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9.9: Bonding in Coordination Complexes

Make sure you thoroughly understand the following essential ideas:

Define the terms coordination complex, ligand, polydentate, and chelate.
Explain the origins of d-orbital splitting; that is, why the energies of certain atomic-d orbitals are more affected by some ligands than others
in an octahedral complex.
Why are many coordination complexes highly colored?
Explain the meaning of high-spin and low-spin complexes, and illustrate in a general way how a particular set of ligands can change one
kind into another. Also, describe how these differences are observed experimentally.
Describe the role of iron in heme and the general structural components of hemoglobin.

Complexes such as Cu(NH )  have been known and studied since the mid-nineteenth century. and their structures had been mostly worked out by
1900. Although the hybrid orbital model was able to explain how neutral molecules such as water or ammonia could bond to a transition metal ion, it
failed to explain many of the special properties of these complexes. Finally, in 1940-60, a model known as ligand field theory was developed that is
able to organize and explain most of the observed properties of these compounds. Since that time, coordination complexes have played major roles
in cellular biochemistry and inorganic catalysis.

What is a Complex? 

If you have taken a lab course in chemistry, you have very likely admired the deep blue color of copper sulfate crystals, CuSO ·5H O. The proper
name of this substance is copper(II) sulfate pentahydrate, and it is typical of many salts that incorporate waters of hydration into their crystal
structures. It is also a complex, a term used by chemists to describe a substance composed of two other substances (in this case, CuSO  and H O)
each of which is capable of an independent existence.

Figure : (left) Crystals of . from Stephanb (via Wikipedia). (right) Anhydrous  after the water was removed.

The binding between the components of a complex is usually weaker than a regular chemical bond; thus most solid hydrates can be decomposed by
heating, driving off the water and yielding the anhydrous salt:

Driving off the water in this way also destroys the color, turning it from a beautiful deep blue to a nondescript white. If the anhydrous salt is now
dissolved in water, the blue color now pervades the entire solution. It is apparent that the presence of water is somehow necessary for the copper(II)
ion to take on a blue color, but why should this be?

Figure : Difference between anhydrous and hydrated copper sulfate after a few drops of water was added to anhydrous .

A very common lab experiment that most students carry out is to add some dilute ammonia to a copper sulfate solution. At first, the solution turns
milky as the alkaline ammonia causes the precipitation of copper hydroxide:
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However, if more ammonia is added, the cloudiness disappears and the solution assumes an intense deep blue color that makes the original solution
seem pale by comparison. The equation for this reaction is usually given as

The new product is commonly known as the copper-ammonia complex ion, or more officially, hexamminecopper(II) complex ion.

Equation  is somewhat misleading, however, in that it implies the formation of a new complex where none existed before. In fact, since about
1895, it has been known that the ions of most transition metals dissolve in water to form complexes with water itself, so a better representation of the
reaction of dissolved copper with ammonia would be

In effect, the ammonia binds more tightly to the copper ion than does water, and it thus displaces the latter when it comes into contact with the
hexaaquocopper(II) ion, as the dissolved form of Cu  is properly known.

Most transition metals dissolve in water to form complexes with water itself.

The basics of Coordination Complexes 
Although our primary focus in this unit is on bonding, the topic of coordination complexes is so important in chemistry and biochemistry that some
of their basic features are worth knowing about, even if their detailed chemistry is beyond the scope of this course. These complexes play an
especially crucial role in physiology and biochemistry. Thus heme, the oxygen-carrying component of red blood cells (and the source of the red
color) is basically a complex of iron, and the part of chlorophyll that converts sunlight into chemical energy within green plants is a magnesium
complex.

Some Definitions 

We have already defined a complex as a substance composed of two or more components capable of an independent existence. A coordination
complex is one in which a central atom or ion is joined to one or more ligands (Latin ligare, to tie) through what is called a coordinate covalent bond
in which both of the bonding electrons are supplied by the ligand. In such a complex the central atom acts as an electron-pair acceptor (Lewis acid
— think of H  which has no electrons at all, but can accept a pair from something like Cl ) and the ligand as an electron-pair donor (Lewis base ).
The central atom and the ligands coordinated to it constitute the coordination sphere. Thus the salt [Co(NH ) Cl]Cl  is composed of the complex ion
[Co(NH ) Cl]  and two Cl  ions; components within the square brackets are inside the coordination sphere, whereas the two chloride ions are
situated outside the coordination sphere. These latter two ions could be replaced by other ions such as NO  without otherwise materially changing
the nature of the salt.
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The central atoms of coordination complexes are most often cations (positive ions), but may in some cases be neutral atoms, as in nickel carbonyl
Ni(CO) .

