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6.3: Analyzing Protein Dynamics, Conformational States and Function with NMR

Connect various types of molecular motion (e.g., side chain and backbone local motion, full-domain rotational motion) and
transformations (e.g., chemical exchange) with specific times scale values, from sub-picosecond to hour-scale and beyond.
Grasp the concept of the correlation time  and how its values differ in small molecules vs. proteins and in folded/ordered
vs. unfolded/disordered protein conformations.
ps-ns dynamics: Consider how some basic types of NMR data (e.g.,   and  relaxation times/rates) can inform us of
specific polypeptide conformational states, e.g. help distinguish intrinsically disordered regions (IDRs) from
folded/ordered domains.

NMR spectroscopy allows site-specific probing of biomolecular structure and dynamics, which in turn offers powerful insight into
the mechanisms of biomolecular function. In the previous Chapter, we described the basics of the heteronuclear NMR resonance
assignment process for proteins, which allows site-specific mapping of the individual NMR resonance lines to the specific residues
and atoms within the biomolecule. Advancing further, in this Chapter we will discuss how certain types of solution NMR data (T1, 

 ) can inform us about protein structural dynamics and conformational states over ps-ns timescale. We will also briefly discuss
how other types of NMR dynamics data can uncover the mechanisms of slower processes.

Conformational and Chemical Changes: Types of Motion and their Timescales 
Biological molecules operate at non-zero temperatures (in units of Kelvin). Thus, motions of various types occur within each
individual biomolecule (e.g., protein, DNA, etc.) and between molecules interacting in complexes (e.g., protein-protein, protein-
DNA, protein-ligand interactions). From Newtonian physics, we know that mechanical objects move at certain rates and
accelerations as defined by the mass values of the participating particles and forces exerted on one particle by all others. Atoms and
small molecules, from smallest (e.g., , ) to the larger ones (e.g. proteins) are still large enough to qualify as Newtonian
objects. On the other hand, sub-atomic objects (electrons, protons, neutrons or smaller) follow non-Newtonian laws of Quantum
Physics. For small Newtonian objects (e.g. atoms) or their groups (e.g. molecules), the frequency of their motions  (Greek letter,
pronounced “nu”), inversely related to timescale, is given by the Eyring Equation:

In this equation,  is the Boltzmann constant ( ),  is the temperature in units of Kelvin (e.g., 310 K for normal
adult human body temperature),  is Planck’s constant ( ),  is the Gibbs free energy value (here in J/mol) of
the kinetic barriers the system needs to “cross” or “jump over” to switch from one state to another and  is the gas constant, 

). Thus, the lower the free energy barrier between the states, the higher the frequency of the
transitions between separate states. In the absence of a barrier ( ), this frequency is the highest attainable for
biochemical systems and has a value of ~  at temperature values typical for biological settings (room temperature,
body temperature, etc.). In general, Equation  allows estimation of the frequency of transition between two states if one knows
the value of the free energy barrier (see worked Examples and Practice Problems below). This equation also explains why the
frequencies of transition between states separated by high activation energy barriers are lower (the transition times are higher) than
the transition frequencies for low-barrier cases (Figure ).
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Figure : A generalized free energy space landscape of a molecular system of interest (e.g. a protein) showing three major
hypothetical states (e.g., conformations): A, B and C. States A and B are separated by a medium energy barrier, which corresponds
to  times of exchange between A and B. States B and C are separated by a significantly greater energy barrier, which results
in a much slower exchange (than between A and B) of seconds-hours times. Within each of the three major states, there are sub-
states separated by the smallest energy barriers (little wiggles of the Figure), which correspond to the fastest (occurring most
readily) transitions within each major state, with a ps-ns time scale. Note that it is the peak height (i.e. the activation energy to be
overcome) rather than absolute value of free energy that determines a transition’s frequency.

From general Chemistry we know that temperature represents the average kinetic energy of moving atoms and their groups. Recall
the basic equation for the average kinetic energy  of monoatomic gas particles:

This formula indicates that for a given temperature, it is the mass  of the molecular group which would define the average speed 
 (distinct from the frequency, , or “nu”). Thus, the smaller the atomic or molecular entity, the faster its most rapid oscillatory

motions will be at a given temperature. The speeds of atomic motions can be linked with the frequencies in case of oscillatory
motion, e.g., in a bond vibration or protein backbone side chain rotation, etc. Therefore, we see that the smaller/lighter an
oscillating molecular group is, the higher the frequency of those oscillations.

Figure  informs us about the characteristic times and frequency values of a number of typical biochemical processes, such as
ligand binding/unbinding or enzyme catalysis acts, which are typically orders of magnitude slower than bond and side chain
oscillations. The actual frequency value of a process tells a lot about is nature or mechanism. Thus, measuring these frequencies
can be informative for biochemists. Solution NMR spectroscopy can be particularly helpful here because it can excite the target
system with alternating magnetic fields of almost any desirable frequency.

