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1.5: Appendix: Applications to Brownian Motion
Brownian motion is one of the simplest physical examples of a system whose description necessitates a nonequilibrium statistical
description. As such, it is the token example that unifies all of the topics in this course, from Markov processes (Ch. 1) and
response functions (Ch. 2) to diffusion constants (Ch. 3) and generalized Langevin equations (Ch. 4). In this appendix, the salient
features of Brownian motion and the key results about Brownian motion that will be developed during the course are exposited
together as a handy reference. Some basic properties of relevant integral transformations are also included in this Appendix.

The discovery of Brownian motion predates the development of statistical mechanics and provided important insight to physicists
of the early twentieth century in their first formulations of an atomic description of matter. A fine example of the importance of
keeping an eye open for the unexpected in experimental science, Brownian motion was discovered somewhat serendipitously in
1828 by botanist Robert Brown while he was studying pollen under a microscope. Though many others before him had observed
the jittery, random motion of fine particles in a fluid, Brown was the first to catalogue his observations [4] and use them to test
hypotheses about the nature of the motion.

Interest in the phenomenon was revived in 1905 by Albert Einstein, who successfully related observations about Brownian motion
to underlying atomic properties. Einstein’s work on Brownian motion [5] is perhaps the least well known of the four paradigm-
shifting papers he published in his "Miracle Year" of 1905, which goes to show just how extraordinary his early accomplishments
were (the other three papers described the photoelectric effect, special relativity, and mass-energy equivalence)! Einstein
determined that the diffusion of a Brownian particle in a fluid is proportional to the system temperature and inversely related to a
coefficient of friction  characteristic of the fluid,

Any physical description of Brownian motion will boil down to an equation of motion for the Brownian particle. The simplest way,
conceptually, to model the system is to perform Newtonian dynamics on the Brownian particle and  particles comprising the
fluid, with random initial conditions (positions and velocities) for the fluid particles. By performing such calculations for all
possible initial configurations of the fluid and averaging the results, we can obtain the correct picture of the stochastic dynamics.
This procedure, however, is impossibly time-consuming in practice, and so a number of statistical techniques, such as Monte Carlo
simulation, have been developed to make such calculations more practical.

Alternatively, we can gain qualitative insight into Brownian dynamics by mean-field methods; that is, instead of treating each
particle in the fluid explicitly, we can devise a means to describe their average influence on the Brownian particle, circumventing
the tedium of tracking each particle’s trajectory independently. This approach gives rise to the Langevin equation of section 1.4,
under the assumption that the fluid exerts a random force  on the Brownian particle that obeys the conditions of Gaussian white
noise.

For instantaneous (gas-phase) collisions of the fluid and Brownian particle, a Langevin equation with constant frictional coefficient
 suffices,

However, if fluid-particle collisions are correlated, which is the case for any condensed-phase system, this correlation must be
taken into account by imbuing the Brownian particle with memory of its previous interactions, embodied by a memory kernel ,

where  in the limit of uncorrelated collisions.

We now present some of the key features of Brownian motion. Some of these results are derived in section 1.4; others are presented
here for reference. Please consult the references at the end of this chapter for further details about the derivation of these properties.

Fick’s Law: The spreading of the Brownian particle’s spatial probability distribution over time is governed by Fick’s Law,
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Green-Kubo relation: The diffusion constant  is tied to the particle’s velocity-velocity correlation function  by the Green-
Kubo relation,

This essentially means that the diffusion constant is the area under the velocity-velocity correlation curve across all times .

Solution of the Langevin Equation: All of the information we require from the Langevin equation is contained in the correlation
function. Multiplication of the Langevin equation for  by the velocity  yields a differential equation for the
correlation function,

The Laplace transform of this equation,

has as its solution

where  is the non-transformed velocity-velocity correlation function at  and  is the Laplace variable. - Einstein relation:
The solution to the Langevin equation tells us that

Additionally, a comparison of the Green-Kubo relation to the formula for the Laplace transform indicates that . Finally,
we can conclude from the equipartition theorem that . Combining this information together, we arrive at Einstein’s
relation,

In Chapter 4, the behavior of the velocity-velocity correlation function is explored for the cases in which the fluid is a bath of
harmonic oscillators, a simple liquid, and an elastic solid. Their general functional forms are summarized here; further details can
be found in Chapter 4 .

Harmonic oscillators:  is periodic with amplitude  and frequency  (the Einstein frequency), where .
Liquids:  exhibits a few oscillations while decaying, eventually leveling out to zero.
Solids: Like a liquid,  will be damped, but like the harmonic oscillator model, the periodic structure of the solid will
prevent  from decaying to zero; some oscillation at the Einstein frequency will continue indefinitely.

Finally, we summarize the response of a Brownian particle to an external force . The modified Langevin equation for this
situation is

In general, this Langevin equation is difficult to work with, but many forces of interest (such as EM fields) are oscillatory, so we
assume an oscillatory form for the external force,

Then we can use the techniques developed in Chapter 2 to determine that the velocity in Fourier space is given by

Finally, from this information it can be determined that the response function  is (see Chapter 2)
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These formulas are the basis for the Debye theory of dipole reorganization in a solvent, in the case where  corresponds to the
force due to the electric field  generated by the oscillating dipoles.

Integral Transformations: We conclude with a summary of the Laplace and Fourier transforms, which are used regularly in this
course and in chemical physics generally to solve and analyze differential equations. 1. Laplace transform: The Laplace transform
of an arbitrary function  is

Both the Laplace and Fourier transforms convert certain types of differential equations into algebraic equations, hence their utility
in solving differential equations. Consequently, it is often useful to have expressions for the first and second derivatives of  on
hand:

A convolution of two functions

is also simplified by Laplace transformation; in Laplace space, it is just a simple product,

3. Fourier transform: The Fourier transform of an arbitrary function  is

Its derivatives are even simpler in structure than those of the Laplace transform:

For an even function , the relationship between the Fourier and Laplace transforms can be determined by taking a Laplace
transform of  at , from which we discover that
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