Ligands composed of ions such as F  or small molecules such as H O or CN  possess more than one set of lone pair electrons, but only one of these
pairs can coordinate with a central ion. Such ligands are said to be monodentate (“one tooth”.) Larger ligands may contain more than one atom
capable of coordinating with a single central ion, and are described as polydentate. Thus ethylenediamine (shown below) is a bidentate ligand.
Polydentate ligands whose geometry enables them to occupy more than one coordinating position of a central ion act as chelating agents (Greek
χελος, chelos, claw) and tend to form extremely stable complexes known as chelates.

Chelation is widely employed in medicine, water-treatment, analytical chemistry and industry for binding and removing metal ions of particular
kinds. Some of the more common ligands (chelating agents) are shown here:

Structure and bonding in transition metal complexes 

Complexes such as Cu(NH )  have been known and studied since the mid-nineteenth century. Why they should form, or what their structures
might be, were complete mysteries. At that time all inorganic compounds were thought to be held together by ionic charges, but ligands such as
water or ammonia are of course electrically neutral. A variety of theories such as the existence of “secondary valences” were concocted, and various
chain-like structures such as CuNH -NH -NH -NH -NH -NH  were proposed. Finally, in the mid-1890s, after a series of painstaking experiments,
the chemist Alfred Werner (Swiss, 1866-1919) presented the first workable theory of complex ion structures.

Werner claimed that his theory first came to him in a flash after a night of fitful sleep; by the end of the next day he had written his landmark paper
that eventually won him the 1913 Nobel Prize in Chemistry.

Werner was able to show, in spite of considerable opposition, that transition metal complexes consist of a central ion surrounded by ligands in a
square-planar, tetrahedral, or octahedral arrangement. This was an especially impressive accomplishment at a time long before X-ray diffraction and
other methods had become available to observe structures directly. His basic method was to make inferences of the structures from a careful
examination of the chemistry of these complexes and particularly the existence of structural isomers. For example, the existence of two different
compounds AX  having the same composition shows that its structure must be square-planar rather than tetrahedral.

What holds them together? 

An understanding of the nature of the bond between the central ion and its ligands would have to await the development of Lewis’ shared-electron
pair theory and Pauling’s valence-bond picture. We have already shown how hybridization of the d orbitals of the central ion creates vacancies able
to accommodate one or more pairs of unshared electrons on the ligands. Although these models correctly predict the structures of many transition
metal complexes, they are by themselves unable to account for several of their special properties:

The metal-to-ligand bonds are generally much weaker than ordinary covalent bonds;
Some complexes utilize “inner” d orbitals of the central ion, while others are “outer-orbital” complexes;
Transition metal ions tend to be intensely colored.

Paramagnetism of coordination complexes 

Unpaired electrons act as tiny magnets; if a substance that contains unpaired electrons is placed near an external magnet, it will undergo an
attraction that tends to draw it into the field. Such substances are said to be paramagnetic, and the degree of paramagnetism is directly proportional
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to the number of unpaired electrons in the molecule. Magnetic studies have played an especially prominent role in determining how electrons are
distributed among the various orbitals in transition metal complexes.

Studies of this kind are carried out by placing a sample consisting of a solution of the complex between the poles of an electromagnet. The sample is
suspended from the arm of a sensitive balance, and the change in apparent weight is measured with the magnet turned on and off. An increase in the
weight when the magnet is turned on indicates that the sample is attracted to the magnet (paramagnetism) and must therefore possess one or more
unpaired electrons. The precise number can be determined by calibrating the system with a substance whose electron configuration is known.

Crystal field theory 
The current model of bonding in coordination complexes developed gradually between 1930-1950. In its initial stages, the model was a purely
electrostatic one known as crystal field theory which treats the ligand ions as simple point charges that interact with the five atomic d orbitals of the
central ion. It is this theory which we describe below.

It is remarkable that this rather primitive model, quite innocent of quantum mechanics, has worked so well. However, an improved and more
complete model that incorporates molecular orbital theory is known as ligand field theory. In an isolated transition metal atom the five outermost d
orbitals all have the same energy which depends solely on the spherically symmetric electric field due to the nuclear charge and the other electrons
of the atom. Suppose now that this atom is made into a cation and is placed in solution, where it forms a hydrated species in which six H O
molecules are coordinated to the central ion in an octahedralarrangement. An example of such an ion might be hexaaquotitanium(III), Ti(H O) .

