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19.2: Coordination Chemistry of Transition Metals

Learning Objectives

o List the defining traits of coordination compounds

o Describe the structures of complexes containing monodentate and polydentate ligands
o Use standard nomenclature rules to name coordination compounds

« Explain and provide examples of geometric and optical isomerism

o Identify several natural and technological occurrences of coordination compounds

The hemoglobin in your blood, the chlorophyll in green plants, vitamin Bjs, and the catalyst used in the manufacture of polyethylene all contain coordination compounds. Ions of the metals,
especially the transition metals, are likely to form complexes. Many of these compounds are highly colored (Figure 19.2.1). In the remainder of this chapter, we will consider the structure and

bonding of these remarkable compounds.
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Figure 19.2.1: Metal ions that contain partially filled d subshell usually form colored complex ions; ions with empty d subshell (d°) or with filled d subshells (d'%) usually form colorless complexes.
This figure shows, from left to right, solutions containing [M(H,0)s]™* ions with M = Sc3*(d%), Cr¥*(d®), Co?*(d”), Ni%*(d®), Cu?*(d?), and Zn?*(d'°). (credit: Sahar Atwa)
There are six containers that are each filled with a different color liquid. The first is clear, followed by purple, red, teal, blue, and the last one is also clear.

Remember that in most main group element compounds, the valence electrons of the isolated atoms combine to form chemical bonds that satisfy the octet rule. For instance, the four valence
electrons of carbon overlap with electrons from four hydrogen atoms to form CH,. The one valence electron leaves sodium and adds to the seven valence electrons of chlorine to form the ionic
formula unit NaCl (Figure 19.2.2). Transition metals do not normally bond in this fashion. They primarily form coordinate covalent bonds, a form of the Lewis acid-base interaction in which both
of the electrons in the bond are contributed by a donor (Lewis base) to an electron acceptor (Lewis acid). The Lewis acid in coordination complexes, often called a central metal ion (or atom), is
often a transition metal or inner transition metal, although main group elements can also form coordination compounds. The Lewis base donors, called ligands, can be a wide variety of chemicals—
atoms, molecules, or ions. The only requirement is that they have one or more electron pairs, which can be donated to the central metal. Most often, this involves a donor atom with a lone pair of
electrons that can form a coordinate bond to the metal.
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Figure 19.2.2: (a) Covalent bonds involve the sharing of electrons, and ionic bonds involve the transferring of electrons associated with each bonding atom, as indicated by the colored electrons. (b)

However, coordinate covalent bonds involve electrons from a Lewis base being donated to a metal center. The lone pairs from six water molecules form bonds to the scandium ion to form an

octahedral complex. (Only the donated pairs are shown.)
The coordination sphere consists of the central metal ion or atom plus its attached ligands. Brackets in a formula enclose the coordination sphere; species outside the brackets are not part of the
coordination sphere. The coordination number of the central metal ion or atom is the number of donor atoms bonded to it. The coordination number for the silver ion in [Ag(NH3),]"* is two (Figure
19.2.3). For the copper(1I) ion in [CuCly]?", the coordination number is four, whereas for the cobalt(II) ion in [Co(H;0)s]?* the coordination number is six. Each of these ligands is monodentate,
from the Greek for “one toothed,” meaning that they connect with the central metal through only one atom. In this case, the number of ligands and the coordination number are equal.
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Figure 19.2.3: The complexes (a) [Ag(NH3),]", (b) [Cu(C1)4]2’, and (c) [Cc.(HZO)s]er have coordination numbers of two, four, and six, respectively. The geometries of these complexes are the

same as we have seen with YSEPR theory for main group elements: linear, tetrahedral, and octahedral.

The structural formulas for Ag N H 3 subscript 2, C u C 1 subscript 4, and C o H 2 O subscript 6 is shown in enclosing brackets showing their individual charges on the top right of positive 1,

negative 2 and positive 2 respectively.
Many other ligands coordinate to the metal in more complex fashions. Bidentate ligands are those in which two atoms coordinate to the metal center. For example, ethylenediamine (en,
H,NCH,CH,NH,) contains two nitrogen atoms, each of which has a lone pair and can serve as a Lewis base (Figure 19.2.4). Both of the atoms can coordinate to a single metal center. In the
complex [Co(en)3]3*, there are three bidentate en ligands, and the coordination number of the cobalt(III) ion is six. The most common coordination numbers are two, four, and six, but examples of
all coordination numbers from 1 to 15 are known.
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Figure 19.2.4: (a) The ethylenediamine (en) ligand contains two atoms with lone pairs that can coordinate to the metal center. (b) The cobalt(III) complex [Co(en)3]‘pr

ligands, each forming two bonds to the cobalt ion.

