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Introduction
Spectroscopy comes from the Latin “spectron” for spirit or ghost and the Greek “σκοπιεν” for to see. These roots are very telling,
because in molecular spectroscopy you use light to interrogate matter, but you actually never see the molecules, only their influence
on the light. Different spectroscopies give you different perspectives. This indirect contact with the microscopic targets means that
the interpretation of spectroscopy in some manner requires a model, whether it is stated or not. Modeling and laboratory practice of
spectroscopy are dependent on one another, and therefore a spectroscopy is only as useful as its ability to distinguish different
models. The observables that we have to extract microscopic information in traditional spectroscopy are resonance frequencies,
spectral amplitudes, and lineshapes. We can imagine studying these spectral features as a function of control variables for the light
field (amplitude, frequency, polarization, phase, etc.) or for the sample (for instance a systematic variation of the physical
properties of the sample).

In complex systems, those in which there are many interacting degrees of freedom and in which spectra become congested or
featureless, the interpretation of traditional spectra is plagued by a number of ambiguities. This is particularly the case for
spectroscopy of disordered condensed phases, where spectroscopy is the primary tool for describing molecular structure,
interactions and relaxation, kinetics and dynamics, and tremendous challenges exist on understanding the variation and dynamics of
molecular structures. This is the reason for using nonlinear spectroscopy, in which multiple light-matter interactions can be used to
correlate different spectral features and dissect complex spectra. We can resonantly drive one spectroscopic feature and see how
another is influenced, or we can introduce time delays to see how properties change with time.

 

figure  : graph of spectral features over time

Absorption or emission spectroscopies are referred to as linear spectroscopy, because they involve a weak light-matter interaction
with one primary incident radiation field, and are typically presented through a single frequency axis. The ambiguities that arise
when interpreting linear spectroscopy can be illustrated through two examples:

1) Absorption spectrum with two peaks. Do these resonance arise from different, non-interacting molecules, or are these coupled
quantum states of the same molecule? (One cannot resolve couplings or spectral correlations directly).

 

Figure  absorption spectrums for two elements

2) Broad lineshapes. Can you distinguish whether it is a homogeneous lineshape broadened by fast irreversible relaxation or an
inhomogeneous lineshape arising from a static distribution of different frequencies? (Linear spectra cannot uniquely interpret line-
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broadening mechanism, or decompose heterogeneous behavior in the sample).

 

Figure  linear Spectra of molecules

In the end effect linear spectroscopy does not offer systematic ways of attacking these types of problems. It also has little ability to
interpret dynamics and relaxation. These issues take on more urgency in the condensed phase, when lineshapes become broad and
spectra are congested. Nonlinear spectroscopy provides a way of resolving these scenarios because it uses multiple light fields with
independent control over frequency or time-ordering in order to probe correlations between different spectral features. For instance,
the above examples could be interpreted with the use of a double-resonance experiment that reveals how excitation at one
frequency ω  influences absorption at another frequency ω .

3
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What is Nonlinear Spectroscopy?
Linear spectroscopy commonly refers to light-matter interaction with one primary incident radiation field which is weak, and can
be treated as a linear response between the incident light and the matter. From a quantum mechanical view of the light field, it is
often conceived as a “one photon in/one photon out” measurement. Nonlinear spectroscopy is used to refer to cases that fall outside
this view, including:

1. Watching the response of matter subjected to interactions with two or more independent incident fields, and
2. the case where linear response theory is inadequate for treating how the material behaves, as in the case of very intense incident

radiation.

If we work within the electric dipole Hamiltonian, nonlinear experiments can be expressed in terms of three or more transition
matrix elements. The response of the matter in linear experiments will scale as  or , whereas in nonlinear experiments
will take a form such as . Our approach to describing nonlinear spectroscopy will use the electric dipole Hamiltonian and
a perturbation theory expansion of the dipole operator.

|μab|
2

μabμab

μabμbcμca
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1: Coherent Spectroscopy and the Nonlinear Polarization
We will specifically be dealing with the description of coherent nonlinear spectroscopy, which is the term used to describe the case
where one or more input fields coherently act on the dipoles of the sample to generate a macroscopic oscillating polarization. This
polarization acts as a source to radiate a signal that we detect in a well-defined direction. This class includes experiments such as
pump-probes, transient gratings, photon echoes, and coherent Raman methods. However understanding these experiments allows
one to rather quickly generalize to other techniques.

Detection: Coherent Spontaneous

Linear

Absorption
Fluorescence, phosphorescence, Raman,
and light scattering

Nonlinear

Pump-probe transient absorption, photon
echoes, transient gratings, CARS,
impulsive Raman scattering

Fluorescence-detected nonlinear
spectroscopy, i.e. stimulated emission
pumping, time-dependent Stokes shift

Spontaneous and coherent signals are both emitted from all samples, however, the relative amplitude of the two depend on the
time-scale of dephasing within the sample. For electronic transitions in which dephasing is typically much faster than the radiative
lifetime, spontaneous emission is the dominant emission process. For the case of vibrational transitions where non-radiative
relaxation is typically a picoseconds process and radiative relaxation is a µs or longer process, spontaneous emission is not
observed. The description of coherent nonlinear spectroscopies is rooted in the calculation of the polarization, P . The polarization
is a macroscopic collective dipole moment per unit volume, and for a molecular system is expressed as a sum over the
displacement of all charges for all molecules being interrogated by the light.

Sum over molecules:

Sum over charges on molecules:

In coherent spectroscopies, the input fields E act to create a macroscopic, coherently oscillating charge distribution.

as dictated by the susceptibility of the sample. The polarization acts as a source to radiate a new electromagnetic field, which we
term the signal . (Remember that an accelerated charge radiates an electric field.) In the electric dipole approximation, the

∝ |Icoherent ∑
i

μi|
2 ∝ |Ispont ∑

i

μi|
2

( ) = δ( − )P̄ r̄ ∑
m

μ̄m r̄ R̄m (1.1)

≡ ( − )μ̄m ∑
α

qmα r̄mα R̄m (1.2)

(ω) = χ (ω)P̄ Ē (1.3)

Ēsig
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polarization is one term in the current and charge densities that you put into Maxwell’s equations.

From our earlier description of freely propagating electromagnetic waves, the wave equation for a transverse, plane wave was

which gave a solution for a sinusoidal oscillating field with frequency ω propagating in the direction of the wavevector k. In the
present case, the polarization acts as a source − an accelerated charge − and we can write

The polarization can be described by solutions of the form

As we will discuss further later, the wavevector and frequency of the polarization depend on the frequency and wave vector of
incident fields.

These relationships enforce momentum and energy conservation for the problem. The oscillating polarization radiates a coherent
signal field, , in a wave vector matched direction . Although a single dipole radiates as a sinθ field distribution relative to
the displacement of the charge,  for an ensemble of dipoles that have been coherently driven by external fields, P is given by (2.6)
and the radiation of the ensemble only constructively adds along . For the radiated field we obtain

This solution comes from solving (2.5) for a thin sample of length l, for which the radiated signal amplitude grows and becomes
directional as it propagates through the sample. The emitted signal

Here we note the oscillating polarization is proportional to the signal field, although there is a π/2 phase shift between the two, 
, because in the sample the polarization is related to the gradient of the field. Δk is the wave-vector mismatch between

the wavevector of the polarization  and the radiated field , which we will discuss more later.

For the purpose of our work, we obtain the polarization from the expectation value of the dipole operator

The treatment we will use for the spectroscopy is semi-classical, and follows the formalism that was popularized by Mukamel.  As
before, our Hamiltonian can generally be written as

where the material system is described by H  and treated quantum mechanically, and the electromagnetic fields V(t) are treated
classically and take the standard form

The fields only act to drive transitions between quantum states of the system. We take the interaction with the fields to be
sufficiently weak that we can treat the problem with perturbation theory. Thus, n -order perturbation theory will be used to
describe the nonlinear signal derived from interacting with n electromagnetic fields.

1. The radiation pattern in the far field for the electric field emitted by a dipole aligned along the z axis is 

( , t) − = 0∇̄
2
Ē r̄

1

c2

( , t)∂2Ē r̄

∂t2
(1.4)

( , t) − =∇̄
2
Ē r̄

1

c2

( , t)∂2Ē r̄

∂t2

4π

c2

( , t)∂2P̄ r̄

∂t2
(1.5)

( , t) = P (t)exp(i ⋅ − i t) +c. c.P̄ r̄ k̄
′
sig r̄ ωsig (1.6)

= ±k̄sig ∑
n

k̄n (1.7)

= ±ωsig ∑
n

ωn (1.8)

Ēsig k̄sig

1

k̄sig

( , t) = ( , t)exp(i ⋅ − i t) +c. c.Ēsig r̄ Esig r̄ k̄sig r̄ ωsig (1.9)

(t) = i l (t)sinc( )Ēsig

2πωs

nc
P̄

Δkl

2
eiΔkl/2 (1.10)

∝ iĒsig P̄

k̄
′
sig k̄sig

(t) ⇒P̄ μ(t)¯ (1.11)

2

H = +V (t)H0 (1.12)

0

V (t) = − ⋅μ̄ Ē (1.13)

th
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(written in spherical coordinates). See Jackson, Classical Electrodynamics.

2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy. (Oxford University Press, New York, 1995).

This page titled 1: Coherent Spectroscopy and the Nonlinear Polarization is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

E(r, θ, ϕ, t) = − sin(k ⋅ r −ωt)
p0k2

4πϵ0

sinθ

r
(1.14)
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1.1: Linear Absorption Spectroscopy
Absorption is the simplest example of a coherent spectroscopy. In the semi-classical picture, the polarization induced by the
electromagnetic field radiates a signal field that is out-of-phase with the transmitted light. To describe this, all of the relevant
information is in  or .

Let’s begin with a frequency-domain description of the absorption spectrum, which we previously found was proportional to the
imaginary part of the susceptibility, .  We consider one monochromatic field incident on the sample that resonantly drives
dipoles in the sample to create a polarization, which subsequently re-radiate a signal field (free induction decay). For one input
field, the energy and momentum conservation conditions dictate that  and , that is a signal field of the same
frequency propagates in the direction of the transmitted excitation field.

Figure : Linear absorption with the signal propagating in the same direction as the incident light.

In practice, an absorption spectrum is measured by characterizing the frequency-dependent transmission decrease on adding the
sample . For the perturbative case, let’s take the change of intensity  to be small, so that 
and . Then we can write the measured intensity after the sample as

Here we have made use of the assumption that . We see that as a result of the phase shift between the polarization and
the radiated field that the absorbance is proportional to .

A time-domain approach to absorption draws on Eq. (2.1.1) and should recover the relationships to the dipole autocorrelation
function that we discussed previously. Equating  with , we can calculate the polarization in the density matrix picture as

where the first order expansion of the density matrix is

Substituting eq. (2.13) we find

R(t) χ(ω)

(t) = dτR(τ)E(t−τ)P̄ ∫

0

∞

(1.1.1)

(ω) = χ(ω) (ω)P̄ Ē (1.1.2)

χ'' 1

=ωin ωsig =kin ksig

1.1.1

A = −log /Iout Iin δI = −Iin Iout A ≈ δI

≈Iin Iout

Iout

⇒ Iout

= | +Eout Esig |2

= | +(iP )Eout |2

= | + iχEout Ein |2

≈ | + iχEin Ein |
2

= | |1 + i( + i )Ein |
2

χ′ χ′′ |
2

= (1 −2 +⋯)Iin χ′′

= −δIIin

| | ≫ |χ|Ein

: δI = 2χ′′ χ′′Iin

(t)P̄ μ(t)¯

(t) = Tr( (t) (t))P̄ μI ρ
(1)

I
(1.1.3)

= − d [ ( ), ]ρ
(1)
I

i

ℏ
∫

−∞

t

t1 VI t1 ρeq (1.1.4)
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In the last line, we switched variables to the time interval , and made use of the identity . Now
comparing to Eq. (2.1.1), we see, as expected

So the linear response function is the sum of two correlation functions, or more precisely, the imaginary part of the dipole
correlation function.

