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3.2: Navier-Stokes Hydrodynamic Equations

Basic Equations 

Conservation of Mass 

Consider a fixed volume in space, such as that pictured in Figure 

The total number of particles in the region at any point in time can be found by taking the sum over the density at all points:

The change in  over time depends upon the flux, which can be found by integration over a surface or a volume

We can rewrite the change in the number of particles in terms of density:

Remove the spacial integration and rearrange

To express the equation in terms of density and velocity, we rewrite the flux as , so that

Then the conservation of mass is given by:

Figure 3.6: The flow of material into and out of a fixed region of space

Continuity Equations In general, for any dynamic quantity , we can define a density  and write down a continuity equation.

This equation will be determined by the interaction between currents  and sources .

The total current  can be modelled as the sum of a conservative term  and a dissipative term .

The source  can be written as the sum of external sources  and production sources 

Therefore, the continuity equation for  can be written more explicitly as

3.6
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In the physical world there are five conserved quantities: the density, the momentum (in three directions), and the energy (or
entropy).

Therefore, we will find five continuity equations. We have already found the continuity equation for density, and in the next two
sections we will find the equations for momentum and entropy.

Figure 3.7: The flow and forces for a dynamic quantity

Momentum Equation (Navier-Stokes equations) 

To find the continuity equation for momentum, substitute  into the general continuity equation.

We assume that the production force is zero. The external force is pressure, which acts to create a net momentum or acceleration.

The terms representing conservative and dissipative current are both tensors. This is because momentum is a vector, and so the
current, which represents the change in momentum, must be a tensor. The conservative current is given by

The dissipative current is the stress tensor . The continuity equation for momentum can then be written as

Let’s take a closer look at the stress tensor. For an isotropic medium, the stress tensor can be expressed as

where  is the bulk viscosity. It gives the expected change in volume resulting from an applied stress. Likewise,  is the shear
viscosity. This gives the expected amount of shearing, or change in shape, resulting from an applied stress. The final term 

 is a traceless symmetric component which changes the shape, but not the volume, of the medium.

We can express the change in the stress tensor as

With this, we can rewrite the momentum continuity equation as
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This is also called the Navier-Stokes equation.

Entropy Equation (heat-diffusion) 

To find the continuity equation for entropy, substitute  in to the general continuity equation. In this case, we are thinking of
the entropy for each particle and not the entire system, so a lowercase  is used.

We can simplify this expression by assuming that there are no forces that that create or destroy entropy, so  We also
know that entropy flows from high temperatures to low temperatures, so

Write this explicitly using the constant 

Then, substitute this to get the continuity equation

We now have expressions for the 5 continuity equations for number of particles, momentum, and energy.

The solution to this set of equations gives . Though it is impossible to solve analytically, approximate solutions can be
obtained by linearizing the equations.

Linearized Hydrodynamic Equations 

The hydrodynamic equations are impossible to solve analytically. However, it is possible to obtain approximate solutions by
linearizing the equations. Define the operator

For a time-independent quantity ,

We can construct any quantity  as the sum of a time-independent, "stable" part  and a fluctuating part 

Then we can write  as an expansion. If we truncate the expansion at the first order, linear term, we find that

For a homogeneous solution,  is a constant. There is no collective kinetic motion, only small Boltzmann motions which average to

zero. Therefore, . Entropy is also a constant. Therefore, we have three constants:
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Since the density, velocity, and entropy are constants for a homogeneous solution, we can construct these quantities for a non-
homogeneous solution by expanding around them:

We can also expand around a constant temperature and pressure:

Start by substituting the density expansion into the density continuity equation

This is the linearized number density continuity equation. To reach the final expression, we have used that . We have also
ignored the term  because it is of quadratic order and we can assume that it is negligible. In order to linearize the
continuity equation for entropy, begin by expanding the original expression.

The second and third term can be combined and will go to zero by conservation of mass. The fourth term is negligible. Then by
substituting in the expansions and keeping only the linear terms, the expression simplifies to:

Similarly we can linearize the momentum continuity equation, the solution is

In summary, the linearized hydrodynamic equations are given by

Transverse Hydrodynamic Modes 

In order to solve the eigenvalue equation, we need to decompose the velocity into its transverse and longitudinal components.
Begin by rewriting the velocity in terms of its Fourier components

Through substitution, the momentum continuity equation becomes

Now, decompose  into its 3 components
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A longitudinal mode is one in which the velocity vector points parallel to the  vector, and a transverse mode is one in which the
velocity vector points perpendicular to the  vector. We can decide arbitrarily that the  vector points in the  direction. Therefore, 

 is the longitudinal current and  and  are the transverse currents.

