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2.2: Introduction to reaction kinetics- Basic rate laws
The kinetic theory of gases can be used to model the frequency of collisions between hard-sphere molecules, which is proportional
to the reaction rate. Most systems undergoing a chemical reaction, however, are much more complex. The reaction rates may be
dependent on specific interactions between reactant molecules, the phase(s) in which the reaction takes place, etc. The field of
chemical kinetics is thus by-and-large based on empirical observations. From experimental observations, scientists have established
that reaction rates almost always have a power-law dependence on the concentrations of one or more of the reactants. In the
following sections, we will discuss different power laws that are commonly observed in chemical reactions.

 Order Reaction Kinetics
Consider a closed container initially filled with chemical species . At , a stimulus, such as a change in temperature, the
addition of a catalyst, or irradiation, causes an irreversible chemical reaction to occur in which  transforms into product :

The rate that the reaction proceeds, , can be described as the change in the concentrations of the chemical species with respect to
time:

where  denotes the molar concentration of chemical species  with units of .

Let us first examine a reaction  in which the reaction rate, , is constant with time:

where  is a constant, also known as the rate constant with units of . Such reactions are called zeroth order reactions because

the reaction rate depends on the concentrations of species  and  to the  power. Integrating  with respect to , we find that

At , . Plugging these values into the equation, we find that . The final form of the equation is:

A plot of the concentration of species  with time for a  order reaction is shown in Figure , where the slope of the line is 
 and the -intercept is . Such reactions in which the reaction rates are independent of the concentrations of products and

reactants are rare in nature. An example of a system displaying  order kinetics would be one in which a reaction is mediated by
a catalyst present in small amounts.

 Order Reaction Kinetics
Experimentally, it is observed than when a chemical reaction is of the form

the reaction rate can be expressed as

where it is assumed that the stoichiometric coefficients  of the reactants are all positive. Thus, or a reaction , the
reaction rate depends on  raised to the first power:
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Figure : Plots of  (solid line) and  (dashed line) over time for a  order reaction.

For first order reactions,  has the units of . Integrating and applying the condition that at , , we arrive at the

following equation:

Figure  displays the concentration profiles for species  and  for a first order reaction. To determine the value of  from

Figure : Plots of  (solid line) and  (dashed line) over time for a  order reaction.

experimental data, it is convenient to take the natural log of Equation 19.8:

For a first order irreversible reaction, a plot of  vs.  is straight line with a slope of  and a -intercept of .

 Order Reaction Kinetics
Another type of reaction depends on the square of the concentration of species  - these are known as second order reactions. For a
second order reaction in which , we can write the reaction rate to be

For second order reactions,  has the units of . Integrating and applying the condition that at , , we arrive

at the following equation for the concentration of  over time:

Figure  shows concentration profiles of  and  for a second order reaction. To determine  from experimental data for
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Figure : Plots of  (solid line) and  (dashed line) over time for a  order reaction.

second-order reactions, it is convenient to invert Equation 19.11:

A plot of  vs.  will give rise to a straight line with slope  and intercept .

Second order reaction rates can also apply to reactions in which two species react with each other to form a product:

In this scenario, the reaction rate will depend on the concentrations of both  and  to the first order:

In order to integrate the above equation, we need to write it in terms of one variable. Since the concentrations of  and  are
related to each other via the chemical reaction equation, we can write:

We can then use partial fractions to integrate:

Figure  displays the concentration profiles of species , , and  for a second order reaction in which the initial
concentrations of  and  are not equal.

