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2.3: Binary Fluid
Entropy of Mixing

The thermodynamics of the mixing process is important to phase equilibria, hydrophobicity, solubility, and related solvation
problems. The process of mixing two pure substances A and B is shown below. We define the composition of the system through
the number of A and B particles: N4 and Np and the total number of particles N = N4 + Ng , which also equals the number of
cells. We begin with two containers of the homogeneous pure fluids and mix them together, keeping the total number of cells
constant. In the case of the pure fluids before mixing, all cells of the container are initially filled, so there is only one accessible
microstate, e = 1, and

Spure ZkBlIl]. =0

When the two containers are mixed, the number of possible microstates are given by the binomial distribution:
Quix = N!/NyINp!.
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If these particles have no interactions, each microstate is equally probable, and similar to eq. (2.2.2) we obtain the entropy of the
mixture as

Smix = —Nkp (zalnzg +zplnzg) (2.3.1)

For the mixture, we define the mole fractions for the two components: 4 = N4/N and g = Ng/N. As before, since z 4 and \
(x B < 1)), the entropy for the mixture is always positive. The entropy of mixing is then calculated from
ASpix = Smix — (Spure A T SpueB) - Since the entropy of the pure substances in this model is zero, ASmix = Smix - A plot of this
function as a function of mole fractions illustrates that the maximum entropy mixture has x4 =xp =0.5.
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In the absence of interactions between particles, the free energy of mixing is purely entropic with AFp;x = —T'ASpix. The
chemical potential of A particles p4 describes the free energy needed to replace a particle B with an additional A particle, and is

6M , 7{ g i}

pa=—kpT(lnzg —lnzp)=—uB

This curve illustrates the increasing challenge of finding available space as the packing fraction increases.
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Intermolecular Interaction

To look at real systems, we now add interactions between particles by assigning an interaction energy w between two cells which
are in contact. The interaction energy can be positive (destabilizing) or negative (favorable).

With the addition of intermolecular interactions, each microstate will have a distinct energy, the canonical partition function can be
obtained from eq. (2.1.1), and other thermodynamic properties follow.

In the case of a mixture, we assign separate interaction energies for each adjoining A— A, B— B, or A— B pair in a given
microstate: wy 4, wpB,wp- How do we calculate the energy of a microstate? m is the total number of molecular contacts in the
volume, and these can be divided into A — A, B— B, or A — B contacts:

m=myg4 +MBB+Myp

While m is constant, the counts of specific contacts m;; vary by microstate. Then the energy of the mixture for the single i
microstate can be written as

Erix = maawa4 +MBpwBB +MABWAB (2.3.2)

and the internal energy comes from an ensemble average of this quantity. An exact calculation of the internal energy from the
partition function would require a sum over all possible configurations with their individual contact numbers. Instead, we can use a
simpler, approximate approach which uses a strategy that starts by expressing each term in eq. (2.3.2) in terms of m 45. We know:

maa = (Total contactsfor A) - (Contacts of A with B)
o ZNA _ mayp (233)
2 2
ZNB maB
= — 2.3.4
mpp = — 5 (2.3.4)
Then we have

2waalNa 2wppNp waa +wBB

Epix = + +map |wap — ——5—
( 2 ) ( 2 ) AB( A 2 ) (2.3.5)

= Upure A+ Upure B + mapAw

The last term in this expression is half the change of interaction energy to switch an A— A and a B— B contact to form two
A — B contacts:

Aw= (OJAB _ Z2AA T WBE ;WBB ) (2.3.6)

We also recognize that the first two terms are just the energy of the two pure liquids before mixing. These are calculated by taking
the number of cells in the pure liquid ({V;) times the number of contacts per cell (z) and then divide by two, so you do not double

@ 0 a @ 2.3.2 https://chem.libretexts.org/@go/page/294278


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294278?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/01%3A_Water_and_Aqueous_Solutions/02%3A_Lattice_Model_of_a_Fluid/2.01%3A_Lattice_Models

LibreTextsw

count the contacts.

i N
Upure,i = zw2 (237)

With these expressions, eq. (2.3.5) becomes
Enix = pure A + UpureB + mABAw
This equation describes the energy of a microstate in terms of the number of A — B contacts present mp.

