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2.1: Discrete Probability Theory

Discrete Random Variables 

Consider a trial  where the observation is a measurement of the  component  of spin angular momentum of a spin 
. There are just six possible outcomes (events) that can be labeled with the magnetic spin quantum number  or indexed

by integer numbers 1, 2,  6. In general, the probabilities of the six possible events will differ from each other. They will depend
on preparation and may depend on evolution time before the observation. To describe such situations, we define a set of elementary
events

where in our example index  runs from 1 to 6, whereas in general it runs from 1 to the number  of possible events. Each of the
events is assigned a probability . Impossible events (for a given preparation) have probability zero and a certain
event has probability 1. Since one and only one of the events must happen in each trial, the probabilities are normalized, 

. A simplified model of our example trial is the rolling of a die. If the die is fair, we have the special situation of a
uniform probability distribution, i.e.,  for all .

A set of random events with their associated probabilities is called a random variable. If the number of random events is countable,
the random variable is called discrete. In a computer, numbers can be assigned to the events, which makes the random variable a
random number. A series of trials can then be simulated by generating a series of  pseudo-random numbers that assign the events
observed in the  trials. Such simulations are called Monte Carlo simulations. Pseudo-random numbers obtained from a computer
function need to be adjusted so that they reproduce the given or assumed probabilities of the events. [concept:random_variable]

Using the Matlab function rand , which provides uniformly distributed random numbers in the open interval , write a
program that simulates throwing a die with six faces. The outer function should have trial number  as an input and a vector of the
numbers of encountered ones, twos, ... and sixes as an output. It should be based on an inner function that simulates a single throw
of the die. Test the program by determining the difference from the expectation  for ever larger numbers of trials.

Multiple Discrete Random Variables 
For two sets of events  and  and their probabilities, we define a joint probability  that is the probability of observing
both  and  in the same trial. An example is the throwing of two dice, one black and one red, and asking about the probability
that the black die shows a 2 and the red die a 3. A slightly more complicated example is the measurement of the individual 
components of spin angular momentum of two coupled spins  and . Like individual probabilities, joint
probabilities fall in the closed interval . Joint probabilities are normalized,

Note that we have introduced a brief notation that suppresses indices  and . This notation is often encountered because of its
convenience in writing.

If we know the probabilities  for all  possible combinations of the two events, we can compute the probability of a
single event, for instance ,

where  is the marginal probability of event .

The unfortunate term ’marginal’ does not imply a small probability. Historically, these probabilities were calculated in the margins
of probability tables .

Another quantity of interest is the conditional probability  of an event , provided that  has happened. For instance, if we
call two cards from a full deck, the probability of the second card being a Queen is conditional on the first card having been a
Queen. With the definition for the conditional probability we have
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If the marginal probability of event  is not zero, the conditional probability of event  given  is

Bayes’ theorem is the basis of Bayesian inference, where the probability of proposition  is sought given prior knowledge (short:
the prior) . Often Bayesian probability is interpreted subjectively, i.e., different persons, because they have different prior
knowledge , will come to different assessments for the probability of proposition . This interpretation is incompatible with
theoretical physics, where, quite successfully, an objective reality is assumed. Bayesian probability theory can also be applied with
an objective interpretation in mind and is nowadays used, among else, in structural modeling of biomacromolecules to assess
agreement of a model (the proposition) with experimental data (the prior).

In experimental physics, biophysics, and physical chemistry, Bayes’ theorem can be used to assign experimentally informed
probabilities to different models for reality. For example assume that a theoretical modeling approach, for instance an MD
simulation, has provided a set of conformations  of a protein molecule and associated probabilities . The
probabilities are related, via the Boltzmann distribution, to the free energies of the conformations (this point is discussed later in the
lecture course). We further assume that we have a measurement  with output  and we know the marginal probability  of
encountering this output for a random set of conformations of the protein molecule. Then we need only a physical model that
provides the conditional probabilities  of measuring  given the conformations  and can compute the probability 

 that the true conformation is , given the result of our measurement, via Bayes’ theorem. Equation ). This
procedure can be generalized to multiple measurements. The required  depend on measurement errors. The approach
allows for combining possibly conflicting modeling and experimental results to arrive at a ’best estimate’ for the distribution of
conformations.

The events associated with two random variables can occur completely independent of each other. This is the case for throwing two
dice: the number shown on the black die does not depend on the number shown on the red die. Hence, the probability to observe a
2 on the black and a 3 on the red die is . In general, joint probabilities of independent events factorize into the
individual (or marginal) probabilities, which leads to huge simplifications in computations. In the example of two coupled spins 

 and  the two random variables  and  may or may not be independent. This is decided by the
strength of the coupling, the preparation of trial , and the evolution time  before observation.