Rate Laws for Elementary Reactions
In general, it is necessary to experimentally measure the concentrations of species over time in order to determine the apparent rate
law governing the reaction. If the reactions are elementary reactions, (i.e. they cannot be expressed as a series of simpler reactions),
then we can directly define the rate law based on the chemical equation. For example, an elementary

2.2.3 [A] [B] 2nd

= +2kt
1

[A]

1

[A]0
(2.2.13)

1/ [A] t k 1/[A]0

A +B C⟶
k

(2.2.14)

A B

r = − = − = k [A] [B]
d [A]

dt

d [B]

dt
(2.2.15)

A B

[B] = −( −[A]) = [A] + −[B]0 [A]0 [B]0 [A]0 (2.2.16)

= −k [A] ([A] + − )
d [A]

dt
[B]0 [A]0 (2.2.17)

kdt = = ( − )
d [A]

[A] ([A] + − )[B]0 [A]0

1

−[B]0 [A]0

d [A]

[A]

d [A]

− +[A][B]0 [A]0
(2.2.18)

kt = ln
1

−[A]0 [B]0

[A] [B]0

[B] [A]0
(2.2.19)

2.2.4 A B C

A B

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/401769?pdf


2.2.4 https://chem.libretexts.org/@go/page/401769

Figure : Plots of  (solid line),  (dashed line) and  (dotted line) over time for a  order reaction in which the initial
concentrations of the reactants,  and , are not equal.

reaction in which a single reactant transforms into a single product, is unimolecular reaction. These reactions follow  order rate
kinetics. An example of this type of reaction would be the isomerization of butane:

From the chemical reaction equation, we can directly write the rate law as

without the need to carry out experiments.

Elementary bimolecular reactions that involve two molecules interacting to form one or more products follow second order rate
kinetics. An example would be the following reaction between a nitrate molecule and carbon monoxide to form nitrogen dioxide
and carbon dioxide:

For the above elementary reaction, we can directly write the rate law as:

Trimolecular elementary reactions involving three reactant molecules to form one or more products are rare due to the low
probability of three molecules simultaneously colliding with one another.

Reversible Reactions

Oftentimes, reactions are reversible, meaning that a reaction can proceed in both directions. An example of a reversible reaction is
the isomerization of cis- , -dichloroethene to trans- , -dichloroethene. At equilibrium, both isomers are present, with their
equilibrium concentrations determined by the rate at which the forward and reverse reaction take place.

Consider the following reversible reaction which follows first order rate kinetics in both directions, with rate constants  and 
in the forward and reverse directions, respectively:

For the above reaction, we can write rate law for the reaction as:

If the concentration of species  at the start of the reaction, then we can write:

Equation 19.20 then becomes
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Under equilibrium conditions, . The equilibrium concentration of species , , can be calculated from the
above expression as

Plugging Equation 19.23 into Equation 19.22 and integrating, we obtain the following expression:

where  is a constant. Applying the initial condition that  at ,

From Equation 19.20, we can also write an expression for the equilibrium constant, 

In general, the equilibrium constant  is equal to the ratio of the forward and reverse rate constants. Consider the following
bimolecular elementary reaction:

The forward and reverse reaction rates will be

At equilibrium, , so

The equilibrium constant,  is given by

Plugging in Equation 19.30 into Equation 19.31, we arrive at

The above equation is true for all reversible elementary reactions.

Figure : Plots of  (solid line) and  (dashed line) over time for a reversible reaction in which the forward and reverse
reactions follow first order rate kinetics, with 

Relaxation Method to Determine Rate Constants
The rate constants of reversible reactions can be measured using a relaxation method. In this method, the concentrations of
reactants and products are allowed to achieve equilibrium at a specific temperature. Once equilibrium has been achieved, the
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temperature is rapidly changed, and then the time needed to achieve the new equilibrium concentrations of reactants and products is
measured. Consider the following reversible reaction:

The rate law can be written as

Consider a system comprising  and  that is allowed to achieve equilibrium concentrations at a temperature, . After
equilibrium is achieved, the temperature of the system is instantaneously lowered to  and the system is allowed to achieve new
equilibrium concentrations of  and ,  and . During the transition time from the first equilibrium state to the second
equilibrium state, we can write the instantaneous concentration of  as

The rate of change of species  can then be written as

At equilibrium,  and , allowing us to write

Using the above equation, we can rewrite the rate equation as

Integrating yields

We can rearrange the above equation in terms of 

At , , so . Plugging the the value of , we arrive at

which can also be expressed as

where  is the difference in the concentration of  from the final equilibrium concentration after the perturbation, and  is the
relaxation time. A plot of  versus  will be linear with a slope of , where  and  are the rate
constants at temperature, .
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