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6.2: The Bohr Model

Describe the Bohr model of the hydrogen atom
Use the Rydberg equation to calculate energies of light emitted or absorbed by hydrogen atoms

Following the work of Ernest Rutherford and his colleagues in the early twentieth century, the picture of atoms consisting of tiny
dense nuclei surrounded by lighter and even tinier electrons continually moving about the nucleus was well established. This
picture was called the planetary model, since it pictured the atom as a miniature “solar system” with the electrons orbiting the
nucleus like planets orbiting the sun. The simplest atom is hydrogen, consisting of a single proton as the nucleus about which a
single electron moves. The electrostatic force attracting the electron to the proton depends only on the distance between the two
particles.

with

 is a gravitational constant
 and  are the masses of particle 1 and 2, respectively

 is the distance between the two particles

The electrostatic force has the same form as the gravitational force between two mass particles except that the electrostatic force
depends on the magnitudes of the charges on the particles (+1 for the proton and −1 for the electron) instead of the magnitudes of
the particle masses that govern the gravitational force.

with

 is a constant
 and  are the masses of particle 1 and 2, respectively

 is the distance between the two particles

Since forces can be derived from potentials, it is convenient to work with potentials instead, since they are forms of energy. The
electrostatic potential is also called the Coulomb potential. Because the electrostatic potential has the same form as the gravitational
potential, according to classical mechanics, the equations of motion should be similar, with the electron moving around the nucleus
in circular or elliptical orbits (hence the label “planetary” model of the atom). Potentials of the form V(r) that depend only on the
radial distance  are known as central potentials. Central potentials have spherical symmetry, and so rather than specifying the
position of the electron in the usual Cartesian coordinates (x, y, z), it is more convenient to use polar spherical coordinates centered
at the nucleus, consisting of a linear coordinate r and two angular coordinates, usually specified by the Greek letters theta (θ) and
phi (Φ). These coordinates are similar to the ones used in GPS devices and most smart phones that track positions on our (nearly)
spherical earth, with the two angular coordinates specified by the latitude and longitude, and the linear coordinate specified by sea-
level elevation. Because of the spherical symmetry of central potentials, the energy and angular momentum of the classical
hydrogen atom are constants, and the orbits are constrained to lie in a plane like the planets orbiting the sun. This classical
mechanics description of the atom is incomplete, however, since an electron moving in an elliptical orbit would be accelerating (by
changing direction) and, according to classical electromagnetism, it should continuously emit electromagnetic radiation. This loss
in orbital energy should result in the electron’s orbit getting continually smaller until it spirals into the nucleus, implying that atoms
are inherently unstable.

In 1913, Niels Bohr attempted to resolve the atomic paradox by ignoring classical electromagnetism’s prediction that the orbiting
electron in hydrogen would continuously emit light. Instead, he incorporated into the classical mechanics description of the atom
Planck’s ideas of quantization and Einstein’s finding that light consists of photons whose energy is proportional to their frequency.
Bohr assumed that the electron orbiting the nucleus would not normally emit any radiation (the stationary state hypothesis), but it
would emit or absorb a photon if it moved to a different orbit. The energy absorbed or emitted would reflect differences in the
orbital energies according to this equation:
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In this equation, h is Planck’s constant and E  and E  are the initial and final orbital energies, respectively. The absolute value of the
energy difference is used, since frequencies and wavelengths are always positive. Instead of allowing for continuous values for the
angular momentum, energy, and orbit radius, Bohr assumed that only discrete values for these could occur (actually, quantizing any
one of these would imply that the other two are also quantized). Bohr’s expression for the quantized energies is:

with 

In this expression,  is a constant comprising fundamental constants such as the electron mass and charge and Planck’s constant.
Inserting the expression for the orbit energies into the equation for  gives

or

The lowest few energy levels are shown in Figure . One of the fundamental laws of physics is that matter is most stable with
the lowest possible energy. Thus, the electron in a hydrogen atom usually moves in the  orbit, the orbit in which it has the
lowest energy. When the electron is in this lowest energy orbit, the atom is said to be in its ground electronic state (or simply
ground state). If the atom receives energy from an outside source, it is possible for the electron to move to an orbit with a higher 
value and the atom is now in an excited electronic state (or simply an excited state) with a higher energy. When an electron
transitions from an excited state (higher energy orbit) to a less excited state, or ground state, the difference in energy is emitted as a
photon. Similarly, if a photon is absorbed by an atom, the energy of the photon moves an electron from a lower energy orbit up to a
more excited one.

