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7.5: Colligative Properties

Many properties of water are altered when salt is added to it. Specifically, the vapor pressure drops, the freezing point lowers, the
boiling temperature rises, and the osmotic pressure increases. One way to remember most of these is to imagine a phase diagram
where the triple point is lowered down the solid-gas line while dragging the liquid-gas and solid-liquid borders with it as shown in
Fig. 7.5. At a specific temperature, the vapor pressure drop is shown by line A where you can see that the liquid-gas boundary
crossing point occurs at a lower pressure. Lines B & C show that, for a given pressure, the solid-liquid and liquid-gas lines cross at
different temperatures. This represents the freezing point depression and boiling point elevation.

Here we will use our knowledge of the thermodynamics of mixtures to quantitatively predict these behaviors that are called
“colligative properties”. For the most part, the accuracy of these relationships is modest, but they reveal what causes the solvent to
react to the addition of a solute. We will assume that the solutions are ideal, and that all species are at equilibrium from here on.

7.5.1 Chemical Potentials and Equilibrium. As discussed in the previous section, the change in Gibbs Energy per mole (i.e. the
chemical potential) of a liquid is the same as the vapors with which it is in equilibrium. We will use this fact to predict colligative
properties. For example, we have already shown how Raoult’s Law is predicated on the lowering of a solvent’s vapor pressure by
addition of a solute, specifically in proportion of the liquid state’s mole fraction:

P:P*'Xliq:P*'(l_Xsalt)

where x;, is the mole fraction of liquid water and X, is for the added salt. When working on numerical problems related to
Raoult’s Law, you must recall that salts disproportionate into two or more species upon dissolution when calculating x,,;;. While
this one was easy, the changes in phase behavior are more challenging as discussed below.

7.5.1.1 Melting Point Depression. Concerning the lowering of melting point of a solution, we begin by stipulating that both the
liquid and solid phases that co-exist in equilibrium must have the same chemical potential:

Hsorig = l‘l‘liq
where the ° symbol refers to chemicals in the standard state (25 °C and 1 bar pressure). From here on we will use an example of
adding salt to an equilibrium solution of water with an ice cube (solid water) floating in it. First, the chemical potential of liquid
water is lowered by the dissolution of salt as stipulated by Raoult’s Law. Next, the system adjusts to maintain equilibrium, which
mathematically means:

Psotia = Mg T RT - ln(Xliq)

See how the liquid’s chemical potential is lowered on the right yet the ice on the left isn’t affected? This makes sense if the ions do
not permeate into the ice, which leaves its chemical potential unaltered.

Recall that the Gibb’s energy of formation per mole is the chemical potential: A¢G,, = u°, and some simple manipulation yields:

\[{\mu }A
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_fGA{{}M\circ }_{lig,m}\) is the change in Gibbs energy per mole for fusion (note that “fusion” is the TUPAC word for melting).
The above relationship can be simplified as:

_Afus G:n
RT

Equation 7.5.1 uses the standard state fusion Gibbs energy per mole, which can be found in most thermodynamic data tables.

= ln(Xliq) (751)

However, Equation 7.15 uses standard state data, so the temperature must be T = 25 °C and this is a problem because ice and salty
water are not at equilibrium at room temperature! Rather, the temperature should be 0 °C or less! Thus, we must use the correct
fusion temperature TY,, in Equation 7.15, and furthermore the correct thermochemistry data for the change in Gibb’s energy
A s Gy, that occurs at the T'f,,, temperature. This is expressed as:

=1In(x;,) (7.5.2)

This equation works just fine, and to demonstrate, pure H, O water and ice are in equilibrium at 1 bar pressure and 0 °C, which
means that their chemical potentials are equal:

osotid — Hiiquid = A fGsotidm — AfGligm = —Afus G = 0 J/mol

As aresult:

This is only true if X;,, =1, meaning that the liquid is perfectly pure! Of course it is, since only pure water and ice are at
equilibrium at 0 °C! If you are confused by the fact that the mole fraction of the liquid is x;;, =1 when there is ice present, this is
because the solid ice and liquid water don’t interact very much, and you can say that each has its own mole fraction that is
independent of the other. However, when we add salt to the water, then Xiig will go down.

