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13.2: Complex Potential Energy Surfaces- Vibration

We now take our first step into non-flat potential surfaces by studying the quantum mechanics of springs; this is called the
harmonic oscillator problem. Incidentally, chemical bonds work just like springs. Two atoms form a bond along the “x” direction,
with an equilibrium bond distance of x,. Any displacement from equilibrium results in a linear restoring force:
F= —g—‘; = —ky (x —xo) , the strength of which is dictated by the spring constant ky. Since we want to know the potential

energy V as a function of the position we note that ‘;—Z — —F(z) and integrate as follows:

/5V=V(w)=—/—kf(m—zo)ax:%kf(w_wo)z

To place this in a quantum mechanical context we simply insert the position operator Z as so: V= %k #(z—x0) 2 , which likewise
makes the potential energy an operator. And while we are ready to put this into the Schrédinger equation, however, before we do so
there is a very small change that significantly simplifies everything. This is to simply drop the equilibrium distance zy from the
potential energy operator as shown here:

A~ 1 R 1. .
V= Ekf(.r—:ro)Z — Ekfwz

The implication is that the position operator Z is now interpreted as the bond’s displacement away from equilibrium. Thus, a
positive () means that the bond is stretched and a negative (z) means compressed. There is one more issue to examine, which is
;—fnz% has the familiar factor of mass. However, when describing vibrational motion
between two bonded atoms then it is no longer clear which atom’s mass should be used. The solution is to use the reduced mass:

my-m: .
= ——=, where m; and m; are the masses of atoms 1 and 2, respectively.
mi1+msz

the fact that the kinetic energy operator

13.2.1.1 Wavefunctions
With knowledge of the Schrodinger equation:

There is an interesting mathematical
relationship that can be demonstrated with
Hermite polynomials:

v H, Hy1=2%.H —2v-H, ; Thisis called
a recursion and allows all the Hermite
polynomials to be determined with just the
first one: Hy,—g = 1.
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Table 13.1 Hermite polynomials.
\[\frac{-\hslash/A2}{2\mu }\frac
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A2\cdot \psi \left(x\right)=E\cdot \psi \left(x\right) \nonumber \]

we are ready to solve for the wavefunction 1. This effort is somewhat complex; as such, we will simply assure you that the
mathematics are tractable and that the wavefunctions are as shown in Figure 13.8. These solutions can be succinctly described
using the following formula:
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where a = (Hh—kf) * ,v—0,1,2...is the principal quantum number, N, = (m) is the normalization constant, and H,,

are the Hermite polynomials listed in Table 13.1.

Let’s turn our attention to the ground state wavefunction which has a bell-shape as shown in Figure 13.8. Subsequent excited states
have additional nodes due to the Hermite polynomials; these increase the curvature and thus the kinetic energy of each state. Note
how, in calculus, the double derivative found in the kinetic energy operator is called the “curvature” of a function! The Hermite
polynomials also assures that the wavefunctions are orthogonal to each other.

There are many other quantum mechanical properties to examine, including the fact that () = f Py - x-,0x =0 regardless of
the state. From this we learn that the bond is on average at the equilibrium bond length, even in highly excited states. Calculation of
the energy FE as a function of principle quantum number v reveals the relationship: E (v) = (v + %) hw , where w is the angular

kg
mass

frequency: w = ( ) ? . An important implication is the fact that the ground state has energy is finite: E,_y = %ﬁw Like the
particle in a box this is the zero-point energy, and it means that the atoms are always vibrating. There are other interesting analogies
to the particle in a box problem; the wavefunctions look surprisingly similar including the way they pick up additional nodes in
each excited state. One significant difference is that the harmonic oscillator energies are linear with the principal quantum number,

E o v, whereas the particle in a box is quadratic in proportion to its principal quantum number, E o n? .

13.2.1.2 Kinetic Isotope Effect and Turning Points. An interesting implication of the zero-point energy is that it is inversely
proportional to the reduced mass. This has an effect on the rate of a chemical reaction as dictated by the AG* barrier. Take for
example the breaking of a carbon-hydrogen (R3 C-H) bond. Given that the reduced mass is less for a C-H bond vs. the deuterated
analog C-D, there is a smaller barrier for the C-H bond to break as shown in Figure 13.9 A. As a reaction rate is proportional to the
barrier k ~ e~2G" (like the Arrhenius equation), the relative rates of reaction involving a proton are generally faster to the same
with deuterium according to the formula:

kcu e*AGCH

kep  e=AGen
While this ratio can be as high as 8, in reality there are many other factors in play and as such the kinetic enhancement can be
less. Regardless, the kinetic isotope effect is quite useful because it gives organic chemists a method to investigate which bonds
break in a reaction. Thus, it is often used for mechanistic analysis.

The wavefunction shown in Figure 13.8 are for a carbon monoxide molecule, which has a high spring constant ky=1860 N/m. As
such, the bond doesn’t stretch far as evident from the fact that the wavefunctions do not have significant amplitude past ~1/2 Bohr,
where a Bohr is a unit of length and is equal to 0.53 A. In contrast, I, has a very weak bond as evident from a k;=170 N/m, and as
such it can stretch almost twice as much as CO. Regardless of how strong a bond is, the atoms have a way of stretching further than
they should as revealed by the vibrational potential energy surface and ground state wavefunction shown in Figure 13.9 B. The
point where the total energy is equal to the potential, where there must be no more kinetic energy:

1 1 hw

“hw=—ks x —xp ==+, —

2 A ks
This is marked in the figure as the turning point (zy,), which is where a normal spring would stretch to the point where it stops and
starts to compress back. However, this isn’t true for the quantum mechanical spring, as the wavefunction has some finite value for
any x. As aresult:

o0
/ |%,_o|[?0z = 0.078
Tip
Consequently, there is ~8% chance that a bond will stretch past the point of having no kinetic energy, which is analogous to
tunneling discussed previously. Does this mean that the kinetic energy is in fact negative? What does negative kinetic energy
motion look like? This is one of the wonders of quantum mechanics as there is no analogy to our everyday experiences that would
help describe this.
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