the temperature dependence is counterintuitive. A polymer chain under strain will
contract if temperature is raised, since the entropic contribution to Helmholtz free energy, which counteracts the strain, then
increases.

This page titled 7.2: Entropic Elasticity is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke
via source content that was edited to the style and standards of the LibreTexts platform.
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Glossary
Debye model | The Debye model is a method
developed by Peter Debye in 1912 for estimating the
phonon contribution to the specific heat (heat capacity)
in a solid. This model correctly explains the low
temperature dependence of the heat capacity, which is
proportional to T  and also recovers the Dulong-Petit
law at high temperatures. However, due to simplifying
assumptions, its accuracy suffers at intermediate
temperatures.

Debye temperature | The Debye temperature -
within the Debye model - is the temperature of a
crystal's highest normal mode of vibration, i.e., the
highest temperature that can be achieved due to a
single normal vibration. The Debye temperatures for
most crystals are around 200–400 K.3
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3. The solution of the second task can be found in .↩

4. Here, each individual spin is considered as a system and the  spins as an ensemble of identical systems↩

5. Thanks to Takuya Segawa for pointing out a mistake in this expression in ↩

6. If the individual random numbers are not identically distributed, the theorem will still apply, if Lyapunov’s condition or
Lindeberg’s condition is fulfilled. See the very useful and detailed Wikipedia article on the Central limit theorem for more
information and proofs.↩

7. This one-liner may cause efficiency problems if computational effort per trial besides random number generation is small.↩

8. It is more tricky to argue that it will only vanish if  is uniform. However, as the individual particles follow random phase space
trajectories, it is hard to imagine that the right-hand side could be stationary zero unless  is uniform.↩

9. Where  is the  value of the free electron and  the Bohr magneton.↩

10. The dependence on  and  arises, because these parameters influence the energy levels↩

11. The condition of a quadratic contribution arises from an assumption that is made when integrating over the corresponding
coordinate.↩

12. Boltzmann was thinking in terms of discrete probability theory. As we want to use continuous probability theory here, we have
made the transition from probability to probability density.↩

13. The theorem relies on uniform distribution in this volume at some point in time, but it applies here, as we have seen before that
such uniform distribution in an energy shell is a feature of the equilibrium state of an isolated system.↩

14. Purists of statistical thermodynamics will shudder, as we now rely on the entropy definition of phenomenological
thermodynamics. We hide the fact that we are incapable of a strict general derivation and just relate the new concepts of
statistical thermodynamics to the concepts of phenomenological thermodynamics. In effect, we show how state functions of
phenomenological thermodynamics must be computed if both Boltzmann’s and Clausius’ entropy definitions apply.↩

15. This thought experiment was suggested to me by Roland Riek.↩

16. One can speculate on philosophical interpretations. Irreversibility could be a consequence of partitioning the universe into an
observer and all the rest, a notion that resonates with intuitions of some mystical thinkers across different religious traditions.
Although the idea is appealing, it cannot be rationally proved. Rational thought already implies that an observer exists.↩

17. This is more a matter of taste than of substance. As long as , we can approximate any type of quantum statistics
by Maxwell-Boltzmann statistics before solving for . We are thus permitted to freely mix Maxwell-Boltzmann statistics with
quantum-mechanical equations of motion.↩

18. The shift does not influence the denominator, as it merely removes the first factor on the right-hand side of Equation ).↩

19. We neglect nuclear quadrupole coupling, which averages in gases.↩

20. The zero-point vibrational energy is an exception from this principle with respect to internal energy, but not heat capacity.↩

21. There is a misprint in ↩

22. This separation of the terms is mathematically somewhat awkward, since in the last two terms the argument of the logarithm
has a unit. However, if the two terms are combined the logarithm of the unit cancels.↩
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