Also, as we would expect, when we use an impulsive driving potential to induce a free induction decay (i.e., 
), the polarization is directly proportional to the response function, which can be Fourier transformed to

obtain the absorption lineshape.

1. Remember the following relationships of the susceptibility with the complex dielectric constant , the index of refraction 
, and the absorption coefficient :
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(t)P̄ = Tr (t) d [− ( )E( ), ]
⎛

⎝
⎜μI

i

ℏ
∫

−∞

t

t′ μI t′ t′ ρeq
⎞

⎠
⎟

= − d E( )Tr ( (t) [ ( ), ])
i

ℏ
∫

−∞

t

t′ t′ μI μI t′ ρeq

= + dτE(t−τ)Tr ([ (τ), (0)] )
i

ℏ
∫

0

∞

μI μI ρeq

τ = t− t′ [A, [B,C]] = [[A,B] ,C]

R(τ) = θ(τ)Tr ([ (τ), (0)] )
i

ℏ
μI μI ρeq (1.1.5)

R(τ) = θ(τ) (C(τ) − (τ))
i

ℏ
C ∗ (1.1.6)

C(τ) = Tr ( (τ) (0) )μI μI ρeq

(τ) = Tr ( (τ) (0))C ∗ μI ρeqμI (1.1.7)

E(t−τ) = δ(t−τ)E0

ϵ(ω)

n(ω) κ(ω)

ϵ(ω) = 1 +4πχ(ω)

= (ω) = n(ω) + iκ(ω)ϵ(ω)
− −−−

√ n~
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1.2: Nonlinear Polarization
For nonlinear spectroscopy, we will calculate the polarization arising from interactions with multiple fields. We will use a
perturbative expansion of  in powers of the incoming fields

where  refers to the polarization arising from  incident light fields. So,  and higher are the nonlinear terms. We calculate
P from the density matrix

As we wrote earlier,  is the n  order expansion of the density matrix

Let’s examine the second-order polarization in order to describe the nonlinear response function. Earlier we stated that we could
write the second-order nonlinear response arise from two time-ordered interactions with external potentials in the form

We can compare this result to what we obtain from . Substituting as we did in the linear case,

In the last line we switched variables to the time-intervals  and , and enforced the time-ordering 
. Comparison of eqs. (2.2.4) and (2.2.5) allows us to state that the second order nonlinear response function is

P

(t) = + + +⋯P̄ P (0) P (1) P (2) (1.2.1)

P (n) n P (2)

(t)P̄ = Tr ( (t) (t))μ̄I ρI

= Tr( )+Tr( (t))+Tr( (t))+⋯μ̄Iρ
(0)

I
μ̄Iρ

(1)

I
μ̄Iρ

(2)

I

P
(n)

I
th

=ρ(0) ρeq

= − d [ ( ), ]ρ(1) i

ℏ
∫

−∞

t

t1 VI tI ρeq (1.2.2)

= d d [ ( ) [ ( ), ]]ρ(2) (− )
i

ℏ

2

∫

−∞

t

t2 ∫

−∞

t2

t1 VI t2 VI tI ρeq

= d d ⋯ d [ ( ), [ ( ), [⋯ [ ( ), ] ⋯]]]ρ
(n)

I
(− )

i

ℏ

n

∫

−∞

t

tn ∫

−∞

tn

tn−1 ∫

−∞

t2

t1 VI tn VI tn−1 VI t1 ρeq (1.2.3)

(t) = d d ( , ) (t− − ) (t− )P̄
(2)

∫

0

∞

τ2 ∫

0

∞

τ1R
(2) τ2 τ1 Ē1 τ2 τ1 Ē2 τ2 (1.2.4)

(t) = Tr( (t) (t))P (2) μI ρ
(2)
I

(t)P (2) = Tr{ (t) d d [ ( ) , [ ( ) , ]]}μI (− )
i

ℏ

2

∫
t

−∞

t2 ∫
t2

−∞

t1 VI t2 VI t1 ρeq

= d d ( ) ( ) Tr{[[ (t), ( )] , ( )] }( )
i

ℏ

2

∫
t

−∞

t2 ∫
t2

−∞

t1E2 t2 E1 t1 μI μI t2 μI t1 ρeq

= d d (t− ) (t− − ) Tr{[[ ( + ) , ( )] , (0)] }( )
i

ℏ

2

∫
∞

0

τ2 ∫
∞

0

τ1E2 τ2 E1 τ2 τ1 μI τ1 τ2 μI τ1 μI ρeq

= t− −t1 τ1 τ2 = t−t2 τ2

≤t1 t2
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Again, for impulsive interactions (i.e., delta function light pulses), the nonlinear polarization is directly proportional to the response
function. Similar exercises to the linear and second order response can be used to show that the nonlinear response function to
arbitrary order  is

We see that in general the nonlinear response functions are sums of correlation functions, and the n  order response has 2n
correlation functions contributing. These correlation functions differ by whether sequential operators act on the bra or ket side of ρ
when enforcing the time-ordering. Since the bra and ket sides represent conjugate wavefunctions, these correlation functions will
contain coherences with differing phase relationships during subsequent time-intervals.

To see more specifically what a specific term in these nested commutators refers to, let’s look at  and enforce the time-
ordering:

Term 1 in eq. (2.2.7)

(1) dipole acts on ket of 

(2) evolve under  during .

(3) dipole acts on ket.

(4) Evolve during .

(5) Multiply by  and take trace.

KET/KET interaction

At each point of interaction with the external potential, the dipole operator acted on ket side of ρ . Different correlation functions
are distinguished by the order that they act on bra or ket. We only count the interactions with the incident fields, and the convention
is that the final operator that we use prior to the trace acts on the ket side. So the term Q  is a ket/ket interaction. An alternate way
of expressing this correlation function is in terms of the time-propagator for the density matrix, a superoperator defined through: 

. Remembering the time-ordering, this allows Q  to be written as

Term 2

BRA/KET interaction

For the remaining terms we note that the bra side interaction is the complex conjugate of ket side, so of the four terms in eq. (2.2.7),
we can identify only two independent terms:

This is a general observation. For , you really only need to calculate 2  correlation functions. So for  we write

( , ) = θ ( )θ ( ) Tr{[[ ( + ) , ( )] , (0)] }R(2) τ1 τ2 ( )
i

ℏ

2

τ1 τ2 μI τ1 τ2 μI τ1 μI ρeq (1.2.5)

R(n)

( , , … )R(n) τ1 τ2 τn = θ ( )θ ( ) … θ ( )( )
i

ℏ

n

τ1 τ2 τn

×Tr{[[… [ ( + +… + ) , ( + +⋯ )] , …] (0)] }μI τn τn−1 τ1 μI τn−1 τn τ1 μI ρeq

th

R(2)

Q1 = Tr ( ( + ) ( ) (0) )μ1 τ1 τ2 μI τ1 μI ρeq

= Tr( μ μ ( )μ )
( + )U

†
0 τ1 τ2

( ) ( )U †
0 τ1 U †

0 τ2

( + ) (τ)U0 τ1 τ2 U
†
0

( )U0 τ2

U0 τ1 ρeq

= Tr(μ ( )μ ( )μ ( ) ( ))U0 τ2 U0 τ1 ρeqU
†
0 τ1 U

†
0 τ2

ρeq

H0 τ1

τ2

μ

1

(t) = |a⟩⟨b|Ĝ ρab U0 U †
0 1

= Tr(μ ( )μ ( )μ )Q1 Ĝ τ2 Ĝ τ1 ρeq (1.2.6)

Q2 = Tr ( (0) ( + ) ( ) )μI μI τ1 τ2 μI τ1 ρeq

= Tr ( ( + ) ( ) (0))μI τ1 τ2 μI τ1 ρeqμI

⇒ ket/ket      ⇒ bra/bra      ⇒ ket/bra      ⇒ bra/ketQ1 Q∗
1 Q2 Q∗

2

R(n) n-1 R(2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/298950?pdf


1.2.3 https://chem.libretexts.org/@go/page/298950

where

So what is the difference in these correlation functions? Once there is more than one excitation field, and more than one time
period during which coherences can evolve, then one must start to carefully watch the relative phase that coherences acquire during
different consecutive time-periods, . To illustrate, consider wavepacket evolution: light interaction can impart positive
or negative momentum ( ) to the evolution of the wavepacket, which influences the direction of propagation and the phase of
motion relative to other states. Any subsequent field that acts on this state must account for time-dependent overlap of these
wavepackets with other target states. The different terms in the nonlinear response function account for all of the permutations of
interactions and the phase acquired by these coherences involved. The sum describes the evolution including possible interference
effects between different interaction pathways.
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= θ ( )θ ( ) [ ( , ) − ( , )]R(2) ( )
i

ℏ

2

τ1 τ2 ∑
α=1

2

Qα τ1 τ2 Q∗
α τ1 τ2 (1.2.7)

= Tr [ ( + ) ( ) (0) ]Q1 μI τ1 τ2 μI τ1 μI ρeq (1.2.8)

= Tr [ ( ) ( + ) (0) ]Q1 μI τ1 μI τ1 τ2 μI ρeq (1.2.9)

ϕ(τ) = τωab

±k̄in
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1.3: Third Order Response
Since  orientationally averages to zero for isotropic systems, the third-order nonlinear response described the most widely used
class of nonlinear spectroscopies.

Here the convention for the time-ordered interactions with the density matrix is R  = ket / ket / ket ; R  = bra / ket / bra ; R  = bra /
bra / ket ; and R  ⇒ ket / bra / bra . In the eigenstate representation, the individual correlation functions can be explicitly written in
terms of a sum over all possible intermediate states (a,b,c,d)
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R(2)

( , , ) = θ ( )θ ( )θ ( ) Tr{[ ( + + ) , ( + )], ( )], (0)] }R(3) τ1 τ2 τ3 ( )
i

ℏ

3

τ3 τ2 τ1 μI τ1 τ2 τ3 μI τ1 τ2 μI τ1 μI ρeq (1.3.1)

( , , ) = θ ( )θ ( )θ ( ) [ ( + + ) − ( + + )]R(3) τ1 τ2 τ3 ( )
i

ℏ

3

τ3 τ2 τ1 ∑
α=1

4

Rα τ1 τ2 τ3 R∗
α τ1 τ2 τ3 (1.3.2)

1 2 3

4

= ⟨ ( + + ) ( + ) ( ) (0)⟩R1 ∑a,b,c,dpa μad τ1 τ2 τ3 μdc τ1 τ2 μcb τ1 μba

= ⟨ (0) ( + ) ( + + ) ( )⟩R2 ∑a,b,c,dpa μad μdc τ1 τ2 μcb τ1 τ2 τ3 μba τ1

= ⟨ (0) ( ) ( + + ) ( + )⟩R3 ∑a,b,c,dpa μad μdc τ1 μcb τ1 τ2 τ3 μba τ1 τ2

= ⟨ ( ) ( + ) ( + + ) (0)⟩R4 ∑a,b,c,dpa μad τ1 μdc τ1 τ2 μcb τ1 τ2 τ3 μba

(1.3.3)
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1.4: Summary - General Expressions for nth Order Nonlinearity
For an n -order nonlinear signal, there are n interactions with the incident electric field or fields that give rise to the radiated signal.
Counting the radiated signal there are n+1 fields involved (n+1 light-matter interactions), so that n  order spectroscopy is at times
referred to as (n+1)- wave mixing. The radiated nonlinear signal field is proportional to the nonlinear polarization:

Here the interactions of the light and matter are expressed in terms of a sequence of consecutive time intervals  prior to
observing 14 the system. For delta-function interactions, , the polarization and response function are
directly proportional

This page titled 1.4: Summary - General Expressions for nth Order Nonlinearity is shared under a not declared license and was authored, remixed,
and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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∞

0

τn ∫
∞

0

τ1R
(n) τ1 τ2 τn Ē1 τn τ1 Ēn τn (1.4.1)

( , , … )R(n) τ1 τ2 τn = θ ( )θ ( ) … θ ( )( )
i

ℏ

n

τ1 τ2 τn

×Tr{[[… [ ( + +… + ) , ( + +⋯ )] , …] (0)] }μI τn τn−1 τ1 μI τn−1 τn τ1 μI ρeq

…τ1 τn
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1

CHAPTER OVERVIEW

2: Diagrammatic Perturbation Theory
In practice, the nonlinear response functions as written above provide little insight into what the molecular origin of particular
nonlinear signals is. These multiply nested terms are difficult to understand when faced the numerous light-matter interactions,
which can take on huge range of permutations when performing experiments on a system with multiple quantum states. The
different terms in the response function can lead to an array of different nonlinear signals that vary not only microscopically by the
time-evolution of the molecular system, but also differ macroscopically in terms of the frequency and wavevector of the emitted
radiation.

