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3.3: Newtonian Mechanics
Introduction goes here

Objective 1
Objective 2

Newton's equation of motion 

While the electronic structure of atoms is described by quantum mechanics, the motion of atomic nuclei and larger molecules can
be described by Newton's laws of motion. Consider two interacting particles as shown in Figure 3.3.A. According to Newton's
second law of motion the force acting on a particle is equal to the product of the mass of the particle and its acceleration:

where  is the net force acting on a particle with mass . Equation  describes how a force acting on a body can produce
motion of a body. Force and acceleration are both vector quantities. The acceleration is the first derivative of the velocity with
respect to time:

and the second derivative of the position with respect to time:

As shown in Figure 3.3.A, if two particles interact, they exert forces on one another that are equal in magnitude and opposite in
direction, according to Newton's third law.

Figure III.3.A. Schematic depiction of two interacting particles. F  is the force acting on particle 2 due to the interaction with
particle 1. F  is the equal in magnitude and opposite in direction force on particle 1 due to particle 2.

Given the initial positions and velocities of a system of particles and a suitable expression for the forces acting on each particle, the
goal of classical mechanics is to calculate the positions and velocities of the particles at all future times.

Assuming that the potential energy is a function of the atomic positions, , the force is:

where  is the differential operator:

.

Using Equation  and Equation , Newton's second law can be rewritten as a second order differential equation in terms of
the position:
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Harmonic motion 
As an illustrative example of Newtonian mechanics, consider a body of mass m, attached to a spring, and able to move along the x-
direction only as shown in Figure 3.3.B. The potential energy is that of a harmonic oscillator:

where k is the spring constant that parameterizes the stiffness of the spring. The equilibrium position is when the spring is relaxed
and the position of the mass is at . This position corresponds to the minimum in potential energy. The net force acting on the
mass at  is zero, meaning that the acceleration is zero at this point, consistent Newton's equation of motion. If the spring is
compressed or stretched along the x-axis, the mass will feel a restoring force given by Hook's law:

Figure III.3.B. A mass on a spring along the x-direction. The equilibrium position is represented by the position of the mass at 
where the spring is relaxed. If the spring is compressed or stretched the mass will feel a restoring force towards the equilibrium
position. The potential energy curve is a harmonic oscillator, sketched above showing a minimum at the equilibrium position.

Newton's second law for the harmonic oscillator is:

Equation  is a second order differential equation. The solution for the position as a function of time is

where A is the amplitude of the oscillation, , and  is a phase factor that depends on the initial conditions.

Phase space 

Equation  is a second order differential equation because the largest derivative order is a second derivative. In general, any n-
th order differential equation can be expressed as a n first order differential equations:

For the harmonic oscillator, the second order differential Equation  can be equivalently written as two first order differential
equations:
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where  is the velocity. We can completely describe the dynamical state of the system with 2 variables: the position x(t) and the
velocity v(t).

Figure 3.3.C shows a plot of Equation  (left) and the phase space plot (right) representing the time evolution of the
dynamical system.

This page titled 3.3: Newtonian Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Serge L.
Smirnov and James McCarty.
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