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5.3: Zero-field interaction

Physical picture 

If several unpaired spins are very strongly exchange coupled, then they are best described by a group spin . The concept is most
easily grasped for the case of two electron spins that we have already discussed in Section 5.1.1. In this case, the singlet state with
group spin  is diamagnetic and thus not observable by EPR. The three sublevels of the observable triplet state with group
spin  correspond to magnetic quantum numbers , and  at high field. These levels are split by the electron
Zeeman interaction. The transitions  and  are allowed electron spin transitions, whereas the
transition  is a forbidden double-quantum transition.

At zero magnetic field, the electron Zeeman interaction vanishes, yet the three triplet sublevels are not degenerate, they exhibit
zero-field splitting. This is because the unpaired electrons are also dipole-dipole coupled. Integration of Eq. (5.6) over the spatial
distribution of the two electron spins in their respective SOMOs provides a zero-field interaction tensor  that can be cast in a
form where it describes coupling of the group spin  with itself [Rie07]. At zero field, the triplet sublevels are not described
by the magnetic quantum number , which is a good quantum number only if the electron Zeeman interaction is much larger
than the zero-field interaction. Rather, the triplet sublevels at zero field are related to the principal axes directions of the zero-field
interaction tensor and are therefore labeled , and , whereas the sublevels in the high-field approximation are labeled 

, and .

This concept can be extended to an arbitrary number of strongly coupled electron spins. Cases with up to 5 strongly coupled
unpaired electrons occur for transition metal ions (d shell) and cases with up to 7 strongly coupled unpaired electrons occur for rare
earth ions (f shell). According to Hund’s rule, in the absence of a ligand field the state with largest group spin  is the ground state.
Kramers ions with an odd number of unpaired electrons have a half-integer group spin . They behave differently from non-
Kramers ions with an even number of electrons and integer group spin . This classification relates to Kramers’ theorem, which
states that for a time-reversal symmetric system with half-integer total spin, all eigenstates occur as pairs (Kramers pairs) that are
degenerate at zero magnetic field. As a consequence, for Kramers ions the ground state at zero field will split when a magnetic field
is applied. For any microwave frequency there exists a magnetic field where the transition within the ground Kramers doublet is
observable in an EPR spectrum. The same does not apply for integer group spin, where the ground state may not be degenerate at
zero field. If the zero-field interaction is larger than the maximum available microwave frequency, non-Kramers ions may be
unobservable by EPR spectroscopy although they exist in a paramagnetic high-spin state. Typical examples of such EPR silent non-
Kramers ions are high-spin  and high-spin . In rare cases, non-Kramers ions are EPR
observable, since the ground state can be degenerate at zero magnetic field if the ligand field features axial symmetry. Note also
that "EPR silent" non-Kramers ions can become observable at sufficiently high microwave frequency and magnetic field.

For transition metal and rare earth ions, zero-field interaction is not solely due to the dipole-dipole interaction between the electron
spins. Spin-orbit coupling also contributes, in many cases even stronger than the dipole-dipole interaction. Quantum-chemical
prediction of the zero-field interaction is an active field of research. Quite reasonable predictions can be obtained for transition
metal ions, whereas only order-of-magnitude estimates are usually possible for rare earth ions.

Zero-field interaction Hamiltonian 

The zero-field interaction Hamiltonian is often given as

where  denotes the transpose of the spin vector operator. In the principal axes system of the zero-field splitting (ZFS) tensor, the
Hamiltonian simplifies to

where  and . The reduction to two parameters is possible, since  is a traceless tensor. In other
words, the zero-field interaction is purely anisotropic. The  notation presumes that  is the principal value with the largest
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2

y DzŜ
2

z

= D[ − S(S +1)]+E ( − )S2
z

1

3
S2

x S2
y

D = 3 /2Dz E = ( − ) /2Dx Dy D

D, E Dz

https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://chem.libretexts.org/@go/page/371078?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Electron_Paramagnetic_Resonance_(Jenschke)/05%3A_Electron-Electron_Interactions/5.03%3A_Zero-field_interaction


5.3.2 https://chem.libretexts.org/@go/page/371078

absolute value  can be negative). Together with the absence of an isotropic component, this means that , which is always the
intermediate value, is either closer to  than to  or exactly in the middle between these two values. Accordingly, .
At axial symmetry . Axial symmetry applies if the system has a  symmetry axis with . At cubic symmetry, both 
and  are zero. For group spin , the leading term of the  is then a hexadecapolar contribution that scales with the fourth

power of the spin operators .

In the high-field approximation the ZFS contribution to the Hamiltonian is a  term. In other words, to first order in
perturbation theory the contribution of the ZFS to the energy of a spin level with magnetic quantum number  scales with .
For an allowed transition , this contribution is . This contribution vanishes for the central transition 

 of Kramers ions. More generally, because of the scaling of the level energies with  to first-order, the
contribution of ZFS to transition frequencies vanishes for all  transitions.

Figure 5.6: Schematic CW EPR spectra for triplet states  at high field. Simulations were performed at an X-band frequency
of . (a) Axial symmetry . The spectrum is the derivative of a Pake pattern. (b) Orthorhombic
symmetry .

Spectral manifestation of zero-field splitting 

Spectra are most easily understood in the high-field approximation. Quite often, deviations from this approximation are significant
for the ZFS (see Fig. 2.2), and such deviations are discussed later. The other limiting case, where the ZFS is much larger than the
electron Zeeman interaction (Fe(III) and most rare earth ions), is discussed in Section 5.3.4.

