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7.2: Entropic Elasticity

Ideal Chain Model 

Most polymer chains have rotatable bonds as well as bond angles along the polymer backbone that differ from 180 . This leads to
flexibility of the chain. Even if the rotations are not free, but give rise to only  rotameric states per rotatable bond, the number
of possible chain conformations becomes vast. For  rotatable bonds, the number of distinct conformations is . The
simplest useful model for such a flexible chain is the freely jointed chain model. Here we assume bond vectors that all have the
same length , where  is the bond vector of the  bond. If we further assume an angle  between consecutive bond
vectors, we can write the scalar product of consecutive bond vectors as

This scalar product is of interest, as we can use it to compute the mean-square end-to-end distance  of an ensemble of chains,
which is the simplest parameter that characterizes the spatial dimension of the chain. With the end-to-end distance vector of a chain
with  bonds,

we have

By using Equation ) we find

In the freely jointed chain model we further assume that there are no correlations between the directions of different bond vectors, 
 for . Then, the double sum in Equation ) has only  non-zero terms for  with . Hence,

This again appears to be a crude model, but we shall now rescue it by redefining . In an ideal polymer chain we can at least assume
that there is no interaction between monomers that are separated by many other monomers,

Furthermore, for a given bond vector  the sum over all correlations with other bond vectors converges to some finite number that
depends on ,

Therefore, when including the correlations, Equation ) can still be simplified to

where Flory’s characteristic ratio  is the average value of  over all backbone bonds of the chain.
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In general,  depends on , but for very long chains it converges to a value . For sufficiently long chains, we can thus
approximate

which has the same dependence on  and  as the crude model of the freely jointed chain, Equation ). Hence, we can define an
equivalent freely jointed chain with  Kuhn segments of length . From

and the length of the maximally stretched equivalent chain, the contour length ,

we obtain

and the Kuhn length

Typical values of  for synthetic polymers range from 4.6 for 1,4-poly(isoprene) to 9.5 for atactic poly(styrene) with
corresponding Kuhn lengths of 8.2 Å to 18 Å, respectively.

At this point we have found the mean-square end-to-end distance as a parameter of an equilibrium macrostate. If we stretch the
chain to a longer end-to-end distance, it is no longer at equilibrium and must have larger free energy. Part of this increase in free
energy must come from a decrease in entropy that stretching induces by reducing the number of accessible chain conformations. It
turns out that this entropic contribution is the major part of the increase in free energy, typically 90%. The tendency of polymer
chains to contract after they have been stretched is thus mainly an entropic effect. To quantify it, we need a probability distribution
for the end-to-end vectors and to that end, we introduce a concept that is widely used in natural sciences.

Random Walk 

The freely jointed chain model explicitly assumes that the direction of the next Kuhn segment is uncorrelated to the directions of all
previous Kuhn segments. Where the chain end will be located after the next step that prolongs the chain by one segment depends
only on the location of the current chain end. The freely jointed chain thus has aspects of a Markov chain. Each prolongation step is
a random event and the trajectory of the chain in space a random walk.

Many processes can be discretized into individual steps. What happens in the next step may depend on only the current state or also
on what happened in earlier steps. If it depends only on the current state, the process is memoryless and fits the definition of a
Markov chain. A Markov chain where the events are analogous steps in some parameter space can be modeled as a random walk. A
random walk is a mathematically formalized succession of random steps. A random walk on a lattice, where each step can only
lead from a lattice point to a directly neighboring lattice point is a particularly simple model. [concept:random_walk]

We can use the concept of a random walk in combination with the concepts of statistical thermodynamics in order to solve the
problem of polymer chain stretching and contraction. The problem is solved if we know the dependence of Helmholtz free energy
on the length of the end-to-end vector. This, in turn, requires that we know the entropy and thus the probability distribution of the
length of the end-to-end vector. This probability distribution is given by the number of possible random walks (trajectories) that

lead to a particular end-to-end distance .

For simplicity we start with a simpler example in one dimension that we can later extend to three dimensions. We consider the
standard example in this field, a drunkard who has just left a pub. We assume that, starting at the pub door, he makes random steps
forth and back along the road. What is the probability  that after  steps he is at a distance of  steps up the road from the
pub door? The problem is equivalent to finding the number  of trajectories of length  that end up  steps from the pub
door and dividing it by the total number of trajectories.

Any such trajectory consists of  steps up the road and  steps down the road, with the final position being .
The number of such trajectories is, again, given by a binomial distribution (see Section [binomial_distribution])
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whereas the total number of trajectories is , as the drunkard has two possibilities at each step. Hence,

leading to

The last two terms on the right-hand side can be rewritten as

which leads to

We now assume a long trajectory. In the range where , which is realized in an overwhelming fraction of all trajectories, the
numerator and denominator logarithms in the last term on the right-hand side of Equation ) can be approximated by series
expansion,  for , which gives

Hence,

Inserting Equation  into Equation ) provides,

where we recognize, in the last factor on the right-hand side, the approximation of the binomial distribution by a Gaussian
distribution that we discussed in Section [binomial_distribution]. Using the improved formula of Stirling, Equation ), for
expressing the factorials, we have
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which leads to the exceedingly simple result:

The drunkard, if given enough time and not falling into sleep, perfectly simulates a Gaussian distribution.

