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1.1: General Remarks

1 - Introduction 

General Remarks 

Electron Paramagnetic Resonance (EPR) spectroscopy is less well known and less widely applied than NMR spectroscopy. The
reason is that EPR spectroscopy requires unpaired electrons and electron pairing is usually energetically favorable. Hence, only a
small fraction of pure substances exhibit EPR signals, whereas NMR spectroscopy is applicable to almost any compound one can
think of. On the other hand, as electron pairing underlies the chemical bond, unpaired electrons are associated with reactivity.
Accordingly, EPR spectroscopy is a very important technique for understanding radical reactions, electron transfer processes, and
transition metal catalysis, which are all related to the ’reactivity of the unpaired electron’. Some species with unpaired electrons are
chemically stable and can be used as spin probes to study systems where NMR spectroscopy runs into resolution limits or cannot
provide sufficient information for complete characterization of structure and dynamics. This lecture course introduces the basics for
applying EPR spectroscopy on reactive or catalytically active species as well as on spin probes.

Many concepts in EPR spectroscopy are related to similar concepts in NMR spectroscopy. Hence, the lectures on EPR
spectroscopy build on material that has been introduced before in the lectures on NMR spectroscopy. This material is briefly
repeated and enhanced in this script and similarities as well as differences are pointed out. Such a linked treatment of the two
techniques is not found in introductory textbooks. By emphasizing this link, the course emphasizes understanding of the physics
that underlies NMR and EPR spectroscopy instead of focusing on individual application fields. We aim for understanding of
spectra at a fundamental level and for understanding how parameters of the spin Hamiltonian can be measured with the best
possible sensitivity and resolution.

Chapter 2 of the script introduces electron spin, relates it to nuclear spin, and discusses, which interactions contribute to the spin
Hamiltonian of a paramagnetic system. Chapter 3 treats the electron Zeeman interaction, the deviation of the g value of a bound
electron from the g value of a free electron, and the manifestation of g anisotropy in solid-state EPR spectra. Chapter 4 introduces
the hyperfine interaction between electron and nuclear spins, which provides most information on electronic and spatial structure of
paramagnetic centers. Spectral manifestation in the liquid and solid state is considered for spectra of the electron spin and of the
nuclear spins. Chapter 5 discusses phenomena that occur when the hyperfine interaction is so large that the high-field
approximation is violated for the nuclear spin. In this situation, formally forbidden transitions become partially allowed and mixing
of energy levels leads to changes in resonance frequencies. Chapter 6 discusses how the coupling between electron spins is
described in the spin Hamiltonian, depending on its size. Throughout Chapters 3 − 6, the introduced interactions of the electron
spin are related to electronic and spatial structure.

Chapter 7-9 are devoted to experimental techniques. In Chapter 7 , continuous-wave (CW) EPR is introduced as the most versatile
and sensitive technique for measuring EPR spectra. The requirements for obtaining well resolved spectra with high signal-to-noise
ratio are derived from first physical principles. Chapter 8 discusses two techniques for measuring hyperfine couplings in nuclear
frequency spectra, where they are better resolved than in EPR spectra. Electron nuclear double resonance (ENDOR) experiments
use electron spin polarization and detection of electron spins in order to enhance sensitivity of such measurements, but still rely on
direct excitation of the nuclear spins. Electron spin echo envelope modulation (ESEEM) experiments rely on the forbidden
electron-nuclear spin transitions discussed in Chapter 5. Chapter 9 treats the measurement of distance distributions in the
nanometer range by separating the dipole-dipole coupling between electron spins from other interactions.

The final Chapter 10 introduces spin probing and spin trapping and, at the same time, demonstrates the application of concepts that
were introduced in earlier Chapters.

At some points (dipole-dipole coupling, explanation of CW EPR spectroscopy in terms of the Bloch equations) this lecture script
significantly overlaps with the NMR part of the lecture script. This is intended in order to make the EPR script reasonably self-
contained. Note also that this lecture script serves two purposes. First, it should serve as a help in studying the subject and
preparing for the examination. Second, it is reference material when you later encounter paramagnetic species in your own research
and need to obtain information on them by EPR spectroscopy.

Suggested Reading & Electronic Resources 

There is no textbook on EPR spectroscopy that treats all material of this course on a basic level. However, many of the concepts are
covered by a title from the Oxford Chemistry Primer series by Chechik, Carter, and Murphy [CCM16]. Physically minded students
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may also appreciate the older standard textbook by Weil, Bolton, and Wertz [WBW94].

For some of the simulated spectra and worked examples in these lecture notes, Matlab scripts or Mathematica notebooks are
provided on the lecture homepage. Part of the numerical simulations is based on EasySpin by Stefan Stoll (http://wWW.
easyspin.org/) and another part on SPIDYAN by Stephan Pribitzer (http://www. epr . ethz. ch/software. html). Computations with
product operator formalism require the Mathematica package SpinOp.m by Serge Boentges, which is available on the course
homepage. An alternative larger package for such analytical computations is SpinDynamica by Malcolm Levitt (http://Www.
spindynamica. soton. ac. uk/). Last, but not least the most extensive package for numerical simulations of magnetic resonance
experiments is SPINACH by Ilya Kuprov et al. (http://spindynamics. org/ Spinach.php). For quantum-chemical computations of
spin Hamiltonian parameters, the probably most versatile program is the freely available package ORCA (https://orcaforum .
cec.mpg.de/).

Magnetic resonance of the free electron 
The magnetic moment of the free electron Differences between EPR and NMR spectroscopy

Interactions in electron-nuclear spin systems General consideration on spin interactions The electron-nuclear spin Hamiltonian

2 - Electron spin 

2.1 Magnetic resonance of the free electron 

The magnetic moment of the free electron 

As an elementary particle, the electron has an intrinsic angular momentum called spin. The spin quantum number is S = 1/2, so
that in an external magnetic field along z, only two possible values can be observed for the z component of this angular momentum,
+ℏ /2, corresponding to magnetic quantum number mS = + 1/2(α state ) and −ℏ /2, corresponding to magnetic quantum number 
mS = − 1/2 ( β state ). The energy difference between the corresponding two states of the electron results from the magnetic
moment associated with spin. For a classical rotating particle with elementary charge e, angular momentum J = ℏS and mass me,
this magnetic moment computes to

→
μ classical =

e
2me

→
J

The charge-to-mass ratio e /me is much larger for the electron than the corresponding ratio for a nucleus, where it is of the order of 

−e /mp, where mp is the proton mass. By introducing the Bohr magneton μB = ℏe / 2me = 9.27400915(23) × 10 − 24 J T − 1 and

the quantum-mechanical correction factor g, we can rewrite Eq. (2.1) as

→
μ e = gμB

→
S

Dirac-relativistic quantum mechanics provides g = 2, a correction that can also be found in a non-relativistic derivation. Exact
measurements have shown that the g value of a free electron deviates slightly from g = 2. The necessary correction can be derived
by quantum electrodynamics, leading to ge = 2.00231930437378(2). The energy difference between the two spin states of a free
electron in an external magnetic field B0 is given by

ℏωS = geμBB0

so that the gyromagnetic ratio of the free electron is γe = − geμB /ℏ. This gyromagnetic ratio corresponds to a resonance frequency
of 28.025GHz at a field of 1 T, which is by a factor of about 658 larger than the nuclear Zeeman frequency of a proton.

Differences between EPR and NMR spectroscopy 

Most of the differences between NMR and EPR spectroscopy result from this much larger magnetic moment of the electron.
Boltzmann polarization is larger by this factor and at the same magnetic field the detected photons have an energy larger by this
factor. Relaxation times are roughly by a factor 6582 shorter, allowing for much faster repetition of EPR experiments compared to
NMR experiments. As a result, EPR spectroscopy is much more sensitive. Standard instrumentation with an electromagnet working
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at a field of about 0.35 T and at microwave frequencies of about 9.5GHz (X band) can detect about 1010 spins, if the sample has
negligible dielectric microwave losses. In aqueous solution, organic radicals can be detected at concentrations down to 10nM in a
measurement time of a few minutes.

Due to the large magnetic moment of the electron spin the high-temperature approximation may be violated without using exotic
equipment. The spin transition energy of a free electron matches thermal energy kBT at a temperature of 4.5 K and a field of about 
3.35 T corresponding to a frequency of about 94GHz (W band). Likewise, the high-field approximation may break down. The
dipole-dipole interaction between two electron spins is by a factor of 6582 larger than between two protons and two unpaired
electrons can come closer to each other than two protons. The zero-field splitting that results from such coupling can amount to a
significant fraction of the electron Zeeman interaction or can even exceed it at the magnetic fields, where EPR experiments are
usually performed (0.1 − 10 T). The hyperfine coupling between an electron and a nucleus can easily exceed the nuclear Zeeman
frequency, which leads to breakdown of the high-field approximation for the nuclear spin.

2.2 Interactions in electron-nuclear spin systems 

General consideration on spin interactions 

Spins interact with magnetic fields. The interaction with a static external magnetic field B0 is the Zeeman interaction, which is
usually the largest spin interaction. At sufficiently large fields, where the high-field approximation holds, the Zeeman interaction
determines the quantization direction of the spin. In this situation, mS is a good quantum number and, if the high-field
approximation also holds for a nuclear spin Ii, the magnetic quantum number mI , i is also a good quantum number. The energies of
all spin levels can then be expressed by parameters that quantify spin interactions and by the magnetic quantum numbers. The
vector of all magnetic quantum numbers defines the state of the spin system.

Spins also interact with the local magnetic fields induced by other spins. Usually, unpaired electrons are rare, so that each electron
spin interacts with several nuclear spins in its vicinity, whereas each nuclear spin interacts with only one electron spin (Fig. 2.1).
The hyperfine interaction between the electron and nuclear spin is usually much smaller than the electron Zeeman interaction, with
exceptions for transition metal ions. In contrast, for nuclei in the close vicinity of the electron spin, the hyperfine interaction may be
larger than the nuclear Zeeman interaction at the fields where EPR spectra are usually measured. In this case, which is discussed in
Chapter 6, the high-field approximation breaks down and mI , i is not a good quantum number. Hyperfine couplings to nuclei are
relevant as long as they are at least as large as the transverse relaxation rate 1 /T2n of the coupled nuclear spin. Smaller couplings
are unresolved.

In some systems, two or more unpaired electrons are so close to each other that their coupling exceeds their transverse relaxation
rates 1 /T2e. In fact, the isotropic part of this coupling can by far exceed the electron Zeeman interaction and often even thermal
energy kBT if two unpaired electrons reside in different molecular orbitals of the same organic molecule (triplet state molecule) or
if several unpaired electrons belong to a high-spin state of a transition metal or rare earth metal ion. In this situation, the system is
best described in a coupled representation with an

Figure 2.1: Scheme of interactions in electron-nuclear spin systems. All spins have a Zeeman interaction with the external magnetic
field B0. Electron spins (red) interact with each other by the dipole-dipole interaction through space and by exchange due to
overlap of the singly occupied molecular orbitals (green). Each electron spin interacts with nuclear spins (blue) in its vicinity by
hyperfine couplings (purple). Couplings between nuclear spins are usually negligible in paramagnetic systems, as are chemical
shifts. These two interactions are too small compared to the relaxation rate in the vicinity of an electron spin.

electron group spin S > 1/2. The isotropic coupling between the individual electron spins does not influence the sublevel splitting
for a given group spin quantum number S. The anisotropic coupling, which does lead to sublevel splitting, is called the zero-field or
fine interaction. If the electron Zeeman interaction by far exceeds the spin-spin coupling, it is more convenient to describe the
system in terms of the individual electron spins Si = 1/2. The isotropic exchange coupling J, which stems from overlap of two
singly occupied molecular orbitals (SOMOs), then does contribute to level splitting. In addition, the dipole-dipole coupling through
space between two electron spins also contributes.

Concept 2.2.1 - Singly occupied molecular orbital (SOMO). Each molecular orbital can be occupied by two electrons with opposite
magnetic spin quantum number mS. If a molecular orbital is singly occupied, the electron is unpaired and its magnetic spin
quantum number can be changed by absorption or emission of photons. The orbital occupied by the unpaired electron is called a
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singly occupied molecular orbital (SOMO). Several unpaired electrons can exist in the same molecule or metal complex, i.e., there
may be several SOMOs.

Nuclear spins in the vicinity of an electron spin relax much faster than nuclear spins in diamagnetic substances. 1 Their transverse
relaxation rates 1 /T2n , i thus exceed couplings between nuclear spins and chemical shifts. These interactions, which are very
important in NMR spectroscopy, are negligible in EPR spectroscopy. For nuclear spins 1 /2 no information on the chemical identity
of a nucleus can be obtained, unless its hyperfine coupling is understood. The element can be identified via the nuclear Zeeman
interaction. For nuclear spins Ii > 1/2, information on the chemical identity is encoded in the nuclear quadrupole interaction,
whose magnitude usually exceeds 1 /T2n , i.

An overview of all interactions and their typical magnitude in frequency units is given in Figure 2.2. This Figure also illustrates
another difference between EPR and NMR spectroscopy. Several interactions, such as the zero-field interaction, the hyperfine
interaction, larger dipole-dipole and exchange couplings between electron spins and also the anisotropy of the electron Zeeman
interaction usually exceed the excitation bandwidth of the strongest and shortest microwave pulses

1 There is an exception. If the electron spin longitudinal relaxation rate exceeds the nuclear Zeeman interaction by far, nuclear spin
relaxation is hardly affected by the presence of the electron spin. In this situation, EPR spectroscopy is impossible, however. that
are available. NMR pulses sequences that rely on the ability to excite the full spectrum of a certain type of spins thus cannot easily
be adapted to EPR spectroscopy.

The electron-nuclear spin Hamiltonian 

Considering all interactions discussed in Section 2.2.1, the static spin Hamiltonian of an electron-nuclear spin system in angular
frequency units can be written as

where index i runs over all nuclear spins, indices k and l run over electron spins and the symbol T denotes the transpose of a vector
or vector operator. Often, only one electron spin and one nuclear spin have to be considered at once, so that the spin Hamiltonian
simplifies drastically. For electron group spins S > 1, terms with higher powers of spin operators can be significant. We do not
consider this complication here.

The electron Zeeman interaction ĤEZ is, in general, anisotropic and therefore parametrized by g tensors gk. It is discussed in detail

in Chapter 3 . In the nuclear Zeeman interaction ĤNZ, the nuclear Zeeman frequencies ωI , i depend only on the element and isotope
and thus can be specified without knowing electronic and spatial structure of the molecule. The hyperfine interaction is again
anisotropic and thus characterized by tensors Aki. It is discussed in detail in Chapter 4. All electron-electron interactions are

explained in Chapter 5 . The zero-field interaction ĤZFI is purely anisotropic and thus characterized by traceless tensors Dk. The

exchange interaction is often purely isotropic ĤEX and any anisotropic contribution cannot be experimentally distinguished from

the purely anisotropic dipole-dipole interaction ĤDD. Hence, the former interaction is characterized by scalars Jkl and the latter

interaction by tensors Dkl. Finally, the nuclear quadrupole interaction ĤNQI is characterized by traceless tensors Pi.

Ĥ0 = ĤEZ + ĤNZ + ĤHFI + ĤZFI + ĤEX + ĤDD + ĤNQI

=
μB

ℏ
∑
k

→
B

T
0gk→̂S k + ∑

i
ωI , iÎ z , i + ∑

k
∑
i

→̂ST
kAki→̂I i + ∑

Sk> 1 / 2
→̂ST
kDk→̂S k

+ ∑
k

∑
l≠ k

JklŜ z , kŜ z , l + ∑
k

∑
l≠ k

→̂ST
kDkl→̂S l + ∑

Ii> 1 / 2
→̂I T
i Pi→̂I i

Electron Zeeman interaction

Zero field interaction

Dipole-dipole interaction

between weakly coupled electron spins

Homogeneous EPR linewidths

Figure 2.2: Relative magnitude of interactions that contribute to the Hamiltonian of electron-nuclear spin systems.
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Physical origin of the g shift Electron Zeeman Hamiltonian Spectral manifestation of the electron Zeeman interaction

Liquid solution Solid state

3 - Electron Zeeman Interaction 

3.1 Physical origin of the g shift 
Bound electrons are found to have g values that differ from the value ge for the free electron. They depend on the orientation of the

paramagnetic center with respect to the magnetic field vector 
→
B0. The main reason for this g value shift is coupling of spin to

orbital angular momentum of the electron. Spin-orbit coupling (SOC) is a purely relativistic effect and is thus larger if orbitals of
heavy atoms contribute to the SOMO. In most molecules, orbital angular momentum is quenched in the ground state. For this
reason, SOC leads only to small or moderate g shifts and can be treated as a perturbation. Such a perturbation treatment is not valid
if the ground state is degenerate or near degenerate.

The perturbation treatment considers excited states where the unpaired electron is not in the SOMO of the ground state. Such
excited states are slightly admixed to the ground state and the mixing arises from the orbital angular momentum operator. For
simplicity, we consider a case where the main contribution to the g shift arises from orbitals localized at a single, dominating atom
and by single-electron SOC. To second order in perturbation theory, the matrix elements of the g tensor can then be expressed as

gij = geδij + 2λΛij

where δij is a Kronecker delta, the factor λ in the shift term is the spin-orbit coupling constant for the dominating atom, and the
matrix elements Λij are computed as

Λij = ∑
n≠ 0

0 l̂ i n n l̂ j 0

ϵ0 − ϵn

where indices i and j run over the Cartesian directions x, y, and z. The operators l̂ x, l̂ y, and l̂ z are Cartesian components of the
angular momentum operator, | n⟩ designates the orbital where the unpaired electron resides in an excited-state electron
configuration, counted from n = 0 for the SOMO of the ground state configuration. The energy of that orbital is ϵn.

Since the product of the overlap integrals in the numerator on the right-hand side of Eq. (3.2) is usually positive, the sign of the g
shift is determined by the denominator. The denominator is positive if a paired electron from a fully occupied orbital is promoted to
the ground-state SOMO and negative if the unpaired electron is promoted to a previously unoccupied orbital (Figure Ground state

Excitation of a paired electron

ε2 =

ε1 =

ε − 1 ∣

ε − 2
 ε0 − εn > 0

ε0 − εn < 0

Figure 3.1: Admixture of excited states by orbital angular momentum operators leads to a g shift by spin-orbit coupling. The energy
difference in the perturbation expression is positive for excitation of a paired electron to the ground-state SOMO and negative for
excitation of the paired electron to a higher energy orbital.

3.1). Because the energy gap between the SOMO and the lowest unoccupied orbital (LUMO) is usually larger than the one between
occupied orbitals, terms with positive numerator dominate in the sum on the right-hand side of Eq. (3.2). Therefore, positive g
shifts are more frequently encountered than negative ones.

The relevant spin-orbit coupling constant λ depends on the element and type of orbital. It scales roughly with Z4, where Z is the
nuclear charge. Unless there is a very low lying excited state (near degeneracy of the ground state), contributions from heavy nuclei

⟨ | | ⟩⟨ | | ⟩
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dominate. If their are none, as in organic radicals consisting of only hydrogen and second-row elements, g shifts of only Δg < 10 − 2

are observed, typical shifts are 1…3 × 10 − 3. Note that this still exceeds typical chemical shifts in NMR by one to two orders
magnitude. For first-row transition metals, g shifts are of the order of 10 − 1.

For rare-earth ions, the perturbation treatment breaks down. The Landé factor gJ can then be computed from the term symbol for a
doublet of levels

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)

where J is the quantum number for total angular momentum and L the quantum number for orbital angular momentum. The
principal values of the g tensor are ϵxgJ, ϵygJ, and ϵzgJ, where the ϵi with i = x, y, z are differences between the eigenvalues of L̂ i
for the two levels.

If the structure of a paramagnetic center is known, the g tensor can be computed by quantum chemistry. This works quite well for
organic radicals and reasonably well for most first-row transition metal ions. Details are explained in [KBE04].

The g tensor is a global property of the SOMO and is easily interpretable only if it is dominated by the contribution at a single
atom, which is often, but not always, the case for transition metal and rare earth ion complexes. If the paramagnetic center has a Cn
symmetry axis with n ≥ 3, the g tensor has axial symmetry with principal values gx = gy = g

⊥
, gz = g

‖
. For cubic or tetrahedral

symmetry the g value is isotropic, but not necessarily equal to ge. Isotropic g values are also encountered to a very good

approximation for transition metal and rare earth metal ions with half-filled shells, such as in Mn(II) complexes ( 3d5 electron

configuration) and Gd(III) complexes 4f7 .

3.2 Electron Zeeman Hamiltonian 

We consider a single electron spin S and thus drop the sum and index k in ĤEZ in Eq. (2.4). In the principal axes system (PAS) of
the g tensor, we can then express the electron Zeeman Hamiltonian as

ĤEZ =
μB

ℏ
B0(cosϕsinθ sinϕsinθ cosθ)

gx 0 0

0 gy 0

0 0 gz

Ŝx

Ŝy

Ŝz

=
μB

ℏ
B0 gxcosϕsinθŜx + gysinϕsinθŜy + gzcosθŜ z

where B0 is the magnetic field, gx, gy, and gz are the principal values of the g tensor and the polar angles ϕ and θ determine the
orientation of the magnetic field in the PAS.

This Hamiltonian is diagonalized by the Bleaney transformation, providing

Ĥ
BT
EZ =

μB

ℏ
geffB0Ŝz

with the effective g value at orientation (ϕ, θ)

geff(ϕ, θ) = g2
xsin2θcos2

ϕ + g2
ysin2θsin2

ϕ + g2
z cos2θ

If anisotropy of the g tensor is significant, the z axis in Eq. (3.5) is tilted from the direction of the magnetic field. This effect is
negligible for most organic radicals, but not for transition metal ions or rare earth ions. Eq. (3.6) for the effective g values describes
an ellipsoid (Figure 3.2 ).

( )

( )( )
( )
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Figure 3.2: Ellipsoid describing the orientation dependence of the effective g value in the PAS of the g tensor. At a given direction

of the magnetic field vector 
→
B0 (red), geff  corresponds to distance between the origin and the point where 

→
B0 intersects the ellipsoid

surface.

