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12.3: Diffusion in a Potential

Fokker–Planck Equation 

Diffusion with drift or diffusion in a velocity field is closely related to diffusion of a particle under the influence of an external
force f or potential U.

When random forces on a particle dominate the inertial ones, we can equate the drift velocity and external force through the friction
coefficient

and therefore the contribution of the force or potential to the total flux is

The Fokker–Planck equation refers to stochastic equations of motion for the continuous probability density  with units of
m . The corresponding continuity expression for the probability density is

where j is the flux, or probability current, with units of s , rather than the flux density we used for continuum diffusion J (m  s ).
If the concentration flux is instead expressed in terms of a probability density eq. (12.1.3) becomes

and the continuity expression is used to obtain the time-evolution of the probability density:

This is known as a Fokker–Planck equation.

Smoluchowski Equation 

Similarly, we can express diffusion in the presence of an internal interaction potential U(x) using eq. (12.3.2) and the Einstein
relation

Then the total flux with contributions from the diffusive flux and potential flux can be written as

and the corresponding diffusion equation is

This is known as the Smoluchowski Equation.
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= + +mẍ fd (t)fr fext

= −ζfd vx

= ζfext vx

f = ζvx (12.3.1)

= C = C = −JU vx
f

ζ

C

ζ

∂U

∂x
(12.3.2)

ρ(x, t)
−1

= −
∂ρ

∂t

∂j

∂x

–1 −2 −1

j= −D + ρ
∂ρ

∂x

f(x)

ζ
(12.3.3)

= D − [ ρ]
∂ρ

∂x

ρ∂2

∂x2

∂

∂x

f(x)

ζ
(12.3.4)

ζ =
TkB

D
(12.3.5)

J = −D − ( )
∂C

∂x

DC

TkB

∂U

∂x
(12.3.6)

= D[ − [ ( )]]
∂C

∂t

C∂2

∂x2

∂

∂x

C

TkB

∂U

∂x
(12.3.7)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294328?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/03%3A_Diffusion/12%3A_Diffusion_in_a_Potential/12.03%3A_Diffusion_in_a_Potential


12.3.2 https://chem.libretexts.org/@go/page/294328

Linear Potential 

For the case of a linear external potential, we can write the potential in terms of a constant external force . This makes
eq. (12.3.7) identical to eq. (12.1.3), if we use eqs. (12.3.1) and (12.3.5) to define the drift velocity as

Here I defined  as the constant external force expressed in units of k T.

The probability distribution that describes the position of particles released at x  after a time t is

As expected, the mean position of the diffusing particle is given by ⟨x(t)⟩ = x  + v t.

To make use of this, let’s calculate the time it takes a monovalent ion to diffuse freely across the width of a membrane (d) under the
influence of a linear electrostatic potential of Φ = 0.3V. With U = eΦ

Using d = 4 nm, D = 10−5 cm /s, and e = 1.6×10  C, we obtain t = 1.4 ns.

Steady‐State Solutions 
For steady-state solutions to the Fokker–Planck or Smoluchowski equations, we can make use of a commonly used mathematical
manipulation. As an example, let’s work with eq. (12.3.3), re-writing it as

We can rewrite the quantity in brackets as:

Separating variables, we obtain

This is an expression that can be manipulated in various ways and integrated over different boundary conditions.  For instance,
recognizing that j is a constant under steady state conditions, and integrating from x to a boundary b:

This leads one to an important expression for the steady state flux in the diffusive limit:

The boundary chosen depends on the problem, for instance b is set to infinity in diffusion to capture problems or set as a fixed
boundary for first-passage time problems. 
For problems involving an absorbing boundary condition, ρ(b) = 0, and we can solve for the probability density as
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If we integrate both sides of this expression over the entire space, the left hand side is just unity, so we can express the steady-state
flux as

____________________________________________

1. The general three-dimensional expression is .

This page titled 12.3: Diffusion in a Potential is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei
Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

ρ(x) = [ d ]
j

D
e−U(x)/ TkB ∫

b

x

eU( )/ Tx′ kB x′

j= D−1[ [ d ]dx]∫
b

0
e−U(x)/ TkB ∫

b

x

eU( )/ Tx′ kB x′
−1

J(r, t) = −D ∇ ⋅ [ ρ(r, t)]e−U(r)/ TkB eU(r)/ TkB

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294328?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/03%3A_Diffusion/12%3A_Diffusion_in_a_Potential/12.03%3A_Diffusion_in_a_Potential
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/