The ligands (H O in this example) are bound to the central ion by electron pairs contributed by each ligand. Because the six ligands are located at the
corners of an octahedron centered around the metal ion, these electron pairs are equivalent to clouds of negative charge that are directed from near
the central ion out toward the corners of the octahedron. We will call this an octahedral electric field, or the ligand field.

d-orbital splitting 

The differing shapes of the five kinds of d orbitals cause them to interact differently with the electric fields created by the coordinated ligands. This
diagram (from a Purdue U. chemistry site) shows outlines of five kinds of d orbitals.

Figure :

The green circles represent the coordinating electron-pairs of the ligands located at the six corners of the octahedron around the central atom. The
two d orbitals at the bottom have regions of high electron density pointing directly toward the ligand orbitals; the resulting electron-electron
repulsion raises the energy of these d orbitals.

Although the five d orbitals of the central atom all have the same energy in a spherically symmetric field, their energies will not all be the same in
the octahedral field imposed by the presence of the ligands. The reason for this is apparent when we consider the different geometrical properties of
the five d orbitals. Two of the d orbitals, designated d 2 and d 2 2, have their electron clouds pointing directly toward ligand atoms. We would
expect that any electrons that occupy these orbitals would be subject to repulsion by the electron pairs that bind the ligands that are situated at
corresponding corners of the octahedron. As a consequence, the energies of these two d orbitals will be raised in relation to the three other d orbitals
whose lobes are not directed toward the octahedral positions.

The number of electrons in the d orbital of the central atom is easily determined from the location of the element in the periodic table, taking in
account, of course, of the number of electrons removed in order to form the positive ion.
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The effect of the octahedral ligand field due to the ligand electron pairs is to split the d orbitals into two sets whose energies differ by a quantity
denoted by Δ ("delta") which is known as the d orbital splitting energy. Note that both sets of central-ion d orbitals are repelled by the ligands and
are both raised in energy; the upper set is simply raised by a greater amount. Both the total energy shift and Δ are strongly dependent on the
particular ligands.

Why are transition metal complexes often highly colored? 

Returning to our example of Ti(H O) , we note that Ti has an outer configuration of 4s 3d , so that Ti  will be a d  ion. This means that in its
ground state, one electron will occupy the lower group of d orbitals, and the upper group will be empty. The d-orbital splitting in this case is 240 kJ
per mole which corresponds to light of blue-green color; absorption of this light promotes the electron to the upper set of d orbitals, which represents
the exited state of the complex. If we illuminate a solution of Ti(H O)  with white light, the blue-green light is absorbed and the solution appears
violet in color.

Figure  shows how the colors of hexaamminenickel II complexes are affected by different ligands.

Figure : Color of various Ni(II) complexes in aqueous solution. From left to right, hexaamminenickel(II), tris(ethylenediamine)nickel(II),
tetrachloronickelate(II) and hexaaquanickel(II). from LHcheM (via Wikipedia)

High- and low spin complexes 

The magnitude of the d orbital splitting depends strongly on the nature of the ligand and in particular on how strong an electrostatic field is produced
by its electron pair bond to the central ion.

If Δ is not too large then the electrons that occupy the d orbitals do so with their spins unpaired until a d  configuration is reached, just as occurs in
the normal Aufbau sequence for atomic electron configurations. Thus a weak-field ligand such as H O leads to a “high spin” complex with Fe(II).

In contrast to this, the cyanide ion acts as a strong-field ligand; the d orbital splitting is so great that it is energetically more favorable for the
electrons to pair up in the lower group of d orbitals rather than to enter the upper group with unpaired spins. Thus hexacyanoiron(II) is a “low spin”
complex— actually zero spin, in this particular case.

Different d orbital splitting patterns occur in square planar and tetrahedral coordination geometries, so a very large number of arrangements are
possible. In most complexes the value of Δ corresponds to the absorption of visible light, accounting for the colored nature of many such compounds
in solution and in solids such as  ()Figure .
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Approximately one-third of the chemical elements are present in living organisms. Many of these are metallic ions whose function within the cell
depends on the formation of d-orbital coordination complexes with small molecules such as porphyrins (see below). These complexes are
themselves bound within proteins (metalloproteins) which provide a local environment that is essential for their function, which is either to transport
or store diatomic molecule (oxygen or nitric oxide), to transfer electrons in oxidation-reduction processes, or to catalyze a chemical reaction. The
most common of these utilize complexes of Fe and Mg, but other micronutrient metals including Cu, Mn, Mo, Ni, Se, and Zn are also important.

