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1.2: Phase space

Hamiltonian Equations of Motion 

The Newtonian equations of motion are very convenient for atomistic molecular dynamics (MD) computations. Statistical analysis
of trajectories encountered during such MD simulations can be analyzed in terms of thermodynamic quantities, such as free energy.
However, for analyzing evolution of the system in terms of spectroscopic properties, the Newtonian description is very
inconvenient. Since spectroscopic measurements can provide the most stringent tests of theory, we shall use the Hamiltonian
formulation of mechanics in the following. This formulation is particularly convenient for molecules that also have rotational
degrees of freedom. For that, we replace the velocity coordinates by momentum coordinates , where index  runs over
all atoms and for each atom over the three Cartesian coordinates. Furthermore, we assume  identical molecules, with each of
them having  degrees of freedom, so that the total number of degrees of freedom is . Such as system can be described by

 differential equations

With the single-molecule Hamiltonian  the equations of motion for  non-interacting identical molecules with 
degrees of freedom for each molecule read

where . Each of the dynamical variables  and  is a vector of length . The  dynamical variables span the
phase space.

Phase space is the space where microstates of a system reside. Sometimes the term is used only for problems that can be
described in spatial and momentum coordinates, sometimes for all problems where some type of a Hamiltonian equation of
motion applies. Sometimes the term state space is used for the space of microstates in problems that cannot be described by
(only) spatial and momentum coordinates.

If the molecule is just a single atom, we have only  translational degrees of freedom and the Hamiltonian is given by

describing translation. For molecules with  atoms, three of the  degrees of freedom are translational, two or three are
rotational for linear and non-linear molecules, respectively, and the remaining  or  degrees of freedom are
vibrational.

The Liouville Equation 

Our observations do not allow us to specify phase space trajectories, i.e. the trajectory of microstates for a single system. Instead,
we consider an ensemble of identical systems that all represent the same (observational) macrostate  but may be in different
microstates. At a given time we can characterize such an ensemble by a probability density  in phase space, where  and 

 are the vectors of all momentum and spatial coordinates in the system, respectively. We are interested in an equation of motion
for this probability density , which corresponds to the full knowledge that we have on the system. This equation can be derived
from an integral representation of  and the Hamiltonian equations of motion .

The probability density  in phase space evolves in time according to
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With the Poisson brackets

this Liouville equation can be expressed as

For the probability density along a phase space trajectory, i.e., along a trajectory that is taken by microstates, we find

If we consider a uniformly distributed number  of ensemble members in a volume element  in phase space at time 
and ask about the volume element  in which these ensemble members are distributed at a later time, we find

This is the Liouville theorem of mechanics.

Quantum Systems 

Hamiltonian mechanics can be applied to quantum systems, with the Hamiltonian equations of motion being replaced by the time-
dependent Schrödinger equation. The probability density in phase space is replaced by the density operator  and the Liouville
equation by the Liouville-von-Neumann equation

In quantum mechanics, observables are represented by operators . The expectation value of an observable can be computed from
the density operator that represents the distribution of the ensemble in phase space,

We note that the Heisenberg uncertainty relation does not introduce an additional complication in statistical mechanics.
Determinism had been lost before and the statistical character of the measurement on an individual system is unproblematic, as we
seek only statistical predictions for a large ensemble. In the limit of an infinite ensemble, , there is no uncertainty and the
expectation values of incompatible observables are well defined and can be measured simultaneously. Such an infinitely large
system is not perturbed by the act of observing it. The only difference between the description of classical and quantum systems
arises from their statistical behavior on permutation of the coordinates of two particles, see Section [section:quantum_statistics].

This page titled 1.2: Phase space is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gunnar Jeschke via
source content that was edited to the style and standards of the LibreTexts platform.

= ( − )  .
∂ρ

∂t
∑

i

∂ρ

∂pi

∂H

∂qi

∂ρ

∂qi

∂H

∂pi

(1.2.4)

{u, v} = [ − ]  .∑
i

∂u

∂pi

∂v

∂qi

∂u

∂qi

∂v

∂pi

(1.2.5)

= −{H, ρ}  .
∂ρ

∂t
(1.2.6)

ρ (q(t), p(t), t) = 0 .
d

dt
(1.2.7)

dN dΓ0 t = 0

dΓ

dΓ = d  .Γ0 (1.2.8)

ρ̂

= − [ , ]  .
∂ρ̂

∂t

i

ℏ
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N → ∞

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/3.0/
https://chem.libretexts.org/@go/page/285755?pdf
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Book%3A_Classical_Mechanics_(Tatum)/14%3A_Hamiltonian_Mechanics/14.05%3A_Poisson_Brackets
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/05%3A_The_Density_Matrix/5.02%3A_Time-Evolution_of_the_Density_Matrix
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Statistical_Thermodynamics_(Jeschke)/01%3A_Basics_of_Statistical_Mechanics/1.02%3A_Phase_space
https://creativecommons.org/licenses/by-nc/3.0
https://chab.ethz.ch/en/research/faculty/person-detail.html?persid=57158
https://ethz.ch/content/dam/ethz/special-interest/chab/physical-chemistry/epr-dam/documents/education/statistical-thermodynamics/stat_TD.pdf

