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10.1: Continuum Diffusion
We are now going to start a new set of topics that involve the dynamics of molecular transport. A significant fraction of how
molecules move spatially in biophysics is described macroscopically by “diffusion” and microscopically through its counterpart
“Brownian motion”. Diffusion refers to the phenomenon by which concentration and temperature gradients spontaneously
disappear with time, and the properties of the system become spatially uniform. As such, diffusion refers to the transport of mass
and energy in a nonequilibrium system that leads toward equilibrium. Brownian motion is also a spontaneous process observed in
equilibrium and non-equilibrium systems. It refers to the random motion of molecules in fluids that arises from thermal fluctuations
of the environment that rapidly randomize the velocity of particles. Much of the molecular transport in biophysics over nanometer
distances arises from diffusion.

This can be contrasted with directed motion, which requires the input of energy and is crucial for transporting cargo to targets over
micron-scale distances. Here we will start by describing diffusion in continuum systems, and in the next section show how this is
related to the Brownian motion of discrete particles.

Fick's First Law 
We will describe the time evolution of spatially varying concentration distributions  as they evolve toward equilibrium.
These are formalized in two laws that were described by Adolf Fick (1855).  Fick’s first law is the “common sense law” that is in
line with everyone’s physical intuition. Molecules on average will tend to diffuse from regions of higher concentration to regions of
lower concentration. Therefore we say that the flux of molecules through a surface, , is proportional to the concentration gradient
across that surface.

J is more accurately called a flux density, since it has units of concentration or number density per unit area and time. The
proportionality constant between flux density J (mol m  s ) and concentration gradient (mol m ) which sets the timescale for the
process is the diffusion constant D (m  s ). The negative sign assures that the flux points in the direction of decreasing
concentration. This relationship follows naturally, when we look at the two concentration gradients in the figure. Both C and C'
have a negative gradient that will lead to a flux in the positive direction. C will give a bigger flux than C' because there is more
probability for flow to right. The gradient disappears and the concentration distribution becomes constant and time invariant at
equilibrium. Note, in a general sense  can be considered the leading term in an expansion of C in x.
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Fick’s Second Law 

Fick’s second law extends the first law by adding an additional constraint based on the conservation of mass. Consider diffusive
transport along x in a pipe with cross-sectional area a, and the change in the total number of particles within a disk of thickness 
over a time period .

If we take this disk to be thin enough that the concentration is a constant at any moment in time, then the total number of particles
in the slab at that time is obtained from the concentration times the volume:

Within the time interval Δt the concentration can change and therefore the total number of particles within the disk changes by an
amount

Now, the change in the number of particles is also dependent on the fluxes of molecules at the two surfaces of the disk. The number
of molecules passing into one surface of the disk is , and therefore the net change in the number of molecules during  is
obtained from the difference of fluxes between the left and right surfaces of the disk:

Setting these two calculations of ΔN equal to each other, we see that the flux and concentration gradients for the disk are related as

or rewriting this in differential form

This important relationship is known as a continuity expression. Substituting eq. (10.1.1) into this expression leads to Fick’s
Second Law

This is the diffusion equation in one dimension, and in three dimensions:

Equation (10.1.4) can be used to solve diffusive transport problems in a variety of problems, choosing the appropriate coordinate
system and applying the specific boundary conditions for the problem of interest.

Diffusion from a Point Source 
As our first example of how concentration distributions evolve diffusively, we consider the time-dependent concentration profile
when the concentration is initially all localized to one point in space, x = 0. The initial condition is
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and the solution to eq. (10.1.3) is

The concentration profile has a Gaussian form which is centered on the origin, ⟨x⟩ = 0, with the mean square displacement
broadening with time as:

Diffusive transport has no preferred direction. Concentration profiles spread evenly in the 
positive and negative direction, and the highest concentration observed will always be at the 
origin and have a value . Viewing time-dependent concentrations in space reveal that they reach a peak at t
= x /2D, before decaying at t  (dashed line below).

When we solve for 3D diffusion from a point source:

If we have an isotropic medium in which D is identical for diffusion in the x, y, and z dimensions,

where . Calculating the mean square displacement from

or in d dimensions, .

Diffusion Constants 
Typical diffusion constants for biologically relevant molecules in water are shown in the graph below, varying from small
molecules such as O  and glucose in the upper left to proteins and viruses in the lower right.
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For a typical globular protein, typically diffusion coefficients are:

in water D ~ 10  m /s 
in cells D ~ 10  m /s
in lipids D ~ 10  m /s

Ions in water at room temperature usually have a diffusion coefficient of 0.6×10  to 2×10  cm /s.
Lipids:

Self-diffusion 10  m /s
Tracer molecules in lipid bilayers 1-10x10  m /s

Anomalous Diffusion 
The characteristic of simple diffusive behavior is the linear relationship between the mean square
displacement and time. Deviation from this behavior is known as anomalous diffusion, and is
characterized by a scaling relationship . We refer to ν<1 as sub-diffusive behavior and ν>1 as
super-diffusive. Diffusion in crowded environments can result in sub-diffusion.

Thermodynamic Perspective on Diffusion 

Thermodynamically, we can consider the driving force for diffusion as a gradient in the free energy or chemical potential of the
system. From this perspective, in the absence of any other interactions, the driving force for reaching uniform spatial concentration
is the entropy of mixing. For a mixture with mole fraction x , we showed
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We then use  to calculate the chemical potential:

We see that a concentration gradient, means that the mole fraction and therefore chemical potential is different for two positions in
the system. At equilibrium , which occurs when .

Thermodynamics does not tell you about rate, only the direction of spontaneous change(although occasionally diffusion is
discussed in terms of a time-dependent “entropyproduction”). The diffusion constant is the proportionality constant between
gradients inconcentration or chemical potential and the time-dependent flux of particles. The flux density described in Fick’s first
law can be related to , the chemical potential for species :
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