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4.2: The Relation of State Functions to the Partition Function

Entropy and the Partition Function 

We recall that we already computed internal energy  and heat capacity  at constant volume from the system partition function 
(Section [section:u_and_cv_from_z]). For a canonical system ( ), which is by definition at thermal equilibrium
(reversible), we can identify  in Equation  with

Definite integration with substitution of  by Equation  gives ,

Partial integration provides

where we have used Equation  to substitute the first term on the right hand side of Equation . If we assume that 
, the entropy at an absolute temperature of zero can be identified as . If there are no degenerate

ground states,  in agreement with Nernst’s theorem (Third Law of Thermodynamics), as will be discussed in Section
[subsection:z_accessible]. Thus, by associating  with  we obtain

We see that under the assumptions that we have made the entropy can be computed from the partition function. In fact, there should
be a unique mapping between the two quantities, as both the partition function and the entropy are state functions and thus must be
uniquely defined by the state of the system.

We now proceed with computing constant  in the mathematical definition of Boltzmann entropy, Equation . By inserting
Equation  into Equation  we have

We have neglected the term  on the right-hand side of Equation ), as is permissible if the number  of particles is much larger
than the number  of energy levels. Furthermore, according to Equation ) and the definition of the partition function, we have 
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where we have used the definition of the partition function of going from Equation  to . Using Equation  for
substitution in the last term on the right-hand side of Equation ), we find

Comparison of Equation  with Equation  gives two remarkable results. First, the multiplicative constant  in
Boltzmann’s entropy definition can be identified as . Second, for the system of  identical, distinguishable
classical particles, we must have

In other words, the partition function of a system of  identical, distinguishable, non-interacting particles is the  power of the
molecular partition function.

It turns out that Equation  leads to a contradiction if we apply it to an ideal gas. Assume that we partition the system into two
subsystems with particle numbers . The internal-energy dependent term in Equation  obviously will not change
during this partitioning. For the partition-function dependent term we have  for the total system and  for the
sum of the two subsystems. The molecular partition function in the subsystems differs, because volume available to an individual
particle is only half as large as in the total system. For the inverse process of unifying the two subsystems we would thus obtain a
mixing entropy, although the gases in the subsystems are the same. This appearance of a mixing entropy for two identical ideal
gases is called the Gibbs paradox. The Gibbs paradox can be healed by treating the particles as indistinguishable. This reduces the
statistical weight  by  for the total system and by  for each subsystem, which just offsets the volume effect. Hence, for
an ideal gas we have

It may appear artificial to treat classical particles as indistinguishable, because the trajectory of each particle could, in principle, be
followed if they adhere to classical mechanics equations of motion, which we had assumed. Note, however, that we discuss a
macrostate and that we have explicitly assumed that we cannot have information on the microstates, i.e., on the trajectories. In the
macrostate picture, particles in an ideal gas are, indeed, indistinguishable. For an ideal crystal, on the other hand, each particle
could be individually addressed, for instance, by high resolution microscopy. In this case, we need to use Equation .

Helmholtz Free Energy 
Helmholtz free energy (German: Freie Energie)  is defined as

This equation has a simple interpretation. From phenomenological thermodynamics we know that the equilibrium state of a closed
systems corresponds to a minimum in free energy. Among all macrostates with the same energy  at a given temperature , the
equilibrium state is the one with maximum entropy . Furthermore, using Equation  we have

We note that this value of , which can be computed from only the canonical partition function and temperature, corresponds to the
global minimum over all macrostates. This is not surprising. After all, the partition function was found in a maximization of the
probability of the macrostate.
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Gibbs Free Energy, Enthalpy, and Pressure 

All ensembles that we have defined correspond to equilibrium states at constant volume. To make predictions for processes at
constant pressure or to compute enthalpies  and Gibbs free energies  we need to compute pressure from
the partition function. The simplest way is to note that . With Equation  it then follows that

where we have skipped the lower index  indicating constant molar amount. This is permissible for the canonical ensemble, where
the number of particles is constant by definition. From Equation  it follows that

and

Connoisseurs will notice the beautiful symmetry of this equation.

With Equation  we can also compute Gibbs free energy (German: freie Enthalpie),
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