Figure 3.8: Velocity components in k-space

which is easy to solve, yielding the solution

where  is the kinematic shear viscosity.

This result looks like a diffusion equation

Therefore,  can be interpreted as diffusion constant for velocity.

Longitudinal Hydrodynamic modes 

Solving the Continuity Equations 

It is much more difficult to solve for the longitudinal velocity component of the current because not as many terms go to zero.

Fourier Transform of the density Begin by writing the density in terms of its Fourier components

Using this expression, the linearized hydrodynamic equations can be written in terms of the Fourier components of the density.
Note that hereafter, for brevity, we will drop the  signs of the transformed variables. Readers should keep in mind that these -
space variables always refer to the Fourier transform of the fluctuations away from equilibrium.

Also we denote the velocity as  for simplicity. However, it is important to remember that this only refers to the longitudinal
velocity, . Choosing independent variables As written, the three continuity equations have five variables: , and .
Luckily, these variables are not all independent. Let , and  be the three independent variables. We can use thermodynamic
relations to rewrite  and  in terms of these variables.

The Helmholtz free energy is a function of temperature and density, . We can write this in differential form:
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This is a total differential of the form:

Using this, we can write the entropy  and the pressure  in differential form

Define the variable  as

Here we have used the property that for continuous functions, the mixed partial second derivatives are equal. This gives one of the
Maxwell relations.

We will also use a couple of well known relations, the isothermal speed of sound:

and the specific heat:

With these relations in hand, we can rewrite the pressure  and the entropy  in terms of temperature  and density  :

The Condensed Equations With these substitutions, we can rewrite the continuity equations in terms of the independent variables 
, and .

where we have defined the constants  and 

and  is used to simplify the last equation.

The Laplace Transform To further simplify the equations, use the Laplace transform of each variable:
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Using this transform, the continuity equations can be rewritten (in matrix form):

Thermodynamic Identities 

Isothermal and Adiabatic Speed of Sound 

The adiabatic  and isothermal  speeds of sound are given by:

We can rewrite these quantities using:

Here, we have used the constant volume  and constant pressure  heat capacities:

and the identity for differentials:

Now, we can show that the ratio is equal to:

Thermodynamic identities can be used to rewrite the quantity 

Start by writing the expression explicitly in terms of thermodynamic variables:

In order to simplify this expression, we will use another identity for differentials:
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Using this identity, combined with the identity introduced in the previous section, we can rewrite the first term in the expression:

Now, plug this into the expression above and cancel terms, to obtain the new identity:

Adiabatic and Isothermal Compressibility 

The adiabatic  and isothermal  compressibilities are given by:

Therefore,

Eigensolution 

Now, we can solve the set of continuity equations for the density. The density can be found from:

Note that the Laplace transform of the intermediate scattering function is:

To solve for , find  and .

and

where we have used some of the thermodynamic identities defined in the previous section.

The eigenfrequencies can be obtained from . The eigenvalues can be solved using perturbation 
. The solutions are

where
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Then, to second order in , we have

The first term gives the contributions from thermal fluctuations, while the second term gives the solution for a damped acoustic

wave. Notice that the integrated intensity of the first term is  and the integrated intensity of the second term is .

Figure 3.9: Light Scattering Spectrum

Light Scattering 
The Landau-Placzek ratio gives the ratio between the intensity of thermal and acoustic scattering

Note that the dynamic structure factor is twice the real part of the Laplace transform of the intermediate scattering function (Figure
3.9):

The initial value of this function is

Acoustic Scattering 

By ignoring the coupling to entropy flow, we have
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so that

For an ideal gas, , and so we get a propagating sound wave

In a viscous liquid, , and so we get a propagating acoustic wave with a damping term

This page titled 3.2: Navier-Stokes Hydrodynamic Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Jianshu Cao (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

dP = dρ( )
∂P

∂ρ S

(3.2.61)

+ ik = 0
dδρk

dt
ρovk

+ i k +b = 0vk̇ c2
S ρk k2vk

(3.2.62)

b = 0

z = ±i kcS (3.2.63)

b ≠ 0

z = ±i k− bcS
1

2
k2 (3.2.64)
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