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7.3: Excess Functions and Ideal Solutions
Raoult’s Law gives us a starting point to analyze the thermodynamics of mixtures in much the same way that the perfect gas law did
in Chapter 1. We will use it to define several new thermodynamic variables for liquid mixtures; these are called “excess functions”
and we will begin with the excess volume . To describe it we have to define a few terms; first, the volume per mole of liquid
“A” in its pure form is . This is defined such that if we have a glass full of liquid “A” and add one more mole of “A” to it, then

the volume will increase by . When expressed mathematically this is , which is called a pure partial

molar volume. You are actually quite familiar with this concept; if you add a mole (18 g) of water to water, the volume increases by
18 mL because the density of water is exactly 1.0 g/mL. Thus, . However, if we were to add 1 mole of

water to a large quantity of ethanol, then the total solution volume would only increase by 14 mL! It is this difference that
represents the excess volume of mixing.

To generalize, we state that if a glass contains liquid “B”, the volume increase that occurs after the addition of a mole of “A” is:

where the subscript “ ” means that we are studying a solution that has more than one component. In the water + ethanol
example . In this situation there is a non-zero excess mixing volume ( ), which is defined
as:

where  and  are the total number of moles of “A” and “B” in the resulting solution. Of course we had to add in the volume for
component “B” into Equation 7.3 for , after all we can’t make a solution just out of liquid “A”! In the case of a water +
ethanol solution the excess volumes  and  are shown in Figure 7.3, where it can be seen that they are continuously
changing functions of the composition of the liquid.

It is important to understand that the excess solution volume, Equation 7.3, is not the same as the total solution volume. For
example, adding water to water makes  = 0 mL/mol. To find  for the addition of water to a very large quantity of
ethanol we look at Figure 7.3 to find = 14.1 mL/mol, while the partial molar volume of ethanol is the same as the pure partial
volume,  58.7 mL/mol. Thus the excess mixing volume upon addition of 1 mol water to a large excess of
ethanol is: . To check your understanding, perform the same
calculation on the addition of ethanol to a large volume of water, where the partial molar volume of ethanol is  = 54.9
mL/mol (you should find . One last item of interest is the fact that the partial molar volume data shown in
Figure 3.7 are nearly mirror images of each other. This is no accident and is explained by a Gibbs-Duhem equation discussed in the
extra information section.

There are excess functions for all thermodynamic variables, which are listed below:

In these equations  number of components in the solution; generally we will use  = 2 (for example, water and ethanol) for
simplicity.

With the excess functions are defined we can examine what makes a solution “ideal”. Specifically, the components “A” and “B” of
an ideal solution obey Raoult’s Law and have the following properties:
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1. The partial volumes of the components in solution are identical to their pure partial volumes.
2. The components of an ideal solution interact the same way with their mixing partner as they do with each other.

The first property states that  for all ideal solutions. The consequence of the second property is that the internal
energy of molecule “A”, when in its pure form, is the same as when mixed with molecule “B”. This means that .
Combining these properties allows us to determine the enthalpy of mixing (Equation 7.5):

The  is removed because we assume the pressure is constant; furthermore,  and  due to
the fact that we are describing an ideal solution. As a result , which demonstrates that an ideal solution neither warms
nor cools when “A” and “B” are mixed. As an example, let’s recall that toluene and benzene obey Raoult’s Law as seen in Figure
7.2A. Our chemical intuition tells us that these two aromatic molecules likely interact with each other and among themselves via 

  interactions; furthermore, they have similar volumes. As a result we can conclude that toluene and benzene form an
ideal solution.

Let’s study why ideal solutions mix, which must mean that  is negative. According to Equation 7.7:

and since  = 0 J, then . Consequently entropy is entirely responsible for ideal solution mixing. For 
 to be negative then  must be positive which we will prove in the following derivation. In Sec. 7.1 we determined that

the Gibb’s energy change for component “A” in a mixture is: , where the initial pressure is the pure

partial pressure ( ) and the final pressure is the partial pressure in the mixed state ( ). As a result 

, which can be further simplified by insertion of Raoult’s Law: :

Since there must be at least two species to form a mixture, we must add in the change in chemical potential of species “B” to
calculate the total change:

As the chemical potential is Gibbs energy per mole, we divide Equation 7.8 by total number of moles :

\[\frac

_{mix}G_m={\mathit{\Delta}}_{mix}\mu =\Delta {\mu }_A+\Delta {\mu }_B \nonumber \]

Given the  relationship derived earlier, we can see that:

which is always a positive quantity, and reveals that ideal solutions always mix due to the increase in entropy. The size extensive
forms of the change in entropy is simply the per molar form multiplied by the total number of moles:
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