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10.4: Average relative velocity and collision frequency
Another interesting use of the Maxwell-Boltzmann distribution is to examine how gas molecules interact with each other, and to do
so we have to consider our observational frame of reference. By this we mean that, in all the derivations above, we are outsiders
looking into a vacuum chamber containing a moderate pressure of gas. However, our observations may change if we are strapped
to be back of a gas molecule and riding it around in the same chamber.

How do we observe other molecules if we are one of them? In other words, we go from the laboratory to the molecular frame. To
do so, the transformation is that all the velocities are now relative to our own. Let’s say we are molecule “a” moving at speed 
and we see molecule “b” with speed . If “b” is going in same direction at the same speed, it appears not be moving at all. If
heading straight towards us, “b” appears to be scarily moving fast. Mathematically we are observing not the absolute velocity but
the relative velocity:

Perhaps we can now perform Maxwell-Boltzmann calculations on relative velocity? Not quite, which is because originally we had
a 2-dimensional system of two “a” and “b” velocity vectors. As a result, we still have to perform a 2-dimensional calculation, or we
have arbitrarily lost information and our analyses will be wrong (recall this was a problem we encountered when transforming 

).Therefore we define the second orthogonal velocity to , which is the center of mass velocity G shown in
the figure above:

To proceed, we need to be able to write the vectors  and  in terms of G and . Its just an exercise in algebra and the results
are:

What do we do with their Maxwell-Boltzmann distributions such that the velocities or “a” and “b” are analyzed together? Let’s
rather start with this question- what is the probability that “a” is moving forward? Why, its 0.5 or 50%! What about “b”? The same,
50%. Now what is the likelihood that both “a” and “b” are moving forwards? Clearly that’s 0.25 = 25%, which is the product of the
individual probabilities (like heads-heads in a coin flip).

Now we can answer the question- how do we analyze the velocity distributions for two particles simultaneously? We simply use
the product of the individual Maxwell-Boltzmann distributions:

The above is just the standard velocity probability distribution using two different masses (  and ) as well as velocities (

and ). Notice that the usual Maxwell-Boltzmann factor:  is squared in the equation above. However, the masses are

not because the mass for particle “a” and “b” may be different.

Moving forward, the clever thing is to redefine:  that appears in the exponential in terms of V  and G. We
expressed  and  above, and now we square them and do some algebra. There is a cross term G·V  that has been made bold
for emphasis:
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Notice how above that the G·V  cross terms in the second step cancel? This simplifies the remaining derivation because we can
now separate the G and V . as shown here:

\[MB\left(G\right)\cdot MB\left(V_{rel}\right)={\left(\frac

{2\pi k_BT}\right)}^3

\nonumber \]

Now we are almost ready to integrate the expression, but just like last time we have to be careful with partials. As we started with
the expression , of course it uses partials of . When transforming: , the
geometry factor (also known as the “Jacobian”) is 1.0; see the Appendix. This means:

However, we still need to remember that we live in three dimensions. Consequently the expression is:

\[{\left(\frac

{2\pi k_BT}\right)}^3{e^-}^{\frac{(m_a+m_b)({G_x}^2+{G_y}^2+{G_z}^2)}{2k_BT}}{e^-}^{\frac{\frac{m_am_b}
{m_a+m_b}V^2_{rel}}{2k_BT}}\partial V_{rel,x}\partial V_{rel,y}\partial V_{rel,z}\partial G_x\partial G_y\partial G_z
\nonumber \]

Ultimately, we want , so we want to remove all the reduced mass velocities (the G’s). To do so we integrate them out from -
G :

\[\int^{\infty }_{-\infty }{}\int^{\infty }_{-\infty }{}\int^{\infty }_{-\infty }{}{\left(\frac

{2\pi k_BT}\right)}^3{e^-}^{\frac{(m_a+m_b)({G_x}^2+{G_y}^2+{G_z}^2)}{2k_BT}}\partial G_x\partial G_y\partial G_z=
{\left(\frac{\left(m_am_b\right)}{2\pi k_BT(m_a+m_b)}\right)}^{\frac{3}{2}} \nonumber \]

This was solved using a standard Gaussian integral; it’s actually nearly identical to our derivation of the normalization factor in the
velocity Maxwell-Boltzmann distribution. The remaining part of the distribution is only in terms of the relative velocities:

From here, you transform  as before and we will also substitute in “ ”, called the reduced

mass, for . We can work the average relative velocity expression:

\[\langle V_{rel}\rangle =\int^{\infty }_0{}4\pi {\cdot V_{rel}}^3\cdot {\left(\frac{\mu }{2\pi k_BT}\right)}^{\frac{3}{2}}
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\cdot \partial V_{rel}={\left(\frac{8\cdot k_B\cdot T}{\pi \cdot \mu }\right)}^{\frac{1}{2}} \nonumber \]

The only difference between the average velocity  and the average relative velocity above is just an alternate

definition of the mass! Notice that the relative velocity is bigger (by ) than the vs. laboratory velocity if the masses are equal (
 = ).

10.4.1 Collision frequency and mean free path. Here we present an interesting use of the relative velocity, which is the collision
frequency and mean free path among gas particles. To calculate the collision frequency, we have to use the phenomenological
model shown in Figure 10.8. The purpose is to derive an expression for what is called a “collision volume”. This is a space that, if
occupied by two molecules, then they must have collided because there isn’t enough room for them not to do so. As we see in
Figure 10.8, the gas molecule has a diameter d that creates a collisional cross-sectional area of . In  amount of time the
gas moves over a distance , which allows us to define the collision volume:

If we simply multiply this volume by the number density  then we know how many collisions occur between gas molecules over
a timescale. The collision frequency, usually abbreviated Z, is thus the number of collisions per unit time: 

. As we showed in the calculation of flux:  so the above can be expressed as:

From this we see that larger molecules will hit each other more often, although larger molecules may weigh more which will also
slow down the collision frequency. Gases under higher pressure collide more. Finally, we can also use collision frequency to

determine how far a gas can travel before it hits another. This is the mean free path, called , which is .

You may recall that  for a homogeneous gas, which makes:

Given the 0.346 nm diameter of oxygen, the collision frequency for O  at room temperature and pressure is 5.8 10  s , which
makes it’s mean free path 76 nm. This is relatively far compared to the size of the molecule, which is why the “perfect” non-
interacting description of gas molecules is fairly accurate.

This page titled 10.4: Average relative velocity and collision frequency is shared under a CC BY-NC 4.0 license and was authored, remixed,
and/or curated by Preston Snee.
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