Figure : The time and frequency scales of the most common types of intra- and inter- molecular processes typical for
biological molecules, e.g., proteins and nucleic acids. Note the numerical value of the fastest (highest frequency and lowest time-
scale) processes:  or .
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Backbone bond and side chain dynamics (ps-ns time scale) is sensitive to the conformational state of the polypeptide chain.
Specifically, folded and unfolded segments of a protein differ noticeably in terms of the types of motions their atomic groups (e.g.,
amino acid residues) undergo. All the groups in a folded protein or domain move together as one single object (a helpful
oversimplification). On the other hand, individual amino acid residues in an intrinsically disordered region (IDR) move almost
independently from one another. Thus, the Brownian motion of every amino acid in a folded domain is happening slower (since the
domain is large), whereas residues in an IDR move at higher frequencies. Specifically designed NMR experiments can detect this
difference in motion dynamics and thus help distinguish folded domains from IDRs. Figure  also shows that many types of
intermolecular interactions (ligand binding, enzymatic catalysis) are happening at significantly slower rates (larger time scales)
than bond vibrations and dihedral rotations.

Correlation Times for Different Conformational States (folded vs. unfolded polypeptides) 

Quantitatively, diffusional (“random”) molecular motions can be characterized by the correlation time , a period after which the
system loses any connection to (“forgets”) its state at time zero. For example, a simplest type of random molecular motion -
rotation of a spherical protein domain around its center of gravity - can be described by the correlation function  which is
related to the probability that the randomly moving molecule adopts its original orientation (recorded at time t=0) or conformation
after a certain time . In the simplest case of an isolated folded protein, the correlation function can be expressed as

where parameter  is the correlation time in this model and  is the normalization factor (a number). In practical terms, the
correlation time of random rotational motion of a relatively spherical folded protein (e. g., ubiquitin) can be described by the
average time it takes this object to rotate by 1 radian around its center of mass (Figure ). The probability of any subset of the
target molecules returning to the original state at  is lower than 1 by a factor of , a value substantially lower than 1 (only 

 fraction of all the molecules have any chance of getting back to the original state at ). Thus, one can safely assume most
of the target molecules “forget” their initial position or state after times equal or longer than . For folded proteins or domains, the
correlation time values are relatively high ( ) since these molecules pack tens of amino acid residues (a high-mass system)
and their random rotational motion is thus quite slow. Since such molecules move and rotate roughly as a single unit, their  value
is the same for all the residues in the polypeptide. For motions of amino acids in an intrinsically disordered protein (IDP) or
region (IDR), each residue would move to a large degree independently from the others (a useful simplification), as if each residue
behaved as a small organic molecule (Figure ). For the residues in an IDP/IDR, their individual correlation times are small (

), just like the values for small organic molecules. Unlike in the folded domain, an IDP would commonly need multiple
correlation time values to model its internal conformational dynamics, since amino acids of various sizes can move at different
rates at the same temperature (Figure ).

Types of NMR data to probe ps-ns dynamics of biomolecules 
Several types of NMR experiments produce data showing polypeptide motions in the ps-ns time range. In this chapter we will
focus on  and  types of NMR data, both probing the rates (and times) of relaxation of NMR signals typically registered from
the { } backbone groups in proteins. The  relaxation mechanism, also called spin-lattice relaxation, refers to the loss of
the spin-½ excitation (and thus signal) through protein interactions with the solvent (e.g., water). Figure  (Left vs. Right)
shows that the  relaxation times are shorter (the relaxation rates higher) for the amino acids within disordered regions (because
each such residue is in direct contact with water molecules) than for the residues within folded domains where many of such
residues are hidden inside the domain. The  relaxation mechanism, also called spin-spin relaxation, refers to the loss of the
spin-½ signal coherence through internal interactions between the spins within the biomolecule itself (e.g., protein). The 
relaxation times are typically longer (the relaxation rates lower) for the residues in IDRs, where only two neighbors (on average)
are covalently bonded to each internal residue, than for residues within folded domains where each residue has many covalently
and non-covalently bonded neighbors.
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Figure : Left: Solvated folded protein model; Right: solvated intrinsically disordered protein (IDP); Middle: external magnetic
field B0 and a graphic representing a water molecule. Note that in the IDP every residue forms a direct contact with the molecules
of the solvent. Contrary to that, amino acid residues buried inside a folded protein domain are protected from interactions with
water but have plenty of contact with other residues of the same protein. Finally, each “disordered” residue may have a unique
correlation time value due to different sizes (masses) of the side chains. The  value for the residues in the folded domain (Left) is
depicted in a larger font than for those values in the IDR to highlight the relative value difference.

The generalized free energy profile of a biomolecule (Figure ) informs us that various processes occur at drastically different
time/frequency scales (Figure ). In this chapter, we focused on once class of such events - dynamics of motion of amino acids.
Figures  and  combined inform us that the correlation times  for amino acid residues in folded/ordered and
unfolded/disordered proteins are noticeably different (>4 ns vs. 1 ns) and that  and  rates depend on  values. Thus,  and 

 NMR relaxation times combined with the residue-specific NMR resonance assignment (see Chapter 6.2) can help reliably
distinguish folded/ordered and unfolded/disordered elements of the protein sample. In this regard, solution NMR is one of today’s
most powerful biophysical techniques. It is worth noting that in addition to  and  notation for the spin-lattice and spin-spin
relaxation mechanisms, many authors use the complementary  ( ) and  ( ) notation which refers to the
rates of relaxation (in units of Hz) as opposed to the relaxation times (in seconds). For a typical folded protein domain, the 
relaxation rates R1 fall into the single-digit range (in Hz) whereas the  rates are 20-40 Hz.