Figure : Quantum numbers and energy levels in a hydrogen atom. The more negative the calculated value, the lower the
energy.

We can relate the energy of electrons in atoms to what we learned previously about energy. The law of conservation of energy says
that we can neither create nor destroy energy. Thus, if a certain amount of external energy is required to excite an electron from one
energy level to another, that same amount of energy will be liberated when the electron returns to its initial state (Figure ). In
effect, an atom can “store” energy by using it to promote an electron to a state with a higher energy and release it when the electron
returns to a lower state. The energy can be released as one quantum of energy, as the electron returns to its ground state (say, from 
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 to ), or it can be released as two or more smaller quanta as the electron falls to an intermediate state, then to the
ground state (say, from  to , emitting one quantum, then to , emitting a second quantum).

Figure : The horizontal lines show the relative energy of orbits in the Bohr model of the hydrogen atom, and the vertical
arrows depict the energy of photons absorbed (left) or emitted (right) as electrons move between these orbits.
The figure includes a diagram representing the relative energy levels of the quantum numbers of the hydrogen atom. An upward
pointing arrow at the left of the diagram is labeled, “E.” A grey shaded vertically oriented rectangle is placed just right of the arrow.
The rectangle height matches the arrow length. Colored, horizontal line segments are placed inside the rectangle and labels are
placed to the right of the box, arranged in a column with the heading, “Energy, n.” At the very base of the rectangle, a purple
horizontal line segment is drawn. A black line extends to the right to the label, “1.” At a level approximately three-quarters of the
distance to the top of the rectangle, a blue horizontal line segment is drawn. A black line extends to the right to the label, “2.” At a
level approximately seven-eighths the distance from the base of the rectangle, a green horizontal line segment is drawn. A black
line extends to the right to the label, “3.” Just a short distance above this segment, an orange horizontal line segment is drawn. A
black line segment extends to the right to the label, “4.” Just above this segment, a red horizontal line segment is drawn. A black
line extends to the right to the label, “5.” Just a short distance above this segment, a brown horizontal line segment is drawn. A
black line extends to the right to the label, “infinity.” Arrows are drawn to depict energies of photons absorbed, as shown by
upward pointing arrows on the left, or released as shown by downward pointing arrows on the right side of the diagram between
the colored line segments. The label, “Electron moves to higher energy as light is absorbed,” is placed beneath the upward pointing
arrows. Similarly, the label, “Electron moves to lower energy as light is emitted,” appears beneath the downward pointing arrows.
Moving left to right across the diagram, arrows extend from one colored line segment to the next in the following order: purple to
blue, purple to green, purple to orange, purple to red, purple to brown, blue to green, blue to orange, and blue to red. The arrows
originating from the same colored segment are grouped together by close placement of the arrows. Similarly, the downward arrows
follow in this sequence; brown to purple, red to purple, orange to purple, green to purple, blue to purple, red to blue, orange to blue,
and green to blue. Arrows are again grouped by close placement according to the color at which the arrows end.

Since Bohr’s model involved only a single electron, it could also be applied to the single electron ions He , Li , Be , and so
forth, which differ from hydrogen only in their nuclear charges, and so one-electron atoms and ions are collectively referred to as
hydrogen-like or hydrogenic atoms. The energy expression for hydrogen-like atoms is a generalization of the hydrogen atom
energy, in which  is the nuclear charge (+1 for hydrogen, +2 for He, +3 for Li, and so on) and  has a value of .

The sizes of the circular orbits for hydrogen-like atoms are given in terms of their radii by the following expression, in which  is
a constant called the Bohr radius, with a value of :

The equation also shows us that as the electron’s energy increases (as  increases), the electron is found at greater distances from
the nucleus. This is implied by the inverse dependence on  in the Coulomb potential, since, as the electron moves away from the
nucleus, the electrostatic attraction between it and the nucleus decreases, and it is held less tightly in the atom. Note that as  gets
larger and the orbits get larger, their energies get closer to zero, and so the limits  and  imply that 

n = 5 n = 1

n = 5 n = 4 n = 1

6.2.2

+ 2+ 3+

Z k 2.179 × J10–18

= −En

kZ2

n2
(6.2.5)

ao

5.292 × m10−11

r =
n2

Z
a0 (6.2.6)

n

r

n

n⟶∞ r⟶∞ E = 0

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/38175?pdf


6.2.4 https://chem.libretexts.org/@go/page/38175

corresponds to the ionization limit where the electron is completely removed from the nucleus. Thus, for hydrogen in the ground
state , the ionization energy would be:

With three extremely puzzling paradoxes now solved (blackbody radiation, the photoelectric effect, and the hydrogen atom), and all
involving Planck’s constant in a fundamental manner, it became clear to most physicists at that time that the classical theories that
worked so well in the macroscopic world were fundamentally flawed and could not be extended down into the microscopic domain
of atoms and molecules. Unfortunately, despite Bohr’s remarkable achievement in deriving a theoretical expression for the Rydberg
constant, he was unable to extend his theory to the next simplest atom, He, which only has two electrons. Bohr’s model was
severely flawed, since it was still based on the classical mechanics notion of precise orbits, a concept that was later found to be
untenable in the microscopic domain, when a proper model of quantum mechanics was developed to supersede classical
mechanics.

