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16.4: The Nernst Equation

Make sure you thoroughly understand the following essential ideas. It is especially important that you know the precise
meanings of all the highlighted terms in the context of this topic.

The Nernst equation relates the effective concentrations (activities) of the components of a cell reaction to the standard cell
potential. For a simple reduction of the form M  + ne  → M, it tells us that a half-cell potential will change by 59/n mV
per 10-fold change in the activity of the ion.
Ionic concentrations can usually be used in place of activities when the total concentration of ions in the solution does not
exceed about about 0.001M.
In those reactions in which H  or OH  ions take part, the cell potential will also depend on the pH. Plots of E vs. pH
showing the stability regions of related species are very useful means of summarizing the redox chemistry of an element.

The standard cell potentials we discussed in a previous section refer to cells in which all dissolved substances are at unit activity,
which essentially means an "effective concentration" of 1 M. Similarly, any gases that take part in an electrode reaction are at an
effective pressure (known as the fugacity) of 1 atm. If these concentrations or pressures have other values, the cell potential will
change in a manner that can be predicted from the principles you already know.

Cell Potentials Depend on Concentrations 

Suppose, for example, that we reduce the concentration of  in the  cell from its standard effective value of 1 M to an
to a much smaller value:

This will reduce the value of  for the cell reaction

thus making it more spontaneous, or "driving it to the right" as the Le Chatelier principle would predict, and making its free energy
change  more negative than , so that  would be more positive than . The relation between the actual cell potential 
and the standard potential  is developed in the following way. We begin with the equation derived previously which relates the
standard free energy change (for the complete conversion of products into reactants) to the standard potential

By analogy we can write the more general equation

which expresses the change in free energy for any extent of reaction— that is, for any value of the reaction quotient . We now
substitute these into the expression that relates  and  which you will recall from the chapter on chemical equilibrium:

which gives

which can be rearranged to

This is the Nernst equation that relates the cell potential to the standard potential and to the activities of the electroactive species.
Notice that the cell potential will be the same as  only if  is unity. The Nernst equation is more commonly written in base-10
log form and for 25 °C:
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Significance of the Nernst Equation 

The Nernst equation tells us that a half-cell potential will change by 59 millivolts per 10-fold change in the concentration of a
substance involved in a one-electron oxidation or reduction; for two-electron processes, the variation will be 28 millivolts per
decade concentration change. Thus for the dissolution of metallic copper

the potential

becomes more positive (the reaction has a greater tendency to take place) as the cupric ion concentration decreases. This, of course,
is exactly what the Le Chatelier Principle predicts; the more dilute the product, the greater the extent of the reaction.

Electrodes with poise 
The equation just above for the Cu/Cu  half-cell raises an interesting question: suppose you immerse a piece of copper in a
solution of pure water. With Q = [Cu ] = 0, the potential difference between the electrode and the solution should be infinite! Are
you in danger of being electrocuted? You need not worry; without any electron transfer, there is no charge to zap you with. Of
course it won't be very long before some Cu  ions appear in the solution, and if there are only a few such ions per liter, the
potential reduces to only about 20 volts. More to the point, however, the system is so far from equilibrium (for example, there are
not enough ions to populate the electric double layer) that the Nernst equation doesn't really give meaningful results. Such an
electrode is said to be unpoised. What ionic concentration is needed to poise an electrode? I don't really know, but I would be
suspicious of anything much below 10  M.

Ions of opposite charge tend to associate into loosely-bound ion pairs in more concentrated solutions, thus reducing the number
of ions that are free to donate or accept electrons at an electrode. For this reason, the Nernst equation cannot accurately predict
half-cell potentials for solutions in which the total ionic concentration exceeds about 10  M.

E = E° − Q
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C → C +2u(s) u2+ e– (16.4.9)

E = (– 0.337)– 0.0295 [C ]log10 u2+ (16.4.10)
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How the cell potential really depends on concentration! The Nernst equation accurately predicts cell potentials only when the
equilibrium quotient term Q is expressed in activities. Ionic activities depart increasingly from concentrations when the latter
exceed 10  to 10  M, depending on the sizes and charges of the ions.

If the Nernst equation is applied to more concentrated solutions, the terms in the reaction quotient Q must be expressed in
"effective concentrations" or activities of the electroactive ionic species. The activity coefficient ) relates the concentration of an
ion to its activity a in a given solution through the relation

Since electrode potentials measure activities directly, activity coefficients can be determined by carrying out appropriate EMF
measurements on cells in which the concentration of the ion of interest is known. The resulting Es can then be used to convert
concentrations into activities for use in other calculations involving equilibrium constants.

