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9.3: Polymer Elasticity and Force—Extension Behavior

The Entropic Spring

To extend a polymer requires work. We calculate the reversible work to extend the macromolecule from the difference in free
energy of the chain held between the initial and final state. This is naturally related to the free energy of the system as a function of
polymer end-to-end distance:

T .
Wstretch = F(T’) - F(TO) = - frev -dr

To

For an ideal chain, the free energy depends only on the entropy of the chain: F' = —T'S. There are fewer configurational states
available to the chain as you stretch to larger extension. The number of configurational states available to the system can be
obtained by calculating the conformational partition function, Qcor . For stretching in one-dimension, the Helmholtz free energy
is:

dFF = —pdV —-8dT+ f-dx
= *kBTanconf
Sconf = kB In Qconf
F 81 con aSCUTL
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When you increase the end-to-end distance, the number of configurational states available to the system decreases. This requires an
increasingly high force as the extension approaches the contour length. Note that more force is needed to stretch the chain at higher
temperature.

Since this is a freely joined chain and all microstates have the same energy, we can equate the conformational partition function of
a chain at a particular extension z with the probability density for the end-to-end distances of that chain

Qconf — Pfjc("')

Although we are holding the ends of the chain at a fixed and stretching with the ends restrained along one direction (), the
probability distribution function takes the three-dimensional form to properly account for all chain configurations:

Poons(r) = Pye#'"* with 82 = 3kpT/2né? and Py = 83 /n3/2 is a constant. Then
In Peops(r) = —B*r* +InP,
The force needed to extend the chain can be calculated from eq. (9.3.1) after substituting 7? = 22 +y? + 2% , which gives
f= —2,32kBT:r = —KgaZ

So we have a linear relationship between force and displacement, which is classic Hooke’s Law spring with a force constant
given by
3kpT  3kpT
K = =
* nf? (r?)o

Here <r2>0 refers to the mean square end-to-end distance for the FJC in the absence of any applied forces. Remember:
(7'2}0 =nl? ={L¢ . In the case that all of the restoring force is due to entropy, then we call this an entropic spring £ gs.
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s = 2(22)
B 2 \ Ox? N,V,T

This works for small forces, while the force is reversible. Notice that kgg increases with temperature -- as should be expected for
entropic restoring forces.

Example: Stretching DNA!

At low force:

dsDNA — kg =5 pN/nm

ssDNA — kg = 160 pN /nm — more entropy/more force

At higher extension you asymptotically approach the contour length.
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Force/Extension of a Random Walk Polymer

Let’s derive force extension behavior for a random walk polymer in one dimension. The end-to-end distance is 7, the segment
length is r, and the total number of segments is n.

n=12

[e—8—]
x=3¢
n=7n=5

& »
< x >

For any given r, the number of configurations available to the polymer is:

n!
Q=—
nyln_!
This follows from recognizing that the extension of a random walk chain in one dimension is related to the difference between the
number of segments that step in the positive direction, n., and those that step in the negative direction, n_. The total number of

steps isn =ny +n_ . Also, the end-to-end distance can be expressed as

r=n;—n_)l=02n; —n)l=(n—-2n_)¢ (9.3.2)
1 r ony 1
n=3(ntg) T ot

Then we can calculate the free energy of the random walk chain that results from the entropy of the chain, i.e., the degeneracy of
configurational states at any extension. This looks like an entropy of mixing calculation:
F = —kgTIlnQ
= —kgT(nlnon—nylnn, —n_lon_)
nkpT (¢ Ind, +¢_lng_)

n4 1

¢:&::7 25(1i$)

Here the fractional end-to-end extension of the chain is
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(9.3.3)
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Next we can calculate the force needed to extend the polymer as a function of r:

OF  OF 0¢. 9. 1

=% 79, or or TaLc

Using eq. (9.3.2)
1
f = —nkBT(ln¢+ —ln(,b_) (E)
B _nkBTl 1+z
T Lo \1-2

_ _kBTlln 1+
- L 2 1—z

f= —#tanh_l(m) (9.3.4)

1
where I used the relationship: ln< T tT ) = 2tanh ™! (x). Note, here the forces are scaled in units of kgT'/£. For small forces
—z

kT
{L¢

kT
expected for a 1D chain. For a 3D chain, we would expect: f &~ é;
C

z <1, tanh ! (z) ~ 2 and eq. (9.3.4) gives f ~

r. This gives Hooke’s Law behavior with the entropic force constant

r. The spring constant scales with dimensionality.

Stretching Force-Extension Curve for a 1-D Random Walk Palymer
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The relationship between position, force, and the partition function

Now let's do this a little more carefully. From classical statistical mechanics, the partition function is

Q ://dr3Ndp3Nexp(—H/kBT)

Where H is the Hamiltonian for the system. The average value for the position of a particle described by the Hamiltonian is
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1
(z) = o) //dr3dp3w exp(—H /kpT)
If the Hamiltonian takes the form

H=-f-z

kgT [ 0Q olnQ@
_ e (% —k
=3 <3f)v,mv BT( of )V,T,N

This describes the average extension of a chain if a force is applied to the ends.