Diagrammatic perturbation theory (DPT) is a simplified way of keeping track of the contributions to a particular nonlinear signal
given a particular set of states in  that are probed in an experiment. It uses a series of simple diagrams to represent the evolution
of the density matrix for , showing repeated interaction of ρ with the fields followed by time-propagation under . From a
practical sense, DPT allows us to interpret the microscopic origin of a signal with a particular frequency and wavevector of
detection, given the specifics of the quantum system we are studying and the details of the incident radiation. It provides a
shorthand form of the correlation functions contributing to a particular nonlinear signal, which can be used to understand the
microscopic information content of particular experiments. It is also a bookkeeping method that allows us to keep track of the
contributions of the incident fields to the frequency and wavevector of the nonlinear polarization.

There are two types of diagrams we will discuss, Feynman and ladder diagrams, each of which has certain advantages and
disadvantages. For both types of diagrams, the first step in drawing a diagram is to identify the states of  that will be
interrogated by the light-fields. The diagrams show an explicit series of absorption or stimulated emission events induced by the
incident fields which appear as action of the dipole operator on the bra or ket side of the density matrix. They also symbolize the
coherence or population state in which the density matrix evolves during a given time interval. The trace taken at the end following
the action of the final dipole operator, i.e. the signal emission, is represented by a final wavy line connecting dipole coupled states.

2.1: Feynman Diagrams
2.2: Ladder Diagrams
2.3: Example-Linear Response for a Two-Level System
2.4: Example- Second-Order Response for a Three-Level System
2.5: Third-Order Nonlinear Spectroscopy
2.6: Frequency Domain Representation(1)
2.7: Appendix- Third-order diagrams for a four-level system
2.8: Appendix- Third-order diagrams for a vibration
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2.1: Feynman Diagrams
Feynman diagrams are the easiest way of tracking the state of coherences in different time periods, and for noting absorption and
emission events.

1. Double line represents ket and bra side of .
2. Time-evolution is upward.
3. Lines intersecting diagram represent field interaction. Absorption is designated through an inward pointing arrow. Emission is

an outward pointing arrow. Action on the left line is action on the ket, whereas the right line is bra.
4. System evolves freely under  between interactions, and density matrix element for that period is often explicitly written
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2.2: Ladder Diagrams
Ladder Diagrams  are helpful for describing experiments on multistate systems and/or with multiple frequencies; however, it is
difficult to immediately see the state of the system during a given time interval. They naturally lend themselves to a description of
interactions in terms of the eigenstates of .

1. Multiple states arranged vertically by energy.
2. Time propagates to right.
3. Arrows connecting levels indicate resonant interactions. Absorption is an upward arrow and emission is downward. A solid line

is used to indicate action on the ket, whereas a dotted line is action on the bra.
4. Free propagation under  between interactions, but the state of the density matrix is not always obvious.

For each light-matter interactions represented in a diagram, there is an understanding of how this action contributes to the response
function and the final nonlinear polarization state. Each light-matter interaction acts on one side of , either through absorption or
stimulated emission. Each interaction adds a dipole matrix element  that describes the interaction amplitude and any
orientational effects.  Each interaction adds input electric field factors to the polarization, which are used to describe the frequency
and wavevector of the radiated signal. The action of the final dipole operator must return you to a diagonal element to contribute to
the signal. Remember that action on the bra is the complex conjugate of ket and absorption is complex conjugate of stimulated
emission. A table summarizing these interactions contributing to a diagram is below

Interaction Diagrammatic Representation contrib. to contrib. to k  & 

KET SIDE
Absorption

 

+k  

Stimulated Emission
 

-k  

BRA SIDE
Absorption

 

-k  

Stimulated Emission
 

+k  

SIGNAL EMISSION
(final trace, convention: ket
side)

 

Once you have written down the relevant diagrams, being careful to identify all permutations of interactions of your system states
with the fields relevant to your signal, the correlation functions contributing to the material response and the frequency and

1

H0

H0

ρ

μij

2

R(n)
sig ωsig

( ⋅ )exp[i ⋅ − i t]μ̄ba Ēn k̄n r̄ ωn

⋅μ̄ba ϵ̂n n +ωn

( ⋅ )exp[i ⋅ − i t]μ̄ba Ē
∗
n k̄n r̄ ωn

⋅μ̄ba ϵ̂n
n −ωn

( ⋅ )exp[i ⋅ − i t]μ̄∗
ba Ē

∗
n k̄n r̄ ωn

⋅μ̄∗
ba ϵ̂n

n −ωn

( ⋅ )exp[i ⋅ − i t]μ̄∗
ba Ēn k̄n r̄ ωn

⋅μ̄∗
ba ϵ̂n

n +ωn

⋅μ̄ba ϵ̂an
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wavevector of the signal field can be readily obtained. It is convenient to write the correlation function as a product of several
factors for each event during the series of interactions:

1. Start with a factor  signifying the probability of occupying the initial state, typically a Boltzmann factor.
2. Read off products of transition dipole moments for interactions with the incident fields, and for the final signal emission.
3. Multiply by terms that describe the propagation under  between interactions. As a starting point for understanding an

experiment, it is valuable to include the effects of relaxation of the system eigenstates in the time-evolution using a simple
phenomenological approach. Coherences and populations are propagated by assigning the damping constant  to propagation
of the  element:

Note  and . We can then recognize  as the population relaxation rate for state i and  the
dephasing rate for the coherence .

4) Multiply by a factor of (−1)  where n is the number of bra side interactions. This factor accounts for the fact that in evaluating
the nested commutator, some correlation functions are subtracted from others.

5) The radiated signal will have frequency  and wave vector 

1. D. Lee and A. C. Albrecht, “A unified view of Raman, resonance Raman, and fluorescence spectroscopy (and their analogues in
two-photon absorption).” Adv. Infrared and Raman Spectr. 12, 179 (1985).

2. To properly account for all orientational factors, the transition dipole moment must be projected onto the incident electric field
polarization  leading to the terms in the table. This leads to a nonlinear polarization that can have x, y, and z polarization
components in the lab frame. The are obtained by projecting the matrix element prior to the final trace onto the desired analyzer
axis .

This page titled 2.2: Ladder Diagrams is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei
Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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Γab
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=Γab Γba =G∗
ab

Gba = 1/Γii T1 = 1/Γij T2

ρij

n

=ωsig ∑
i
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i
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2.3: Example-Linear Response for a Two-Level System
Let’s consider the diagrammatic approach to the linear absorption problem, using a two-level system with a lower level  and
upper level . There is only one independent correlation function in the linear response function

This does not need to be known before starting, but is useful to consider, since it should be recovered in the end. The system will be
taken to start in the ground state . Linear response only allows for one input field interaction, which must be absorption, and
which we take to be a ket side interaction. We can now draw two diagrams:

With this diagram, we can begin by describing the signal characteristics in terms of the induced polarization. The product of
incident fields indicates:

so that

As expected the signal will radiate with the same frequency and in the same direction as the incoming beam. Next we can write
down the correlation function for this term. Working from bottom up:

(1) (2) (3) (4)

More sophisticated ways of treating the time-evolution under  in step (3) could take the form of some of our earlier treatments
of the absorption lineshape:

Note that one could draw four possible permutations of the linear diagram when considering bra and ket side interactions, and
initial population in states a and b:

a

b

C(t) = T r[μ(t)μ(0) ]ρeq

= T r[μ (t)μ ]Ĝ ρeq

ρaa

⇒ P (t)E1e−i t+i ⋅ω1 k̄1 r̄ e−i t+i ⋅ωsig k̄sig r̄ (2.3.1)

=       =ωsig ω1 k̄sig k̄1 (2.3.2)

C(t) = [ ] [ ] [ ]pa μba e−i t− tωba Γba μab

= pa| |μba
2e−i t− tωba Γba

H0

(τ)Ĝ ρab ∼ exp[−i τ ]F (τ)ρab ωab

= exp[−i τ −g(t)]ρab ωab
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However, there is no new dynamical content in these extra diagrams, and they are generally taken to be understood through one
diagram. Diagram ii is just the complex conjugate of eq. (3.3.4) so adding this signal contribution gives:

Accounting for the thermally excited population initially in b leads to the expected two-level system response function that depends
on the population difference

This page titled 2.3: Example-Linear Response for a Two-Level System is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

C(t) − (t) = 2i | sin( t)C ∗ pa μba|2 ωba e− tΓba (2.3.3)

R(t) = ( − )| sin( t)
2

ℏ
pa pb μba|2 ωba e− tΓba (2.3.4)
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2.4: Example- Second-Order Response for a Three-Level System
The second-order response is the simplest nonlinear case, but in molecular spectroscopy is less commonly used than third-order
measurements. The signal generation requires a lack of inversion symmetry, which makes it useful for studies of interfaces and
chiral systems. However, let’s show how one would diagrammatically evaluate the second order response for a very specific system
pictured below.

If we only have population in the ground state at equilibrium and if there are only resonant interactions allowed, the permutations
of unique diagrams are as follows:

From the frequency conservation conditions, it should be clear that process i is a sum-frequency signal for the incident fields,
whereas diagrams ii-iv refer to difference frequency schemes. To better interpret what these diagrams refer to let’s look at iii.
Reading in a time-ordered manner, we can write the correlation function corresponding to this diagram as

Note that a literal interpretation of the final trace in diagram iv would imply an absorption event – an upward transition from b to c.
What does this have to do with radiating a signal? On the one hand it is important to remember that a diagram is just mathematical
shorthand, and that one can’t distinguish absorption and emission in the final action of the dipole operator prior to taking a trace.
The other thing to remember is that such a diagram always has a complex conjugate associated with it in the response function. The

C2 = Tr[μ(τ) μ(0)]ρeq

= (−1 ( ) ( ))1μbcĜcb τ2 μcaĜab τ1 ρaaμ∗
ba

= −paμabμbcμcae−i −ωabτ1 Γabτ1 e−i −ωcbτ2 Γcbτ2
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complex conjugate of iv, a  ket/bra term, shown below has a downward transition –emission– as the final interaction. The
combination  ultimately describes the observable.

Now, consider the wavevector matching conditions for the second order signal iii. Remembering that the magnitude of the
wavevector is , the length of the vectors will be scaled by the resonance frequencies. When the two incident
fields are crossed as a slight angle, the signal would be phase-matched such that the signal is radiated closest to beam 2. Note that
the most efficient wavevector matching here would be when fields 1 and 2 are collinear.

This page titled 2.4: Example- Second-Order Response for a Three-Level System is shared under a not declared license and was authored,
remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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2.5: Third-Order Nonlinear Spectroscopy
Now let’s look at examples of diagrammatic perturbation theory applied to third-order nonlinear spectroscopy. Third-order
nonlinearities describe the majority of coherent nonlinear experiments that are used including pump-probe experiments, transient
gratings, photon echoes, coherent anti-Stokes Raman spectroscopy (CARS), and degenerate four wave mixing (4WM). These
experiments are described by some or all of the eight correlation functions contributing to :

The diagrams and corresponding response first requires that we specify the system eigenstates. The simplest case, which allows us
discuss a number of examples of third-order spectroscopy is a two-level system. Let’s write out the diagrams and correlation
functions for a two-level system starting in , where the dipole operator couples  and .

As an example, let’s write out the correlation function for R  obtained from the diagram above. This term is important for
understanding photon echo experiments and contributes to pump-probe and degenerate four-wave mixing experiments.

