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2.2: Onsager Regression Theory

At first glance, the relaxation of macroscopic non-equilibrium disturbances in a system might seem completely unrelated to the
regression of microscopic fluctuations in the corresponding equilibrium system. However, they are intimately related by so-called
fluctuation-dissipation theorems. The existence of this link between microscopic fluctuations and macroscopic relaxation was
conjectured by Lars Onsager in 1931, some twenty years before it was finally proven to be true; hence it is often referred to as the
Onsager regression hypothesis.

To formulate the hypothesis, we consider an observable A with (A)., =0 that takes on a nonequilibrium average value A A due to
an applied external force f which acts during the time interval ¢ < 0 but becomes identically zero fort > 0.

For t <0, the ensemble average of A A can be expressed as

(Ae~BUH-14))

ad <e—ﬂ(H—fA) >

~ Bf [(A(0)A(0)) — (A(0))*] = B£C(0) (2.2.1)

where the approximation being made is truncation of the Taylor series for each exponential to first order.

For t > 0, the system evolves according to H instead of H — f A, so A A is no longer stationary, but acquires a time-dependence:

(awera-a)

Ad= (e-PUH-14))

~ Bf [(A(t)A(0)) — (4(0))’] = BfC(2) (2:2.2)
Onsager’s hypothesis states that the relaxation of the non-equilibrium value of A A is related to its value at ¢ = 0 in the same way
that the time correlation function for a spontaneous fluctuation is related to its value at £ =0 :

AA(t)  C(t)

F(()) == m (2.2.3)

v Example 2.2.1

The transition state theory of chemical kinetics can be formulated through the Onsager relation we’ve just presented. Consider
a chemical equilibrium established between two species A and B,

kg
A=B (2.2.4)
Ky

with forward rate constant k; and backward rate constant k;.

Equilibrium populations

We can describe the population dynamics of A and B deterministically in the macroscopic limit through a pair of coupled
differential equations,

Py =—kgPy+kD,
AT AT (2.2.5)
Pp =ktPy —k,Pp
The equilibrium state of this system satisfies the detailed balance condition
ks (Py) = ky (PB) (2.2.6)

where the angle brackets denote the equilibrium values of the populations. Taking the populations to be normalized to unity,
(Pa)+(Pg) =1, we can express (P ) in terms of the rate constants:

(Pa) _ ky
(Pp)+(Pg) ky+ky

(Py) = (2.2.7)

For notational simplicity, we introduce k= ks +k, and refer to the equilibrium populations (Pa) and (Pg) by ga and gg,
respectively. With this new notation, we can express the equilibrium populations of A and B as
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ga = L]

Tk

{ Ky (2.2.8)
gB = 3~

If the initial state is all species A, the solution to the coupled differential equations indicates a decay to equilibrium with rate
constant k, which we can write in terms of APy (t) = Pa(t) —gqa as

AP, (t) = APy (0)e ™™ (2.2.9)

Setting this result aside for a moment, note that if we consider the energies of species A and B to be potential wells connected
along a reaction coordinate z, then we can write down an expression for the fluctuation in occupation number n for each species as
a function of x. The barrier between the A and B potential wells is a maximum at z = x; see Figure 2.2.
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Figure 2.2: Projection of the potential energy surface connecting species A and B along reaction coordinate x

Application of Onsager Regression hypothesis

To reflect the fact that a particle to the left of the barrier is species A and a particle to the right is species B, we write the occupation
numbers in terms of the Heaviside step function,

ny =0(zp —x)
{nB 6o —a) (2.2.10)

where (n,) =g, and (ng) = gg. Applying Onsager’s regression hypothesis to this example, we can relate the dissipation of Py
to the fluctuations in occupation number as follows:

C) _ (fra®oma(0) _ ARA®) _
00) " om0 BR0) (2:211)

The second equality arises from our integrated rate equation for the dissipation of P, . Also note that

2
(0n3)=(n3)—(na)" =qx — ¢} =qr —aqr (1 —g8) = qags (2.2.12)
Differentiating the fluctuation-dissipation relation above with respect to ¢ and invoking the identity just shown, we find

(014 (t)0n4(0)) _ (na(t)n4(0))

k —kt — _ _
(6n3 (0)) qAgsB

(2.2.13)

Recasting this equation in terms of the reaction coordinate x, we arrive at an expression for the time dependence of the forward rate
constant k¢ (t),

(6 ((t) —xp) 8 (zp —2(0)) v)

K e )]

(2.2.14)

where v =114 (0) is the initial rate of reaction.
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Expression for the TST rate constant

Finally, to determine the transition state theory (TST) rate constant, we consider our time-dependent expression for k; in the short-
time limit, since transition states typically only survive a few molecular vibrations. In this limit,

i k1) = L@@ =2 8@ —2(O)v) _ (B0)6 (@ —(0)o)
=07 (na) (ny)

(2.2.15)

From the kinetic theory of gases, we recognize that

(B0 = [ 32 = (2mmp) 1/ (2.2.16)

If we stipulate now that the height of the barrier is Ej, some rearrangement of the preceding formulas reveals that

(0(xp—2))  [mw’B _gp
(6 (zp —2)) _\/76 ’ (2.2.17)

where w is the fundamental frequency of the left potential well. It follows that the TST rate constant takes on the simple form

w
krsy = e 7% (2.2.18)

To conclude our excursion into TST Kkinetics, note that the ratio

k() _(0(z(t) —2)8(2(0) —2)v)
krst (0(x (07) —25) 3 (2(0) — ) v)

is always less than or equal to one. This result indicates that the TST flux is partially trapped in the product well while part of the
TST flux recrosses back to the reactant state. This result is in keeping with our intuition of chemical dynamics in that every
macroscopic reaction is, to some degree, a process of establishing equilibrium rather than a perfect flow from all reactants to all
products.

(2.2.19)
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