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4.1: Physical origin of the hyperfine interaction
The magnetic moments of an electron and a nuclear spin couple by the magnetic dipole-dipole interaction; similar to the dipole-
dipole interaction between nuclear spins discussed in the NMR part of the lecture course. The main difference to the NMR case is
that, in many cases, a point-dipole description is not a good approximation for the electron spin, as the electron is distributed over
the SOMO. The nucleus under consideration can be considered as well localized in space. We now picture the SOMO as a linear
combination of atomic orbitals. Contributions from spin density in an atomic orbital of another nucleus (population of the unpaired
electron in such an atomic orbital) can be approximated by assuming that the unpaired electron is a point-dipole localized at this
other nucleus.

For spin density in atomic orbitals on the same nucleus, we have to distinguish between types of atomic orbitals. In  orbitals, the
unpaired electron has finite probability density for residing at the nucleus, at zero distance  to the nuclear spin. This leads to a
singularity of the dipole-dipole interaction, since this interaction scales with . The singularity has been treated by Fermi. The
contribution to the hyperfine coupling from spin density in  orbitals on the nucleus under consideration is therefor called Fermi
contact interaction. Because of the spherical symmetry of  orbitals, the Fermi contact interaction is purely isotropic.

For spin density in other orbitals (  orbitals) on the nucleus under consideration, the dipole-dipole interaction must be
averaged over the spatial distribution of the electron spin in these orbitals. This average has no isotropic contribution. Therefore,
spin density in  orbitals does not influence spectra of fast tumbling radicals or metal complexes in liquid solution and neither
does spin density in  orbitals of other nuclei. The isotropic couplings detected in solution result only from the Fermi contact
interaction.

Since the isotropic and purely anisotropic contributions to the hyperfine coupling have different physical origin, we separate these
contributions in the hyperfine tensor  that describes the interaction between electron spin  and nuclear spin  :

where  is the isotropic hyperfine coupling and  the purely anisotropic coupling. In the following, we drop the electron
and nuclear spin indices  and .

Dipole-dipole hyperfine interaction 
The anisotropic hyperfine coupling tensor  of a given nucleus can be computed from the ground state wavefunction  by
applying the correspondence principle to the classical interaction between two point dipoles

Such computations are implemented in quantum chemistry programs such as ORCA, ADF, or Gaussian. If the SOMO is considered
as a linear combination of atomic orbitals, the contributions from an individual orbital can be expressed as the product of spin
density in this orbital with a spatial factor that can be computed once for all. The spatial factors have been tabulated [KM85]. In
general, nuclei of elements with larger electronegativity have larger spatial factors. At the same spatial factor, such as for isotopes
of the same element, the hyperfine coupling is proportional to the nuclear  value  and thus proportional to the gyromagnetic
ratio of the nucleus. Hence, a deuterium coupling can be computed from a known proton coupling or vice versa.

A special situation applies to protons, alkali metals and earth alkaline metals, which have no significant spin densities in ,
or -orbitals. In this case, the anisotropic contribution can only arise from through-space dipole-dipole coupling to centers of spin
density at other nuclei. In a point-dipole approximation the hyperfine tensor is then given by

where the sum runs over all nuclei  with significant spin density  (summed over all orbitals at this nucleus) other than nucleus 
under consideration. The  are distances between the nucleus under consideration and the centers of spin density, and the  are
unit vectors along the direction from the considered nucleus to the center of spin density. For protons in transition metal complexes
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it is often a good approximation to consider spin density only at the central metal ion. The distance  from the proton to the central
ion can then be directly inferred from the anisotropic part of the hyperfine coupling.

Hyperfine tensor contributions  computed by any of these ways must be corrected for the influence of  if the  tensor is
strongly anisotropic. If the dominant contribution to  arises at a single nucleus, the hyperfine tensor at this nucleus  can be
corrected by

The product g  may have an isotropic part, although  is purely anisotropic. This isotropic pseudocontact contribution depends
on the relative orientation of the  tensor and the spin-only dipole-dipole hyperfine tensor . The correction is negligible for most
organic radicals, but not for paramagnetic metal ions. If contributions to  arise from several centers, the necessary correction
cannot be written as a function of the  tensor.