contains three of these

Any ligand that bonds to a central metal ion by more than one donor atom is a polydentate ligand (or “many teeth”) because it can bite into the metal center with more than one bond. The term
chelate (pronounced “KEY-late”) from the Greek for “claw” is also used to describe this type of interaction. Many polydentate ligands are chelating ligands, and a complex consisting of one or
more of these ligands and a central metal is a chelate. A chelating ligand is also known as a chelating agent. A chelating ligand holds the metal ion rather like a crab’s claw would hold a marble.
Figure 19.2.4 showed one example of a chelate and the heme complex in hemoglobin is another important example (Figure 19.2.5). It contains a polydentate ligand with four donor atoms that
coordinate to iron.
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Figure 19.2.5: The single ligand heme contains four nitrogen atoms that coordinate to iron in hemoglobin to form a chelate.

Polydentate ligands are sometimes identified with prefixes that indicate the number of donor atoms in the ligand. As we have seen, ligands with one donor atom, such as NHj3, CI-, and H,0, are
monodentate ligands. Ligands with two donor groups are bidentate ligands. Ethylenediamine, H,NCH,CH,NH,, and the anion of the acid glycine, NH,CH,CO, (Figure 19.2.6) are examples of
bidentate ligands. Tridentate ligands, tetradentate ligands, pentadentate ligands, and hexadentate ligands contain three, four, five, and six donor atoms, respectively. The heme ligand (Figure 19.2.5)

is a tetradentate ligand.

Figure 19.2.6: Each of the anionic ligands shown attaches in a bidentate fashion to platinum(II), with both a nitrogen and oxygen atom coordinating to the metal.

19.2.1: The Naming of Complexes

The nomenclature of the complexes is patterned after a system suggested by Alfred Werner, a Swiss chemist and Nobel laureate, whose outstanding work more than 100 years ago laid the
foundation for a clearer understanding of these compounds. The following five rules are used for naming complexes:

1. If a coordination compound is ionic, name the cation first and the anion second, in accordance with the usual nomenclature.
2. Name the ligands first, followed by the central metal. Name the ligands alphabetically. Negative ligands (anions) have names formed by adding -o to the stem name of the group (e.g., Table
19.2.1 For most neutral ligands, the name of the molecule is used. The four common exceptions are aqua (H,0), amine (NHs), carbonyl (CO), and nitrosyl (NO). For example, name

[Pt(NH3),Cly] as diaminetetrachloroplatinum(IV).

3. If more than one ligand of a given type is present, the number is indicated by the prefixes di- (for two), tri- (for three), tetra- (for four), penta- (for five), and hexa- (for six). Sometimes, the
prefixes bis- (for two), tris- (for three), and tetrakis- (for four) are used when the name of the ligand already includes di-, tri-, or tetra-, or when the ligand name begins with a vowel. For
example, the ion bis(bipyridyl)osmium(II) uses bis- to signify that there are two ligands attached to Os, and each bipyridyl ligand contains two pyridine groups (CsHsN).

Anionic Ligand
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Table 19.2.1: Examples of Anionic Ligands

Name

fluoro
chloro
bromo
iodo
cyano
nitrato
hydroxo
0X0
oxalato

carbonato

When the complex is either a cation or a neutral molecule, the name of the central metal atom is spelled exactly like the name of the element and is followed by a Roman numeral in parentheses to
indicate its oxidation state (Tables 19.2.2 19.2.3 and 19.2.3). When the complex is an anion, the suffix -ate is added to the stem of the name of the metal, followed by the Roman numeral

designation of its oxidation state.

