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10.2: The Boltzmann Distribution
Nature has a formula for the probability density of energy, which represents how nature doles out energy to molecules.
Unfortunately, the derivation is difficult, so we will instead just discuss the logic of the Boltzmann Distribution . Let’s think back to
the flip of a coin, where we ask about the occurrence we are investigating divided by all possible results. When applied to energy
we might believe that the probability of having energy  is: . While sensible, this actually doesn’t work because this

expression would not conserve mass and energy. Instead, Boltzmann figured out that nature uses a similar expression but with
exponentials: \(\frac{e^

{\sum_i{}e^{-E_i}}\). However, there is one last problem which is that the argument of an exponential cannot have units. The
answer is to divide  by , which gives us the proper expression for Boltzmann’s formula:

\[P_{dens}\left(E_i\right)=\frac{e^{\frac

}{\sum_i{}e^{\frac{-E_i}{k_BT}}} \nonumber \]

Recall that the Boltzmann constant  is simply the S.I. gas constant R = 8.314 J/K/mol divided by Avogadro’s number: 
. It’s like the gas constant for a single molecule.

Now this expression is like a gas engine- powerful, but towards what purpose do we apply it? For our purposes here we will apply
it towards calculating the velocities of gas molecules. In the process we will be able to demonstrate some interesting facts about
gases, as well as derive the Equipartition Theorem all the way back from Chapter 2. Regardless, as it applies to velocity we will use
kinetic energy, i.e. . Therefore:

A clever thing about the above is that we transformed the probability density for energy into the same for velocity simply by
inserting the correct expression for energy as a function of velocity.

In the present form the probability density is too difficult to do anything with, so we will simplify it piece-by-piece. We will start
with the denominator, which is the part of the expression that normalizes the probability density. First, we have to apply the fact
that the Universe is three-dimensional which means . The identity  helps us show that:

The summation is performed over negative to positive velocities, which is because gas molecules can move either forward (positive

velocity) or backward (negative velocity). This is different that the net velocity: , which cannot be negative.

But what’s with the sum in the denominator? How do you sum over a variable like velocity that is continuous? The answer is you
can’t, so we have to replace the summation with an integral. This can be done with an identity called a Riemann sum: 

. Based on this identity it’s important that we have a factor like  in our sum, which is

the origin for  for the integral. When we examine a denominator term such as: , it appears there is no such factor.
And as usual, there is a clever answer, which is to multiply and divide the denominator by  (and  and ) which then
allows us to transform the triple sum into a triple integral (bold for emphasis):
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First we will solve the denominator:

While this looks absolutely horrible, in reality there is just one calculus expression because there is no reason why the integral

along x will be different that y or z. As a result, we can just solve  and then cube the result. We can look up a
standard Gaussian-type integral:

To apply it to our expression we see: , which makes the solution to the  integral:

And the triple integral can be evaluated: 

This leaves the Boltzmann probability density in the form:

There is one last problem- the argument of the exponential has net velocity squared ( ) but the partials are directional vectors. Can
we just substitute  for  and hope that is ok? The answer is no.

10.1.1 Transformation of Variables. How do we legitimately make the substitution: ? The first thing to note
is that since we start with an expression with a set of three partials, each in an orthogonal dimension (x, y and z), then we must
transform into another set of three orthogonal partials. This is a stipulation in information science- you can’t just substitute
something in 3D ( ) for 1D ( ). If you do so information is lost and any subsequent analyses will be wrong. A
simple answer is that we can transform the standard Cartesian velocity coordinates , , and  into spherical coordinates , ,
and , where the net velocity is just like the radius of a sphere. Such a transformation also replaces the partials. Next, we can
integrate  and  out of existence leaving the probability density with only the partial of net velocity  left. This uses the
mathematics of “Jacobians”, and is shown for you in the Appendix.

Rather than take a brute force mathematical derivation, here we demonstrate a visual approach to the transformation of Cartesian to
spherical coordinates as it applies to partials. First, let’s look more closely at integrals and discuss the job of a partial. As shown in
Figure 10.3A, a partial moves along the independent (x) direction from the lower limit to upper limit. As it does so, an area is
created from the product of the partial’s length and the function’s height: . The integral is the sum of these areas. For a 2-
dimensional integral, the two partials ( ) generate an area in the x-y plane as shown in Figure 10.3B. That area is multiplied
by the function’s height to create volume, and the integral is the sum of these volumes.

Unfortunately, we cannot graph a 3-dimensional partial with a corresponding function, so instead we just draw the partials as
shown in Figure 10.4A. Clearly the product of three partials creates a volume element. As we add up more volume elements (up,
down, left, right, forward and backwards) we see that essentially the partials grow like a sphere. The solution has now presented
itself- as the radius of a sphere grows by , the increase in volume is that of a shell which is the sphere’s surface area ( )
times . When we use the notation appropriate to velocities, the transformation is:

as the net velocity is the same as the radius. Applied to the probability distribution:
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we now have the Maxwell-Boltzmann equation:

The distribution is plotted in Figure 10.5A for O  gas as a function of temperature and in 10.5B for He, O , and XeF  gases at
room temperature. The most important feature is that the curve is almost bell-shaped, but now quite due to the  skew. The effect
of this is to drag the distribution to higher speeds. It is also interesting to see that O  can easily reach velocities far in exceed the
speed of sound (343 m/s), a very counter-intuitive observation. Heating widens the distribution, but the most significant change
occurs with mass. Light elements such as helium have shockingly high velocities; in fact a significant portion of He gas can move
faster than escape velocity 11,200 m/s. Does this explain why the Earth is losing helium? Yes, it does, the gas is escaping into outer
space. Last, the skew causes the most probable and average velocities to no longer coincide; to demonstrate let’s derive them.

This page titled 10.2: The Boltzmann Distribution is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Preston
Snee.
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