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5.4: Characterizing Couplings in 2D Spectra
One of the unique characteristics of 2D spectroscopy is the ability to characterize molecular couplings . This allows one to
understand microscopic relationships between different objects, and with knowledge of the interaction mechanism, determine the
structure or reveal the dynamics of the system. To understand how 2D spectra report on molecular interactions, we will discuss the
spectroscopy using a model for two coupled electronic or vibrational degrees of freedom. Since the 2D spectrum reports on the
eigenstates of the coupled system, understanding the coupling between microscopic states requires a model for the eigenstates in
the basis of the interacting coordinates of interest. Traditional linear spectroscopy does not provide enough constraints to uniquely
determine these variables, but 2D spectroscopy provides this information through a characterization of two-quantum eigenstates.

Since it takes less energy to excite one coordinate if a coupled coordinate already has energy in it, a characterization of the energy
of the combination mode with one quantum of excitation in each coordinate provides a route to obtaining the coupling. This
principle lies behind the use of overtone and combination band molecular spectroscopy to unravel anharmonic couplings.

The language for the different variables for the Hamiltonian of two coupled coordinates varies considerably by discipline. A variety
of terms that are used are summarized below. We will use the underlined terms.

System Hamiltonian Local or site basis (i,j) Eigenbasis (a,b)
One-Quantum

Eigenstates
Two-Quantum

Eigenstates

Local mode Hamiltonian
Exciton Hamiltonian 
Frenkel Exciton
Hamiltonian 
Coupled oscillators

Sites
Local modes 
Oscillators 
Chromophores

Eigenstates
Exciton states
Delocalized states

Fundamental
v=0-1 
One-exciton states 
Exciton band

Combination mode or
band
Overtone 
Doubly excited states
Biexciton 
Two-exciton states

The model for two coupled coordinates can take many forms. We will pay particular attention to a Hamiltonian that describes the
coupling between two local vibrational modes i and j coupled through a bilinear interaction of strength J:

An alternate form cast in the ladder operators for vibrational or electronic states is the Frenkel exciton Hamiltonian

The bi-linear interaction is the simplest form by which the energy of one state depends on the other. One can think of it as the
leading term in the expansion of the coupling between the two local states. Higher order expansion terms are used in another
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common form, the cubic anharmonic coupling between normal modes of vibration

In the case of eq. (9.2), the eigenstates and energy eigenvalues for the one-quantum states are obtained by diagonalizing the 2x2
matrix

 and  are the one-quantum energies for the local modes  and . These give the system energy eigenvalues

 and  can be observed in the linear spectrum, but are not sufficient to unravel the three variables (site energies  and
coupling J) relevant to the Hamiltonian; more information is needed.

For the purposes of 2D spectroscopy, the coupling is encoded in the two-quantum eigenstates. Since it takes less energy to excite a
vibration  if a coupled mode  already has energy, we can characterized the strength of interaction from the system eigenstates
by determining the energy of the combination mode  relative to the sum of the fundamentals:

In essence, with a characterization of  one has three variables that constrain . The relationship between 
and J depends on the model.

Working specifically with the vibrational Hamiltonian eq. (9.1), there are three twoquantum states that must be considered.
Expressed as product states in the two local modes these are  and . The two-quantum energy eigenvalues of
the system are obtained by diagonalizing the 3x3 matrix

Here  and  are the two-quantum energies for the local modes  and . These are commonly expressed in terms of ,
the anharmonic shift of the i=1-2 energy gap relative to the i=0-1 one-quantum energy:

Although there are analytical solutions to eq. (9.9), it is more informative to examine solutions in two limits. In the strong coupling
limit ( ), one finds

For vibrations with the same anharmonicity  with weak coupling between them ( ), perturbation theory yields

