
2.2.1.1 https://chem.libretexts.org/@go/page/401770

2.2.1: Collision theory, transition state theory, and the prediction of rate laws and rate
constants

Rate Law and Collision Theory

Consider the reaction

In the last class, we regarded the rate law

as empirical. As it happens, we can actually derive this using the collision theory discussed in Lecture 6. Recall, from lecture 6, that
the collision rate between two atoms or molecules in a system is

where  is the number density,  is the collision cross section, and  is the relative velocity between the two atoms or
molecules. Now, if the two colliding atoms or molecules are different, and we are interested in the rate of collisions of
atoms/molecules of type  with those of type , then the collision rate must be written as

Here  is the density of atoms/molecules of type ,  is the relative speed between  and , and  is the
cross section between  and , which, is given the average of arithmetic and geometric averages:

From the Maxwell-Boltzmann distribution,

where the reduced mass

The collision rate  is the rate for the collision of one atom/molecule of . If there are  atoms/molecules of , then the total
collision rate for  with  is

However, the number density of  is , so we can write the total collision rate as

In a time interval , the number of collisions  is

Let  denote the probability that a collision between  and  leads to product . The rate of decrease of  must then be

so that

Note that the rate is
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However,  is in units of moles/liter. The ratio , where  is Avogadro’s number, has the proper units of moles/liter,
if  is in liters. Thus,

Since  has units of (molecules of /liters), we can write , and similarly, . This gives

where the rate constant is

To determine the reaction probability , consider the energy profile for the reaction in Figure . In the gas phase, the
activation “energy”, denote  in the figure is the potential energy at the top of the hill, which we denote as . If the reaction
takes place in a condensed phase, such as in solution, then the activation “energy” is the free energy .

Figure : Illustration of a reaction energy profile.

If  and  are atoms, then  is the probability that the energy  between  and  must be larger than this energy  in
order for the collision to yield product . If  and  are molecules, then  and  must also have the right orientation in addition
to a sufficiently high energy. The probability that they have the right orientation is a fraction , which we call the steric factor.
When  and  are atoms, . Generally, we can write

The general probability distribution  is just given by the Boltzmann distribution

where  is a normalization constant. The normalization condition is

which gives . Thus,

Now, the probability  that  is

which gives the rate constant as
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We see, generally, that

where  is the activation potential  in the gas phase and the activation free energy  in condensed phases. This is known as
the Arrhenius law.

Note that if we plot  vs. , which is given by

the plot will be a line with slope . Such a plot is called an Arrhenius plot. Note, moreover, that if  and  are the same
atom or molecule type, then the rate law we derived, would take the form of a second-order rate law

Transition State Theory

In Figure , the point at which we evaluate or measure  serves as a dividing line (also called a dividing surface) between
reactants and products. At this point, we do not have , and we do not have . Rather, what we have is an activated complex
of some kind called a transition state between reactants and products. The value of the reaction coordinate at the transition state is
denoted . Recall our notation  for the complete set of coordinates and momenta of all of the atoms in the system. Generally, the
reaction coordinate  is a function  of all of the coordinates and momenta, although typically,  is a function of a subset of
the coordinates and, possibly, the momenta.

As an example, let us consider two atoms  and  undergoing a collision. An appropriate reaction coordinate could simply be the
distance  between  and . This distance is a function of the positions  and  of the two atoms, in that

When  and  are molecules, such as proteins,  is a much more complicated function of .

Now, recall that the mechanical energy  is given by

and is a sum of kinetic and potential energies. Transition state theory assumes the following:

1. We start a trajectory obeying this equation of motion with an initial condition  that makes  and such that 
so that the reaction coordinate proceeds initial to the right, i.e., toward products.

2. We follow the motion  of the coordinates and momenta in time starting from this initial condition , which gives us a unique
function .

3. If  at time , then the trajectory is designated as “reactive” and contributes to the reaction rate.

Define a function , which is  if  and  if . The function  is known as a step function.

We now define a flux of reactive trajectories  using statistical mechanics

where  is Planck’s constant. Here  is the partition function of the reactants

The meaning of Equation  is an ensemble average over a canonical ensemble of the product  and
. The first factor in this product  forces the initial velocity of the reaction coordinate to be positive, i.e.,
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toward products, and the step function  requires that the trajectory of  be reactive, otherwise, the step
function will give no contribution to the flux. The function  in Equation  is known as the reactive flux. In the
definition of  the step function  measures the total number of microscopic states on the reactive side of the energy
profile.

A plot of some examples of reactive flux functions  is shown in Figure . These functions are discussed in greater detail
in J. Chem. Phys. 95, 5809 (1991). These examples all show that  decays at first but then finally reaches a plateau value. This
plateau value is taken to be the true rate of the reaction under the assumption that eventually, all trajectories that will become
reactive will have done so after a sufficiently long time. Thus,

gives the true rate constant. On the other hand, a common approximation is to take the value  as an estimate of the rate
constant, and this is known as the transition state theory approximation to , i.e.,

However, note that since we require  to initially be toward products, then by definition, at , , and the step
function in the above expression is redundant. In addition, if  only depends on momenta (or velocities) and not actually on
coordinates, which will be true if  is not curvilinear (and is true for some curvilinear coordinates ), and if  only
depends on coordinates, then Equation  reduces to

Figure : Examples of the reactive flux .

The integral

counts the number of microscopic states consistent with the condition  and is, therefore, a kind of partition
function, and is denoted . On the other hand, because it is a partition function, we can derive a free energy  from it

Similarly, if we divide  into its ideal-gas and configurational contributions

then we can take
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where  is the free energy of the reactants. Finally, setting , where  is the associated mass, and  is the corresponding
momentum of the reaction coordinate, then, canceling most of the momentum integrals between the numerator and , the
momentum integral we need is

which gives the final expression for the transition state theory rate constant

Figure  actually shows , which must start at . As the figure shows, in addition, for , .
Hence,  is always an upper bound to the true rate constant. Transition state theory assumes that any trajectory that initially
moves toward products will be a reactive trajectory. For this reason, it overestimates the reaction rate. In reality, trajectories can
cross the dividing surface several or many times before eventually proceeding either toward products or back toward reactants.

Figure : Examples of the trajectories in a typical system, some of which are reactive but some of which return to reactants.

Figure  shows that one can obtain trajectories of both types. Here, the dividing surface lies at . Left, toward  is
the reactant side, and right, toward  is the product side. Because some trajectories return to reactants and never become
products, the true rate is always less than , and we can write

where the factor  is known as the transmission factor. This factor accounts for multiple recrossings of the dividing surface
and the fact that some trajectories do not become reactive ones.
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