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5.2: Quantum and Classical Statistics

Types of Permutation Symmetry 

Classical particles are either distinguishable or non-distinguishable, a difference that influences the relation between the system
partition function and the molecular partition function (Section [s_from_z]). Quantum particles are special. They are always
indistinguishable, but there exist two types that behave differently when two particles are permuted. For bosons, the wavefunction
is unchanged on such permutation, whereas for fermions the wavefunction changes sign. This sign change does not make the
particles distinguishable, as absolute phase of the wavefunction does not correspond to an observable. However, it has important
consequences for the population of microstates. Two (or more) bosons can occupy the same energy level. In the limit  they
will all occupy the ground state and form a Bose-Einstein condensate. Bosons are particles with integer spin, with the composite
boson  (two protons, two neutrons, two electrons) probably being the most famous example. In contrast, two fermions
(particles with half-integer spin) cannot occupy the same state, a fact that is known as Pauli exclusion principle. Protons, neutrons,
and electrons are fermions (spin 1/2), whereas photons are bosons (spin 1).

This difference in permutation symmetry influences the distribution of particles over energy levels. The simplest example is the
distribution of two particles to two energy levels  (for ’left’) and  (for ’right’) . For distinguishable classical particles four
possible configurations exist:

1.  is doubly occupied
2.  is occupied by particle A and  is occupied by particle B
3.  is occupied by particle B and  is occupied by particle A
4.  is doubly occupied.

For bosons and for indistinguishable classical particles as well, the second and third configuration above cannot be distinguished.
Only three configurations exist:

1.  is doubly occupied
2.  is occupied by one particle and  is occupied by one particle
3.  is doubly occupied.

For fermions, the first and third configuration of the boson case are excluded by the Pauli principle. Only one configuration is left:

1.  is occupied by one particle and  is occupied by one particle.

Since the number of configurations enters into all probability considerations, we shall find different probability distributions for
systems composed of bosons, fermions, or distinguishable classical particles. The situation is most transparent for an ideal gas, i.e. 

 non-interacting point particles that have only translational degrees of freedom . For such a system the spectrum of energy levels
is continuous.

Bose-Einstein Statistics 
We want to derive the probability distribution for the occupation of energy levels by bosons. To that end, we first pose the question
how many configurations exist for distributing  particles to  energy levels in the interval between  and . Each level
can be occupied by an arbitrary number of particles. We picture the problem as a common set of particles  and
levels  that has  elements. Now we consider all permutations in this set and use the convention that
particles that stand left from a level are assigned to this level. For instance, the permutation  for three
particles and three levels denotes a state where level  s occupied by particles  and , level  is occupied by particle  and
level  is empty. With this convention the last energy level is necessarily the last element of the set (any particle standing right
from it would not have an associated level), hence only  such permutations exist. Each permutation also encodes a
sequence of particles, but the particles are indistinguishable. Thus we have to divide by  in order to not double count
configurations that we cannot distinguish. It also does not matter in which sequence we order the levels with their associated
subsets of particles. Without losing generality, we can thus consider only the sequence with increasing level energy, so that the
level standing right (not included in the number of permutations ) is the level with the highest energy. For the
remaining  lower levels we have counted  permutations, but should have counted only the properly ordered one.
Hence, we also have to divide by . Therefore, the number of configurations and thus the number of microstates in the
interval between  and  is
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The configurations in energy intervals with different indices  are independent of each other. Hence, the statistical weight of a
macrostate is

As the number of energy levels is, in practice, infinite, we can choose the  sufficiently large for neglecting the 1 in . In an
exceedingly good approximation we can thus write

The next part of the derivation is the same as for the Boltzmann distribution in Section [subsection:Boltzmann], i.e., it relies on
maximization of  using the Stirling formula and considering the constraints of conserved total particle number 
and conserved total energy of the system . The initial result is of the form

where  is related to the Lagrange multiplier  by  and thus to the chemical potential by . After a rather
tedious derivation using the definitions of Boltzmann entropy and  we can identify  with . We refrain
from reproducing this derivation here, as the argument is circular: It uses the identification of  with  in the definition of
Boltzmann entropy that we had made earlier on somewhat shaky grounds. We accept the identification of  with  as
general for this type of derivations, so that we finally have

Up to this point we have supposed nothing else than a continuous, or at least sufficiently dense, energy spectrum and identical
bosons. To identify  we must have information on this energy spectrum and thus specify a concrete physical problem. When
using the density of states for an ideal gas consisting of quantum particles with mass  in a box with volume  (see Section
[section:gas_translation] for derivation),

we find, for the special case ,

Fermi-Dirac Statistics 
The number  of fermions in an energy interval with  levels cannot exceed . The number of allowed configurations is now
given by the number of possibilities to select  out of  levels that are populated, whereas the remaining levels remain empty.
As each level can exist in only one of two conditions, populated or empty, this is a binomial distribution problem as we have solved
in Section [binomial_distribution]. In Equation ) we need to substitute  by  and  by . Hence, the number of allowed
configurations in the energy interval between  and  is given by

and, considering mutual independence of the configurations in the individual energy intervals, the statistical weight of a macrostate
for fermions is
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Again, the next step of the derivation is analogous to derivation of the Boltzmann distribution in Section [subsection:Boltzmann] .
We find

For the special case ,  is again given by Equation . Comparison of Equation  with Equation 
reveals as the only difference the sign of the additional number 1 in the denominator on the right-hand side of the equations. In the
regime , for which we have specified , this difference is negligible.

