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12.3: Diffusion in a Potential

Fokker—Planck Equation

Diffusion with drift or diffusion in a velocity field is closely related to diffusion of a particle under the influence of an external
force f or potential U.
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When random forces on a particle dominate the inertial ones, we can equate the drift velocity and external force through the friction
coefficient
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and therefore the contribution of the force or potential to the total flux is
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The Fokker-Planck equation refers to stochastic equations of motion for the continuous probability density p(z,t) with units of
m!. The corresponding continuity expression for the probability density is

9 _ 9j
ot Oz

where j is the flux, or probability current, with units of s~1, rather than the flux density we used for continuum diffusion J (m™2 s™1).
If the concentration flux is instead expressed in terms of a probability density eq. (12.1.3) becomes
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and the continuity expression is used to obtain the time-evolution of the probability density:
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This is known as a Fokker—Planck equation.

Smoluchowski Equation

Similarly, we can express diffusion in the presence of an internal interaction potential U(x) using eq. (12.3.2) and the Einstein

relation
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Then the total flux with contributions from the diffusive flux and potential flux can be written as
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and the corresponding diffusion equation is
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This is known as the Smoluchowski Equation.
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Linear Potential

For the case of a linear external potential, we can write the potential in terms of a constant external force U = — f; © . This makes
eq. (12.3.7) identical to eq. (12.1.3), if we use egs. (12.3.1) and (12.3.5) to define the drift velocity as
f ext D
Vpy=——= fD
’ kBT si{z
oC
J=—D—+ fDC
or <

Here I defined f as the constant external force expressed in units of kgT.

The probability distribution that describes the position of particles released at xg after a time t is
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As expected, the mean position of the diffusing particle is given by (x(t)) = xg + Vyt.

To make use of this, let’s calculate the time it takes a monovalent ion to diffuse freely across the width of a membrane (d) under the
influence of a linear electrostatic potential of ® = 0.3V. With U = e®
d  kgTd kpTd?
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Using d = 4 nm, D = 10-5 cm?/s, and e = 1.6x107'? C, we obtain t = 1.4 ns.

Steady-State Solutions

For steady-state solutions to the Fokker—Planck or Smoluchowski equations, we can make use of a commonly used mathematical
manipulation. As an example, let’s work with eq. (12.3.3), re-writing it as
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We can rewrite the quantity in brackets as:
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Separating variables, we obtain
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This is an expression that can be manipulated in various ways and integrated over different boundary conditions.! For instance,
recognizing that j is a constant under steady state conditions, and integrating from x to a boundary b:
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This leads one to an important expression for the steady state flux in the diffusive limit:
-D [p(b)eU(b)/kBT _ p(m)eU(x)/kBT]
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The boundary chosen depends on the problem, for instance b is set to infinity in diffusion to capture problems or set as a fixed
boundary for first-passage time problems.
For problems involving an absorbing boundary condition, p(b) = 0, and we can solve for the probability density as
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If we integrate both sides of this expression over the entire space, the left hand side is just unity, so we can express the steady-state

flux as
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1. The general three-dimensional expression is J(r, t) = —De~U®)/ksT 7 . [U)/ k6T (. 1)) |
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