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28.2: Hartree-Fock Calculation for Water

To find the Hartree-Fock (HF) molecular orbitals (MOs) we need to solve the following secular determinant:
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with Sj; being the overlap integrals of Equation 27.3.2, and Fj; the matrix elements of the Fock operator, defined using the one-
and two-electron integrals in Equation 29.1.1 and Equation 29.1.2 as:
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with the density matrix elements Pj; defined as:

occupied
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where the a values are the coefficients of the basis functions in the occupied molecular orbitals. These values will be determined
using the SCF procedure, which proceeds as follows: At the first step we simply guess what these are, then we iterate through
solution of the secular determinant to derive new coefficients and we continue to do so until self-consistency is reached (i.e. the
N +1 step provides coefficients and energies that are equal to those in the NV step).

We can try to solve the SCF procedure for water using a fixed geometry of the nuclei close to the experimental structure: O-H bond
lengths of 0.95 Aand a valence bond angle at oxygen of 104.5°. To do so, we can use a minimal basis functions composed of the
following seven orbitals: basis function #1 is an oxygen 1s orbital, #2 is an oxygen 2s orbital, #3 is an oxygen 2p,, orbital, #4 is an
oxygen 2p, orbital, #5 is an oxygen 2p, orbital, #6 is one hydrogen 1s orbital, and #7 is the other hydrogen 1s orbital. The
corresponding integrals introduced in the previous section can be calculated using a quantum chemistry code. The calculated
overlap matrix elements are:

[01s 02s 02p, O 2p, O2p, H,1ls Hyls
1.000 O1s
0.237 1.000 02s

g_ 0.000 0.000 1.000 0O 2p, (28.2.4)

0.000 0.000 0.000 1.000 O 2p,
0.000 0.000 0.000 0.000 1.000 0O 2p,
0.055 0.479 0.000 0.313 —0.242 1.000 H, 1s

| 0.055 0.479 0.000 —0.313 —0.242 0.256 1.000 H; 1s |

There are many noteworthy features in S. First, it is shown in a lower packed triangular form because every element j, ¢ is the
same as the element 7, j by symmetry, and every diagonal element is 1 because the basis functions are normalized. Note that, again
by symmetry, every p orbital on oxygen is orthogonal (overlap = zero) with every s orbital and with each other, but the two s
orbitals do overlap (this is due to the fact that they are not pure hydrogenic orbitals—which would indeed be orthogonal—but they
have been optimized, so S12 =0.237). Note also that the oxygen 1s orbital overlaps about an order of magnitude less with any
hydrogen 1s orbital than does the oxygen 2s orbital, reflecting how much more rapidly the first quantum-level orbital decays
compared to the second. Note that by symmetry the oxygen p, cannot overlap with the hydrogen 1s functions (positive overlap
below the plane exactly cancels negative overlap above the plane) and that the oxygen p, overlaps with the two hydrogen 1s
orbitals equally in magnitude but with different sign because the p orbital has different phase at its different ends. Finally, the
overlap of the p, is identical with each H 1s because it is not changing which lobe it uses to interact. The kinetic energy matrix (in
a.u.) is:
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29.003
—0.168 0.808
0.000 0.000 2.529
K= 0.000 0.000 0.000 2.529 (28.2.5)

0.000 0.000 0.000 0.000 2.529
—0.002 0.132 0.000 0.229 —0.177 0.760
—0.002 0.132 0.000 —-0.229 -0.177 0.009 0.760

Notice that every diagonal term is much larger than any off-diagonal term. Recall that each each kinetic energy integral, F.quation
29.1.1, involves the Laplacian operator, V2. The Laplacian reports back the sum of second derivatives in all coordinate directions.
That is, it is a measure of how fast the slope of the function is changing in various directions. If we take two atomic orbitals p and
v far apart from each other, then since gaussians go to zero at least exponentially fast with distance, v is likely to be very flat where
w is large. The second derivative of a flat function is zero. So, every point in the integration will be roughly the amplitude of p
times zero, and not much will accumulate. For the diagonal element, on the other hand, the interesting second derivatives will occur
where the function has maximum amplitude (amongst other places) so the accumulation should be much larger. Notice also that
off-diagonal terms can be negative. That is because there is no real physical meaning to a kinetic energy expectation value
involving two different orbitals. It is just an integral that appears in the complete secular determinant. Symmetry again keeps p
orbitals from mixing with s orbitals or with each other. The nuclear attraction matrix is:

[ —61.733
—7.447 -10.151
0.000 0.000 —9.926
V= 0.000 0.000 0.000 —10.152 (28.2.6)

0.000 0.000 0.000 0.000 —10.088
—-1.778 —-3.920 0.000 —0.228 —-0.184 —5.867
| —1.778 —-3.920 0.000 0.228 0.184 —1.652 —5.867]

Again, diagonal elements are bigger than off-diagonal elements because the 1/ operator acting on a basis function v will ensure
that the largest contribution to the overall integral will come from the nucleus & on which basis function v resides. Unless p also
has significant amplitude around that nucleus, it will multiply the result by roughly zero and the whole integral will be small.
Again, positive values can arise when two different functions are involved even though electrons in a single orbital must always be
attracted to nuclei and thus diagonal elements must always be negative. Note that the p orbitals all have different nuclear
attractions. That is because, although they all have the same attraction to the O nucleus, they have different amplitudes at the H
nuclei. The p, orbital has the smallest amplitude at the H nuclei (zero, since they are in its nodal plane), so it has the smallest
nuclear attraction integral. The p, orbital has somewhat smaller amplitude at the H nuclei than the p, orbital because the bond
angle is greater than 90° (it is 104.5°; if it were 90° the O-H bonds would bisect the p, and p, orbitals and their amplitudes at the
H nuclei would necessarily be the same). Thus, the nuclear attraction integral for the latter orbital is slightly smaller than for the
former.

