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18.1: Helix—Coll Transition

Cooperativity plays an important role in the description of the helix—coil transition, which refers to the reversible transition of
macromolecules between coil and extended helical structures. This phenomenon was observed by Paul Doty in the 1950s for the
conversion of polypeptides between a coil and a-helical form,”> and for the melting and hybridization of DNA.? Bruno Zimm
developed a statistical theory with J. Bragg that described the helix—coil transition, which forms the basis of our discussion.*

One of the observations that motivated this work is shown in the figure below. The fraction of helical structure observed in the
polypeptide poly-benzylglutamate showed a temperature-dependent melting behavior in which the steepness of the transition
increased with polymer chain length. This length dependence indicates a higher probability of forming helices when more residues are
present, and that the linkages do not act independently. This suggests a two-step mechanism. The rate-limiting step of forming an «
helix is the nucleation of a single hydrogen bonded residue ¢ — % +4 loop. Once this occurs, the addition of further hydrogen bonds
to extend this helix is much easier and occurs in rapid succession.

Polybenzylglutamate oligomers

Fractional Helicity

T=-T

m

Adapted from B. H. Zimm, P. Doty and K. Iso, Proc.
Natl. Acad. Sci. U. S. A. 45, 1601-1607 (1959).
Copyright 1959 PNAS.

To model this behavior, we imagine that the polypeptide consists of a chain of segments that can take on two configurations, H or C.

Symbol Name Effect
H Helix  Decreases entropy but also lowers enthalpy
C Coil Raises entropy

To specify the state of a conformation through a sequence, i.e.,
...HCHHHHCCCCHHH. ..

Remember to not take this too literally, and be flexible in the interpretation of your model. Although this model was derived with an
a-helix formation in polypeptides in mind, in a more general sense H and C' do not necessarily refer explicitly to residues of a
sequence, but just for independently interacting regions.

If there are n segments, these can be divided into ng helical and n¢ coil segments.
ng+nc=n

The segments need not correspond directly to amino acids, but structurally and energetically distinct regions. Our goal will be to
calculate the fractional helicity of this system 0y as a function of temperature, by calculating the conformational partition function,
cony» by an explicit summation over ¢ microstates, Boltzmann weighed by the microstate energy E;:

Geont(n) = Y e Bi/keT (18.1.1)
% config.
Non-cooperative Model
We start our analysis by discussing a non-cooperative model. We assume:

o Each segment can switch conformation between H and C independently of the others.
e The formation of H from C lowers the configurational energy by Ae. Ae = Ey — E¢ is a free-energy change per residue, where
Ae < 0. We will take the coil state to be the reference energy Ec =0.

https://chem.libretexts.org/@go/page/294351



https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294351?pdf
https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Concepts_in_Biophysical_Chemistry_(Tokmakoff)/05%3A_Cooperativity/18%3A_Cooperativity/18.01%3A_HelixCoil_Transition

LibreTextsm

o Therefore the energy of the system is determined from the number of H residues present, not the specific sequence of H and C
segments.

Then, we can calculate geops using g(n, ng), the degeneracy of distinguishable states for a polymer of length n with ng helical
segments. The conformational partition function is obtained by

n

Geons(n) = Y g(n, ng)e A kT (18.1.2)

ng=0

In evaluating the partition functions in helix—coil transition models, it is particularly useful to define a “statistical weight” for the
helical configuration. It describes the influence of having an H on the probability of observing a particular configuration at kg7

s = e Ae/ksT (18.1.3)
For the present model, we can think of s as an equilibrium constant for the process of adding a helical residue to a sequence:
P(ng+1)
" P(nn)

This equilibrium constant is related to the free energy change for adding a helical residue to the growing chain. Then we can write eq.
(18.1.2) as

n

Geont (n) = Y g(n,mr)s™

ng=0

Since there are only two possible configurations (H and C'), the degeneracy of configurations with ny helical segments in a chain of
length n is given by the binomial coefficients:

n! n
, - — 18.1.4

g(n nH) nH'nC' (nH> ( )
since nc = n —ng . Then using the binomial theorem, we obtain

eont (1) = (1 +8)" (18.1.5)

Also, the probability of a chain with n segments having n g helical linkages is

Py ny) = Samme Fenet ( ) s
P Qconf (1—1—8)n

(18.1.6)
Ny

v/ Example:n =4

The conformations available are shown here.
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The molecular conformational partition function is

allC one H two H
A~ — ——
Jeonf = 1 + 46*A5/ksr+ 6672A5/km+ 46*3A5/kar+ 6*4A5/k3T

= 1 + 4s + 65> + 453 + st
=(1+s)!

