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7.6.4: Heating Curve for Water
Freezing, condensation, and deposition, which are the reverse of fusion, sublimation, and vaporization—are exothermic. Thus heat
pumps that use refrigerants are essentially air-conditioners running in reverse. Heat from the environment is used to vaporize the
refrigerant, which is then condensed to a liquid in coils within a house to provide heat. The energy changes that occur during phase
changes can be quantified by using a heating or cooling curve.

Heating Curves 
Figure  shows a heating curve, a plot of temperature versus heating time, for a 75 g sample of water. The sample is initially
ice at 1 atm and −23°C; as heat is added, the temperature of the ice increases linearly with time. The slope of the line depends on
both the mass of the ice and the specific heat (C ) of ice, which is the number of joules required to raise the temperature of 1 g of
ice by 1°C. As the temperature of the ice increases, the water molecules in the ice crystal absorb more and more energy and vibrate
more vigorously. At the melting point, they have enough kinetic energy to overcome attractive forces and move with respect to one
another. As more heat is added, the temperature of the system does not increase further but remains constant at 0°C until all the ice
has melted. Once all the ice has been converted to liquid water, the temperature of the water again begins to increase. Now,
however, the temperature increases more slowly than before because the specific heat capacity of water is greater than that of ice.
When the temperature of the water reaches 100°C, the water begins to boil. Here, too, the temperature remains constant at 100°C
until all the water has been converted to steam. At this point, the temperature again begins to rise, but at a faster rate than seen in
the other phases because the heat capacity of steam is less than that of ice or water.

Figure : A Heating Curve for Water. This plot of temperature shows what happens to a 75 g sample of ice initially at 1 atm
and −23°C as heat is added at a constant rate: A–B: heating solid ice; B–C: melting ice; C–D: heating liquid water; D–E:
vaporizing water; E–F: heating steam.

Thus the temperature of a system does not change during a phase change. In this example, as long as even a tiny amount of ice is
present, the temperature of the system remains at 0°C during the melting process, and as long as even a small amount of liquid
water is present, the temperature of the system remains at 100°C during the boiling process. The rate at which heat is added does
not affect the temperature of the ice/water or water/steam mixture because the added heat is being used exclusively to overcome the
attractive forces that hold the more condensed phase together. Many cooks think that food will cook faster if the heat is turned up
higher so that the water boils more rapidly. Instead, the pot of water will boil to dryness sooner, but the temperature of the water
does not depend on how vigorously it boils.

The temperature of a sample does not change during a phase change.
If heat is added at a constant rate, as in Figure , then the length of the horizontal lines, which represents the time during
which the temperature does not change, is directly proportional to the magnitude of the enthalpies associated with the phase
changes. In Figure , the horizontal line at 100°C is much longer than the line at 0°C because the enthalpy of vaporization of
water is several times greater than the enthalpy of fusion.

A superheated liquid is a sample of a liquid at the temperature and pressure at which it should be a gas. Superheated liquids are not
stable; the liquid will eventually boil, sometimes violently. The phenomenon of superheating causes “bumping” when a liquid is
heated in the laboratory. When a test tube containing water is heated over a Bunsen burner, for example, one portion of the liquid
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can easily become too hot. When the superheated liquid converts to a gas, it can push or “bump” the rest of the liquid out of the test
tube. Placing a stirring rod or a small piece of ceramic (a “boiling chip”) in the test tube allows bubbles of vapor to form on the
surface of the object so the liquid boils instead of becoming superheated. Superheating is the reason a liquid heated in a smooth cup
in a microwave oven may not boil until the cup is moved, when the motion of the cup allows bubbles to form.

Cooling Curves 

The cooling curve, a plot of temperature versus cooling time, in Figure  plots temperature versus time as a 75 g sample of
steam, initially at 1 atm and 200°C, is cooled. Although we might expect the cooling curve to be the mirror image of the heating
curve in Figure , the cooling curve is not an identical mirror image. As heat is removed from the steam, the temperature falls
until it reaches 100°C. At this temperature, the steam begins to condense to liquid water. No further temperature change occurs
until all the steam is converted to the liquid; then the temperature again decreases as the water is cooled. We might expect to reach
another plateau at 0°C, where the water is converted to ice; in reality, however, this does not always occur. Instead, the temperature
often drops below the freezing point for some time, as shown by the little dip in the cooling curve below 0°C. This region
corresponds to an unstable form of the liquid, a supercooled liquid. If the liquid is allowed to stand, if cooling is continued, or if a
small crystal of the solid phase is added (a seed crystal), the supercooled liquid will convert to a solid, sometimes quite suddenly.
As the water freezes, the temperature increases slightly due to the heat evolved during the freezing process and then holds constant
at the melting point as the rest of the water freezes. Subsequently, the temperature of the ice decreases again as more heat is
removed from the system.