If two random variables are independent, the joint probability of two associated events is the product of the two marginal
probabilities,

As a consequence, the conditional probability  equals the marginal probability of  (and vice versa),

[concept:independent_variables]

For a set of more than two random variables two degrees of independence can be established, a weak type of pairwise
independence and a strong type of mutual independence. The set is mutually independent if the marginal probability distribution in
any subset, i.e. the set of marginal probabilities for all event combinations in this subset, is given by the product of the
corresponding marginal distributions for the individual events.  This corresponds to complete independence. Weaker pairwise
independence implies that the marginal distributions for any pair of random variables are given by the product of the two
corresponding distributions. Note that even weaker independence can exist within the set, but not throughout the set. Some, but not
all pairs or subsets of random variables can exhibit independence.

Another important concept for multiple random variables is whether or not they are distinguishable. In the example above we used
a black and a red die to specify our events. If both dice would be black, the event combinations  and  would be
indistinguishable and the corresponding composite event of observing a 2 and a 3 would have a probability of , i.e. the product
of the probability  of the basic composite event with its multiplicity 2. In general, if  random variables are indistinguishable,
the multiplicity equals the number of permutations of the  variables, which is .
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Functions of Discrete Random Variables 

We consider an event  that depends on two other events  and . For example, we ask for the probability that the sum of the
numbers shown by the black and red die is , where  can range from 2 to 12, given that we know the probabilities , which
in our example all have the value 1/36. In general, the probability distribution of random variable  can be computed by

where  is an arbitrary function of  and  and the Kronecker delta  assumes the value one if  and zero
otherwise. In our example,  will assume the value of 5 for the event combinations 
and no others. Hence, . There is only a single combination for , hence , and there are 6
combinations for , hence . Although the probability distributions for the individual random numbers  and 
are uniform, the one for  is not. It peaks at the value of  that has the most realizations. Such peaking of probability
distributions that depend on multiple random variables occurs very frequently in statistical mechanics. The peaks tend to become
the sharper the larger the number of random variables that contribute to the sum. If this number  tends to infinity, the distribution
of the sum  is so sharp that the distribution width (to be specified below) is smaller than the error in the measurement of the mean
value  (see Section [section:prob_dist_sum]). This effect is the very essence of statistical thermodynamics: Although
quantities for a single molecule may be broadly distributed and unpredictable, the mean value for a large number of molecules, let’s
say  of them, is very well defined and perfectly predictable.

In a numerical computer program, Equation ) for only two random variables can be implemented very easily by a loop over
all possible values of  with inner loops over all possible values of  and . Inside the innermost loop,  is computed and
compared to loop index  to add or not add  to the bin corresponding to value . Note however that such an approach does
not carry to large numbers of random variables, as the number of nested loops increases with the number of random variables and
computation time thus increases exponentially. Analytical computations are simplified by the fact that  usually deviates
from zero only within certain ranges of the summation indexes  (for ) and  (for ). The trick is then to find the proper
combinations of index ranges.

Compute the probability distribution for the sum  of the numbers shown by two dice in two ways. First, write a computer program
using the approach sketched above. Second, compute the probability distribution analytically by making use of the uniform
distribution for the individual events (  for all . For this, consider index ranges that lead to a given value of the
sum .

Discrete Probability Distributions 
In most cases random variables are compared by considering the mean values and widths of their probability distributions. As a
measure of the width, the standard deviation  of the values from the mean value is used, which is the square root of the variance 

. The concept can be generalized by considering functions  of the random variable. In the following expressions, 
 provides the mean value and standard deviation of the original random variable .

For any function  of a random variable , the mean value  is given by,

The standard deviation, which characterizes the width of the distribution of the function values , is given by,

The mean value is the first moment of the distribution, with the  moment being defined by

The  central moment is
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For the variance, which is the second central moment, we have

Assume that we know the mean values for functions  and  of two random variables as well as the mean value  of
their product, which we can compute if the joint probability function  is known. We can then compute a correlation function

which takes the value of zero, if  and  are independent random numbers.

Compute the probability distribution for the normalized sum  of the numbers obtained on throwing  dice in a single
trial. Start with  and proceed via  to . Find out how many Monte Carlo trials  you
need to guess the converged distribution. What is the mean value ? What is the standard deviation ? How do they
depend on ?

