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19.2: The Particle in a Box
Now we can consider a particle constrained to move in a single dimension, under the influence of a potential  which is zero
for  and infinite elsewhere. Since the wavefunction is not allowed to become infinite, it must have a value of zero where 

 is infinite, so  is nonzero only within . The Schrödinger equation is thus:

In other words, inside the box  describes a free particle, but outside the box . Since the Schrödinger equation
involves derivatives, the function that solves it, , must be everywhere continuous and everywhere continuously differentiable.
This fact means that the value of the wave function at the two extremes must be equal to zero:

Inside the box we can use Euler’s formula to write the wave function as a linear combination of the positive and negative solutions:

where  and  are constants that we need to determine using the two constraints in Equation . For  it is straightforward to
see that:

For  we have:

which is trivially solved by , or by the more interesting condition of . The trivial solution corresponds to a wave
function uniformly equal to zero everywhere. This wave function is uninteresting, since it describes no particles in no boxes. The
second set of solutions, however, is very interesting, since we can write it as:

which represents an infinite set of functions, , determined by a positive integer number , called quantum number. Since
these functions solve the TISEq, they are also called eigenfunctions, but they are not a continuous set, unlike in the previous case.
To calculate the energy eigenvalues, we can replace  into Equation , to obtain:

A few interesting considerations can be made from the results of Equation . First, although there is an infinite number of
acceptable values of the energy (eigenvalues), these values are not continuous. Second, the lowest value of the energy is not zero,
and it depends on the size of the box, , since:

This value is called zero-point energy (ZPE), and is a purely quantum mechanical effect. Notice that we did not solve for the
constant . This task is not straightforward, and it can be achieved by requiring the wave function to describe one particle
exclusively (we will come back to this task after chapter 23). Extending the problem to three dimensions is relatively
straightforward, resulting in a set of three separate quantum numbers (one for each of the 3-dimensional coordinate ).
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ψ(0) = ψ(a) = 0. (19.2.2)

ψ(x) = A exp(±ix) = A sinkx+B coskx, (19.2.3)
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ψ(0) = 0 +B = 0 ⟹ B = 0. (19.2.4)
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ψ(a) = A sinka = 0, (19.2.5)
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