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10.3: Average and RMS Velocities

Now that we have the Maxwell-Boltzmann distribution as a function of net velocity we can calculate the average and second
moment. The average velocity <v> is determined via:
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To simplify matters, we will call all the constants “Q” = 471'(#) ’ leaving us to solve a less-scary expression:
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Q- fooo v®-e?5T . Qv . We can do this using an integral identity as shown in the Example box. However, to improve our math
skills we will solve it here the long way using integration by parts:
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We have to conform the formula above to the Maxwell-Boltzmann distribution. First, we define f(z), whereby z =v, a = 0 m/s
and b = co my/s. It is tempting to make f(v) = v®, however, the “trick” is to leave one velocity term out which means f (v) = v?

and %EJU) =2-v The remaining terms define aga(:)

integration by parts gives an average velocity of:
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The first term:
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since the limits are evaluated as: co?e™> — 0 and: 0% — 0.

The second term is:
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Oddly, we have already evaluated the above because it is basically the same as %, the integration of which is g(v). Thus:
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Work through the constants (Q is defined above) to simplify them and you see:
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10.2.1 Average square velocity. Let’s work out the second moment, i.e. the average squared velocity of a gas (v?), by integration of
the Maxwell-Boltzmann distribution. The second moment of velocity is found via:
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Again we will remove all the constants by calling them Q = 4 -7 - (#,) * and we will us integration by parts to solve
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Q- f0°° vt.e?sT 9y . Like before we use the “trick” of partitioning an odd factor of velocity for: f(v) =v?, which makes
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%(vv) =3.9%. This leaves a factor of velocity for: 8‘?%(1)) =wv-e*sT .Qv , the integration of which gives:
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Now the integration by parts fomula is:
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The first term is:

since co3e=* — 0 and 0%¢—0 — 0. The second term is:
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which means we must do another integration by parts. We will define g(v) and % as above and now: f(v) =v and %ﬁjj) =1.

Next, we factor out the constants:
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The first term is 0 like in the other examples. The second term is solved using a standard Gaussian integral similar to the one that
v = %\/—g‘ . This allows us to demonstrate:
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Work through it (remember Q is defined above) and you find:
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Often we express the above as the root-mean-squre, or rms velocity 4/ {v?) = . This is because it has the same units as

average velocity and is thus comparable.

10.2.2 Pressure-volume and the perfect gas equation. We hope that it is interesting that humanity has evolved to the point where
we can derive such knowledge of nature without resorting to actually making measurements, which is the end goal of Physical
Chemistry. There are a few interesting points that can be made with the derivations thus far. For example, we remind you that the
Boltzmann constant is related to the gas constant R via Avogadro’s number. As a result, algebraic manipulation of the average

square velocity reveals:
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where M is the mass in kg per mole. Since all these derivations were performed on a perfect gas, we know that for 1 mole:
P.-V=R-T and as aresult:
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Now we can make a simple measurement of the pressure of a gas and know how fast the individual molecules are moving. Score!
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10.2.3 Most probable velocity. Here we locate the top of the Maxwell-Boltzmann distribution by first determining the derivative:
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The two terms can be set across the equal sign once we set the expression to 0 s/m, and the velocity terms in the derivative become
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the most probable because there is only one velocity that maximizes the distribution:
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Several simplifications can me made: 2 = v, - ( ) from which we solve:
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10.2.4 Flux. One of the more interesting things that Maxwell-Boltzmann calculations can be used for is to model the flux of
molecules hitting a surface. A flux is the collision rate of gas molecule striking an area per unit time. We express the flux as per
unit area so that the data can be applied to different systems. To determine the flux we will use a phenomenological model shown
in Figure 10.6. Here we see that a gas molecule is moving to the right, and in A¢ time it will strike the wall of area A. It has to
travel some distance to do so; this distance is specifically the molecule’s speed in the “right-moving” direction times the time (At)

it takes to reach the wall. We can easily calculate the average speed in the x- (or y- or z-) direction by solving:
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(vg)=[ _OZO Vg - (ﬁ,) ‘e - Ov, , but hopefully you realize that this is 0 m/s. It also isn’t what is being asked- we want

to know the average speed of a molecule under the condition that it is only moving to the right, or in other words with a positive

velocity. This is:
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(see the change in the lower limit?) This is solved with the identityint°x - e’ . g = 2—1a :
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Now that we have the length that the red gas molecule is travelling to hit the wall, we now have the volume that the molecule

o=

resides in: At - (v,) TLALI we simply multiply this volume by the number density (number of molecules per volume in the
container), we just calculated how many molecules are going to strike the wall in time A¢. The number density is %, and thus:
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Last, recall that the flux is the number of collisions per unit area per unit time. Consequently:
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Using the perfect gas law \(PV=nRT)can be expressed using the number of molecules N with Avogadro’s number: PV = NiART ,

and since 1\% = kp we have: fracPkp-T = % . When we use this in the expression above we determine that:

\[Flux={\left(\frac{k_B\cdot T}{2\pi \cdot m}\right) }A{\frac{1} {2} }\cdot \frac{P}{k_B\cdot T}=\frac{P}{\sqrt
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‘ D ParseError: EOF expected (click for details)

\nonumber \]
Again, we demonstrate how simple measurements like pressure yield information about the individual molecules themselves when

you understand their statistical behavior.

This page titled 10.3: Average and RMS Velocities is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Preston
Snee.
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