Concept 3.2.1 - Energy levels in the high-field approximation. In the high-field approximation the energy contribution of a
Hamiltonian term to the level with magnetic quantum numbers mS , k and mI , i can be computed by replacing the Ĵz , j operators 
(J = S, I, j = k, i) by the corresponding magnetic quantum numbers. This is because the magnetic quantum numbers are the
eigenvalues of the Ĵz , j operators, all Ĵz , j operators commute with each other, and contributions with all other Cartesian spin
operators are negligible in this approximation. For the electron Zeeman energy contribution is mSgeffμBB0 /ℏ. If the high-field
approximation is slightly violated, this expression corresponds to a first-order perturbation treatment. The selection rule for

transitions in EPR spectroscopy is ΔmS = 1, ΔmI = 0 and it applies strictly as long as the high-field approximation applies

strictly to all spins. This selection rule results from conservation of angular momentum on absorption of a microwave photon and
from the fact that the microwave photon interacts with electron spin transitions. It follows that the first-order contribution of the
electron Zeeman interaction to the frequencies of all electron spin transitions is the same, namely geffμBB0 /ℏ. As we shall see in
Chapter 7 , EPR spectra are usually measured at constant microwave frequency νmw by sweeping the magnetic field B0. The
resonance field is then given by

B0 , res =
hνmw

geffμB

For nuclear spin transitions, ΔmS = 0, ΔmI = 1, the electron Zeeman interaction does not contribute to the transition frequency.

Spectral manifestation of the electron Zeeman interaction 

Liquid solution 

In liquid solution, molecules tumble due to Brownian rotational diffusion. The time scale of this motion can be characterized by a
rotational correlation time τrot  that in non-viscous solvents is of the order of 10ps for small molecules, and of the order of 1 ns to
100 ns for proteins and other macromolecules. For a globular molecule with radius r in a solvent with viscosity η, the rotational
correlation time can be roughly estimated by the Stokes-Einstein law

τr =
4πηr3

3kBT

If this correlation time and the maximum difference Δω between the transition frequencies of any two orientations of the molecule
in the magnetic field fulfill the relation τrΔω ≪ 1, anisotropy is fully averaged and only the isotropic average of the transition
frequencies is observed. For somewhat slower rotation, modulation of the transition frequency by molecular tumbling leads to line
broadening as it shortens the transverse relaxation time T2. In the slow-tumbling regime, where τrΔω ≈ 1, anisotropy is
incompletely averaged and line width attains a maximum. For τrΔω ≫ 1, the solid-state spectrum is observed. The phenomena can
be described as a multi-site exchange between the various orientations of the molecule (see Section 10.1.4), which is analogous to
the chemical exchange discussed in the NMR part of the lecture course.

For the electron Zeeman interaction, fast tumbling leads to an average resonance field

B0 , res =
hνmw

gisoμB

with the isotropic g value giso = gx + gy + gz /3. For small organic radicals in non-viscous solvents at X-band frequencies

around 9.5GHz, line broadening from g anisotropy is negligible. At W-band frequencies of 94GHz for organic radicals and already
at X-band frequencies for small transition metal complexes, such broadening can be substantial. For large macromolecules or in
viscous solvents, solid-state like EPR spectra can be observed in liquid solution.

| | | |

| | | |
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Solid state 

For a single-crystal sample, the resonance field at any given orientation can be computed by Eq. (3.7). Often, only microcrystalline
powders are available or the sample is measured in glassy frozen solution. Under such conditions, all orientations contribute
equally. With respect to the

Figure 3.3: Powder line shape for a g tensor with axial symmetry. (a) The probability density to find an orientation with polar angle
θ is proportional to the circumference of a circle a angle θ on a unit sphere. (b) Probability density P(θ). The effective g value at

angle θ is g2
⊥

+ g2
‖

+ cos(2θ) g2
‖

− g2
⊥

/2. (c) Schematic powder line shape. The pattern corresponds to g
⊥

> g
‖

for a field

sweep and to g
⊥

< g
‖

for a frequency sweep. Because of the frame tilting, the isotropic value giso = 2g
⊥

+ g
‖

/3 is not

encountered at the magic angle, although the shift is small if Δg = 2 g
‖

− g
⊥

/3 ≪ giso .

polar angles, this implies that ϕ is uniformly distributed, whereas the probability to encounter a certain angle θ is proportional to 
sinθ (Figure 3.3). The line shape of the absorption spectrum is most easily understood for axial symmetry of the g tensor.
Transitions are observed only in the range between the limiting resonance fields at g

‖
and g

⊥
. The spectrum has a global

maximum at g
⊥

 and a minimum at g
‖

.

In CW EPR spectroscopy we do not observe the absorption line shape, but rather its first derivative (see Chapter 7). This derivative
line shape has sharp features at the line shape singularities of the absorption spectrum and very weak amplitude in between (Figure 
3.4 ).

Concept 3.3.1 - Orientation selection. The spread of the spectrum of a powder sample or glassy frozen solution allows for selecting
molecules with a certain orientation with respect to the magnetic field. For an axial g tensor only orientations near the z axis of the 
g tensor PAS are selected when observing near the resonance field of g

‖
. In contrast, when observing near the resonance field for 

g
⊥

, orientations withing the whole xy plane of the PAS contribute. For the case of orthorhombic symmetry with three distinct
principal values gx, gy, and gz, narrow sets of orientations can be observed at the resonance fields corresponding to the extreme g
values gx and gz (see right top panel in Figure 3.4). At the intermediate principal value gy a broad range of orientations contributes,

because the same resonance field can be realized by orientations other than ϕ = 90 ∘  and θ = 90 ∘ . Such orientation selection can
enhance the resolution of ENDOR and ESEEM spectra (Chapter 8) and simplify their interpretation. axial symmetry

orthorhombic

Figure 3.4: Simulated X-band EPR spectra for systems with only g anisotropy. The upper panels show absorption spectra as they
can be measured by echo-detected field-swept EPR spectroscopy. The lower panels show the first derivative of the absorption
spectra as they are detected by continuous-wave EPR. The unit-sphere pictures in the right upper panel visualize the orientations
that are selected at the resonance fields corresponding to the principal values of the g tensor.

Physical origin of the hyperfine interaction 

The magnetic moments of an electron and a nuclear spin couple by the magnetic dipole-dipole interaction; similar to the dipole-
dipole interaction between nuclear spins discussed in the NMR part of the lecture course. The main difference to the NMR case is
that, in many cases, a point-dipole description is not a good approximation for the electron spin, as the electron is distributed over
the SOMO. The nucleus under consideration can be considered as well localized in space. We now picture the SOMO as a linear
combination of atomic orbitals. Contributions from spin density in an atomic orbital of another nucleus (population of the unpaired
electron in such an atomic orbital) can be approximated by assuming that the unpaired electron is a point-dipole localized at this
other nucleus.

For spin density in atomic orbitals on the same nucleus, we have to distinguish between types of atomic orbitals. In s orbitals, the
unpaired electron has finite probability density for residing at the nucleus, at zero distance rSI to the nuclear spin. This leads to a

singularity of the dipole-dipole interaction, since this interaction scales with r − 3
SI . The singularity has been treated by Fermi. The

contribution to the hyperfine coupling from spin density in s orbitals on the nucleus under consideration is therefor called Fermi
contact interaction. Because of the spherical symmetry of s orbitals, the Fermi contact interaction is purely isotropic.

For spin density in other orbitals ( p, d, f orbitals) on the nucleus under consideration, the dipole-dipole interaction must be
averaged over the spatial distribution of the electron spin in these orbitals. This average has no isotropic contribution. Therefore,
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spin density in p, d, f orbitals does not influence spectra of fast tumbling radicals or metal complexes in liquid solution and neither
does spin density in s orbitals of other nuclei. The isotropic couplings detected in solution result only from the Fermi contact
interaction.

Since the isotropic and purely anisotropic contributions to the hyperfine coupling have different physical origin, we separate these
contributions in the hyperfine tensor Aki that describes the interaction between electron spin Sk and nuclear spin Ii :

Aki = Aiso , ki

1 0 0
0 1 0
0 0 1

+ Tki

where Aiso, ki is the isotropic hyperfine coupling and Tki the purely anisotropic coupling. In the following, we drop the electron and
nuclear spin indices k and i.

Dipole-dipole hyperfine interaction 

The anisotropic hyperfine coupling tensor T of a given nucleus can be computed from the ground state wavefunction ψ0 by
applying the correspondence principle to the classical interaction between two point dipoles

Tij =
μ0

4πℏgeμBgnμn ψ0

3rirj − δijr
2

r5 ψ0

Such computations are implemented in quantum chemistry programs such as ORCA, ADF, or Gaussian. If the SOMO is considered
as a linear combination of atomic orbitals, the contributions from an individual orbital can be expressed as the product of spin
density in this orbital with a spatial factor that can be computed once for all. The spatial factors have been tabulated [KM85]. In
general, nuclei of elements with larger electronegativity have larger spatial factors. At the same spatial factor, such as for isotopes
of the same element, the hyperfine coupling is proportional to the nuclear g value gn and thus proportional to the gyromagnetic
ratio of the nucleus. Hence, a deuterium coupling can be computed from a known proton coupling or vice versa.

A special situation applies to protons, alkali metals and earth alkaline metals, which have no significant spin densities in p − , d − ,
or f-orbitals. In this case, the anisotropic contribution can only arise from through-space dipole-dipole coupling to centers of spin
density at other nuclei. In a point-dipole approximation the hyperfine tensor is then given by

T =
μ0

4πℏgeμBgnμn∑
j≠ i

ρj
3→n ij

→nT
ij −

→
1

R3
ij

where the sum runs over all nuclei j with significant spin density ρj (summed over all orbitals at this nucleus) other than nucleus i

under consideration. The Rij are distances between the nucleus under consideration and the centers of spin density, and the →n ij are
unit vectors along the direction from the considered nucleus to the center of spin density. For protons in transition metal complexes
it is often a good approximation to consider spin density only at the central metal ion. The distance R from the proton to the central
ion can then be directly inferred from the anisotropic part of the hyperfine coupling.

Hyperfine tensor contributions T computed by any of these ways must be corrected for the influence of SOC if the g tensor is
strongly anisotropic. If the dominant contribution to SOC arises at a single nucleus, the hyperfine tensor at this nucleus 1 can be
corrected by

T ( g ) =
gT
ge

The product g T may have an isotropic part, although T is purely anisotropic. This isotropic pseudocontact contribution depends on
the relative orientation of the g tensor and the spin-only dipole-dipole hyperfine tensor T. The correction is negligible for most
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organic radicals, but not for paramagnetic metal ions. If contributions to SOC arise from several centers, the necessary correction
cannot be written as a function of the g tensor.

Fermi contact interaction 

The Fermi contact contribution takes the form

Aiso = ρs ⋅
2
3

μ0

ℏ
geμBgnμn ψ0(0) 2

1 Most literature holds that the correction should be done for all nuclei. As pointed out by Frank Neese, this is not true. An earlier
discussion of this point is found in [Lef67] where ρs is the spin density in the s orbital under consideration, gn the nuclear g value

and μn = βn = 5.05078317(20) ⋅ 10 − 27 J T − 1 the nuclear magneton gnμn = γnℏ . The factor ψ0(0) 2 denotes the probability to

find the electron at this nucleus in the ground state with wave function ψ0 and has been tabulated [KM85].

Figure 4.1: Transfer of spin density by the spin polarization mechanism. According to the Pauli principle, the two electrons in the
C-H bond orbital must have opposite spin state. If the unpaired electron resides in a pz orbital on the C atom, for other electrons on
the same C atom the same spin state is slightly favored, as this minimizes electrostatic repulsion. Hence, for the electron at the H
atom, the opposite spin state (left panel) is slightly favored over the same spin state (right panel). Positive spin density in the pz
orbital on the C atom induces some negative spin density in the s orbital on the H atom.

Spin polarization 

The contributions to the hyperfine coupling discussed up to this point can be understood and computed in a single-electron picture.
Further contributions arise from correlation of electrons in a molecule. Assume that the pz orbital on a carbon atom contributes to
the SOMO, so that the α spin state of the electron is preferred in that orbital (Fig. 4.1). Electrons in other orbitals on the same atom
will then also have a slight preference for the α state (left panel), as electrons with the same spin tend to avoid each other and thus
have less electrostatic repulsion. 2 In particular, this means that the spin configuration in the left panel of Fig. 4.1 is slightly more
preferable than the one in the right panel. According to the Pauli principle, the two electrons that share the s bond orbital of the 
C − H bond must have antiparallel spin. Thus, the electron in the s orbital of the hydrogen atom that is bound to the spin-carrying
carbon atom has a slight preference for the β state. This corresponds to a negative isotropic hyperfine coupling of the directly
bound α proton, which is induced by the positive hyperfine coupling of the adjacent carbon atom. The effect is termed "spin
polarization", although it has no physical relation to the polarization of electron spin transitions in an external magnetic field.

Spin polarization is important, as it transfers spin density from p orbitals, where it is invisible in liquid solution and from carbon
atoms with low natural abundance of the magnetic isotope 13C to s orbitals on protons, where it can be easily observed in liquid
solution. This transfer occurs, both, in σ radicals, where the unpaired electron is localized on a single atom, and in π radicals, where
it is distributed over the π system. The latter case is of larger interest, as the distribution of the π orbital over the nuclei can be
mapped by measuring and assigning the isotropic proton hyperfine couplings. This coupling can be predicted by the McConnell
equation

Aiso , H = QHρπ

where ρπ is the spin density at the adjacent carbon atom and QH is a parameter of the order of −2.5mT, which slightly depends on
structure of the π system.

2 This preference for electrons on the same atom to have parallel spin is also the basis of Hund’s rule.

Figure 4.2: Mapping of the LUMO and HOMO of an aromatic molecule via measurements of hyperfine couplings after one-
electron reduction or oxidation. Reduction leads to an anion radical, whose SOMO is a good approximation to the lowest
unoccupied molecular orbital (LUMO) of the neutral parent molecule. Oxidation leads to an cation radical, whose SOMO is a good
approximation to the highest occupied molecular orbital (HOMO) of the neutral parent molecule.

The McConnell equation is mainly applied for mapping the LUMO and HOMO of aromatic molecules (Figure 4.2). An unpaired
electron can be put into these orbitals by one-electron reduction or oxidation, respectively, without perturbing the orbitals too
strongly. The isotropic hyperfine couplings of the hydrogen atom directly bound to a carbon atom report on the contribution of the 
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pz orbital of this carbon atom to the π orbital. The challenges in this mapping are twofold. First, it is hard to assign the observed
couplings to the hydrogen atoms unless a model for the distribution of the π orbital is already available. Second, the method is
blind to carbon atoms without a directly bonded hydrogen atom.

Hyperfine Hamiltonian 

We consider the interaction of a single electron spin S with a single nuclear spin I and thus drop the sums and indices k and i in 
ĤHFI in Eq. (2.4). In general, all matrix elements of the hyperfine tensor A will be non-zero after the Bleaney transformation to the
frame where the electron Zeeman interaction is along the z axis (see Eq. 3.5). The hyperfine Hamiltonian is then given by

ĤHFI = Ŝx Ŝy Ŝ z

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

Îx

Îy

Îz

= AxxŜxÎx + AxyŜxÎy + AxyŜxÎ z
+ AyxŜyÎx + AyyŜyÎy + AyzŜyÎ z
+ AzxŜ zÎx + AzyŜ zÎy + AzzŜ zÎ z

Note that the z axis of the nuclear spin coordinate system is parallel to the magnetic field vector 
→
B0 whereas the one of the electron

spin system is tilted, if g anisotropy is significant. Hence, the hyperfine tensor is not a tensor in the strict mathematical sense, but
rather an interaction matrix.

In Eq. (4.7), the term AzzŜ zÎ z is secular and must always be kept. Usually, the high-field approximation does hold for the electron

spin, so that all terms containing Ŝx or Ŝy operators are non-secular and can be dropped. The truncated hyperfine Hamiltonian thus
reads

ĤHFI ,  trunc = AzxŜzÎx + AzyŜzÎy + AzzŜzÎz

The first two terms on the right-hand side can be considered as defining an effective transverse coupling that is the sum of a vector

with length Azx along x and a vector of length Azy along y. The length of the sum vector is B = A2
zx + A2

zy. The truncated

hyperfine Hamiltonian simplifies if we take the laboratory frame x axis for the nuclear spin along the direction of this effective
transverse hyperfine coupling. In this frame we have

ĤHFI,trunc = AŜzÎz + BŜzÎx

where A = Azz quantifies the secular hyperfine coupling and B the pseudo-secular hyperfine coupling. The latter coupling must be
considered if and only if the hyperfine coupling violates the high-field approximation for the nuclear spin (see Chapter 6).

If g anisotropy is very small, as is the case for organic radicals, the z axes of the two spin coordinate systems are parallel. In this
situation and for a hyperfine tensor with axial symmetry, A and B can be expressed as

A = Aiso + T 3cos2θHFI − 1

B = 3TsinθHFIcosθHFI

where θHFI  is the angle between the static magnetic field 
→
B0 and the symmetry axis of the hyperfine tensor and T is the anisotropy

of the hyperfine coupling. The principal values of the hyperfine tensor are Ax = Ay = A
⊥

= Aiso − T and Az = A
‖

= Aiso + 2T.

The pseudo-secular contribution B vanishes along the principal axes of the hyperfine tensor, where θHFI is either 0 ∘  or 90 ∘  or for
a purely isotropic hyperfine coupling. Hence, the pseudo-secular contribution can also be dropped when considering fast tumbling
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radicals in the liquid state. We now consider the point-dipole approximation, where the electron spin is well localized on the length
scale of the electron-nuclear distance r and assume that T arises solely from through-space interactions. This applies to hydrogen,
alkali and earth alkali ions. We then find

T =
1

r3

μ0

4πℏgeμBgnμn

For the moment we assume that the pseudo-secular contribution is either negligible or can be considered as a small perturbation.
The other case is treated in Chapter 6 . To first order, the contribution of the hyperfine interaction to the energy levels is then given

by mSmIA. In the EPR spectrum, each nucleus with spin I generates 2I + 1 electron spin transitions with ΔmS = 1 that can be

labeled by the values of mI = − I, − I + 1, …I. In the nuclear frequency spectrum, each nucleus exhibits 2S + 1 transitions with 

ΔmI = 1. For nuclear spins I > 1/2 in the solid state, each transition is further split into 2I transitions by the nuclear quadrupole

interaction. The contribution of the secular hyperfine coupling to the electron transition frequencies is mIA, whereas it is mSA for
nuclear transition frequencies. In both cases, the splitting between adjacent lines of a hyperfine multiplet is given by A.

Spectral manifestation of the hyperfine interaction 

Liquid-solution EPR spectra 

Since each nucleus splits each electron spin transition into 2I + 1 transitions with different frequencies, the number of EPR

transitions is ∏i 2Ii + 1 . Some of these transitions may coincide if hyperfine couplings are the same or integer multiples of each

other. An important case, where hyperfine couplings are exactly the same are chemically equivalent nuclei. For instance, two nuclei
I1 = I2 = 1/2 can have spin state combinations α1α2, α1β2, β1α2, and β1β2. The contributions to the transition frequencies are 

A1 + A2 /2, A1 − A2 /2, − A1 + A2 /2, and

Figure 4.3: Hyperfine splitting in the EPR spectrum of the phenyl radical. The largest hyperfine coupling for the two equivalent
ortho protons generates a triplet of lines with relative intensities 1 : 2 : 1. The medium coupling to the two equivalent meta proton
splits each line again into a 1 : 2 : 1 pattern, leading to 9 lines with an intensity ratio of 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1. Finally, each line is
split into a doublet by the small hyperfine coupling of the para proton, leading to 18 lines with intensity ratio 
1 : 1 : 2 : 2 : 1 : 1 : 2 : 2 : 4 : 4 : 2 : 2 : 1 : 1 : 2 : 2 : 1.

− A1 − A2 /2. For equivalent nuclei with A1 = A2 = A only three lines are observed with hyperfine shifts of A, 0, and −A with

respect to the electron Zeeman frequency. The unshifted center line has twice the amplitude than the shifted lines, leading to a 
1 : 2 : 1 pattern with splitting A. For k equivalent nuclei with Ii = 1/2 the number of lines is k + 1 and the relative intensities can be
inferred from Pascal’s triangle. For a group of ki equivalent nuclei with arbitrary spin quantum number Ii the number of lines is 
2kiIi + 1. The multiplicities of groups of equivalent nuclei multiply. Hence, the total number of EPR lines is

nEPR = ∏
i

2kiIi + 1

where index i runs over the groups of equivalent nuclei.

Figure 4.3 illustrates on the example of the phenyl radical how the multiplet pattern arises. For radicals with more extended π
systems, the number of lines can be very large and it may become impossible to fully resolve the spectrum. Even if the spectrum is
fully resolved, analysis of the multiplet pattern may be a formidable task. An algorithm that works well for analysis of patterns with
a moderate number of lines is given in [CCM16].

Liquid-solution nuclear frequency spectra 

As mentioned in Section 4.2 the secular hyperfine coupling A can be inferred from nuclear frequency spectra as well as from EPR
spectra. Line widths are smaller in the nuclear frequency spectra, since nuclear spins have longer transverse relaxation times T2 , i.
Another advantage of nuclear frequency spectra arises from the fact that the electron spin interacts with all nuclear spins whereas
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each nuclear spin interacts with only one electron spin (Figure 4.4). The number of lines in nuclear frequency spectra thus grows
only linearly with the number of nuclei, whereas

Figure 4.4: Topologies of an electron-nuclear spin system for EPR spectroscopy (a) and of a nuclear spin system typical for NMR
spectroscopy (b). Because of the much larger magnetic moment of the electron spin, the electron spin "sees" all nuclei, while each
nuclear spin in the EPR case sees only the electron spin. In the NMR case, each nuclear spin sees each other nuclear spin, giving
rise to very rich, but harder to analyze information.

it grows exponentially in EPR spectra. In liquid solution, each group of equivalent nuclear spins adds 2S + 1 lines, so that the
number of lines for Neq  such groups is

nNMR = (2S + 1)Neq

The nuclear frequency spectra in liquid solution can be measured by CW ENDOR, a technique that is briefly discussed in Section
8.1.2.

d

Figure 4.5: Energy level schemes (a,c) and nuclear frequency spectra (b,d) in the weak hyperfine coupling (a, b) and strong
hyperfine coupling (c,d) cases for an electron-nuclear spin system S = 1/2, I = 1/2. Here, ωI is assumed to be negative and A is

assumed to be positive. (a) In the weak-coupling case, |A | / 2 < ωI , the two nuclear spin transitions (green) have frequencies 

ωI ± |A | / 2. (b) In the weak-coupling case, the doublet is centered at frequency ωI  and split by |A | . (c) In the strong-coupling

case, |A | / 2 > ωI , levels cross for one of the electron spin states. The two nuclear spin transitions (green) have frequencies 

|A | / 2 ± ωI . (d) In the strong-coupling case, the doublet is centered at frequency |A | / 2 and split by 2 ωI .