The last step follows from Pascal’s Rule for binomial coefficients. From eq. (18.1.6), the probability of having two helical
residues in a four-residue sequence is:

652
P(4,2) = ——
(4,2) (1+s)?
To relate this to an observable quantity, we define the fractional helicity, the average fraction of residues that are in the H form.
n
05 — {nz) (18.1.7)
n
(ng)="Y_ ngP(n,ng) (18.1.8)
ng=0
Using this amazing little identity, which we derive below,
s Oq
=== 18.1.9
(nm) = = 52 (18.1.9)
You can use eq. (18.1.5) to show:
ns
= 18.1.10
() = = (18.1.10)
and
O = — (18.1.11)
7T +s o

This takes the same form as one would expect for the simple chemical equilibrium of an C = H molecular reaction. If we define
the equilibrium constant Kpgc =[H|/[C], then the fraction of molecules in the H state is
0g =[H]/([C]+[H]) = Kgc/(1+ Kpgc) - In this limit s = Kge .
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Below we plot eq. (18.1.11), choosing Ae to be independent of temperature. A is a smooth and slowly varying function of 7" and
does not show cooperative behavior. Its high temperature limit is 8 = 0.5, reflecting the fact that in the absence of barriers, the H
and C configurations are equally probable for every residue.

1

kT
—Ae

We can look a bit deeper at what is happening with the structures present by plotting the probability distribution function for finding
n g helical segments within a chain of length n, eq. (18.1.6), and the associated energy landscape (a potential of mean force):

F(n,ng) =—NkpTIn[P(n,ng)] =~ —NkpT In[g(n, ng)s"]
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The maximum probability and free-energy minimum is located at full helix content at the lowest temperature, and gradually shifts
toward ng/n = 0.5 with increasing temperature. The probability density appears Gaussian, and the corresponding free energy
appears parabolic. Using similar methods to that described above, we can show that the variance in this distribution scales as
n~1/2 The presence of a single shifting minimum is referred to as a transition in a one-state system, rather than two-state behavior
expected for phase transitions. Here ny is the order parameter that characterizes the extend of folding of the helix.

Where does eq. (18.1.9) come from? For the moment, we will drop the “conf” and “H” subscripts, mainly to write things more
compactly, but also to emphasize the generality of this method to all polynomial expansions. Using eq. (18.1.2), ¢ = Zn gs",
and recognizing that g is not a function of s:

% :;ngsnfl
:%Xn:ngs”

From eq. (18.1.6), P,, = gs"/q, we can write this in terms of the helical segment probability

-—===%"np, (18.1.12)

Comparing eq. (18.1.13) with eq. (18.1.12), (n) = nP,, we see that
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s@_ Olng

E@s_m) or (n) (18.1.13)

This method of obtaining averages from derivatives of a polynomial appears regularly in statistical mechanics.”

Cooperative Zimm—Bragg Model

Let’s modify the model to add an element of cooperativity to the segments in the chain. In order to form a helix, you need to nucleate
a helical turn and then adding adjacent helical segments is easier. The probability of forming a turn is relatively low, meaning the free
energy barrier for nucleation of one H in a sequence of C is relatively high: AG,,,. > 0. However the free-energy change per residue
for forming H from C' within a helical stretch, AG g, stabilizes the growing helix. Based on these free energies, we define statistical
weights:

—AGuc/ksT
7AGnuc/kBT

s=e
oc=e
s and o are also known as the Zimm-Bragg parameters. Here, s is the statistical weight to add one helical segment to an existing
continuous sequence (or stretch) of H, which we interpret as an equilibrium constant:
_ [...CHHHHCC...] Pg(ng+1)
- [...CHHHCCC...]  Py(ng)

o is the statistical weight for each stretch of H. This is purely to reflect the probability of forming a new helical segment within a
stretch of C'. The energy benefit of making the helical form is additional:
. [ ..CCCHC(CC.. .]_ PH(VH+1)

vy is the number of helical stretch segments in a chain. Note that the formation of the first helical segment has a contribution from
both the nucleation barrier (o) and the formation of the first stabilizing interaction (s). The statistical weight for a particular microstate
is then e Bi/*sT — g™ gV Since AG e will be large and positive, o < 1. Also, we take s > 1, and the presence of cooperativity
will mainly hinge on o < s.

