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1.4: The Second Law of Thermodynamics
The first law of thermodynamics (Chapter I.2) describes the conservation of energy but does not tell us anything about the direction
or spontaneity of a reaction. In this chapter we introduce the concept of entropy as derived by Rudolf Clausius and formulate the
second law of thermodynamics. The second law of thermodynamics is of central importance in science and tells us the direction of
spontaneous change for any process. We then calculate the change of entropy for a number of exemplary cases.

Be able to provide a thermodynamic definition of entropy as the reversible heat divided by the temperature.
Be able to articulate the second law of thermodynamics and understand its meaning and significance: the entropy of the
universe increases for all spontaneous processes and the entropy of the universe remains unchanged for an equilibrium
(reversible) process.
Be able to calculate the change in entropy for the compression/expansion of an ideal gas.
Be able to calculate the change in entropy for the various processes: heating/cooling, phase transition, ideal mixing.

Relevance of the first law of thermodynamics 

So far we have been concerning ourselves with the interconversion of heat and work as two form of energy. The first law sets a
limit on the magnitude of energy transfer by stating that energy cannot be created or destroyed, thus any change in energy ( )
must be due to work ( ) or heat ( ) transferred to/from the system with the surroundings.

The mathematical statement of the first law,  is a consequence of the fact that energy is neither created or destroyed
but flows from one part of the universe (the system) to another (the surroundings) or is converted from one form to another.
Although the first law limits the magnitude of energy change, it says nothing about the directionality of energy transfer or whether
or not a process will be spontaneous.

Consider an example sketched in Figure I.4.A. A rubber ball is held some height  above a table. The ball has some potential
energy due to gravity. When the ball is released, its potential energy is converted to kinetic energy, and the ball bounces off the
table. Each time the ball bounces, it does not reach the same height as the previous bounce because some of the kinetic energy is
being dissipated to the molecules in the table. Eventually, the ball comes to rest, and all its kinetic energy has been transferred to
the molecules in the table. This increase in kinetic energy results in the temperature of the table rising, and we can say that the
kinetic energy of the ball was converted into heat. This process occurs spontaneously once the ball is dropped and is indicated by
the forward arrow labeled a) in Figure I.4.A.

Let’s now consider the reverse process in which the ball at rest on the table absorbs the kinetic energy of the molecules in the table
and converts this energy into work by spontaneously levitating against the force of gravity. During this process, the molecules in
the table lose some kinetic energy, causing the temperature of the table to decrease. Thus, heat has been converted to work needed
to raise the ball to some height . This process is indicated by the reverse arrow labeled b) in Figure I.4.A.

Figure I.4.A: a) A ball suspended at a height h will spontaneous bounce off the table, converting its potential energy into kinetic
energy and heat. b) In the reverse process, the ball absorbs heat from the table, converts this heat to kinetic energy to elevate a
distance h above the table.

In both cases, the total energy is conserved in compliance with the first law of thermodynamics, but the first process occurs
spontaneously, while the second process does not occur spontaneously. For the second process to occur, all the molecules in the
table would need to spontaneously synchronize their random motion and transfer their kinetic energy to the ball. If there are
sufficiently many molecules in the table, the probability for these molecules to synchronize their random motion is extremely
unlikely. The second law of thermodynamics will set a limit on the direction of energy transfer, such that case 1 (potential energy
→ kinetic energy → heat) is spontaneous, but that the reverse process, case 2 (heat → kinetic energy → potential energy), will not
happen.
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Thermodynamic Definition of Entropy 

In this chapter we consider the thermodynamic definition of entropy as formulated by Rudolf Clausius (1822-1888). Let’s
consider again the reversible heat transfer of a system going from some initial state (P , T , V ) to some final state (P , T , V ).
From the first law of thermodynamics we have  where the subscript on  indicates that the heat transfer we
are considering is for a reversible process. Recall that both work and heat are not state properties and thus depend on the path
taken. For reversible work we know that . Also, we have that  from Chapter I.2 (See Equation
I.2.31). Inserting these into the equation for the first law (Equation I.2.9) and solving for the unknown , we have:

Equation  is an expression for the reversible heat. Integrating both sides of Equation  from an initial state  to a final state
:

We see that the reversible heat depends on the path due to the work term . This is not surprising because the heat is not a
state property.

Following Clausius, let’s now consider a slightly different quality . From Equation , dividing both side by , we have:

Using the fact that  for an ideal gas, we can integrate both sides of Equation  independently of the path!