Hemoglobin 

Hemoglobin is one of a group of heme proteins that includes myoglobin, cytochrome-c, and catalase. Hemoglobin performs the essential task of
transporting dioxygen molecules from the lungs to the tissues in which it is used to oxidize glucose, this oxidation serving as the source of energy
required for cellular metabolic processes.

Hemoglobin consists of four globin protein subunits (depicted by different colors in this diagram) joined together by weak intermolecular forces.
Each of these subunits contains, buried within it, a molecule of heme, which serves as the active site of oxygen transport. The presence of
hemoglobin increases the oxygen carrying capacity of 1 liter of blood from 5 to 250 ml. Hemoglobin is also involved in blood pH regulation and
CO  transport.

Heme itself consists of an iron atom coordinated to a tetradentate porphyrin. When in the ferrous (Fe  state) the iron binds to oxygen and is
converted into Fe . Because a bare heme molecule would become oxidized by the oxygen without binding to it, the adduct must be stabilized by the
surrounding globin protein. In this environment, the iron becomes octahedrally-coordinated through binding to a component of the protein in a fifth
position, and in the sixth position either by an oxygen molecule or by a water molecule, depending on whether the hemoglobin is in its oxygenated
state (in arteries) or deoxygenated state (in veins).

The heme molecule (purple) is enfolded within the polypeptide chain as shown here. The complete hemoglobin molecule contains four of these
subunits, and all four must be present for it to function. The binding of O  to heme in hemoglobin is not a simple chemical equilibrium; the binding
efficiency is regulated by the concentrations of H , CO , and organic phosphates. It is remarkable that the binding sites for these substances are on
the outer parts of the globin units, far removed from the heme. The mechanism of this exquisite molecular-remote-control arises from the fact that
the Fe ion is too large to fit inside the porphyrin, so it sits slightly out of the porphyrin plane. This Fe radius diminishes when it is oxygenated,
allowing it to move into the plane. In doing so, it pulls the protein component to which it is bound with it, triggering a sequence of structural changes
that extend throughout the protein.

Myoglobin is another important heme protein that is found in muscles. Unlike hemoglobin, which consists of four protein subunits, myoglobin is
made up of only one unit. Its principal function is to act as an oxygen storage reservoir, enabling vigorous muscle activity at a rate that could not be
sustained by delivery of oxygen through the bloodstream. Myoglobin is responsible for the red color of meat. Cooking of meat releases the O  and
oxidizes the iron to the +3 state, changing the color to brown.

Carbon monoxide poisoning 

Other ligands, notably cyanide ion and carbon monoxide, are able to bind to hemoglobin much more strongly than does iron, thereby displacing it
and rendering hemoglobin unable to transport oxygen. Air containing as little as 1 percent CO will convert hemoglobin to carboxyhemoglobin in a
few hours, leading to loss of consciousness and death. Even small amounts of carbon monoxide can lead to substantial reductions in the availability
of oxygen. The 400-ppm concentration of CO in cigarette smoke will tie up about 6% of the hemoglobin in heavy smokers; the increased stress this
places on the heart as it works harder to compensate for the oxygen deficit is believed to be one reason why smokers are at higher risk for heart
attacks. CO binds to hemoglobin 200 times more tightly than does .

Chlorophyll 

Chlorophyll is the light-harvesting pigment present in green plants. Its name comes from the Greek word χλορος (chloros), meaning “green”- the
same root from which chlorine gets its name. Chlorophyll consists of a ring-shaped tetradentate ligand known as a porphin coordinated to a central
magnesium ion. A histidine residue from one of several types of associated proteins forms a fifth coordinate bond to the Mg atom.

Coordination Complexes in Biochemistry
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Figure : Left: detail of Mg coordination; notice that the metal is slightly out of the plane of the porphin ring. Right: plan view of Mg within the
porphin ligand. A histidine residue from an associated protein forms the fifth coordination point to the Mg atom.

The light energy trapped by chlorophyll is utilized to drive a sequence of reactions whose net effect is to bring about the reduction of CO  to glucose
(C H O ) in a process known as photosynthesis which serves as the fuel for all life processes in both plants and animals.

This page titled 9.9: Bonding in Coordination Complexes is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Stephen Lower via
source content that was edited to the style and standards of the LibreTexts platform.
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