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10.2: Solving the Diffusion Equation
Solutions to the diffusion equation, such as eq. (10.1.5) and (10.1.6), are commonly solved with the use of Fourier transforms. If
we define the transformation from real space to reciprocal space as

one can express the diffusion equation in 1D as

[More generally one finds that the Fourier transform of a linear differential equation in x can be expressed in polynomial form: 

. This manipulation converts a partial differential equation into an ordinary one, which has the

straightforward solution . We do need to express the boundary conditions in reciprocal space, but

then, this solution can be transformed back to obtain the real space solution using .

Since eq. (10.2.1) is a linear differential equation, sums of solutions to the diffusion equation are also solutions. We can use this
superposition principle to solve problems for complex initial conditions. Similarly, when the diffusion constant is independent of x
and t, the general solution to the diffusion equation can also be expressed as a Fourier series. If we separate the time and space
variables, so that the form of the solution is  we find that we can write

Where α is a constant. Then  and . This leads to the general form:

Here A  and B  are constants determined by the boundary conditions.

Examples 

Diffusion across boundary 

At time t = 0, the concentration is uniform at a value C  for x ≥ 0, and zero for x < 0, similar to removing a barrier between two
homogeneous media. Using the superposition principle, the solution is obtained by integrating the point source solution, eq.
(10.1.5), over all initial point sources  such that . Defining ,
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Diffusion into “hole” 

A concentration “hole” of width 2a is inserted into a box of length 2L with an initial concentration of C . Let’s take L = 2a.
Concentration profile solution:

Fluorescence Recovery after Photobleaching (FRAP): We can use this solution to describe the diffusion of fluorescently
labeled molecules into a photobleached spot. Usually observe the increase of fluorescence with time from this spot. We
integrate concentration over initial hole:

Reflecting and Absorbing Boundary Conditions 
We will be interested in describing the time-dependent probability distribution for the case in which particles are releases at x=0,
subject to encountering an impenetrable wall at x=x , which can either absorb or reflect particles.

Consider the case of a reflecting wall, where the boundary condition requires that the flux at x  is zero. This boundary condition
and the resulting pile-up near the wall can be described by making use of the fact that any  can be reflected about x  ,
which is equivalent to removing the boundary and adding a second source term to  for particles released at 

This is also known as a wrap-around solution, since any component with any population from  that passes the position of
the wall is reflected about . Similarly, an absorbing wall, , means that we remove any population that reached 

, which is obtained from the difference of the two mirrored probability distributions:
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