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7.1: Segment Models

Segment Models  

 beads link by  segments or bonds of length .
Each bead has a position .

Each bond is assigned a vector, .

The bending angle between adjacent segments  and  is : 
For each bending angle there is an associated dihedral angle  defined as the rotation of segment  out of the plane
defined by segments  and .
There are  separate bending and dihedral angles.

Statistical Variables for Macromolecules 

End-to-end distance 

The contour length is the full length of the polymer along the contour of the chain:

Each chain has the same contour length, but varying dimensions in space that result from conformational flexibility. The primary
structural variable for measuring this conformational variation is the end-to-end vector between the first and last bead, 

, or equivalently

Statistically, the dimensions of a polymer can be characterized by the statistics of the end-to-end distance. Consider its mean-square
value:

After expanding these sums, we can collect two sets of terms: (1) the self-terms with  and (2) the interbond correlations 
:

Here  is the angle between segments  and . This second term describes any possible conformational preferences between
segments along the chain. We will call the factor  the segment orientation correlation function, which is also written
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Here  refers to the separation between two segments. This correlation function can vary in value from 1 to -1, where +1 represents
a highly aligned or extended chain and negative values would be very condensed or compact. No interband correlations  is
expected for placement of segments by a random walk.

Interbond correlation can be inserted into segment models, both through ad hoc rules, or by applying an energy function that
constrains the intersegment interactions. For instance, the torsional energy function below, , would be used to weight the
probability that adjacent segments adopt a particular torsional angle. A general torsional energy function  involves all 

 possible angles , the joint probability density for adopting a particular conformation
is

The integral over  reflects  integrals over polar coordinates for all adjacent segments,

Then the alignment correlation function is

This is not a practical form, so we will make simplifying assumptions about the form of this probability distribution. For instance,
if any segments configuration depends only on its nearest neighbors then .

Persistence Length 

For any polymer, alignment of any pair of vectors in the chain becomes uncorrelated over a long enough sequence of segments. To
quantify this distance we define a "persistence length" .

This is the characteristic distance along the chain for the decay for the orientational correlation function between bond vectors,

How will this behave? If you consider that , then  will drop with increasing , approaching zero as .
That is the memory of the alignment between two bond vectors drops with their separation, where the distance scale for the loss of
correlation is . We thus expect a monotonically decaying form to this function:

For continuous thin rod models of the polymer, this expression is written in terms of the contour distance , the displacement along
the contour of the chain (i.e., ),

How do we relate  and ?  Writing  and equating this with eq. ( ) indicates that
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ℓî
ℓi
→

|ℓ|

g(k) = ⟨ θ⟩ℓ2 cosk

| cosθ| < 1 ⟨ θ⟩cosk k k → ∞

ℓp

g(k) = ℓ2e−kℓ/ℓp (7.1.4)

s

s = ℓk

g(s) = ℓ2e−|s|/ℓp

θ ℓp
2 ⟨ θ⟩ ≈ exp(k ln[⟨cosθ⟩])cosk 7.1.4

= −ℓ ln⟨cosθ⟩ℓp

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/294302?pdf


7.1.3 https://chem.libretexts.org/@go/page/294302

For stiff chains, we can approximate , so

Radius of Gyration 

The radius of gyration is another important structural variable that is closely related to experimental observables. Here the
polymer dimensions are expressed as extension relative to the center of mass for the chain.

This proves useful for branched polymers and heteropolymers (such as proteins). Denoting the position and mass of the  bead as 

 and , we define the center of mass for the polymer as a mass-weighted mean position of the beads in space:

The sum index starting at 0 is meant to reflect the sum over  beads. The denominator of this expression is the total mass of
the polymer . If all beads have the same mass, then  and  is the geometrical mean of their
positions.

The radius of gyration  for a configuration of the polymer describes the mass-weighted distribution of beads , and is defined
through

where  is gyration radius, i.e., the radial distance of the  bead from the center of mass

Additionally, we can show that the mean-squared radius of gyration is related to the average separation of all beads of the chain.

