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3.3: Transport Coefficients
Before we jump into the next section on transport equations, let’s take a moment to briefly summarize what we have seen in this
chapter and where we are going:

1. The response of a liquid to an external probe  is given by spontaneous time-dependent fluctuations, described in  or
.

2. Hydrodynamic equations describe the decay of spontaneous fluctuations.
3. Hydrodynamic modes can be used to find transport coefficients.

Diffusion Constant 

We will begin our exploration of transport coefficients with the diffusion constant. We will use the concepts developed in this
chapter to find three different expressions for the diffusion constant. These expressions are called Einstein’s relation, the Green-
Kubo relation, and the Scattering function in the hydrodynamic limit.

Einstein’s Relation Define a single-particle correlation function 

Taking the Fourier transform into  space gives the self-intermediate scattering function

All transport coefficients are defined for length and time scales when  and . In real space, they apply to relatively long
length and time scales. Therefore, hydrodynamics theory applies. Recall that hydrodynamics theory applies on the coarse-grained
scale much larger and longer than characteristic molecular interactions.

Apply Fick’s law to the problem:

Therefore

and

We now have two equations for . Expand both of them to  and set them equal

Then solve for 

This is Einstein’s Relation.

The Green-Kubo Relation 

To find the Green-Kubo relation, use time-invariance to rewrite the thermal average in Einstein’s relation

where
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Therefore

This is called the Green-Kubo Relation.

In general, for any variable  we have

Relation to Scattering 

We can also relate the diffusion constant to scattering, such as incoherent neutron scattering. The dynamic structure factor is related
to the diffusion constant through

Then solve this equation for 

Therefore

This is the final expression for the diffusion constant.

In this section we showed how there are three different methods for finding the diffusion constant. These are Einstein’s Relation,
the Green-Kubo Relation, and the Scattering Function, as  and . This process can be generalized for different types of
transport coefficients. In the next two sections, we will evaluate the viscosity coefficients and the thermal transport coefficients
using these three methods.

Viscosity Coefficients 

In this section, we will evaluate the viscosity coefficients  and  using Einstein’s relation, the Green-Kubo relation, and the
scattering function in the hydrodynamic limit  and .

1. The Transverse Current Define the transverse current as the sum of the velocity components in the -direction

The Fourier transform is

Therefore, the transverse current correlation function is
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On the other hand, the Navier-Stokes equation predicts that

where  is the kinematic shear viscosity. The Fourier transform of this relation is

which yields the solution

Using this expression, the transverse current correlation function is

Now, we have two different expressions for the transverse current correlation function.

3. To complete the expression for the transverse current correlation function, we must find . Using the first expression for 
, we find that

where

Note that  is independent of . Now, expand the two expressions for the transverse current to the order of . Set them
equal and and solve for 

Then we have

4. To simplify this equation, use the momentum conservation condition . Then we can write that

then the viscosity coefficient is given by

where . This is Einstein’s expression for the viscosity coefficient.
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Then we can write the viscosity coefficient as

6. Define the Fourier transform of  as 

Therefore, the viscosity coefficient can be written as

7. In general,  denotes

From the virial theorem, the thermal average of  is

The longitudinal current is given by

where

Therefore, by analogy

where

Evaluation of the Thermal Transport Coefficients 
1. Summary of the Transport Coefficients Before we enter the topic of thermal transport, let’s briefly review the transport

coefficients we have defined in this chapter.

i) Diffusion Constant

ii) Viscosity Coefficients

where
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iii)

where

3. Mean Free Path Approximation The mean free path approximation can be used to approximate the value of the diffusion
constant and the viscosity coefficients. The mean free path approximation states that the motion of molecules is described by
collisions. The behavior of these collisions is governed by two main assumptions:

i) The collisions are Markovian. In other words, the velocity of a particle after a collision is random and is not correlated with the
velocity before the collision.

ii) The distribution of collisions is a Poisson process .

Using this approximation, the diffusion constant is

and the viscosity coefficient is

4. Hard-Sphere gas For a hard sphere gas, the average collision time  is given by

where  is the radius of the particles. Then, substituting this expression for  into  and  gives

Thermal Diffusion (Conduction) 

Define the energy

where . The correlation function is

The initial value of this correlation function is
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where we have used the fact that . 2) Now, expand the correlation function to the order of  :

where we have used the conservation of energy to rewrite the expression. This allows us to write

Conduction Equation 

The conduction equation states that

and therefore

We can solve this equation for 

where . Use this expression to write the correlation function

By equating the  terms, we find that

Therefore,

where
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