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2.5: Heat Transactions, Heat Capacity, and Adiabatic Systems
As stated previously, heat ( ) is narrowly defined as an energy transaction between the exterior and a system. For example, a gas
naturally heats up when compressed in a metal piston, which becomes hot to the touch. That is, until it cools through a negative
heat transaction (a negative ). For a positive  the piston will feel cold because the heat is coming out of your hand (the —-
exterior) into the system. There is a problem with this definition because it makes it appear that a thermally insulated system
magically has no heat at all. This is very incorrect as we shall see in Chapter 4.

Concerning pure heat transactions, any thermodynamic problem must stipulate, “X Joules of energy is added to (or removed from)
the system”. Great- what comes next? Taking the viewpoint that heat is added, we know that the temperature increases. Let’s
calculate that, and first we must define the relationship between the addition of heat to the increase in temperature ala: .
Note that there must be some factor “?” in this equation for the simple reason that  and  do not have the same
units. This factor is the heat capacity “C”, which can be defined by modifying the equation above as: . Note that we have
already established that thermodynamic processes can occur at constant volume or constant pressure, which leaves us with two
possible definitions for heat capacities, one for constant volume:  and the other for constant pressure: 

. If we know the heat capacities and whether the piston of gas can expand (constant P) or is jammed shut
(constant V), we can then calculate a change in temperature by integration: .

Molecule  (J/K/mol)  (J/K/mol)  -  (J/K/mol)

Ar 12.5 20.79 8.29

O 21.1 29.4 8.32

CO 28.8 37.1 8.32

CH 27.2 35.5 8.32

    

Shown in Table 2.2 is a list of molecules and their per molar heat capacities. It is important to note that both  and  have
units of , whereas the true heat capacities  and  have units of . Thus, heat capacities are not per molar
quantities and are extensive, whereas per molar heat capacities are intensive. We usually present heat capacity in the per molar
form in problems and in tables because that information can be generalized. However, you must always remember to multiply the
intensive representation of the heat capacity (  or ) by the number of moles of your substance to make sure you’re
working with the actual heat capacity when addressing thermodynamic problems.

There are a few noticeable trends in Table 2.2, for example, Ar has the lowest heat capacity, and everything has . In
fact, it appears that the difference  -  is nearly identical to the gas constant R. There must be a physical basis for these
observations and for the magnitudes of the heat capacities in general. We will explore heat capacities further by considering what
happens when a gas is heated under conditions of constant volume. This is the simplest case because no heat is lost as work, and
thus  since  = 0 J. The Equipartition theorem states that per molar internal energy: 

 can only change with temperature:

which leads to:

since = 1. If you doubt this derivation, check how the numerical values of  in Table 2.2 correlate to the terrestrial U

 in Table 2.1. Overall, it’s a good match. Later we can explain why ”it is that , or equivalently 
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. Example problem 2.6 can be used to make sure you understand heat capacities.

2.6.1 Adiabatic Systems. In our exploration of work it was found that compression adds energy into a system. This should cause
the gas inside to heat up; however under isothermal conditions a heat transaction with the exterior kept the temperature constant.
This heat transaction is expected if the piston is made of metal and is in contact with the exterior. In contrast, example problem 2.6
was used to calculate the increase in temperature after heat energy was added to a gas- why didn’t this system cool back down? It’s
because the piston was wrapped in thermally insulating glass wool. What if we performed compression work on the same insulated
piston? For one,  must be 0 J because no heat transaction can occur through the thermal insulation. Furthermore, the system
can’t cool, and the temperature will rise, which results in an increase in . This is consistent with a positive , which is equal
to  since . Of course, we have to give this thermally insulated system it a peculiar-sounding
name, and that is “adiabatic”. Unfortunately, it has several other definitions sort of like how “bomb” is both a noun and a verb, but
for this class an “adiabatic” system is a thermally insulated one.

A system could never be simultaneously both adiabatic and isothermal, as they are opposites. Furthermore, adiabatic processes can
be reversible and irreversible just like isothermal transitions. As a result, we now have a total of four paths for thermodynamic
processes as summarized here:

Constant temperature, reversible Adiabatic, reversible

Constant temperature, irreversible Adiabatic, irreversible

And for each type of transition we can calculate five variables: , , , , and . Let me correct that- we have five
variables for now. We are going to end up with 12 by Chapter 5, times the four types of transitions, gives us 4 12 = 48 potential
thermodynamic relationships!