Fermi contact interaction 
The Fermi contact contribution takes the form

 Most literature holds that the correction should be done for all nuclei. As pointed out by Frank Neese, this is not true. An earlier
discussion of this point is found in [Lef67] where  is the spin density in the  orbital under consideration,  the nuclear  value
and  the nuclear magneton . The factor  denotes the probability
to find the electron at this nucleus in the ground state with wave function  and has been tabulated [KM85].

Figure 4.1: Transfer of spin density by the spin polarization mechanism. According to the Pauli principle, the two electrons in the
C-H bond orbital must have opposite spin state. If the unpaired electron resides in a  orbital on the  atom, for other electrons on
the same  atom the same spin state is slightly favored, as this minimizes electrostatic repulsion. Hence, for the electron at the 
atom, the opposite spin state (left panel) is slightly favored over the same spin state (right panel). Positive spin density in the 
orbital on the  atom induces some negative spin density in the  orbital on the  atom.

Spin polarization 
The contributions to the hyperfine coupling discussed up to this point can be understood and computed in a single-electron picture.
Further contributions arise from correlation of electrons in a molecule. Assume that the  orbital on a carbon atom contributes to
the SOMO, so that the  spin state of the electron is preferred in that orbital (Fig. 4.1). Electrons in other orbitals on the same atom
will then also have a slight preference for the  state (left panel), as electrons with the same spin tend to avoid each other and thus
have less electrostatic repulsion.  In particular, this means that the spin configuration in the left panel of Fig.  is slightly more
preferable than the one in the right panel. According to the Pauli principle, the two electrons that share the  bond orbital of the 

 bond must have antiparallel spin. Thus, the electron in the  orbital of the hydrogen atom that is bound to the spin-carrying
carbon atom has a slight preference for the  state. This corresponds to a negative isotropic hyperfine coupling of the directly
bound  proton, which is induced by the positive hyperfine coupling of the adjacent carbon atom. The effect is termed "spin
polarization", although it has no physical relation to the polarization of electron spin transitions in an external magnetic field.

Spin polarization is important, as it transfers spin density from  orbitals, where it is invisible in liquid solution and from carbon
atoms with low natural abundance of the magnetic isotope  to  orbitals on protons, where it can be easily observed in liquid
solution. This transfer occurs, both, in  radicals, where the unpaired electron is localized on a single atom, and in  radicals,
where it is distributed over the  system. The latter case is of larger interest, as the distribution of the  orbital over the nuclei can
be mapped by measuring and assigning the isotropic proton hyperfine couplings. This coupling can be predicted by the McConnell
equation
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where  is the spin density at the adjacent carbon atom and  is a parameter of the order of , which slightly depends on
structure of the  system.

 This preference for electrons on the same atom to have parallel spin is also the basis of Hund’s rule.

Figure 4.2: Mapping of the LUMO and HOMO of an aromatic molecule via measurements of hyperfine couplings after one-
electron reduction or oxidation. Reduction leads to an anion radical, whose SOMO is a good approximation to the lowest
unoccupied molecular orbital (LUMO) of the neutral parent molecule. Oxidation leads to an cation radical, whose SOMO is a good
approximation to the highest occupied molecular orbital (HOMO) of the neutral parent molecule.

The McConnell equation is mainly applied for mapping the LUMO and HOMO of aromatic molecules (Figure 4.2). An unpaired
electron can be put into these orbitals by one-electron reduction or oxidation, respectively, without perturbing the orbitals too
strongly. The isotropic hyperfine couplings of the hydrogen atom directly bound to a carbon atom report on the contribution of the 

 orbital of this carbon atom to the  orbital. The challenges in this mapping are twofold. First, it is hard to assign the observed
couplings to the hydrogen atoms unless a model for the distribution of the  orbital is already available. Second, the method is
blind to carbon atoms without a directly bonded hydrogen atom.
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