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5.3: The Thermodynamics of Mixing
When solids, liquids or gases are combined, the thermodynamic quantities of the system experience a change as a result of the
mixing. This module will discuss the effect that mixing has on a solution’s Gibbs energy, enthalpy, and entropy, with a specific
focus on the mixing of two gases.

Introduction
A solution is created when two or more components mix homogeneously to form a single phase. Studying solutions is important
because most chemical and biological life processes occur in systems with multiple components. Understanding the
thermodynamic behavior of mixtures is integral to the study of any system involving either ideal or non-ideal solutions because it
provides valuable information on the molecular properties of the system.

Most real gases behave like ideal gases at standard temperature and pressure. This allows us to combine our knowledge of ideal
systems and solutions with standard state thermodynamics in order to derive a set of equations that quantitatively describe the
effect that mixing has on a given gas-phase solution’s thermodynamic quantities.

Gibbs Free Energy of Mixing

Unlike the extensive properties of a one-component system, which rely only on the amount of the system present, the extensive
properties of a solution depend on its temperature, pressure and composition. This means that a mixture must be described in terms
of the partial molar quantities of its components. The total Gibbs free energy of a two-component solution is given by the
expression

where

 is the total Gibbs energy of the system,
 is the number of moles of component i,and
 is the partial molar Gibbs energy of component i.

The molar Gibbs energy of an ideal gas can be found using the equation

where  is the standard molar Gibbs energy of the gas at 1 bar, and P is the pressure of the system. In a mixture of ideal gases, we
find that the system’s partial molar Gibbs energy is equivalent to its chemical potential, or that

This means that for a solution of ideal gases, Equation  can become

where

µ  is the chemical potential of the ith component,
µ ° is the standard chemical potential of component i at 1 bar, and
P  is the partial pressure of component i.

Now pretend we have two gases at the same temperature and pressure, gas 1 and gas 2. The Gibbs energy of the system before the
gases are mixed is given by Equation , which can be combined with Equation  to give the expression

If gas 1 and gas 2 are then mixed together, they will each exert a partial pressure on the total system,  and , so that 
. This means that the final Gibbs energy of the final solution can be found using the equation
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The Gibbs energy of mixing, , can then be found by subtracting  from .

where

and  is the mole fraction of gas . This equation can be simplified further by knowing that the mole fraction of a component is
equal to the number of moles of that component over the total moles of the system, or

Equation  then becomes

This expression gives us the effect that mixing has on the Gibbs free energy of a solution. Since  and  are mole fractions that
range from 0 to 1, we can conclude that  will be a negative number. This is consistent with the idea that gases mix
spontaneously at constant pressure and temperature.

Entropy of mixing
Figure  shows that when two gases mix, it can really be seen as two gases expanding into twice their original volume. This
greatly increases the number of available microstates, and so we would therefore expect the entropy of the system to increase as
well.

Figure : The mixing of two gases can be seen as two expansions. (a) Expansion of gas 1 alone when teh barrier is removed.
The molecules have twice as many microstates in the open box. (b) Expansion of gas 2 along. (c) the simultaneous expansion of
gases 1 and 2 is equivalent to mixing

Thermodynamic studies of an ideal gas’s dependence of Gibbs free energy of temperature have shown that

This means that differentiating Equation  at constant pressure with respect to temperature will give an expression for the
effect that mixing has on the entropy of a solution. We see that
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Since the mole fractions again lead to negative values for ln x  and ln x , the negative sign in front of the equation makes Δ S
positive, as expected. This agrees with the idea that mixing is a spontaneous process.

Enthalpy of mixing

We know that in an ideal system , but this equation can also be applied to the thermodynamics of mixing and
solved for the enthalpy of mixing so that it reads

Plugging in our expressions for  (Equation ) and  (Equation ) , we get

This result makes sense when considering the system. The molecules of ideal gas are spread out enough that they do not interact
with one another when mixed, which implies that no heat is absorbed or produced and results in a  of zero. Figure 
illustrates how  and  change as a function of the mole fraction so that  of a solution will always be equal to
zero (this is for the mixing of two ideal gasses).

Figure : A graph of , , and  as a function of  for the mixing of two ideal gases.
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Problems
1. Use Figure 2 to find the x  that has the largest impact on the thermodynamic quantities of the final solution. Explain why this is

true.
2. Calculate the effect that mixing 2 moles of nitrogen and 3 moles of oxygen has on the entropy of the final solution.
3. Another way to find the entropy of a system is using the equation ΔS = nRln(V /V ). Use this equation and the fact that volume

is directly proportional to the number of moles of gas at constant temperature and pressure to derive the final expression for 
. (Hint: Use the derivation of  as a guide).

Answers
1. x = 0.5
2. Increases the entropy of the system by 27.98 J/molK

S = −nR( ln + ln )Δmix x1 x1 x2 x2 (5.3.16)
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