We may even further simplify this result by asking about the mean square displacement , which is given by

Before we go on, we need to fix a problem that occurs when we interpret the discrete probabilities computed at this point as a
continuous probability density distribution of . In the discrete case,  can be non-zero only for either even or odd ,
depending on whether  is even or odd. Thus, to arrive at the proper probability distribution we need to divide by 2. Hence, we
can express the probability density distribution for a one-dimensional random walk as

This result does no longer depend on step size, not even implicitly, because we have removed the dependence on step number .
Therefore, it can be generalized to three dimensions. Since the random walks along the three pairwise orthogonal directions in
Cartesian space are independent of each other, we have

At this point we relate the result to the conformational ensemble of an ideal polymer chain, using the Kuhn model discussed in

Section [subsection:ideal_chain]. We pose the question of the distribution of mean-square end-to-end distances  with the

Cartesian components of the end-to-end vector  being , , and . According to Equation ), we have

For symmetry reasons we have,

leading to

and analogous expressions for  and . We have reintroduced parameter , which is now the number of Kuhn
segments. Yet, by discussing a continuous probability density distribution, we have removed dependence on a lattice model. This is
necessary since the steps along dimensions , , and  differ for each Kuhn segment. By using Equation ), we find

The probability density attains a maximum at zero end-to-end vector.
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Figure : End-to-end distance distribution of an ideal chain. (A) Probability density distribution  of normalized en-
to-end distances . (B) Cumulative probability distribution indicating the probability to find a chain with end-to-end-
distance smaller than . Slightly more than 60% of all chains (red dashed horizontal line) have a normalized end-to-end
distance .

Finally, we can pose the following question: If we let all chains of the ensemble start at the same point, how are the chain ends
distributed in space? This is best pictured in a spherical coordinate system. Symmetry dictates that the distribution is uniform with
respect to polar angles  and . The polar coordinate  is equivalent to the end-to-end distance of the chain. To find the probability
distribution for this end-to-end distance we need to include area  of the spherical shells. Hence,

Because of this scaling with the volume of an infinitesimally thin spherical shell, the probability density distribution (Figure 
) for the end-to-end distance does not peak at zero distance. As seen in Figure  it is very unlikely to encounter a chain

with . Since the contour length is , we can conclude that at equilibrium almost all chains have end-to-end
distances shorter than .

We need to discuss validity of the result, because in approximating the discrete binomial distribution by a continuous Gaussian
probability distribution we had made the assumption . Within the ideal chain model, this assumption corresponds to an end-
to-end distance that is much shorter than the contour length . If  approaches , the Gaussian distribution overestimates true
probability density. In fact, the Gaussian distribution predicts a small, but finite probability for the chain to be longer than its
contour length, which is unphysical. The model can be refined to include cases of such strong stretching of the chain . For our
qualitative discussion of entropic elasticity not too far from equilibrium, we can be content with Equation ).

Conformational Entropy and Free Energy 

We may now ask the question of the dependence of free energy on chain extension . With the definition of Boltzmann entropy,
Equation ), and the usual identification  we have

The probability density distribution in Equation ) is related to the statistical weight  by

because  is the fraction of all conformations that have an end-to-end vector in the infinitesimally small interval between  and 
. Hence,
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The last two terms do not depend on  and thus constitute an entropy contribution  that is the same for all end-to-end
distances, but depends on the number of monomers ,

Since by definition the Kuhn segments of an ideal chain do not interact with each other, the internal energy is independent of .
The Helmholtz free energy  can thus be written as

It follows that the free energy of an individual chain attains a minimum at zero end-to-end vector, in agreement with our conclusion
in Section [subsection:random_walk] that the probability density is maximal for a zero end-to-end vector. At longer end-to-end
vectors, chain entropy decreases quadratically with vector length. Hence, the chain can be considered as an entropic spring.
Elongation of the spring corresponds to separating the chain ends by a distance . The force required for this elongation is
the derivative of Helmholtz free energy with respect to distance. For one dimension, we obtain

For the three-dimensional case, the force is a vector that is linear in ,

i.e., the entropic spring satisfies Hooke’s law. The entropic spring constant is .

Polymers are thus the easier to stretch the larger their degree of polymerization (proportional to ), the longer the Kuhn segment 
and the lower the temperature . In particular, the temperature dependence is counterintuitive. A polymer chain under strain will
contract if temperature is raised, since the entropic contribution to Helmholtz free energy, which counteracts the strain, then
increases.
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