A 35 segment chain has 235 —3.4 x 10" possible configurations. This particular microstate has fifteen helical segments (
ng = 16) partitioned into three helical stretches (vg = 3):

CCCCCCHHHHHCCC H CCCCCCCCHHHHHHHHHHCC
5 \I/ 10

We ignore all C's since the C state is the ground state and their statistical weight is 1.

e~ Bi/ksT _ gni gy _ 16,3

Now the partition function involves a sum over all possible helical segments and stretches:

" Vmaz

Geont (M) = Y Y g(n,ng,v)s" o (18.1.14)

nyg=0vg=0

Since the all-coil state (ng = 0) is the reference state, it contributes a value of 1 to the partition function (the leading term in the
summation). Therefore, the probability of observing the all-coil state is

P(n,ng =0)=q_\; (18.1.15)

From eq. (18.1.15), the mean number of helical residues is

1 N Vmaz

n vV,
ngg(n,ng,vy)s" o’
ny=0vy=0

ng) =
< > Gconf

In these equations, Uy, refers to the maximum number of helical stretches for a given ng, ng /2 for even ng and (ng/2)+1
for odd ng.
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Zipper model

As a next step, we examine what happens with the simplifying assumption that one helical stretch is allowed. This is the single stretch
approximation or the zipper model, in which conversion to a helix proceeds quickly once a single turn has been nucleated. This is
reasonable for short chains in which two stretches are unlikely due to steric constraints. For the single stretch case, we only need to
account for vg =0 and 1. For vy = 0 the system is all coil (ng = 0) and there is only one microstate to count, g(n,0,0) = 1. For a
single helical stretch we need to accounts for the number of ways of positioning a single helical stretch of ny residues on a chain of
length n: g(n,ng,1) =n—ng +1 . Then the partition function, eq. (18.1.15), is

n
Gip(n) =140 Z(n—nH—f—l)s"H (18.1.16)
ng=1
We can evaluate these sums using the relations
< v s
et s—1
- s
Z ngst = ——— [ns"™ —(n+1)s" +1]
] (s—1)
which leads to
=1+ 2 (" + 2 (1)
ip(n) = — "+ —=—(n
Taip (s—1)2 s

Following the general expression in eq. (18.1.6), and counting the degeneracy of ways to place a stretch of ny segments, the
probability distribution of helical segments is
(n—ng+1)os™

Py(n,ng) = p— 1<ng<n (18.1.17)
CO.

This expression does not apply to the case ng =0, for which we turn to eq. (18.1.16). The helical fraction is obtained from
0 = £(0Ingy,p/0s) :

O =

os ( ns"? —(n+2)s"1 +(n+2)s—n )
(s=12 \ n{l+(os/(s=1)?)(s"1+n—(n+1)s)}

Multiple stretches

Expressions for the full partition function of chains with length n, eq. (18.1.15), can be evaluated for one-dimensional models that
account for nearest neighbor interactions (Ising model) using an approach based on a statistical weight matrix, M. You can show that
the Zimm-Bragg partition function can be written as a product of matrices of the form

tens() = (1 00 ()

1
M:(l as)
1 s

Each matrix represents possible configurations of two adjoining partners, and M raised to the nth power gives all configurations for a
chain of length n. This form also indicates that we can obtain a closed form for g.,ns from the eigenvalues of M raised to the nth
power. If T is the transformation that diagonalizes M, A = T—-1MT, then M" = T A"T". This approach allows us to write

Goont = A~ (NFH(L=A0) = AT (1= \,))

)\i:%<(1—s)ii\>

A=A —A = ((1—5)°+40s)

with

and the fractional helicity is obtained from
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o <TLH> _ S alnqconf
O = o = 2 (18.1.18)

Simplifying these expressions for the limit of long chains (n — oo, Niﬂ > A1) | one finds

14+s+X\"
Qeonf ~ T

14+ +(s—1+20)

- 18.1.1
O =s T+stA (18.1.19)

and

Note that when you set ¢ = 1, you recover the noncooperative expression, eq. (18.1.11). When s — 1, 6 — 0.5.

Below, we examine the transition behavior in the large n limit from eq. (18.1.20) as a function of the cooperativity parameter o. We
note that a sharp transition between an ensemble that is mostly coil to one that is mostly helix occurs near s = 1, the point where these
states exist with equal probability. When the C = H equilibrium shifts slightly to favor H (s slightly greater than 1), most of the
sample quickly converts to helical form. When the equilibrium shifts slightly toward C, most of the sample follows. As o decreases,
the steepness of this transition grows as (df/ds)s—; =1/ 401/ . Therefore, we conclude that highly cooperative transitions will have
s~ 1 and o < s. In practice for polypeptides, we find that o/ s lies between 5 x 10 and 5 x 1075 .

Large n limit: n dependence:
BH(SIG) GH{SIn)
1 T 1
/”'f—)—‘—‘ﬁ_
0.8 n 0.8+
2)
06 Las /o LI 0.6F
. — 10°
0.4r ,"’ — 101 7 0.4
02f / — 107 0.2b
— 103
% 1 2 3 %
s s

Next, we explore the chain-length dependence for finite chains. We find that the cooperativity of this transition, observed through the
steepness of the curve at § = 0.5 increases with n. We also observe that the observed midpoint (g = 0.5) lies at s > 1, where the
single linkage equilibrium favors the H form. This reflects the constraints on the length of helical stretches available a given chain.