[Co(NHy)6ICl3
[P{(NH3),Cl,]*
[Ag(NH;),]*
[Cr(H,0),Cl,ICl

[Co(H,NCH,CH,;NH,)3],(S0,)3

[Pt(NH3),Cly]

[Ni(H,NCH,CH,NH,),Cl,]

[PLClg]2

Na,[SnClg]

Table 19.2.2: Select Coordination Complexes based on total Charge

Examples in Which the Complex Is Cation
hexaaminecobalt(IIT) chloride
tetraaminedichloroplatinum(IV) ion
diaminesilver(I) ion
tetraaquadichlorochromium(III) chloride
tris(ethylenediamine)cobalt(III) sulfate
Examples in Which the Complex Is Neutral
diaminetetrachloroplatinum(IV)
dichlorobis(ethylenediamine)nickel(II)
Examples in Which the Complex Is an Anion
hexachloroplatinate(IV) ion

sodium hexachlorostannate(IV)

Sometimes, the Latin name of the metal is used when the English name is clumsy. For example, ferrate is used instead of ironate, plumbate instead leadate, and stannate instead of tinate. The
oxidation state of the metal is determined based on the charges of each ligand and the overall charge of the coordination compound. For example, in [Cr(H,0),Cl,]Br, the coordination sphere (in
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brackets) has a charge of 1+ to balance the bromide ion. The water ligands are neutral, and the chloride ligands are anionic with a charge of 1- each. To determine the oxidation state of the metal,
we set the overall charge equal to the sum of the ligands and the metal: +1 = -2 + x, so the oxidation state (x) is equal to 3+.

v Example 19.2.1: Coordination Numbers and Oxidation States

Determine the name of the following complexes and give the coordination number of the central metal atom.

a. Na,[PtClg]
b. K;3[Fe(C,04)5]
¢ [Co(NH2)-CIICl,

Solution

a. There are two Na* ions, so the coordination sphere has a negative two charge: [PtClg]?~. There are six anionic chloride ligands, so -2 = -6 + x, and the oxidation state of the platinum is 4+.
The name of the complex is sodium hexachloroplatinate(IV), and the coordination number is six.

b. The coordination sphere has a charge of 3— (based on the potassium) and the oxalate ligands each have a charge of 2, so the metal oxidation state is given by —3 = —6 + x, and this is an
iron(II) complex. The name is potassium trisoxalatoferrate(III) (note that tris is used instead of tri because the ligand name starts with a vowel). Because oxalate is a bidentate ligand, this
complex has a coordination number of six.

c. In this example, the coordination sphere has a cationic charge of 2+. The NH; ligand is neutral, but the chloro ligand has a charge of 1-. The oxidation state is found by +2 = -1 + x and is
3+, so the complex is pentaaminechlorocobalt(IIT) chloride and the coordination number is six.

? Exercise 19.2.1

The complex potassium dicyanoargenate(l) is used to make antiseptic compounds. Give the formula and coordination number.

Answer

K[Ag(CN);]; coordination number two

19.2.2: The Structures of Complexes

The most common structures of the complexes in coordination compounds are octahedral, tetrahedral, and square planar (Figure 19.2.7). For transition metal complexes, the coordination number
determines the geometry around the central metal ion. Table 19.2.3 compares coordination numbers to the molecular geometry:

LE

Pentagonal bipyramid Square antiprism Dodecahedral

e

Figure 19.2.7: These are geometries of some complexes with coordination numbers of seven and eight.
Table 19.2.3: Coordination Numbers and Molecular Geometry

Coordination Number Molecular Geometry Example
2 linear [Ag(NH;),]"
3 trigonal planar [Cu(CN);1*~
4 tetrahedral(d® or d'°), low oxidation states for M [Ni(CO),]
4 square planar (d®) [NiCl, 1>
5 trigonal bipyramidal [CoClg1>
5 square pyramidal [VO(CN), 1>
6 octahedral [CoClgl*
7 pentagonal bipyramid [ZrF,]3~
8 square antiprism [ReFgl*
8 dodecahedron [Mo(CN)g]*~
9 and above more complicated structures [ReHg]z'

Unlike main group atoms in which both the bonding and nonbonding electrons determine the molecular shape, the nonbonding d-electrons do not change the arrangement of the ligands. Octahedral
complexes have a coordination number of six, and the six donor atoms are arranged at the corners of an octahedron around the central metal ion. Examples are shown in Figure 19.2.8 The chloride
and nitrate anions in [Co(H,0)g]Cl, and [Cr(en)3](NO3)3, and the potassium cations in K,[PtClg], are outside the brackets and are not bonded to the metal ion.
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Figure 19.2.8: Many transition metal complexes adopt octahedral geometries, with six donor atoms forming bond angles of 90° about the central atom with adjacent ligands. Note that only ligands

within the coordination sphere affect the geometry around the metal center.