The sum of the kinetic and nuclear attraction integrals is usually called the one- electron or core part of the Fock matrix and
abbreviated h (i.e., h = K + V). One then writes F = h + G where F is the Fock matrix, h is the one-electron matrix, and G is
the remaining part of the Fock matrix coming from the two-electron four-index integrals (cf Equation 28.2.2). To compute those
two-electron integrals, however, we need the density matrix, which itself comes from the occupied MO coefficients. So, we need an
initial guess at those coefficients. We can get such a guess many ways, but ultimately any guess is as good as any other. With these
coefficients we can compute the density matrix using Equation 28.2.3;

2.108
—0.456 2.010
0.000 0.000 2.000
P= 0.000 0.000 0.000 0.737 (28.2.7)

—0.104 0.618 0.000 0.000 1.215
—0.022 —-0.059 0.000 0.539 —0.482 0.606
| —0.022 —-0.059 0.000 —-0.539 —0.482 -0.183 0.606 ]
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With P, we can compute the remaining contribution of G to the Fock matrix. We will not list all 406 two-electron integrals here.
Instead, we will simply write the total Fock matrix:

[ —20.236 ]
—5.163 —2.453
0.000 0.000 —0.395
F= 0.000 0.000 0.000 —0.327 (28.2.8)
0.029 0.130 0.000 0.000 —0.353
—1.216 -1.037 0.000 —-0.398 0.372 —0.588
| —1.216 -1.037 0.000 0.398 0.372 —0.403 —0.588]

So, we’re finally ready to solve the secular determinant, since we have F and S fully formed. When we do that, and then solve for
the MO coefficients for each root E, we get new occupied MOs. Then, we iterate again, and again, and again, until we are satisfied
that further iterations will not change either our (i) energy, (ii) density matrix, or (iii) MO coefficients (it’s up to the quantum

chemist to decide what is considered satisfactory).

In our water calculation, if we monitor the energy at each step we find:

E(RHF)= —74.893002803 a.u. after 1 cycles
E(RHF) = —74.961289 145 a.u. after 2 cycles
E(RHF) = —74.961707247 a.u. after 3 cycles
E(RHF)= —74.961751946 a.u. after 4 cycles (28.2.9)
E(RHF) = —74.961753 962 a.u. after 5 cycles
E(RHF)= —74.961754063 a.u. after 6 cycles
E(RHF)= —74.961754063 a.u. after 7 cycles

Which means that our original guess was really not too bad—off by a bit less than 0.1 a.u. or roughly 60 kcal mol ', Our guess
energy is too high, as the variational principle guarantees that it must be. Our first iteration through the secular determinant picks
up nearly 0.07 a.u.,, our next iteration an additional 0.000 42 or so, and by the end we are converged to within 1 nanohartree (
0.000 0006 kcal mol ™).

The final optimized MOs for water are:

1 2 3 4 5 6 7
E —-20.24094 -1.27218 —.62173 —.45392 -.39176 .61293  .75095
1 99411 —.23251 .00000 —.10356 .00000 —.13340 .00000
2 .02672 .83085 .00000 .53920  .00000  .89746  .00000
3 .00000 .00000 .00000  .00000 1.0000  .00000  .00000 (28.2.10)
4 .00000 .00000 .60677  .00000 .00000 .00000 .99474
5 —.00442 —-.13216 .00000 .77828  .00000 —.74288 .00000
6 —.00605 .15919 44453 —.27494 .00000 —.80246 —.84542
7  —.00605 15919  —.44453 —.27494 .00000 —.80246 .84542

where the first row reports the eigenvalues of each MO, in Ej, (i.e., the energy of one electron in the MO). The sum of all of the
occupied MO energies should be an underestimation of the total electronic energy because electron-electron repulsion will have
been double counted. So, if we sum the occupied orbital energies (times two, since there are two electrons in each orbital), we get
2(—20.24094—-1.27218-0.62173—0.45392—0.39176) = —45.961 060 we now subtract the electron-electron repulsion energy
38.265 406we get —84.226 466 If we add the nuclear repulsion energy 9.264 701to this we get a total energy —74.961 765 The
difference between this and the converged result above (—74.961 754 can be attributed to rounding in the MO energies, which are
truncated after 5 places. Notice that the five occupied MOs all have negative energies. So, their electrons are bound within the
molecule. The unoccupied MOs (called “virtual” MOs) all have positive energies, meaning that the molecule will not
spontaneously accept an electron from another source.
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This page titled 28.2: Hartree-Fock Calculation for Water is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati.
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