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8.2: ESEEM and HYSCORE

ENDOR or ESEEM? 

In ESEEM experiments, polarization transfer from electron spins to nuclear spins and detection of nuclear frequencies on electron
spin transitions are based on the forbidden electron-nuclear transitions discussed in Chapter 6. Much of the higher polarization of
the electron spin transitions is lost in such experiments, since the angle  between the quantization axes of
the nuclear spin in the two electron spin states is usually small and the depth of nuclear echo modulations is sin 

. Furthermore, modulations vanish along the principal axes of the hyperfine tensor, where  and thus
. Therefore, lineshape singularities are missing in one-dimensional ESEEM spectra, which significantly

complicates lineshape analysis. For this reason, one-dimensional ESEEM experiments are not usually competitive with ENDOR
experiments, at least if the ENDOR experiments can be performed at -band frequencies 

 or even higher frequencies. An exception arises for weakly coupled "remote"  nuclei in transition
metal complexes where exact cancellation between the nuclear Zeeman and the hyperfine interactions can be achieved for one of
the electron spin states at X-band frequencies or slightly below. In this situation, pure nuclear quadrupole frequencies are observed,
which leads to narrow lines and easily interpretable spectra. One-dimensional ESEEM data are also useful for determining local
proton or deuterium concentrations around a spin label, which can be used as a proxy for water accessibility (Section 10.1.6).

The main advantage of ESEEM compared to ENDOR spectroscopy is the easier extension of ESEEM to a two-dimensional
correlation experiment. Hyperfine sublevel correlation (HYSCORE) spectroscopy 8.2.3 resolves overlapping signal from different
elements, simplifies peak assignment, and allows for direct determination of hyperfine tensor anisotropy even if the lineshape
singularities are not observed.

Three-pulse ESEEM 

The HYSCORE experiment is a two-dimensional extension of the three-pulse ESEEM experiment that we will treat first. In this
experiment, the amplitude of a stimulated echo after is observed with the pulse sequence  as a function of
the variable interpulse delay  at fixed interpulse delay  (Fig. 8.4). The block

 serves as a nuclear coherence generator, as discussed in Section 6.3.1 and, simultaneously, creates the
polarization grating discussed in the context of the Mims ENDOR experiment (Section 8.1.2). In fact, most of the thermal
equilibrium magnetization is converted to the polarization grating whose FID after the final  pulse is the
stimulated echo, while only a small fraction is transferred to nuclear coherence. The phase of the nuclear coherence determines
how much of it contributes to the stimulated echo after back transfer to electron spin coherence by the last 
pulse. For an electron-nuclear spin system  this phase evolves with frequencies 
or  if during interpulse delay  the electron spin is in its 
or  state, respectively. Hence, the part of the stimulated echo that arises from back transferred nuclear
coherence is modulated as a function of  with frequencies  and 

.

An expression for the echo envelope modulation can be derived by product operator formalism using the concepts explained in
Section 6.2. Disregarding relaxation, the somewhat lengthy derivation provides

where the terms  and  correspond to contributions with the electron spin in its
 or  state, respectively, during interpulse delay . These

terms are given by

The factors  for the  term and  for the 
 term describe the blind spot behavior of three-pulse ESEEM. The modulation depth  is given by

For small hyperfine couplings, , we have , so that Eq. (8.5) reduces to
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i.e., the modulation depth is inversely proportional to the square of the magnetic field. Using Eqs. (4.10) and (4.11) we find for
protons not too close to a well localized unpaired electron

where  is the angle between the electron-proton axis and the static magnetic field 
.

Because of the star topology of electron-nuclear spin systems (Fig. 4.4(a)), Eq. (8.3) can be easily extended by a product rule to
multiple nuclei with spins , where  is an index that runs over all nuclei. One finds

In the weak modulation limit, where all modulation depths  fulfill the condition ,
the ESEEM spectrum due to several coupled nuclei is the sum of the spectra of the individual nuclei.

Figure 8.4: Pulse sequences for three-pulse ESEEM (a) and HYSCORE (b). In three-pulse ESEEM, time 
is varied and time  is fixed. In HYSCORE, times  and 
are varied independently in order to obtain a two-dimensional data set.