A complication in interpretation of nuclear frequency spectra can arise from the fact that the hyperfine interaction may be larger

than the nuclear Zeeman interaction. This is illustrated in Figure 4.5. Only in the weak-coupling case with |A | / 2 < ωI  the

hyperfine doublet in nuclear frequency spectra is centered at ωI  and split by |A | . In the strong-coupling case, hyperfine sublevels

cross for one of the electron spin states and the nuclear frequency ωI − |A | / 2 becomes negative. As the sign of the frequency is

not detected, the line is found at frequency |A | / 2 − ωI  instead, i.e., it is "mirrored" at the zero frequency. This results in a

doublet centered at frequency |A | / 2 and split by 2 ωI . Recognition of such cases in well resolved liquid-state spectra is

simplified by the fact that the nuclear Zeeman frequency ωI  can only assume a few values that are known if the nuclear isotopes

in the molecule and the magnetic field are known. Figure 4.6 illustrates how the nuclear frequency spectrum of the phenyl radical is
constructed based on such considerations. The spectrum has only 6 lines, compared to the 18 lines that arise in the EPR spectrum in
Figure 4.3.

Figure 4.6: Schematic ENDOR (nuclear frequency) spectrum of the phenyl radical at an X-band frequency where 
ωI / (2π) ≈ 14MHz. (a) Subspectrum of the two equivalent ortho protons. The strong-coupling case applies. (b) Subspectrum of the
two equivalent meta protons. The weak-coupling case applies. (c) Subspectrum of the para proton. The weak-coupling case applies.
(d) Complete spectrum.

Solid-state EPR spectra 

In the solid state, construction of the EPR spectra is complicated by the fact that the electron Zeeman interaction is anisotropic. At
each individual orientation of the molecule, the spectrum looks like the pattern in liquid state, but both the central frequency of the
multiplet and the hyperfine splittings depend on orientation. As these frequency distributions are continuous, resolved splittings are
usually observed only at the singularities of the line shape pattern of the interaction with the largest anisotropy. For organic radicals
at X-band frequencies, often hyperfine anisotropy dominates. At high frequencies or for transition metal ions, often electron
Zeeman anisotropy dominates. The exact line shape depends not only on the principal values of the g tensor and the hyperfine
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tensors, but also on relative orientation of their PASs. The general case is complicated and requires numerical simulations, for
instance, by EasySpin.

However, simple cases, where the hyperfine interaction of only one nucleus dominates and the PASs of the g and hyperfine tensor
coincide, are quite often encountered. For instance, Cu(II) complexes are often square planar and, if all four ligands are the same,
have a C4 symmetry axis. The g tensor than has axial symmetry with the C4 axis being the unique axis. The hyperfine tensors of 
63Cu and 65Cu have the same symmetry and the same unique axis. The two isotopes both have spin I = 3/2 and very similar
gyromagnetic ratios. The spectra can thus be understood by considering one electron spin S = 1/2 and one nuclear spin I = 3/2
with axial g and hyperfine tensors with a coinciding unique axis.

In this situation, the subspectra for each of the nuclear spin states mI = − 3/2, − 1/2, + 1/2, and +3/2 take on a similar form as
shown in Figure 3.3. The resonance field can be computed by solving

ℏωmw =
μB

B0 , res
2g2

⊥
sin2θ + g2

‖
cos2θ + mI Aiso + T 3cos2θ − 1

where θ is the angle between the C4 symmetry axis and the magnetic field vector 
→
B0. The singularities are encountered at θ = 0 ∘

and θ = 90 ∘  and correspond to angular frequencies μBB0g ‖ + mIA ‖and μBB0g⊥ + mIA⊥ .

Figure 4.7: Construction of a solid-state EPR spectrum for a copper(II) complex with four equivalent ligands and square planar
coordination. The g

‖
and A

‖
principal axes directions coincide with the C4 symmetry axis of the complex (inset). (a) Subspectra for

the four nuclear spin states with different magnetic spin quantum number mI. (b) Absorption spectrum. (c) Derivative of the
absorption spectrum.

The construction of a Cu(II) EPR spectrum according to these considerations is shown in Figure 4.7. The values of g
‖

and A
‖

can
be inferred by analyzing the singularities near the low-field edge of the spectrum. Near the high-field edge, the hyperfine splitting 
A
⊥

 is usually not resolved. Here, g
⊥

 corresponds to the maximum of the absorption spectrum and to the zero crossing of its
derivative.

Solid-state nuclear frequency spectra 

Again, a simpler situation is encountered in nuclear frequency spectra, as the nuclear Zeeman frequency is isotropic and chemical
shift anisotropy is negligibly small compared to hyperfine anisotropy. Furthermore, resolution is much better for the reasons
discussed above, so that smaller hyperfine couplings and anisotropies can be detected. If anisotropy of the hyperfine coupling is
dominated by through-space dipole-dipole coupling to a single center of spin density, as is often the case for protons, or by
contribution from spin density in a single p or d orbital, as is often the case for other nuclei, the hyperfine tensor has nearly axial
symmetry. In this case, one can infer from the line shapes whether the weak-or strong-coupling case applies and whether the
isotropic hyperfine coupling is positive or negative (Figure 4.8). The case with Aiso = 0 corresponds to the Pake pattern discussed
in the NMR part of the lecture course.

Figure 4.8: Solid-state nuclear frequency spectra for cases with negative nuclear Zeeman frequency ωI. (a) Weak-coupling case

with Aiso > 0 and Aiso > T. (b) Weak-coupling case with Aiso < 0 and Aiso > T. (a) Strong-coupling case with Aiso > 0 and 

Aiso > T. (b) Strong-coupling case with Aiso < 0 and Aiso > T.

Exchange interaction 

Physical origin and consequences of the exchange interaction 

If two unpaired electrons occupy SOMOs in the same molecule or in spatially close molecules, the wave functions ψ1 and ψ2 of the
two SOMOs may overlap. The two unpaired electrons can couple either to a singlet state or to a triplet state. The energy difference
between the singlet and triplet state is the exchange integral
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J = − 2e2∬
ψ ∗

1 r1 ψ ∗

2 r2 ψ1 r2 ψ2 r1

→r 1
→r 2

d→r 1 d→r 2

There exist different conventions for the sign of J and the factor 2 may be missing in parts of the literature. With the sign
convention used here, the singlet state is lower in energy for positive J. Since the singlet state S with spin wave function 
( | αβ⟩ − | βα⟩) /√2 is antisymmetric with respect to exchange of the two electrons and electrons are Fermions, it corresponds to the

situation where the two electrons could also occupy the same orbital. This is a bonding orbital overlap, corresponding to an
antiferromagnetic spin ordering. Negative J correspond to a lower-lying triplet state, i.e., antibonding orbital overlap and
ferromagnetic spin ordering. The triplet state has three substates with wave functions | αα⟩ for the T + state, ( | αβ⟩ + | βα⟩) /√2 for

the T0 state, and | ββ⟩ for the T − state. The T + and T − state are eigenstates both in the absence and presence of the J coupling. The
states S and T0 are eigenstates for J ≫ Δω, where Δω is the difference between the electron Zeeman frequencies of the two spins.
For the opposite case of Δω ≫ J, the eigenstates are | αβ⟩ and | βα⟩. The latter case corresponds to the high-field approximation
with respect to the exchange interaction.

For strong exchange, J ≫ Δω, the energies are approximately −(3 /4)J for the singlet state and J /4 − ωS, J /4 and J /4 + ωS for the
triplet substates T − , T0, and T + , respectively, where ωS is the electron Zeeman interaction, which is the same for both spins within
this approximation. If J ≫ 2πνmw, microwave photons with energy hνmw cannot excite transitions between the singlet and triplet
subspace of spin Hilbert space. It is then convenient to use a coupled representation and consider the two subspaces separately from
each other. The singlet subspace corresponds to a diamagnetic molecule and does not contribute to EPR spectra. The triplet
subspace can be described by a group spin S = 1 of the two unpaired electrons. In the coupled representation, J does not enter the
spin Hamiltonian, as it shifts all subspace levels by the same energy. For J < 0, the triplet state is the ground state and is always
observable by EPR spectroscopy. However, usually one has J > 0 and the singlet state is the ground state. As long as ℏJ does not
exceed thermal energy kBT by a large factor, the triplet state is thermally excited and observable. In this case, EPR signal amplitude
may increase rather than decrease with increasing temperature. For organic molecules, this case is also rare. If ℏJ ≫ kBT, the
compound does not give an EPR signal. It may still be possible to observe the triplet state transiently after photoexcitation to an
excited singlet state and intersystem crossing to the triplet state.

Weak exchange coupling is observed in biradicals with well localized SOMOs that are separated on length scales between 0.5 and
1.5 nm. In such cases, exchange coupling J decreases exponentially with the distance between the two electrons or with the number
of conjugated bonds that separate the two centers of spin density. If the two centers are not linked by a continuous chain of
conjugated bonds, exchange coupling is rarely resolved at distances larger than 1.5 nm. In any case, at such long distances
exchange coupling is much smaller than the dipole-dipole coupling between the two unpaired electrons if the system is not
conjugated. For weak exchange coupling, the system is more conveniently described in an uncoupled representation with two spins 
S1 = 1/2 and S2 = 1/2.

Exchange coupling is also significant during diffusional encounters of two paramagnetic molecules in liquid solution. Such
dynamic Heisenberg spin exchange can be pictured as physical exchange of unpaired electrons between the colliding molecules.
This causes a sudden change of the spin Hamiltonian, which leads to spin relaxation. A typical example is line broadening in EPR
spectra of radicals by oxygen, which has a paramagnetic triplet ground state. If radicals of the same type collide, line broadening is
also observed, but the effects on the spectra can be more subtle, since the spin Hamiltonians of the colliding radicals are the same.
In this case, exchange of unpaired electrons between the radicals changes only spin state, but not the spin Hamiltonian.

Exchange Hamiltonian 

The spin Hamiltonian contribution by weak exchange coupling is

ĤEX = J Ŝ1xŜ2x + Ŝ1yŜ2y + Ŝ1zŜ2z

This Hamiltonian is analogous to the J coupling Hamiltonian in NMR spectroscopy. If the two spins have different g values and the

field is sufficiently high gμBB0 /ℏ ≫ J , the exchange Hamiltonian can be truncated in the same way as the J coupling

Hamiltonian in heteronuclear NMR:
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ĤEX,trunc = JŜ1zŜ2z

Spectral manifestation of the exchange interaction 

In the absence of hyperfine coupling, the situation is the same as for J coupling in NMR spectroscopy. Exchange coupling between
like spins (same electron Zeeman frequency) does not influence the spectra. For radicals in liquid solution, hyperfine coupling is
usually observable. In this case, exchange coupling does influence the spectra even for like spins, as illustrated in Figure 5.1 for
two exchange-coupled electron spins S1 = 1/2 and S2 = 1/2 with each of them coupled exclusively to only one nuclear spin 

I1 = 1 and I2 = 1, respectively) with the same hyperfine coupling Aiso. If the exchange coupling is much smaller than the

isotropic hyperfine coupling, each of the individual lines of the hyperfine triplet further splits into three lines. If the splitting is very
small, it may be noticeable only as a line broadening. At very large exchange coupling, the electron spins are uniformly distributed
over the two exchange-coupled moieties. Hence, each of them has the same hyperfine coupling to both nuclei. This coupling is half
the original hyperfine coupling, since, on average, the electron spin has only half the spin density in the orbitals of a given nucleus
as compared to the case without exchange coupling. For intermediate exchange couplings, complex splitting patterns arise that are
characteristic for the ratio between the exchange and hyperfine coupling.

Figure 5.1: Influence of the exchange coupling J on EPR spectra with hyperfine coupling in liquid solution (simulation). Spectra
are shown for two electron spins S1 = 1/2 and S2 = 1/2 with the same isotropic g value and the same isotropic hyperfine coupling
to a nuclear spin I1 = 1 or I2 = 1, respectively. In the absence of exchange coupling, a triplet with amplitude ratio 1 : 1 : 1 is
observed. For small exchange couplings, each line splits into a triplet. At intermediate exchange couplings, complicated patterns
with many lines result. For very strong exchange coupling, each electron spin couples to both nitrogen nuclei with half the isotropic
exchange coupling. A quintuplet with amplitude ratio 1 : 2 : 3 : 2 : 1 is observed.

5.2 Dipole-dipole interaction 

Physical picture 

The magnetic dipole-dipole interaction between two localized electron spins with magnetic moments μ1 and μ2 takes the same
form as the classical interaction between two magnetic point dipoles. The interaction energy

E = −
μ0

4π ⋅ μ1μ2 ⋅
1

r3 ⋅ 2cosθ1cosθ2 − sinθ1sinθ2cosϕ

generally depends on the two angles θ1 and θ2 that the point dipoles include with the vector between them and on the dihedral
angle ϕ (Figure 5.2). The dipole-dipole interaction scales with the inverse cube of the distance between the two point dipoles.

In general, the two electron spins are spatially distributed in their respective SOMOs. The point-dipole approximation is still a good
approximation if the distance r is much larger than the spatial distribution of each electron spin. Further simplification is possible if
g anisotropy is much smaller than the isotropic g value. In that case, the two spins are aligned parallel to the magnetic field and thus
also parallel to each other, so that θ1 = θ2 = θ and ϕ = 0. Eq. (5.4) then simplifies to

E = −
μ0

4π ⋅ μ1μ2 ⋅
1

r3 ⋅ 3cos2θ − 1

which is the form known from NMR spectroscopy.

Figure 5.2: Geometry of two magnetic point dipoles in general orientation. Angles θ1 and θ2 are included between the respective

magnetic moment vectors 
→
μ 1 or 

→
μ 2 and the distance vector →r  between the point dipoles. Angle ϕ is the dihedral angle.

Dipole-dipole Hamiltonian 

For two electron spins that are not necessarily aligned parallel to the external magnetic field, the dipole-dipole coupling term of the
spin Hamiltonian assumes the form
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Ĥdd = Ŝ
T
1 D

_
Ŝ2 =

1

r3 ⋅
μ0

4πℏ ⋅ g1g2μ
2
B Ŝ1Ŝ2 −

3

r2 Ŝ1
→r Ŝ2

→r

If the electrons are distributed in space, the Hamiltonian has to be averaged (integrated) over the two spatial distributions, since
electron motion proceeds on a much faster time scale than an EPR experiment.

If the two unpaired electrons are well localized on the length scale of their distances and their spins are aligned parallel to the
external magnetic field, the dipole-dipole Hamiltonian takes the form

Ĥdd =
1

r3 ⋅
μ0

4πℏ ⋅ g1g2μ
2
B[Â + B̂ + Ĉ + D̂ + Ê + F̂]

with the terms of the dipolar alphabet

Â = Ŝ zÎ z 1 − 3cos2θ

B̂ = −
1
4 Ŝ + Î − + Ŝ − Î + 1 − 3cos2θ

Ĉ = −
3
2 Ŝ + Î z + Ŝ zÎ

+ sinθcosθe − iϕ

D̂ = −
3
2 Ŝ − Î z + Ŝ zÎ

− sinθcosθeiϕ

Ê = −
3
4 Ŝ

+ Î + sin2θe − 2iϕ

F̂ = −
3
4 Ŝ

− Î − sin2θe2iϕ

Usually, EPR spectroscopy is performed at fields where the electron Zeeman interaction is much larger than the dipole-dipole
coupling, which has a magnitude of about 50MHz at a distance of 1 nm and of 50kHz at a distance of 10 nm. In this situation, the
terms Ĉ, D̂, Ê, and F̂ are non-secular and can be dropped. The B̂ term is pseudo-secular and can be dropped only if

Figure 5.3: Explanation of dipole-dipole coupling between two spins in a local field picture. At the observer spin (blue) a local
magnetic field is induced by the magnetic moment of the coupling partner spin (red). In the secular approximation only the z

component of this field is relevant, which is parallel or antiparallel to the external magnetic field 
→
B0. The magnitude of this z

component depends on angle θ between the external magnetic field and the spin-spin vector →r . For the α (left) and β (right) states
of the partner spin, the local field at the observer spin has the same magnitude, but opposite direction. In the high-temperature
approximation, both these states are equally populated. The shift of the resonance frequency of the observer spin thus leads to a
splitting of the observer spin transition, which is twice the product of the local field with the gyromagnetic ratio of the observer
spin.

the difference between the electron Zeeman frequencies is much larger than the dipole-dipole coupling 1 . In electron electron
double resonance (ELDOR) experiments, the difference of the Larmor frequencies of the two coupled spins can be selected via the
difference of the two microwave frequencies. It is thus possible to excite spin pairs for which only the secular part of the spin
Hamiltonian needs to be considered,

Ĥdd = ω
⊥

1 − 3cos2θ ŜzÎz

with

[ ( )( ) ]
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ω
⊥

=
1

r3 ⋅
μ0

4πℏ ⋅ g1g2μ
2
B

The dipole-dipole coupling then has a simple dependence on the angle θ between the external magnetic field 
→
B0 and the spin-spin

vector →r  and the coupling can be interpreted as the interaction of the spin with the z component of the local magnetic field that is
induced by the magnetic dipole moment of the coupling partner (Figure 5.3). Since the average of the second Legendre polynomial 

1 − 3cos2θ /2 over all angles θ vanishes, the dipole-dipole interaction vanishes under fast isotropic motion. Measurements of this

interaction are therefore performed in the solid state.

The dipole-dipole tensor in the secular approximation has the eigenvalues ω
⊥

, ω
⊥

, − 2ω
⊥

. The dipole-dipole coupling d at

any orientation θ is given by

d = ω
⊥

1 − 3cos2θ

Spectral manifestation of the dipole-dipole interaction 

The energy level scheme and a schematic spectrum for a spin pair with fixed angle θ are shown in Figure 5.4a and b, respectively.
The dipole-dipole couplings splits the transition of either coupled spin by d. If the sample is macroscopically isotropic, for instance
a microcrystalline powder or a glassy frozen solution, all angles θ occur with probability sinθ. Each line of the dipolar doublet

1 Hyperfine coupling of the electron spins can modify this condition.

Figure 5.4: Energy level scheme (a) and schematic spectrum (b) for a dipole-dipole coupled spin pair at fixed orientation θ with
respect to the magnetic field. The electron Zeeman frequencies of the two spins are ωA and ωB, respectively. Weak coupling 

d ≪ ωA − ωB  is assumed. The dipolar splitting d is the same for both spins. Depending on homogeneous linewidth 1 /T2, the

splitting may or may not be resolved. If ωA and ωB are distributed, for instance by g anisotropy, resolution is lost even for 
d > 1/T2.

is then broadened to a powder pattern as illustrated in Figure 3.3. The powder pattern for the β state of the partner spin is a mirror
image of the one for the α state, since the frequency shifts by the local magnetic field have opposite sign for the two states. The
superposition of the two axial powder patterns is called Pake pattern (Figure 5.5). The center of the Pake pattern corresponds to the
magic angle θmagic = arccos√1/3 ≈ 54.7 ∘ . The dipole-dipole coupling vanishes at this angle.

Figure 5.5: Pake pattern observed for a dipole-dipole coupled spin pair. (a) The splitting of the dipolar doublet varies with angle θ
between the spin-spin vector and the static magnetic field. Orientations have a probability sinθ. (b) The sum of all doublets for a
uniform distribution of directions of the spin-spin vector is the Pake pattern. The "horns" are split by ω

⊥
 and the "shoulders" are

split by ω
‖

= 2ω
⊥

. The center of the pattern corresponds to the magic angle.

The Pake pattern is very rarely observed in an EPR spectrum, since usually other anisotropic interactions are larger than the dipole-

dipole interaction between electron spins. If the weakcoupling condition d ≪ ωA − ωB  is fulfilled for the vast majority of all

orientations, the EPR lineshape is well approximated by a convolution of the Pake pattern with the lineshape in the absence of
dipole-dipole interaction. If the latter lineshape is known, for instance from measuring analogous samples that carry only one of the
two electron spins, the Pake pattern can be extracted by deconvolution and the distance between the two electron spins can be
inferred from the splitting ω

⊥
 by inverting Eq. (5.15).

Zero-field interaction 

Physical picture 

If several unpaired spins are very strongly exchange coupled, then they are best described by a group spin S. The concept is most
easily grasped for the case of two electron spins that we have already discussed in Section 5.1.1. In this case, the singlet state with
group spin S = 0 is diamagnetic and thus not observable by EPR. The three sublevels of the observable triplet state with group spin 
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S = 1 correspond to magnetic quantum numbers mS = − 1, 0, and +1 at high field. These levels are split by the electron Zeeman
interaction. The transitions mS = − 1 ↔ 0 and mS = 0 ↔ + 1 are allowed electron spin transitions, whereas the transition 
mS = − 1 ↔ + 1 is a forbidden double-quantum transition.

At zero magnetic field, the electron Zeeman interaction vanishes, yet the three triplet sublevels are not degenerate, they exhibit
zero-field splitting. This is because the unpaired electrons are also dipole-dipole coupled. Integration of Eq. (5.6) over the spatial
distribution of the two electron spins in their respective SOMOs provides a zero-field interaction tensor D that can be cast in a form
where it describes coupling of the group spin S = 1 with itself [Rie07]. At zero field, the triplet sublevels are not described by the
magnetic quantum number mS, which is a good quantum number only if the electron Zeeman interaction is much larger than the
zero-field interaction. Rather, the triplet sublevels at zero field are related to the principal axes directions of the zero-field
interaction tensor and are therefore labeled Tx,  Ty, and Tz, whereas the sublevels in the high-field approximation are labeled 
T − 1,  T0, and T + 1.

