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5.3: Simple Quantum Systems

Spin S = 1/2 

The simplest quantum system is a two-level system and probably the best approximation to isolated two-level systems is found in
magnetic resonance spectroscopy of dilute  spin systems. The Hamiltonian for an electron spin  in an external
magnetic field along  is given by

where  is the gyromagnetic ratio and  is the magnetic field expressed in units of 1 Tesla. The two states are
designated by magnetic spin quantum number  and have energies . The partition function is

and the expectation value of , which is proportional to longitudinal magnetization, by

Usually one has , which is called the high-temperature approximation. The series expansion of the hyperbolic
tangent,

can then be restricted to the leading term, which gives

Harmonic Oscillator 

A diatomic molecule has one vibrational mode along the bond direction . If we assign masses  and  to the two atoms and a
force constant  to the bond, we can write the Hamiltonian as

where the reduced mass  is

and where the first term on the right-hand side of Equation  corresponds to potential energy and the second term to kinetic
energy.

Equation  can be cast in the form

where we have substituted  by the deviation of the atom-atom distance  from the bond length  and introduced the angular
oscillation frequency  of a classical oscillator with

S = 1/2 S = 1/2
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⟨ ⟩Ŝ z =∑ P ( )mS mS

=
(−1/2) ⋅ +(1/2)eγℏ /2 TB0 kB e−γℏ /2 TB0 kB

Z

=− tanh(γℏ /2 T ) .
1

2
B0 kB

(5.3.3)

(5.3.4)

(5.3.5)

γℏ ≪ 2 TB0 kB

tanh(x) = x− + +… ,
1

3
x3 2

15
x5 (5.3.6)

⟨ ⟩=−  .Ŝ z
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Equation  produces an infinite number of eigenstates with energies

where  is the vibrational quantum number. All energies are positive, even the one of the ground state with .
This residual zero-point vibration can be considered as a consequence of Heisenberg’s uncertainty principle, since for a non-
oscillating diatomic molecule atom coordinates as well as momentum would be sharply defined, which would violate that principle.
In the context of statistical thermodynamics the unfortunate consequence is that for an ensemble of  diatomic molecules for 

 the vibrational contribution to the internal energy  approaches  and thus the term  in the entropy
expression (Equation ) approaches infinity. We ignore this problem for the moment.

The partition function of the harmonic oscillator is an infinite series,

where we have substituted  and  to obtain the last line. Since for finite temperatures , the
infinite series  converges to . Hence,

We can again discuss the behavior for . In the denominator, the argument of the exponential function approaches , so
that the denominator approaches unity. In the numerator the argument of the exponential function also approaches , so that the
partition function approaches zero and Helmholtz free energy  can only be computed as a limiting value. The term 

 in the entropy Equation  approaches .

This problem can be healed by shifting the energy scale by . We then have

With this shift, the partition function and the population of the ground state  both approach 1 when the temperature
approaches zero. For the term  in the entropy expression we still need to consider a limiting value, but it can be shown that 

. Since  for , entropy of an ensemble of harmonic oscillators vanishes at the zero point in

agreement with Nernst’s theorem. Helmholtz free energy  approaches zero.

For computing a Boltzmann distribution we can shift all energy levels by the same offset  without influencing the , as such a
shift leads to a multiplication by the same factor of the numerator and of all terms contributing to the partition function. Such a shift
can remove an infinity of the partition function.

This partition function can also be expressed with a characteristic vibrational temperature

This temperature is usually higher than room temperature. We have
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Thus,  at room temperature, which implies that only the vibrational ground state is significantly populated. Vibration does
not significantly contribute to entropy at room temperature.

