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3.3: Natural Variables and Legendre Transforms

It is more than just happenstance that U = dq and 0H = dq at constant V and P, respectively. To understand more of the fundamentals we introduce here the concept of
“natural variables” in thermodynamics. Natural variables are revealed when we examine how thermodynamic variables change, i.e. we derive their differentials. For example,
in an adiabatic system U = 0w = —PJV , and we see that the expression relates U to OV but not OP. This makes internal energy U connected with volume in a
fundamental way that it is not with pressure; as a result, we state that V is a natural variable of U. Note that when U’s natural variable volume is held constant, then an
important relationship emerges, which is that 8U = 8q (i.e. the change in internal energy is the heat transaction).

Here we formalize the definition of a natural variable using calculus. Recall that the change of a function f (z) is:
of
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We say that z is the natural variable of function f, and g—i is the conjugate of x. Let’s define a new function called g using f, x, and x’s conjugate:
of
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What is the natural variable of g? To find out, we must determine dg and see what makes it change; note the use of the product rule and the color coding to help you see how

equations 3.9 and 3.10 are combined:
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Thus g = —z - 0 (a—i) , and we conclude that (a—z) is the natural variable of function g. To summarize, what we did was take a function and subtract its natural variable

times the natural variable’s conjugate. This is called a Legendre transform, and it takes an old function with a natural variable and creates a new function with a different
natural variable (that being the conjugate of the old natural variable).

You might be asking, in the example above how can the derivative (2—;) also be variable? Also, is the partial of a derivative 9 (%) meaningful, or is it mathematical

gibberish? To address this, let’s examine a function like internal energy under adiabatic, reversible conditions: 8U = —P8V . To equate this to 8f (z) = %{“}z, we see that
U

U= f(z) and V =z, then we can also see that: U = g—gBV = —POV which means v — —P . Thus, negative pressure is conjugate to internal energy’s natural variable

volume.

Let’s now explore the use of a Legendre transform on U, whereby we create a new function that has a natural variable of pressure. Starting with the definition of a Legendre

transform, Equation 3.10: g= f — (%) -z , we recognize that f (z) =U, z =V, and % =—P:
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And now we see that this Legendre transform of U is the enthalpy H. To determine enthalpy’s natural variables, we differentiate it under adiabatic conditions:
OH =0U+0(PV)=—PdV +P3V +VOP =VOP

Hence pressure is a natural variable of H, and % =V is conjugate to pressure. Although we have performed this derivation by invoking adiabatic reversible conditions, it is
true that H = U 4+ PV for any transition since U and H are state variables.

3.3.1 Inexactness of q. As all this talk of natural variables and conjugates may be overwhelming and too abstract, we will slow down and work an example to solidify your
understanding. Recall in Chapter 2 we were able to demonstrate that work (Qw) is inexact due to the fact that reversible and irreversible work are not the same. Here we show
that heat (8g) is also inexact, facilitated by the fact that we know more about heat capacity and have had a lot of practice with partials. First, we start with the familiar relation:
OU = 09 @+ 0w, and following the reversible path (—0w = POV)) means dq = OU — 0w = 0U + POV . Next we substitutepartialU = Cy 9T, and as a result
0q = Cy 0T + POV . Now we need to make sure that we understand what our function is, what are the natural variables and those variables’ conjugates. We do so by lining

7] 7]
up dq above with the expression for the change in a function df (z, y) = (a—£> O + (0_1];> dy as follows:
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It is clear that f=q, x=T, and y=V, and (—f) = (_q) =Cy and (—f) = (_q) = P . Let us now define what it means to be inexact using Equation 2.9, the
oy ), or /., 0y ), ov )r

Euler test (an inexact partial fails the Euler test, hence the #):

| \left( \dfrac{\partial }{\partial y}{\frac{\partial f}{\partial x} \right)_y)}_x\neq \left( \dfrac{\partial } {\partial x} {\frac{\partial f}{\partial y} \right)_x)}_y \nonumber |

Making the proper substitutions defined above yields:

| \left( \dfrac{\partial }{\partial V}{\frac{\partial q}{\partial T} \right)_V)}_T\neq \left( \dfrac{\partial }{\partial T}{\frac{\partial q}{\partial V} \right)_T)}_V \nonumber |

The right-hand double derivative is: [\left(\dfrac{\partial }{\partial T}{\frac{\partial q}{\partial V} \right)_T)}_V=\left(\dfrac{\partial P}{\partial T} \right)_V | We assume perfect gas

oP n
conditions, ie. P = &‘;T, leaving us with: (B_T) _2 ‘g/ v_ %. The left-hand side is:
v
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|\left( \dfrac{\partial }{\partial V}{\frac{\partial q}{\partial T} \right)_V)}_T=\left( \dfrac{\partial C_V }{\partial V} \right)_T| since ¢ = CydT . Unfortunately, (8—1/"/> requires
T
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or
Chapter 2, Equation 2.11. There is no volume dependence to the degrees of freedom, at least for a perfect gas since they don’t interact with each other. As a result, there is no

0C,
reason to believe that there is any volume dependence to the heat capacity, which makes the derivative with respect to volume (a—‘; =0 J/m?®. Thus, heat is not exact
T

some effort. Recall that the heat capacity at constant volume is related to the internal energy via: Cy = ( ) = %nR~ (degrees of freedom) as we demonstrated in
v

because it fails the Euler test:

[ \left( \dfrac{\partial }{\partial V} {\frac{\partial q} {\partial T} \right)_V)}_T=0\ J/m"3\neq {\frac{nR}{V}=\frac{\partial } {\partial T}\left( \dfrac{\partial q} {\partial V} \right)_T)}_V \nonumber |
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