2.6.1.1 Adiabatic, Reversible. We must consider how work changes the temperature of an adiabatic system. In fact, for all adiabatic
processes the first thing we must calculate is the final temperature, since the initial temperature must be known. Normally, it would
appear that we should be able to determine the final temperature using an equation of state such as the perfect gas law. However,
the perfect gas law won’t help us with adiabatic transitions because PV=nRT is just one equation with three variables changing
simultaneously (P, V, and T). Another approach is required, such as calculating all the energy imparted via work and then use the
heat capacity to translate that energy into . Let’s use  as a conduit to realize this approach. First,  as 

 is always 0 J under adiabatic conditions. Next, as  is exact it can be calculated either reversibly or irreversibly and we will
get the same answer. Generally, it is easier to use the reversible path, which makes .

To connect  to the change in temperature we will use the example of an adiabatic expansion shown in Figure 2.8. In
this process, the volume increases with a simultaneous decrease in temperature. So how do we account for both volume and
temperature change when calculating the effect on internal energy? Due to the “exactness” of  we can decouple these processes
into different routes with the same start and end points. For example, the system can follow path 1 where there is a change in
volume at a fixed temperature; as a result there is no change in internal energy ( ). Path 2 represents a temperature
change at constant volume, which makes  and thus . We can also determine the
same following the alternative route Path 3 + Path 4, which simply follow the reverse order yet have the same change in total U.
Ultimately,  regardless of the route followed, and this is equal to the work as discussed previously. We will switch
to partial notation so that we can apply integral calculus on relationship:

The remainder of the proof will rely on perfect gas conditions, i.e.  and thus  which we plug into Equation
2.12:

This is important because we must integrate with respect to T and V (the partials in Equation 2.12), and thus we must make sure the
T and V that were “hiding” in P are now on the left and right sides. The integral limits (final minus initial) are  to  on the left
and  to  on the right:
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After integration we find:

Now we can apply several identities for natural logs, such as: , as well as:

 to make the following rearrangements:

and thus: 

”””Taking the exponential of both sides results in:

which gives a method for calculating the final temperature of a reversible adiabatic process. Basically, any question on adiabatic

transitions will provide all the necessary information for calculating  via  or a derivative thereof, albeit the data

may be obscured using the perfect gas law. Another interesting aspect of , which we sometimes refer to as an ””

“adiabatic equation of state”, is that it appears to be an alternative for the perfect gas law. However, this is incorrect as we used

PV=nRT in the derivation of this equation, and we can use PV=nRT to make further derivations of  which is on

several problems at the end of the chapter.

To summarize and provide some problem-solving strategies, a reversible adiabatic

transition has = 0 J, and the next step is to determine  via . Next, the change in U is , which is also the work.
Hopefully example problems 2.7 and 2.8 will solidify the lessons learned.

2.6.1.2 Adiabatic, Irreversible. Irreversible adiabatic work appears to be much simpler compared to the reversible, as the work is
against a constant exterior pressure. As a result, , and as it is still true that , integration yields:

Doesn’t it look much easier to calculate the irreversible  compared to the reversible example above? Of course, and as you can
imagine that is very wrong. Example problem 2.8 will help you navigate irreversible, adiabatic equations for work.

Note that the example problem demonstrates less negative work (-621 J) than observed in the reversible problem (-828 J); this
preserves the notion that we get the most (negative) work out of reversible transitions. And how did that extra work come about?
It’s because the reversible expansion ends up with a much colder gas, which means more internal heat was converted to expansion
work. Think of it like this: if the change in temperature was calculated from , then . Now since

the reversible work is the most negative, then the reversible transition will cool the gas more compared to the irreversible transition.

Conclusion. Thus far we have shown the basics of energy, heat and work, via the 1  Law of Thermodynamics. However, we still
have much to learn before analyzing chemical processes; in fact, the content of this chapter uses gas expansion and contraction in
place of chemical transformations because understanding a car engine piston is much easier than burning gasoline. This will be the
case until you reach Chapter 6, but for now we move on to understanding other types of energy and how they apply to the four
thermodynamic transformational conditions.

This page titled 2.5: Heat Transactions, Heat Capacity, and Adiabatic Systems is shared under a CC BY-NC 4.0 license and was authored,
remixed, and/or curated by Preston Snee.
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