The diagrams show how the input field contributions dictate the signal field frequency and wavevector. Recognizing the
dependence of , these are obtained from the product of the incident field contributions

Now, let’s compare this to the response obtained from R . These we obtain

R(3)

= [ − ]R(3) ( )
i

ℏ

3

∑
α=1

4

Rα R∗
α (2.5.1)

ρaa |b⟩ |a⟩

2

R2 = (−1 ( ) [ ] ( )( ) ( ) [ ] ( ))2pa μ∗
ba e−i −ωabτ1 Γabτ1 μba e −−iωbbτ2 Γbbτ2 μ∗

ab e−i −ωbaτ3 Γbaτ3 μab

= exp[−i ( − ) − ( + ) − ( )]pa| |μab
4 ωba τ3 τ1 Γba τ1 τ3 Γbb τ2

∼ ∼ ( )E
(3)
sig P (3) R2 E1E2E3

Ē1Ē2Ē3 = ( )( )( )E∗
1 e+i t−i ⋅ω1 k̄1 r̄ E2e−i t+i ⋅rω2 k̄2 E3e+i t−i ⋅ω3 k̄3 r̄3

⟹ E∗
1 E2E3e− t+i ⋅ωsig k̄sig r̄

∴ ωsig2

ksig2

= − + +ω1 ω2 ω3

= − + +k̄1 k̄2 k̄3

4

= | exp [−i ( + ) − ( + ) − ( )]R4 pa μab|4 ωba τ3 τ1 Γba τ1 τ3 Γbb τ2 (2.5.2)

ωsig4

ksig4

= + − +ω1 ω2 ω3

= + − +k̄1 k̄2 k̄3
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Note that R  and R  terms are identical, except for the phase acquired during the initial period: . The R
term evolves in conjugate coherences during the  and  periods, whereas the R  term evolves in the same coherence state during
both periods:

Coherences in  and Phase acquired in  and 

R

R

The R  term has the property of time-reversal: the phase acquired during  is reversed in . For that reason the term is called
“rephasing.” Rephasing signals are selected in photon echo experiments and are used to distinguish line broadening mechanisms
and study spectral diffusion. For R , the phase acquired continuously in  and , and this term is called “nonrephasing.” Analysis
of R  and R  reveals that these terms are non-rephasing and rephasing, respectively.

For the present case of a third-order spectroscopy applied to a two-level system, we observe that the two rephasing functions R
and R  have the same emission frequency and wavevector, and would therefore both contribute equally to a given detection
geometry. The two terms differ in which population state they propagate during the  variable. Similarly, the non-rephasing
functions R  and R  each have the same emission frequency and wavevector, but differ by the  population. For transitions
between more than two system states, these terms could be separated by frequency or wavevector (see appendix). Since the
rephasing pair R  and R  both contribute equally to a signal scattered in the −k  + k  + k  direction, they are also referred to as .
The nonrephasing pair R1 and R4 both scatter in the + k  − k  + k  direction and are labeled as .

Our findings for the four independent correlation functions are summarized below.

 population

rephasing R excited state

R ground state

non-rephasing R ground state

R4 excited state

2 4 exp[iϕ] = exp[±i ]ωbaτ1 2
τ1 τ3 4

τ1 τ3 τ1 τ3

4 |b⟩⟨a| → |b⟩⟨a| e−i ( + )ωba τ1 τ3

2 |a⟩⟨b| → |b⟩⟨a| e−i ( − )ωba τ1 τ3

2 τ1 τ3

4 τ1 τ3

1 3

2

3
τ2

1 4 τ2

2 3 1 2 3 SI

1 2 3 SII

ωsig ksig τ2

SI 2 − + +ω1 ω2 ω3 − + +k1 k2 k3

3 − + +ω1 ω2 ω3 − + +k1 k2 k3

SII 1 + − +ω1 ω2 ω3 + − +k1 k2 k3

+ − +ω1 ω2 ω3 + − +k1 k2 k3
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2.6: Frequency Domain Representation(1)
A Fourier-Laplace transform of  with respect to the time intervals allows us to obtain an expression for the third order
nonlinear susceptibility, :

Here the Fourier transform conjugate variables  to the time-interval  are the sum over all frequencies for the incident field
interactions up to the period for which you are evolving:

For instance, the conjugate variable for the third time-interval of a  experiment is the sum over the three preceding
incident frequencies .

In general, \chi^{(3)} is a sum over many correlation functions and includes a sum over states:

Here a is the initial state and the sum is over all possible intermediate states. Also, to describe frequency domain experiments, we
have to permute over all possible time orderings. Most generally, the eight terms in  lead to 48 terms for , as a result of the
3!=6 permutations of the time-ordering of the input fields.

Given a set of diagrams, we can write the nonlinear susceptibility directly as follows:

1) Read off products of light-matter interaction factors.

2) Multiply by resonance denominator terms that describe the propagation under . In the frequency domain, if we apply eq.
(3.6.2) to response functions that use phenomenological time-propagators of the form eq. (3.2.1), we obtain

 is defined in eq. (3.6.3).

3) As for the time domain, multiply by a factor of (−1)  for n bra side interactions.

4) The radiated signal will have frequency  and wavevector .

As an example, consider the term for R  applied to a two-level system that we wrote in the time domain in eq. (3.5.2)

The terms are written from a diagram with each interaction and propagation adding a resonant denominator term (here reading left
to right). The full frequency domain response is a sum over multiple terms like these.

1. Prior, Y. A complete expression for the third order susceptibility -perturbative and diagramatic approaches. IEEE J.
Quantum Electron. QE-20, 37 (1984).

See also, Dick, B. Response functions and susceptibilities for multiresonant nonlinear optical spectroscopy: Perturbative computer
algebra solution including feeding. Chem. Phys. 171, 59 (1993).

2. Bloembergen, N., Lotem, H. & Lynch, R. T. Lineshapes in coherent resonant Raman scattering. Indian J. Pure Appl. Phys. 16,
151 (1978).

(t)P (3)

( , , )χ(3) ω1 ω2 ω3

( ) = ( ; , , )P (3) ωsig χ(3) ωsig ω1 ω2 ω3 Ē1Ē2Ē3 (2.6.1)

= d ⋯ d ( , , … )χ(n) ∫
∞

0

τne
iΩnτn ∫

∞

0

τ1e
iΩ1τ1R(n) τ1 τ2 τn (2.6.2)

Ωm τm

=Ωm ∑
i=1

m

ωi (2.6.3)

− +k1 k2 k3

= − +Ω3 ω1 ω2 ω3

( , , ) = [ − ]χ(3) ω1 ω2 ω3
1

6
( )

i

ℏ

3

∑
abcd

pa∑
α=1

4

χα χ∗
α (2.6.4)

R(3) χ(3)

2

H0

( ) ⟹Ĝ τm ρab
1

( − ) − iΩm ωba Γba

(2.6.5)

Ωm

n

=ωsig ∑i ωi =k̄sig ∑i k̄i

2

χ2 = ⋅ ⋅| |μba
4 (−1)

−(− ) − iωab ω1 Γab

1

−( − ) − iωbb ω2 ω1 Γbb

(−1)

−( + − ) − iωba ω3 ω2 ω1 Γba

= ⋅ ⋅| |μba
4 1

− − iω1 ωba Γba

1

−( − ) − iω2 ω1 Γbb

1

−( + − − ) − iω3 ω2 ω1 ωba Γba

)χ(3
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2.7: Appendix- Third-order diagrams for a four-level system
The third order response function can describe interaction with up to four eigenstates of the system Hamiltonian. These are
examples of correlation functions within  for a four-level system representative of vibronic transitions accompanying an
electronic excitation, as relevant to resonance Raman spectroscopy. Note that these diagrams present only one example of multiple
permutations that must be considered given a particular time-sequence of incident fields that may have variable frequency.

The signal frequency comes from summing all incident resonance frequencies accounting for the sign of the excitation. The
products of transition matrix elements are written in a time-ordered fashion without the projection onto the incident field
polarization needed to properly account for orientational effects. The  term is more properly written 

. Note that the product of transition dipole matrix elements obtained from the sequence
of interactions can always be re-written in the cyclically invariant form . This is one further manifestation of closed
loops formed by the sequence of interactions.

2.7: Appendix- Third-order diagrams for a four-level system is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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2.8: Appendix- Third-order diagrams for a vibration
The third-order nonlinear response functions for infrared vibrational spectroscopy are often applied to a weakly anharmonic
vibration. For high frequency vibrations in which only the  state is initially populated, when the incident fields are resonant
with the fundamental vibrational transition, we generally consider diagrams involving the system eigenstates  and 2, and
which include v=0-1 and v=1-2 resonances. Then, there are three distinct signal contributions:

ν = 0

ν = 0, 1
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Note that for the  and  signals there are two types of contributions: two diagrams in which all interactions are with the v=0-1
transition (fundamental) and one diagram in which there are two interactions with v=0-1 and two with v=1-2 (the overtone). These
two types of contributions have opposite signs, which can be seen by counting the number of bra side interactions, and have
emission frequencies of  or . Therefore, for harmonic oscillators, which have  and , we can see that
the signal contributions should destructively interfere and vanish. This is a manifestation of the finding that harmonic systems

SI SII

ω10 ω21 =ω10 ω21 =2
–

√ μ10 μ21
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display no nonlinear response. Some deviation from harmonic behavior is required to observe a signal, such as vibrational
anharmonicity , electrical anharmonicity (\sqrt{2}\mu_{10}\ne\mu_{21}\), or level-dependent damping  or \
(\Gamma_{00}\ne\Gamma_{11}.

2.8: Appendix- Third-order diagrams for a vibration is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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CHAPTER OVERVIEW

3: Third-Order Nonlinear Spectroscopies
Third-order nonlinear spectroscopies are the most widely used class of nonlinear methods, including the common pump-probe
experiment. This section will discuss a number of these methods. The approach here is meant to be practical, with the emphasis on
trying to connect the particular signals with their microscopic origin. This approach can be used for describing any experiment in
terms of the wave-vector, frequency and time-ordering of the input fields, and the frequency and wavevector of the signal.

3.1: Selecting signals by wavevector
3.2: Photon Echo
3.3: Transient Grating
3.4: Pump-Probe
3.5: CARS (Coherent Anti-Stoke Raman Scattering)
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3.1: Selecting signals by wavevector
The question is how to select particular contributions to the signal. It won’t be possible to uniquely select particular diagrams.
However, you can use the properties of the incident and detected fields to help with selectivity. Here is a strategy for describing a
particular experiment:

1. Start with the wavevector and frequency of the signal field of interest.
2. (a) Time-domain: Define a time-ordering along the incident wavevectors or (b) Frequency domain: Define the frequencies

along the incident wavevectors.
3. Sum up diagrams for correlation functions that will scatter into the wave-vector matched direction, keeping only resonant terms

(rotating wave approximation). In the frequency domain, use ladder diagrams to determine which correlation functions yield
signals that pass through your filter/monochromator.

Let’s start by discussing how one can distinguish a rephasing signal from a non-rephasing signal. Consider two degenerate third-
order experiments  distinguished by the signal wave-vector for a particular time-ordering. We choose a box
geometry, where the three incident fields (a,b,c) are crossed in the sample, incident from three corners of the box, as shown.
(Colors in these figures are not meant to represent the frequency of the incident fields – which are all the same – but rather is just
there to distinguish them for the picture).

Since the frequencies are the same, the length of the wavevector  is equal for each field, only its direction varies.
Vector addition of the contributing terms from the incident fields indicates that the signal  will be radiated in the direction of the
last corner of the box when observed after the sample. (Colors in the figure don’t represent frequency, but serve to distinguish
beams):

Comparing the wavevector matching condition for this signal with those predicted by the third-order Feynman diagrams, we see
that we can select non-rephasing signals R  and R  by setting the time ordering of pulses such that a = 1, b = 2, and c = 3. The
rephasing signals R  and R  are selected with the time-ordering a = 2, b = 1, and c = 3.

( = = = )ω1 ω2 ω3 ωsig

|k| = 2πn/λ

k̄sig

= + − +k̄sig k̄a k̄b k̄c (3.1.1)

1 4

2 3
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Here the wave-vector matching for the rephasing signal is imperfect. The vector sum of the incident fields  dictates the
direction of propagation of the radiated signal (momentum conservation), whereas the magnitude of the signal wavevector  is
dictated by the radiated frequency (energy conservation). The efficiency of radiating the signal field falls of with the wave-vector
mismatch

as

where  is the path length (see eq. 2.10).