Therefore, we conclude that the quantity  is a state property! We define this new state property , so that:

and, integrating both sides from an initial state  to a final state :

where . The state property  is called the entropy.

Key Result: The infinitesimal change in entropy is defined as . Notice the entropy is defined in terms of the
reversible heat.

From Equation  and Equation I.4.  we have that for the expansion of an ideal gas, the change in entropy is:

Notice that Equation  is valid for any expansion/compression of an ideal gas regardless of whether the process was carried our
reversibly or irreversibly because entropy is a state property.

Key Result: The change in entropy for the reversible or irreversible expansion/compression of an ideal gas is: 
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Note: Clausius was able to find a new state property by dividing the reversible heat  (not a state property) by the

temperature. The temperature in this case is called an integrating factor that makes the integral  exact.

Entropy for an irreversible vs. reversible process 

So far, we have defined  from Equation  in terms of the reversible heat  Note that the subscript rev indicates the
process is reversible. While the entropy is a state property (independent of the path), the heat is not and will depend on the path.
Therefore, the equivalence in Equation  is valid only for a reversible path. Even though the entropy is the same, the magnitude
of the heat transfer is greater for the reversible process, so we have:

Dividing both sides of Equation  by  and inserting the definition of entropy from Equation I.4.  gives:

While the entropy change would be the same for an irreversible or reversible process, , the heat flow is not
the same, so for any irreversible process .

Key Result: For any process the change in entropy is  The equality holds only for a reversible process, whereas the
inequality holds if the process is irreversible.

Entropy of the Surroundings 

So far we have only focused on the entropy of the system. In this section we will consider the change in entropy of the
surroundings. First, we notice that any heat gained (or lost) by the system must have come from (or gone to) the surroundings:

We consider the surroundings as an infinitely large reservoir. Any amount of heat transferred to the surroundings ( ) will only
lead to an infinitesimally small change in the reservoir, given that the reservoir is sufficiently large. Infinitesimally small changes
are characteristic of a reversible process, so any heat transfer from the perspective of the surroundings can be treated as reversible,
since it will have the same effect on the surroundings as a reversible process. Thus, from Equation I.4. , we can always write
for the surroundings:

or

The Second Law of Thermodynamics 
The Second Law of Thermodynamics deals with the change in entropy of the universe. The change of entropy of the universe is:

Substituting Equation  into Equation  gives:

For a reversible process we can substitute the equality of Equation  to give:

 Note

δqrev

∫
δqrev

T

dS 1.4.5 δ .qrev

1.4.5

δ > δqrev qirrev (1.4.8)

1.4.8 T 1.4.5

dS >
δqirrev

T
(1.4.9)

ΔS = Δ = ΔSrev Sirrev

ΔS > /Tqirrev

dS ≥ .
δq

T

δ =– δqsys qsurr (1.4.10)

δqsurr

1.4.5

d =Ssurr

δqsurr

T
(1.4.11)

Δ =Ssurr

qsurr

T
(1.4.12)

Δ = Δ +ΔSuniverse Ssys Ssurr (1.4.13)

1.4.12 1.4.13

Δ = Δ +Suniverse Ssys

qsurr

T
(1.4.14)

1.4.5

ΔSuniverse

ΔSuniverse

=

=

+
qrev

T

qsurr

T

0 (1.4.15)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/398265?pdf


1.4.4 https://chem.libretexts.org/@go/page/398265

where the last line follows from the fact that the heat gained by the surroundings is equal and opposite to the heat lost by the system
( ). We see that for a reversible process the change of entropy of the universe is zero.

Now, if the processes is irreversible we have to use the inequality of Equation . Substituting this into Equation I.4.
gives for an irreversible processes:

where again the last line follows from the fact that the heat gained by the surroundings is equal and opposite to the heat lost by the
system ( ). Thus, for an irreversible process, the change in entropy of the universe must be greater than zero.

This result is known as the Second Law of Thermodynamics which can be expressed in mathematical form as:

Where the equality holds if the process is reversible, and the inequality applies if the process is irreversible.

Key Result: The entropy of an isolated system always increases in an irreversible process and remains unchanged in a reversible
process. It can never decrease. This statement is known as the second law of thermodynamics and is expressed mathematically as:

See Practice Problem 1

Some applications of calculating the entropy 
Having defined the second law of thermodynamics, we will now consider some specific examples of calculating .

Example 1: Cyclic process 

A cyclic process is any series of steps that returns the system to its original state. Because entropy is a state property:

where  is the entropy change for the  step and the change in entropy for the cycle is zero because S is a state property.

