
11.4.1 https://chem.libretexts.org/@go/page/41595

11.4: Reaction Stoichiometry in Solutions: Oxidation-Reduction Titrations
Analytical titrations using redox reactions were introduced shortly after the development of acid–base titrimetry. The earliest
Redox titration took advantage of the oxidizing power of chlorine. In 1787, Claude Berthollet introduced a method for the
quantitative analysis of chlorine water (a mixture of Cl , HCl, and HOCl) based on its ability to oxidize indigo, a dye that is
colorless in its oxidized state. In 1814, Joseph Gay-Lussac developed a similar method for determining chlorine in bleaching
powder. In both methods the end point is a change in color. Before the equivalence point the solution is colorless due to the
oxidation of indigo. After the equivalence point, however, unreacted indigo imparts a permanent color to the solution.

The number of redox titrimetric methods increased in the mid-1800s with the introduction of MnO , Cr O , and I  as oxidizing
titrants, and of Fe  and S O  as reducing titrants. Even with the availability of these new titrants, redox titrimetry was slow to
develop due to the lack of suitable indicators. A titrant can serve as its own indicator if its oxidized and reduced forms differ
significantly in color. For example, the intensely purple MnO  ion serves as its own indicator since its reduced form, Mn , is
almost colorless. Other titrants require a separate indicator. The first such indicator, diphenylamine, was introduced in the 1920s.
Other redox indicators soon followed, increasing the applicability of redox titrimetry.

Redox Titration Curves
To evaluate a redox titration we need to know the shape of its titration curve. In an acid–base titration or a complexation titration,
the titration curve shows how the concentration of H O  (as pH) or M  (as pM) changes as we add titrant. For a redox titration it is
convenient to monitor the titration reaction’s potential instead of the concentration of one species.

You may recall from Chapter 6 that the Nernst equation relates a solution’s potential to the concentrations of reactants and products
participating in the redox reaction. Consider, for example, a titration in which a titrand in a reduced state, A , reacts with a titrant
in an oxidized state, B .

where A  is the titrand’s oxidized form, and B  is the titrant’s reduced form. The reaction’s potential, E , is the difference
between the reduction potentials for each half-reaction.

After each addition of titrant the reaction between the titrand and the titrant reaches a state of equilibrium. Because the potential at
equilibrium is zero, the titrand’s and the titrant’s reduction potentials are identical.

This is an important observation because we can use either half-reaction to monitor the titration’s progress.

Before the equivalence point the titration mixture consists of appreciable quantities of the titrand’s oxidized and reduced forms.
The concentration of unreacted titrant, however, is very small. The potential, therefore, is easier to calculate if we use the Nernst
equation for the titrand’s half-reaction

Although the Nernst equation is written in terms of the half-reaction’s standard state potential, a matrix-dependent formal
potential often is used in its place. See Appendix 13 for the standard state potentials and formal potentials for selected half-
reactions.

After the equivalence point it is easier to calculate the potential using the Nernst equation for the titrant’s half-reaction.

Calculating the Titration Curve

Let’s calculate the titration curve for the titration of 50.0 mL of 0.100 M Fe  with 0.100 M Ce  in a matrix of 1 M HClO . The
reaction in this case is
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In 1 M HClO , the formal potential for the reduction of Fe  to Fe  is +0.767 V, and the formal potential for the reduction of
Ce  to Ce  is +1.70 V.

Because the equilibrium constant for reaction 9.15 is very large—it is approximately 6 × 10 —we may assume that the analyte
and titrant react completely.

Step 1
Calculate the volume of titrant needed to reach the equivalence point.

The first task is to calculate the volume of Ce  needed to reach the titration’s equivalence point. From the reaction’s stoichiometry
we know that

Solving for the volume of Ce  gives the equivalence point volume as

Step 2:
alculate the potential before the equivalence point by determining the concentrations of the titrand’s oxidized and reduced
forms, and using the Nernst equation for the titrand’s reduction half-reaction.

Before the equivalence point, the concentration of unreacted Fe  and the concentration of Fe  are easy to calculate. For this
reason we find the potential using the Nernst equation for the Fe /Fe  half-reaction.

For example, the concentrations of Fe  and Fe  after adding 10.0 mL of titrant are

Substituting these concentrations into equation 9.16 gives a potential of

Step 3:
Calculate the potential after the equivalence point by determining the concentrations of the titrant’s oxidized and reduced forms,
and using the Nernst equation for the titrant’s reduction half-reaction.