The structural formulas for C o H 2 O subscript 6, C r e n subscript 3, and P t ¢ | subscript 6 is shown in enclosing brackets showing their individual charges on the top right. These charges are

positive 2, positive 3 and negative 2 respectively. 2 chloride ions, 3 nitrate ions, and 2 potassium ions are shown outside of the three brackets respectively.
For transition metals with a coordination number of four, two different geometries are possible: tetrahedral or square planar. Unlike main group elements, where these geometries can be predicted
from VSEPR theory, a more detailed discussion of transition metal orbitals (discussed in the section on Crystal Field Theory) is required to predict which complexes will be tetrahedral and which
will be square planar. In tetrahedral complexes such as [Zn(CN),]*~ (Figure 19.2.9), each of the ligand pairs forms an angle of 109.5°. In square planar complexes, such as [Pt(NH3),Cl,], each
ligand has two other ligands at 90° angles (called the cis positions) and one additional ligand at an 180° angle, in the trans position.

https://chem.libretexts.org/@go/page/38322
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Figure 19.2.9: Transition metals with a coordination number of four can adopt a tetrahedral geometry (a) as in K[Zn(CN)4] or a square planar geometry (b) as shown in [Pt(NH3),Cls].
Structural formulas of K subscript 2 Z n C N subscript 4 and P t N H subscript 3 subscript 2 C 1 subscript 2 are shown with wedge and dashed lines to show a more three dimensional structure.

19.2.3: Isomerism in Complexes

Isomers are different chemical species that have the same chemical formula. Transition metals often form geometric isomers, in which the same atoms are connected through the same types of
bonds but with differences in their orientation in space. Coordination complexes with two different ligands in the cis and trans positions from a ligand of interest form isomers. For example, the
octahedral [Co(NH3)4Cl,]" ion has two isomers. In the cis configuration, the two chloride ligands are adjacent to each other (Figure 19.2.1). The other isomer, the trans configuration, has the two
chloride ligands directly across from one another.

Violet, cis form Green, trans form
al N cl *
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Figure 19.2.10: The cis and trans isomers of [Co(H20)4Cl,]" contain the same ligands attached to the same metal ion, but the spatial arrangement causes these two compounds to have very different
properties.

For the Violet, cis form the two chlorine is adjacent to one another. For the green, trans form, the two chlorine is opposite from one another.
Different geometric isomers of a substance are different chemical compounds. They exhibit different properties, even though they have the same formula. For example, the two isomers of
[Co(NH3)4CL;]NO3 differ in color; the cis form is violet, and the trans form is green. Furthermore, these isomers have different dipole moments, solubilities, and reactivities. As an example of how
the arrangement in space can influence the molecular properties, consider the polarity of the two [Co(NH3)4Cl;]NO3 isomers. Remember that the polarity of a molecule or ion is determined by the
bond dipoles (which are due to the difference in electronegativity of the bonding atoms) and their arrangement in space. In one isomer, cis chloride ligands cause more electron density on one side
of the molecule than on the other, making it polar. For the trans isomer, each ligand is directly across from an identical ligand, so the bond dipoles cancel out, and the molecule is nonpolar.

v Example 19.2.2: Geometric Isomers

Identify which geometric isomer of [Pt(NH3),Cl] is shown in Figure 19.2.%. Draw the other geometric isomer and give its full name.

Solution
In the Figure 19.2.%, the two chlorine ligands occupy cis positions. The other form is shown in below. When naming specific isomers, the descriptor is listed in front of the name. Therefore,
this complex is trans-diaminedichloroplatinum(II).

SN
NHY Tl

Structural formula of trans-diaminedichloroplatinum(II). The chlorine atoms are opposite each other in the same plane. This is also the case for the two amines.

The trans isomer of [Pt(NHj3),Cl,] has each ligand directly across from an adjacent ligand.

? Exercise 19.2.2

Draw the ion trans-diaqua-trans-dibromo-trans-dichlorocobalt(II).
Answer

cl e

Hy0,, | WBr

Br” | YH,0
cl

Cobalt is located at the center with the left and right wedges connected to bromine and H 2 O respectively. The left and right dash lines are connected to H 2 O and bromine respectively.
Pointing directly upwards and downwards opposite from one another are the chlorine. The entire structural formula is enclosed in square bracket with a superscript of 2 negative.

