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3.3: Transport Coefficients

Before we jump into the next section on transport equations, let’s take a moment to briefly summarize what we have seen in this
chapter and where we are going:

d’c
dwd)

1. The response of a liquid to an external probe is given by spontaneous time-dependent fluctuations, described in G(7, t) or

S(k, w).
2. Hydrodynamic equations describe the decay of spontaneous fluctuations.
3. Hydrodynamic modes can be used to find transport coefficients.
Diffusion Constant

We will begin our exploration of transport coefficients with the diffusion constant. We will use the concepts developed in this
chapter to find three different expressions for the diffusion constant. These expressions are called Einstein’s relation, the Green-
Kubo relation, and the Scattering function in the hydrodynamic limit.

Einstein’s Relation Define a single-particle correlation function
Gs(r,t) = (§(r(t) —7(0) — 7)) (3.3.1)
Taking the Fourier transform into E space gives the self-intermediate scattering function

Fs(k, t) = (exp|—ik(7(£) = 7(0))]) = (s (£)ps£(0)) (3.3.2)

All transport coefficients are defined for length and time scales when £ — 0 and w — 0. In real space, they apply to relatively long
length and time scales. Therefore, hydrodynamics theory applies. Recall that hydrodynamics theory applies on the coarse-grained
scale much larger and longer than characteristic molecular interactions.

Apply Fick’s law to the problem:

p=DV?p (3.3.3)
Therefore
pr = —Dk?py (3.3.4)
and
Fy(k,t) = e ¥ Dt (3.3.5)

We now have two equations for FS(%, t). Expand both of them to k? and set them equal
1
1—k2Dt+...:1—k2§(z(t)—z(0))2+... (3.3.6)
Then solve for D

(3.3.7)

This is Einstein’s Relation.

The Green-Kubo Relation

To find the Green-Kubo relation, use time-invariance to rewrite the thermal average in Einstein’s relation

(1)~ 2(0)) = </0t/0tv(t1)v(t2)dt1dt2>

—2 /0 (t—7)C(r)dr

where
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C(t) = (va(t)v=(0)) = §<v(t)v(0)> (3.3.8)

Therefore
D= lim - {|z(t) - 2(0)") :/Oooo(f)df (3.3.9)

This is called the Green-Kubo Relation.

In general, for any variable A(t) we have

/OOO<A( )A(0))dt = lim —<|A( ) — A(0)|2> (3.3.10)

t—00

Relation to Scattering

We can also relate the diffusion constant to scattering, such as incoherent neutron scattering. The dynamic structure factor is related
to the diffusion constant through

0 2D2 k2
S, (k,w) :/ € By (k, £)dt = — (3.3.11)
—00 w2 + (DkZ)
Then solve this equation for D
D=2 timii “’2S(k ) (3.3.12)
= —limlim — .3.
2 wo0ko0 k2 '

Therefore

D:—hmhm—/F (k,t) etdt =
2 w—0 k—0

= lim C(t)eiwfdt

w—0 0

_ / " wlty(o)dt
0

This is the final expression for the diffusion constant.

In this section we showed how there are three different methods for finding the diffusion constant. These are Einstein’s Relation,
the Green-Kubo Relation, and the Scattering Function, as w — 0 and k& — 0. This process can be generalized for different types of
transport coefficients. In the next two sections, we will evaluate the viscosity coefficients and the thermal transport coefficients
using these three methods.

Viscosity Coefficients

In this section, we will evaluate the viscosity coefficients 1 and np using Einstein’s relation, the Green-Kubo relation, and the
scattering function in the hydrodynamic limit (w — 0 and k — 0).

1. The Transverse Current Define the transverse current as the sum of the velocity components in the x-direction
Jo =Y i (t)d (F—7i(t)) (3.3.13)
i
The Fourier transform is

Jk—va exp( iié?i(t)) (3.3.14)

Therefore, the transverse current correlation function is
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1
Ci(k, t) = 77 {Jk(8)J-1(0))
1 2 -
== >~ (wi(t)e;(0) exp| =ik (7 (t) ~75(0)) | )
i
On the other hand, the Navier-Stokes equation predicts that
Jo —uV2J, =0 (3.3.15)
where v; = % is the kinematic shear viscosity. The Fourier transform of this relation is
Ty + vk Ty =0 (3.3.16)
which yields the solution

Ji(t) = Jp(0)e ¥ (3.3.17)

Using this expression, the transverse current correlation function is
1
Cilk,t) = = (Ju(t)T-4(0)) e Ft = Cy(k, 0)e F (3.3.18)

Now, we have two different expressions for the transverse current correlation function.