After the equivalence point, the concentration of Ce  and the concentration of excess Ce  are easy to calculate. For this reason we
find the potential using the Nernst equation for the Ce /Ce  half-reaction.
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For example, after adding 60.0 mL of titrant, the concentrations of Ce  and Ce  are

Substituting these concentrations into Equation 9.17 gives a potential of

Step 4
Calculate the potential at the equivalence point.

At the titration’s equivalence point, the potential, E , in equation 9.16 and equation 9.17 are identical. Adding the equations
together to gives

Because [Fe ] = [Ce ] and [Ce ] = [Fe ] at the equivalence point, the log term has a value of zero and the equivalence point’s
potential is

Additional results for this titration curve are shown in Table 9.15 and Figure 9.36.

Table 9.15: Data for the Titration of 50.0 mL of 0.100 M Fe  with 0.100 M Ce

Volume of Ce  (mL) E (V) Volume Ce  (mL) E (V)

10.0 0.731 60.0 1.66

20.0 0.757 70.0 1.68

30.0 0.777 80.0 1.69

40.0 0.803 90.0 1.69

50.0 1.23 100.0 1.70
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Figure 9.36 Titration curve for the titration of 50.0 mL of 0.100 M Fe  with 0.100 M Ce . The red points correspond to the data
in Table 9.15. The blue line shows the complete titration curve.

Exercise 
Calculate the titration curve for the titration of 50.0 mL of 0.0500 M Sn  with 0.100 M Tl . Both the titrand and the titrant are
1.0 M in HCl. The titration reaction is

Click here to review your answer to this exercise.

Sketching a Redox Titration Curve

To evaluate the relationship between a titration’s equivalence point and its end point we need to construct only a reasonable
approximation of the exact titration curve. In this section we demonstrate a simple method for sketching a redox titration curve.
Our goal is to sketch the titration curve quickly, using as few calculations as possible. Let’s use the titration of 50.0 mL of 0.100 M
Fe  with 0.100 M Ce  in a matrix of 1 M HClO .

This is the same example that we used in developing the calculations for a redox titration curve. You can review the results of
that calculation in Table 9.15 and Figure 9.36.

We begin by calculating the titration’s equivalence point volume, which, as we determined earlier, is 50.0 mL. Next, we draw our
axes, placing the potential, E, on the y-axis and the titrant’s volume on the x-axis. To indicate the equivalence point’s volume, we
draw a vertical line corresponding to 50.0 mL of Ce . Figure 9.37a shows the result of the first step in our sketch.

Before the equivalence point, the potential is determined by a redox buffer of Fe  and Fe . Although we can easily calculate the
potential using the Nernst equation, we can avoid this calculation by making a simple assumption. You may recall from Chapter 6
that a redox buffer operates over a range of potentials that extends approximately ±(0.05916/n) unit on either side of E . The
potential is at the buffer’s lower limit

when the concentration of Fe  is 10× greater than that of Fe . The buffer reaches its upper potential

when the concentration of Fe  is 10× smaller than that of Fe . The redox buffer spans a range of volumes from approximately
10% of the equivalence point volume to approximately 90% of the equivalence point volume.

Figure 9.37b shows the second step in our sketch. First, we superimpose a ladder diagram for Fe  on the y-axis, using its E
value of 0.767 V and including the buffer’s range of potentials. Next, we add points representing the pH at 10% of the equivalence
point volume (a potential of 0.708 V at 5.0 mL) and at 90% of the equivalence point volume (a potential of 0.826 V at 45.0 mL).
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We used a similar approach when sketching the acid–base titration curve for the titration
of acetic acid with NaOH.

The third step in sketching our titration curve is to add two points after the equivalence point. Here the potential is controlled by a
redox buffer of Ce  and Ce . The redox buffer is at its lower limit of E = E  – 0.05916 when the titrant reaches 110% of
the equivalence point volume and the potential is E  when the volume of Ce  is 2×V .

Figure 9.37c shows the third step in our sketch. First, we add a ladder diagram for Ce , including its buffer range, using its
E  value of 1.70 V. Next, we add points representing the potential at 110% of V  (a value of 1.66 V at 55.0 mL) and at
200% of V  (a value of 1.70 V at 100.0 mL).