This concept can be extended to an arbitrary number of strongly coupled electron spins. Cases with up to 5 strongly coupled
unpaired electrons occur for transition metal ions (d shell) and cases with up to 7 strongly coupled unpaired electrons occur for rare
earth ions (f shell). According to Hund’s rule, in the absence of a ligand field the state with largest group spin S is the ground state.
Kramers ions with an odd number of unpaired electrons have a half-integer group spin S. They behave differently from non-
Kramers ions with an even number of electrons and integer group spin S. This classification relates to Kramers’ theorem, which
states that for a time-reversal symmetric system with half-integer total spin, all eigenstates occur as pairs (Kramers pairs) that are
degenerate at zero magnetic field. As a consequence, for Kramers ions the ground state at zero field will split when a magnetic field
is applied. For any microwave frequency there exists a magnetic field where the transition within the ground Kramers doublet is
observable in an EPR spectrum. The same does not apply for integer group spin, where the ground state may not be degenerate at
zero field. If the zero-field interaction is larger than the maximum available microwave frequency, non-Kramers ions may be
unobservable by EPR spectroscopy although they exist in a paramagnetic high-spin state. Typical examples of such EPR silent non-

Kramers ions are high-spin Ni(II) 3 d8, S = 1  and high-spin Fe(II) 3 d6, S = 2 . In rare cases, non-Kramers ions are EPR

observable, since the ground state can be degenerate at zero magnetic field if the ligand field features axial symmetry. Note also
that "EPR silent" non-Kramers ions can become observable at sufficiently high microwave frequency and magnetic field.

For transition metal and rare earth ions, zero-field interaction is not solely due to the dipole-dipole interaction between the electron
spins. Spin-orbit coupling also contributes, in many cases even stronger than the dipole-dipole interaction. Quantum-chemical
prediction of the zero-field interaction is an active field of research. Quite reasonable predictions can be obtained for transition
metal ions, whereas only order-of-magnitude estimates are usually possible for rare earth ions.

Zero-field interaction Hamiltonian 

The zero-field interaction Hamiltonian is often given as

ĤZFI = →̂STD→̂S
→
S

where T denotes the transpose of the spin vector operator. In the principal axes system of the zero-field splitting (ZFS) tensor, the
Hamiltonian simplifies to

ĤZFI = DxŜ
2
x + DyŜ

2
y + DzŜ

2
z

= D S2
z −

1
3S(S + 1) + E S2

x − S2
y

where D = 3Dz /2 and E = Dx − Dy /2. The reduction to two parameters is possible, since D is a traceless tensor. In other words,

the zero-field interaction is purely anisotropic. The D, E notation presumes that Dz is the principal value with the largest absolute
value (D can be negative). Together with the absence of an isotropic component, this means that Dy, which is always the
intermediate value, is either closer to Dx than to Dz or exactly in the middle between these two values. Accordingly, |E | ≤ |D /3 | .
At axial symmetry E = 0. Axial symmetry applies if the system has a Cn symmetry axis with n ≥ 3. At cubic symmetry, both D and
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E are zero. For group spin S ≥ 2, the leading term of the ZFS is then a hexadecapolar contribution that scales with the fourth power

of the spin operators Ŝ
4
x , Ŝ

4
y , Ŝ

4
z .

In the high-field approximation the ZFS contribution to the Hamiltonian is a ωDS
2
z  term. In other words, to first order in

perturbation theory the contribution of the ZFS to the energy of a spin level with magnetic quantum number mS scales with m2
S. For

an allowed transition mS ↔ mS + 1, this contribution is ωD 2mS + 1 . This contribution vanishes for the central transition 

mS = − 1/2 ↔ 1/2 of Kramers ions. More generally, because of the scaling of the level energies with m2
S to first-order, the

contribution of ZFS to transition frequencies vanishes for all −mS ↔ + mS transitions.

Figure 5.6: Schematic CW EPR spectra for triplet states (S = 1) at high field. Simulations were performed at an X-band frequency
of 9.6GHz. (a) Axial symmetry (D = 1GHz, E = 0). The spectrum is the derivative of a Pake pattern. (b) Orthorhombic symmetry 
(D = 1GHz, E = 0.1GHz).

Spectral manifestation of zero-field splitting 

Spectra are most easily understood in the high-field approximation. Quite often, deviations from this approximation are significant
for the ZFS (see Fig. 2.2), and such deviations are discussed later. The other limiting case, where the ZFS is much larger than the
electron Zeeman interaction (Fe(III) and most rare earth ions), is discussed in Section 5.3.4.

For triplet states (S = 1) with axial symmetry of the ZFS tensor, the absorption spectrum is a Pake pattern (see Section 5.2.3). With
continuous-wave EPR, the derivative of the absorption spectrum is detected, which has the appearance shown in Fig. 5.6(a). A
deviation from axial symmetry leads to a splitting of the "horns" of the Pake pattern by 3E, whereas the "shoulders" of the pattern
are not affected (Fig. 5.6(b)). Triplet states of organic molecules are often observed after optical excitation of a singlet state and
intersystem crossing. Such intersystem crossing generally leads to different population of the zero-field triplet sublevels Tx,  Ty,
and Tz. In this situation the spin system is not at thermal equilibrium, but spin polarized. Such spin polarization affects relative
intensity of the lineshape singularities in the spectra and even the sign of the signal may change. However, the singularities are still
observed at the same resonance fields, i.e., the parameters D and E can still be read off the spectra as indicated in Fig. 5.6.

Even if the populations of the triple sublevels have relaxed to thermal equilibrium, the spectrum may still differ from the high-field
approximation spectrum, as is illustrated in Fig. 5.7 for the excited naphtalene triplet (simulation performed with an example script
of the software package EasySpin http://WWW . easyspin.org/). For D = 3GHz at a field of about 160mT (electron Zeeman
frequency of about 4.8GHz ) the high-field approximation is violated and mS is no longer a good quantum number. Hence, the
formally forbidden double-quantum transition mS = − 1 ↔ + 1 becomes partially allowed. To first order in perturbation theory,
this transition is not broadened by the ZFS. Therefore it is very narrow compared to the allowed transitions and appears with higher
amplitude.

Figure 5.7: CW EPR spectrum of the excited naphtalene triplet at thermal equilibrium (simulation at an X-band frequency of 
9.6GHz). D ≈ 3GHz, E ≈ 0.41GHz ). The red arrow marks the half-field signal, which corresponds to the formally forbidden
double-quantum transition mS = − 1 ↔ + 1.

For Kramers ions, the spectra are usually dominated by the central mS = − 1/2 ↔ 1/2 transition, which is not ZFS-broadened to
first order. To second order in perturbation theory, the ZFS-broadening of this line scales inversely with magnetic field. Hence,
whereas systems with g anisotropy exhibit broadening proportional to the magnetic field B0, central transitions of Kramers ions
exhibit narrowing with 1 /B0. The latter systems can be detected with exceedingly high sensitivity at high fields if they do not

feature significant g anisotropy. This applies to systems with half-filled shells (e.g. Mn(II), 3 d5; Gd(III), 4f7 ). In the case of Mn(II)
(Figure 5.8) the narrow central transition is split into six lines by hyperfine coupling to the nuclear spin of 55Mn (nuclear spin 

I = 5/2, 100% natural abundance). Because of the 2mS + 1  scaling of anisotropic ZFS broadening of mS ↔ mS + 1 transitions,

satellite transitions become the broader the larger mS  is for the involved levels. In the high-temperature approximation, the

integral intensity in the absorption spectrum is the same for all transitions. Hence, broader transitions make a smaller contribution
to the amplitude in the absorption spectrum and in its first derivative that is acquired by CW EPR.
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Figure 5.8: CW EPR spectrum of a Mn(II) complex (simulation at a W-band frequency of 94GHz ). 

D = 0.6GHz, E = 0.05GHz, A 55Mn = 253MHz. The six intense narrow lines are the hyperfine multiplet of the central transition 

mS = − 1/2 ↔ + 1/2.

The situation can be further complicated by D and E strain, which is a distribution of the D and E parameters due to a distribution
in the ligand field. Such a case is demonstrated in Fig. 5.9 for Gd(III) at a microwave frequency of 34GHz where second-order
broadening of the central transition is still rather strong. In such a case, lineshape singularities are washed out and ZFS parameters
cannot be directly read off the spectra. In CW EPR, the satellite transitions may remain unobserved as the derivative of the
absorption lineshape is very small except for the central transition.

Effective spin 1 /2 in Kramers doublets 

For some systems, such as Fe(III), ZFS is much larger than the electron Zeeman interaction at any experimentally attainable
magnetic field. In this case, the zero-field interaction determines the quantization direction and the electron Zeeman interaction can
be treated as a perturbation [Cas+60]. The treatment is simplest for axial symmetry (E = 0), where the quantization axis is the z
axis of the ZFS tensor. The energies in the absence of the magnetic field are

ω mS = Dm2
S

which for high-spin Fe(III) with S = 5/2 gives three degenerate Kramers doublets corresponding to mS = ± 5/2, ± 3/2, and ±1/2.
If the magnetic field is applied along the z axis of the ZFS tensor, mS is a good quantum number and there is simply an additional
energy term mSgμBB0 with g being the g value for the half-filled shell, which can be approximated as g = 2. Furthermore, in this
situation only the mS = − 1/2 ↔ 1/2 transition is allowed. The Zeeman term leads to a splitting of the mS = ± 1/2 Kramers
doublet that is proportional to B0 and

Figure 5.9: Echo-detected EPR spectrum (absorption spectrum) of a Gd(III) complex with D ≈ 1.2 GHz, a Gaussian distribution of 
D with standard deviation of 0.24GHz and a correlated distribution of E (simulation at a Q-band frequency of 34GHz courtesy of
Dr. Maxim Yulikov). (a) Total spectrum (black) and contributions of the individual transitions (see legend). The signal from the
central transition (blue) dominates. (b) Contributions of the satellite transitions scaled vertically for clarity.

corresponds to g = 2. This Kramers doublet can thus be described as an effective spin S′ = 1/2 with geff = 2.

If the magnetic field is perpendicular to the ZFS tensor z axis, the mS = ± 5/2 and ±3/2 Kramers doublets are not split, since the 
Sx and Sy operator does not connect these levels. The Sx operator has an off-diagonal element connecting the mS = ± 1/2 levels

that is √S(S + 1) + 1/4 /2 = 3/2. Since the levels are degenerate in the absence of the electron Zeeman interaction, they become
quantized along the magnetic field and mS is again a good quantum number of this Kramers doublet. The energies are 
mS3gμBB0 + D /4, so that the transition frequency is again proportional to B0, but now with an effective g value geff = 6.
Intermediate orientations can be described by assuming an effective g tensor with axial symmetry and g

⊥
= 6, g

‖
= 2. This

situation is encountered to a good approximation for high-spin Fe(III) in hemoglobins g
⊥

≈ 5.88, g
‖

= 2.01 .

For the non-axial case (E ≠ 0), the magnetic field B0 will split all three Kramers doublets. To first order in perturbation theory the

splitting is proportional to B0, meaning that each Kramers doublet can be described by an effective spin S′ = 1/2 with an effective 
g tensor. Another simple case is encountered for extreme rhombicity, E = D /3. By reordering principal axes (exchanging z with

either x or y ) one can the get rid of the S2
z  term in Eq. (5.18), so that the ZFS Hamiltonian reduces to E′ = S2

x − S2
y  with E′ = 2E.

The level pair corresponding to the new z direction of the ZFS tensor has zero energy at zero magnetic field and it can be shown
that it has an isotropic effective g value geff = 30/7 ≈ 4.286. Indeed, signals near g = 4.3 are very often observed for high-spin
Fe(III).

Physical picture 
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The S = 1 /2, I = 1 /2 spin system 

The basic phenomena can be well understood in the simplest possible electron-nuclear spin system consisting of a single electron
spin S = 1/2 with isotropic g value that is hyperfine coupled to a nuclear spin I = 1/2 with a magnitude of the hyperfine coupling
that is much smaller than the electron Zeeman interaction. In this situation the high-field approximation is valid for the electron
spin, so that the hyperfine Hamiltonian can be truncated to the form given by Eq. (4.9). Because of the occurrence of an Ŝ zÎx
operator in this Hamiltonian, we cannot simply transform the Hamiltonian to the rotating frame for the nuclear spin I. However, we
don’t need to, as we shall consider only microwave irradiation. For the electron spin S, we transform to the rotating frame where
this spin has a resonance offset ΩS. Hence, the total Hamiltonian takes the form

Ĥ0 = ΩSŜz + ωIÎz + AŜzÎz + BŜzÎx

in the rotating frame for the electron spin and the laboratory frame for the nuclear spin. Such a Hamiltonian is a good
approximation, for instance, for protons in organic radicals.

The Hamiltonian deviates from the Hamiltonian that would apply if the high-field approximation were also fulfilled for the nuclear
spin. The difference is the pseudo-secular hyperfine coupling term BŜ zÎx. As can be seen from Eq. (4.10), this term vanishes if the

hyperfine interaction is purely isotropic, i.e. for sufficiently fast tumbling in liquid solution, 1 and along the principal axes of the
hyperfine tensor. Otherwise, the B term can only be neglected if ωI ≫ A, B, corresponding to the high-field approximation of the

nuclear spin. Within the approximate range 2 ωI /5 < |A | < 10 ωI  the pseudo-secular interaction may affect transition

frequencies and makes formally forbidden transitions with ΔmS = 1, ΔmI = 1 partially allowed, as mI is no longer a good quantum
number.

Local fields at the nuclear spin 

The occurrence of forbidden transitions can be understood in a semi-classical magnetization vector picture by considering local
fields at the nuclear spin for the two possible states αS and

1 The product of rotational correlation time τr and hyperfine anisotropy must be much smaller than unity

Figure 6.1: Local fields (multiplied by the gyromagnetic ratio γI of the nuclear spin) at the nuclear spin in the two states αS and βS

of an electron spin S = 1/2. The quantization axes are along the effective fields 
→
ωα /γI and 

→
ω β /γI and are, thus, not parallel.

βS of the electron spin. These local fields are obtained from the parameters ωI, A, and B of the Hamilton operator terms that act on
the nuclear spin. When divided by the gyromagnetic ratio of the nuclear spin these terms have the dimension of a local magnetic
field. The local field corresponding to the nuclear Zeeman interaction equals the static magnetic field B0 and is the same for both

electron spin states, since the expectation value of Î z does not depend on the electron spin state. It is aligned with the z direction of

the laboratory frame (blue arrow in Figure 6.1). Both hyperfine fields arise from Hamiltonian terms that contain an Ŝ z factor, which
has the expectation value mS = + 1/2 for the αS state and mS = − 1/2 for the βS state. The A term is aligned with the z axis and
directed towards +z in the αS state and towards −z in the βS state, assuming A > 0 (violet arrows). The B term is aligned with the x
axis and directed towards +x in the αS state and towards −x in the βS state, assuming B > 0 (green arrows).

The effective fields at the nuclear spin in the two electron spins states are vector sums of the three local fields. Because of the B
component along x, they are tilted from the z direction by angle ηα in the αS state and by angle ηβ in the βS state. The length of the
sum vectors are the nuclear transition frequencies in these two states and are given by

ωα = ωI + A /2 2 + B2 /4

ωβ = ωI − A /2 2 + B2 /4

For ωI > 2 |A | , the hyperfine splitting is given by

| | | |

√( )
√( )

| |
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ωhfs = ωα − ωβ

and the sum frequency is given by

ωsum = ωα + ωβ

For ωI > 2 |A | , the nuclear frequency doublet is centered at ωsum /2( Fig. 6.2(c) ). The sum frequency is always larger than

twice the nuclear Zeeman frequency. None of the nuclear frequencies can become zero, the minimum possible value B /2 is attained

in one of the electron spin states for matching of the nuclear Zeeman and hyperfine interaction at 2 ωI = |A | . For ωI < 2 |A |

the nuclear frequency doublet is split by ωsum  and centered at ωhfs /2( Fig. 6.2( d))). The tilt angles ηα and ηβ (Figure 6.1) can be
inferred from trigonometric relations and are given by

ηα = arctan
−B

2ωI + A

ηβ = arctan
−B

2ωI − A

Consider now a situation where the electron spin is in its αS state. The nuclear magnetization from all radicals in this state at

thermal equilibrium is aligned with 
→
ωα. Microwave excitation causes transitions to the βS state. In this state, the local field at the

nuclear spin is directed along 
→
ω β. Hence, the nuclear magnetization vector from the radicals under consideration is tilted by angle 

2η (Figure 6.1) with respect to the current local field. It will start to precess around this local field vector. This corresponds to
excitation of the nuclear spin by flipping the electron spin, which is a formally forbidden transition. Obviously, such excitation will
occur only if angle 2η differs from 0 ∘  and from 180 ∘ . The case of 0 ∘  corresponds to the absence of pseudo-secular hyperfine

coupling (B = 0) and is also attained in the limit |A | ≪ ωI . The situation 2η → 180 ∘  is attained in the limit of very strong

secular hyperfine coupling, |A | ≫ ωI . Forbidden transitions are observed for intermediate hyperfine coupling. Maximum

excitation of nuclear spins is expected when the two quantization axes are orthogonal with respect to each other, 2η = 90 ∘ .

Figure 6.2: Electron-nuclear spin system S = 1/2, I = 1/2 in the presence of pseudo-secular hyperfine coupling. (a) Level scheme.
In EPR, ΔmS = 1, ΔmI = 0 transitions are allowed (red), in NMR ΔmS = 0, ΔmI = 1 transitions are allowed (blue), and the zero-
and double-quantum transitions with ΔmS = 1, ΔmI = 1 are formally forbidden. (b) EPR stick spectrum. Allowed transitions have

transition probability cos2η and forbidden transitions probability sin2η. The spectrum is shown for ωI > 2 |A | . For ωI < 2 |A | ,

the forbidden transitions lie inside the allowed transition doublet. (c) NMR spectrum for ωI > 2 |A | . (d) NMR spectrum for 

ωI < 2 |A | .

Product operator formalism with pseudo-secular interactions 

Transformation of Ŝx to the eigenbasis 

Excitation and detection in EPR experiments are described by the Ŝx and Ŝy operators in the rotating frame. These operators act
only on electron spin transitions and thus formalize the spectroscopic selection rules. If the spin Hamiltonian contains off-diagonal
terms, such as the pseudo-secular BŜ zÎx term in Eq. (6.1), the eigenbasis deviates from the basis of the electron spin rotating
frame/nuclear spin laboratory frame in which the Hamiltonian is written and in which the excitation and detection operators are
linear combinations of Ŝx and Ŝy. In order to understand which transitions are driven and detected with what transition moment, we

| |

| |

| | | |

( )
( )

| |
| |

| | | |
| |

| |
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need to transform Ŝx to the eigenbasis (the transformation of Ŝy is analogous). This can be done by product operator formalism and
can be understood in the local field picture.

The Hamiltonian in the eigenbasis has no off-diagonal elements, meaning that all quantization axes are along z. Thus, we can
directly infer from Fig. 6.1 that, in the αS state, we need a counterclockwise (mathematically positive) rotation by tilt angle ηα
about the y axis, which is pointing into the paper plane. In the βS state, we need a clockwise (mathematically negative) rotation by

tilt angle ηβ about the y axis. The electron spin states can be selected by the projection operators Ŝα and Ŝβ, respectively. Hence, we

have to apply rotations ηαŜ
αÎy and −ηβŜ

βÎy. These two rotations commute, as the αS and βS subspaces are distinct when mS is a
good quantum number. For the rotation into the eigenbasis, we can write a unitary matrix

ÛEB = exp − i ηαŜ
αÎy − ηβŜ

βÎy

= exp − i ξÎy + η2Ŝ zÎy

where ξ = ηα − ηβ /2 and η = ηα + ηβ /2. Note that the definition of angle η corresponds to the one given graphically in Fig.

6.1.2 The two new rotations about Îy and Ŝ zÎy also commute. Furthermore, Îy commutes with Ŝx( and Ŝy ), so that the

transformation of Ŝx to the eigenbasis reduces to

Ŝx

η2ŜzÎy
⟶ cosηŜx + sinη2ŜyÎy

The transition moment for the allowed transitions that are driven by Ŝx is multiplied by a factor cosη ≤ 1, i.e. it becomes smaller

when η ≠ 0. In order to interpret the second term, it is best rewritten in terms of ladder operators Ŝ + = Ŝx + iŜy and Ŝ − = Ŝx − iŜy.
We find

2ŜyÎy =
1
2 Ŝ + Î − + Ŝ − Î + − Ŝ + Î + − Ŝ − Î −

In other words, this term drives the forbidden electron-nuclear zero- and double-quantum transitions (Fig. 6.2(a)) with a transition
proportional to sinη.

In a CW EPR experiment, each transition must be both excited and detected. In other words, the amplitude is proportional to the
square of the transition moment, which is the transition probability. Allowed transitions thus have an intensity proportional to cos2η
and forbidden transitions a transition probability proportional to sin2η (Fig. 6.2(b)).

General product operator computations for a non-diagonal Hamiltonian 

In a product operator computation, terms of the Hamiltonian can be applied one after the other if and only if they pairwise
commute. This is not the case for the Hamiltonian in Eq. (6.1). However, application of ÛEB diagonalizes the Hamiltonian:

Ĥ0

ηŜzÎy
⟶ ΩSŜz + ωsum /2Îz + ωhfiŜzÎz

This provides a simple recipe for product operator computations in the presence of the pseudosecular hyperfine coupling. Free
evolution and transition-selective pulses are computed in the

2 We have used Ŝα = 1̂ /2 + Ŝ z and Ŝβ = 1̂ /2 − Ŝ z. eigenbasis, using the Hamiltonian on the right-hand side of relation (6.9). For
application of non-selective pulses, the density operator needs to be transformed to the electron spin rotating frame/nuclear spin

laboratory frame basis by applying Û
†
EB. In product operator formalism this corresponds to a product operator transformation

{ ( )}
{ ( )}

( ) ( )

( )
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− ηŜzÎy
⟶ . After application of non-selective pulses, the density operator needs to be backtransformed to the eigenbasis. Detection also

needs to be performed in the electron spin rotating frame/nuclear spin laboratory frame basis.

