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1.1: Markov Processes

Probability Distributions and Transitions 

Suppose that an arbitrary system of interest can be in any one of  distinct states. The system could be a protein exploring
different conformational states; or a pair of molecules oscillating between a "reactants" state and a "products" state; or any system
that can sample different states over time. Note here that  is finite, that is, the available states are discretized. In general, we
could consider systems with a continuous set of available states (and we will do so in section 1.3), but for now we will confine
ourselves to the case of a finite number of available states. In keeping with our discretization scheme, we will also (again, for now)
consider the time evolution of the system in terms of discrete timesteps rather than a continuous time variable.

Let the system be in some unknown state  at timestep , and suppose we’re interested in the probability of finding the system in a
specific state , possibly but not necessarily the same as state , at the next timestep . We will denote this probability by

If we had knowledge of , then this probability could be described as the probability of the system being in state  at timestep 
 given that the system was in state  at timestep . Probabilities of this form are known as conditional probabilities, and we

will denote this conditional probability by

In many situations of physical interest, the probability of a transition from state  to state  is time-independent, depending only
on the nature of  and , and so we drop the timestep arguments to simplify the notation,

This observation may seem contradictory, because we are interested in the time-dependent probability of observing a system in a
state  while also claiming that the transition probability described above is time-independent. But there is no contradiction here,
because the transition probability  - a conditional probability - is a different quantity from the time-dependent probability  we
are interested in. In fact, we can express  in terms of  and other quantities as follows:

Since we don’t know the current state  of the system, we consider all possible states  and multiply the probability that the
system is in state  at timestep  by the probability of the system being in state  at timestep  given that it is in state  at
timestep . Summing over all possible states  gives  at timestep  in terms of the corresponding probabilities at
timestep .

Mathematically, this formulation reads

We’ve made some progress towards a practical method of finding , but the current formulation Eq.(1.1) requires
knowledge of both the transition probabilities  and the probabilities  for all states . Unfortunately,  is
just as much a mystery to us as . What we usually know and control in experiments are the initial conditions; that is, if
we prepare the system in state  at timestep , then we know that  and  for all . So how do we
express  in terms of the initial conditions of the experiment?

We can proceed inductively: if we can write  in terms of , then we can also write  in terms of 
 by the same approach:

Note that  has two parameters, each of which can take on  possible values. Consequently we may choose to write  as an 
 matrix  with matrix elements . Rearranging the sums in Eq.(1.2) in the following manner,

we recognize the sum over  as the definition of a matrix product,
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Hence, Eq.(1.2) can be recast as

This process can be continued inductively until  is written fully in terms of initial conditions. The final result is:

where  is the known initial state of the system (all other  do not contribute to the sum since  for  ). Any
process that can be described in this manner is called a Markov process, and the sequence of events comprising the process is
called a Markov chain.

A more rigorous discussion of the origins and nature of Markov processes may be found in, e.g., de Groot and Mazur [2].

The Transition Probability Matrix 

We now consider some important properties of the transition probability matrix . By virtue of its definition,  is not necessarily
Hermitian: if it were Hermitian, every conceivable transition between states would have to have the same forward and backward
probability, which is often not the case.

Example: Consider a chemical system that can exist in either a reactant state A or a product state B, with forward reaction
probability  and backward reaction probability ,

The transition probability matrix  for this system is the  matrix

To construct this matrix, we first observe that the given probabilities directly describe the off-diagonal elements  and ;
then we invoke conservation of probability. For example, if the system is in the reactant state , it can only stay in  or react to
form product ; there are no other possible outcomes, so we must have  This forces the value  upon 

, and a similar argument yields .

Clearly this matrix is not symmetric, hence it is not Hermitian either, thus demonstrating our first general observation about .

The non-Hermiticity of  implies also that its eigenvalues  are not necessarily real-valued. Nevertheless,  yields two sets of
eigenvectors, a left set  and a right set , which satisfy the relations

The left- and right-eigenvectors of  are orthonormal,

and they form a complete set, hence there is a resolution of the identity of the form

Conservation of probability further restricts the elements of  to be nonnegative with . It can be shown that this
condition guarantees that all eigenvalues of  are bounded by the unit circle in the complex plane,

Proof of Eq. (1.12): The  eigenvalue of  satisfies
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for each . Take the absolute value of this relation,

Now we can apply the triangle inequality to the right hand side of the equation:

Also, since all elements of  are nonnegative,

Now, the  are finite, so there must be some constant  such that

for all . Then our triangle inequality relation reads

Finally, since , we have the desired result,

Another key feature of the transition probability matrix  is the following claim, which is intimately connected with the notion of
an equilibrium state:

Proof of Eq.(1.13): We refer now to the left eigenvectors of  a given left eigenvector  satisfies

Summing over , we find

since . Thus, we have the following secular equation:

Clearly,  is one of the eigenvalues satisfying this equation.