At this point, this is not particularly helpful because it is not practical to enumerate all of the possible microstates and their
corresponding m 4. To simplify our calculation of Uyix, we make a "mean field approximation," which replaces m4p with its
statistical average (m4p):

(map) = (# of contact sites for A) x (probability of contact site being B)
e ( N ) N (2.3.8)
Then for the energy for the mixed state Upiy = (Emix) , we obtain:
Unix = Upure A +UpweB + T4 NEkBT X 45 (2.3.9)
Here we have introduced the unitless exchange parameter,
XAB = k]:T < AB — wal —;wBB ) = Zﬁ; (2.3.10)

which expresses Aw (the change in energy on switching a single A and B from the pure state to the other liquid) in units of kT
Dividing by z gives the average interaction energy per contact.

x4B > 0 — unfavorable A-B interaction
xaB < 0 — favorable A-B interaction
We can now determine the change in internal energy on mixing:
AU'mix = (Umix - UpureA - UpureB) (2311)
= w42pNkpTx4B
Note AU,,;; as a function of composition has its minimum value for a mixture with 4 = 0.5, when x 45 <0.

Note that in the mean field approximation, the canonical partition function is

N
V1 q5? exp|—Unix/ k5T

Q= Nl

We kept the internal molecular partition functions here for completeness, but for the simple particles in this model g4 =g =1 .

Free Energy Mixing®
Using egs. (2.3.1) and (2.3.11), we can now obtain the free energy of mixing
A-Fmix = AU'mix - TASmix
= NkpT(zazpxap+zalnzyg+zplnzg)

This function is plotted below as a function of mole fraction for different values of the exchange parameter. When there are no
intermolecular interactions (x4p =0), the mixing is spontaneous for any mole fraction and purely entropic. Any strongly
favorable A — B interaction (x 45 < 0) only serves to decrease the free energy further for all mole fractions.
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As xap increases, we see the free energy for mixing rise, with the biggest changes for the 50/50 mixture. To describe the
consequences, let’s look at the curve for x4p =3, for which certain compositions are miscible (AFp;, <0) and others
immiscible (A Fpix > 0).
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Consider what would happen if we prepare a 50/50 mixture of this solution. The free energy of mixing is positive at the equilibrium
composition of the 4 = 0.5 homogeneous mixture, indicating that the two components are immiscible. However, there are other
mixture compositions that do have a negative free energy of mixing. Under these conditions the solution can separate into two
phases in such a way that (A Fiyix is minimized. This occurs at mole fractions of 4 = 0.07 & 0.93, which shows us that one phase
will be characterized by z4 > zp and the other with x4 < xp. If we prepare an unequal mixture with positive (A Ampiy, for
example \(x_A = 0.3\), the system will still spontaneously phase separate although mass conservation will dictate that the total mass
of the fraction with \(x_A = 0.07\) will be greater than the mass of the fraction at \(x_A = 0.93\). As x 4p increases beyond 3, the
mole fraction of the lesser component decreases as expected for the hydrophobic effect. Consider if A = water and B = oil. wgp
and w4 p are small and negative, w4 4 is large and negative, and x 45 > 1.

Critical Behavior

Note that 50/50 mixtures with \(2 < \chi_{AB} < 2.8\) have a negative free energy of mixing to create a single homogeneous phase,
yet, the system can still lower the free energy further by phase separating. As seen in the figure, x 45 = 2 marks a crossover from
one phase mixtures to two phase mixtures, which is the signature of a critical point. We can find the conditions for phase equilibria
by locating the free energy minima as a function of x 45, which leads to the phase diagrams as a function of x 45 and T" below. The
critical temperature for crossover from one- to two-phase behavior is Tj, and Aw is the average differential change in interaction
energy defined in eq. (2.3.10).
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Conditions for phase equilibria in binary fluid mixture

T-dependence of phase eguilibria in binary fluid mixture
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