This concept can be extended to any non-diagonal Hamiltonian as long as one can find a unitary transformation that transforms the
Hamiltonian to its eigenbasis and can be expressed by a single product operator term or a sum of pairwise commuting product
operator terms.

Generation and detection of nuclear coherence by electron spin excitation 

Nuclear coherence generator (π /2) − τ − (π /2) 
We have seen that a single microwave pulse can excite coherence on forbidden electron-nuclear zero- and double-quantum
transitions. In principle, this provides access to the nuclear frequencies ωα and ωβ, which are differences of frequencies of allowed
and forbidden electron spin transitions, as can be inferred from Fig. 6.2(a,b). Indeed, the decay of an electron spin Hahn echo 
(π /2) − τ − (π) − τ −  echo as a function of τ is modulated with frequencies ωα and ωβ( as well as with ωhfi  and ωsum  ). Such
modulation arises from forbidden transitions during the refocusing pulse, which redistribute coherence among the four transitions.
The coherence transfer echoes are modulated by the difference of the resonance frequencies before and after the transfer by the π
pulse, in which the resonance offset ΩS cancels, while the nuclear spin contributions do not cancel. This two-pulse ESEEM
experiment is not usually applied for measuring hyperfine couplings, as the appearance of the combination frequencies ωhfi  and 
ωsum  complicates the spectra and linewidth is determined by electron spin transverse relaxation, which is much faster the nuclear
spin transverse relaxation.

Better resolution and simpler spectra can be obtained by indirect observation of the evolution of nuclear coherence. Such coherence
can be generated by first applying a π /2 pulse to the electron spins, which will generate electron spin coherence on allowed
transitions with amplitude proportional to cosη and on forbidden transitions with amplitude proportional to sin η. After a delay τ a
second π /2 pulse is applied. Note that the block (π /2) − τ − (π /2) is part of the EXSY and NOESY experiments in NMR. The
second π /2 pulse will generate an electron spin magnetization component along z for half of the existing electron spin coherence,
i.e., it will "switch off" half the electron spin coherence and convert it to polarization. However, for the coherence on forbidden
transitions, there is a chance cosη that the nuclear spin is not flipped, i.e. that the coherent superposition of the nuclear spin states
survives. For electron spin coherence on allowed transitions, there is a chance sinη that the "switching off" of the electron
coherence will lead to a "switching on" of nuclear coherences. Hence, in both these pathways there is a probability proportional to 
sinηcosη = sin(2η) /2 that nuclear coherence is generated. The delay τ is required, since at τ = 0 the different nuclear coherence
components have opposite phase and cancel.

The nuclear coherence generated by the block (π /2) − τ − (π /2) can be computed by product operator formalism as outlined in
Section 6.2.2. We find

ŜαÎx = − sin ΩSτ sin(2η)sin
ωβ

2 τ cos ωατ

ŜαÎy = − sin ΩSτ sin(2η)sin
ωβ

2 τ sin ωατ

ŜβÎx = − sin ΩSτ sin(2η)sin
ωα

2 τ cos ωβτ

ŜβÎy = − sin ΩSτ sin(2η)sin
ωα

2 τ sin ωβτ

This expression can be interpreted in the following way. Nuclear coherence is created with a phase as if it had started to evolve as 
Îx at time τ = 0 (last cosine factors on the right-hand side of each line). It is modulated as a function of the electron spin resonance

⟨ ⟩ ( ) ( ) ( )

⟨ ⟩ ( ) ( ) ( )

⟨ ⟩ ( ) ( ) ( )

⟨ ⟩ ( ) ( ) ( )
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offset ΩS and zero exactly on resonance (first factor on each line). The integral over an inhomogeneously broadened, symmetric

EPR line is also zero, since ∫∞
− ∞sin ΩSτ DΩS = 0. However, this can be compensated later by applying another π /2 pulse. The

amplitude of the nuclear coherence generally scales with sin2η, since one allowed and one forbidden transfer are required to excite
it and sin(η)cos(η) = sin(2η) /2 (second factor). The third factor on the right-hand side of lines 1 and 2 tells that the amplitude of
the coherence with frequency ωα is modulated as a function of τ with frequency ωβ. Likewise, the amplitude of the coherence with
frequency ωβ is modulated as a function of τ with frequency ωα (lines 3 and 4 ). At certain values of τ no coherence is created at
the transition with frequency ωα, at other times maximum coherence is generated. Such behavior is called blind-spot behavior. In
order to detect all nuclear frequencies, an experiment based on the (π /2) − τ − (π /2) nuclear coherence generator has to be repeated
for different values of τ. Why and how CW EPR spectroscopy is done Sensitivity advantages of CW EPR spectroscopy The CW
EPR experiment

Considerations on sample preparation Theoretical description of CW EPR Spin packet lineshape Saturation

7 - CW EPR Spectroscopy 

Why and how CW EPR spectroscopy is done 

Sensitivity advantages of CW EPR spectroscopy 

In NMR spectroscopy, CW techniques have been almost completely displaced by Fourier transform (FT) techniques, except for a
few niche applications. FT techniques have a sensitivity advantage if the spectrum contains large sections of baseline and the whole
spectrum can be excited simultaneously by the pulses. Neither condition is usually fulfilled in EPR spectroscopy. For two reasons,
FT techniques lose sensitivity in EPR spectroscopy compared to the CW experiment. First, while typical NMR spectra comfortably
fit into the bandwidth of a welldesigned critically coupled radiofrequency resonance circuit, EPR spectra are much broader than the
bandwidth of a microwave resonator with high quality factor. Broadening detection bandwidth and proportionally lowering the
quality factor Q of the resonator reduces signal-to-noise ratio unless the absorption lineshape is infinitely broad. A quality factor of
the order of 10 ’ 000 , which can be achieved with cavity resonators, corresponds to a bandwidth of roughly 1MHz at X-band
frequencies around 9.6GHz. The intrinsic high sensitivity of detection in such a narrow band can be used only in a CW experiment.
Second, even if the resonator is overcoupled to a much lower quality factor or resonators with intrinsically lower Q are used (the
sensitivity loss can partially be compensated by a higher filling factor of such resonators), residual power from a high-power
microwave pulse requires about 100 ns in order to decay below the level of an EPR signal. This dead time is often a significant
fraction of the transverse relaxation time of electron spins, which entails signal loss by relaxation. In contrast, in NMR
spectroscopy the dead time is usually negligibly short compared to relaxation times. In many cases, the dead time in pulsed EPR
spectroscopy even strongly exceeds T2. In this situation FT EPR is impossible, even with echo refocusing, while CW EPR spectra
can still be measured. This case usually applies to transition metal complexes at room temperature and to many rare earth metal
complexes and high-spin Fe(III) complexes even down to the boiling point of liquid helium at normal pressure (4.2 K). For these
reasons, any unknown potentially paramagnetic sample should first be characterized by CW EPR spectroscopy. Pulsed EPR
techniques are required if the resolution of CW EPR spectroscopy provides insufficient information to assign a structure. This
applies mainly to small hyperfine couplings in organic radicals and of ligand nuclei in transition metal complexes (see Chapter 8)
and to the measurement of distances between electron spins in the nanometer range (see Chapter 9). At temperatures where pulse
EPR signals can be obtained, measurement of relaxation times is also easier and more precise with pulsed EPR techniques.

Figure 7.1: Scheme of a CW EPR spectrometer. Microwave from a fixed-frequency source is passed through an attenuator for
adjusting its power and then through a circulator to the sample. Microwave that comes back from the sample passes on a different
way through the same circulator and is combined with reference microwave of adjustable power (bias) and phase before it is
detected by a microwave diode. The output signal of this diode enters a phase-sensitive detector (PSD) where it is demodulated
with respect to the field modulation frequency (typically 100kHz ) and at the same time amplified. The output signal of the PSD is
digitized and further processed in a computer. The spectrum is obtained by sweeping the static magnetic field B0 at constant
microwave frequency.

The CW EPR experiment 

Since the bandwidth of an optimized microwave resonator is much smaller than the typical width of EPR spectra, it is impractical
to sweep the frequency at constant magnetic field in order to obtain a spectrum. Instead, the microwave frequency is kept constant
and coincides with the resonator frequency at all times. The resonance condition for the spins is established by sweeping the
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://chem.libretexts.org/@go/page/370918?pdf


1.1.27 https://chem.libretexts.org/@go/page/370918

magnetic field B0. Another difficulty arises from the weak magnetic coupling of the spins to the exciting electromagnetic field.
Only a very small fraction of the excitation power is therefore observed. This problem is solved as follows. First, direct
transmission of excitation power to the detector is prevented by a circulator (Figure 7.1). Power that enters port 1 can only leave to
the sample through port 2 . Power that comes from the sample through port 2 can only leave to the detector diode through port 3.
Second, the resonator is critically coupled. This means that all microwave power coming from the source that is incident to the
resonator enters the resonator and is converted to heat by the impedance (complex resistance) of the resonator. If the sample is off
resonant and thus does not absorb microwave, no microwave power leaves the resonator through port 3. If now the magnetic field 
B0 is set to the resonance condition and the sample resonantly absorbs microwave, this means that the impedance of resonator +
sample has changed. The resonator is no longer critically coupled and some of the incoming microwave is reflected. This
microwave leaves the circulator through port 3 and is incident on the detector diode.

This reflected power at resonance absorption can be very weak at low sample concentration. It is therefore important to detect it
sensitively. A microwave diode is only weakly sensitive to a change in incident power at low power (Fig. 7.2, input voltage is
proportional to the square root of power). The diode is most sensitive to amplitude changes near its operating point, marked green
in Fig. 7.2. Hence, the diode must be biased to its operating point by adding constant power from a reference arm. The phase of the
reference arm must be adjusted so that microwave coming from the resonator and microwave coming from the reference arm
interfere constructively.

Figure 7.2: Characteristic curve of a microwave detection diode. At small input voltage, the diode is rather insensitive to changes in
input voltage. At the operating point (green), dependence of output current on input voltage is linear and has maximum slope. This
corresponds to 200μA output current. If input voltage is too large, the diode is destroyed (red point).

A further problem arises from the fact that microwave diodes are broadband detectors. On the one hand, this is useful, since
samples can significantly shift resonator frequency. On the other hand, broadband detectors also collect noise from a broad
frequency band. This decreases signal-to-noise ratio and must be countered by limiting the detection bandwidth to the signal
bandwidth or even below. Such bandwidth limitation can be realized most easily by effect modulation and phase sensitive
detection. By applying a small sinusoidal magnetic field modulation with typical frequency of 100kHz and typical amplitude of 
0.01 − 1mT, the signal component at detector diode output becomes modulated with the same frequency, whereas noise is
uncorrelated to the modulation. Demodulation with a reference signal from the field modulation generator (Figure 7.1) by a phase-
sensitive detector amplifies the signal and limits bandwidth to the modulation frequency.

Effect modulation with phase-sensitive detection measures the derivative of the absorption lineshape, as long as the modulation
amplitude ΔB0 is much smaller than the width of the EPR line (Fig. 7.3). Since signal-to-noise ratio is proportional to ΔB0, one
usually measures at ΔB0 ≈ ΔBpp /3, where lineshape distortion is tolerable for almost all applications. Precise lineshape analysis
may require ΔB0 ≤ ΔBpp /5, whereas maximum sensitivity at the expense of significant artificial line broadening is obtained at 
ΔB0 = ΔBpp. The modulation frequency should not be broader than the linewidth in frequency units. However, with the standard
modulation frequency of 100kHz that corresponds on a magnetic field scale to only 3.6μT at g = ge, this is rarely a problem.

Considerations on sample preparation 

Since electron spins have a much larger magnetic moment than nuclear spins, electron-electron couplings lead to significant line
broadening in concentrated solutions. Concentrations of paramagnetic centers should not usually exceed 1mM in order to avoid
such broadening. For organic radicals in liquid solution it may be necessary to dilute the sample to 100μM in order to achieve
ultimate resolution. For paramagnetic metal dopants in diamagnetic host compounds, at most 1% of the diamagnetic sites should be
substituted by paramagnetic centers. Such concentrations can be detected easily and with good signal-to-noise ratio. For most
samples, good spectra can be obtained down to the 1μM range in solution and down to the 100 ppm dopant range in solids.

Line broadening in liquid solution can also arise from diffusional collision of paramagnetic

Figure 7.3: Detection of the derivative lineshape by field modulation. The situation is considered at the instantaneous field during a
field sweep (vertical dashed line) that is slow compared to the field modulation frequency of 100kHz. Modulation of the magnetic
field with amplitude ΔB0 (blue) causes a modulation of the output signal V (red) with the same frequency and an amplitude ΔV.
Phase-sensitive detection measures this amplitude ΔV, which is proportional to the derivative of the grey absorption lineshape and
to ΔB0, as long as ΔB0 is much smaller than the peak-to-peak linewidth ΔBpp of the line. In practice, ΔB0 < ΔBpp /3 is usually
acceptable. For precise lineshape analysis, ΔB0 < ΔBpp /5 is recommended.
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Figure 7.4: Relaxation enhancement by collisional exchange with oxygen in solution. (a) Situation before diffusional encounter. As
an example, triplet oxygen is assumed to be in a T − state (red), whereas the spin of a nitroxide radical is assumed to be α (green).
(b) The oxygen molecule and nitroxide radical have collided during diffusional encounter. Their wavefunctions overlap and the
three unpaired electrons cannot be distinguished from each other (grey). (c) After separation, the three unpaired electrons have been
redistributed arbitrarily to the two molecules. For example, oxygen may now be in the T0 state (red) and the nitroxide in the β state
(green). The electron spin of the nitroxide radical has flipped.

species with paramagnetic triplet oxygen (Figure 7.4). During such a collision, wavefunctions of the two molecules overlap and,
since electrons are undistinguishable particles, spin states of all unpaired electrons in both molecules are arbitrarily redistributed
when the two molecules separate again. The stochastic diffusional encounters thus lead to additional flips of the observed electron
spins, which corresponds to relaxation and shortens longitudinal relaxation time T1. Since the linewidth is proportional to T2 and 
T2 cannot be longer than 2T1, frequent collisional encounters of paramagnetic species lead to line broadening. Such line
broadening increases with decreasing viscosity (faster diffusion) and increasing oxygen concentration. The effect is stronger in
apolar solvents, where oxygen solubility is higher than in polar solvents, but it is often significant even in aqueous solution. Best
resolution is obtained if the sample is free of oxygen. The same mechanism leads to line broadening at high concentration of a
paramagnetic species in liquid solution. In the solid state, line broadening at high concentration is mainly due to dipole-dipole
coupling. Often, the anisotropically broadened EPR spectrum in the solid state is of interest, as it provides information on g
anisotropy and anisotropic hyperfine couplings. This may require freezing of a solution of the species of interest. Usually, the
species will precipitate if the solvent crystallizes, which may cause line broadening and, in extreme cases, even collapse of the
hyperfine structure and averaging of g anisotropy by exchange between neighboring paramagnetic species. These problems are
prevented if the solvent forms a glass, as is often the case for solvents that have methyl groups or can form hydrogen bonds in very
different geometries. Typical glass-forming solvents are toluene, 2-methyltetrahydrofuran, ethanol, ethylene glycol, and glycerol.
Aqueous solutions require addition of at least 25% glycerol as a cryoprotectant. In most cases, crystallization will still occur on
slow cooling. Samples are therefore shock frozen by immersion of the sample tube into liquid nitrogen. Glass tubes would break on
direct immersion into liquid nitrogen, but EPR spectra have to be measured in fused silica sample tubes anyway, since glass
invariably contains a detectable amount of paramagnetic iron impurities.

Theoretical description of CW EPR 

This section overlaps with Section 2.7 of the NMR lecture notes.

Spin packet lineshape 

All spins in a sample that have the same resonance frequency form a spin packet. In the following we also assume that all spins of a
spin packet have the same longitudinal and transverse relaxation times T1 and T2, respectively. If the number of spins in the spin
packet is sufficiently large, we can assign a magnetization vector to the spin packet. Dynamics of this magnetization vector with
equilibrium magnetization M0 during microwave irradiation is described by the Bloch equations in the rotating frame. In EPR
spectroscopy, it is unusual to use the gyromagnetic ratio. Hence, we shall denote the resonance offset by

ΩS =
gμB

ℏ
B0 − 2πνmw

where νmw is the microwave frequency in frequency units. The rotating-frame Bloch equations for the three components of the
magnetization vector can then be written as

dMx

 dt = − ΩSMy −
Mx

T2

dMy

 dt = ΩSMx − ω1Mz −
My

T2

dMz

 dt = ω1My −
Mz − M0

T1
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where ω1 = g
⊥
μBB1 /ℏ is the microwave field amplitude in angular frequency units and g

⊥
 is the mean g value in the plane

perpendicular to the static magnetic field. The apparent sign difference for the ΩS and ω1 terms arises from the different sense of
spin precession for electron spins compared to nuclear spins with a positive gyromagnetic ratio.

If the spin packet is irradiated at constant microwave frequency, constant microwave power, and constant static magnetic field B0
for a sufficiently long time (roughly 5T1 ), the magnetization vector attains a steady state. Although the static field is swept in a
CW EPR experiment, assuming a steady state is a good approximation, since the field sweep is usually slow compared to T2 and T1
. Faster sweeps correspond to the rapid scan regime that is not treated in this lecture course. In the steady state, the left-hand sides
of the differential equations (7.2) for the magnetization vector components must all be zero,

0 = − ΩSMy −
Mx

T2

0 = ΩSMx − ω1Mz −
My

T2

0 = ω1My −
Mz − M0

T1
⋅ ⟨ stationary state ⟩

This linear system of equations has the solution

Mx = M0ω1

ΩT2
2

1 + Ω2T2
2 + ω2

1T1T2

My = − M0ω1

T2

1 + Ω2T2
2 + ω2

1T1T2

Mz = M0

1 + Ω2T2
2

1 + Ω2T2
2 + ω2

1T1T2
, ⟨ stationary state ⟩

where Mz is not usually detected, Mx is in phase with the exciting microwave irradiation and corresponds to the dispersion signal,
and My is out of phase with the exciting irradiation and corresponds to the absorption line. Unperturbed lineshapes are obtained in
the linear regime, where the saturation parameter

S = ω2
1T1T2

fulfills S ≪ 1. One can easily ascertain from Eq. (7.4) that in the linear regime My increases linearly with increasing ω1, which
corresponds to proportionality of the signal to the square root of microwave power. Mz is very close to the equilibrium
magnetization. Within this regime, a decrease of 6 dB in microwave attenuation, i.e., a power increase by 6 dB, increases signal
amplitude by a factor of 2 . Lineshape does not depend on ω1 in the linear regime. Therefore, it is good practice to measure at the
highest microwave power that is still well within the linear regime, as this corresponds to maximum signal-to-noise ratio. For
higher power the line is broadened.

Within the linear regime, My takes the form of a Lorentzian absorption line

My(Ω) = M0ω1T2
1

1 + Ω2T2
2

, ⟨ linear regime ⟩

with linewidth 1 /T2 in angular frequency units. The peak-to-peak linewidth of the first derivative of the absorption line is 

Γpp = 2/√3T2. Since CW EPR spectra are measured by sweeping magnetic field, we need to convert to magnetic field units,
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Γpp,field sweep =
2

√3T2
⋅

ℏ

gμB

The linewidth of a spin packet is called homogeneous linewidth. If T2 is the same for all spin packets, this homogeneous linewidth
is proportional to 1 /g, a fact that needs to be taken into account in lineshape simulations for systems with large g anisotropy. For
most samples, additional line broadening arises from unresolved hyperfine couplings and, in the solid state, g anisotropy.
Therefore, T2 cannot usually be obtained by applying Eq. (7.7) to the experimentally observed peak-to-peak linewidth.

Saturation 

For microwave power larger than in the linear regime, the peak-to-peak linewidth increases by a factor 1 + S. If a weak signal
needs to be detected with maximum signal-to-noise ratio it is advantageous to increase power beyond the linear regime, but not
necessarily to the maximum available level. For very strong irradiation, S ≫ 1, the term 1 can be neglected in the denominator of
Eqs. (7.4) for the magnetization vector components. The on-resonance amplitude of the absorption line is then given by

My(Ω = 0) = M0 /ω1T1, ω2
1T1T2 ≫ 1

i.e., it is inversely proportional to ω1. In this regime, the amplitude decreases with increasing power of the microwave irradiation.

<figure>1 < figcaption > 2</figcaption></figure>

Figure 7.5: Progressive saturation measurement on the membrane protein LHCII solubilized in detergent micelles in nitrogen
atmosphere. Residue V229 was mutated to cysteine and spin-labelled by iodoacetamidoPROXYL. Experimental data points (red)
were obtained at microwave attenuations of 23, 20, 17, 11, and 8 dB with a full power (0 dB) of 200 mW. The fit by Eq. (7.9)
(black line) provides P1 / 2 = 3 mW and ϵ = 1.24.

Semi-quantitative information on spin relaxation can be obtained by the progressive power saturation experiment, where the EPR
spectrum is measured as a function of microwave power Pmw . Usually, the peak-to-peak amplitude of the larges signal in the
spectrum is plotted as a function of Pmw. Such saturation curves can be fitted by the equation

A Pmw =

I Pmw

1 + 21 /ϵ − 1 Pmw /P1 / 2
ϵ

where the inhomogeneity parameter ϵ takes the value 1.5 in the homogeneous limit and 0.5 in the inhomogeneous limit. Usually, ϵ
is not known beforehand and is treated as a fit parameter. The other fit parameters are I, which is the slope of the amplitude
increase with the square root of microwave power in the linear regime, and P1 / 2, which is the half-saturation power. More
precisely, P1 / 2 is the incident mw power where A is reduced to half of its unsaturated value. Figure 7.5 shows experimental data
from a progressive saturation measurement on spin-labelled mutant V229C of major plant light harvesting complex LHCII
solubilized in detergent micelles in a nitrogen atmosphere and a fit of this data by Eq. (7.9).