Another important type of isomers are optical isomers, or enantiomers, in which two objects are exact mirror images of each other but cannot be lined up so that all parts match. This means that
optical isomers are nonsuperimposable mirror images. A classic example of this is a pair of hands, in which the right and left hand are mirror images of one another but cannot be superimposed.
Optical isomers are very important in organic and biochemistry because living systems often incorporate one specific optical isomer and not the other. Unlike geometric isomers, pairs of optical
isomers have identical properties (boiling point, polarity, solubility, etc.). Optical isomers differ only in the way they affect polarized light and how they react with other optical isomers. For
coordination complexes, many coordination compounds such as [M(en)3]"" [in which M™" is a central metal ion such as iron(IIT) or cobalt(IT)] form enantiomers, as shown in Figure 19.2.11 These
two isomers will react differently with other optical isomers. For example, DNA helices are optical isomers, and the form that occurs in nature (right-handed DNA) will bind to only one isomer of
[M(en)3]™ and not the other.

CH CH,
/ " CH, cHy \
NH, \Z N

2
CHy—=NH,,, | NH; NHas, || wNHz—CH
M
CH—NH,” | “NH,
N en
ri
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NH,” | YNH,—CH,
CH /NH2
2
ch,

Figure 19.2.11: The complex [M(en);]™" (M™ = a metal ion, en = ethylenediamine) has a nonsuperimposable mirror image.
Two structural formulas of open bracket M e n subscript 3 close bracket superscript n positive are shown as mirror images with the dashed vertical line in the center as the mirror plane.

The [Co(en),Cly]" ion exhibits geometric isomerism (cis/trans), and its cis isomer exists as a pair of optical isomers (Figure 19.2.12.
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Figure 19.2.12: Three isomeric forms of [Co(en),Cl,]" exist. The trans isomer, formed when the chlorines are positioned at a 180° angle, has very different properties from the cis isomers. The
mirror images of the cis isomer form a pair of optical isomers, which have identical behavior except when reacting with other enantiomers.

For the cis isomers, the structural formula shown are mirror images of one another. The two chlorine atoms are adjacent to one another in each cis structure. The trans form is also shown with the
chlorine directly opposite from one another.

Linkage isomers occur when the coordination compound contains a ligand that can bind to the transition metal center through two different atoms. For example, the CN ligand can bind through the
carbon atom (cyano) or through the nitrogen atom (isocyano). Similarly, SCN— can be bound through the sulfur or nitrogen atom, affording two distinct compounds ([Co(NHz3)sSCNJ** or
[Co(NH3)sNCS]*H).

Tonization isomers (or coordination isomers) occur when one anionic ligand in the inner coordination sphere is replaced with the counter ion from the outer coordination sphere. A simple example
of two ionization isomers are [CoClg][Br] and [CoClsBr][Cl].

19.2.4: Coordination Complexes in Nature and Technology
Chlorophyll, the green pigment in plants, is a complex that contains magnesium (Figure 19.2.13). This is an example of a main group element in a coordination complex. Plants appear green
because chlorophyll absorbs red and purple light; the reflected light consequently appears green. The energy resulting from the absorption of light is used in photosynthesis.
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Figure 19.2.13: (a) Chlorophyll comes in several different forms, which all have the same basic structure around the magnesium center. (b) Copper phthalocyanine blue, a square planar copper
complex, is present in some blue dyes.

19.2.5: Transition Metal Catalysts
One of the most important applications of transition metals is as industrial catalysts. As you recall from the chapter on kinetics, a catalyst increases the rate of reaction by lowering the activation
energy and is regenerated in the catalytic cycle. Over 90% of all manufactured products are made with the aid of one or more catalysts. The ability to bind ligands and change oxidation states makes
transition metal catalysts well suited for catalytic applications. Vanadium oxide is used to produce 230,000,000 tons of sulfuric acid worldwide each year, which in turn is used to make everything
from fertilizers to cans for food. Plastics are made with the aid of transition metal catalysts, along with detergents, fertilizers, paints, and more (Figure 19.2.14). Very complicated pharmaceuticals
are manufactured with catalysts that are selective, reacting with one specific bond out of a large number of possibilities. Catalysts allow processes to be more economical and more environmentally
friendly. Developing new catalysts and better understanding of existing systems are important areas of current research.
. —