This result is similar to the perturbative solution for weakly coupled oscillators of the form given by eq. (9.4)
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So, how do these variables present themselves in 2D spectra? Here it is helpful to use a specific example: the strongly coupled
carbonyl vibrations of  or RDC. For the purpose of 2D spectroscopy with infrared fields resonant with the
carbonyl transitions, there are six quantum states (counting the ground state) that must be considered. Coupling between the
two degenerate CO stretches leads to symmetric and anti-symmetric one-quantum eigenstates, which are more commonly
referred to by their normal mode designations: the symmetric and asymmetric stretching vibrations. For n=2 coupled
vibrations, there are n(n−1)/2 = 3 two-quantum eigenstates. In the normal mode designation, these are the first overtones of the
symmetric and asymmetric modes and the combination band. This leads to a six level system for the system eigenstates, which
we designate by the number of quanta in the symmetric and asymmetric stretch: ,  = ,  = ,  = ,  =

, and  = . For a model electronic system, there are four essential levels that need to be considered, since Fermi
statistics does not allow two electrons in the same state: , , , and .

Figure : Paste Caption Here

We now calculate the nonlinear third-order response for this six-level system, assuming that all of the population is initially in
the ground state. To describe a double-resonance or Fourier transform 2D correlation spectrum in the variables  and ,
include all terms relevant to pump-probe experiments:  ( , rephasing) and  ( , non-rephasing).
After summing over many interaction permutations using the phenomenological propagator, keeping only dipole allowed
transitions with ±1 quantum, we find that we expect eight resonances in a 2D spectrum. For the case of the rephasing spectrum 

To discuss these peaks we examine how they appear in the experimental Fourier transform 2D IR spectrum of RDC, here
plotted both as in differential absorption mode and absolute value mode. We note that there are eight peaks, labeled according
to the terms i eq. (9.14) from which they arise. Each peak specifies a sequence of interactions with the system eigenstates, with
excitation at a particular  and detection at given . Notice that in the excitation dimension  all of the peaks lie on one of
the fundamental frequencies. Along the detection axis  resonances are seen at all six one-quantum transitions present in our
system.
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More precisely, there are four features: two diagonal and two cross peaks each of which are split into a pair. The positive
diagonal and cross peak features represent evolution on the fundamental transitions, while the split negative features arise from
propagation in the two-quantum manifold. The diagonal peaks represent a sequence of interactions with the field that leaves
the coherence on the same transition during both periods, where as the split peak represents promotion from the fundamental to
the overtone during detection. The overtone is anharmonically shifted, and therefore the splitting between the peaks, , ,
gives the diagonal anharmonicity. The cross peaks arise from the transfer of excitation from one fundamental to the other,
while the shifted peak represents promotion to the combination band for detection. The combination band is shifted in
frequency due to coupling between the two modes, and therefore the splitting between the peaks in the off-diagonal features 

 gives the off-diagonal anharmonicity.

Notice for each split pair of peaks, that in the limit that the anharmonicity vanishes, the two peaks in each feature would
overlap. Given that they have opposite sign, the peaks would destructively interfere and vanish for a harmonic system. This is a
manifestation of the rule that a nonlinear response vanishes for a harmonic system. So, in fact, a 2D spectrum will have
signatures of whatever types of vibrational interactions lead to imperfect interference between these two contributions.
Nonlinearity of the transition dipole moment will lead to imperfect cancellation of the peaks at the amplitude level, and
nonlinear coupling with a bath will lead to different lineshapes for the two features.

With an assignment of the peaks in the spectrum, one has mapped out the energies of the one- and two-quantum system
eigenstates. These eigenvalues act to constrain any model that will be used to interpret the system. One can now evaluate how
models for the coupled vibrations match the data. For instance, when fitting the RDC spectrum to the Hamiltonian in eq. (9.1)
for two coupled anharmonic local modes with a potential of the form , we obtain 

, , and . Alternatively, we can describe the spectrum
through eq. (9.4) as symmetric and asymmetric normal modes with diagonal and off-diagonal anharmonicity. This leads to 

, , , and . Provided that one knows the
origin of the coupling and its spatial or angular dependence, one can use these parameters to obtain a structure.
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