<figure>1 < figcaption > 2</figcaption></figure>

<figure>1 < figcaption > 2</figcaption></figure>

ENDOR 

Advantages of electron-spin based detection of nuclear frequency spectra 

Nuclear frequency spectra in the liquid (Section 4.3.2) and solid states (4.3.4) exhibit much better hyperfine resolution than EPR
spectra, because the former spectra feature fewer and narrower lines. In fact, small hyperfine couplings to ligand nuclei in metal
complexes are not usually resolved in EPR spectra and only the largest hyperfine couplings may be resolved in solid-state EPR
spectra. The nuclear frequency spectra cannot be measured by a dedicated NMR spectrometer because they extend over several
Megahertz to several tens of Megahertz, whereas NMR spectrometers are designed for excitation and detection bandwidths of a
few tens of kilohertz. Furthermore, electron spin transitions have 660 times more polarization than proton transitions and more than
that for other nuclei. Their larger magnetic moment also leads to higher detection sensitivity. It is thus advantageous to transfer
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polarization from electron spins to nuclear spins and to backtransfer the response of the nuclear spins to the electron spins for
detection. Two classes of experiments can achieve this, electron nuclear double resonance (ENDOR) experiments, discussed in
Section 8.1 and electron spin echo envelope modulation (ESEEM) experiments discussed in Section 8.2.

Types of ENDOR experiments 

An ENDOR experiment can be performed with strong CW irradiation of both electron and nuclear spins. In this CW ENDOR
experiment, an electron spin transition is partially saturated, S ≫ 1 in Eq. (7.5). By driving a nuclear spin transition that shares an
energy level with the saturated transition, additional relaxation pathways are opened up. The electron spin transition under
observation is thus partially desaturated, and an increase in the EPR signal is observed. The experiment is performed at constant
magnetic field with strong microwave irradiation at a maximum of the first-derivative absorption spectrum (i.e. the CW EPR
spectrum) and the EPR signal is recorded as a function of the frequency of additional radiofrequency irradiation, which must fulfill
the saturation condition S ≫ 1 for the nuclear spins. Usually, the radiofrequency irradiation is frequency modulated and the
response is detected with another phase-sensitive detector, which leads to observation of the first derivative of the nuclear
frequency spectrum. The CW ENDOR experiment depends critically on a balance of relaxation times, so that in the solid state
sufficient sensitivity may only be achieved in a certain temperature range. Furthermore, simultaneous strong continuous irradiation
by both microwave and radiofrequency, while keeping resonator frequency and temperature constant, is experimentally
challenging. Therefore, CW ENDOR has been largely replaced by pulsed ENDOR techniques. However, for liquid solution
samples CW ENDOR is usually the only applicable ENDOR technique.

The conceptually simplest pulsed ENDOR experiment is Davies ENDOR (Section 8.1.3), where saturation of the EPR transition is
replaced by inversion by a π pulse (Fig. 8.1(a)). A subsequent radiofrequency π pulse, which is on-resonant with a transition that
shares a level with the inverted EPR transition, changes population of this level and thus polarization of the EPR observer
transition. This polarization change as a function of the radiofrequency is observed by a Hahn echo experiment on the observer
transition. The approach works well for moderately large hyperfine couplings ( > 3MHz), in particular for 14 N nuclei directly
coordinated to a transition metal ion or for protons at hydrogen-bonding distance or distances up to about 4Å. As we shall see in
Section 8.1.3, the experiment is rather insensitive for very small hyperfine couplings. <figure>1 < figcaption > 2</figcaption>
</figure>

Figure 8.1: Pulsed ENDOR sequences. (a) Davies ENDOR. A selective inversion π pulse on the electron spins is followed by a
delay T and Hahn echo detection (red). During microwave interpulse delay T, a frequency-variable radiofrequency π pulse is
applied (blue). If this pulse is on resonant with a nuclear transition, the inverted echo recovers (pale blue). (b) Mims ENDOR. An
non-selective stimulated echo sequence with interpulse delays τ and T is applied to the electron spins (red). During microwave
interpulse delay T, a frequency-variable radiofrequency π pulse is applied (blue). If this pulse is on resonant with a nuclear
transition, the stimulated echo is attenuated (pale blue).

The smallest hyperfine couplings can be detected with the Mims ENDOR experiment that is based on the stimulated echo sequence
(π /2) − τ − (π /2) − T − (π /2) − τ − echo( Fig. 8.1( b) ) ). The preparation block (π /2) − τ − (π /2) creates a polarization grating of

the functional form A ΩS cos ΩSτ , where A ΩS  is the EPR absorption spectrum as a function of the resonance offset ΩS and τ

is the delay between the two π /2 microwave pulses. A radiofrequency π pulse with variable frequency is applied during time T
when the electron spin magnetization is aligned with the z axis. If this pulse is on resonant with a nuclear transition that shares a
level with the observer EPR transition, half of the polarization grating is shifted by the hyperfine splitting Aeff , as will also become
apparent in Section 8.1.3. For Aeff τ = 2(k + 1)π with integer k the polarization grating is destroyed by destructive interference.
Since the stimulated echo is the free induction decay (FID) of this polarization grating, it is canceled by a radiofrequency pulse that
is on resonant with a nuclear transition. It is apparent that the radiofrequency π pulse has no effect for Aeff τ = 2kπ with integer k,
where the original and frequency-shifted gratings interfere constructively. Hence, the Mims ENDOR experiment features blind
spots as a function of interpulse delay τ. These blind spots are not a serious problem for very small hyperfine couplings Aeff ≪ π / τ
. Note however that the first blind spot corresponds to Aeff = 0. Hence, long interpulse delays τ are required in order to detect very

small hyperfine couplings, and this leads to strong echo attenuation by a factor exp − 2τ /T2  due to electron spin transverse

relaxation. It can be shown that maximum sensitivity for very small couplings is attained approximately at τ = T2.

<figure>1 < figcaption > 2</figcaption></figure>
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Figure 8.2: Polarization transfer in Davies ENDOR. (a) Level populations at thermal equilibrium, corresponding to green label 0 in
Fig. 8.1(a). The electron transitions (red, pale red) are much more strongly polarized than the nuclear transitions (blue, pale blue).
(b) Level populations after a selective mw inversion pulse on resonance with the | βα⟩ ↔ | αα⟩ transition (dark red), corresponding
to green label 1 in Fig. 8.1(a). A state of two-spin order is generated, where the two electron spin transitions are polarized with
opposite sign and the same is true for the two nuclear spin transitions. (c) Level populations after a selective rf inversion pulse on
resonance with the | αα⟩ ↔ | αβ⟩ transition (dark blue), corresponding to green label 2 in Fig. 8.1(a). The electron spin observer
transition | βα⟩ ↔ | αα⟩ is no longer inverted, but only saturated.

Davies ENDOR 

The Davies ENDOR experiment is most easily understood by looking at the polarization transfers. At thermal equilibrium the
electron spin transitions (red and pale red) are much more strongly polarized than the nuclear spin transitions (Fig. 8.2(a)). Their
frequencies differ by an effective hyperfine splitting Aeff  to a nuclear spin I = 1/2 that is color-coded blue. The first microwave π
pulse is transition-selective, i.e., it has an excitation bandwidth that is smaller than Aeff . Accordingly, it inverts only one of the two
electron spin transitions. We assume that the | βα⟩ ↔ | αα⟩ transition (red) is inverted and the | ββ⟩ ↔ | αβ⟩ transition (pale red) is
not inverted; the other case is analogous. Such transition-selective inversion leads to a state of two-spin order, where all individual
transitions in the two-spin system are polarized. However, the two electron spin transitions are polarized with opposite sign and the
two nuclear transitions are also polarized with opposite sign (Fig. 8.2(b)). Now a radiofrequency π pulse is applied. If this pulse is
not resonant with a nuclear transition, the state of two-spin order persists and the observer electron spin transition (red) is still
inverted. The radiofrequency pulse is also transition-selective. We now assume that this pulse inverts the | αα⟩ ↔ | αβ⟩ transition
(blue); the other case is again analogous. After such a resonant radiofrequency pulse, the two nuclear transitions are polarized with
equal sign and the two electron spin transitions are saturated with no polarization existing on them (Fig. 8.2(c)). After the
radiofrequency π pulse a microwave Hahn echo sequence is applied resonant with the observer transition (Fig. 8.1(a)). If the
radiofrequency pulse was off resonant (situation as in Fig. 8.2(b)), an inverted echo is observed. If, on the other hand, the
radiofrequency pulse was on resonant (situation as in Fig. 8.2(c)) no echo is observed. In practice, polarization transfers are not
complete and a weak echo is still observed. However, an on-resonant radiofrequency pulse causes some recovery of the inverted
echo. If the radiofrequency is varied, recovery of the inverted echo is observed at all frequencies where the radiofrequency pulse is
resonant with a nuclear transition.

a

<figure>1 < figcaption > 2</figcaption></figure>

C

<figure>1 < figcaption > 2</figcaption></figure>

b

<figure>1 < figcaption > 2</figcaption></figure>

d

<figure>1 < figcaption > 2</figcaption></figure>

Figure 8.3: Spectral hole burning explanation of Davies ENDOR. (a) An inhomogeneously broadened EPR line with width Γinhom 
(red) consists of many narrower homogeneously broadened lines with linewidth Γhom . (b) Long weak microwave irradiation
saturates the on-resonant spin packet and does not significantly affect off-resonant spin packets. A spectral hole is burnt into the
inhomogeneously broadened line, which can be as narrow as Γhom. . (c) A selective microwave π pulse burns an inversion hole into
the EPR line whose width is approximately the inverse width of the pulse. (d) Situation after applying an on-resonant
radiofrequency pulse. For the spin packet, where the microwave pulse was on-resonant with the | βα⟩ ↔ | αα⟩ transition, half of
the spectral hole is shifted by Aeff  to lower EPR frequencies. For the spin packet where the microwave pulse was on-resonant with
the | ββ⟩ ↔ | αβ⟩ transition, half of the spectral hole is shifted by Aeff  to higher EPR frequencies. Considering both cases, half of
the hole persists, corresponding to saturation. Two side holes with a quarter of the depth of the inversion hole are created at 
ωmw ± Aeff. These side holes do not contribute to the echo signal, as long as they are outside the detection window (pale red)
whose width is determined by the excitation bandwidth of the Hahn echo detection sequence.

Further understanding of Davies ENDOR is gained by considering an inhomogeneously broadened EPR line (Fig. 8.3). In such a
line with width Γinhom , each individual spin packet with much narrower width Γhom  can, in principle, be selectively excited. A
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long rectangular π pulse inverts the on-resonant spin packet and partially inverts spin packets roughly over a bandwidth
corresponding to the inverse length of the pulse. In Davies ENDOR, pulse lengths between 50 and 400 ns, corresponding to
excitation bandwidths between 20 and 2.5MHz are typical. Such a pulse creates an inversion hole centered at the microwave
frequency ωmw . In an S = 1/2, I = 1/2 electron-nuclear spin system, two on-resonant spin packets exist, those where ωmw is the
frequency of the | βα⟩ ↔ | αα⟩ transition and those where it is the frequency of the | ββ⟩ ↔ | αβ⟩ transition. For the former spin
packet, inversion of the nuclear spin from the | β⟩ to the | α⟩ state increases the EPR frequency by the effective hyperfine splitting 
Aeff , whereas for the latter packet, inversion from the | α⟩ to the | β⟩ state decreases it by Aeff . In both cases half of the inversion
hole is shifted to a side hole, leaving a saturation hole at ωmw and creating a saturation side hole. The saturation center holes of the
two spin packets coincide in frequency and combine to a saturation hole in the inhomogeneously broadened line. At the side hole
frequencies ωmw ± Aeff, only one of the two spin packets contributes to the hole, so that the side holes are only half as deep. The
Hahn echo subsequence in the Davies ENDOR sequence must have a detection bandwidth that covers only the central hole (pale
red in Fig. 8.3( d) ), since no ENDOR effect would be observed if the side hole would also be covered. For this purpose, the
detection bandwidth of the Hahn echo sequence can be limited either by using sufficiently long microwave pulses or by using a
sufficiently long integration gate for the inverted echo.

In any case, a Davies ENDOR effect is only be observed if Aeff  exceeds the width of the original inversion hole. The smaller Aeff,
the longer the first inversion pulse needs to be and the fewer spin packets contribute to the signal. In general, hyperfine splittings
much smaller than the homogeneous linewidth Γhom = 1/T2 in the EPR spectrum cannot be detected. In practice, Davies ENDOR
becomes very insensitive for π pulse lengths exceeding 400 ns. If broadening of the inversion hole by electron spin relaxation is
negligible, the suppression of signals with small hyperfine couplings in Davies ENDOR can be described by a selectivity parameter

ηS =
Aefft

( 1 )
π

2π

where t ( 1 )
π  the length of the first mw π pulse. Maximum absolute ENDOR intensity Vmax  is obtained for ηS = √2/2. As a

function of ηS, the absolute ENDOR intensity is given by

V ηS = Vmax

√2ηS

η2
S + 1/2

The hyperfine contrast selectivity described by Eq. (8.2) can be used for spectral editing. For instance, 14 N ENDOR signals of
directly coordinated ligand nitrogen atoms in transition metal complexes with Aeff  of the order of 20 − 40MHz overlap with 1H

ENDOR signals of weakly coupled ligand protons at X-band frequencies. At an inversion pulse length of about 50 ns1H ENDOR
signals are largely suppressed.

The sensitivity advantage of Mims ENDOR for very small hyperfine couplings can also be understood in the hole burning picture.
Instead of a single center hole, a preparation block (π /2) − τ − (π /2) with nonselective microwave pulses creates a polarization
grating that can be imagined as a comb of many holes that are spaced by frequency difference 1 / τ. The width of each hole is
approximately 1 /2τ. The width of the comb of holes is determined by the inverse length of the non-selective π /2 pulses, which are

typically 10 ns long. For small couplings, where t ( 1 )
π  in Davies ENDOR needs to be very long, more than an order of magnitude

more spin packets take part in a Mims ENDOR experiment than in a Davies ENDOR experiment. The Mims ENDOR effect arises
from the shift of one quarter of the polarization grating by frequency difference +Aeff  and one quarter of the grating by −Aeff . The
shifted gratings interfer with the grating at the center frequency. Depending on Aeff  and on the periodicity 1 / τ of the grating, this
interference is destructive (ENDOR effect) or constructive (no ENDOR effect).

ESEEM and HYSCORE 

ENDOR or ESEEM? 

In ESEEM experiments, polarization transfer from electron spins to nuclear spins and detection of nuclear frequencies on electron
spin transitions are based on the forbidden electron-nuclear transitions discussed in Chapter 6. Much of the higher polarization of
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the electron spin transitions is lost in such experiments, since the angle 2η between the quantization axes of the nuclear spin in the
two electron spin states is usually small and the depth of nuclear echo modulations is sin 2η. Furthermore, modulations vanish
along the principal axes of the hyperfine tensor, where B = 0 and thus η = 0. Therefore, lineshape singularities are missing in one-
dimensional ESEEM spectra, which significantly complicates lineshape analysis. For this reason, one-dimensional ESEEM
experiments are not usually competitive with ENDOR experiments, at least if the ENDOR experiments can be performed at Q-
band frequencies ( ≈ 34GHz) or even higher frequencies. An exception arises for weakly coupled "remote" 14 N nuclei in
transition metal complexes where exact cancellation between the nuclear Zeeman and the hyperfine interactions can be achieved
for one of the electron spin states at X-band frequencies or slightly below. In this situation, pure nuclear quadrupole frequencies are
observed, which leads to narrow lines and easily interpretable spectra. One-dimensional ESEEM data are also useful for
determining local proton or deuterium concentrations around a spin label, which can be used as a proxy for water accessibility
(Section 10.1.6).

The main advantage of ESEEM compared to ENDOR spectroscopy is the easier extension of ESEEM to a two-dimensional
correlation experiment. Hyperfine sublevel correlation (HYSCORE) spectroscopy 8.2.3 resolves overlapping signal from different
elements, simplifies peak assignment, and allows for direct determination of hyperfine tensor anisotropy even if the lineshape
singularities are not observed.

Three-pulse ESEEM 

The HYSCORE experiment is a two-dimensional extension of the three-pulse ESEEM experiment that we will treat first. In this
experiment, the amplitude of a stimulated echo after is observed with the pulse sequence (π /2) − τ − (π /2) − t − (π /2) − τ − echo as
a function of the variable interpulse delay t at fixed interpulse delay τ (Fig. 8.4). The block (π /2) − τ − (π /2) serves as a nuclear
coherence generator, as discussed in Section 6.3.1 and, simultaneously, creates the polarization grating discussed in the context of
the Mims ENDOR experiment (Section 8.1.2). In fact, most of the thermal equilibrium magnetization is converted to the
polarization grating whose FID after the final π /2 pulse is the stimulated echo, while only a small fraction is transferred to nuclear
coherence. The phase of the nuclear coherence determines how much of it contributes to the stimulated echo after back transfer to
electron spin coherence by the last π /2 pulse. For an electron-nuclear spin system S = 1/2, I = 1/2 this phase evolves with
frequencies ωα or ωβ if during interpulse delay t the electron spin is in its α or β state, respectively. Hence, the part of the
stimulated echo that arises from back transferred nuclear coherence is modulated as a function of t with frequencies ωα and ωβ.

An expression for the echo envelope modulation can be derived by product operator formalism using the concepts explained in
Section 6.2. Disregarding relaxation, the somewhat lengthy derivation provides

V3p(τ, t) =
1
2 Vα(τ, t) + Vβ(τ, t) ,

where the terms Vα(τ, t) and Vβ(τ, t) correspond to contributions with the electron spin in its α or β state, respectively, during
interpulse delay t. These terms are given by

Vα(τ, t) = 1 −
k
2 1 − cos ωβτ 1 − cos ωα(t + τ)

Vβ(τ, t) = 1 −
k
2 1 − cos ωατ 1 − cos ωβ(t + τ)

The factors cos ωβτ  for the Vα term and cos ωατ  for the Vβ term describe the blind spot behavior of three-pulse ESEEM. The

modulation depth k is given by

k = sin22η =
BωI

ωαωβ

2

For small hyperfine couplings, A, B ≪ ωI, we have ωα ≈ ωβ ≈ ωI, so that Eq. (8.5) reduces to
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k =
B2

ω2
I

i.e., the modulation depth is inversely proportional to the square of the magnetic field. Using Eqs. (4.10) and (4.11) we find for
protons not too close to a well localized unpaired electron

k =
9
4

μ0

4π

2 gμB
B0

2 sin2 2θHFI

r6

where θHFI is the angle between the electron-proton axis and the static magnetic field B0.

Because of the star topology of electron-nuclear spin systems (Fig. 4.4(a)), Eq. (8.3) can be easily extended by a product rule to
multiple nuclei with spins Il = 1/2, where l is an index that runs over all nuclei. One finds

V3p(τ, t) =
1
2 ∏

l
Vα , l(τ, t) + ∏

l
Vβ , l(τ, t)

In the weak modulation limit, where all modulation depths kl fulfill the condition kl ≪ 1, the ESEEM spectrum due to several
coupled nuclei is the sum of the spectra of the individual nuclei.

a <figure>1 < figcaption > 2</figcaption></figure>

b

Figure 8.4: Pulse sequences for three-pulse ESEEM (a) and HYSCORE (b). In three-pulse ESEEM, time t is varied and time τ is
fixed. In HYSCORE, times t1 and t2 are varied independently in order to obtain a two-dimensional data set.

HYSCORE 

The HYSCORE experiment is derived from the three-pulse ESEEM experiment by inserting a microwave π pulse midway through
the evolution of nuclear coherence. This splits the interpulse delay t into two interpulse delays t1 and t2 (Fig. 8.4(b)), which are

varied independently to provide a two-dimensional data set V t1, t2  that depends parametrically on fixed interpulse delay τ. The

inserted π pulse inverts the electron spin state. Hence, coherence that has evolved with frequency ωα during interpulse delay t1
evolves with frequency ωβ during interpulse delay t2 and vice versa. In the weak modulation limit, the HYSCORE experiment
correlates only frequencies ωα and ωβ of the same nuclear spin. The full modulation expression for the HYSCORE experiment
contains a constant contribution and contributions that vary only with respect to either t1 or t2. These contributions can be removed
by background correction with low-order polynomial functions along both dimensions. The remaining modulation corresponds to
only cross peaks and can be expressed as

V4p t1, t2; τ =
k
2 sin

ωατ

2 sin
ωβτ

2 V (αβ ) t1, t2; τ + V ( βα ) t1, t2; τ

with

V (αβ ) t1, t2; τ = cos2ηcos ωαt1 + ωβt2 + ωsum
τ
2 − sin2ηcos ωαt1 − ωβt2 + ωhfi

τ
2

V ( βα ) t1, t2; τ = cos2ηcos ωβt1 + ωαt2 + ωsum
τ
2 − sin2ηcos ωβt1 − ωαt2 + ωhfi

τ
2
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In this representation with unsigned nuclear frequencies, one has η < 45 ∘  for the weak coupling case |A | < 2 ωI  and η > 45 ∘

for the strong coupling case |A | > 2 ωI , as can be inferred from Fig. 6.1. Hence, cos2η > sin2η in the weak coupling case and 

sin2η > cos2η in the strong coupling case. In the weak coupling case, the cross peaks that correlate nuclear frequencies with the

same sign ( cos2η terms) are much stronger than those that correlate frequencies with opposite sign sin2η terms) whereas it is the

other way around in the strong coupling case. Therefore, the two cases can be easily distinguished in HYSCORE spectra, since the
cross peaks appear in different quadrants (Fig. 8.5). Furthermore, disregarding a small shift that arises from the pseudo-secular part 
B of the hyperfine coupling (see below), the cross peaks of a given isotope with spin I = 1/2 are situated on parallels to the anti-
diagonal that corresponds to the nuclear Zeeman frequency νI. This frequency in turn can be computed from the nuclear g value (or
gyromagnetic ratio γ ) and the static magnetic field B0. Peak assignment for I = 1/2 nuclei is thus straightforward. For nuclei with 
I > 1/2 the peaks are further split by the nuclear quadrupole interaction. Unless this splitting is much smaller than both the

hyperfine interaction and the nuclear Zeeman interaction 2H, 6Li , numerical simulations are required to assign the peaks and

extract the hyperfine and nuclear quadrupole coupling.

