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28.2: Hartree-Fock Calculation for Water
To find the Hartree-Fock (HF) molecular orbitals (MOs) we need to solve the following secular determinant:

with  being the overlap integrals of Equation 27.3.2, and  the matrix elements of the Fock operator, defined using the one-
and two-electron integrals in Equation 29.1.1 and Equation 29.1.2 as:

with the density matrix elements  defined as:

where the  values are the coefficients of the basis functions in the occupied molecular orbitals. These values will be determined
using the SCF procedure, which proceeds as follows: At the first step we simply guess what these are, then we iterate through
solution of the secular determinant to derive new coefficients and we continue to do so until self-consistency is reached (i.e. the 

 step provides coefficients and energies that are equal to those in the  step).

We can try to solve the SCF procedure for water using a fixed geometry of the nuclei close to the experimental structure: O-H bond
lengths of  and a valence bond angle at oxygen of . To do so, we can use a minimal basis functions composed of the
following seven orbitals: basis function #1 is an oxygen  orbital, #2 is an oxygen  orbital, #3 is an oxygen  orbital, #4 is an
oxygen  orbital, #5 is an oxygen  orbital, #6 is one hydrogen  orbital, and #7 is the other hydrogen  orbital. The
corresponding integrals introduced in the previous section can be calculated using a quantum chemistry code. The calculated
overlap matrix elements are:

There are many noteworthy features in . First, it is shown in a lower packed triangular form because every element  is the
same as the element  by symmetry, and every diagonal element is  because the basis functions are normalized. Note that, again
by symmetry, every  orbital on oxygen is orthogonal (overlap = zero) with every  orbital and with each other, but the two 
orbitals do overlap (this is due to the fact that they are not pure hydrogenic orbitals—which would indeed be orthogonal—but they
have been optimized, so ). Note also that the oxygen  orbital overlaps about an order of magnitude less with any
hydrogen  orbital than does the oxygen  orbital, reflecting how much more rapidly the first quantum-level orbital decays
compared to the second. Note that by symmetry the oxygen  cannot overlap with the hydrogen  functions (positive overlap
below the plane exactly cancels negative overlap above the plane) and that the oxygen  overlaps with the two hydrogen 
orbitals equally in magnitude but with different sign because the  orbital has different phase at its different ends. Finally, the
overlap of the  is identical with each H  because it is not changing which lobe it uses to interact. The kinetic energy matrix (in
a.u.) is:
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Notice that every diagonal term is much larger than any off-diagonal term. Recall that each each kinetic energy integral, Equation
29.1.1, involves the Laplacian operator, . The Laplacian reports back the sum of second derivatives in all coordinate directions.
That is, it is a measure of how fast the slope of the function is changing in various directions. If we take two atomic orbitals  and 

 far apart from each other, then since gaussians go to zero at least exponentially fast with distance,  is likely to be very flat where
 is large. The second derivative of a flat function is zero. So, every point in the integration will be roughly the amplitude of 

times zero, and not much will accumulate. For the diagonal element, on the other hand, the interesting second derivatives will occur
where the function has maximum amplitude (amongst other places) so the accumulation should be much larger. Notice also that
off-diagonal terms can be negative. That is because there is no real physical meaning to a kinetic energy expectation value
involving two different orbitals. It is just an integral that appears in the complete secular determinant. Symmetry again keeps 
orbitals from mixing with  orbitals or with each other. The nuclear attraction matrix is:

Again, diagonal elements are bigger than off-diagonal elements because the  operator acting on a basis function  will ensure
that the largest contribution to the overall integral will come from the nucleus  on which basis function  resides. Unless  also
has significant amplitude around that nucleus, it will multiply the result by roughly zero and the whole integral will be small.
Again, positive values can arise when two different functions are involved even though electrons in a single orbital must always be
attracted to nuclei and thus diagonal elements must always be negative. Note that the  orbitals all have different nuclear
attractions. That is because, although they all have the same attraction to the O nucleus, they have different amplitudes at the H
nuclei. The  orbital has the smallest amplitude at the H nuclei (zero, since they are in its nodal plane), so it has the smallest
nuclear attraction integral. The  orbital has somewhat smaller amplitude at the H nuclei than the  orbital because the bond
angle is greater than  (it is ; if it were  the O-H bonds would bisect the  and  orbitals and their amplitudes at the
H nuclei would necessarily be the same). Thus, the nuclear attraction integral for the latter orbital is slightly smaller than for the
former.