HYSCORE 
The HYSCORE experiment is derived from the three-pulse ESEEM experiment by inserting a microwave 
pulse midway through the evolution of nuclear coherence. This splits the interpulse delay  into two
interpulse delays  and  (Fig. 8.4(b)), which are varied independently to provide a
two-dimensional data set  that depends parametrically on fixed interpulse delay .
The inserted  pulse inverts the electron spin state. Hence, coherence that has evolved with frequency

 during interpulse delay  evolves with frequency  during
interpulse delay  and vice versa. In the weak modulation limit, the HYSCORE experiment correlates only
frequencies  and  of the same nuclear spin. The full modulation expression for the
HYSCORE experiment contains a constant contribution and contributions that vary only with respect to either 

 or . These contributions can be removed by background correction with low-order polynomial
functions along both dimensions. The remaining modulation corresponds to only cross peaks and can be expressed as

with

In this representation with unsigned nuclear frequencies, one has  for the weak coupling case 
 and  for the strong coupling case , as can be inferred from Fig.

6.1. Hence,  in the weak coupling case and  in the strong coupling case. In the
weak coupling case, the cross peaks that correlate nuclear frequencies with the same sign (  terms) are
much stronger than those that correlate frequencies with opposite  terms) whereas it is the other way
around in the strong coupling case. Therefore, the two cases can be easily distinguished in HYSCORE spectra, since the cross
peaks appear in different quadrants (Fig. 8.5). Furthermore, disregarding a small shift that arises from the pseudo-secular part

 of the hyperfine coupling (see below), the cross peaks of a given isotope with spin 
 are situated on parallels to the anti-diagonal that corresponds to the nuclear Zeeman frequency .

This frequency in turn can be computed from the nuclear  value (or gyromagnetic ratio 
 ) and the static magnetic field . Peak assignment for  nuclei is thus

straightforward. For nuclei with  the peaks are further split by the nuclear quadrupole interaction. Unless
this splitting is much smaller than both the hyperfine interaction and the nuclear Zeeman interaction ,
numerical simulations are required to assign the peaks and extract the hyperfine and nuclear quadrupole coupling.
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Figure 8.5: Schematic HYSCORE spectrum for the phenyl radical (compare Fig. 4.6). Note that hyperfine couplings are given here
in frequency units, not angular frequency units. Signals from weakly coupled nuclei appear in the right

quadrant. To first order, these peaks are situated on a line parallel to the anti-diagonal that intersects the

axis at

. The doublets are centered at

and split by the respective hyperfine couplings. Signals from strongly coupled nuclei appear in the (-,+) quadrant. To first order,
these peaks are situated on two lines parallel to the anti-diagonal that intersect the

axis at

and

. The doublets are centered at half the hyperfine coupling and split by

.

The small pseudo-secular shift of the correlation peaks with respect to the anti-diagonal contains information on the anisotropy
 of the hyperfine interaction (Fig. 8.5). In the solid state, the cross peaks from different orientations 

 form curved ridges. For a hyperfine tensor with axial symmetry, as it is encountered for protons not too close to
a well-localized unpaired electron, the maximum shift in the diagonal direction corresponds to  and is
given by . Since  is known, , and thus the electron-
proton distance  can be computed from this maximum shift. If , which is usually
the case, the orientation with maximum shift is at the same time the orientation with maximum modulation depth.

The curved ridges end at their intersection with the parallel to the anti-diagonal. These points correspond to the principal values of
the hyperfine tensor and modulation depth is zero at these points. However, it is usually possible to fit the theoretical ridge to the
experimentally observed ridge, as the curvature near  together with the position of the 

 point fully determines the problem.
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Figure 8.6: Schematic HYSCORE spectrum for a proton with an axial hyperfine tensor with anisotropy 
and isotropic component . The correlation peaks from different orientations form curved ridges (red).
Curvature is the stronger the larger the anisotropy is and the ratio of squared anisotropy to the nuclear Zeeman frequency
determines the maximum shift with respect to the  anti-diagonal.

Analysis of HYSCORE spectra requires some precaution due to the blind-spot behavior (factor  in Eq.
(8.9)) and due to orientation selection by the limited bandwidth of the microwave pulses that is much smaller than spectral width
for transition metal complexes. It is therefore prudent to measure HYSCORE spectra at several values of 
and at several observer positions within the EPR spectrum.

This page titled 8.2: ESEEM and HYSCORE is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Gunnar
Jeschke via source content that was edited to the style and standards of the LibreTexts platform.
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