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7.1: Thermodynamics of Mixing
The formalism introduced in Chapter is suitable for small molecules in the gas phase, but does not easily extend to condensed
phases or to larger molecules with several rotameric states, let alone to macromolecules, such as synthetic polymers, proteins,
nucleic acids, and carbohydrates. Nevertheless, statistical thermodynamics is an important theory for understanding such systems.
In this Chapter we introduce some of the concepts of statistical thermodynamics that do not depend on explicit computation of the
partition function. We start with the entropy of mixing and, for simplicity, restrain the discussion to binary mixtures.

Entropy of Binary Mixing 
We consider mixing of two species A with volume  and B with volume  and neglect volume change, so that the total volume
is . The volume fractions of the two components in the mixture are thus given by

To consider the statistics of the problem we use a lattice model.

A lattice model is a discrete representation of a system as opposed to a continuum representation. A three-dimensional lattice
model is a regular arrangement of sites in Cartesian space, such as a crystal lattice is a regular arrangement of atoms in
Cartesian space. The state of the model is defined by the distribution of units of matter, for instance molecules or the repeat
units of a polymer (short: monomers), on the lattice sites. In statistical thermodynamics, one particular arrangement of the units
on the lattice is a microstate. Energy of the microstate depends on interactions of units between lattice sites, in the simplest
case only between direct neighbor sites. By considering the statistical distribution of microstates, thermodynamic state
functions of the macrostate of the system can be obtained.

In our example we assign the lattice site a volume , which cannot be larger than the volume required for one molecule of the
smaller component in the mixture. The other component may then also occupy a single site (similarly sized components) or several
lattice sites. A macromolecule with a large degree of polymerization consists of a large number of monomers and will thus occupy
a large number of lattice sites. The molecular volumes of the species are

where  and  are the number of sites occupied by one molecule of species A and B, respectively. We consider the three simple
cases listed in Table . Regular solutions are mixtures of two low molecular weight species with . Polymer
solutions are mixtures of one type of macromolecules ( ) with a solvent, whose molecular volume defines the lattice
site volume  ( ). Polymer blends correspond to the general case . They are mixtures of two different
species of macromolecules, so that .

Table : Number of lattice sites occupied per molecule in different types of mixtures.
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lattice sites, whereas component A occupies  of these sites. We consider a microcanonical ensemble and can thus
express entropy as

where  is the number of ways in which the molecules can be arranged on the lattice (number of microstates). In a homogeneous
mixture, a molecule or monomer of component A can occupy any of the  lattice sites. Before mixing, it can occupy only one of
the lattice sites in volume . Hence, the entropy change for one molecule of species A is

The total mixing entropy for both species is

We note the analogy with the expression that we had obtained in phenomenological thermodynamics for an ideal mixture of ideal
gases, were we had used the molar fraction  instead of the volume fraction . For ideal gases,  and thus .
Equation ) generalizes the result to any ideal mixture in condensed phase. The mixture is ideal because we did not yet
consider energy of mixing and thus could get away with using a microcanonical ensemble.

For discussion it is useful to convert the extensive quantity  to the intensive entropy of mixing per lattice site,

where we have used the number of molecules per species  and normalized by the total number  of lattice sites.

For a regular solution with  we obtain the largest entropy of mixing at given volume fractions of the components,

For a polymer solution with  and  we have

where the approximation by Equation ) holds for , i.e. for solving a polymer and even for any appreciable
swelling of a high-molecular weight polymer by a solvent. For polymer blends, Equation ) holds with .
Compared to formation of a regular solution or a polymer solution, mixing entropy for a polymer blend is negligibly small, which
qualitatively explains the difficulty of producing such polymer blends. Nevertheless, the entropy of mixing is always positive, and
thus the Helmholtz free energy  always negative, so that an ideal mixture of two polymers should form
spontaneously. To see what happens in real mixtures, we have to consider the energetics of mixing.

Before doing so, we note the limitations of the simple lattice model. We have neglected conformational entropy of the polymer,
which will be discussed in Section [subsection:conf_entropy]. This amounts to the assumption that conformational entropy does
not change on mixing. For blends of polymers, this is a very good assumption, whereas in polymers solutions there is often an
excluded volume that reduces conformational space. We have also neglected the small volume change that occurs on mixing, most
notably for regular solutions. For polymer solutions and blends this volume change is very small.

Energy of Binary Mixing 

To discuss the internal energy contribution to the free energy of mixing, we continue using the simplified lattice model. In
particular, we consider mixing at constant volume and we assume that attractive or repulsive interactions between lattice sites are
sufficiently small to not perturb random distributions of solvent molecules and monomers on lattice sites. We also ignore that the
polymer chain is connected, as this would exclude random distribution of the monomers to the lattice sites. Regular solution theory,
as we consider it here, is a mean-field approach where the interaction at a given lattice site is approximated by a mean interaction
with the other lattice sites. This neglects correlations. Although the model may appear crude (as many models in polymer physics),
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it provides substantial insight and an expression that fits experimental data surprisingly well (as is the case for many crude models
in polymer physics).

We start by defining three pairwise interaction energies , , and  between adjacent sites of the lattice. For random
distribution, the probability that a molecule or monomer A has a neighbor A is  and the probability that it has a neighbor B is 

. We neglect boundary effects, as the ratio between the number of surface sites and inner sites is very small for a
macroscopic system. The mean-field interaction energy per lattice site occupied by an A unit is thus

and the corresponding expression for a lattice site occupied by a B unit is

To continue, we need to specify the lattice, as the number of sites  adjacent to the site under consideration depends on that. For a
cubic lattice we would have . We keep  as a parameter in the hope that we can eliminate it again at a later stage. If we
compute a weighted sum of the expressions (Equation ) and (Equation ) we double count each pairwise interaction, as
we will encounter it twice. Hence, total interaction energy of the mixture is

where we have used the probability  of encountering a site occupied by a unit A and  of encountering a site occupied
by a unit B. By inserting Eqs.  and  into Equation ) and abbreviating , we obtain

Before mixing the interaction energy per site in pure A is  and in B . Hence, the total interaction energy before
mixing is

so that we obtain for the energy change  on mixing

We again normalize by the number  of lattice sites to arrive at the energy change per site on mixing:

For discussion we need an expression that characterizes the mixing energy per lattice site as a function of composition  and that
can be easily combined with the mixing entropy to free energy. The Flory interaction parameter,

elegantly eliminates the number of adjacent lattice sites and provides just such an expression:

Introducing such a parameter is an often-used trick when working with crude models. If the parameter is determined
experimentally, the expression may fit data quite well, because part of the deviations of reality from the model can be absorbed by
the parameter and its dependence on state variables. We finally obtain the Flory-Huggins equation for the Helmholtz free energy
of mixing, ,
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As the entropy contribution (first two terms in the brackets on the right-hand side of Equation ) to  is always
negative, entropy always favors mixing. The sign of  depends on the sign of the Flory parameter  and the ratio between the
energy and entropy. The Flory parameter is negative and thus favors mixing, if , i.e., if the interaction in AB
pairs is more attractive than the mean interaction in AA and and BB pairs. Such cases occur, but are rare. In most cases, the Flory
parameter is positive. Since the entropy terms are very small for polymer blends, such blends tend to phase separate. In fact, high
molecular weight poly(styrene) with natural isotope abundance phase separates from deuterated poly(styrene).
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