For triplet states  with axial symmetry of the ZFS tensor, the absorption spectrum is a Pake pattern (see Section 5.2.3).
With continuous-wave EPR, the derivative of the absorption spectrum is detected, which has the appearance shown in Fig. 5.6(a).
A deviation from axial symmetry leads to a splitting of the "horns" of the Pake pattern by , whereas the "shoulders" of the
pattern are not affected (Fig. 5.6(b)). Triplet states of organic molecules are often observed after optical excitation of a singlet state
and intersystem crossing. Such intersystem crossing generally leads to different population of the zero-field triplet sublevels 

, and . In this situation the spin system is not at thermal equilibrium, but spin polarized. Such spin polarization affects
relative intensity of the lineshape singularities in the spectra and even the sign of the signal may change. However, the singularities
are still observed at the same resonance fields, i.e., the parameters  and  can still be read off the spectra as indicated in Fig. .

Even if the populations of the triple sublevels have relaxed to thermal equilibrium, the spectrum may still differ from the high-field
approximation spectrum, as is illustrated in Fig.  for the excited naphtalene triplet (simulation performed with an example script
of the software package EasySpin http://www.easyspin.org/). For  at a field of about  (electron Zeeman
frequency of about  ) the high-field approximation is violated and  is no longer a good quantum number. Hence, the
formally forbidden double-quantum transition  becomes partially allowed. To first order in perturbation theory,
this transition is not broadened by the ZFS. Therefore it is very narrow compared to the allowed transitions and appears with higher
amplitude.
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Figure 5.7: CW EPR spectrum of the excited naphtalene triplet at thermal equilibrium (simulation at an

-band frequency of

). The red arrow marks the half-field signal, which corresponds to the formally forbidden double-quantum transition

.

For Kramers ions, the spectra are usually dominated by the central  transition, which is not ZFS-broadened to
first order. To second order in perturbation theory, the ZFS-broadening of this line scales inversely with magnetic field. Hence,
whereas systems with  anisotropy exhibit broadening proportional to the magnetic field , central transitions of Kramers ions
exhibit narrowing with . The latter systems can be detected with exceedingly high sensitivity at high fields if they do not
feature significant  anisotropy. This applies to systems with half-filled shells (e.g.  ). In the case of
Mn(II) (Figure 5.8) the narrow central transition is split into six lines by hyperfine coupling to the nuclear spin of  (nuclear
spin  natural abundance). Because of the  scaling of anisotropic ZFS broadening of 
transitions, satellite transitions become the broader the larger  is for the involved levels. In the high-temperature
approximation, the integral intensity in the absorption spectrum is the same for all transitions. Hence, broader transitions make a
smaller contribution to the amplitude in the absorption spectrum and in its first derivative that is acquired by CW EPR.

Figure 5.8: CW EPR spectrum of a Mn(II) complex (simulation at a W-band frequency of  ). 
. The six intense narrow lines are the hyperfine multiplet of the central

transition .

The situation can be further complicated by  and  strain, which is a distribution of the  and  parameters due to a distribution
in the ligand field. Such a case is demonstrated in Fig.  for Gd(III) at a microwave frequency of  where second-order
broadening of the central transition is still rather strong. In such a case, lineshape singularities are washed out and ZFS parameters
cannot be directly read off the spectra. In CW EPR, the satellite transitions may remain unobserved as the derivative of the
absorption lineshape is very small except for the central transition.

Effective spin  in Kramers doublets 

For some systems, such as Fe(III), ZFS is much larger than the electron Zeeman interaction at any experimentally attainable
magnetic field. In this case, the zero-field interaction determines the quantization direction and the electron Zeeman interaction can
be treated as a perturbation [Cas+60]. The treatment is simplest for axial symmetry , where the quantization axis is the 
axis of the ZFS tensor. The energies in the absence of the magnetic field are

which for high-spin Fe(III) with  gives three degenerate Kramers doublets corresponding to , and 
. If the magnetic field is applied along the  axis of the ZFS tensor,  is a good quantum number and there is simply an

additional energy term  with  being the  value for the half-filled shell, which can be approximated as .
Furthermore, in this situation only the  transition is allowed. The Zeeman term leads to a splitting of the 

 Kramers doublet that is proportional to  and
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Figure 5.9: Echo-detected EPR spectrum (absorption spectrum) of a Gd(III) complex with

GHz, a Gaussian distribution of

with standard deviation of

and a correlated distribution of

(simulation at a Q-band frequency of

courtesy of Dr. Maxim Yulikov). (a) Total spectrum (black) and contributions of the individual transitions (see legend). The signal
from the central transition (blue) dominates. (b) Contributions of the satellite transitions scaled vertically for clarity.

corresponds to . This Kramers doublet can thus be described as an effective spin  with .

If the magnetic field is perpendicular to the  tensor  axis, the  and  Kramers doublets are not split, since the
 and  operator does not connect these levels. The  operator has an off-diagonal element connecting the  levels

that is . Since the levels are degenerate in the absence of the electron Zeeman interaction, they
become quantized along the magnetic field and  is again a good quantum number of this Kramers doublet. The energies are 

, so that the transition frequency is again proportional to , but now with an effective  value .
Intermediate orientations can be described by assuming an effective  tensor with axial symmetry and . This
situation is encountered to a good approximation for high-spin Fe(III) in hemoglobins .

For the non-axial case , the magnetic field  will split all three Kramers doublets. To first order in perturbation theory the
splitting is proportional to , meaning that each Kramers doublet can be described by an effective spin  with an
effective  tensor. Another simple case is encountered for extreme rhombicity, . By reordering principal axes
(exchanging  with either  or  ) one can the get rid of the  term in Eq. (5.18), so that the ZFS Hamiltonian reduces to 

 with . The level pair corresponding to the new  direction of the  tensor has zero energy at zero
magnetic field and it can be shown that it has an isotropic effective  value . Indeed, signals near  are
very often observed for high-spin Fe(III).
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