3. To complete the expression for the transverse current correlation function, we must find C; (k, 0). Using the first expression for
C;(k,t), we find that

= % <Z iz (0) exp(—iﬁﬁ- (0)) zj: v;z(0) exp(—i%i"i(o)) > (3.3.19)
LS (el

ij
= ’U%
where

1
Bm
Note that C;(k, 0) is independent of k. Now, expand the two expressions for the transverse current to the order of k2. Set them
equal and and solve for Cy(k, 0)

<’U,'Z’sz> = 61']' <’Uiz’U,'z> = 5@'_7' = 51']"0,2) (3320)

Ci(k,t) = Cy(k, 0) (1 — vk*t) = ; > <vi(t)vj(0) [1 - % (2(t) —zj(O))Q] > (3.3.21)
Then we have
O(k, 0) u_tgrg — <vz Jo3(0) [2:(t) ~ 2;(0)]*) (3.3.22)

4. To simplify this equation, use the momentum conservation condition »_; v;(¢) = _; v;(0) . Then we can write that

<Zw<t)z§ (t)Zvj<o>> = <Zvi<t>z3<t)vj<t)> EOMCAGEIO) (3.3.23)

then the viscosity coefficient is given by
11

- ([A(t) — A0)) (3.3.24)

= 1. _—
= A% OkT 2t

where A = Zl P;,. z; . This is Einstein’s expression for the viscosity coefficient.

5. Define o, as the time derivative of A
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- d
A=op=— Xi:P,»zzi (3.3.25)

Then we can write the viscosity coefficient as

1

N Vm2ksT

/0 " (002 ()00 (0)) dlt (3.3.26)

6. Define the Fourier transform of Cy (7, ) as Cy (k, w)

Collyt) = v2e ' = Gy () = vzwfi;':m (3.3.27)
Therefore, the viscosity coefficient can be written as
”:MEL%HS “’—jot(%, w) (3.3.28)
7. 1n general, 0,4 denotes
Tap = %;Pmrm (3.3.29)
From the virial theorem, the thermal average of o4 is
(0ap) =00 PV (3.3.30)
The longitudinal current is given by
Ji(t) = Jp(0)e ¥t (3.3.31)
where
b= <n3+én) (3.3.32)
mp, 3
Therefore, by analogy
4 1 o0
3= g | i) a (3.3.33)
where
00, =0,.(t)— PV (3.3.34)

Evaluation of the Thermal Transport Coefficients

1. Summary of the Transport Coefficients Before we enter the topic of thermal transport, let’s briefly review the transport
coefficients we have defined in this chapter.

i) Diffusion Constant
o0
D= / v, (t)v,(0)dt (3.3.35)
0

ii) Viscosity Coefficients

1 o0
1= /0 02 ()02 (0)dlt

/Ooo [Uzz(t) _PV] [Uzz (0) _PV] dt

L4 1
BTN YT

where
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d
OaB = E Zi:—Pia"'iﬁ (3336)
iii)
1 o
=i /0 (A(t)A(0)dt) (3.3.37)
where

d
-5 2

3. Mean Free Path Approximation The mean free path approximation can be used to approximate the value of the diffusion
constant and the viscosity coefficients. The mean free path approximation states that the motion of molecules is described by
collisions. The behavior of these collisions is governed by two main assumptions:

D +lz i —(E) (3.3.38)
om 2 ~ ’LLZ] 0.

i) The collisions are Markovian. In other words, the velocity of a particle after a collision is random and is not correlated with the
velocity before the collision.

TE

ii) The distribution of collisions is a Poisson process e %/

Using this approximation, the diffusion constant is

[o¢]
D:/ (v2)ye medt = (v?) 7, (3.3.39)
0

and the viscosity coefficient is

N
—t/Te 31 2,2
n= VkBT / < (Z PZ’Lle> > cdt = VkBT <vaz>7—c (3340)

4. Hard-Sphere gas For a hard sphere gas, the average collision time 7, is given by

1
1 ™m |2
\/_7ra'2 [SkBT] (3.3.41)

where o is the radius of the particles. Then, substituting this expression for 7, into D and 7 gives

po L[]
40%p | ™m

Te =

ellﬂ

1
_ 1 [mhr]?
40?2 | 7
Thermal Diffusion (Conduction)
Define the energy
Ej, = Zéez e i) (3.3.42)
where de = e — (e) . The correlation function is
C(k,t) = Z <5eie’iz;i(t) 6eje”%;j(0)> (3.3.43)

ij

The initial value of this correlation function is
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C(k,0) =Y (seide;) <exp [_iér—ﬁ _ T—;] >
= (deider) = (B(0)E(0)) = NCykpT*

where we have used the fact that (Je;de;) = ;; ((6e)?) . 2) Now, expand the correlation function to the order of k? :

L2
Ok 1) = C(k,0) = o= > (Feu(t)oe; (0 i (6) = 24(0))” ) + ..
ij
% ’
= C(k, 0) — ?< Zéei(t)zi(t) — Zéei(O)zi(O) > +...
i i
where we have used the conservation of energy to rewrite the expression. This allows us to write
A= "Jei(t) — ()] (1) (3.3.44)
Conduction Equation
The conduction equation states that
0
P _VA(VT) =0 (3.3.45)
ot
and therefore
OF A
— ———V?E=0 3.3.46
o Crvp ( )
We can solve this equation for E(t)
E(t) = E(0)e~ ¥t (3.3.47)
where a = CLV;) . Use this expression to write the correlation function
C(k,t) = (B2(0)) e "t = (B?) [1 —ak?t +...] (3.3.48)
By equating the k2 terms, we find that
2 . K 2
ak?NCykpT? = §<|A(t) — A(0)] > (3.3.49)
Therefore,
1 oL 1 1 2
A= A(t)A(0)dt) = i —(|A(t)—A .3.
o [ AOAO) = lim (140 - AO)) (3.3.50)
where
P 1
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