Einstein and Debye Models of a Crystal 

The considerations on the harmonic oscillator can be extended to a simple model for vibrations in a crystal. If we assume that all
atoms except one are fixed at their average locations, the potential at the unique atom is parabolic. This assumption made by
Einstein may at first sight violate his own dictum that "Everything should be made as simple as possible, but not simpler.". We shall
come back to this point below. For the moment we consider Einstein’s approach as a very simple mean field approach. Instead of
the one-dimensional harmonic oscillator treated in Section [section:harmonic_oscillator], we now have a three-dimensional
harmonic oscillator. For sufficiently high point symmetry at the unique atom, we can assume an isotropic force constant . Each
atom is then described by three independent harmonic oscillators along three orthogonal directions. The harmonic oscillators of
different atoms are also independent by construction. Because we want to compute an absolute internal energy we revert to the
partition function of the harmonic oscillator without energy shift given in Equation . The partition function for a crystal with 

 atoms, considering that the atoms in a crystal lattice are distinguishable and that thus Equation  applies, is then given by

Internal energy can be computed by Equation ,

With the characteristic vibrational temperature  introduced in Equation  and by setting  to obtain a molar
quantity, we find

The molar heat capacity of an Einstein solid is the derivative of  with respect to . We note that we do not need to specify
constant volume or constant pressure, since this simple model depends on neither of these quantities. We find

According to the rule of Dulong and Petit we should obtain the value  for . Since the expression becomes indeterminate 
, we need to compute a limiting value, which is possible with the approach of de l’Hospital where we separately differentiate

the numerator and denominator. The derivation is lengthy but it indeed yields the limiting value :
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In Equation  in the numerator and in going from Equation  to  we have set  to 1, as we may for .
As the expression was still indeterminate, we have computed the derivatives of numerator and denominator once again in going
from Equation  to  and finally we have once more set  to 1 in going from Equation  to \refeq:x04}. We
see that Einstein’s very simple model agrees with the rule of Dulong and Petit.

The model of the Einstein solid differs from a model of  one-dimensional harmonic oscillators according to Section
[section:harmonic_oscillator] only by a power of 3 in the partition function, which, after computing the logarithm, becomes a
factor of 3 in the temperature-dependent term of  and thus in . Hence, in the high-temperature limit the vibrational
contribution to the molar heat capacity of a gas consisting of diatomic molecules is equal to . It follows that, in this limit,
each molecule contributes an energy  to the internal energy, i.e. each of the two degrees of freedom (potential and kinetic
energy of the vibration) that are quadratic in the coordinates contributes a term . This agrees with the equipartition
theorem. Likewise, the Einstein solid agrees with this theorem.

From experiments it is known that molar heat capacity approaches zero when temperature approaches zero. Again the limiting
value can be computed by the approach of de ’l Hospital , where this time we can neglect the 1 in , as  tends to
infinity for . In the last step we obtain

Thus, the Einstein solid also agrees with the limiting behavior of heat capacity at very low temperatures.

Nevertheless the model is ’too simple’, and Einstein was well aware of that. Vibrations of the individual atoms are not independent,
but rather collective. The lattice vibrations, called phonons, have a spectrum whose computation is outside the scope of the Einstein
model. A model that can describe this spectrum has been developed by Debye based on the density of states of frequencies . This
density of states in turn has been derived by Rayleigh and Jeans based on the idea that the phonons are a system of standing waves
in the solid. It is given by

Debye replaced  by a mean velocity of wave propagation in the solid, considered one longitudinal and two transverse waves and
only the  states with the lowest frequencies, as the solid has only  vibrational degrees of freedom. These considerations lead
to a maximum phonon frequency  and, after resubstitution of the mean velocity, to a frequency spectrum that is still
proportional to  and scales with . Instead of the characteristic vibration temperature, it is now convenient to define the
Debye temperature

In this model the molar heat capacity of the solid becomes
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The integral can be evaluated numerically after series expansion and finally Debye’s  law,

results. This law does not only correctly describe that the heat capacity vanishes at absolute zero, it also correctly reproduces the
scaling law, i.e., the  dependence that is found experimentally. The high-temperature limit can also be obtained by series
expansion and is again Dulong-Petit’s value of .

The Debye model is still an approximation. Phonon spectra of crystalline solids are not featureless. They are approximated, but not
fully reproduced, by a  dependence. The deviations from the Debye model depend on the specific crystal structure.

This page titled 5.3: Simple Quantum Systems is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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