The relationship above allows us to provide a simple thermodynamic explanation for freezing point depression. Adding salt lowers
the water’s chemical potential. Ice doesn’t “see” the salt and thus its chemical potential is unaffected, making it appear that there is
a problem with maintaining equilibrium via equal chemical potentials. However, chemical potentials are temperature-dependent;
thus, the temperature decreases to re-align the chemical potentials of the ice and the salted liquid so that they become equal again.
As a result, the freezing point drops.

This leaves us with one final task, which is to derive a quantitative formula for the drop in freezing temperature AT as a function
of salt content x,,;;. As a mathematical description of this process involves changes in salt mole fractions, chemical potentials and
temperature, we must use the calculus of derivatives to derive a proper relationship. And although it’s probably confusing just
where to start, we do know that adding salt lowers the mole fraction of water (;;,) and changes the freezing temperature T'fs.
Ty,

aXliq

Consequently, let’s work on and see if we can accomplish our goal with it. However, it turns out that it is much easier solve

- Afus Gm
RTfus

aX lig
6Tfu ]

the inverse relationship . To calculate this derivative we can use Equation 7.16: ln(xh»q) = , which means that we are

In(xiq)

O1n(xu i . . . . oy s 0
Olnlosy) rather than: ==+ because these derivative will basically behave the same and it is easy to solve oy,

anuS anus
via the Gibbs-Helmbholtz equation:

going to solve:

\[\frac{\partial \In \left({\chi }_{liq}\right)}{\partial T_{fus}}=\frac{\partial }{\partial T_{fus} }\left(\frac
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\nonumber \]

Here is where this gets interesting; we now integrate this derivative to account for the absolute differences in Tf,s and x;;, as salt

ol .
is added by splitting up the partials of % as so:

\[\partial \In \left({\chi }_{liq}\right)=\frac
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\partial T_{fus} \nonumber \]

The limits of integration allow us to specify an initial temperature and salt concentration, which we will use ln(xh-q) =0 for the
initial mole fraction (because Xiig = 1 for pure liquids) and T%,, =273.15 K for the initial temperature (because the melting
temperature of pure water is 0 °C, which is 273.15 K). The upper limits of integration are the natural log of the final molar
concentration | \ln \left({\chi }*'_{lig}\right) | and the new melting temperature . Starting with the left side:

| \intA{ \In \left({\chi }*'_{lig}\right)} _0{}\partial \In \left({\chi }_{liq}\right)=\In \left({\chi }»'_{liq}\right) \nonumber |

We can simplify this result as: [\In \left({\chi }A'_{liq}\right)= \In \left(1-{\chi }_{salt}\right)\approx -{\chi } {salt} | And now we integrate
the right side:\(\intA{TA"_{fus}}_{T_{fus} }{ }\frac
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{TA"_{fus}T_{fus} }\right)=\frac{-{\mathit{\Delta}} _{fus}H_m}{RNleft(\frac{\Delta T}{TA"_{fus}T_{fus} }\right)\)
where | T_{fus}-T""_{fus}=\Delta T|. We can make a few simplifications; given the fact that the new melting temperature

is only slightly less that T, then: |T/\'_{fus}T_{fus}\approx TA2_{fus} | This results in: frac—A sy Hm R (%T ) = —X4q+ Which

rearranges and simplifies to:

. R- Tf2u3 * Xsalt

AT = —z (7.5.3)

As you work some practice problems using Equation 7.17, you will find that it is decently accurate but not perfect. This clearly has
to do with the approximations made in the derivation, such as the use of Raoult’s Law and especially the fact that we did not
account for the temperature dependence of Ay, H,, when analyzing the \(\intA{TA'_{fus}}_{T_{fus}}{}\frac
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\partial T_{fus}\) integral. Regardless, the relationship reveals some interesting phenomena, such as the fact that the freezing point
depression is inversely proportional to the enthalpy of fusion. If the enthalpy is high for a liquid, then the effect of salt is
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minimized. Also, the freezing point depression of water is enhanced by adding salts such as CaCly due to the large number of
dissociated ions that increases x,,;;; this information helps with managing roadways during winter weather.

