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2.3: Linear Response Theory and Causality
The concept of linear response was introduced in section 2.1. Here, we explore further how the linear response of a system is
quantified by considering the important relations regularly invoked by practitioners of linear response theory.

Response Functions 
The motivating idea behind linear response is that the response of a system to an external force depends on the strength of that
force at all times during which the force acts on the system. That is, the response at time  depends on the history of the force’s
action on the system. An appropriately weighted sum of the strength of the external force at each moment during the interaction
will describe the overall response. Mathematically, therefore, we express the response as an integral over the history of the
interaction,

The kernel  in this expression, which provides the weight for the strength of the external force at each time, is called the
response function. The response function has two very important properties:

Time invariance:  depends only on the time interval between  and , not on the two times independently. More succinctly,

Causality: The system cannot respond until the force has been applied. This places an upper limit of  on the integration over
the history of the external force.

With these observations in place, we arrive at the standard formula describing the linear response of an observable  to an external
force ,

Linear response - described by the response function  - and linear regression - described by the time correlation function 
- are directly related to one another. To see the connection, consider a force  which is constant with strength  for  and is
zero for . We have established two ways to describe the response of an observable  to this force:

Linear regression: 
Linear response: 

From this information, we conclude that the correlation function and response function are related by

where  is the Heaviside function.

Sometimes the linear response function is more conveniently expressed in the frequency domain, in which case it is called the
frequency-dependent response function. In many physical situations, it plays the role of a susceptibility to a force and consequently
is denoted by ,

This response function is often partitioned into real and imaginary parts, which can also be thought of as even and odd parts,
respectively,

Example: The response function for the classical linear harmonic oscillator can be quickly deduced from its time correlation
function. Recall from the first example in this chapter that the time correlation function for the classical linear harmonic oscillator
is
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Applying Eq.(2.17), we differentiate with respect to  and multiply by  to determine that

This is the response function for the classical linear harmonic oscillator.

Absorption Power Spectra 

The frequency-dependent response function is directly related to the absorption spectrum: in fact, knowledge of  and the time-
dependent external force  is sufficient to fully describe the absorption spectrum.

The rate at which work is done on a system by a generalized external force  is , where  is the observable
corresponding to the generalized force . This quantity has units of power, so we can calculate the total absorption energy by
integrating this power over time,

To recast this result in terms of , we first consider the Fourier transform of the time-dependent observable ,

Applying Eq.(2.16), we have

The following rearrangements allow us to express  entirely in terms of frequency-dependent functions:

where  is the Fourier transform of . Returning to Eq. (2.20) for the absorption energy,

Rearranging the expression once again and evaluating the integral over time yields

Hence the absorption power spectrum  has the form

Example: For a monochromatic force , the Fourier transform of  is given by

Hence our expression for the absorption power spectrum Eq.(2.30) tells us that the absorption rate (i.e. the time average of  )
for such a system is
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Furthermore, using Eq.  and the fact that  is odd, we find that

This simple relationship illustrates the close connection between frequency-dependent response functions (or susceptibilities) and
time correlation functions.

Causality and the Kramers-Kronig Relations 
Our final consideration in this chapter is the relationship between the real and imaginary parts of the frequency-dependent response
function as defined in Eq.(2.19). The equations relating these two functions are known as the Kramers-Kronig relations. In their
most general form, they govern the response function as a function of the complex frequency , though under most
physical circumstances of interest they can be expressed in terms of real-valued frequencies alone.

The relations arise from the causality requirement, which we originally expressed by requiring . It turns out that
this requirement, along with the assumption that  converges, implies that the response function  is analytic on the
upper half of the complex plane.

Figure 2.3: Contour in the complex frequency plane used to motivate the Kramers-Kronig relations

We can also, however, integrate piecewise over each part of the contour; some manipulation with the residue theorem is required,
but the final result is
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where  denotes the Cauchy principal value of the integral. Setting the two results above equal and solving for the response
function,

The decomposition of Eq.(2.33) into real and imaginary parts yields the Kramers-Kronig relations,

As promised, this pair of equations provides a concise relationship between the real and imaginary parts of any response function 
.
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