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5.4: Advanced Derivations - Maxwell Relationships II
We had a brief introduction to Maxwell relationships in Sec. 4.5. In case you don’t recall, a Maxwell relation is based on the Euler test for
exactness of a partial function. For the change in a function (i.e., the differential):

then if  is an exact partial differential: 
.

Since state variables (U, H, A, G, and S) have exact partials, we can use them to derive Maxwell relations with the Euler test. Starting with
internal energy:

therefore: 

, and since  and , then:

Likewise , which leads to 

and thus:

These are the relationships derived from Ch. 4. More interesting relationships are derived from:

 and 

such as:

and:

Equations  and  are especially useful for understanding changes in entropy, which tends to be a very difficult subject.

5.4.1 Using Maxwell Relations 
Maxwell relations can reveal many thermodynamic principles, some we have seen already and some that we have not. For example, what

can we do with the fact that  from Equation 5.11? The derivative on the right is easy to determine using the perfect

gas equation: . Thus,  which is always positive as there is no such thing as negative values for n,

R, and V. This means that increasing the volume of a perfect gas at constant temperature will increase the entropy. This makes sense

because we previously derived the equation:  that demonstrates the same. In fact, we can re-derive this using:

, which is rearranging as:  and then integrated: .

What if we had started with the Helmholtz Maxwell relation:  from Equation 5.12? The derivative on the right is

easy to determine using the perfect gas equation: . Thus,  which is always negative. This

means that increasing the pressure of a perfect gas at constant temperature will lower the entropy. This makes sense because you must
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lower the gas’s volume to increase pressure, which we already know will cause the entropy to drop. We can in fact determine the

relationship between entropy and pressure changes using: , which is rearranged as:  and then integrated: 

. If we insert the perfect gas equation for the pressure we find 

 as stated before.

5.4.2 Compressibilities 
Maxwell relations allow us to understand the thermodynamics behind some measurable physical properties of materials, specifically the

expansion coefficient  and the isothermal compressibility . Specifically, we can show that , 

, , and  can all be expressed as functions of  and  using the Euler Chain formula 

, which rearranges to .

. Start with the Helmholtz Maxwell equation . From there we use the Euler Chain Formula: 

. Knowing that  and thus  we can reduce the above to: 

. We were given that: , which is rearranged as:  to yield the final

result:

. Starting with the enthalpy Maxwell equation  and applying the Euler Chain Formula on the right side: 

. Knowing that , the partial with respect to T at constant P gives 

 and therefore . Thus the Euler Chain formula above reduces

to: . To get rid of the entropy term we use the Gibbs energy Maxwell Equation  , which

leaves us with: . Knowing that  we can reduce this to:

Conclusion 
After nearly 100 pages and 5 chapters of Physical Chemistry I, you finally know all there is to know about how a gas expands and
contracts. Congratulations! Now we move into the more practical aspects of thermodynamics, which are the energetics of chemical
reactions. The greatest use of this science is the ability to accurately predict reaction yields, which is very useful for industry that produces
chemicals on megaton-scales. However, we will now see how limited our understanding of energy is, and how we can at best only
relatively understand thermodynamic principles of energy.

This page titled 5.4: Advanced Derivations - Maxwell Relationships II is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated
by Preston Snee.
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