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11.8: Particle in a One-Dimensional Box
A particle in a 1-dimensional box is a fundamental quantum mechanical approximation describing the translational motion of a
single particle confined inside an infinitely deep well from which it cannot escape.

Introduction 
The particle in a box problem is a common application of a quantum mechanical model to a simplified system consisting of a
particle moving horizontally within an infinitely deep well from which it cannot escape. The solutions to the problem give possible
values of E and  that the particle can possess. E represents allowed energy values and  is a wavefunction, which when
squared gives us the probability of locating the particle at a certain position within the box at a given energy level.

To solve the problem for a particle in a 1-dimensional box, we must follow our Big, Big recipe for Quantum Mechanics:

1. Define the Potential Energy, 
2. Solve the Schrödinger Equation
3. Solve for the wavefunctions
4. Solve for the allowed energies

Step 1: Define the Potential Energy V 
The potential energy is 0 inside the box (V=0 for 0<x<L) and goes to infinity at the walls of the box (V=∞ for x<0 or x>L). We
assume the walls have infinite potential energy to ensure that the particle has zero probability of being at the walls or outside the
box. Doing so significantly simplifies our later mathematical calculations as we employ these boundary conditions when solving
the Schrödinger Equation.

Step 2: Solve the Schrödinger Equation 
The time-independent Schrödinger equation for a particle of mass  moving in one direction with energy  is

with

 is the reduced Planck constant where 
 is the mass of the particle

 is the stationary time-independent wavefunction
 is the potential energy as a function of position

 is the energy, a real number

This equation can be modified for a particle of mass  free to move parallel to the x-axis with zero potential energy (V = 0
everywhere) resulting in the quantum mechanical description of free motion in one dimension:

This equation has been well studied and gives a general solution of:
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ψ(x) = A sin(kx) +B cos(kx) (11.8.3)
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where A, B, and k are constants.

Step 3: Define the Wavefunction 

The solution to the Schrödinger equation we found above is the general solution for a 1-dimensional system. We now need to apply
our boundary conditions to find the solution to our particular system. According to our boundary conditions, the probability of
finding the particle at  or  is zero. When , then  and ; therefore,  must equal 0 to fulfill
this boundary condition giving:

We can now solve for our constants (  and ) systematically to define the wavefunction.

Solving for  
Differentiate the wavefunction with respect to :

Differentiate the wavefunction algain with respect to :

Since , then

If we then solve for k by comparing with the Schrödinger equation above, we find:

Now we plug  into our wavefunction (Equation ):

Solving for  
To determine A, we have to apply the boundary conditions again. Recall that the probability of finding a particle at  or 

 is zero.

When x = L:

This is only true when

where 

Plugging this back in gives us:

To determine , recall that the total probability of finding the particle inside the box is 1, meaning there is no probability of it
being outside the box. When we find the probability and set it equal to 1, we are normalizing the wavefunction.

x = 0 x = L x = 0 sin(0) = 0 cos(0) = 1 B

ψ(x) = A sin(kx) (11.8.4)
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n = 1, 2, 3, …

ψ = A sin x
nπ

L
(11.8.12)
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For our system, the normalization looks like:

Using the solution for this integral from an integral table, we find our normalization constant, :

Which results in the normalized wavefunctions for a particle in a 1-dimensional box:

where 

Step 4: Determine the Allowed Energies 
Solving for the energy of each  requires substituting Equation  into Equation  to get the allowed energies for a
particle in a box:

Equation  is a very important result and tells us that:

1. The energy of a particle is quantized.
2. The lowest possible energy of a particle is NOT zero. This is called the zero-point energy and means the particle can never be

at rest because it always has some kinetic energy.

This is also consistent with the Heisenberg Uncertainty Principle: if the particle had zero energy, we would know where it was in
both space and time.

What does all this mean? 

The wavefunction for a particle in a box at the  and  energy levels look like this:

The probability of finding a particle a certain spot in the box is determined by squaring . The probability distribution for a particle
in a box at the  and  energy levels looks like this:

dx = 1∫
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ψ2 (11.8.13)
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n = 1, 2, 3, …
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11.8.17

n = 1 n = 2
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Notice that the number of nodes (places where the particle has zero probability of being located) increases with increasing energy
n. Also note that as the energy of the particle becomes greater, the quantum mechanical model breaks down as the energy levels get
closer together and overlap, forming a continuum. This continuum means the particle is free and can have any energy value. At
such high energies, the classical mechanical model is applied as the particle behaves more like a continuous wave. Therefore, the
particle in a box problem is an example of Wave-Particle Duality.

What is the  between the  and  states for an  molecule trapped within in a one-dimension well of length 3.0
cm? At what value of  does the energy of the molecule reach  at 450 K, and what is the separation between this energy
level and the one immediately above it?

Solution
Since this is a one-dimensional particle in a box problem, the particle has only kinetic energy (V = 0), so the permitted energies
are:

with 

The energy difference between  and  is then

Using Equation  with the mass of  (37.93 amu = ) and the length of the box (
:

The  value for which the energy reaches :

The separation between  and :

Important Facts to Learn from the Particle in the Box 
The energy of a particle is quantized. This means it can only take on discreet energy values.
The lowest possible energy for a particle is NOT zero (even at 0 K). This means the particle always has some kinetic energy.
The square of the wavefunction is related to the probability of finding the particle in a specific position for a given energy level.
The probability changes with increasing energy of the particle and depends on the position in the box you are attempting to
define the energy for
In classical physics, the probability of finding the particle is independent of the energy and the same at all points in the box

 Example 11.8.1
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Helpful Links 
Provides a live quantum mechanical simulation of the particle in a box model and allows you to visualize the solutions to the
Schrödinger Equation: www.falstad.com/qm1d/
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