This page titled 3.1: Selecting signals by wavevector is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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3.2: Photon Echo
The photon echo experiment is most commonly used to distinguish static and dynamic linebroadening, and time-scales for energy
gap fluctuations. The rephasing character of  and  allows you to separate homogeneous and inhomogeneous broadening.

To demonstrate this let’s describe a photon echo experiment for an inhomogeneous lineshape, that is a convolution of a
homogeneous line shape with width  with a static inhomogeneous distribution of width . Remember that linear spectroscopy
cannot distinguish the two:

For an inhomogeneous distribution, we could average the homogeneous response, , with an inhomogeneous
distribution

which we take to be Gaussian

Equivalently, since a convolution in the frequency domain is a product in the time domain, we can set

So for the case that , the absorption spectrum is a broad Gaussian lineshape centered at the mean frequency  which just
reflects the static distribution  rather than the dynamics in .

Now look at the experiment in which two pulses are crossed to generate a signal in the direction

This signal is a special case of the signal  where the second and third interactions are both derived from the same
beam. Both non-rephasing diagrams contribute here, but since both second and third interactions are coincident,  and 

. The nonlinear signal can be obtained by integrating the homogeneous response,

over the inhomogeneous distribution as in eq. (4.2.2). This leads to

R2 R3

Γ Δ

R(τ) = | −c. c.μab|
2e−i τ−g(τ)ωab (3.2.1)

g(t) = tΓba

R = ∫ d G( )R ( )ωab ωab ωab (3.2.2)

G( ) = exp(− )ωba

( − ⟨ ⟩)ωba ωba
2

2Δ2
(3.2.3)

g(t) = t+Γba

1

2
Δ2t2 (3.2.4)

Δ > Γ ⟨ ⟩ωba

Δ Γ

= 2 −ksig k2 k1 (3.2.5)

( + − )k3 k2 k1

= 0τ2

=R2 R3

( ) = |R(3) ωab μab|
4pae

−i ( − )ωab τ1 τ3 e− ( + )Γab τ1 τ3 (3.2.6)

= |R(3) μab|
4pae

−i⟨ ⟩( − )ωab τ1 τ3 e− ( + )Γab τ1 τ3 e−( − /2τ1 τ3)2Δ2
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For ,  is sharply peaked at , i.e. . The broad distribution of frequencies rapidly
dephases during , but is rephased (or refocused) during , leading to a large constructive enhancement of the polarization at

. This rephasing enhancement is called an echo.

In practice, the signal is observed with a integrating intensity-level detector placed into the signal scattering direction. For a given
pulse separation  (setting ), we calculated the integrated signal intensity radiated from the sample during  as

In the inhomogeneous limit , we find

In this case, the only source of relaxation of the polarization amplitude at  is . At this point inhomogeneity is removed
and only the homogeneous dephasing is measured. The factor of four in the decay rate reflects the fact that damping of the initial
coherence evolves over two periods , and that an intensity level measurement doubles the decay rate of the
polarization.

This page titled 3.2: Photon Echo is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff
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3.3: Transient Grating
The transient grating is a third-order technique used for characterizing numerous relaxation processes, but is uniquely suited for
looking at optical excitations with well-defined spatial period. The first two pulses are set time-coincident, so you cannot
distinguish which field interacts first. Therefore, the signal will have contributions both from  and 

. That is the signal depends on . Consider the terms contributing to the polarization
that arise from the first two interactions. For two time-coincident pulses of the same frequency, the first two fields have an
excitation profile in the sample

If the beams are crossed at an angle 

with

the excitation of the sample is a spatial varying interference pattern along the transverse direction

The grating wavevector is

This spatially varying field pattern is called a grating, and has a fringe spacing

Absorption images this pattern into the sample, creating a spatial pattern of excited and ground state molecules. A time-delayed
probe beam can scatter off this grating, where the wavevector matching conditions are equivalent to the constructive interference of
scattered waves at the Bragg angle off a diffraction grating. For  this the diffraction condition is incidence of 

 at an angle , leading to scattering of a signal out of the sample at an angle . Most commonly, we measure the intensity of the
scattered light, as given in eq. (4.2.8)

More generally, we should think of excitation with this pulse pair leading to a periodic spatial variation of the complex index of
refraction of the medium. Absorption can create an excited state grating, whereas subsequent relaxation can lead to heating a
periodic temperature profile (a thermal grating). Nonresonant scattering processes (Raleigh and Brillouin scattering) can create a
spatial modulation in the real index or refraction. Thus, the transient grating signal will be sensitive to any processes which act to
wash out the spatial modulation of the grating pattern:

Population relaxation leads to a decrease in the grating amplitude, observed as a decrease in diffraction efficiency.

= − +ksig k1 k2 k3

= − + +ksig k1 k2 k3 + + +R1 R2 R3 R4

= exp[−i( − )t + i( − ) ⋅ ] +c. c.ĒaĒb EaEb ωa ωb k̄a k̄b r̄ (3.3.1)

2θ
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2πn
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Thermal or mass diffusion along  acts to wash out the fringe pattern. For a diffusion constant D the decay of diffraction
efficiency is

Rapid heating by the excitation pulses can launch counter propagating acoustic waves along , which can modulate the
diffracted beam at a frequency dictated by the period for which sound propagates over the fringe spacing in the sample.

This page titled 3.3: Transient Grating is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei
Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

(τ) ∝ exp[−2 τ ]Isig Γbb (3.3.5)

x̂

(τ) ∝ exp[−2 Dτ ]Isig β2 (3.3.6)

x̂

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/298959?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.03%3A_Transient_Grating
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/


3.4.1 https://chem.libretexts.org/@go/page/304372

3.4: Pump-Probe
The pump-probe or transient absorption experiment is perhaps the most widely used third-order nonlinear experiment. It can be
used to follow many types of time-dependent relaxation processes and chemical dynamics, and is most commonly used to follow
population relaxation, chemical kinetics, or wavepacket dynamics and quantum beats.

The principle is quite simple, and the using the theoretical formalism of nonlinear spectroscopy often unnecessary to interpret the
experiment. Two pulses separated by a delay  are crossed in a sample: a pump pulse and a time-delayed probe pulse. The pump
pulse  creates a non-equilibrium state, and the time-dependent changes in the sample are characterized by the probe-pulse 
through the pump-induced intensity change on the transmitted probe, .

Described as a third-order coherent nonlinear spectroscopy, the signal is radiated collinear to the transmitted probe field, so the
wavevector matching condition is

There are two interactions with the pump field and the third interaction is with the probe. Similar to the transient grating, the time-
ordering of pump-interactions cannot be distinguished, so terms that contribute to scattering along the probe are 

 (i.e., all correlation functions R  to R ). In fact, the pump-probe can be thought of as the limit of the
transient grating experiment in the limit of zero grating wavevector (  and ).

The detector observes the intensity of the transmitted probe and nonlinear signal

 is the transmitted probe field corrected for linear propagation through the sample. The measured signal is typically the
differential intensity on the probe field with and without the pump field present:

If we work under conditions of a weak signal relative to the transmitted probe , then the differential intensity in eq.
(4.4.2) is dominated by the cross term

So the pump-probe signal is directly proportional to the nonlinear response. Since the signal field is related to the nonlinear
polarization through a \(\pi/2) phase shift,

the measured pump-probe signal is proportional to the imaginary part of the polarization

τ

Epu Epr

ΔI

= + − + = .k̄sig k̄pu k̄pu k̄pr k̄pr (3.4.1)
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which is also proportional to the correlation functions derived from the resonant diagrams we considered earlier.

Dichroic and Birefringent Response 
In analogy to what we observed earlier for linear spectroscopy, the nonlinear changes in absorption of the transmitted probe field
are related to the imaginary part of the susceptibility, or the imaginary part of the index of refraction. In addition to the fully
resonant processes, it is also possible for the pump field to induce nonresonant changes to the polarization that modulate the real
part of the index of refraction. These can be described through a variety of nonresonant interactions, such as nonresonant Raman,
the optical Kerr effect, coherent Raleigh or Brillouin scattering, or the second hyperpolarizability of the sample. In this case, we
can describe the timedevelopment of the polarization and radiated signal field as

Here the signal is expressed as a sum of two contributions, referred to as the birefringent  and dichroic  responses. As
before the imaginary part, or dichroic response, describes the sample-induced amplitude variation in the signal field, whereas the
birefringent response corresponds to the real part of the nonlinear polarization and represents the phase-shift or retardance of the
signal field induced by the sample.

In this scheme, the transmitted probe is

So that the

Because the signal is in-quadrature with the polarization (  phase shift), the absorptive or dichroic response is in-phase with the
transmitted probe, whereas the birefringent part is not observed. If we allow for the phase of the probe field to be controlled, for
instance through a quarter-wave plate before the sample, then we can write

The birefringent and dichroic response of the molecular system can now be observed for phases of  and 
, respectively.

Incoherent pump-probe experiments 
What information does the pump-probe experiment contain? Since the time delay we control is the second time interval , the
diagrams for a two level system indicate that these measure population relaxation:

In fact measuring population changes and relaxation are the most common use of this experiment. When dephasing is very rapid,
the pump-probe can be interpreted as an incoherent experiment, and the differential intensity (or absorption) change is proportional
to the change of population of the states observed by the probe field. The pump-induced population changes in the probe states can
be described by rate equations that describe the population relaxation, redistribution, or chemical kinetics. For the case where the
pump and probe frequencies are the same, the signal decays as a results of population relaxation of the initially excited state. The
two-level system diagrams indicate that the evolution in  is differentiated by evolution in the ground or excited state. These
diagrams reflect the equal signal contributions from the ground state bleach (loss of ground state population) and stimulated

ΔI(τ) = 2 ℓIm [ (τ)]ωsig E ′
prP

(3) (3.4.5)
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emission from the excited state. For direct relaxation from excited to ground state the loss of population in the excited state  is
the same as the refilling of the hole in the ground state , so that . If population relaxation from the excited state is
through an intermediate, then the pump-probe decay will reflect equal contributions from both processes, which can be described
by coupled first-order rate equations.

When the resonance frequencies of the pump and probe fields are different, then the incoherent pump-probe signal is related to the
joint probability of exciting the system at  and detecting at  after waiting a time , .

Coherent pump-probe experiments 

Ultrafast pump-probe measurements on the timescale of vibrational dephasing operate in a coherent regime where wavepackets
prepared by the pump-pulse modulate the probe intensity. This provides a mechanism for studying the dynamics of excited
electronic states with coupled vibrations and photoinitiated chemical reaction dynamics. If we consider the case of pump-probe
experiments on electronic states where , our description of the pump-probe from Feynmann diagrams indicates that the
pump-pulse creates excitations both on the excited state and ground state. Both wavepackets will contribute to the signal.

There are two equivalent ways of describing the experiment, which mirror our earlier description of electronic spectroscopy for an
electronic transition coupled to nuclear motion. The first is to describe the spectroscopy in terms of the eigenstates of .
The second draws on the energy gap Hamiltonian to describe the spectroscopy as two electronic levels  that interact with the
vibrational degrees of freedom , and the wavepacket dynamics are captured by .

For the eigenstate description, a two level system is inadequate to capture the wavepacket dynamics. Instead, describe the
spectroscopy in terms of the four-level system diagrams given earlier. In addition to the population relaxation terms, we see that the
R  and R  terms describe the evolution of coherences in the excited electronic state, whereas the R  and R  terms describe the
ground state wave packet. For an underdamped wavepacket these coherences are observed as quantum beats on the pump-probe
signal.

3.4: Pump-Probe is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.
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3.5: CARS (Coherent Anti-Stoke Raman Scattering)
Used to drive ground state vibrations with optical pulses or cw fields.

Two fields, with a frequency difference equal to a vibrational transition energy, are used to excite the vibration.
The first field is the “pump” and the second is the “Stokes” field.
A second interaction with the pump frequency lead to a signal that radiates at the anti-Stokes frequency:  and
the signal is observed background-free next to the transmitted pump field: .