(©

Figure 19.2.14: (a) Detergents, (b) paints, and (c) fertilizers are all made using transition metal catalysts. (credit a: modification of work by “Mr. Brian”/Flickr; credit b: modification of work by
Ewen Roberts; credit c: modification of work by “osseous”/Flickr)

Many other coordination complexes are also brightly colored. The square planar copper(II) complex phthalocyanine blue (from Figure 19.2.13) is one of many complexes used as pigments or dyes.
This complex is used in blue ink, blue jeans, and certain blue paints.

The structure of heme (Figure 19.2.15), the iron-containing complex in hemoglobin, is very similar to that in chlorophyll. In hemoglobin, the red heme complex is bonded to a large protein
molecule (globin) by the attachment of the protein to the heme ligand. Oxygen molecules are transported by hemoglobin in the blood by being bound to the iron center. When the hemoglobin loses
its oxygen, the color changes to a bluish red. Hemoglobin will only transport oxygen if the iron is Fe?*; oxidation of the iron to Fe>* prevents oxygen transport.

Figure 19.2.15: Hemoglobin contains four protein subunits, each of which has an iron center attached to a heme ligand (shown in red), which is coordinated to a globin protein. Each subunit is

shown in a different color.

Three dimensional structure of hemoglobin has many ribbon like structures forming helices and are entangled with one another in a disordered manner. The four subunits are colored differently.

Around the center of hemoglobin are multiple linear structures composed of red globules.
Complexing agents often are used for water softening because they tie up such ions as Ca>*, Mg?*, and Fe?*, which make water hard. Many metal ions are also undesirable in food products because
these ions can catalyze reactions that change the color of food. Coordination complexes are useful as preservatives. For example, the ligand EDTA, (HO,CCH;),NCH,CH,N(CH,CO,H),,
coordinates to metal ions through six donor atoms and prevents the metals from reacting (Figure 19.2.16). This ligand also is used to sequester metal ions in paper production, textiles, and

detergents, and has pharmaceutical uses.
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Figure 19.2.16: The ligand EDTA binds tightly to a variety of metal ions by forming hexadentate complexes.

Complexing agents that tie up metal ions are also used as drugs. British Anti-Lewisite (BAL), HSCH,CH(SH)CH,0H, is a drug developed during World War I as an antidote for the arsenic-based
war gas Lewisite is now used to treat poisoning by heavy metals, such as arsenic, mercury, thallium, and chromium. The drug is a ligand and functions by making a water-soluble chelate of
the metal; the kidneys eliminate this metal chelate (Figure 19.2.17. Another polydentate ligand, enterobactin, which is isolated from certain bacteria, is used to form complexes of iron and thereby
to control the severe iron buildup found in patients suffering from blood diseases such as Cooley’s anemia, who require frequent transfusions. As the transfused blood breaks down, the usual
metabolic processes that remove iron are overloaded, and excess iron can build up to fatal levels. Enterobactin forms a water-soluble complex with excess iron, and the body can safely eliminate

this complex.
o NH HN_ O
o 0O
CH,—OH S
ch/S\ \Fé\/\
o
CH—g/ o/ 0%

@ ()

Figure 19.2.17: Coordination complexes are used as drugs. (a) British Anti-Lewisite is used to treat heavy metal poisoning by coordinating metals (M), and enterobactin (b) allows excess iron in the
blood to be removed.

v Example 19.2.3: Chelation Therapy

Ligands like BAL and enterobactin are important in medical treatments for heavy metal poisoning. However, chelation therapies can disrupt the normal concentration of ions in the body,
leading to serious side effects, so researchers are searching for new chelation drugs. One drug that has been developed is dimercaptosuccinic acid (DMSA), shown in Figure 19.2.18 Identify
which atoms in this molecule could act as donor atoms.

[2Structural formula for <span class=

is shown with all of the lone pairs on O and S drawn out. " style="width: 650px; height:

CNX

_Chem_19_02_DMSA.jpg" src="/@api/deki/files/65922/CNX_Chem_19_02_DMSA.jpg" data-quail-id="607">
Figure 19.2.18: Dimercaptosuccinic acid is used to treat heavy metal poisoning.
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Solution

All of the oxygen and sulfur atoms have lone pairs of electrons that can be used to coordinate to a metal center, so there are six possible donor atoms. Geometrically, only two of these atoms
can be coordinated to a metal at once. The most common binding mode involves the coordination of one sulfur atom and one oxygen atom, forming a five-member ring with the metal.