It is therefore of interest when this regime applies. As  in the ideal gas problem, we have , so that  is
sufficient for the regime to apply. Wedler and Freund have computed values of  according to Equation  for the lightest ideal
gas, H , and have found  for  bar down to  K and at ambient temperature for pressures up to  bar. For
heavier molecules,  is larger under otherwise identical conditions. Whether a gas atom or molecule is a composite boson or
fermion thus does not matter, except at very low temperatures and very high pressures. However, if conduction electrons in a metal,
for instance in sodium, are considered as a gas, their much lower mass and higher number density  leads to  at ambient
temperature and even at temperatures as high as 1000 K. Therefore, a gas model for conduction electrons (spin 1/2) must be set up
with Fermi-Dirac statistics.

Maxwell-Boltzmann Statistics 

In principle, atoms and molecules are quantum objects and not classical particles. This would suggest that the kinetic theory of
gases developed by Maxwell before the advent of quantum mechanics is deficient. However, we have already seen that for particles
as heavy as atoms and molecules and number densities as low as in gases at atmospheric pressure or a bit higher, the difference
between Bose-Einstein and Fermi-Dirac statistics vanishes, unless temperature is very low. This suggests that, perhaps, classical
Maxwell-Boltzmann statistics is indeed adequate for describing gases under common experimental conditions.

We assume distinguishable particles. Each of the  particles can be freely assigned to one of the  energy levels. All these
configurations can be distinguished from each other, as we can picture each of the particles to have an individual tag. Therefore,

configurations can be distinguished in the energy interval between  and . Because the particles are distinguishable
(’tagged’), the configurations in the individual intervals are generally not independent from each other, i.e. the total number of
microstates does not factorize into the individual numbers of microstates in the intervals. We obtain more configurations than that
because we have the additional choice of distributing the  ’tagged’ particles to  intervals. We have already solved this problem
in Section [subsection:Boltzmann], the solution is Equation ). By considering the additional number of choices, which enters
multiplicatively, we find for the statistical weight of a macrostate

It appears that we have assumed a countable number  of intervals, but as in the derivations for the Bose-Einstein and Fermi-Dirac
statistics, nothing prevents us from making the intervals arbitrarily narrow and their number arbitrarily large.

Again, the next step in the derivation is analogous to derivation of the Boltzmann distribution in Section [subsection:Boltzmann] .
All the different statistics differ only in the expressions for , constrained maximization of  uses the same Lagrange ansatz.
We end up with

Comparison of Equation  with Equation  and  reveals that, again, only the 1 in the denominator on the right-hand
side makes the difference, now it is missing. In the regime, where Bose-Einstein and Fermi-Dirac statistics coincide to a good
approximation, both of them also coincide with Maxwell-Boltzmann statistics.
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There exist two caveats. First, we already know that the assumption of distinguishable particles leads to an artificial mixing entropy
for two subsystems consisting of the same ideal gas or, in other words, to entropy not being extensive. This problem does not,
however, influence the probability distribution, it only influences scaling of entropy with system size. We can solve it by an ad hoc
correction when computing the system partition function from the molecular partition function. Second, to be consistent we should
not use the previous expression for , because it was derived under explicit consideration of quantization of momentum.
However, for Maxwell-Boltzmann statistics  can be eliminated easily. With  we have from Equation 

which gives

With this, we can express the distribution function as

Comparison of Equation  with the Boltzmann distribution given by Equation  reveals the factors  as the only
difference. Thus, the probability distribution for Maxwell-Boltzmann statistics deviates from the most common form by the degree
of degeneracy  of the individual levels. This degeneracy entered the derivation because we assumed that within the intervals
between  and  several levels exist. If  is finite, we speak of near degeneracy. For quantum systems, degeneracy of
energy levels is a quite common phenomenon even in small systems where the energy spectrum is discrete. In order to describe
such systems, the influence of degeneracy on the probability distribution must be taken into account.

In quantum systems with discrete energy levels there may exist  quantum states with the same energy  that do not coincide
in all their quantum numbers. This phenomenon is called degeneracy and  the degree of degeneracy. A set of  degenerate
levels can be populated by up to  fermions. In the regime, where Boltzmann statistics is applicable to the quantum system,
the probability distribution considering such degeneracy is given by

and the molecular partition function by

The condition that degenerate levels do not coincide in all quantum numbers makes sure that the Pauli exclusion principle does not
prevent their simultaneous population with fermions.

At this point we can summarize the expected number of particles with chemical potential  at level  with energy  and arbitrary
degeneracy  for Bose-Einstein, Fermi-Dirac, and Boltzmann statistics:

Note that the chemical potential  in these equations is determined by the condition . The constant  in the derivations
above is given by . If  is not constant, we have  and thus .
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