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8.2: Thermodynamic Potentials
Starting from the fundamental equation, we can define new thermodynamic state functions that are more convenient to use under
certain specific conditions. The new functions are determined by using a mathematical procedure called the Legendre
transformation. A Legendre transformation is a linear change in variables that brings from an initial mathematical function to a new
function obtained by subtracting one or more products of conjugate variables.

Taking the internal energy as defined in Equation 8.1.1, we can perform such procedure by subtracting products of the following
conjugate variables pairs:  or . This procedure aims to define new state functions that depend on more
convenient natural variables.  The new functions are called “thermodynamic potential energies,” or simply thermodynamic
potentials.  An example of this procedure is given by the definition of enthalpy that we have already seen in section 3.1.4. If we
take the internal energy and subtract the product of two conjugate variables (  and ), we obtain a new state function called
enthalpy, as we did in Equation 3.1.9). Taking the differential of this definition, we obtain:

and using the fundamental equation, Equation 8.1.2, to replace , we obtain:

which is the fundamental equation for enthalpy. The natural variables of the enthalpy are , , and . The Legendre
transformation has allowed us to go from  to  by replacing the dependence on the extensive variable, 

, with an intensive one, .

Following the same procedure, we can perform another Legendre transformation to replace the entropy with a more convenient
intensive variable such as the temperature. This can be done by defining a new function called the Helmholtz free energy, , as:

which, taking the differential and using the fundamental equation (Equation ) becomes:

The Helmholtz free energy is named after Hermann Ludwig Ferdinand von Helmholtz (1821—1894), and its natural variables are
temperature, volume, and the number of moles.

Finally, suppose we perform a Legendre transformation on the internal energy to replace both the entropy and the volume with
intensive variables. In that case, we can define a new function called the Gibbs free energy, , as:

which, taking again the differential and using Equation  becomes:

The Gibbs free energy is named after Willard Gibbs himself, and its natural variables are temperature, pressure, and number of
moles.

A summary of the four thermodynamic potentials is given in the following table.

Table 

Name Symbol Fundamental Equation Natural Variables
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2
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Name Symbol Fundamental Equation Natural Variables

Energy

Enthalpy

Helmholtz Free Energy

Gibbs Free Energy

The thermodynamic potentials are the analog of the potential energy in classical mechanics. Since the potential energy is
interpreted as the capacity to do work, the thermodynamic potentials assume the following interpretations:

Internal energy ( ) is the capacity to do work plus the capacity to release heat.
Enthalpy ( ) is the capacity to do non-mechanical work plus the capacity to release heat.
Gibbs free energy ( ) is the capacity to do non-mechanical work.
Helmholtz free energy ( ) is the capacity to do mechanical plus non-mechanical work.

Where non-mechanical work is defined as any type of work that is not expansion or compression ( –work). A typical example
of non-mechanical work is electrical work.

1. The mathematical condition that is fulfilled when performing a Legendre transformation is that the first derivatives of the
original function and its transformation are inverse functions of each other. 

2. The rigorous mathematical definition of conjugate variables is unimportant at this stage. However, we can relate the variables in
a pair with basic physics by noticing how the first variable in a pair is always intensive (  and ), while the second one is
always extensive (  and ). The intensive variables represent thermodynamic driving forces (as compared with mechanical
forces in classical mechanics), while the extensive ones are the thermodynamic displacements (as compared with spatial
displacements in classical mechanics). Similarly to classical mechanics, the product of two conjugate variables in a pair yields
an energy. The minus sign in front of  is explained by the fact that an increase in the force should always correspond to an
increase in the displacement (while  and  are inversely related). 

3. Even if we introduced both concepts in the same chapter, it is important to never confuse the thermodynamic potentials—which
are potential energy functions—with the chemical potential—which have been introduced by Gibbs to study heat in chemical
reactions. 

4. For the mathematically inclined, an entertaining method to summarize the same thermodynamic potentials is the
thermodynamic square.
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