Then

Force/Extension Behavior for a Freely Jointed Chain
Making use of the expressions above and Q = ¢'v
;- Oln
Qeonf = //dr3dp e—U/kTef -r/kpT <’l"> _ NkBT( QConf)
af U,r,n
Here we also inserted a general Hamiltonian which accounts for the internal chain interaction potential and the force ex the chain:

H=U-—f -7 .For N freely jointed chains with n segments, we set U — 0, and focus on force exerted on every segment of the
chain.

f‘?=if-z=f€icosai
i=1 i=1

Treating the segments as independent and integrating over all 8, we find that

27sinhp
Qcon f —
() "

1

(ry=nt [cothgo - ;] (9.3.5)
where the unitless force parameter is
fe

== 9.3.6
P kpT (9.3.6)

As before, the magnitude of force is expressed relative to kgT'/¢. Note this calculation is for the average extension that results
from a fixed force. If we want the force needed for a given average extension, then we need to invert the expression. Note, the
functional form of the force-extension curve in eq. is different than what we found for the 1D random walk in eq. (9.3.4). We do
not expect the same form for these problems, since our random walk example was on a square lattice, and the FJC propagates
radially in all directions.

Derivation

For a single polymer chain:

g = ffd,,,de3eU/kBTeff-r/kBT
P(r) = e Ukl efr/haT
q
kT ( Olng
w = Gy
q f )
In the case of the Freely Jointed Chain, set U — 0.
- n — n
fr=f b = fL)  cost;
=1 =1
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Decoupled segments:

~ (drd T oso.
g ~ [dr exp(Zi kBTcosﬁl>

= (J;" Ji7 explp cost] sinfdfdg)"

_ <2vrsir;h(¢) )

<T‘> = kBTaiflnq
1nh T —x
= nkBT% {ln{WH coth(z) = %
(r) = nllcoth(p)—¢']

or (z) = coth(p) — ¢!

The average fractional extension: (z) = (r)/L¢
Now let’s look at the behavior of the expression for (x) -- also known as the Langevin function.

(r) = nf[coth(p) — ] (9.3.7)
Looking at limits:

o Weak force (p < 1): f < kT /L

1 1 1 2
Inserting and truncating the expansion: cothy = p +39- E(p?’ + ng 4o, we get

(r) 1

(z) = L_c ~ 590
1 nf?

M o~ 12
3 kT
3kgT

or f = B2 (r) =kgs(r)
nt

Note that this limit has the expected linear relationship between force and displacement, which is governed by the entropic
spring constant.
o Strong force (¢ > 1). f > kT /£ Taking the limit coth(z) — 1.

1
(ry ~nt [1 - —} +— lim = lim = L¢ Contour length

[%2] f—ooo  a—o0

kgT
Orfz%ﬁwhere(m)z%

For strong force limit, the force extension behavior scales as, z ~1 — f~1 .

So, what is the work required to extend the chain?

At small forces, we can integrate over the linear force-extension behavior. Under those conditions, to extend from r to r + Ar, we
have

Ar
3kgT
rev — dr = A 2
w /0 Kgsrdr ool T

Force/Extension of Worm-like Chain

For the worm-like chain model, we found that the variance in the end-to-end distance was

(r*y =20,Lo — 202(1 — e Fe/") (9.3.8)

https://chem.libretexts.org/@go/page/294314



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294314?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/02%3A_Macromolecules/09%3A_Macromolecular_Mechanics/9.02%3A_Worm-like_Chain

LibreTextsm

where L is the contour length, and the persistence length was related to the bending force constant as £, = kﬂ—bT . The limiting
B
behavior for eq. (9.3.8) is:
rigid: £, > L¢ (r) o L2
flexible: ¢, < Lo (r*) ~ 2Lc¢t, - for WLC
= nt? (26, =4.)

Following a similar approach to the FJC above, it is not possible to find an exact solution for the force-extension behavior of the
WLC, but it is possible to show the force extension behavior in the rigid and flexible limits.

Setting 24, = ., ¢ = f{./kpT, and using the fractional extension (z) = éﬁ:
C
1. Weak force (¢ < 1) Expected Hooke’s Law behavior
3ksT fe.
. < kT = =
fle < kg = Te 7 T 3(z)

For weak force limit, the force extension behavior scales as,  ~ f.
2. Strong force (¢ > 1)
1
. fLe _ 1
207) kT 41— (@)

fl.>ksT  (r)=Lc (1 -

For strong force limit, the force extension behavior scales as, x ~ 1 — f -1/2

An approximate expression for the combined result (from Bustamante):

flo 1
kT 41— (o))

1+ 9.3.9)
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Adapted with permission from N. M. Toan and D. Thirumalai, Macromolecules 43, 4394-4400 (2010). Copyright
2010 American Chemical Society.

1. A. M. van Oijen and J. J. Loparo, Single-molecule studies of the replisome, Annu. Rev. Biophys. 39, 429-448 (2010).

This page titled 9.3: Polymer Elasticity and Force—Extension Behavior is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.

https://chem.libretexts.org/@go/page/294314


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294314?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/02%3A_Macromolecules/09%3A_Macromolecular_Mechanics/9.03%3A_Polymer_Elasticity_and_ForceExtension_Behavior
https://creativecommons.org/licenses/by-nc-sa/4.0
https://chemistry.uchicago.edu/faculty/andrei-tokmakoff
https://tdqms.uchicago.edu/