The experiment is described by R  to R , and the polarization is

The CARS experiment is similar to a linear experiment in which the lineshape is determined by the Fourier transform of 
.

The same processes contribute to Optical Kerr Effect Experiments and Impulsive Stimulated Raman Scattering.

3.5: CARS (Coherent Anti-Stoke Raman Scattering) is shared under a not declared license and was authored, remixed, and/or curated by
LibreTexts.
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4.1: Eigenstate vs. system/bath perspectives
From our earlier work on electronic spectroscopy, we found that there are two equivalent ways of describing spectroscopic
problems, which can be classified as the eigenstate and system/bath perspectives. Let’s summarize these before turning back to
nonlinear spectroscopy, using electronic spectroscopy as the example:

1) Eigenstate: The interaction of light and matter is treated with the interaction picture Hamiltonian .  is the full
material Hamiltonian, expressed as a function of nuclear and electronic coordinates, and is characterized by eigenstates which are
the solution to . In the electronic case  represent labels for a particular vibronic state. The
dipole operator in  couples these states. Given that we have such detailed knowledge of the matter, we can obtain an
absorption spectrum in two ways. In the time domain, we know

The absorption lineshape is then related to the Fourier transform of C(t),

where the phenomenological damping constant  was first added into eq. (5.1.1). This approach works well if you have an
intimate knowledge of the Hamiltonian if your spectrum is highly structured and if irreversible relaxation processes are of minor
importance.

2) System/Bath: In condensed phases, irreversible dynamics and featureless lineshapes suggest a different approach. In the
system/bath or energy gap representation, we separate our Hamiltonian into two parts: the system  contains a few degrees of
freedom Q which we treat in detail, and the remaining degrees of freedom (q) are in the bath . Ideally, the interaction between
the two sets  is weak.

Spectroscopically we usually think of the dipole operator as acting on the system state, i.e. the dipole operator is a function of Q. If
we then know the eigenstates of ,  where  or  for the electronic case, the dipole correlation function
is

The influence of the dark states in  is to modulate or change the spectroscopic energy gap  in a form dictated by the time-
dependent system-bath interaction. The systembath approach is a natural way of treating condensed phase problems where you
can’t treat all of the nuclear motions (liquid/lattice) explicitly. Also, you can imagine hybrid approaches if there are several system
states that you wish to investigate spectroscopically.

This page titled 4.1: Eigenstate vs. system/bath perspectives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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4.2: Energy Gap Fluctuations
How do transition energy gap fluctuations enter into the nonlinear response? As we did in the case of linear experiments, we will
make use of the second cumulants approximation to relate dipole correlation functions to the energy gap correlation function 

. Remembering that for the case of a system-bath interaction that that linearly couples the system and bath nuclear
coordinates, the cumulant expansion allows the linear spectroscopy to be expressed in terms of the lineshape function 

 is a complex function for which the imaginary components describe nuclear motion modulating or shifting the energy gap,
whereas the real part describes the fluctuations and 46 damping that lead to line broadening. When  takes on an undamped
oscillatory form , as we might expect for coupling of the electronic transition to a nuclear mode with frequency 

, we recover the expressions that we originally derived for the electronic absorption lineshape in which  is the coupling
strength and related to the Frank-Condon factor.

Here we are interested in discerning line-broadening mechanisms, and the time scale of random fluctuations that influence the
transition energy gap. Summarizing our earlier results, we can express the lineshape functions for energy gap fluctuations in the
homogeneous and inhomogeneous limit as

The Homogeneous Limit 
The bath fluctuations are infinitely fast, and only characterized by a magnitude:

In this limit, we obtain the phenomenological damping result

Which leads to homogeneous Lorentzian lineshapes with width .

The Inhomogeneous Limit 

The bath fluctuations are infinitely slow, and again characterized by a magnitude, but there is no decay of the correlations

This limit recovers the Gaussian static limit, and the Gaussian inhomogeneous lineshape where Δ is the distribution of frequencies.

The intermediate regime 
The intermediate regime is when the energy gap fluctuates on the same time scale as the experiment. The simplest description is the
stochastic model which describes the loss of correlation with a time scale 

which leads to

For an arbitrary form of the dynamics of the bath, we can construct  as a sum over independent modes . Or for
a continuous distribution for modes, we can describe the bath in terms of the spectral density  that describes the coupled
nuclear motions
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To construct an arbitrary form of the bath, the phenomenological Brownian oscillator model allows us to construct a bath of 
damped oscillators,

Here  is the coupling coefficient for oscillator i.
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4.3: Nonlinear Response with the Energy Gap Hamiltonian
In a manner that parallels our description of the linear response from a system coupled to a bath, the nonlinear response can also be partitioned into a system, bath and energy gap Hamiltonian, leading
to similar averages over the fluctuations of the energy gap. In the general case, the four correlations functions contributing to the third order response that emerge from eq. (2.3.3) are

Here a,b,c, and d are indices for system eigenstates, and the dephasing functions are

As before . These expressions describe the correlated dynamics of the dipole operator acting between multiple resonant transitions, in which the amplitude, frequency, and orientation of
the dipole operator may vary with time.

As a further simplification, let’s consider the specific form of the nonlinear response for a fluctuating two-level system. If we allow only for two states e and g, and apply the Condon approximation,
eq. (5.3.2) gives

These are the rephasing (R ) and non-rephasing (R ) functions, written for a two-level system. These expressions only account for the correlation of fluctuating frequencies while the system evolves
during the coherence periods  and . Since they neglect any difference in relaxation on the ground or excited state during the population period , R =R  and R = R . They also ignore
reorientational relaxation of the dipole.

In the case that the fluctuations of those two states follow Gaussian statistics, we can also apply the cumulant expansion to the third order response function. In this case, for a two-level system, the
four correlation functions are expressed in terms of the lineshape function as:

These expressions provide the most direct way of accounting for fluctuations or periodic modulation of the spectroscopic energy gap in nonlinear spectroscopies.

For the two-pulse photon echo experiment on a system with inhomogeneous broadening:

Set  For this simple model  is real.
Set , giving

Substituting  into this expression gives the same result as before.

Similar expressions can also be derived for an arbitrary number of eigenstates of the system Hamiltonian.  In that case, eqs. (5.3.1) become

The dephasing functions are written in terms of lineshape functions with a somewhat different form:
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4.4: How Can you Characterize Fluctuations and Spectral Diffusion?
The rephasing ability of the photon echo experiment provides a way of characterizing memory of the energy gap transition
frequency initially excited by the first pulse. For a static inhomogeneous lineshape, perfect memory of transition frequencies is
retained through the experiment, whereas homogeneous broadening implies extremely rapid dephasing. So, let’s first examine the
polarization for a two-pulse photon echo experiment on a system with homogeneous and inhomogeneous broadening by varying 

. Plotting the polarization as proportional to the response in eq. (5.3.7):

We see that following the third pulse, the polarization (red line) is damped during  through homogeneous dephasing at a rate ,
regardless of Δ. However in the inhomogeneous case , any inhomogeneity is rephased at . The shape of this
echo is a Gaussian with width ~ 1/ Δ . The shape of the echo polarization is a competition between the homogeneous damping and
the inhomogeneous rephasing.

Normally, one detects the integrated intensity of the radiated echo field. Setting the pulse delay ,

where  is the complementary error function. For the homogeneous and inhomogeneous limits of this
expression we find

Δ/Γeg

τ3 Γeg

Δ >> Γeg =τ1 τ3

= ττ1

S(τ) ∝ d | (τ , )∫
∞

0

τ3 P (3) τ3 |2 (4.4.1)

S(τ) = exp(−4 τ − ) ⋅ erfc(−Δτ + )Γeg

Γ2
eg

Δ2

Γeg

Δ
(4.4.2)

erfc(x) = 1 −erf(x)

Δ << ⇒ S(τ) ∝Γeg e−2 τΓeg (4.4.3)

Δ >> ⇒ S(τ) ∝Γeg e−4 τΓeg (4.4.4)
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In either limit, the inhomogeneity is removed from the measured decay. In the intermediate case, we observe that the leading term
in eq. (5.4.2) decays whereas the second term rises with time. This reflects the competition between homogeneous damping and the
inhomogeneous rephasing. As a result, for the intermediate case  we find that the integrated signal  has a maximum
signal for .

The delay of maximum signal, , is known as the peak shift. The observation of a peak shift is an indication that there is imperfect
ability to rephrase. Homogenous dephasing, i.e. fluctuations fast on the time scale of , are acting to scramble memory of the phase
of the coherence initially created by the first pulse.

In the same way, spectral diffusion (processes which randomly modulate the energy gap on time scales equal or longer than )
randomizes phase. It destroys the ability for an echo to form by rephasing. To characterize these processes through an energy gap
correlation function, we can perform a three-pulse photon echo experiment. The three pulse experiment introduces a waiting time 

 between the two coherence periods, which acts to define a variable shutter speed for the experiment. The system evolves as a
population during this period, and therefore there is nominally no phase acquired. We can illustrate this through a lens analogy:

Lens Analogy: For an inhomogeneous distribution of oscillators with different frequencies, we define the phase acquired during a
time period through 

(Δ ≈ )Γab S(τ)

τ > 0

τ ∗

τ

τ

τ2

=eiϕ ei(δ t)ωi
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Since we are in a population state during , there is no evolution of phase. Now to this picture we can add spectral diffusion as a
slower random modulation of the phase acquired during all time periods. If the system can spectrally diffuse during , this
degrades the ability of the system to rephase and echo formation is diminished.

Since spectral diffusion destroys the rephasing, the system appears more and more “homogeneous” as  is incremented.
Experimentally, one observes how the peak shift of the integrated echo changes with the waiting time . It will be observed to
shift toward  as a function of .

In fact, one can show that the peak shift with  decays with a form given by the the correlation function for system-bath
interactions:

Using the lineshape function for the stochastic model , you can see that for times ,

Thus echo peak shift measurements are a general method to determine the form to  or  or . The measurement
time scale is limited only by the population lifetime.

τ2

τ2

τ2

τ2

= 0τ ∗ τ2

τ2

( ) ∝ (τ)τ ∗ τ2 Ceg (4.4.5)

g(t) = [exp(−t/ ) + t/ −1]Δ2τ 2
c τc τc >τ2 τc

( ) ∝ exp(− / ) ⇒ ⟨δ (τ)δ (0)⟩τ ∗ τ2 τ2 τc ωeg ωeg (4.4.6)

(τ)Ceg (ω)C ′′
eg ρ(ω)
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5.1: Two-Dimensional Correlation Spectroscopy
What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral
features. Our examination of pump-probe experiments indicates that the third-order response reports on the correlation between
different spectral features. Let’s look at this in more detail using a system with two excited states as an example, for which the
absorption spectrum shows two spectral features at  and .

Imagine a double resonance (pump-probe) experiment in which we choose a tunable excitation frequency , and for each
pump frequency we measure changes in the absorption spectrum as a function of . Generally speaking, we expect resonant
excitation to induce a change of absorbance.

The question is: what do we observe if we pump at  and probe at ? If nothing happens, then we can conclude that
microscopically, there is no interaction between the degrees of freedom that give rise to the ba and ca transitions. However, a
change of absorbance at  indicates that in some manner the excitation of  is correlated with . Microscopically, there is a
coupling or chemical conversion that allows deposited energy to flow between the coordinates. Alternatively, we can say that the
observed transitions occur between eigenstates whose character and energy encode molecular interactions between the coupled
degrees of freedom (here  and ):

Now imagine that you perform this double resonance experiment measuring the change in absorption for all possible values of 
 and , and plot these as a two-dimensional contour plot:

This is a two-dimensional spectrum that reports on the correlation of spectral features observed in the absorption spectrum.
Diagonal peaks reflect the case where the same resonance is pumped and probed. Cross peaks indicate a cross-correlation that
arises from pumping one feature and observing a change in the other. The principles of correlation spectroscopy in this form were

ωba ωca

ωpump

ωprobe

ωba ωca

ωca ωba ωca

β χ

ωpump ωprobe
1
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initially developed in the area of magnetic resonance, but are finding increasing use in the areas of optical and infrared
spectroscopy.