Probability Distribution of a Sum of Random Numbers 

If we associate the random numbers with  molecules, identical or otherwise, we will often need to compute the sum over all
molecules. This generates a new random number

whose mean value is the sum of the individual mean values,

If motion of the individual molecules is uncorrelated, the individual random numbers  are independent. It can then be shown that
the variances add ,

For identical molecules, all random numbers have the same mean  and variance  and we find

This result relates to the concept of peaking of probability distributions for a large number of molecules that was introduced above
on the example of the probability distribution for sum of the numbers shown by two dice. The width of the distribution normalized
to its mean value,

scales with the inverse square root of . For  molecules, this relative width of the distribution is one billion times smaller than
for a single molecule. Assume that for a certain physical quantity of a single molecule the standard deviation is as large as the mean
value. No useful prediction can be made. For a macroscopic sample, the same quantity can be predicted with an accuracy better
than the precision that can be expected in a measurement.
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Binomial Distribution 

We consider the measurement of the  component of spin angular momentum for an ensemble of  spins .  The random
number associated with an individual spin can take only two values,  or . Additive and multiplicative constants can be
taken care of separately and we can thus represent each spin by a random number  that assumes the value  (for 

) with probability  and, accordingly, the value  (for ) with probability . This is a very
general problem, which also relates to the second postulate of Penrose (see Section [Penrose_postulates]). A simplified version
with  is given by  flips of a fair coin. A fair coin or a biased coin with  can be easily implemented in a
computer, for instance by using a = floor(rand+P)  in Matlab. For the individual random numbers we find  and 

, so that the relative standard deviation for the ensemble with  members becomes 
.

To compute the explicit probability distribution of the sum of the random numbers for the whole ensemble, we realize that the
probability of a subset of  ensemble members providing a 1 and  ensemble members providing a 0 is . The
value of the sum associated with this probability is .

Now we still need to consider the phenomenon already encountered for the sum of the numbers on the black and red dice: Different
numbers  have different multiplicities. We have  permutations of the ensemble members. Let us assign a 1 to the first 
members of each permutation. For our problem, it does not matter in which sequence these  members are numbered and it does
not matter in which sequence the remaining  members are numbered. Hence, we need to divide the total number of
permutations  by the numbers of permutations in each subset,  and  for the first and second subset, respectively. The
multiplicity that we need is the number of combinations of  elements to the  class, which is thus given by the binomial
coefficient,

providing the probability distribution

For large values of  the binomial distribution tends to a Gaussian distribution,

As we already know the mean value  and variance , we can immediately write down the
approximation

As shown in Figure  the Gaussian approximation of the binomial distribution is quite good already at .
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Figure : Gaussian approximation of the binomial distribution. (A) Gaussian approximation (red dashed line) and binomial
distribution (black solid line) for  and . (B) Error of the Gaussian approximation relative to the maximum
value of the binomial distribution.

In fact, the Gaussian (or normal) distribution is a general distribution for the arithmetic mean of a large number of independent
random variables:

Suppose that a large number  of observations has been made with each observation corresponding to a random number that is
independent from the random numbers of the other observations. According to the central limit theorem, the mean value  of
the sum of all these random numbers is approximately normally distributed, regardless of the probability distribution of the
individual random numbers, as long all the probability distributions of all individual random numbers are identical.  The central
limit theorem applies, if each individual random variable has a well-defined mean value (expectation value) and a well-defined
variance. These conditions are fulfilled for statistically regular trials . [concept:central_limit_theorem]

Stirling’s Formula 
The number  of permutations increases very fast with , leading to numerical overflow in calculators and computers at values
of  that correspond to nanoclusters rather than to macroscopic samples. Even binomial coefficients, which grow less strongly
with increasing ensemble size, cannot be computed with reasonable precision for . Furthermore, the factorial  is
difficult to handle in calculus. The scaling problem can be solved by taking the logarithm of the factorial,

For large numbers  the natural logarithm of the factorial can be approximated by Stirling’s formula

which amounts to the approximation

for the factorial itself. For large numbers  it is further possible to neglect 1 in the sum and approximate .

The absolute error of this approximation for  looks gross and increases fast with increasing , but because  grows much
faster, the relative error becomes insignificant already at moderate . For  it is closely approximated by . In fact,
an even better approximation has been found by Gosper ,

Gosper’s approximation is useful for considering moderately sized systems, but note that several of our other assumptions and
approximations become questionable for such systems and much care needs to be taken in interpreting results. For the macroscopic
systems, in which we are mainly interested here, Stirling’s formula is often sufficiently precise and Gosper’s is not needed.

Slightly better than Stirling’s original formula, but still a simple approximation is
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