We used a similar approach when sketching the complexation titration curve for the
titration of Mg  with EDTA.

Next, we draw a straight line through each pair of points, extending the line through the vertical line representing the equivalence
point’s volume (Figure 9.37d). Finally, we complete our sketch by drawing a smooth curve that connects the three straight-line
segments (Figure 9.37e). A comparison of our sketch to the exact titration curve (Figure 9.37f) shows that they are in close
agreement.

Figure 9.37: Illustrations showing the steps in sketching an approximate titration curve for the titration of 50.0 mL of 0.100 M
Fe  with 0.100 M Ce  in 1 M HClO : (a) locating the equivalence point volume; (b) plotting two points before the equivalence
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point; (c) plotting two points after the equivalence point; (d) preliminary approximation of titration curve using straight-lines; (e)
final approximation of titration curve using a smooth curve; (f) comparison of approximate titration curve (solid black line) and

exact titration curve (dashed red line). See the text for additional details.

Exercise 

Sketch the titration curve for the titration of 50.0 mL of 0.0500 M Sn  with 0.100 M Tl . Both the titrand and the titrant are 1.0
M in HCl. The titration reaction is

Compare your sketch to your calculated titration curve from Practice Exercise 9.17.

Click here to review your answer to this exercise.

9.4.2 Selecting and Evaluating the End point

A redox titration’s equivalence point occurs when we react stoichiometrically equivalent amounts of titrand and titrant. As is the
case with acid–base and complexation titrations, we estimate the equivalence point of a complexation titration using an
experimental end point. A variety of methods are available for locating the end point, including indicators and sensors that respond
to a change in the solution conditions.

Where is the Equivalence Point?

For an acid–base titration or a complexometric titration the equivalence point is almost identical to the inflection point on the
steeping rising part of the titration curve. If you look back at Figure 9.7 and Figure 9.28, you will see that the inflection point is in
the middle of this steep rise in the titration curve, which makes it relatively easy to find the equivalence point when you sketch
these titration curves. We call this a symmetric equivalence point. If the stoichiometry of a redox titration is symmetric—one
mole of titrant reacts with each mole of titrand—then the equivalence point is symmetric. If the titration reaction’s stoichiometry is
not 1:1, then the equivalence point is closer to the top or to bottom of the titration curve’s sharp rise. In this case we have an
asymmetric equivalence point.

Example 
Derive a general equation for the equivalence point’s potential when titrating Fe  with MnO .

(We often use H  instead of H O  when writing a redox reaction.)

Solution

The half-reactions for Fe  and MnO  are

for which the Nernst equations are

Before adding these two equations together we must multiply the second equation by 5 so that we can combine the log terms;
thus

At the equivalence point we know that
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Substituting these equalities into the previous equation and rearranging gives us a general equation for the potential at the
equivalence point.

Our equation for the equivalence point has two terms. The first term is a weighted average of the titrand’s and the titrant’s
standard state potentials, in which the weighting factors are the number of electrons in their respective half-reactions. (Instead of
standard state potentials, you can use formal potentials.) The second term shows that E  for this titration is pH-dependent. At a
pH of 1 (in H SO ), for example, the equivalence point has a potential of

Figure 9.38 shows a typical titration curve for titration of Fe  with MnO . Note that the titration’s equivalence point is
asymmetrical.

Figure 9.38: Titration curve for the titration of 50.0 mL of 0.100 M Fe  with 0.0200 M MnO  at a fixed pH of 1 (using H SO ).
The equivalence point is shown by the red dot.

Exercise 
Derive a general equation for the equivalence point’s potential for the titration of U  with Ce . The unbalanced reaction is

What is the equivalence point’s potential if the pH is 1?

Click here to review your answer to this exercise.
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Finding the End point with an Indicator

Three types of indicators are used to signal a redox titration’s end point. The oxidized and reduced forms of some titrants, such as
MnO , have different colors. A solution of MnO  is intensely purple. In an acidic solution, however, permanganate’s reduced
form, Mn , is nearly colorless. When using MnO  as a titrant, the titrand’s solution remains colorless until the equivalence point.
The first drop of excess MnO  produces a permanent tinge of purple, signaling the end point.