Double resonance analogies such as these illustrate the power of a two-dimensional spectrum to visualize the molecular
interactions in a complex system with many degrees of freedom. Similarly, we can see how a 2D spectrum can separate
components of a mixture through the presence or absence of cross peaks.

Also, it becomes clear how an inhomogeneous lineshape can be decomposed into the distribution of configurations, and the
underlying dynamics within the ensemble. Take an inhomogeneous lineshape with width  and mean frequency , which is
composed of a distribution of homogeneous transitions of width . We will now subject the system to the same narrow band
excitation followed by probing the differential absorption  at all probe frequencies.

Here we observe that the contours of a two-dimensional lineshape report on the inhomogeneous broadening. We observe that the
lineshape is elongated along the diagonal axis . The diagonal linewidth is related to the inhomogeneous width Δ whereas
the antidiagonal width  is determined by the homogeneous linewidth .

1. Here we use the right-hand rule convention for the frequency axes, in which the pump or excitation frequency is on the
horizontal axis and the probe or detection frequency is on the vertical axis. Different conventions are being used, which does lead
to confusion. We note that the first presentations of two-dimensional spectra in the case of 2D Raman and 2D IR spectra used a
RHR convention, whereas the first 2D NMR and 2D electronic measurements used the LHR convention.

Δ ⟨ ⟩ωab

Γ

ΔA

( = )ω1 ω3

[ + = ⟨ ⟩/2]ω1 ω3 ωab Γ
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5.2: 2D Spectroscopy from Third Order Response
These examples indicate that narrow band pump-probe experiments can be used to construct 2D spectra, so in fact the third-order
nonlinear response should describe 2D spectra. To describe these spectra, we can think of the excitation as a third-order process
arising from a sequence of interactions with the system eigenstates. For instance, taking our initial example with three levels, one
of the contributing factors is of the form R :

Setting  and neglecting damping, the response function is

The time domain behavior describes the evolution from one coherent state to another—driven by the light fields:

A more intuitive description is in the frequency domain, which we obtained by Fourier transforming eq. (7.1):

The function P looks just like the covariance  that describes the correlation of two variables x and y. In fact P is a joint
probability function that describes the probability of exciting the system at  and observing the system at  (after waiting a
time ). In particular, this diagram describes the cross peak in the upper left of the initial example we discussed.

This page titled 5.2: 2D Spectroscopy from Third Order Response is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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5.3: Fourier Transform Spectroscopy
The last example underscores the close relationship between time and frequency domain representations of the data. Similar
information to the frequency-domain double resonance experiment is obtained by Fourier transformation of the coherent evolution
periods in a time domain experiment with short broadband pulses.

In practice, the use of Fourier transforms requires a phase-sensitive measure of the radiated signal field, rather than the intensity
measured by photodetectors. This can be obtained by beating the signal against a reference pulse (or local oscillator) on a
photodetector. If we measure the cross term between a weak signal and strong local oscillator:

For a short pulse . By acquiring the signal as a function of  and  we can obtain the time domain
signal and numerically Fourier transform to obtain a 2D spectrum.

Alternatively, we can perform these operations in reverse order, using a grating or other dispersive optic to spatially disperse the
frequency components of the signal. This is in essence an analog Fourier Transform. The interference between the spatially
dispersed Fourier components of the signal and LO are subsequently detected.

This page titled 5.3: Fourier Transform Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.
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5.4: Characterizing Couplings in 2D Spectra
One of the unique characteristics of 2D spectroscopy is the ability to characterize molecular couplings . This allows one to
understand microscopic relationships between different objects, and with knowledge of the interaction mechanism, determine the
structure or reveal the dynamics of the system. To understand how 2D spectra report on molecular interactions, we will discuss the
spectroscopy using a model for two coupled electronic or vibrational degrees of freedom. Since the 2D spectrum reports on the
eigenstates of the coupled system, understanding the coupling between microscopic states requires a model for the eigenstates in
the basis of the interacting coordinates of interest. Traditional linear spectroscopy does not provide enough constraints to uniquely
determine these variables, but 2D spectroscopy provides this information through a characterization of two-quantum eigenstates.

Since it takes less energy to excite one coordinate if a coupled coordinate already has energy in it, a characterization of the energy
of the combination mode with one quantum of excitation in each coordinate provides a route to obtaining the coupling. This
principle lies behind the use of overtone and combination band molecular spectroscopy to unravel anharmonic couplings.

The language for the different variables for the Hamiltonian of two coupled coordinates varies considerably by discipline. A variety
of terms that are used are summarized below. We will use the underlined terms.

System Hamiltonian Local or site basis (i,j) Eigenbasis (a,b)
One-Quantum

Eigenstates
Two-Quantum

Eigenstates

Local mode Hamiltonian
Exciton Hamiltonian 
Frenkel Exciton
Hamiltonian 
Coupled oscillators

Sites
Local modes 
Oscillators 
Chromophores

Eigenstates
Exciton states
Delocalized states

Fundamental
v=0-1 
One-exciton states 
Exciton band

Combination mode or
band
Overtone 
Doubly excited states
Biexciton 
Two-exciton states

The model for two coupled coordinates can take many forms. We will pay particular attention to a Hamiltonian that describes the
coupling between two local vibrational modes i and j coupled through a bilinear interaction of strength J:

An alternate form cast in the ladder operators for vibrational or electronic states is the Frenkel exciton Hamiltonian

The bi-linear interaction is the simplest form by which the energy of one state depends on the other. One can think of it as the
leading term in the expansion of the coupling between the two local states. Higher order expansion terms are used in another

1

HS

Hvib = + +Hi Hj Vi,j

= +V ( ) + +V ( ) +J
p2

i

2mi

qi

p2
j

2mj

qj qiqj

≈ ℏ ( )+ℏ ( )+J ( + )Hvib,harmonic ωi a†
i ai ωj a†

jaj a†
i aj aia

†
j (5.4.1)
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common form, the cubic anharmonic coupling between normal modes of vibration

In the case of eq. (9.2), the eigenstates and energy eigenvalues for the one-quantum states are obtained by diagonalizing the 2x2
matrix

 and  are the one-quantum energies for the local modes  and . These give the system energy eigenvalues

 and  can be observed in the linear spectrum, but are not sufficient to unravel the three variables (site energies  and
coupling J) relevant to the Hamiltonian; more information is needed.

For the purposes of 2D spectroscopy, the coupling is encoded in the two-quantum eigenstates. Since it takes less energy to excite a
vibration  if a coupled mode  already has energy, we can characterized the strength of interaction from the system eigenstates
by determining the energy of the combination mode  relative to the sum of the fundamentals:

In essence, with a characterization of  one has three variables that constrain . The relationship between 
and J depends on the model.

Working specifically with the vibrational Hamiltonian eq. (9.1), there are three twoquantum states that must be considered.
Expressed as product states in the two local modes these are  and . The two-quantum energy eigenvalues of
the system are obtained by diagonalizing the 3x3 matrix

Here  and  are the two-quantum energies for the local modes  and . These are commonly expressed in terms of ,
the anharmonic shift of the i=1-2 energy gap relative to the i=0-1 one-quantum energy:

Although there are analytical solutions to eq. (9.9), it is more informative to examine solutions in two limits. In the strong coupling
limit ( ), one finds

For vibrations with the same anharmonicity  with weak coupling between them ( ), perturbation theory yields

This result is similar to the perturbative solution for weakly coupled oscillators of the form given by eq. (9.4)

=( + + )+( + + )+( + )Hvib
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So, how do these variables present themselves in 2D spectra? Here it is helpful to use a specific example: the strongly coupled
carbonyl vibrations of  or RDC. For the purpose of 2D spectroscopy with infrared fields resonant with the
carbonyl transitions, there are six quantum states (counting the ground state) that must be considered. Coupling between the
two degenerate CO stretches leads to symmetric and anti-symmetric one-quantum eigenstates, which are more commonly
referred to by their normal mode designations: the symmetric and asymmetric stretching vibrations. For n=2 coupled
vibrations, there are n(n−1)/2 = 3 two-quantum eigenstates. In the normal mode designation, these are the first overtones of the
symmetric and asymmetric modes and the combination band. This leads to a six level system for the system eigenstates, which
we designate by the number of quanta in the symmetric and asymmetric stretch: ,  = ,  = ,  = ,  =

, and  = . For a model electronic system, there are four essential levels that need to be considered, since Fermi
statistics does not allow two electrons in the same state: , , , and .

Figure : Paste Caption Here

We now calculate the nonlinear third-order response for this six-level system, assuming that all of the population is initially in
the ground state. To describe a double-resonance or Fourier transform 2D correlation spectrum in the variables  and ,
include all terms relevant to pump-probe experiments:  ( , rephasing) and  ( , non-rephasing).
After summing over many interaction permutations using the phenomenological propagator, keeping only dipole allowed
transitions with ±1 quantum, we find that we expect eight resonances in a 2D spectrum. For the case of the rephasing spectrum 

To discuss these peaks we examine how they appear in the experimental Fourier transform 2D IR spectrum of RDC, here
plotted both as in differential absorption mode and absolute value mode. We note that there are eight peaks, labeled according
to the terms i eq. (9.14) from which they arise. Each peak specifies a sequence of interactions with the system eigenstates, with
excitation at a particular  and detection at given . Notice that in the excitation dimension  all of the peaks lie on one of
the fundamental frequencies. Along the detection axis  resonances are seen at all six one-quantum transitions present in our
system.
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More precisely, there are four features: two diagonal and two cross peaks each of which are split into a pair. The positive
diagonal and cross peak features represent evolution on the fundamental transitions, while the split negative features arise from
propagation in the two-quantum manifold. The diagonal peaks represent a sequence of interactions with the field that leaves
the coherence on the same transition during both periods, where as the split peak represents promotion from the fundamental to
the overtone during detection. The overtone is anharmonically shifted, and therefore the splitting between the peaks, , ,
gives the diagonal anharmonicity. The cross peaks arise from the transfer of excitation from one fundamental to the other,
while the shifted peak represents promotion to the combination band for detection. The combination band is shifted in
frequency due to coupling between the two modes, and therefore the splitting between the peaks in the off-diagonal features 

 gives the off-diagonal anharmonicity.

Notice for each split pair of peaks, that in the limit that the anharmonicity vanishes, the two peaks in each feature would
overlap. Given that they have opposite sign, the peaks would destructively interfere and vanish for a harmonic system. This is a
manifestation of the rule that a nonlinear response vanishes for a harmonic system. So, in fact, a 2D spectrum will have
signatures of whatever types of vibrational interactions lead to imperfect interference between these two contributions.
Nonlinearity of the transition dipole moment will lead to imperfect cancellation of the peaks at the amplitude level, and
nonlinear coupling with a bath will lead to different lineshapes for the two features.

With an assignment of the peaks in the spectrum, one has mapped out the energies of the one- and two-quantum system
eigenstates. These eigenvalues act to constrain any model that will be used to interpret the system. One can now evaluate how
models for the coupled vibrations match the data. For instance, when fitting the RDC spectrum to the Hamiltonian in eq. (9.1)
for two coupled anharmonic local modes with a potential of the form , we obtain 

, , and . Alternatively, we can describe the spectrum
through eq. (9.4) as symmetric and asymmetric normal modes with diagonal and off-diagonal anharmonicity. This leads to 

, , , and . Provided that one knows the
origin of the coupling and its spatial or angular dependence, one can use these parameters to obtain a structure.
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5.5: Two-dimensional spectroscopy to characterize spectral diffusion
A more intuitive, albeit difficult, approach to characterizing spectral diffusion is with a twodimensional correlation technique.
Returning to our example of a double resonance experiment, let’s describe the response from an inhomogeneous lineshape with
width  and mean frequency , which is composed of a distribution of homogeneous transitions of width . We will now
subject the system to excitation by a narrow band pump field, and probe the differential absorption  at all probe frequencies.
We then repeat this for all pump frequencies:

In constructing a two-dimensional representation of this correlation spectrum, we observe that the observed lineshape is elongated
along the diagonal axis . The diagonal linewidth is related to the inhomogeneous width  whereas the antidiagonal
width  is determined by the homogeneous linewidth .