Cell potentials and pH: stability diagrams 

As most of us recall from our struggles with balancing redox equations in beginning chemistry courses, many electron-transfer
reactions involve hydrogen ions and hydroxide ions. The standard potentials for these reactions therefore refer to the pH, either 0 or
14, at which the appropriate ion has unit activity. Because multiple numbers of H  or OH  ions are often involved, the potentials
given by the Nernst equation can vary greatly with the pH. It is frequently useful to look at the situation in another way by
considering what combinations of potential and pH allow the stable existence of a particular species. This information is most
usefully expressed by means of a E-vs.-pH diagram, also known as a Pourbaix diagram.

Figure : Stability (Pourbaix) diagram for water. The two E° values shown at the left refer to "standard" conditions of unit H
activity (pH=0) and gas pressures of 1 atm. At combinations of pH and E that lie outside the shaded area, the partial pressures of O
or H  exceed 1 atm, signifying the decomposition of water. The unity partial pressures are of course arbitrary criteria; in a system
open to the atmosphere, water can decompose even at much lower H  partial pressures, and at oxygen pressures below 0.2 atm.
Fortunately, these processes are in most cases quite slow.

As was noted in connection with the shaded region in the figure below, water is subject to decomposition by strong oxidizing
agents such as Cl  and by reducing agents stronger than H . The reduction reaction can be written either as

or, in neutral or alkaline solutions as

These two reactions are equivalent and follow the same Nernst equation
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which, at 25°C and unit H  partial pressure reduces to

Similarly, the oxidation of water

is governed by the Nernst equation

which similarly becomes E = 1.23 – 0.059 pH, so the E-vs-pH plots for both processes have identical slopes and yield the stability
diagram for water in Figure . This Pourbaix diagram has special relevance to electrochemical corrosion of metals. Thus
metals above hydrogen in the activity series will tend to undergo oxidation (corrosion) by reducing H  ions or water.

Because chlorine is widely used as a disinfectant for drinking water, swimming pools, and sewage treatment, it is worth
looking at its stability diagram. Note that the effective bactericidal agent is not Cl  itself, but its oxidation product
hypochlorous acid HOCl which predominates at pH values below its pK  of 7.3. Note also that

Cl  is unstable in water except at very low pH; it decomposes into HOCl and Cl .
Hypochlorous acid and its anion are stronger oxidants than O  and thus subject to decomposition in water. The only stable
chlorine species in water is Cl .
Decomposition of HOCl occurs very slowly in the dark, but is catalyzed by sunlight. For this reason the chlorine in outside
swimming pools must be frequently renewed.
Decomposition of Cl  and HOCl by reaction with organic material in municipal water supply systems sometimes makes it
necessary to inject additional chlorine at outlying locations.

Each solid line represents a combination of E and pH at which the two species on either side of it can coexist; at all other
points, only a single species is stable. Note that equilibria between species separated by diagonal lines are dependent on both E
and pH, while those separated by horizontal or vertical lines are affected by pH only or E only, respectively.

Stability diagrams are able to condense a great amount of information into a compact representation, and are widely employed
in geochemistry and corrosion engineering. The Pourbaix diagram for iron is one of the more commonly seen examples.
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Pourbaix diagram for iron. Three oxidation states of iron (0, +2 and +3) are represented on this diagram. The stability
regions for the oxidized iron states are shown only within the stability region of H O. Equilibria between species separated by
vertical lines are dependent on pH only.

The +3 oxidation state is the only stable one in environments in which the oxidation level is controlled by atmospheric O . This
is the reason the Earth’s crust contains iron oxides, which developed only after the appearance of green plants which are the
source of O . Iron is attacked by H  to form H  and Fe(II); the latter then reacts with O  to form the various colored Fe(III)
oxides that constitute “rust”. Numerous other species such as oxides and hydrous oxides are not shown. A really “complete”
diagram for iron would need to have at least two additional dimensions showing the partial pressures of O  and CO .

Concentration Cells 
From your study of thermodynamics you may recall that the process

solute (concentrated) → solute (dilute)

is accompanied by a fall in free energy, and therefore is capable of doing work on the surroundings; all that is required is some
practical way of capturing this work. One way of doing this is by means of a concentration cell such as

Cu(s) | CuNO (.1 M) || CuNO (.01 M) | Cu(s)

cathode: Cu (.1 M) + 2e  → Cu(s)

anode: Cu(s) → Cu (.01 M) + 2e

net: Cu (.1 M) → Cu (.01 M)

which represents the transport of cupric ion from a region of higher concentration to one of lower concentration.

The driving force for this process is the free energy change ΔG associated with the concentration gradient (C  – C ), sometimes
known as the free energy of dilution:

Note, however, that Cu  ions need not physically move between the two compartments; electron flow through the external circuit
creates a "virtual" flow as copper ions are created in the low-concentration side and discharged at the opposite electrode. Nitrate
ions must also pass between the cells to maintain electroneutrality. The Nernst equation for this cell is

Note that  for a concentration cell is always zero, since this would be the potential of a cell in which the electroactive species are
at unit activity in both compartments.
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 for a concentration cell is always zero,
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