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3.3: Canonical Ensemble
Equilibrium thermodynamics describes systems that are in thermal equilibrium. In an ensemble picture, this can be considered by
assuming that the system is in contact with a very large— for mathematical purposes infinitely large— heat bath. Because of this,
the individual systems in the ensemble can differ in energy. However, the probability density distribution in phase space or state
space must be consistent with constant temperature , which is the temperature of the heat bath. In experiments, it is the
temperature of the environment.

An ensemble with a constant number  of particles in a constant volume  and at thermal equilibrium with a heat bath at
constant temperature  can be considered as an ensemble of microcanonical subensembles with different energies . The
energy dependence of probability density conforms to the Boltzmann distribution. Such an ensemble is called a canonical
ensemble.

Because each system can exchange heat with the bath and thus change its energy, systems will transfer between subensembles
during evolution. This does not invalidate the idea of microcanonical subensembles with constant particle numbers . For a
sufficiently large ensemble at thermal equilibrium the  are constants of motion.

There are different ways of deriving the Boltzmann distribution. Most of them are rather abstract and rely on a large mathematical
apparatus. The derivation gets lengthy if one wants to create the illusion that we know why the constant  introduced below always
equals , where  is the Boltzmann constant, which in turn is the ratio of the universal gas constant  and the
Avogadro constant . Here we follow a derivation that is physically transparent and relies on a minimum of mathematical
apparatus that we have already introduced.

Boltzmann Distribution 

Here we digress from the ensemble picture and use a system of  particles that may exist in  different states with energies  with
. The number of particles with energy  is . The particles do not interact, they are completely independent from

each other. We could therefore associate theses particles with microcanonical subensembles of a canonical ensemble, but the
situation is easier to picture with particles. The probability  to find a particle with energy  can be associated with the
probability density for the microcanonical subensemble at energy . The difference between this simple derivation and the more
elaborate derivation for a canonical ensemble is thus essentially the difference between discrete and continuous probability theory.
We further assume that the particles are classical particles and thus distinguishable.

To compute the probability distribution , we note that

and

where  is a constant total energy of the system. We need to be careful in interpreting the latter equation in the ensemble picture.
The quantity  corresponds to the energy of the whole canonical ensemble, which is indeed a constant of motion, if we consider a
sufficiently large number of systems in contact with a thermal bath. We can thus use our simple model of  particles for guessing
the probability density distribution in the canonical ensemble.

What we are looking for is the most likely distribution of the  particles on the  energy levels. This is equivalent to putting 
distinguishable balls into  boxes. We did already solve the problem of distributing  objects to 2 states when considering the
binomial distribution in Section [binomial_distribution]. The statistical weight of a configuration with  objects in the first state
and  objects in the second state was . With this information we would already be able to solve the problem of a canonical
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ensemble of  spins  in thermal contact with the environment, disregarding for the moment differences between classical
and quantum statistics (see Section [section:quantum_statistics]).

Coming back to  particles and  energy levels, we still have  permutations. If we assign the first  particles to the state with
energy , the next  particles to  and so on, we need to divide each time by the number of permutations  in the same energy
state, because the sequence of particles with the same energy does not matter. We call the vector of the occupation numbers  a
configuration. The configuration specifies one particular macrostate of the system and the relative probability of the macrostates
for distinguishable particles and non-degenerate states is given by their statistical weights,

The case with degenerate energy levels is treated in Section [sec:Maxwell-Boltzmann].

The most probable macrostate is the one with maximum statistical weight . Because of the peaking of probability distributions for
large , we need to compute only this most probable macrostate; it is representative for the whole ensemble. Instead of
maximizing  we can as well maximize , as the natural logarithm is a strictly monotonous function. This allows us to apply
Stirling’s formula,

By inserting Equation  we find

Note that the second term on the right-hand side of Equation  has some similarity to the entropy of mixing, which suggests
that  is related to entropy.

At the maximum of  the derivative of  with respect to the  must vanish,

In addition, we need to consider the boundary conditions of constant particle number, Equation ,

and constant total energy, Equation ,

It might appear that Equation  could be used to cancel a term in Equation , but this would be wrong as Equation  is
a constraint that must be fulfilled separately. For the constrained maximization we can use the method of Lagrange multipliers.

The maximum or minimum of a function  of  variables is a stationary point that is attained at

We now consider the case where the possible sets of the  variables are constrained by  additional equations

where index  runs over the  constraints ( ). Each constraint introduces another equation of the same form as the one of
Equation ,
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The constraints can be introduced by multiplying each of the  equations by a multiplier  and subtracting it from the equation for
the stationary point without the constraints,

If a set of variables  solves the constrained problem then there exists a set  for which 
 also corresponds to a stationary point of the Lagrangian function . Note that not all

stationary points of the Lagrangian function are necessarily solutions of the constrained problem. This needs to be checked
separately. [concept:Lagrangian_multipliers]

With this method, we can write

The two boundary conditions fix only two of the population numbers . We can choose the multipliers  and  in a way that 
 for these two , which ensures that the partial derivatives of  with respect to these two 

vanishes. The other  population numbers can, in principle, be chosen freely, but again we must have

for all  to make sure that we find a maximum with respect to variation of any of the  population numbers. This gives

with . We can eliminate  by using Equation ,

giving

and finally leading to

For many problems in statistical thermodynamics, the Lagrange multiplier  is related to the chemical potential by .
The Lagrange multiplier  must have the reciprocal dimension of an energy, as the exponent must be dimensionless. As indicated
above, we cannot at this stage prove that  is the same energy for all problems of the type that we have posed here, let alone for all
of the analogous problems of canonical ensembles. The whole formalism can be connected to phenomenological thermodynamics
via Maxwell’s kinetic gas theory (see also Section [subsection:equipartition]). For this problem one finds

For a classical canonical ensemble with energy levels  the probability distribution for the level populations is given by the
Boltzmann distribution
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The sum over states

required for normalization is called canonical partition function.  The partition function is a thermodynamical state function.