The decomposition of the secular equation in the preceding proof has a direct physical interpretation: the eigenvalue  has a
corresponding eigenvector which satisfies ; this stationary-state eigensolution corresponds to the steady state of a
system . It then follows from the normalization condition that . The remaining eigenvalues 
each satisfy  and hence correspond to zero-sum fluctuations about the equilibrium state.

In light of these properties of , we can define the time-dependent evolution of a system in terms of the eigenstates of ; this
representation is termed the spectral decomposition of  (the set of eigenvalues of a matrix is also known as the spectrum of
that matrix). In the basis of left and right eigenvectors of , the probability of being in state  at timestep , given the initial state
as , is
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If we (arbitrarily) assign the stationary state to , we have  and , where  is the steady-state or equilibrium
probability distribution. Thus,

The spectral decomposition proves to be quite useful in the analysis of more complicated probability distributions, especially those
that have sufficiently many states as to require computational analysis.

Example: Consider a system which has three states with transition probabilities as illustrated in Figure 1.1. Notice that
counterclockwise and clockwise transitions have differing probabilities, which allows this system to exhibit a net current or flux.
Also, suppose that  so that the system must switch states at every timestep.

Figure 1.1: A simple three-state system with nonzero flux

The transition probability matrix for this system is

To determine , we find the eigenvalues and eigenvectors of this matrix and use the spectral decomposition, Eq.(1.14). The
secular equation is

and its roots are

Notice that the nonequilibrium eigenvalues are complex unless , which corresponds to the case of vanishing net flux. If
there is a net flux, these complex eigenvalues introduce an oscillatory behavior to .

In the special case , the matrix  is symmetric, so the left and right eigenvectors are identical,

where  denotes transposition. Suppose the initial state is given as state 1 , and we’re interested in the probability of being in state
3 at timestep . According to the spectral decomposition formula 
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Note that in the evaluation of each term, the first element of each left eigenvector  and the third element of each right eigenvector 
 was used, since we’re interested in the transition from state 1 to state 3 . Figure  is a plot of ; it shows that the

probability oscillates about the equilibrium value of , approaching the equilibrium value asymptotically.

Figure 1.2: Probability of a transition from state 1 to state 3 vs. number of timesteps. Black points correspond to actual timesteps;
grey points have been interpolated to emphasize the oscillatory nature of .

Detailed Balance 

Our last topic of consideration within the subject of Markov processes is the notion of detailed balance, which is probably already
somewhat familiar from elementary kinetics. Formally, a Markov process with transition probability matrix  satisfies detailed
balance if the following condition holds:

And this steady state defines the equilibrium distribution:

This relation generalizes the notion of detailed balance from simple kinetics that the rates of forward and backward processes at
equilibrium should be equal: here, instead of considering only a reactant state and a product state, we require that all pairs of states
be related by Eq.(1.16).

Note also that this detailed balance condition is more general than merely requiring that  be symmetric, as the simpler definition
from elementary kinetics would imply. However, if a system obeys detailed balance, we can describe it using a symmetric matrix
via the following transformation: let
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If we make the substitution , some manipulation using equations (1.1) and (1.17) yields

The derivative  here is really the finite difference  since we are considering discrete-time Markov
processes, but we have introduced the derivative notation for comparison of this formula to later results for continuous-time
systems.

As we did for , we can set up an eigensystem for , which yields a spectral decomposition similar to that of  with the
exception that the left and right eigenvectors  of  are identical since  is symmetric; in other words, .
Furthermore, it can be shown that all eigenvalues not corresponding to the equilibrium state are either negative or zero; in
particular, they are real. The eigenvectors of  are related to the left and right eigenvectors of  by

Example: Our final model Markovian system is a linear three-state chain (Figure 1.3) in which the system must pass through the
middle state in order to get from either end of the chain to the other. Again we require that . From this information, we
can construct ,

Notice how the difference between the three-site linear chain and the three-site ring of the previous example is manifest in the
structure of , particularly in the direction of the zero diagonal. This structural difference carries through to general -site chains
and rings.

To determine the equilibrium probability distribution  for this system, one could multiply  by itself many times over and hope
to find an analytic formula for  however, a less tedious and more intuitive approach is the following:

Noticing that the system cannot stay in state 2 at time  if it is already in state 2 at time , we conclude that 
depends only on  and . Also, the conditional probabilities  and  are both equal to 

. Likewise,  and  are both equal to  Finally, if the system is in state 2 at time , it can only
get back to state 2 at time  by passing through either state 1 or state 3 at time . The probability of either of these
occurrences is .

Figure 1.3: A three-state system in which sites are no longer identical

So the ratio  in the equilibrium limit is . We merely have to normalize these probabilities by
noting that . Thus, the equilibrium distribution is

Plugging each pair of states into the detailed balance condition, we verify that this system satisfies detailed balance, and hence all
of its eigenvalues are real, even though  is not symmetric.
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