<figure>1 < figcaption > 2</figcaption></figure>

Figure 8.5: Schematic HYSCORE spectrum for the phenyl radical (compare Fig. 4.6). Note that hyperfine couplings are given here
in frequency units, not angular frequency units. Signals from weakly coupled nuclei appear in the right ( + , + ) quadrant. To first
order, these peaks are situated on a line parallel to the anti-diagonal that intersects the ν2 axis at 2νI. The doublets are centered at νI
and split by the respective hyperfine couplings. Signals from strongly coupled nuclei appear in the (-,+) quadrant. To first order,
these peaks are situated on two lines parallel to the anti-diagonal that intersect the ν2 axis at −2νI and 2νI. The doublets are
centered at half the hyperfine coupling and split by 2νI.

The small pseudo-secular shift of the correlation peaks with respect to the anti-diagonal contains information on the anisotropy T of
the hyperfine interaction (Fig. 8.5). In the solid state, the cross peaks from different orientations θHFI form curved ridges. For a
hyperfine tensor with axial symmetry, as it is encountered for protons not too close to a well-localized unpaired electron, the

maximum shift in the diagonal direction corresponds to θHFI = 45 ∘  and is given by 9T2 /32 ωI . Since ωI is known, T, and thus

the electron-proton distance r can be computed from this maximum shift. If Aiso ≪ ωI, which is usually the case, the orientation
with maximum shift is at the same time the orientation with maximum modulation depth.

The curved ridges end at their intersection with the parallel to the anti-diagonal. These points correspond to the principal values of
the hyperfine tensor and modulation depth is zero at these points. However, it is usually possible to fit the theoretical ridge to the
experimentally observed ridge, as the curvature near θHFI = 45 ∘  together with the position of the θHFI = 45 ∘  point fully
determines the problem.

<figure>1 < figcaption > 2</figcaption></figure>

Figure 8.6: Schematic HYSCORE spectrum for a proton with an axial hyperfine tensor with anisotropy T and isotropic component 
Aiso . The correlation peaks from different orientations form curved ridges (red). Curvature is the stronger the larger the anisotropy
is and the ratio of squared anisotropy to the nuclear Zeeman frequency determines the maximum shift with respect to the 2ωI anti-
diagonal.

Analysis of HYSCORE spectra requires some precaution due to the blind-spot behavior (factor sin
ωατ

2 sin
ωβτ

2  in Eq. (8.9))

and due to orientation selection by the limited bandwidth of the microwave pulses that is much smaller than spectral width for
transition metal complexes. It is therefore prudent to measure HYSCORE spectra at several values of τ and at several observer
positions within the EPR spectrum.

<figure>1 < figcaption > 2</figcaption></figure>

<figure>1 < figcaption > 2</figcaption></figure>
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At a distance of 1 nm between two localized unpaired electrons, splitting ω
⊥

 between the "horns" of the Pake pattern is about 
52MHz for two electron spins. Even strongly inhomogeneously broadened EPR spectra usually have features narrower than that
(about 2mT in a magnetic field sweep). Depending on the width of the narrowest features in the EPR spectrum and on availability
of an experimental spectrum or realistic simulated spectrum in the absence of dipole-dipole coupling, distances up to 1.5…2.5 nm
can be estimated from dipolar broadening by lineshape analysis. At distances below 1.2 nm, such analysis becomes uncertain due
to the contribution from exchange coupling between the two electron spins, which cannot be computed by first principles and
cannot be predicted with sufficient accuracy by quantum-chemical computations. If the two unpaired electrons are linked by a
continuous chain of conjugated bonds, exchange coupling can be significant up to much longer distances.

Distance measurements are most valuable for spin labels or native paramagnetic centers in biomolecules or synthetic
macromolecules and supramolecular assemblies. In such systems, if the two unpaired electrons are not linked by a π-electron
system, exchange coupling is negligible with respect to dipole-dipole coupling for distances longer than 1.5 nm. Such systems can
often assume different molecular conformations, i.e. their structure is not perfectly defined. Structural characterization thus profits
strongly from the possibility to measure distance distributions on length scales that are comparable to the dimension of these
systems. This dimension is of the order of 2 to 20 nm, corresponding to ω

⊥
 between 7MHz and 7kHz. In order to infer the

distance distribution, this small dipole-dipole coupling needs to be separated from larger anisotropic interactions.

This separation of interactions is possible by observing the resonance frequency change for one spin in a pair (blue in Fig. 5.3) that
is induced by flipping the spin of its coupling partner (red). In Fig. 9.1 the resonance frequency of the observer spin before the flip
of its coupling partner is indicated by a dashed line. If the coupling partner is in its | α⟩ state before the flip (left panel in Fig. 5.3),
the local field at the observer spin will increase by ΔB upon flipping the coupling partner. This causes an increase of the resonance
frequency of the observer spin by the dipole-dipole coupling d (see Eq. (5.16)). If the coupling partner is in its | β⟩ state before the
flip (right panel in Fig. 5.3), the local field at the observer spin will decrease by ΔB upon flipping the coupling partner. This causes
an decrease of the resonance frequency of the observer spin by the dipole-dipole coupling d. In the high-temperature
approximation, both these cases have the

<figure>1 < figcaption > 2</figcaption></figure>

Figure 9.1: Resonance frequency shift of an observer spin (blue transitions) by the change ±ΔB in local magnetic field that arises
upon a flip of a second spin that is dipole-dipole coupled to the observer spin. Compare Fig. 5.3 for the local field picture.

same probability. Hence, half of the observer spins will experience a frequency change +d and the other half will experience a
frequency change −d. If the observer spin evolves with changed frequency for some time t, phases ±dt will be gained compared to
the situation without flipping the coupling partner. The additional phase can be observed as a cosine modulation cos(dt) for both
cases, as the cosine is an even function.

DEER 

The four-pulse DEER experiment 

The most commonly used experiment for distance distribution measurements in the nanometer range is the four-pulse double
electron electron resonance (DEER) experiment (Figure 9.2), which is sometimes also referred to as pulsed electron electron
double resonance (PELDOR) experiment. All interactions of the observer spin are refocused twice by two π pulses at times 2τ1 and
2τ1 + 2τ2 after the initial π /2 pulse. Repeated refocusing is necessary since all spin packets must be in phase at t = 0 and overlap of
the pump π pulse with the π /2 observer pulse would lead to signal distortion. The first refocusing with interpulse delay τ1 restores
the situation (1) immediately after the π /2 pulse with phase x, where the magnetization vectors of all spin packets are aligned with
the −y axis. 1 In practice, coherence is excited on both observer spin transitions (blue in the energy level panels), but for clarity we
consider only observer spin coherence that is on the upper transition and is symbolized by a wavy line in panel (1).

During time t after the first refocusing, magnetization vectors of spin packets with different resonance offset dephase (panel (2)).
Only the on-resonant spin packet, marked dark blue, is still aligned with the −y direction. The pump pulse flips the coupling
partner and thus transfers the coherence to the lower observer spin transition. The resonance frequency of this transition is shifted
by the dipole-dipole coupling d in all spin packets. Observer spin magnetization further dephases until the time just before
application of the second observer π pulse (3)) and, in addition, the whole bundle of spin packet magnetization vectors precesses

counterclockwise with the frequency shift d. The originally on-resonant spin packet thus gains phase d τ2 − t  before the second

observer π pulse is applied. The second observer π pulse with phase x corresponds to a 180 ∘  rotation about the x axis. This mirrors
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the bundle of magnetization vectors with respect to the y axis, inverting phase of the observer spin coherence (panel (4)). The
bundle, which still

<figure>1 < figcaption > 2</figcaption></figure> the first refocusing and all following magnetization panels are mirrored with
respect to the x axis. <figure>1 < figcaption > 2</figcaption></figure>

Figure 9.2: Four-pulse DEER sequence, coherence transfers, and evolution of the observer spin magnetization. Pulses shown in
blue are applied to the observer spin, the pump pulse shown in red is applied to its coupling partner. The echo at time 2τ1 (dashed
blue line) is not observed. Interpulse delays τ1 and τ2 are fixed, time t is varied, and the echo amplitude is observed as a function of 
t.

precesses counterclockwise with angular frequency d now lags the +y axis by phase d τ2 − t . During the final interpulse delay of

length τ2 the bundle as a whole gains phase dτ2 (grey arrow in panel (4) and simultaneously realigns along its center due to echo
refocusing. However, the center corresponding to the originally on-resonant spin packet does not end up along +y, as it would have
in the absence of the pump pulse. Rather, this spin packet has gained phase dt with respect to the +y direction (panel (5)). The
magnetization vector component along +y, which corresponds to the echo signal, is given by cos(dt).

The distance range of the DEER experiment is limited towards short distances by the requirement that, for echo refocusing, the
observer pulses must excite both observer transitions, which are split by d and, for coherence transfer, the pump pulse must excite
both transitions of the coupling partner, which are also split by d. In other words, both the observer refocused echo subsequence
and the pump pulse must have an excitation bandwidth that exceeds d. This requirement sets a lower distance bound of about 
1.8 nm at X-band frequencies and of about 1.5 nm at Q-band frequencies. A limit towards long distances arises, since several
dipolar oscillations need to be observed for inferring the width or even shape of a distance distribution and at least one oscillation
needs to be observed for determining the mean distance. This requires t > 2π /d. On the other hand, we have t < τ2 and the fixed
interpulse delay τ2 cannot be much longer than the transverse relaxation time T2, since otherwise coherence has completely relaxed
and no echos is observed. Electron spin transverse relaxation times are of the order of a few microseconds. Depending on sample
type (see Section 9.1.2 ), τ2 can be chosen between 1.5 and 20μs, corresponding to maximum observable distances between 5 and 
12 nm.

Sample requirements 

In the wanted coherence transfer pathway of the DEER experiment, observer pulses exclusively excite observer spins and the pump
pulse exclusively excites the coupling partner. The excitation bandwidth must be sufficiently large to cover the dipole-dipole
coupling d at all orientations, i.e., larger than ω

‖
− 2ω

⊥
. If the two coupled spins have the same EPR spectrum, this spectrum

must be broader than twice this minimum excitation bandwidth. This condition is fulfilled for nitroxide spin labels (Chapter 10)
and transition metal ions at all EPR frequencies, whereas some organic radicals, such as trityl radicals, have spectra that are too
narrow at X-band or even Q-band frequencies. Furthermore, T2 must be sufficiently long for at least the observer spins. This
condition can be fulfilled for almost all S = 1/2 species at temperatures of 10 K (transition metal complexes) or 50⋯80 K (organic
radicals), but may require cooling below 4.2 K for some high-spin species. For high-spin species with a half-filled valence shell,
such as Mn(II) (S = 5/2) or Gd(III)(S = 7/2) measurement temperatures of 10 K are also sufficient.

Sample concentration should be sufficiently low for intermolecular distances to be much longer than intramolecular distances. For
short distances, concentrations up to 200μM are possible, but concentrations of 10⋯50μM provide better results, if a spectrometer
with sufficient sensitivity is available. Depending on distance and T2, measurements can be performed down to concentrations of 
10⋯1μM. For membrane proteins reconstituted into liposomes, data quality is not only a function of bulk spin concentration, but
also of lipid-to-protein ratio. This parameter needs to be optimized for each new protein. Required sample volume varies between a
few microliters (W-band frequencies) and 150μL with 50μL at Q-band frequencies usually being optimal.

If concentration is not too high and the low-temperature limit of transverse relaxation can be attained, T2 depends on the
concentration and type of protons around the observer spin. Deuteration of the solvent and cryoprotectant (usually glycerol) usually
dramatically improve data quality. If the matrix can be perdeuterated, deuteration of the protein or nuclei acid may further prolong 
T2 and extend distance range or improve signal-to-noise ratio.

Complications arise if more than two unpaired electrons are found in the same molecule, but these complications can usually be
solved. However, none of the spin pairs should have a distance shorter than the lower limit of the accessible distance range.

( )
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9.2 Conversion of dipolar evolution data to distance distributions 

Expression for the DEER signal 

In Section 9.1.1 we have seen that the echo is modulated with cos(dt). Usually, this applies only to a fraction λ of the echo, because
the pump pulse excites only a fraction λ of all spin packets of the coupling partner of the observer spin. Therefore, the echo signal
for an isolated pair of electron spins in a fixed orientation θ with respect to the magnetic field is described by

F(t, r, θ) = F(0){1 − λ(θ)[1 − cos(2d(r, θ)t)]}

where the dependence d(θ) is given by Eqs. (5.16) and (5.15). The dependence λ(θ) cannot be expressed in closed form, but often λ
is so weakly correlated with θ that it can be assumed as a constant, empirical parameter. In this situation, Eq. (9.1) can be integrated
over all orientations

F(t, r) = ∫
π / 2
0 F(t, r, θ)sinθdθ

The pump pulse inverts not only the coupling partner of the observer spin in the same molecule, but also electron spins in remote
other molecules. If these neighboring spins are homogeneously distributed in space, the background factor B(t) that arises from
them assumes the form

B(t) = exp −
2πg2μ2

Bμ0NA

9√3ℏ
λ′ct

where the orientation-averaged inversion efficiency λ′ is the fraction of spins excited by the pump pulse, g is an average g value,
and c is the total concentration of spins. For subtle reasons, λ′ differs significantly from the empirical two-spin modulation depth λ.
Homogeneous distributions of neighboring spins that are nearly confined to a plane or a line give rise to a stretched exponential

background function B(t) = exp − (kt)D / 3 , where D is a fractional dimension of the distribution that is usually somewhat larger

than 2 or 1 for nearly planar or linear distributions, respectively. The total DEER signal is given by

V(t, r) = F(t, r)B(t)

If distance r is distributed with normalized probability density P(r) ∫∞
0 P(r)dr = 1 , the form factor F(t) needs to be replaced by 

FP(t) = ∫∞
0 P(r)F(t, r)dr. <figure>1 < figcaption > 2</figcaption></figure>

Figure 9.3: Background correction in DEER spectroscopy. (a) Primary data V(t) (simulation) normalized to V(0). Dipolar
modulation decays until a time tdec. An exponentially decay function (red) is fitted to the data in the range tdec ≤ t ≤ tmax , where 
tmax < τ2 is the maximum dipolar evolution time. This background function b(t) is extrapolated to the range 0 ≤ t < tdec (ochre).
(b) The form factor F(t) is obtained by normalizing the background function, B(t) = b(t) /b(0) and dividing the normalized primary
data V(t) /V(0) by B(t). It decays to a constant level 1 − λ, where λ is the modulation depth. The red curve is a simulation
corresponding to the distance distribution extracted by Tikhonov regularization with optimum regularization parameter α.

Background correction 

The information on the distance distribution P(r) is contained in F(t), which must thus be separated from B(t). Often, the
distribution is sufficiently broad for dipolar oscillations to decay within a time tdec shorter than the maximum dipolar evolution

time tmax  (Fig. 9.3(a)). For tdec ≤ t ≤ tmax , the primary signal is then given by b(t) = (1 − λ)exp − (kt)D / 3  plus noise. The

expression for b(t) is fitted to the primary data in this range (red line in Fig. 9.3(a)). In some cases, for instance for soluble proteins,
a homogeneous distribution of molecules in three dimensions can be assumed, so that D = 3 can be fixed. Otherwise, D is treated
as a fit parameter, as are k and λ. The background function B(t) is obtained by extrapolating b(t) to the range 0 ≤ t ≤ tdec (ochre
line) and dividing it by b(0) = 1 − λ. According to Eq. (9.4), the form factor F(t) /F(0) results by dividing V(t) /V(0) by B(t). For
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narrow distance distributions, oscillations in V(t) /V(0) may endure until the longest attainable tmax . This does not create a problem
if at least the first oscillation is completed well before tmax . All the following oscillations have very similar amplitude and do not
bias the background fit. As a rule of thumb, a good estimate for B(t) can be obtained by fitting data at t ≥ tmax /2 if dtmax ≥ 4π,
i.e., if two full oscillations can be observed. If the data trace is shorter than that, background fitting is fraught with uncertainty.
Wrong background correction may suppress long distances or create artificial peaks at long distances.

Tikhonov regularization with non-negativity constraint 

In order to extract the distance distribution P(r) from the experimental form factor F(t) /F(0), we need to remove the constant
contribution and renormalize to the dipolar evolution function

D(t) =
F(t) /F(0) − (1 − λ)

λ

and invert the integral equation D(t) = ∫∞
0 P(r)K(t, r)dr, where the kernel K(t, r) is given by

K(t, r) = ∫
1
0cos 3z2 − 1 ω

⊥
(r)t dz

Here, we have substituted cosθ by z, sinθdθ by −dcosθ and reversed direction of the integration, which compensated for the
negative sign in −dcosθ.

In practice, D(t) is digitized and given as a vector at sampling times ti. Likewise, it is sufficient to compute P(r) as a vector at
sampling distances rk. The integral equation is thus transformed to a matrix equation

→
D = K

→
P

Unfortunately, this matrix equation cannot easily be inverted, since the rows of kernel K are not orthogonal, i.e., the scalar product
of dipolar evolution function vectors at different rk is not zero. The weak linear dependence of the rows makes the problem ill-

posed. Small deviations of the experimental 
→
D from the "true" 

→
D ideal , for instance due to noise, cause large deviations of 

→
P from

the true distance distribution. This problem can be solved only by taking into account additional information.

First, we know that, as a probability density, P(r) ≥ 0 at all r. Hence, we can impose a non-negativity constraint on 
→
P. It turns out

that this is not sufficient for stabilizing the solution. Noise can be fitted by ragged distance distributions with many narrow peaks,
although we know that the distance distribution must be smooth, as it arises from a continuous distribution of molecular
conformations. Tikhonov regularization imposes a smoothness restraint by minimizing

Gα = ρ + αη

where

ρ = ‖K
→
P −

→
D‖‖2

is the mean square deviation between experimental and simulated data and

η = ‖L̂ ( 2 ) →
P‖

2

is the square norm of the second derivative, which can be computed from 
→
P by multiplication with the second derivative operator 

L̂ ( 2 ) . The regularization parameter α determines the relative <figure>1 < figcaption > 2</figcaption></figure>

Figure 9.4: Tikhonov regularization of the data shown in Fig. 9.3. (a) L curve. The optimum regularization parameter corresponds
to the corner (green circle) and provides the simulation shown in Fig. 9.3(b) as well as the extracted distance distribution shown as
a black line in panel (c) of the current Figure. The red circle marks a too large regularization parameter that leads to oversmoothing.
(b) Input form factor (black) and simulation for the too large regularization parameter corresponding to the red circle in the L curve.
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(c) Theoretical distance distribution used for simulating a noiseless form factor (green) and distance distribution extracted from the
noisy form factor with optimum regularization parameter corresponding to the green circle in the L curve (black). (d) (c)
Theoretical distance distribution used for simulating a noiseless form factor (green) and distance distribution extracted from the
noisy form factor with a too large regularization parameter corresponding to the red circle in the L curve (black).

weight of the smoothing restraint with respect to mean square deviation between experimental and simulated data. A parametric
plot of logη versus logρ as a function of α is approximately L-shaped (Fig. 9.4). For very small α, roughness η of the distance

distribution can be decreased strongly without increasing mean square deviation ρ very much. For large α,
→
P is already smooth and

a further increase of α will lead only to a small decrease in roughness η, but to a large increase in ρ, since the overly broadened
distance distribution no longer fits the dipolar oscillations. Hence, in a mathematical sense, the optimum regularization parameter
corresponds to the corner of the L curve. At this regularization parameter the extracted distance distribution (black line in Fig.
9.4(c)) is only slightly broader than the true distance distribution (green line) and the simulated form factor (red line in Fig. 9.3(b))
agrees with the experimental form factor (black line), except for the white noise contribution. If the regularization parameter is too
large (red circle in Fig. 9.4(a)), the simulated form factor is overdamped (red line in Fig. 9.4(b)) and the distance distribution
unrealistically broad (black line in Fig. 9.4(d)). For a too small regularization parameter the distance distribution unrealistically
splits into several narrow peaks and the simulated form factor fits part of the noise (not shown). This error cannot be as clearly
discerned in the simulated form factor as overdamping can be discerned. Undersmoothing is apparent only in the L curve.

<figure>1 < figcaption > 2</figcaption></figure>
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Nitroxide spin probes and labels 

Spin probes and labels 

Spin probes are stable paramagnetic species that are admixed to a sample in order to obtain structural or dynamical information on
their environment and, thus, indirectly on the sample. Spin labels are spin probes that are covalently attached to a molecule of
interest, often at a specific site. As compared to more direct characterization of structure and dynamics by other techniques, EPR
spectroscopy on spin probes may be able to access other length and time scales or may be applicable in aggregation states or
environments where these other techniques exhibit low resolution or do not yield any signal. Site-directed spin labeling (SDSL) has
the advantage that assignment of the signal to primary molecular structure is already known and that a specific site in a complex
system can be studied without disturbance from signals of other parts of the system. This approach profits from the rarity of
paramagnetic centers. For instance, many proteins and most nucleic acids and lipids are diamagnetic. If a spin label is introduced at
a selected site, EPR information is specific to this particular site.

In principle, any stable paramagnetic species can serve as a spin probe. Some paramagnetic metal ions can substitute for
diamagnetic ions native to the system under study, as they have similar charge and ionic radius or with similar complexation
properties as the native ions. This applies to Mn(II), which can often substitute for Mg(II) without affecting function of proteins or
nucleic acids, or Ln(III) lanthanide ions, which bind to Ca(II) sites. Paramagnetic metal ions can also be attached to proteins by
engineering binding sites with coordinating amino acids, such as histidine, or by site-directed attachment of a metal ligand to the
biomolecule. Such approaches are used for lanthanide ions, in particular Gd(III), and Cu(II).

