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1.6: The Gibbs and Helmholtz Energy
In this chapter we introduce two additional state properties: the Gibbs energy and the Helmholtz energy. These additional variables
are useful for allowing us to determine the direction of spontaneous change without having to directly calculate the change in
entropy of the universe from the second law. The Gibbs energy has particular importance in biochemistry. We next introduce the
(intensive) molar Gibbs and the chemical potential. Emphasis is placed on the thermodynamics of mixtures and phase separations.

Know the thermodynamic definitions of the Gibbs energy and Helmholtz energy and why these two properties are
important.
Understand that the change in Gibbs energy has both an enthalpic and entropic contribution.
Know that at constant pressure and temperature the Gibbs energy decreases for a spontaneous process, and at constant
volume and temperature the Helmholtz energy decreases for a spontaneous process.
Be able to identify the fundamental differentials for , , , and  and how these can be used to arrive at
thermodynamic relationships.

The Gibbs and Helmholtz energy 

The first law of thermodynamics (Chapter I.2) accounts for the conservation of energy and the second law of thermodynamics
(Chapter I.4) determines the spontaneity. Together, these laws should allow us to deal with any biophysical problem, but their direct
application is not always convenient. In addition to our current set of state properties it is useful to define two additional state
properties: the Gibbs energy and the Helmholtz energy.

Recall that we have already define the total internal energy  and the enthalpy . Similarly, we now define the
Gibbs energy:

The Gibbs energy ( ) is the enthalpy minus the product of the temperature and the entropy.

We also define the Helmholtz energy:

The Helmholtz energy ( ) is the total internal energy minus the product of the temperature and the entropy.

If we are interested in infinitesimal changes in the Gibbs or Helmholtz energies we can consider the differential form of Equation 
 and Equation 

Note: In the differential form of Equation  we have made use of the product rule for derivatives: 

The Significance of the Gibbs and Helmholtz energy 

In order to understand why the Gibbs and Helmholtz energies are important, we need to recall the second law of thermodynamics
which states:

Recalling that for the surroundings:
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We can substitute Equation  into Equation  to obtain an alternative expression for the second law in terms of only the
system variables:

Equation  follows from the second law of thermodynamics. We will now consider two particular cases.

Case 1: Constant T and P Conditions 

At constant P, the heat transfer is equivalent to the enthalpy (see Chapter I.2):

Substitution of Equation  into Equation  gives:

Substituting the differential form of the Gibbs energy (Equation ) into Equation  gives:

At constant T, the second term  because T is not changing, giving the final result:

or upon integrating both sides from an initial to final state:

The equality holds for a reversible (equilibrium) process, and the inequality holds for any spontaneous process at constant T and P.

Key Result: At constant T and P conditions  for a spontaneous process and  for a reversible process.

Since we are at constant T, the differential form of dG from Equation  simplifies to:

Integrating both sides at constant T and P from an initial state to a final state gives:

from which we see that the Gibbs energy has an enthalpic term and an entropic term.

Key Result: 

The expression is valid at constant T and P.

Case 2: Constant T and V Conditions 
For the case of constant volume, the heat transfer is equivalent to the total internal energy (see Chapter I.2):

Substitution of Equation  into Equation  gives:

Substituting the differential form of the Helmholtz energy (Equation ) into Equation  gives:

Again at constant T, the second term  because T is not changing, giving the final result:
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δ = dHqp (1.6.8)
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TdS– dH ≥ 0 (1.6.9)
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dG= dH −TdS (1.6.13)

ΔG= ΔH −TΔS (1.6.14)

ΔG= ΔH– TΔS

δ = dUqv (1.6.15)
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TdS– dU ≥ 0 (1.6.16)
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or upon integrating both sides from an initial to final state:

The equality holds for a reversible (equilibrium) process, and the inequality holds for any spontaneous process at constant T and V.

Key Result: At constant T and V conditions  for a spontaneous process and  for a reversible process.

Since we are at constant T, the differential form of dA from Equation  simplifies to:

Integrating both sides at constant T and V from an initial state to a final state gives:

Key Result: 

The expression is valid at constant T and V.

Four Fundamental differentials of thermodynamics 

The first law of thermodynamics in differential form is:

For a reversible process we have defined the entropy as  and the reversible work as . Substituting
these identities into Equation  gives the following differential form of the first law:

Note that Equation  is valid for a reversible process in which the only work is due to compression/expansion.

The enthalpy was defined in Chapter I.2 as:

From Equation  we can write a differential form of the enthalpy as:

where we have again used the product rule from calculus on the PV term. Substituting Equation  into Equation  for the
dU term gives another differential relation for dH:

Similarly, substitution of Equation  into the dU term in the differential form for dA in Equation  gives another
differential for dA:

Finally, substitution of Equation  into the dH term differential form for dG in Equation  gives another differential for
dG:

Table I.6.i summarizes the four fundamental differential relations for dU, dH, dG, and dA:

dA ≤ 0 (1.6.18)

ΔA ≤ 0 (1.6.19)

ΔA < 0 ΔA = 0

1.6.4
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dS = δ /Tqrev δw = −P ⋅ dV
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Table I.6.i

(Equation )

(Equation )

(Equation )

(Equation )

Pressure dependence of  

The fundamental differentials from Table I.6.i are useful for deriving various thermodynamic relationships. As an example, we can
use Equation  to derive the pressure dependence of . Starting from Equation , at constant T the second term 

, giving:

or

Integrating both sides of Equation  from an initial pressure  to a final pressure  gives:

Solids and liquids are nearly incompressible, so the volume does not change significantly with changes in the pressure. Therefore,
for solids and liquids the volume can be treated as constant in Equation , and upon integration gives:

Note that Equation  is valid for solids and liquids. For an ideal gas we can substitute  for the volume in
Equation :

If we set the initial pressure to 1 bar (standard pressure), and replace the initial Gibbs energy  with the symbol for G at the
standard state , then Equation  becomes:

where in the last line we have use the expression for the molar Gibbs, .

See Practice Problem 1

Examples 
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Show that at constant pressure, the entropy is given by:

Solution
Starting with Equation :

At constant pressure ( ), we have:

or, solving for S:

Practice Problems 
Problem 1. At high pressure, graphite (density  g/cm ) can be spontaneously converted into diamond (density 
g/cm ) through a solid-to-solid phase transition:

C (graphite) → C (diamond)

At 1 atm of pressure the standard molar Gibbs energy of this reaction is  kJ/mol. At what pressure does the reaction
become spontaneous (i.e. at what pressure does )?

Problem 2. Consider the reversible freezing of liquid water into ice at a constant temperature of 0 °C and constant pressure of 1
atm.

H O (l) ↔ H O (g) 0 °C

Show that  for this process is 0. (Hint: use the relation ).

This page titled 1.6: The Gibbs and Helmholtz Energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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 Example 1.6.1

S = −( )∂G
∂T P

1.6.28

dG= V dP −SdT
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