For the partition function, we use the symbol  relating to the German term Zustandssumme("sum over states"), which is a more
lucid description of this quantity.

Equipartition Theorem 

Comparison of Maxwell’s kinetic theory of gases with the state equation of the ideal gas from phenomenological thermodynamics
provides a mean kinetic energy of a point particle of . This energy corresponds to

i.e., it is quadratic in the velocity coordinates of dynamic space or the momentum coordinates of phase space. Translational energy
is distributed via three degrees of freedom, as the velocities or momenta have components along three pairwise orthogonal
directions in space. Each quadratic degree of freedom thus contributes a mean energy of .

If we accept that the Lagrange multiplier  assumes a value , we find a mean energy  of an harmonic oscillator in the
high-temperature limit . Such an oscillator has two degrees of freedom that contribute quadratically in the degrees of freedom to
energy,

where  is the reduced mass and  the force constant. The first term contributes to kinetic energy, the second to potential energy. In
the time average, each term contributes the same energy and assuming ergodicity this means that each of the two degrees of
freedom contributes with  to the average energy of a system at thermal equilibrium.

The same exercise can be performed for rotational degrees of freedom with energy

where  is angular momentum and  angular frequency. Each rotational degree of freedom, being quadratic in  again contributes
a mean energy of .

Based on Equation  it can be shown that for an energy

where index  runs over the individual degrees of freedom, the number of molecules that contribute energy  does not depend on
the terms  with . It can be further shown that

for all terms that contribute quadratically to energy.

This result has two consequences. First, we can generalize , which we strictly knew only for translational degrees of
freedom, to any canonical ensemble for which all individual energy contributions are quadratic along one dimension in phase
space. Second, we can formulate the

Each degree of freedom, whose energy scales quadratically with one of the coordinates of state space, contributes a mean energy of
.

= =  .Pi

Ni

N

e− / Tϵi kB

∑i e− / Tϵi kB
(3.3.22)

Z(N , V , T ) =∑
i

e− / Tϵi kB (3.3.23)

10

Z

⟨ ⟩ = 3 T /2ϵkin kB

= m =  ,ϵtrans
1

2
v2 1

2m
p2 (3.3.24)

T /2kB

β 1/ TkB TkB

= μ + f  ,ϵvib
1

2
v2 1

2
x2 (3.3.25)

μ f

T /2kB

= I  ,ϵrot
1

2
ω2 (3.3.26)

I ω ω

T /2kB

3.3.20

= + + +… =  ,ϵi η0 η1 η2 ∑
k=1

f

ηk (3.3.27)

k ηk

ηj j ≠ k

⟨ ⟩ =ηk

1

2β
(3.3.28)

11

β = 1/ TkB

T /2kB

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/3.0/
https://chem.libretexts.org/@go/page/285763?pdf


3.3.5 https://chem.libretexts.org/@go/page/285763

The equipartition theorem applies to all degrees of freedom that are activated. Translational degrees of freedom are always
activated and rotational degrees of freedom are activated at ambient temperature, which corresponds to the high-temperature limit
of rotational dynamics. To vibrational degrees of freedom the equipartition theorem applies only in the high-temperature limit. In
general, the equipartition theorem fails for quantized degrees of freedom if the quantum energy spacing is comparable to  or
exceeds this value. We shall come back to this point when discussing the vibrational partition function.

Internal Energy and Heat Capacity of the Canonical Ensemble 

The internal energy  of a system consisting of  particles that are distributed to  energy levels can be identified as the total
energy  of the system considered in Section ([subsection:Boltzmann]). Using Eqs.  and  we find

The sum in the numerator can be expressed by the partition function, since

Thus we obtain

Again the analogy of our simple system to the canonical ensemble holds. At this point we have computed one of the state functions
of phenomenological thermodynamics from the set of energy levels. The derivation of the Boltzmann distribution has also
indicated that , and thus the partition function  are probably related to entropy. We shall see in Section
[section:state_fct_partition_fct] that this is indeed the case and that we can compute all thermodynamic state functions from .

Here we can still derive the heat capacity  at constant volume, which is the partial derivative of internal energy with respect to
temperature. To that end we note that the partition function for the canonical ensemble relates to constant volume and constant
number of particles.

In the last line of Equation  we have substituted the molecular partition function  by the partition function for the whole
system, . Note that this implies a generalization. Before, we were considering a system of  identical particles. Now
we implicitly assume that Equation , as well as  will hold for any system, as long as we correctly derive the
system partition function .

We note here that the canonical ensemble describes a closed system that can exchange heat with its environment, but by definition
it cannot exchange work, because its volume  is constant. This does not present a problem, since the state functions can be
computed at different . In particular, pressure  can be computed from the partition function as well (see Section
[section:state_fct_partition_fct]). However, because the canonical ensemble is closed, it cannot easily be applied to all problems
that involve chemical reactions. For this we need to remove the restriction of a constant number of particles in the systems that
make up the ensemble.
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