For many spin probe approaches, organic radicals are better suited than metal ions, since in radicals the unpaired electron has closer
contact to its environment (ligands screen environmental access of metal ions, in particular for lanthanide ions) and the EPR spectra
are narrower, which allows for some experiments that cannot be performed on species with very broad spectra. Among organic
radicals, nitroxides are the most versatile class of spin probes, mainly because of their relatively small size, comparable to an amino
acid side group or nucleobase, and because of hyperfine and g tensor anisotropy of a magnitude that is convenient for studying
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dynamics (Section 10.1.4). Triarylmethyl (TAM) radicals are chemically even more inert than nitroxide radicals and have slower
relaxation times in liquid solution. Currently they are much less in use than nitroxide radicals, mainly because they are not
commercially available and much harder to synthesize than nitroxide radicals. <figure>1 < figcaption > 2</figcaption></figure>

Figure 10.1: Structures of nitroxide probes. 1 TEMPO derivatives. 2 PROXYL derivatives. 3 pH-sensitive imidazolidine nitroxide.
4 DOXYL derivatives. 5 Methanethiosulfonate spin label (MTSL)

Nitroxide radicals 

The nitroxide radical is defined by the N − O ·  group, which is isoelectronic with the carbonyl group (C = O) and can thus be
replaced in approximate force field and molecular dynamics computations by a C = O group. The unpaired electron is distributed
over both atoms, which contributes to radical stability, with a slight preference for the oxygen atom. Nitroxide radicals become
stable on the time scale of months or years if both α positions are sterically protected, for instance by attaching two methyl groups
to each of the αC atoms (Fig. 10.1). Nitroxides of this type are thermally stable up to temperatures of about 140 ∘C, but they are
easily reduced to the corresponding hydroxylamines, for instance by ascorbic acid, and are unstable at very low and very high pH.
Nitroxides with five-membered rings (structures 2, 3, and 5 ) tend to be chemically more stable than those with six-membered rings
(6). The five-membered rings also have less conformational freedom than the six-membered rings.

Spin probes can be addressed to certain environments in heterogeneous systems by choice of appropriate substituents R (Fig. 10.1).
The unsubstituted species (R = H) are hydrophobic and partition preferably to nonpolar environments. Preference for hydrogen
bond acceptors is achieved by hydroxyl derivatives (R = OH), whereas ionic environments can be addressed by a carboxylate

group at sufficiently high pH R = COO − or by a trimethyl ammonium group (R =  N CH3
+
3

. Reactive groups R are used for

SDSL, such as the methanethiosulfonate group in the dehydro-PROXYL derivative MTSL 5 , which selectively reacts with thiol
groups under mild conditions. Thiol groups can be introduced into proteins by site-directed point mutation of an amino acid to
cysteine and to RNA by replacement of a nucleobase by thiouridine. In DOXYL derivatives 4, a six-membered ring is spiro-linked
to an alkyl chain, which can be part of stearic acid or of lipid molecules. The N ∘O ·  group in DOXYL derivatives is rigidly
attached to the alkyl chain and nearly parallel to the axis of a hypothetical all-trans chain.

The nitroxide EPR spectrum 

To a good approximation, the spin system of a nitroxide radical can be considered as an electron spin S = 1/2 coupled to the
nuclear spin I = 1 of the 14 N atom of the N − O ·  group. Hyperfine

<figure>1 < figcaption > 2</figcaption></figure>

Figure 10.2: The EPR spectrum and molecular frame of nitroxide radicals. (a) The hyperfine sublevels corresponding to the three

possible 14 N magnetic quantum numbers mI = − 1, 0, 1 are shifted by mSmIA 14 N . Allowed transitions are those with ΔmS = 1

and ΔmI = 1. The microwave quantum hνmw has constant energy, since the microwave frequency νmw is constant. During a
magnetic field sweep, resonance is observed when the energy hνmw matches the energy difference of the levels of an allowed

transition. The three transitions correspond to the three possible 14 N magnetic quantum numbers mI = − 1, 0, 1. (b) In a solid,

each orientation gives a three-line spectrum, but the splitting A 14 N  and the center field hνmw /gμB depend on orientation, since 

A and g are anisotropic. To a good approximation, the hyperfine tensor has axial symmetry with the unique z axis corresponding to
the direction of the pπ orbital lobes on the 14 N atom. The g tensor is orthorhombic, i.e., the spectra in the xy plane of the molecular
frame, which all have the same hyperfine splitting, have different center fields. The N − O bond direction, which corresponds to the
maximum g value, is the molecular frame x axis.

couplings to other nuclei, such as the methyl protons, are not usually resolved and contribute only to line broadening. The
hyperfine coupling to the sp2 hybridized 14 N atom has a significant isotropic Fermi contact contribution from spin density in the 
2s orbital and a significant anisotropic contribution from spin density in the pπ orbital that combines with a pπ orbital on the
oxygen atom to give the N-O bond partial double bond character. The direction of the lobes of the pπ orbital is chosen as the

molecular z axis (Fig. 10.2(b)). The 14 N hyperfine tensor has nearly axial symmetry with z being the unique axis. The hyperfine
coupling is much larger along z (on the order of 90MHz ) than in the xy plane (on the order of 15MHz ).
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The spin-orbit coupling, which induces g anisotropy, arises mainly at the O atom, where a lone pair energy level is very close to the
SOMO. The g tensor is orthorhombic with nearly maximal asymmetry. The largest g shift is positive and observed along the N-O

bond, which is the molecular frame x axis gx ≈ 2.009 . An intermediate g shift is observed along the y axis gy ≈ 2.006 ,

whereas the gz value is very close to ge = 2.0023. At X-band frequencies, where νmw ≈ 9.5GHz, g anisotropy corresponds to only 
1.13mT dispersion in resonance fields, while hyperfine anisotropy corresponds to 6.5mT dispersion. At W-band frequencies, where
νmw ≈ 95GHz, hyperfine anisotropy is still the same but g anisotropy contributes a ten times larger dispersion of 11.3mT, which
now dominates.

The field-swept CW EPR spectrum for a single orientation can be understood by considering the selection rule that the magnetic
quantum number mS of the electron spin must change by 1 , whereas the magnetic quantum number mI of the 14 N nuclear spin
must not change. Each transition can thus be assigned to a value of mI. For I = 1 there are three such values, mI = − 1, 0, and 1
(Fig. 10.2(a) ). The microwave frequency νmw is fixed and resonance is observed at fields where the energy of the microwave
quantum hνmw matches the energy of a transition.

a

<figure>1 < figcaption > 2</figcaption></figure>

b

<figure>1 < figcaption > 2</figcaption></figure>

Figure 10.3: Construction of the solid-state EPR spectrum of a nitroxide at X band. (a) The absorption spectrum of each transition
is considered separately. For mI = 0, the hyperfine contribution vanishes and only g anisotropy contributes. This line is the
narrowest one at X band. For mI = + 1 the dispersion by g anisotropy subtracts from the larger dispersion by hyperfine anisotropy.
This line has intermediate width. For mI = − 1 the dispersion from g anisotropy adds to the dispersion from hyperfine anisotropy.
This line has the largest width. (b) The three contributions from individual mI values add to the total EPR absorption spectrum
(top). In CW EPR, the derivative of this absorption spectrum is observed (bottom). Because hyperfine anisotropy dominates, the
separation between the outer extremities is 2Azz.

In order to construct the solid-state spectrum, orientation dependence of the three transitions must be considered (Fig. 10.3(a)). At
each individual orientation, the mI = 0 line is the center line. Since the hyperfine contributions scales with mI, it vanishes for this
line and only g anisotropy is observed. At X band, where hyperfine anisotropy dominates by far, this line is the narrowest one. The
lineshape is the one for pure g anisotropy (see Fig. 3.4). For mI = + 1, the orientation with the largest g shift of the resonance field
coincides with the one of smallest hyperfine shift. Hence, the smaller resonance field dispersion by g anisotropy subtracts from the
larger dispersion by hyperfine anisotropy. For mI = − 1, the situation is opposite and the two dispersions add. Hence, the mI = − 1
transition, which at any given orientation is the high-field line, has the largest resonance dispersion, whereas the low-field 
mI = + 1 transition has intermediate resonance field dispersion. The central feature in the total absorption spectrum (Fig. 10.3( b) )
is strongly dominated by the mI = 0 transition, whereas the outer shoulders correspond to the mI = + 1 (low field) and mI = − 1
(high field) transitions at the z orientation. Therefore, the splitting between the outer extremities in the CW EPR spectrum, which
correspond to these shoulders in the absorption spectrum, is 2Azz.

Influence of dynamics on the nitroxide spectrum 

In liquid solution, molecules tumble stochastically due to Brownian rotational diffusion. In the following we consider isotropic
rotational diffusion, where the molecule tumbles with the same average rate about any axis in its molecular frame. This is a good
approximation for nitroxide spin probes with small substituents R. For instance, TEMPO (1 with R = H) is almost spherical with a
van-der-Waals radius of 3.43ÅÅ. In water at ambient temperature, the τr rotational correlation time for TEMPO is of the order of 
10ps. The product τrΔω with the maximum anisotropy Δω of the nitroxide EPR spectrum on an angular frequency axis is much
smaller than unity. In this situation, anisotropy averages and three narrow lines of equal width and intensity are expected. The
spectrum in Fig. 10.2(a) corresponds to this situation and a closer look reveals that the high-field line has somewhat lower
amplitude. This can be traced back to a larger linewidth than for the other two lines, which indicates a shorter T2 for the mI = − 1
transition than for the other transitions. Indeed, transverse relaxation is dominated by the effect from combined hyperfine and g
anisotropy, which is largest for the mI = − 1 transition that has the largest anisotropic dispersion of resonance frequencies. With
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increasing rotational correlation time τr, one expects this relaxation process to become stronger, which should lead to more line
broadening that is strongest for the high-field line and weakest for the central line. This is indeed observed in the simulation for 
τr = 495 ns shown in the bottom trace of Fig. 10.4.

<figure>1 < figcaption > 2</figcaption></figure>

Figure 10.4: Simulation of X-band CW EPR spectra of an isotropically tumbling nitroxide radical for different rotational
correlation times τr. A rotational correlation time of 1μ s at 190 K and an activated process with activation energy of 22.9 kJ mol − 1

were assumed, close to parameters observed for TEMPO in a synthetic polymer.

According to Kivelson relaxation theory, the ratio of the line width of one of the outer lines to the line width of the central line is
given by

T − 1
2 mI

T − 1
2 (0)

= 1 + BmI + Cm2
I

where

B = −
4

15bΔγB0T2(0)τr

and

C =
1
8b

2T2(0)τr

with the hyperfine anisotropy parameter

b =
4π
3 Azz −

Axx + Ayy

2

and the electron Zeeman anisotropy parameter Δγ

Δγ =
μB

ℏ
gzz −

gxx + gyy
2

The relaxation time T2(0) for the central line can be computed from the corresponding peak-topeak linewidth in field domain 
ΔBpp(0) as

T2(0) =
2

√3giso μBΔBpp(0)

Thus, Eqs. (10.1-10.3) can be solved for the only remaining unknown τr. In practice, ratios of peak-to-peak line amplitudes I mI

are analyzed rather than linewidth ratios, as they can be measured with higher precision. The linewidth ratio is related to the
amplitude ratio I(0) / I( − 1) (see bottom trace in Fig. 10.4) in a first derivative spectrum by

T − 1
2 mI

T − 1
2 (0)

=
I(0)

I mI

( )

[ ]

[ ]

( )

( )
√ ( )
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since the integral intensity of the absorption line (double integral of the derivative lineshape) is the same for each of the three
transitions. The rotational correlation time can thus be determined by, e.g.,

τr =
√3

2b
b
8 −

4ΔγB0

15

− 1gisoμB

ℏ
ΔBpp(0)

I(0)
I( − 1) − 1

where ΔB0 is the peak-to-peak linewidth of the central line. This equation can be applied in the fast tumbling regime, where the
three individual lines for mI = − 1, 0, and +1 can still be clearly recognized and have the shape of symmetric derivative absorption
lines.

For slower tumbling with τr > 1.5 ns, the line shape becomes more complex and approaches the rigid limit (solid-state spectrum) at
about τr = 1μs (Fig. 10.4). These lineshapes can be simulated by considering multi-site exchange between different orientations of
the molecule with respect to the magnetic field. Unlike for two-site exchange, which is discussed in the NMR part of the lecture
course (see Section 3 of the NMR lecture notes), no closed expressions can be obtained for multi-site exchange. Nevertheless we
can estimate the time scale where the spectral features are broadest and transverse relaxation times are shortest. Coalescence for
two-site exchange is observed at ΔΩ/k = 2√2. By substituting k by 1 / τr and ΔΩ by the maximum anisotropy of 7.6mT,

corresponding to 213MHz, we find a "coalescence time" 2√2/ΔΩ ≈ 2.1 ns. The simulations in Fig. 10.4 show indeed that around
this rotational correlation time, the

<figure>1 < figcaption > 2</figcaption></figure>

Figure 10.5: Plot of the outer extrema separation 2A′
zz as a function of temperature T for nitroxide spectra simulated under the same

assumptions as in Fig. 10.4.

character of the spectrum changes from fast orientation exchange (liquid-like spectrum with three distinct peaks) to slow
orientation exchange (solid-like spectrum).

A simple way of analyzing a temperature dependence, such as the one shown in Fig. 10.4, is to plot the outer extrema separation 
2A′

zz as a function of temperature (Fig. 10.5). The "coalescence time" in such a plot corresponds to the largest gradient dA′
zz /dT,

which coincides with the mean between the 2A′
zz values in the fast tumbling limit and rigid limit, which is 5mT. In the case at hand,

this coalescence time is 3.5 ns and is observed at a temperature T5mT = 312 K. The T5mT temperature is the temperature where the
material becomes "soft" and molecular conformations can rearrange. Nitroxide spectra in the slow tumbling regime can reveal
more details on dynamics, for instance, whether there are preferred rotation axes, whether motion is restricted due to covalent
linkage of the nitroxide to a large molecule, or whether there is local order, such as in a lipid bilayer.

<figure>1 < figcaption > 2</figcaption></figure>

Figure 10.6: Influence of polarity of the environment and of hydrogen bonding on gxx shift and hyperfine coupling. (a) In the
mesomeric structure where the unpaired electron is on the oxygen atom (left), five valence electrons are formally assigned to N and
six to O, which corresponds to electroneutrality. In the mesomeric structure where the unpaired electron is on the nitrogen atom
(right), only four valence electrons are formally assigned to N and seven to O, which corresponds to a positive charge at N and to a
negative charge at O. (b) Admixture of the charge-separated mesomeric structure generates partial charges and is favored in a polar
environment that screens Coulomb attraction of the two charges. Hydrogen bonding to oxygen lowers energy of the lone pair,
making excitation of a lone pair electron to the SOMO less likely, and thus decreasing gxx shift.

Polarity and proticity 

Delocalization of the unpaired electron in the N − O ·  group can be understood by considering mesomeric structures (Fig. 10.6). If
the unpaired electron resides on oxygen, the formal number of valence electrons is five on nitrogen and six on oxygen,
corresponding to the nuclear charge that is not compensated by inner shell electrons. Hence, both atoms are formally neutral in this
limiting structure. If, on the other hand, the unpaired electron resides on the nitrogen atom, only four valence electrons are assigned
to this atom, whereas seven valence electrons are assigned to the oxygen atom. This corresponds to charge separation with the
formal positive charge on nitrogen and the formal negative charge on oxygen. The charge-separated form is favored in polar
solvents, which screen Coulomb attraction between the two charges, whereas the neutral form is favored in nonpolar solvents.
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Hence, for a given nitroxide radical in a series of solvents, the 14 N hyperfine coupling, which stems from spin density on the
nitrogen atom, is expected to increase with increasing solvent polarity. This effect has indeed been found. It is most easily seen in
the solid state for Azz but can also be discerned in the liquid state for Aiso .

The change in Azz is expected to be anti-correlated to the gxx shift, because this shift arises from SOC at the oxygen atom and, the
higher spin density on the nitrogen atom is, the lower it is on the oxygen atom. This effect has also been found and is most easily
detected by high-field/high-frequency EPR at frequencies of W-band frequencies of ≈ 95GHz or even higher frequencies. How Azz
is correlated to gxx depends on proticity of the solvent. Protic solvents form hydrogen bonds with the lone pairs on the oxygen atom
of the N-O ·  group. This lowers energy of the lone pair orbitals, making excitation of an electron from these orbitals to the SOMO
less likely. Since this excitation provides the main contribution to SOC and thus to gxx shift, hydrogen bonding to oxygen reduces 
gxx shift. If two nitroxides have the same hyperfine coupling Azz in an aprotic and protic environment, gxx will be lower in the
protic environment. This effect has also been found. In some cases it was possible to discern nitroxide labels with zero, one, and
two hydrogen bonds by resolution of their gxx features in W-band CW EPR spectra. Slopes of −1.35 T − 1 for aprotic at −2 T − 1 for
protic environments have been found for the correlation between Azz and gxx for MTSL in spin-labeled bacteriorhodopsin in lipid
bilayers [Ste+00].

10.1.6 Water accessibility 
Polarity and proticity are proxy parameters for water accessibility of spin-labeled sites in proteins. Two other techniques provide
complementary information. First, water can be replaced by deuterated water and the modulation depth of deuterium ESEEM can
be measured. Because of the r − 6 dependence of modulation depth (see Eq. (8.7)) the technique is most sensitive to deuterium
nuclei in the close vicinity of the spin label. As long as k ≪ 1, modulation depth contributions of individual nuclei add, so that the
total deuterium modulation depth is a measure for local deuterium concentration close to the label. Data can be processed in a way
that removes the contribution from directly hydrogen-bonded nuclei. Strictly speaking, this technique measures the concentration
of not only water protons but also the one of any exchangeable protons near the label, but only to the extent that these exchangeable
protons are water accessible during sample preparation or measurement.

A second, more direct technique that is applicable at ambient temperature measures the proton NMR signal as a function of
irradiated microwave power with the microwave frequency being on-resonant with the central transition of a nitroxide spin label.
Such irradiation transfers electron spin polarization to water protons by the Overhauser effect. This Overhauser dynamic nuclear
polarization (DNP) is highly specific to water, as it critically depends on the water proton NMR signal being narrow and on fast
diffusion of water. In biomolecules, water accessibility of spin labels is high at water-exposed surfaces of soluble and membrane
proteins and low inside the proteins and at lipid-exposed surfaces. For transporters, water accessibility can change with state in the
transport process. <figure>1 < figcaption > 2</figcaption></figure>

Figure 10.7: Characterization of oxygen accessibility at spin-labeled site V229C in major plant light harvesting complex LHCII by
CW progressive power saturation. (a) Ribbon model of LHCII with green with its carotenoid cofactors (yellow, violet) and space-
filling model of residue 229 (red, marked by an arrow). The pink planes correspond to the lipid headgroup layer of the thylakoid
membrane in chloroplasts. (b) Progressive power saturation curves in the absence (blue) and presence (red) of oxygen.

Oxygen accessibility 

Since collision of paramagnetic triplet oxygen with spin probes enhances relaxation (Fig. 7.4), the saturation parameter 

S = ω2
1T1T2 is smaller for oxygen-accessible spin labels than for spin labels not accessible to oxygen. This change can be detected

by CW progressive power saturation measurements (Section 7.2.2). The experiment is most conveniently performed with capillary
tubes made of the gas permeable plastic TPX. A reference measurement is performed in a nitrogen atmosphere, which causes
deoxygenation of the sample on the time scale of 15 min. The gas stream is then changed to air (20% oxygen) or pure oxygen and
the measurement is repeated. Such data are shown in Fig. 10.7 for residue 229 in major plant light harvesting complex LHCII. This
residue is lipid exposed. As a nonpolar molecule, oxygen dissolves well in the alkyl chain region of a lipid bilayer. Accordingly, the
signal saturates at higher power in an air atmosphere than in a nitrogen atmosphere. Oxygen accessibility can be quantified by a
normalized P1 / 2 parameter (Section 7.2.2).
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10.1.8 Local pH measurements 

The 14 N hyperfine coupling of nitroxide spin probes becomes pH sensitive if the heterocycle that contains the N − O ·  group also
contains a nitrogen atom that can be protonated in the desired pH range. This applies, for instance, to the imidazolidine nitroxide 3
in Fig. 10.1, which has a pK value of ≈ 4.7 and exhibits a change in isotropic 14 N hyperfine coupling of 0.13mT between the
protonated (1.43 mT) and deprotonated (1.56mT) form, which can be resolved easily in liquid solution. By modifying the probe to
a label, local pH can be measured near a residue of interest in a protein.

10.2 Spin traps 
Many radicals are very reactive. This fact makes their detection during chemical reactions and in living cells very important, but it
also makes their concentration very low, since often their formation reaction is slower than the reactions that destroy them again.
For instance, concentration of the hydroxyl radical ∘OH, a reactive oxygen species (ROS) in living cells, is too low for EPR
detection even under conditions where · OH leads to cell damage or cell death. The situation is somewhat better for the superoxide
anion radical O2 −

2 , but physiologically relevant concentrations are hard to detect also for this species. <figure>1 < figcaption >
2</figcaption></figure>

Figure 10.8: Reaction of the commonly used spin traps phenylbutylnitrone (PBN) and 5,5-dimethyl-1pyrroline N-oxide (DMPO)
with unstable radicals R · . Hyperfine couplings of the 14 N and Hα atom of the formed nitroxide (red) as well as the g value of the
nitroxide provide fingerprint information on the type of radical R · .

ROS and some other highly reactive radicals of interest are most easily detected by spin trapping. A spin trap (Fig. 10.8) is a
diamagnetic compound that is primed to form a stable radical by reaction with an unstable radical. The most frequently used spin
traps are nitrones that form nitroxide radicals by addition of the unstable radical to the C atom in α position of the nitrone group.
The formed nitroxide radicals are not as stable as the ones used as spin labels, mainly because they contain a hydrogen atom in α
position to the N − O group. Their lifetime is usually on the minute time scale, which is sufficient for detection. The hyperfine
coupling of the Hα atom is sensitive to the type of primary radical R · , i.e. to the nature of the other substituent at the Cα atom.
Furthermore, these nitrones are less sterically crowded than the ones that would yield more stable nitroxides and thus the nitrones
are more reactive and trap radicals R ·  more easily. In addition to the Hα hyperfine coupling, the hyperfine coupling of the 14 N
atom of the N − O ·  group is sensitive to the nature of R · . A database of experimental results supports assignment of R ·  in difficult
cases: https://tools.niehs.nih.gov//stdb/index.cfm 

\({ }^{1}\) Look a the "Hints for Using the Spin Trap Database" before you start your search. The keyword format is powerful, but
not very intuitive.
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