The sum of the kinetic and nuclear attraction integrals is usually called the one- electron or core part of the Fock matrix and
abbreviated  (i.e., ). One then writes  where  is the Fock matrix,  is the one-electron matrix, and  is
the remaining part of the Fock matrix coming from the two-electron four-index integrals (cf Equation ). To compute those
two-electron integrals, however, we need the density matrix, which itself comes from the occupied MO coefficients. So, we need an
initial guess at those coefficients. We can get such a guess many ways, but ultimately any guess is as good as any other. With these
coefficients we can compute the density matrix using Equation :
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With , we can compute the remaining contribution of  to the Fock matrix. We will not list all 406 two-electron integrals here.
Instead, we will simply write the total Fock matrix:

So, we’re finally ready to solve the secular determinant, since we have  and  fully formed. When we do that, and then solve for
the MO coefficients for each root , we get new occupied MOs. Then, we iterate again, and again, and again, until we are satisfied
that further iterations will not change either our (i) energy, (ii) density matrix, or (iii) MO coefficients (it’s up to the quantum
chemist to decide what is considered satisfactory).

In our water calculation, if we monitor the energy at each step we find:

Which means that our original guess was really not too bad—off by a bit less than  or roughly . Our guess
energy is too high, as the variational principle guarantees that it must be. Our first iteration through the secular determinant picks
up nearly , our next iteration an additional  or so, and by the end we are converged to within 1 nanohartree (

).

The final optimized MOs for water are:

where the first row reports the eigenvalues of each MO, in  (i.e., the energy of one electron in the MO). The sum of all of the
occupied MO energies should be an underestimation of the total electronic energy because electron-electron repulsion will have
been double counted. So, if we sum the occupied orbital energies (times two, since there are two electrons in each orbital), we get 

. If we now subtract the electron-electron repulsion energy
 we get . If we add the nuclear repulsion energy  to this we get a total energy . The

difference between this and the converged result above ( ) can be attributed to rounding in the MO energies, which are
truncated after 5 places. Notice that the five occupied MOs all have negative energies. So, their electrons are bound within the
molecule. The unoccupied MOs (called “virtual” MOs) all have positive energies, meaning that the molecule will not
spontaneously accept an electron from another source.
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E(RHF )
E(RHF )
E(RHF )
E(RHF )
E(RHF )
E(RHF )
E(RHF )

= −74.893 002 803 a.u. after 1 cycles
= −74.961 289 145 a.u. after 2 cycles
= −74.961 707 247 a.u. after 3 cycles
= −74.961 751 946 a.u. after 4 cycles
= −74.961 753 962 a.u. after 5 cycles
= −74.961 754 063 a.u. after 6 cycles
= −74.961 754 063 a.u. after 7 cycles
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0.1 a.u. 60 kcal mol−1

0.07 a.u. 0.000 42
0.000 0006 kcal mol−1
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1
−20.24094

.99411

.02672
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−.00442
−.00605
−.00605
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−1.27218
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.00000

.00000
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6
.61293
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.89746
.00000
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−.80246
−.80246

7
.75095

.00000

.00000

.00000

.99474
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−.84542
.84542
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Eh

2(−20.24094−1.27218−0.62173−0.45392−0.39176) = −45.961 060
38.265 406 −84.226 466 9.264 701 −74.961 765

−74.961 754
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This page titled 28.2: Hartree-Fock Calculation for Water is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
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