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8.2: Entropy is the Reason Phase Changes Occur
In Sec. 5.3.3, we showed you that, at constant pressure, Gibbs energy always decreases with temperature. We will derive that again
here, starting with the change in Gibbs energy per mole which is the chemical potential:

Taking the derivative with respect to temperature at constant pressure results in:

The relationship above reveals that  is always negative because entropy per mole is always positive. Thus, the chemical

potential of a particular phase of a substance decreases with temperature in proportion to that phase’s entropy. Consequently,
heating causes the chemical potential of a liquid decreases faster than a solid. Likewise, the chemical potential of a gas decreases
faster than the liquid. This is important because, at very low temperatures, the solid phase has the lowest chemical potential. If you
doubt this, we remind you that all chemicals are solids at very low temperatures. As the temperature increases, the liquid’s
chemical potential eventually becomes lower than the solid’s, and thus we observe a phase transition (melting) at that temperature.
As the temperature increases further, eventually the gas phase’s chemical potential becomes lower than the liquid’s which is why
we observe boiling. This is all represented in Figure 8.3 (left-most figure); note that chemical potential is shown decreasing linearly
with temperature but this is just an approximate representation.

As for the effect of pressure at constant temperature, we use the change in Gibb’s energy:  to
show that:

Equation  is always positive because volume per mole can only be positive. And usually a solid is denser than the liquid, both
of which are always denser than the gas. When we combine these effects in Figure 8.3, we can start to map out the pressure and
temperature points of coexistence between two phases on a P vs. T phase diagram.

We hope the discussion thus far has aided your understanding of phase transitions; however, we can’t actually use equations 8.2 or
8.3 to define the boundaries in a phase diagram such as that shown in Figure 8.1. This can be accomplished by numerically
calculating the chemical potentials of all phases over the full range of pressures and temperatures in the graph and determining
where they are equal. And since we never know what the absolute energies are, we must always use relative formation energies (

) when performing thermochemical calculations. The ’s are chemical potentials, and we must adjust the standard
state values from a data table for other pressures and temperatures. To this end we use the many tools discussed in Chapter 6 that
provided for us the following:

where:

and:

The phase boundaries occur where  ,  and . Furthermore, the phase present is the one
with the lowest chemical potential for any given P and T in the phase diagram. This approach is demonstrated for water in Figure
8.4, where we have made 2-dimensional plots of the chemical potential surfaces of each water phase including projections where
the energies cross onto the P vs. T planes. These clearly mark the boundaries between phases with considerable accuracy. As shown
in Figure 8.4 A, the solid – liquid chemical potentials are equal at 0 C at 1 bar pressure, and the equilibrium is left-sloping with
increasing pressure due to the lower density of ice compared to the liquid. Figure 8.4 B shows that the liquid water – steam
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boundary begins at 373 K at 1 bar pressure and has a boiling temperature that rises with pressure. Unfortunately, calculations of
this nature are extremely labor intensive, and require accurate knowledge of the temperature dependence of the heat capacities of
all the phases. One can get lost in all the equations and calculations, making it is difficult to discern if there are simple reasons for
why a phase diagram appears the way it does. This prompts us to use a more simple approach.

8.2.1 The Clausius-Clapeyron Relation 

In our discussion above we calculated where two phases  and  are in equilibrium by finding the pressure and temperature points
where their chemical potentials are equal: . Another rule of thermodynamics requires that the derivatives of the chemical
potentials are also equal at equilibrium: . In a constant pressure and temperature world this means:

Collecting like terms:

Next we factor the change in pressure and temperature and divide the results:

Since we don’t like to work with changes in entropy due to the complexity of entropy in general, we can make a clever substitution.
Since enthalpy represents a heat exchange with the outside ( ), and given the definition of a change in entropy ( ),
we can substitute \(\frac{\Delta H_m}{T})for  to show:

This is the Clausius-Clapeyron equation that can help predict where different phases co-exist on a P vs. T phase diagram. Below,
we use equation 8.5 to directly map out the lines between solid-liquid, solid-gas, and liquid-gas boundaries in a phase diagram.

8.2.1.1. Solid-Liquid 

We will begin by analyzing the relationship between the solid and liquid phases, which allows us to determine melting temperature
of a substance at different pressures. Since we are discussing the process of melting  in Equation  is specifically the
enthalpy of fusion:

Likewise:

To derive the P vs. T lines of equilibrium, we take the Clausius-Clapeyron relation (Equation ) and “juggle” the partials as so:

Note that we can make the approximation that nether the enthalpy nor the density are temperature dependent, which is not correct.
However, inclusion of the temperature dependence of these properties creates a nightmarish calculus scenario, so we will
approximate that there is no temperature dependence. As a result, the integration of the above is simple:

Here we see that a starting point on the phase diagram, (P , T ) must be known before we can determine the pressure and
temperature of the solid-liquid line of coexistence at a different condition (P , T ). Clearly the triple point is a good choice, and
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thus P = P  and T =T . We will simply call P  and T  as P and T in our simplification of the above equation:

Equation  gives us a formula for a line that delineates between the liquid and solid phases in a phase diagram.

Does Equation  conform with the experimental data? First note that natural logarithms are fairly linear, and as a result

Equation  is like a line with a slope of . Concerning the slope, the numerator  (the input of energy required to

melt the solid) is usually a rather large, positive value. At the same time, the difference in the densities of solids and liquids is very

small and as a result the slope of the solid-liquid line  is huge. Concerning the right or leftwards slant of Figures 8.1 and 8.2,

respectively,  doesn’t play a role since it is always positive. In contrast, the volume per mole in the denominator is
generally greater for a liquid than a solid. This makes  likewise positive, which is why the P vs. T line between the solid
and liquid phases is to the right in Figure 8.1. The notable exception is water, which has a denser liquid than the solid (remember
ice cubes float) and thus  is negative. As a result, water’s solid-liquid line is to the left as seen in Figure 8.2.

8.2.1.2. Solid-Vapor 
A solid can evaporate directly into the vapor phase, which is the process of sublimation. Here we use the Clausius-Clapeyron
relation as previously to define the solid-vapor boundary:

where  and . We will assume that enthalpy is independent of
temperature, but we cannot do the same for  as a gas’s volume is highly dependent on the temperature. In fact, we can deal
with this temperature dependence by making a minimal approximation whereby the difference in molar volume (gas – solid) can be
assumed to just be the molar volume of the gas:  and thus 

This works because the volume of a gas is always significantly greater than that of the solid. We can make another substitution into
the above by inserting the perfect gas law  to substitute :

The pressure factor must be moved from the left side before integration, and as before we will assume that the initial pressure and
temperature are those of the triple point:

Some rearrangement makes this easier to look at:

where the constant is . Equation  looks like an exponential rise in a graph of P vs. T, which is exactly
how the solid-vapor line appears in the phase diagram examples shown in Figure 8.1 and 8.2.

8.2.1.3. Liquid-Vapor 

The development of the liquid-vapor line is identical to the above, except the process is vaporization rather than sublimation:

which as before can be rearranged into:  where . As in the previous example, the
liquid-vapor line appears as an exponential rise starting from the triple point just as seen in Figures 8.1 and 8.2.
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