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6.7: Ion Distributions Near a Charged Interface

Debye–Hückel Approximation 

Describing ions near a negatively charged plane is a way of describing the diffuse layer of cations that forms near the negatively
charge interface in lipid bilayers. The simplest approach is to use the Debye–Hückel equation (linearized PBE) in one dimension. 
is the distance away from the infinite charged plane with a surface charge density of .

Generally, the solution is

Apply boundary conditions:

1.  
2. The electric field for surface with charge density σ (from Gauss’ theorem)

Differentiate eq. ( ) and compare with eq. ( ):

The electrostatic potential decays exponentially away from the surface toward zero.

Nominally, the prefactor would be the "surface potential" at , but the Debye approximation would significantly underestimate
this, as we will see later. Substituting  into the Poisson equation gives

Ion distribution density in solution decays exponentially with distance. This description is valid for weak potentials, or .
The potential and charge density are proportional as ; both decay exponentially on the scale of the Debye
length at long range.

Note:

Higher ion concentration  smaller  Double layer less diffuse.

Higher temperature  larger  Double layer more diffuse.

Note also that the surface charge is balanced by ion distribution in solution:

which you can confirm by substituting eq. ( ).

Gouy–Chapman Model  

To properly describe the ion behavior for shorter distances ( ), one does not need to make the weak-potential approximation
and can retain the nonlinear form of the Poisson–Boltzmann equation:
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In fact, this form does have an analytical solution. It is helpful to define a dimensionless reduced electrostatic potential, expressed
in thermal electric units:

and a reduced distance which is scaled by the Debye length

Then the PBE for a 1:1 electrolyte takes on a simple form

with the solution:

Here  is a constant, which we can relate to the surface potential, by setting  to zero.

 is the scaled surface potential. Using the surface charge density  we can find:

Then you can get the ion distribution from Poisson equation: .

The Gouy–Chapman Layer, which is , has strong enough ionic interactions that you will see an enhancement over
Debye–Hückel.

Stern Layer 

In immediate proximity to a strongly charged surface, one can form a direct contacts layer of counterions on surface: the Stern
layer. The Stern Layer governs the slip plane for diffusion of charged particles. The zeta potential  is the potential energy
difference between the Stern layer and the electroneutral region of the sample, and governs the electrophoretic mobility of particles.
It is calculated from the work required to bring a charge from  to the surface of the Stern layer.
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