Example 2: Reversible adiabatic process 

An adiabatic process is a process in which no heat is exchanged between the system and surroundings. For a reversible adiabatic
processes,  since no heat is exchanged. Integrating Equation  gives:

where the second line follows for an adiabatic process ( ).

Example 3: Reversible phase change at constant T and P 

At the phase transition temperature, both the forward and reverse reactions are in equilibrium. Therefore, at precisely the phase
transition temperature, the phase transition is reversible. For example, the freezing of liquid water is reversible (at equilibrium) at
the phase transition temperature of 0 °C.

H O (l) ↔ H O (s) T = 0 °C

From Equation  at constant T we can write:

Recalling, that under constant pressure conditions, , we can write, for a reversible phase transition:
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where  is the change in enthalpy of the associated phase transition.

Example 4: Constant pressure (reversible) heating (no phase change) 

Consider heating a substance from some initial temperature  to some final temperature  reversibly. We assume that there are
no phase transitions between  and . At constant pressure, we begin with the definition of the heat capacity:

Substituting Equation  into the definition of the entropy, Equation  gives:

where we have assumed the heat capacity  is independent of temperature.

See Practice Problem 2

Example 5: Ideal mixing of two inert gases at constant T and P 

In this example, we consider the mixing of two ideal gases. Consider the situation shown in Figure I.4.B. Two gases of different
chemical identities A and B are contained in two flasks of volume  and . Let  be the number of moles of gas A, and  be
the number of moles of gas B. When the stopcock separating the two flasks is open, the gases will spontaneously mix so that both
gases fill the final volume of . Similarly, the total number of moles of the combined system is .

Figure I.4.B. Ideal mixing of two inert gases. When the stopcock is opened, gas A initially contained in a volume VA with nA
number of moles spontaneously mixes with nB moles of gas B initially contained in volume VB. The final volume is V=VA + VB
and the total number of moles of gas is n = nA + nB.

The overall change in entropy for the mixing of two gases is the sum of the change in entropy for each gas:

At constant , the entropy change for gas A is given by the second term in Equation :

and similarly for gas B:

Substituting Equation  and Equation  into Equation I.4.  gives:

Using the fact that the total volume is  for an ideal gas, Equation  becomes:
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where  is the mole fraction of gas A defined as  and  is the mole fraction of gas B. Notice that because the mole
fraction is less than one,  for mixing of two ideal gases is be greater than zero.

See Practice Problem 3

Examples 

What is the change in entropy when one mole of liquid water is heated from its freezing point to its boiling point in an open
container. The molar heat capacity of liquid water is 75.38 J mol  K .

Solution
Since the water is being heated at constant pressure, we use Equation :

or, after introducing the definition of the molar heat capacity:

Substituting in the values of the initial and final temperatures gives:

Notice that the entropy increases upon heating.

Show that for a reversible adiabatic expansion of an ideal gas , but for an irreversible adiabatic expansion of an
(isolated) ideal gas 

Solution
For a reversible process, (see Example 2), we have from the definition of the entropy:

Since the process is adiabatic, there is no heat exchange with the surroundings, meaning that  and

For an irreversible process, we have from Equation :

Again, the process is adiabatic so there is no heat exchange with the surroundings, meaning that , giving:

Note that this result applies only to an isolated system. It is possible to reduce the entropy of the system with the aid of the
external surroundings. The entropy change of both system + surroundings taken together, however, cannot decrease.

Practice Problems 

Problem 1. One mole of an ideal gas is isothermally expanded from 5.0 L to 10 L at 300 K. Compare the entropy changes for the
system, surroundings, and the universe if the process is carried out a) reversibly, and b) irreversibly against a constant external
pressure of 2.0 atm.

Problem 2. The molar enthalpy of vaporization of water is  kJ/mol at the boiling temperature of 100 °C. a) What is
the value of  when one mole of liquid water is converted to a gas at 100 °C. b) What is  for the conversion of one mole of
liquid water to a gas at a temperature of 120 °C. The molar heat capacity of liquid water is 75.38 J mol  K  and the molar heat
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capacity of water vapor is 36.57 J mol  K . 
Hint consider  of heating/cooling from Example 4 (see Example 1.4.1) in addition to  for a phase transition in Example 3.

Problem 3. Suppose you have a compartment that contains 1 mole of NO and a second compartment that contains 0.3 moles of O .
Calculate the change in entropy  of mixing the two gasses together. Assume the gasses do not react and are ideal gasses.

This page titled 1.4: The Second Law of Thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Serge L. Smirnov and James McCarty.
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