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4.4: The Car Engine and the Carnot Cycle
When civilization began, people survived by the work of their hands. Farming meant pushing a plow, although the discovery of the
mule made this easier. Later, the industrial revolution demonstrated the utility of machines for work. Unlike other people and
mules, machines never tire and can be turned off and on at will, and their food is super-cheap. As this fuel is oil.

Machines burn fuel to do work, meaning   , and this direction of energy flow has profound implications for engine
efficiency. We must consider how to practically power a machine. When you were a baby your first interaction with a machine was
likely a wind-up toy, perhaps a car. Compressing and releasing the toy’s spring propelled the miniature vehicle forward, until the
spring got sprung. Although this mechanism works just fine for a child’s toy, would a company design a real car around the same
principle? Such a vehicle wouldn’t propel anyone very far before having to be wound up again, which would be clumsy at best
(and the spring would have to be huge!). Overall, we reject the use of a spring-driven vehicle and prefer a car with a reciprocating
engine.

A reciprocating engine uses heat to create work in a cyclical process (this is where the end state is the same as at the beginning). An
example is a modern 4-stroke piston engine shown in Figure 4.3. A mixture of petroleum and air is drawn inside, compressed, and
then ignited by a sparkplug. The resulting expansion pushes the piston downward in the power stroke, which turns the car’s wheels
that are connected by the crankshaft. Afterwards, the spinning crankshaft pushes the piston back into the original state, which
expels the resultant CO  gas and water vapor out into the tailpipe in the process. More fuel and air are drawn in and burned as the
cycle is repeated. The net work is negative, and also recall that expansion work is energy out of the system. Another, easier way to
think of this is to ask yourself, would you rather be pushed forward or pulled (dragged) behind a car? Hopefully you said pushed
forward, which means you want the reciprocating engine to produce a negative amount of work.

The idea of a reciprocating process was first realized in steam engines, which were becoming ubiquitous in 1830 when Sadi Carnot
was in the French military. At that time Carnot was busy shooting cannon balls at things; this was his job in the military which
made him wonder how heat is converted into work. Carnot imagined the simple system shown in Figure 4.4, whereby negative
work is created by expanding a gas in cylinder body by placing it on a heat source. Afterwards, the system is returned to its initial
volume by moving it onto a cold block. This simple model allowed Carnot to derive the theoretical efficiency of converting heat to
work, which can be used to demonstrate that cars need both pistons and tailpipes and explains why planes fly at high altitudes.
Carnot also introduced the concept of entropy (although he didn’t use that word), and as a result Carnot is called the father of
Thermodynamics. Carnot died soon after of cholera in 1832; I’m sure his cat was sad.

Carnot expanded on the simple model described above by developing an idealized cycle to represent a reciprocating engine shown
in Figure 4.5. The piston initially has a small volume ( ) and experiences an input of heat ( ). The resulting high temperature
and pressure ( ) of gas expands the piston to create some negative, “pushing” type isothermal work ( ). The system
lands at volume  and pressure , still at . Note that the relevant thermodynamic quantities are defined in the figure. The
next step is to lower the temperature, for which Carnot imagined using an adiabatic expansion to generate small bit more negative
work ( ) to take the system to volume  and pressure . The adiabatic expansion cools the cylinder to a lower temperature, 

. To compress the piston back to the original state, Carnot simply reversed the first two steps using an isothermal reversible
compression that releases heat followed by an adiabatic compression to return it to , , and .

4.4.1 Efficiency of the Carnot Cycle 

The Carnot cycle is clever in how it forms a perfect loop. Here we perform a thermodynamic analysis to understand the
implications of a cyclical hot expansion followed by a cold compression. First, we add up the total work performed by the cycle,
which is:

where ; ; ; and 

. Obviously , so these cancel out and the total work is now composed of just two terms:
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This can be simplified if we can demonstrate a relationship between  and , which we will do using the adiabatic

expansion and compression steps that connect state 2 to 3 and state 4 to the initial state 1, respectively. Specifically, the adiabatic

equation of state  stipulates that, in the 2  step:

and in the 4  step:  which can be inverted into:

which means:  and can be rearranged to: . Taking the natural log of both sides:

since . This allows us to substitute:  for:  in the equation for total work:

Since  and , clearly  is a negative quantity. Perhaps this seemed to be a large amount of effort to
demonstrate a point than can be proven graphically as shown in Figure 4.6 (left), which is an exaggeration of the Carnot cycle.
Here, the graph of P vs. V clearly has more area under the hot expansion compared to the cold compression, which is consistent
with the generation of net negative work.

