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2.2: Continuous Probability Theory

Probability Density 

Although the outcomes of measurements can be discretized, and in fact, are invariably discretized when storing the data, in theory
it is convenient to work with continuous variables where physical quantities are assumed to be continuous. For instance, spatial
coordinates in phase space are assumed to be continuous, as are the momentum coordinates for translational motion in free space.

To work with continuous variables, we assume that an event can return a real number instead of an integer index. The real number
with its associated probability density  is a continuous random number. Note the change from assigning a probability to an event
to assigning a probability density. This is necessary as real numbers are not countable and thus the number of possible events is
infinite. If we want to infer a probability in the usual sense, we need to specify an interval  between a lower bound  and an
upper bound . The probability that trial  will turn up a real number in this closed interval is given by

The probability density must be normalized,

A probability density distribution can be characterized by its moments.

The  moment of a probability density distribution is defined as,

The first moment is the mean of the distribution. With the mean , the central moments are defined

The second central moment is the variance  and its square root  is the standard deviation. [concept:moment_analysis]

Probability density is defined along some dimension , corresponding to some physical quantity. The average of a function 
of this quantity is given by

In many books and articles, the same symbol  is used for probabilities and probability densities. This is pointed out by Swendsen
who decided to do the same, pointing out that the reader must learn to deal with this. In the next section he goes on to confuse
marginal and conditional probability densities with probabilities himself. In these lecture notes we use  for probabilities, which
are always unitless, finite numbers in the interval  and  for probability densities, which are always infinitesimally small and
may have a unit. Students are advised to keep the two concepts apart, which means using different symbols.
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Figure : Generation of random numbers that conform to a given probability density distribution. (A) Cumulative probability
distribution  for  (blue). A pseudo-random number with uniform distribution in , here
0.75, selects the ordinate of  (red dashed horizontal line). The corresponding abscissa, here  (red dashed vertical
line), is an instance of a random number with probability density distribution . (B) Distribution of  random numbers (grey
line) and target probability density distribution  (black line).

Computer representations of probability densities by a vector or array are discretized. Hence, the individual values are finite. We
now consider the problem of generating a stream of random numbers that conforms to a given discretized probability density .
Modern programming languages or mathematical libraries include functions that provide uniformly distributed pseudo-random
numbers in the interval  (Matlab: rand ) or pseudo-random numbers with a Gaussian (normal) distribution with mean 0
and standard deviation 1 (Matlab: randn ). A stream of uniformly distributed pseudo-random numbers in  can be
transformed to a stream of numbers with probability density conforming to  by selecting for each input number the abscissa where
the cumulative sum of  (Matlab: cumsum(rho) ) most closely matches the input number (Figure ). Note that  must be
normalized (Matlab: rho = rho/sum(rho) ). Since a random number generator is usually called very often in a Monte Carlo
simulation, the cumulative sum cumsum_rho  should be computed once for all before the loop over all trials. With this,
generation of the abscissa index poi  becomes a one-liner in Matlab: [~,poi] = min(abs(cumsum_rho - rand));

Coming back to physical theory, the concept of probability density can be extended to multiple dimensions, for instance to the
 dimensions of phase space. Probability then becomes a volume integral in this hyperspace. A simple example of a

multidimensional continuous problem is the probability of finding a classical particle in a box. The probability to find it at a given
point is infinitely small, as there are infinitely many of such points. The probability density is uniform, since all points are equally
likely for a classical (unlike a quantum) particle. With the volume  of the box, this uniform probability density is  if we have
a single particle in the box. This follows from the normalization condition, which is . Note that a probability density has
a unit, in our example m . In general, the unit is the inverse of the product of the units of all dimensions.

The marginal probability density for a subset of the events is obtained by ’integrating out’ the other events. Let us assume a particle
in a two-dimensional box with dimensions  and  and ask about the probability density along . It is given by

Likewise, the conditional probability density  is defined at all points where ,

If two continuous random numbers are independent, their joint probability density is the product of the two individual probability
densities,
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Figure : Monte Carlo simulation of a two-dimensional probability density distribution. (A) Two-dimensional probability
density distribution corresponding to the first-order membrane function used in the Matlab logo. (B) Distribution of  random
numbers conforming to the probability density distribution shown in (A).

Write a Matlab program that generates random numbers conforming to a two-dimensional probability density distribution 
 that resembles the Matlab logo (Figure ). The (not yet normalized) distribution  is obtained with the function

call L = membrane(1,resolution,9,9); . Hint: You can use the reshape  function to generate a vector from a
two-dimensional array as well as for reshaping a vector into a two-dimensional array. That way the two-dimensional problem
(or, in general, a multi-dimensional problem) can be reduced to the problem of a one-dimensional probability density
distribution.

Selective Integration of Probability Densities 

We already know how to compute probability from probability density for a simply connected parameter range. Such a range can
be an interval  for a probability density depending on only one parameter  or a simply connected volume element for a
probability density depending on multiple parameters. In a general problem, the points that contribute to the probability of interest
may not be simply connected. If we can find a function  that is zero at the points that should contribute, we can solve this
problem with the Dirac delta function, which is the continuous equivalent of the Kronecker delta that was introduced above.

The Dirac delta function is a generalized function with the following properties

1. The function  is zero everywhere except at .
2. .

The function can be used to select the value  of another continuous function ,

This concept can be used, for example, to compute the probability density of a new random variable  that is a function of two
given random variables  and  with given joint probability density . The probability density  corresponding to 

 is given by

Note that the probability density  computed that way is automatically normalized.
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Figure : Probability density distributions for two continuous random numbers  and  that are uniformly distributed in the
interval  and have zero probability density outside this interval. a) Marginal probability density . b) Marginal probability
density . c) Joint probability density . In the light blue area, , outside . The orange line corresponds to 

 and the green line to .

We now use the concept of selective integration to compute the probability density  for the sum  of the numbers
shown by two continuous dice, with each of them having a uniform probability density in the interval  (Figure ). We have

The argument of the delta function in the inner integral over  can be zero only for , since otherwise no value of 
exists that leads to . It follows that  and . For  (orange line in Fig. [fig:cont_sum]c) the former
condition sets the upper limit of the integration. Obviously, this is true for any  with . For  (orange line in Fig.
[fig:cont_sum]c) the condition  sets the lower limit of the integration, as is also true for any  with . The
lower limit is 0 for  and the upper limit is 6 for . Hence,

and

From the graphical representation in Fig. [fig:cont_sum]c it is clear that  is zero at  and , assumes a maximum of 
 at , increases linearly between  and  and decreases linearly between  and .
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