For the system exhibiting spectral diffusion, we recognize that we can introduce a waiting time  between excitation and
detection, which provides a controlled period over which the system can evolve. One can see that when  varies from much less to
much greater than the correlation time, , that the lineshape will gradually become symmetric.

This reflects the fact that at long times the system excited at any one frequency can be observed at any other with equilibrium
probability. That is, the correlation between excitation and detection frequencies vanishes.

To characterize the energy gap correlation function, we choose a metric that describes the change as a function of . For instance,
the ellipticity
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is directly proportional to .

The photon echo experiment is the time domain version of this double-resonance or hole burning
experiment. If we examine  in the inhomogeneous and homogeneous limits, we can plot the polarization
envelope as a function of  and .

In the inhomogeneous limit, an echo ridge decaying as  extends along . It decays with the inhomogeneous distribution
in the perpendicular direction. In the homogeneous limit, the response is symmetric in the two time variables. Fourier
transformation allows these envelopes to be expressed as the lineshapes above. Here again  is a control variable to allow us to
characterize  through the change in echo profile or lineshape.

This page titled 5.5: Two-dimensional spectroscopy to characterize spectral diffusion is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

E ( ) =τ2
−a2 b2

+a2 b2
(5.5.2)

(τ)Ceg

R2

τ1 τ3

e−Γt =τ1 τ3

τ2

(τ)Ceg

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/298983?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.05%3A_Two-dimensional_spectroscopy_to_characterize_spectral_diffusion
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/


5.6.1 https://chem.libretexts.org/@go/page/298979

5.6: Appendix- Third Order Diagrams Corresponding to Peaks in a 2D Spectrum of
Coupled Vibrations

*Diagrams that do not contribute to double-resonance experiments, but do contribute to Fourier-transform measurements.
Rephasing diagrams correspond to the terms in eq. (9.14).

Using a phenomenological propagator, the  non-rephasing diagrams lead to the following expressions for the eight peaks in the
2D spectrum.

This page titled 5.6: Appendix- Third Order Diagrams Corresponding to Peaks in a 2D Spectrum of Coupled Vibrations is shared under a CC BY-
NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards
of the LibreTexts platform.

SII

( , )SII ω1 ω3 = +
2| +| |μs,0|4 μa,0|2 μs,0|2

[−i( + ) + ] [i( − ) + ]ω1 ωs,0 Γs,0 ω3 ωs,0 Γs,0

2| +| |μa,0|4 μa,0|2 μs,0|2

[−i( + ) + ] [i( − ) + ]ω1 ωa,0 Γa,0 ω3 ωa,0 Γa,0

+ +
| |μa,0|

2
μs,0|

2

[−i( + ) + ] [i( − ) + ]ω1 ωs,0 Γs,0 ω3 ωa,0 Γa,0

| |μa,0|
2

μs,0|
2

[−i( + ) + ] [i( − ) + ]ω1 ωa,0 Γa,0 ω3 ωs,0 Γb,0

− −
| | +μs,0|2 μ2s,s|2 μs,0μ0,aμas,sμa,as

[−i( + ) + ] [i( − + ) + ]ω1 ωs,0 Γs,0 ω3 ωs,0 Δs Γ2s,s

| | +μa,0|2 μ2a,a|2 μa,0μ0,sμas,aμs,as

[−i( + ) + ] [i( − + ) + ]ω1 ωa,0 Γa,0 ω3 ωa,0 Δa Γ2a,a

− −
| |μs,0|2 μas,s|2

[−i( + ) + ] [i( − + ) + ]ω1 ωs,0 Γs,0 ω3 ωa,0 Δas Γas,s

| |μa,0|2 μas,a|2

[−i( + ) + ] [i( − + ) + ]ω1 ωa,0 Γa,0 ω3 ωs,0 Δas Γas,a

≡ 1+ +2+ +3+ +4+1
′

2
′

3
′

4
′

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/298979?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.06%3A_Appendix-_Third_Order_Diagrams_Corresponding_to_Peaks_in_a_2D_Spectrum_of_Coupled_Vibrations
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.06%3A_Appendix-_Third_Order_Diagrams_Corresponding_to_Peaks_in_a_2D_Spectrum_of_Coupled_Vibrations
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/


1 https://chem.libretexts.org/@go/page/299344

Index
C
CARS

3.5: CARS (Coherent Anti-Stoke Raman Scattering) 

E
energy gap Hamiltonian

4.3: Nonlinear Response with the Energy Gap
Hamiltonian 

F
Feynman diagrams

2.1: Feynman Diagrams 

L
ladder diagrams

2.2: Ladder Diagrams 

N
nonlinear polarization

1.2: Nonlinear Polarization 

P
photon echo

3.2: Photon Echo 

T
thermal grating

3.3: Transient Grating 
transient absorption

3.4: Pump-Probe 
transient grating

3.3: Transient Grating 

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/299344?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/10%3A_Index
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.05%3A_CARS_(Coherent_Anti-Stoke_Raman_Scattering)
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations/4.03%3A_Nonlinear_Response_with_the_Energy_Gap_Hamiltonian
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.01%3A_Feynman_Diagrams
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.02%3A_Ladder_Diagrams
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization/1.02%3A_Nonlinear_Polarization
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.02%3A_Photon_Echo
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.03%3A_Transient_Grating
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.04%3A_Pump-Probe
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.03%3A_Transient_Grating


1 https://chem.libretexts.org/@go/page/299345

Glossary
Sample Word 1 | Sample Definition 1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/299345?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/11%3A_Glossary


1 https://chem.libretexts.org/@go/page/305971

Glossary
Sample Word 1 | Sample Definition 1

https://libretexts.org/
https://chem.libretexts.org/@go/page/305971?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/20%3A_Glossary


1 https://chem.libretexts.org/@go/page/417240

Detailed Licensing

Overview

Title: Nonlinear and Two-Dimensional Spectroscopy (Tokmakoff)

Webpages: 45

Applicable Restrictions: Noncommercial

All licenses found:

CC BY-NC-SA 4.0: 71.1% (32 pages)
Undeclared: 28.9% (13 pages)

By Page

 

Nonlinear and Two-Dimensional Spectroscopy (Tokmakoff)
- CC BY-NC-SA 4.0

Front Matter - CC BY-NC-SA 4.0
TitlePage - CC BY-NC-SA 4.0
InfoPage - CC BY-NC-SA 4.0
Table of Contents - Undeclared
Introduction - CC BY-NC-SA 4.0
Licensing - Undeclared
What is Nonlinear Spectroscopy? - CC BY-NC-SA 4.0

1: Coherent Spectroscopy and the Nonlinear Polarization
- CC BY-NC-SA 4.0

1.1: Linear Absorption Spectroscopy - CC BY-NC-SA
4.0
1.2: Nonlinear Polarization - CC BY-NC-SA 4.0
1.3: Third Order Response - CC BY-NC-SA 4.0
1.4: Summary - General Expressions for nth Order
Nonlinearity - Undeclared

2: Diagrammatic Perturbation Theory - CC BY-NC-SA
4.0

2.1: Feynman Diagrams - CC BY-NC-SA 4.0
2.2: Ladder Diagrams - CC BY-NC-SA 4.0
2.3: Example-Linear Response for a Two-Level
System - CC BY-NC-SA 4.0
2.4: Example- Second-Order Response for a Three-
Level System - Undeclared
2.5: Third-Order Nonlinear Spectroscopy -
Undeclared
2.6: Frequency Domain Representation(1) -
Undeclared
2.7: Appendix- Third-order diagrams for a four-level
system - Undeclared
2.8: Appendix- Third-order diagrams for a vibration -
Undeclared

3: Third-Order Nonlinear Spectroscopies - CC BY-NC-SA
4.0

3.1: Selecting signals by wavevector - CC BY-NC-SA
4.0
3.2: Photon Echo - CC BY-NC-SA 4.0
3.3: Transient Grating - CC BY-NC-SA 4.0
3.4: Pump-Probe - Undeclared
3.5: CARS (Coherent Anti-Stoke Raman Scattering) -
Undeclared

4: Characterizing Fluctuations - CC BY-NC-SA 4.0
4.1: Eigenstate vs. system/bath perspectives - CC BY-
NC-SA 4.0
4.2: Energy Gap Fluctuations - CC BY-NC-SA 4.0
4.3: Nonlinear Response with the Energy Gap
Hamiltonian - CC BY-NC-SA 4.0
4.4: How Can you Characterize Fluctuations and
Spectral Diffusion? - Undeclared

5: Two-Dimensional Spectroscopy - CC BY-NC-SA 4.0
5.1: Two-Dimensional Correlation Spectroscopy - CC
BY-NC-SA 4.0
5.2: 2D Spectroscopy from Third Order Response -
CC BY-NC-SA 4.0
5.3: Fourier Transform Spectroscopy - CC BY-NC-SA
4.0
5.4: Characterizing Couplings in 2D Spectra - CC BY-
NC-SA 4.0
5.5: Two-dimensional spectroscopy to characterize
spectral diffusion - CC BY-NC-SA 4.0
5.6: Appendix- Third Order Diagrams Corresponding
to Peaks in a 2D Spectrum of Coupled Vibrations -
CC BY-NC-SA 4.0

Back Matter - CC BY-NC-SA 4.0
Index - CC BY-NC-SA 4.0
Glossary - CC BY-NC-SA 4.0
Glossary - Undeclared
Detailed Licensing - Undeclared

https://libretexts.org/
https://chem.libretexts.org/@go/page/417240?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/30%3A_Detailed_Licensing
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/01%3A_TitlePage
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/02%3A_InfoPage
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/04%3A_Introduction
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/04%3A_Licensing
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/00%3A_Front_Matter/05%3A_What_is_Nonlinear_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization/1.01%3A_Linear_Absorption_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization/1.02%3A_Nonlinear_Polarization
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization/1.03%3A_Third_Order_Response
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/01%3A_Coherent_Spectroscopy_and_the_Nonlinear_Polarization/1.04%3A_Summary_-_General_Expressions_for_nth_Order_Nonlinearity
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.01%3A_Feynman_Diagrams
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.02%3A_Ladder_Diagrams
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.03%3A_Example-Linear_Response_for_a_Two-Level_System
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.04%3A_Example-_Second-Order_Response_for_a_Three-Level_System
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.05%3A_Third-Order_Nonlinear_Spectroscopy
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.06%3A_Frequency_Domain_Representation(1)
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.07%3A_Appendix-_Third-order_diagrams_for_a_four-level_system
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/02%3A_Diagrammatic_Perturbation_Theory/2.08%3A_Appendix-_Third-order_diagrams_for_a_vibration
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.01%3A_Selecting_signals_by_wavevector
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.02%3A_Photon_Echo
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.03%3A_Transient_Grating
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.04%3A_Pump-Probe
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/03%3A_Third-Order_Nonlinear_Spectroscopies/3.05%3A_CARS_(Coherent_Anti-Stoke_Raman_Scattering)
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations/4.01%3A_Eigenstate_vs._system_bath_perspectives
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations/4.02%3A_Energy_Gap_Fluctuations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations/4.03%3A_Nonlinear_Response_with_the_Energy_Gap_Hamiltonian
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/04%3A_Characterizing_Fluctuations/4.04%3A_How_can_you_characterize_fluctuations_and_spectral_diffusion
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.01%3A_Two-Dimensional_Correlation_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.02%3A_2D_Spectroscopy_from_Third_Order_Response
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.03%3A_Fourier_Transform_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.04%3A_Characterizing_Couplings_in_2D_Spectra
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.05%3A_Two-dimensional_spectroscopy_to_characterize_spectral_diffusion
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/05%3A_Two-Dimensional_Spectroscopy/5.06%3A_Appendix-_Third_Order_Diagrams_Corresponding_to_Peaks_in_a_2D_Spectrum_of_Coupled_Vibrations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/10%3A_Index
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/11%3A_Glossary
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/20%3A_Glossary
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Nonlinear_and_Two-Dimensional_Spectroscopy_(Tokmakoff)/zz%3A_Back_Matter/30%3A_Detailed_Licensing