Next we determine the efficiency of the Carnot cycle, although we must make some decisions on what “efficiency” means. Since
modern engines turn heat into work, it seems that we should determine the ratio of the total work divided by the heat: , where
the total heat is the sum of the 1  and 3  steps. However, this isn’t quite right. To understand, note that in the 1  expansion step
we add the heat energy which takes action on our part plus fuel (which means \[s!). In contrast, the 3  compression step loses heat
which doesn’t take any effort from us, the engine user. In an actual motor vehicle the 3  step is when the exhaust gas in the engine
is opened to the tailpipe, which dissipates the leftover heat all on its own. Thus, efficiency should be the total work divided by just
the heat added in the 1  step ( ). As that the total work is also negative, so we are going to define the efficiency as the absolute
value of the work to heat ratio:

Using the equations derived previously the efficiency is:

(If you are following along but have lost track of a minus sign in the numerator, that is the effect of the absolute value). A very
important result of this relationship is that the Carnot cycle cannot be 100% efficient unless . This is a bit of a bummer,
and it also shows us that those wacky Youtube videos of perpetually motion contraptions are impossible. So how can we make a
machine at least more efficient, to save money and use less fuel? We try to make the ratio  as low as possible. For example, we
can increase the temperature in the engines, unless it gets so hot that it melts. As for the cold sink, do you see now why airplanes
what fly at 30 K feet where the atmospheric temperature is quite low (-55 C)? Overall, one of the values of such thermodynamic
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analyses as presented here is that our fundamental understandings of science and nature help us manipulate our surroundings to be
of maximum benefit to us and the environment.

Equation  reveals more about the inner workings of reciprocating engines by the fact that the efficiency is 100% if the cold
block (i.e. car tailpipe) is at 0 K. How can a cold tailpipe affect mechanical motion such that all the heat energy is converted into
work? Recall that all the work is performed by a gas. Using the perfect gas law:  with  in cycle steps 3
and 4 means that the exterior pressure in those compressions is 0 Pa. In other words, the system is compressing against a vacuum to
return to the original state, and since , this isn’t any work at all! This situation is depicted in Figure 4.6, which
makes it clear that the lack of perfect efficiency of the Carnot cycle is due to the loss of energy when performing compression work
to return the system back to the original state.

A relevant practice problem is provided in Example Problem 4.1. Here you can see that the input of energy into an adiabatic
reversible device results in negative work out of the system. Consistency with the second law is demonstrated by the fact that there
is no change in total entropy (in or out the system!). This makes the work out the most possible, which is nonetheless less than the

input energy of heat. Hence, machine efficiency is finite. Upon closer analysis the efficiency of the transition 

appears greater than allowed from our analysis of the Carnot cycle: ; however, the example problem doesn’t follow a

full Carnot cycle because we didn’t make the piston transform back into its original state. If we had, work would have been lost in
the compression.

4.4.2Entropy of the Carnot Cycle 
While we have demonstrated that a Carnot cycle cannot be 100% efficient, at least not practically, we now ask the question: so
what? Just like I’m not concerned about the efficiency of a wind-up spring toy, perhaps the Carnot cycle describes a mechanical
system that is not of interest. To show why this isn’t the case, we must calculate the total change in system entropy of the Carnot
cycle by summing up the changes. As steps 2 & 4 are adiabatic and reversible, there is no change in entropy at all (see Table 4.1 on
pg. ); thus . As for steps 1 & 3, as these are isothermal reversible transitions:

While we can’t make much headway with this, note that we previously determined that  using the adiabatic

equation of state. Thus:

Consequently, the entropy change of the system throughout the cycle is . Now we can
consider the exterior changes in entropy. First,  since these steps are adiabatic, and likewise 

 because of the reversibility of those steps. As a result, the total  and thus 
. This means that the Carnot cycle is fully reversible. As reversible systems provide the most exterior (negative)

work as we established in Sec. 2.2, it must be true that an engine that operates by the Carnot cycle is the most efficient engine that
could ever exist. As a result, we can now stipulate that, for any machine a person could ever build, that efficiency is less than 

; this is the most important result of thermodynamics.
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