? Exercise 19.2.3

Some alternative medicine practitioners recommend chelation treatments for ailments that are not clearly related to heavy metals, such as cancer and autism, although the practice is discouraged
by many scientific organizations. Identify at least two biologically important metals that could be disrupted by chelation therapy.

Answer

Ca, Fe, Zn, and Cu

Ligands are also used in the electroplating industry. When metal ions are reduced to produce thin metal coatings, metals can clump together to form clusters and nanoparticles. When metal
coordination complexes are used, the ligands keep the metal atoms isolated from each other. It has been found that many metals plate out as a smoother, more uniform, better-looking, and more
adherent surface when plated from a bath containing the metal as a complex ion. Thus, complexes such as [Ag(CN),]™ and [Au(CN),]™ are used extensively in the electroplating industry.

In 1965, scientists at Michigan State University discovered that there was a platinum complex that inhibited cell division in certain microorganisms. Later work showed that the complex was cis-
diaminedichloroplatinum(II), [Pt(NH3),(Cl),], and that the trans isomer was not effective. The inhibition of cell division indicated that this square planar compound could be an anticancer agent. In
1978, the [JS Food and Drug Administration approved this compound, known as cisplatin, for use in the treatment of certain forms of cancer. Since that time, many similar platinum compounds
have been developed for the treatment of cancer. In all cases, these are the cis isomers and never the trans isomers. The diamine (NH;), portion is retained with other groups, replacing the dichloro
[(Cl),] portion. The newer drugs include carboplatin, oxaliplatin, and satraplatin.

Summary

The transition elements and main group elements can form coordination compounds, or complexes, in which a central metal atom or ion is bonded to one or more ligands by coordinate covalent
bonds. Ligands with more than one donor atom are called polydentate ligands and form chelates. The common geometries found in complexes are tetrahedral and square planar (both with a
coordination number of four) and octahedral (with a coordination number of six). Cis and trans configurations are possible in some octahedral and square planar complexes. In addition to these
geometrical isomers, optical isomers (molecules or ions that are mirror images but not superimposable) are possible in certain octahedral complexes. Coordination complexes have a wide variety of
uses including oxygen transport in blood, water purification, and pharmaceutical use.

Footnotes
1. National Council against Health Fraud, NCAHF Policy Statement on Chelation Therapy, (Peabody,
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ligand that coordinates to one central metal through coordinate bonds from two different atoms

central metal
ion or atom to which one or more ligands is attached through coordinate covalent bonds

chelate
complex formed from a polydentate ligand attached to a central metal

chelating ligand
ligand that attaches to a central metal ion by bonds from two or more donor atoms

cis configuration
configuration of a geometrical isomer in which two similar groups are on the same side of an imaginary reference line on the molecule

coordination compound
substance consisting of atoms, molecules, or ions attached to a central atom through Lewis acid-base interactions

coordination number
number of coordinate covalent bonds to the central metal atom in a complex or the number of closest contacts to an atom in a crystalline form

coordination sphere
central metal atom or ion plus the attached ligands of a complex

donor atom
atom in a ligand with a lone pair of electrons that forms a coordinate covalent bond to a central metal

ionization isomer
(or coordination isomer) isomer in which an anionic ligand is replaced by the counter ion in the inner coordination sphere

ligand
ion or neutral molecule attached to the central metal ion in a coordination compound

linkage isomer
coordination compound that possesses a ligand that can bind to the transition metal in two different ways (CN™ vs. NC")

monodentate
ligand that attaches to a central metal through just one coordinate covalent bond

optical isomer
(also, enantiomer) molecule that is a nonsuperimposable mirror image with identical chemical and physical properties, except when it reacts with other optical isomers

polydentate ligand
ligand that is attached to a central metal ion by bonds from two or more donor atoms, named with prefixes specifying how many donors are present (e.g., hexadentate = six coordinate bonds
formed)

trans configuration
configuration of a geometrical isomer in which two similar groups are on opposite sides of an imaginary reference line on the molecule
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