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4.3: Viscoelastic Model

Introduction 

The Generalized Langevin Equation and Mode-Coupling theory are subsets of molecular hydrodynamics, the theory that was
developed to bridge the gap between hydrodynamics and molecular dynamics. Hydrodynamics, which we discussed in chapter 3,
describes the macroscopic, long time behavior of systems in the limit as  and . It
uses the transport coefficients , , and  to predict long
time fluctuations. Molecular dynamics, which we discussed in section I of chapter 4 , describes the microscopic, short time
behavior of systems in the limit as  and . In this limit, systems behave as static
liquid structures, and their dynamics are largely determined by the pairwise interaction potential.

In this section, we will use the GLE to derive the viscoelastic model for transverse current. By taking the appropriate limits, we can
show that the results of the viscoelastic model are consistent with those of hydrodynamics and molecular dynamics, and that this
model provides a successful bridge between the two limits.

Phenomenological Viscosity 

Consider a constant shear force applied to a viscous liquid. At long times, the shear stress  in the liquid is
related to the rate of strain  by

Liquids behaving in this fashion do not support shear waves. However, if the force is applied instantaneously, the system does not
have the time to relax like a liquid. Instead, it behaves like an elastic solid. The stress is now proportional to the strain rather than
the rate of strain. The short term response is

where  is the modulus of rigidity. When the liquid is behaving like a solid, it supports shear waves
propagating at a speed of .

To determine the time scale on which the liquid behaves like an elastic solid, define the constant

This is the Maxwell relaxation time. For the timescales  when

the system behaves like an elastic solid. For the timescales when

the system behaves like a viscous liquid.

Viscoelastic Approximation 

To interpolate between the two extremes, we can write

The Laplace transform of this equation yields

In the steady-state limit, as 

and in the high-frequency limit, as 
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Transverse Current Correlation Function 

We will use the transverse current correlation function to demonstrate the viscoelastic approximation. In Section I, we defined the
transverse current as

and the transverse current correlation function as

We have studied the transverse current in both the hydrodynamic limit  and the short-time expansion limit
. In chapter 3, we used the Navier Stokes equation to find an equation of motion for the transverse

correlation function in the hydrodynamic limit

This has the solution

where  is the shear viscosity. Therefore, in the hydrodynamic limit, transverse current fluctuations decay
exponentially with a rate determined by the shear viscosity .

In section I of this chapter, we used the short-time expansion approximation to show that in the  limit, the
transverse current correlation function can be written as

where the transverse frequency  is related to the transverse speed of sound  by

And the transverse speed of sound is given by

where  is the pairwise correlation function and  is the pairwise interaction
potential. This frequency term can also be written as [3]

where  is the shear modulus. This indicates that at short times and wavelengths, the dissipation effects are
diminished and transverse current fluctuations can propagate through the material with speed .

Using the Generalized Langevin equation, we can generate a model for transverse current fluctuations that replicates the results of
hydrodynamics and the short-time expansion when the appropriate limits are taken. Begin by writing the GLE for transverse
current. Since the frequency matrix is zero, the GLE is written

where  is the memory function and  is the noise term. Multiplying through by
 and taking the average gives us the equation of motion for the transverse current correlation function

Take a closer look at the memory kernel

The normalization factor is simply . By writing the projection operator  as 
 and eliminating terms, this can be written

The equation of motion for the transverse current can be written as [5]

where  is the zx-component of the microscopic stress tensor
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Then the memory kernel becomes

where  is defined as

This demonstrates that the memory kernel is proportional to . Then the transverse current correlation
function can be written

The memory kernel is the key element that links the two limits. In general, the presence of the propagator 
makes it very difficult to evaluate  explicitly. However, the presence of  indicates
that we can separate out fast and slow motions and use this to construct a form for  that will bridge the
short and long time limits. To find this form, the viscoelastic model starts my assuming that the memory kernel has an exponential
form:

where  is the Maxwell relaxation time, discussed above. Before using this function, it is necessary to
specify the values of the two parameters,  and . These can be found by taking the
short and long time limits of the GLE and comparing them to the short-time expansion and hydrodynamic results, respectively.

The Short Time Limit 

The value of  at short times can be obtained by comparing the GLE at time  to the
short time expansion of the transverse correlation function. To find the GLE at time , take its time
derivative

The first two terms of the short time expansion of the correlation function are

The second derivative of this expansion gives

Comparison of equations (4.38) and (4.35) shows that

Further, we see that in this limit the material supports propagating waves. The form of the waves can be found by solving the
differential equation Eq.(4.38), and is given by

where  and the speed of the waves are .

The Hydrodynamic Limit 

The value of  at long times can be obtained by comparing the hydrodynamic equation to the long time
limit of the GLE for  :

To take the long time limit of this equation, note that the memory function will generally be characterized by some relaxation time
. When the time  is much greater than this relaxation time, the major contribution

to the integral will come when . Therefore, we can approximate . With this
approximation, the correlation function can be taken out of the integral in the GLE:

where the integration limit has been extended to  to indicate that we are taking the long time limit.
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This result should be identical to the hydrodynamic solution in the long time and long wavelength limit. By taking the long
wavelength limit  and comparing to the hydrodynamic result (Eq.(4.35)), we see that this only holds when:

The Viscoelastic Solution 

We now have the information we need to construct the explicit form of the viscoelastic memory kernel.

From the short time limit, we found that , which allows us to write

From the long time limit, we know that

Now, plug in the exponential memory kernel for 

The elastic modulus has no time dependence, so it can be taken out of the integral

Finally, evaluate the integral to find the Maxwell relaxation time at . It is reasonable to assume that the
Maxwell relaxation time remains constant over all  values. Therefore, the Maxwell relaxation time can be
written as the ratio of the shear viscosity coefficient of the liquid to the modulus of rigidity of the elastic solid at 

.

When  is small compared to the time , the viscosity term dominates and the
system will behave as a viscous liquid. However, when  is large compared to the time 

, the system does not have time to respond to a stimulus as a viscous liquid. The modulus of rigidity dominates, and the
material will behave as an elastic solid, supporting propagating shear waves.

Finally, we can use the Maxwell relaxation time to write the explicit form of the viscoelastic memory kernel.

With this memory kernel in hand, we can now go on to find an explicit solution to the transverse current correlation function.

To find the equation for the viscoelastic wave, we first find the Laplace transform of the transverse current correlation function

Now, solve this equation using the exponential memory kernel . The Laplace transform of an exponential
function is well defined

Therefore, the Laplace transform of the viscoelastic memory kernel is

Plug this into the the Laplace transform of the transverse current correlation function

Since function is quadratic, it is relatively easy to find the reverse Laplace transform, using the same method as that presented in
section 4.2.C.2, or reference [1].

where the eigenvalues are given by the solutions to the quadratic equation  :

Complex eigensolutions exist if
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Recall that . Then we can rewrite the above inequality in terms of the wavenumber

Define the critical wavenumber, . For more information on the viscoelastic approximation and its
application to transverse current, please see Chapter 6 of Molecular Hydrodynamics by Jean-Pierre Boon and Sidney Yip [3] and
chapter 3 and chapter 6 of Dynamics of the Liquid State by Umberto Balucani [5].

This page titled 4.3: Viscoelastic Model is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jianshu Cao
(MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.
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