Early researchers were very excited when they were able to predict the energy of an electron at a particular distance from the
nucleus in a hydrogen atom. If a spark promotes the electron in a hydrogen atom into an orbit with , what is the
calculated energy, in joules, of the electron?

Solution
The energy of the electron is given by Equation :

The atomic number, , of hydrogen is 1; ; and the electron is characterized by an n value of . Thus,

The electron in Example  in the  state is promoted even further to an orbit with . What is its new energy?

Answer

TBD

What is the energy (in joules) and the wavelength (in meters) of the line in the spectrum of hydrogen that represents the
movement of an electron from Bohr orbit with n = 4 to the orbit with n = 6? In what part of the electromagnetic spectrum do
we find this radiation?

Solution
In this case, the electron starts out with , so . It comes to rest in the  orbit, so . The difference in
energy between the two states is given by this expression:

n = 1

ΔE = − = 0 +k = kEn⟶∞ E1 (6.2.7)

 Example : Calculating the Energy of an Electron in a Bohr Orbit6.2.1
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 Exercise 6.2.1
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This energy difference is positive, indicating a photon enters the system (is absorbed) to excite the electron from the n = 4 orbit
up to the  orbit. The wavelength of a photon with this energy is found by the expression . Rearrangement gives:

From the figure of electromagnetic radiation, we can see that this wavelength is found in the infrared portion of the
electromagnetic spectrum.

What is the energy in joules and the wavelength in meters of the photon produced when an electron falls from the  to the 
 level in a  ion (  for )?

Answer

 and 

Bohr’s model of the hydrogen atom provides insight into the behavior of matter at the microscopic level, but it is does not account
for electron–electron interactions in atoms with more than one electron. It does introduce several important features of all models
used to describe the distribution of electrons in an atom. These features include the following:

The energies of electrons (energy levels) in an atom are quantized, described by quantum numbers: integer numbers having only
specific allowed value and used to characterize the arrangement of electrons in an atom.
An electron’s energy increases with increasing distance from the nucleus.
The discrete energies (lines) in the spectra of the elements result from quantized electronic energies.

Of these features, the most important is the postulate of quantized energy levels for an electron in an atom. As a consequence, the
model laid the foundation for the quantum mechanical model of the atom. Bohr won a Nobel Prize in Physics for his contributions
to our understanding of the structure of atoms and how that is related to line spectra emissions.

 

 

Summary 
Bohr incorporated Planck’s and Einstein’s quantization ideas into a model of the hydrogen atom that resolved the paradox of atom
stability and discrete spectra. The Bohr model of the hydrogen atom explains the connection between the quantization of photons
and the quantized emission from atoms. Bohr described the hydrogen atom in terms of an electron moving in a circular orbit about
a nucleus. He postulated that the electron was restricted to certain orbits characterized by discrete energies. Transitions between
these allowed orbits result in the absorption or emission of photons. When an electron moves from a higher-energy orbit to a more
stable one, energy is emitted in the form of a photon. To move an electron from a stable orbit to a more excited one, a photon of
energy must be absorbed. Using the Bohr model, we can calculate the energy of an electron and the radius of its orbit in any one-
electron system.

Glossary 

Bohr’s model of the hydrogen atom
structural model in which an electron moves around the nucleus only in circular orbits, each with a specific allowed radius; the
orbiting electron does not normally emit electromagnetic radiation, but does so when changing from one orbit to another.

excited state
state having an energy greater than the ground-state energy

ground state
state in which the electrons in an atom, ion, or molecule have the lowest energy possible
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6.198 × J10–19 3.205 × m10−7

https://libretexts.org/
https://creativecommons.org/licenses/by/4.0/
https://chem.libretexts.org/@go/page/38175?pdf


6.2.6 https://chem.libretexts.org/@go/page/38175

quantum number
integer number having only specific allowed values and used to characterize the arrangement of electrons in an atom
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