7.5.1.2 Boiling point elevation. Essentially the same derivation is used to calculate the increase in boiling point of a salty solution,
RTU%lP'Xsali

and as a result we won’t repeat the effort here. The relationship is: AT = 7
vap Him

where the relevant change is vaporization and | {\Delta T=TA'_{vap}-T}_{vap}
depression problem.

, the opposite order that appeared in the freezing point

7.5.1.3 Osmotic Pressure. Living cells have osmotic pressure, which is to say that they experience a higher internal pressure than
atmospheric resulting from the fact that the cells’ cytoplasm contains dissolved salts and other biologicals such as proteins.
Osmotic pressure can be measured using a system such as that shown in Figure 7.6, whereby a saltwater solution (left) is vertically
displaced upwards in a column by pressure. This “push” experienced by the left side is generated by osmosis from pure water on
the right side that is separated by a semi-permeable membrane. The osmotic pressure II is equal to the applied pressure necessary
to even out the liquid column levels.

Here we seek to explain exactly why this osmotic pressure differential exists and how to calculate II. There are two simple
explanations; one is that the pure water on the right side of Figure 7.6 is attempting to dilute the salty water on the left, which is an
action to resist change (basically a Le Chatelier-type process). A better thermodynamic argument stipulates that the chemical
potential of the salty water is less than the pure water, and as such the pure water moves towards it. This “push” of the pure water
into the diluted water occurs until equilibrium is reached, at which point the chemical potentials of the salt water and pure water are
equal. However, there is a problem with the application of Raoult’s Law due to the fact that the chemical potential of the saltwater
solution on the left: u° + RT - In(x) is supposed to be equal to the chemical potential of pure water on the right 1°:

p°+RT - In(xpiq) = p°

This equation is true only if x;;; = 1, but when we add salt to the water then X;;, < 1. Clearly we are missing some extra source of
chemical potential, which in fact comes from osmotic pressure. Recall that the chemical potential is the Gibbs energy per mol
which changes as:

O =0G,, = — S OT + Vi OP

At constant temperature the chemical potential changes with pressure as: partialy =V,,0P. If we integrate this simple
relationship: Ay = —Y— AP, where the change in pressure AP the osmotic pressure II. We apply this osmotic pressure

Nuwater

correction to the saltwater solution to the left side the result is u° + RT - In(xy;, ) + I—— , which we equate to the chemical
w Xlig Twat q

potential of the pure water on the right side as:

#° + RT - 1n(xy,) + 1T La—

water
Some cancellation and algebraic simplification yields:

II v :—RT-ln(Xh»q)

Nuwater

As  Xjq is the mole fraction of the water solvent and X4 =1—Xsu , we can apply the approximation:
ln(xh-q) =1n(1 — X4ut) & —Xsan - Inserting this into the relationship above: IIV= nyqter BT - X sait

Nsalt ~ Msalt
—_— =

Now we make one last approximation, which is that: x; = . This is reasonable so long as 7 <K Nyater -

Nwater +Nsalt Nwater
This approximation can be inserted this into the expression for osmotic pressure:
Msa
1V = nyater BT * X 501t = Nwater BT - Talt;: N sqit BT
Finally, we have a familiar-looking relationship:
IV =ng; RT (7.5.4)

Note that the appearance to the perfect gas law is purely coincidental, but it does help making the osmotic pressure formula easier
to remember.

Conclusion. In this chapter we introduced the concepts of thermodynamics in condensed phases, which is to say that we hijacked
gas phase equations from earlier chapters and used the chemical potential as a conduit to the thermodynamics of the condensed
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phase. Raoult’s Law was used to predict how the vapor phase is connected to the contents of the liquid mixture from which it
originates, and we were able to use it to demonstrate colligative properties. In reality Raoult’s Law works well for solvents;
however, most systems do not follow it. Henry’s Law is a “fix it” for solutes, and when it doesn’t work then we turn to activity.
Activity is roughly proportional to concentration, although it has no units and is designed to make our thermodynamic equations
work. In the next chapter we will make use of these concepts for further examinations of different phases, which will allow us to
calculate phase diagrams including systems with more than one component.

This page titled 7.5: Colligative Properties is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Preston Snee.
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