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4.3: Calculating Entropy Changes
While the partial change of entropy is \(\partial S=\frac

{T}\), we must integrate it to measure a finite, quantifiable result:

\[\Delta S=\int{}\partial S=\int{}\frac

{T} \nonumber \]

This seems overly easy, especially as we know that nothing is so simple due to the existence of four classes of thermodynamic
changes (reversible or irreversible  adiabatic or isothermal). We might expect a different way of calculating  for each one;
however, this isn’t the case since S is a state function as described in the following sections.

4.3.1 Changes in System Entropy 

Let’s start with isothermal, reversible transitions. Isothermal makes T constant, which means that the integral expression above can
be simplified by taking the temperature outside of the integral:

\[\Delta S_{isoT,rev}=\int{}\frac

{T}=\frac{1}{T}\int{}{\partial q}_{rev}=\frac{1}{T}\cdot {\Delta q}_{rev} \nonumber \]

Recall that, under isothermal conditions , which when coupled with reversibility means ,

and thus  according to our learnings in Section 2.2. As a result:

As for isothermal and irreversible, since  is path-independent the result is the same: . Path

independence sure makes our lives easier!

We now move onto to adiabatic transitions. These calculations should be easy because  regardless whether we are doing
a reversible or an irreversible transition. And while it appears that there should be no change in the system entropy, in fact this isn’t
quite true. Recall that we previously stated that the definition of the change in entropy from Equation 4.1: \(\partial S=\frac

{T}\) is deficient. To analyze what this really means, let’s use the fact that changes in entropy are exact and we can examine
adiabatic transitions using two separate steps as shown in Figure 4.2. Under adiabatic conditions both the volume and temperature
of the system are affected. As shown in Fig. 4.2 first there is an isothermal change in volume (Path 1), for which we have already

determined: . In the second step there is a change in temperature under conditions of constant volume. This
can only be accomplished through a heat exchange, for which the relevant relationship is:  which is true whether the
transition is reversible or not. Thus:

\[{\Delta S}_2=\int{}\frac
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{T}=\int{}\frac{C_V\partial T\ }{T} \nonumber \]

The above needs to be converted into a definite integral, the limits of which have the units of the partial (temperature). If we
assumed the heat capacity is independent of temperature:

Since  as shown in Figure 4.2, the final result is:

Here is some good news- due to the fact that entropy is exact, the equation 4.6 is always “the answer”. It works for every transition;
for example, in an isothermal transition the 2  term is missing ( ), leaving us what we derived in the beginning of this

section: .

There are some nuances for calculating  via Equation 4.6 for adiabatic systems. For example, we already stated that it may
appear  for all adiabatic transitions because  always. To explore further we will calculate the adiabatic

reversible  using the adiabatic equation of state:  from Equation 2.13, section 2.5.1.1. A small

rearrangement yields: , which we can insert into Equation 4.6 for :

Using the identities  and  gives us:

Thus, the system entropy change for adiabatic reversible transitions is . In fact, if you are asked to analyze an adiabatic
reversible transition and you correctly apply all the final and initial variables into Equation 4.6 using your calculator, you will find 

 although as always be careful with significant figures!

The adiabatic irreversible situation is not so simple. Since the adiabatic reversible equation of state does not apply in the
irreversible situation, then it is impossible for the changes in volume and temperature to balance out perfectly. In other words:

To solve entropy changes for adiabatic irreversible transitions, one has to calculate the change in volume and temperature using 
 as shown in Section 2.5.1.2, and then insert the results into Equation 4.6. If calculated correctly, you will

always find that . As a result, this reveals a small flaw with the expression \(\partial S=\frac

{T}\), which implies that there no changes to system entropy under adiabatic but this is not true. Chemical Engineers have long
recognized this issue and resolved it by defining changes in entropy as: \(\partial S=\frac
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{T}+{\partial S}_{added}\). The 2  term is designed to account for the adiabatic irreversible condition, although unfortunately it
doesn’t help you actually perform any calculations!

4.3.2 Changes in Exterior Entropy 
In the previous section we discussed how  according to the 2  Law, where the equality is for systems at
equilibrium. Here we use this expression to determine how the exterior entropy changes as a function of conditions (isothermal or
adiabatic  reversible or irreversible). We will start with the adiabatic case, which is the easiest to calculate. As adiabatic means
there is no heat exchange with the exterior, then it must be true that  regardless of whether the transition is
reversible or irreversible. Consequently, adiabatic reversible have a total entropy change of .
Likewise, the total change in entropy in the adiabatic irreversible case is , since the total is equal to the
system’s change in entropy given the lack of an exterior interaction.

Concerning isothermal transitions, we will start with the reversible which experiences a heat exchange  with the exterior. The
resultant change in system entropy is \(\partial S=\frac

{T}\). Likewise, the exterior experiences a with the system and has a change of entropy of \({\partial S}_{ext}=-\frac

{T}\). Clearly, , just like the adiabatic reversible. In fact, the definition of reversibility is 
! To be more specific, recall that we established the formula for isothermal change in system entropy, 

, which means that the exterior change is: . As for isothermal irreversible:

because  is the definition of an irreversible transition. Consequently, some middle-school algebra allows us to

determine that: . Integration of this relationship yields: . This is actually where we stop

because we do not have the ability to determine the exact change in ; we can only know that it is greater than the reversible
system entropy change. This is because the exterior dynamics may due to some un-knowable action such that the total entropy
increases to overcome any decrease in entropy of the system (or didn’t decrease enough if the entropy of the system increases). For
example, in irreversible heating with a candle as shown in Figure 2.1A, thermal energy is not fully transferred from the exterior
(the candle) to the system (the cup of water). This is clearly inefficient and irreversible, and the “lost” energy must increase the
exterior entropy more than could ever be discerned from the study of the system alone. Let’s take another example, such as a
system under compression due to the action of a piston. This lowers the system’s entropy. But what actor on the outside of the
system is responsible for compressing the piston? If a cat is doing it, then it is guaranteed that the exterior experienced a significant
increase in entropy. And the magnitude of the total increase in entropy is unknowable, as any cat owner will tell you.

These results are summarized in Table 4.1. And with this information in our thermodynamics toolkit, we will now determine the
theoretical efficiency of gas-burning motor vehicles.
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