Freely Jointed Chain 

The freely jointed chain describes a macromolecule as a backbone for which all possible  and  are equally probable, and there
are no correlations between segments. It is known as an "ideal chain" because there are no interactions between beads or excluded
volume, and configuration of the polymer backbone follows a random walk. If we place the first bead at , we find that 

, as expected for a random walk, and eq. ( ) reduces to
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While the average end-to-end distance may be zero, the variance in the end-to-end distribution is

The radius of gyration for an ideal chain is:

Gaussian Random Coil 

The freely jointed chain is also known as a Gaussian random coil, because the statistics of its configuration are fully described by 
 and , the first two moments of a Gaussian end-to-end probability distribution . The end-to-end probability density in

one dimension can be obtained from a random walk with  equally sized steps of length  in one dimension, where forward and
reverse steps are equally probable. If the first bead it set at , then the last bead is placed by the last step at position . In the
continuous limit:

 is the probability of finding the end of the chain with  beads at a distance between  and  from its first bead.
Note this equates the rms end-to-end distance with the standard deviation for this distribution: .

To generalize eq. ( ) to a three-dimensional chain, we recognize that propagation in the , and  dimensions is equally
probable, so that the 3D probability density can be obtained from a product of 1D probability densities .
Additionally, we need to consider the constraint that the distribution of end-to-end distances are equal in each dimension:

and since ,

Therefore,

To simplify, we define a scaling parameter with dimensions of inverse length

Then, the probability density in Cartesian coordinates,

Note the units of  are inverse volume or concentration. The probability of finding the end of a chain of  beads in a
box of volume dx dy dz at the position  is . This function illustrates that the most probable end-to-end
distance for a random walk polymer is at the origin. On the other hand, we can also express this as a radial probability density that
gives the probability of finding the end of a chain at a radius between  and  from the origin. Since the volume of a spherical
shell grows in proportion to its surface area:
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The units of  are inverse length. For the freely jointed chain, we see that  is the most probable end-to-end
distance.

Freely Rotating Chain 
An extension to the freely jointed chain that adds a single configurational constraint that better resembles real bonding in polymers
is the freely rotating chain. In this case, the backbone angle  has a fixed value, and the dihedral angle  can rotate freely.

To describe the chain dimensions, we need to evaluate the angular bond correlations between segments. Focusing first on adjacent

segments, we know that after averaging over all , the fixed  assures that . For the next segment in the

series, only the component parallel to  will contribute to sequential bond correlations as we average over :

Extending this reasoning leads to the observation

To evaluate the bond correlations in this expression, it is helpful to define an index for the separation between two bond vectors:

and

Then the segment orientation correlation function is

For a separation  on a chain of length , there are  possible combinations of bond angles,
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From this you can obtain

In the limit of long chains ( ), we find

and

Restricted dihedrals 

When the freely rotating chain is also amended to restrict the dihedral angle , we can solve the mean square end-to-end distance
in the limit . Given an average dihedral angle,

Nonideal Behavior 

Flory characteristic ratio 

Real polymers are stiff and have excluded volume, but the  scaling behavior usually holds at large . To
characterize non-ideality, we use the Flory characteristic ratio:

For freely jointed chains . For nonideal chains with angular correlations, . Cn depends on the chain length , but
should have an asymptotic value for large : . For example, if we examine long freely rotating chains
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(In practice, this limit typically holds for ). Consider a tetrahedrally bonded polymer with full angle  ( ). then 
, and . In practice, we reach the long chain limit  at . This relation works well for polyglycine and

polyethylene glycol (PEG).

Statistical segment or Kuhn length 
How stiff or flexible a polymer is depends on the length scale of observation. What is stiff on one scale is flexible for another. For
an infinitely long polymer, one can always find a length scale for which its statistics are that of a Gaussian random coil. As a result
for a segment polymer, one can imagine rescale continuous segments into one longer "effective segment" that may not represent
atomic dimensions, but rather is defined in order to correspond to a random walk polymer, with . Then, the effective length
of the segment is  (also known as the Kuhn length) and the number of effective segments is . Then the freely jointed chain
equations apply:

From these equations, . We see that  applies to stiff chains, whereas  are flexible.

We can also write the contour length as , where  is a geometric factor < 1 that describes constraint on bond angles. For
a freely rotating chain: . Using the long chain chain expressions : , we find

Representative values for polymer segment models

 (nm)  (nm)  (nm)

Polyethylene 6.7 (n > 10) 0.154 1.24 0.83

PEG 3.8 0.34

Polyalanine 9 (n > 70) 0.38 3.6 0.95 0.5

Polyproline 90 (n > 700) 5-10

dsDNA 86 0.35 30-100 1 50

ssDNA 1.5

Cellulose 6.2

Actin 16700 10000-20000
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