Figure : Modeled  and  values (Log scale) vs correlation time  for individual residues in polymers (e.g., proteins),
folded and not. Note that for small molecules or amino acids in a disordered polypeptide ( ) the  and  values are
relatively close to each other (dashed rectangle marked IDR). Contrary to that, for the residues within a typical folded domain (

, dashed rectangle marked “Folded domains”), the  values are significantly shorter than  (>10X difference).

A rich repertoire of solution NMR experiments have been developed and applied in recent decades to probe biochemical and
biophysical processes over time scales ranging from below picoseconds to hours and above. In addition to  and , {

}-NOE (Nuclear Overhauser Effect) data provides an independent experimental probing of the ps-ns backbone
motions and can distinguish between folded/ordered and unfolded/disordered domains. Another group of methods ( ,
CPMG, CEST, etc.) produce data sensitive to motions or changes in the  time scale. More traditional techniques, e.g.
reporting chemical shift values, can be utilized to distinguish states in slow exchange (seconds-hours). Although even a brief
introduction of most of these methods is outside the scope of this text, a simple list of these approaches is enough to
demonstrate that modern solution NMR is a uniquely powerful technique, capable of providing site-specific information about
biomolecular structure, dynamics and function.
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A common mathematical approach relating the description of how spins involved in molecular motions and intermolecular
communications at various frequencies interact with constant and alternating magnetic fields (e.g., NMR pulses) is based on
the concept of the spectral density function, . The spectral density function essentially reports a probability value J
indicative of the system’s likelihood to exhibit motions or interactions happening at a given frequency . Mathematically, the
spectral density function can be calculated as the Fourier transform of the correlation function . Thus, the more complex
the motions of the system, the more sophisticated its model of the correlation function needs to be and thus the more laborious
it will be to propose a realistic and practically useful spectral density function. Although,  and  can be complex and
even very non-trivial in many scenarios, working them out is well worth the effort as it helps to design NMR experimental
schemes targeting the frequency ranges relevant for the process or sample studied. The derivation of practically used forms of 

 is outside the scope of this Chapter, however at least one of the more advanced problems below provides an informative
example to a curious reader.

Worked Problems 

What is the highest frequency of periodic oscillations of the smallest Newtonian objects (e.g. atoms) at room temperature and
at regular body (human) temperature?

Solution
Room temperature corresponds to 25 °C (298 K), normal human body temperature is 37 °C (310 K). The oscillation frequency
will be highest at  (i.e., no barrier between the two states).

As per Equation , the highest frequency then is:

at 298 K:

at 310 K:

What is the magnitude of the energy barrier  between two states (A and B) of a macromolecule that corresponds to
transition time of  and 1  at normal human body temperature?

Solution
Transition time of  matches to frequency ; for 1 ps, .

As per Equation , for the transition frequency of

:

:

 Further theory (optional)
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Can the highest frequency of periodic oscillations of the smallest Newtonian objects (e.g., atoms) exceed  in a
biological scenario on our planet

Chapter 3 of this text discusses molecular dynamics simulations of biological molecules. Commonly, the time step of 1
femtosecond (fs) or 2 fs are used today in these simulations to reevaluate the positions of al the atoms in the molecules and of
all the forces acting upon them. The fact that these time steps are finite (non-zero) makes the simulations appear less than ideal.
Given that the computational resources available today are quite extensive, would you (or would you not) suggest reducing
these timesteps below 1 fs? Justify quantitatively.

As a common practice, the “  vs. residue number” graph for protein Q3 is provided.

(This way, less space in a journal article is used as opposed to showing two separate graphs, one for  and the other – for 
as functions of the residue position in the amino acid sequence)

 vs. residue number” graph: The round-edge rectangles correspond to folded domains, wiggly lines to IDRs

a. How many residues does protein Q3 have?
b. Describe the 2° / 3° structure of Q3 in terms of residues belonging to folded domains vs. residues belonging to intrinsically

disordered regions (IDRs).
c. What structural model, A or B, (below) corresponds to  and  NMR data for protein Q3?
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The correlation function for a spherical molecule (folded protein): . What is the algebraic expression for the
spectral density function  for this molecule? Use the obtained algebraic expression for  to estimate the “highest rates”
of rotational motion such a sample. You can define the “highest rates” as the frequency  value which corresponds to the 
value at 50% of its maximum.

What environmental factors and solvent properties affect the correlation time value  in Practice Problem  and how
specifically?

This page titled 6.3: Analyzing Protein Dynamics, Conformational States and Function with NMR is shared under a CC BY-NC-SA 4.0 license
and was authored, remixed, and/or curated by Serge L. Smirnov and James McCarty.
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