Figure : A Cooling Curve for Water. This plot of temperature shows what happens to a 75 g sample of steam initially at 1
atm and 200°C as heat is removed at a constant rate: A–B: cooling steam; B–C: condensing steam; C–D: cooling liquid water to
give a supercooled liquid; D–E: warming the liquid as it begins to freeze; E–F: freezing liquid water; F–G: cooling ice.

Supercooling effects have a huge impact on Earth’s climate. For example, supercooling of water droplets in clouds can prevent the
clouds from releasing precipitation over regions that are persistently arid as a result. Clouds consist of tiny droplets of water, which
in principle should be dense enough to fall as rain. In fact, however, the droplets must aggregate to reach a certain size before they
can fall to the ground. Usually a small particle (a nucleus) is required for the droplets to aggregate; the nucleus can be a dust
particle, an ice crystal, or a particle of silver iodide dispersed in a cloud during seeding (a method of inducing rain). Unfortunately,
the small droplets of water generally remain as a supercooled liquid down to about −10°C, rather than freezing into ice crystals that
are more suitable nuclei for raindrop formation. One approach to producing rainfall from an existing cloud is to cool the water
droplets so that they crystallize to provide nuclei around which raindrops can grow. This is best done by dispersing small granules
of solid CO  (dry ice) into the cloud from an airplane. Solid CO  sublimes directly to the gas at pressures of 1 atm or lower, and the
enthalpy of sublimation is substantial (25.3 kJ/mol). As the CO  sublimes, it absorbs heat from the cloud, often with the desired
results.

If a 50.0 g ice cube at 0.0°C is added to 500 mL of tea at 20.0°C, what is the temperature of the tea when the ice cube has just
melted? Assume that no heat is transferred to or from the surroundings. The density of water (and iced tea) is 1.00 g/mL over
the range 0°C–20°C, the specific heats of liquid water and ice are 4.184 J/(g•°C) and 2.062 J/(g•°C), respectively, and the
enthalpy of fusion of ice is 6.01 kJ/mol.

7.6.4.4

7.6.4.3

7.6.4.2

2 2

2

Example : Cooling Hot Tea7.6.4.1

https://libretexts.org/
https://chem.libretexts.org/@go/page/409030?pdf


7.6.4.3 https://chem.libretexts.org/@go/page/409030

Given: mass, volume, initial temperature, density, specific heats, and 

Asked for: final temperature

Strategy:
Substitute the values given into the general equation relating heat gained to heat lost (Equation 5.39) to obtain the final
temperature of the mixture.

Solution:
When two substances or objects at different temperatures are brought into contact, heat will flow from the warmer one to the
cooler. The amount of heat that flows is given by

where q is heat, m is mass, C  is the specific heat, and ΔT is the temperature change. Eventually, the temperatures of the two
substances will become equal at a value somewhere between their initial temperatures. Calculating the temperature of iced tea
after adding an ice cube is slightly more complicated. The general equation relating heat gained and heat lost is still valid, but
in this case we also have to take into account the amount of heat required to melt the ice cube from ice at 0.0°C to liquid water
at 0.0°C.

Suppose you are overtaken by a blizzard while ski touring and you take refuge in a tent. You are thirsty, but you forgot to bring
liquid water. You have a choice of eating a few handfuls of snow (say 400 g) at −5.0°C immediately to quench your thirst or
setting up your propane stove, melting the snow, and heating the water to body temperature before drinking it. You recall that
the survival guide you leafed through at the hotel said something about not eating snow, but you cannot remember why—after
all, it’s just frozen water. To understand the guide’s recommendation, calculate the amount of heat that your body will have to
supply to bring 400 g of snow at −5.0°C to your body’s internal temperature of 37°C. Use the data in Example 

Answer
200 kJ (4.1 kJ to bring the ice from −5.0°C to 0.0°C, 133.6 kJ to melt the ice at 0.0°C, and 61.9 kJ to bring the water from
0.0°C to 37°C), which is energy that would not have been expended had you first melted the snow.

This page titled 7.6.4: Heating Curve for Water is shared under a mixed license and was authored, remixed, and/or curated by Anonymous.
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q = m ΔTCs (7.6.4.1)
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