AT
Temperature Dependence 1 e
\ :

Now let’s describe the temperature dependence of the cooperative model. The helix—coil \\
transition shows a cooperative melting transition, where heating the sample a few degrees 3] \\
causes a dramatic change from a sample that is primarily in the C' form to one that is H \\ : (ﬁj
primarily H. Multiple temperature-dependent factors make this a bit difficult to deal with \; dT Jr-t,
analytically, therefore we focus on the behavior at the melting temperature 7},, which we 0.5 -\
define as the point where 6H(Ts) =0.5. \
Look at the slope of 6 at T},,. From chain rule: \\\

d9 d0 ds df dlns . P\

e A A St

dI' ds dT' ds dT 0 Tm
Since we interpret s as an equilibrium constant for the addition of one helical residue to a T

stretch, we can write a van’t Hoff relation

dlns AHI(}C
dT kT2
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Note that this relation assumes that A Hy is independent of temperature, which generally is a concern, but we will not worry too much
since we are just evaluating this at T%,. Next we focus our discussion on the high n limit. From the Zimm-Bragg model:

a9\ 1
dS s=1 - 40’1/2

Then, we set s(T,,,) =1, and combine these results to give the slope of the melting curve at T,,,:

(ﬁ) _ _AHpe
dT ) 40'/2kpT3

The slope of 6 at T, has units of inverse temperature, so we can also express this as a transition width: AT}, = (df/dT);" .

Keep in mind this van’t Hoff analysis comes with some real limitations when applied to experimental data. It does not account for the
finite size of the system, which we have seen shifts s(T},) to be > 1, and the knowledge of parameters at T},, does not necessarily
translate to other temperatures. To the extent that you can apply the assumptions, the van’t Hoff expression can also be used to predict
the helical fraction as a function of temperature in the vicinity of T; using

AHpo (1 1

and assuming that ¢ is independent of temperature.

0,(Ag)

0.3|

0.21

0.0 L
-0.2 -0.1 0 0.1 0.2

ky(T-T,)/ | Ag]

Below we show the length dependence of the melting temperature. As the length of the chain approaches infinite, the helix/coil
transition becomes a step function in temperature. This trend matches the expectations for a phase transition: in the thermodynamic
limit, the infinite system, will show discontinuous behavior. For finite lengths, the melting temperature 7}, is lower that for the infinite
chain (7};,,,00), but approaches this value for n > 300.

8.(n)
1 L T
-‘\\\ \\.‘ - U I
0.8 \ | o=10" =
|
L || n
0.6 \| 20 Ke(Ty,i—Th) —0.05" T
| \ i | Ag]
0.4 \| — 20
0.2F ‘ o
: \\ — 100 -01 ]
o— = ' I
-0.2 0 0.2 10 100 1x10°

kB(T_TM,oo)/ I AEI
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Calorimetric parameters for polypeptide chains

Side-chain only has a small effect on the helix—coil propagation parameter:

AH?
Sample HO _q o Other
(mol_1 residue )

Alanine-rich peptides,
Ac-Y(AEAAKA)8F-NH2, —0.95to —1.3kcal 0.002
Ac-(AAKAA)KY-NH2

gggglgﬁ‘t‘;za © ~1.1kcal 0.0025

Poly-alanine —0.95kcal 0.003 s(0°C)=1.35

Alanine oligomers —0.85kcal AS® = 3cal mol ' K ! residue !
Various homopolypeptides ~ 4kJ ACp = —32J mol ' K ! residue *

Free-Energy Landscape

Finally, we investigate the free-energy landscape for the Zimm-Bragg model of the helix—coil transition. The figure below shows the
helical probability distribution and corresponding energy landscape for different values of the reduced temperature kgT'/Ae for a
chain length of n =40 and o = 103 Note that P(ny) is calculated from eq. (18.1.18) for all but the all-coil state, which comes
from eq. (18.1.16).

1 1 P(p") r 10 F(n"?/kBT .
| o=107 | A
n=20 k,T/| A &_
06 02—  ef
0.5—
041 0.7 — 4
ot 0.8 ,
12—
0 ——— 0 s - .
0 5 10 15 20 0 5 10 15 20
n, n,

The cooperative model shows two-state behavior. At low temperature and high temperature, the system is almost entirely in the all-
helix or all-coil configuration, respectively; however, at intermediate temperatures, the distribution of helical configurations can be
very broad. The least probable configuration is a chain with only one helical segment.

This behavior looks much closer to the two-state behavior expected from phase-transition behavior. The free energy has minima for
ng =0 and for nyg > 1, and the free energy difference between these states shifts with temperature to favor one or the other
minimum.
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