Some indicators form a colored compound with a specific oxidized or reduced form of the titrant or the titrand. Starch, for example,
forms a dark blue complex with I . We can use this distinct color to signal the presence of excess I  as a titrant—a change in color
from colorless to blue—or the completion of a reaction consuming I  as the titrand—a change in color from blue to colorless.
Another example of a specific indicator is thiocyanate, SCN , which forms a soluble red-colored complex of Fe(SCN)  with Fe .

The most important class of indicators are substances that do not participate in the redox titration, but whose oxidized and reduced
forms differ in color. When we add a redox indicator to the titrand, the indicator imparts a color that depends on the solution’s
potential. As the solution’s potential changes with the addition of titrant, the indicator changes oxidation state and changes color,
signaling the end point.

To understand the relationship between potential and an indicator’s color, consider its reduction half-reaction

where In  and In  are, respectively, the indicator’s oxidized and reduced forms.

For simplicity, In  and In  are shown without specific charges. Because there is a
change in oxidation state, In  and In  cannot both be neutral.

The Nernst equation for this half-reaction is

As shown in Figure 9.39, if we assume that the indicator’s color changes from that of In  to that of In  when the ratio
[In ]/[In ] changes from 0.1 to 10, then the end point occurs when the solution’s potential is within the range

This is the same approach we took in considering acid–base indicators and complexation
indicators.

Figure 9.39 Diagram showing the relationship between E and an indicator’s color. The ladder diagram defines potentials where
In  and In  are the predominate species. The indicator changes color when E is within the range
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E = E  ± 0.05916/n

A partial list of redox indicators is shown in Table 9.16. Examples of appropriate and inappropriate indicators for the titration of
Fe  with Ce  are shown in Figure 9.40.

Table 9.16 Selected Examples of Redox Indicators

Indicator Color of In Color of In E In /In

indigo tetrasulfate blue colorless 0.36

methylene blue blue colorless 0.53

diphenylamine violet colorless 0.75

diphenylamine sulfonic acid red-violet colorless 0.85

tris(2,2´-bipyridine)iron pale blue red 1.120

ferroin pale blue red 1.147

tris(5-nitro-1,10-
phenanthroline)iron

pale blue red-violet 1.25

Figure 9.40: Titration curve for the titration of 50.0 mL of 0.100 M Fe  with 0.100 M Ce . The end point transitions for the
indicators diphenylamine sulfonic acid and ferroin are superimposed on the titration curve. Because the transition for ferroin is too

small to see on the scale of the x-axis—it requires only 1–2 drops of titrant—the color change is expanded to the right.

Other Methods for Finding the End point

Another method for locating a redox titration’s end point is a potentiometric titration in which we monitor the change in potential
while adding the titrant to the titrand. The end point is found by visually examining the titration curve. The simplest experimental
design for a potentiometric titration consists of a Pt indicator electrode whose potential is governed by the titrand’s or titrant’s
redox half-reaction, and a reference electrode that has a fixed potential. A further discussion of potentiometry is found in Chapter
11. Other methods for locating the titration’s end point include thermometric titrations and spectrophotometric titrations.

o
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The best way to appreciate the theoretical and practical details discussed in this section is to carefully examine a typical redox
titrimetric method. Although each method is unique, the following description of the determination of the total chlorine residual
in water provides an instructive example of a typical procedure. The description here is based on Method 4500-Cl B as
published in Standard Methods for the Examination of Water and Wastewater, 20th Ed., American Public Health Association:
Washington, D. C., 1998.

Representative Method 9.3: Determination of Total Chlorine Residual
Description of the Method

The chlorination of public water supplies produces several chlorine-containing species, the combined concentration of which is
called the total chlorine residual. Chlorine may be present in a variety of states, including the free residual chlorine, consisting
of Cl , HOCl and OCl , and the combined chlorine residual, consisting of NH Cl, NHCl , and NCl . The total chlorine residual
is determined by using the oxidizing power of chlorine to convert I  to I . The amount of I  formed is then determined by
titrating with Na S O  using starch as an indicator. Regardless of its form, the total chlorine residual is reported as if Cl  is the
only source of chlorine, and is reported as mg Cl/L.

Procedure

Select a volume of sample requiring less than 20 mL of Na S O  to reach the end point. Using glacial acetic acid, acidify the
sample to a pH of 3–4, and add about 1 gram of KI. Titrate with Na S O  until the yellow color of I  begins to disappear. Add
1 mL of a starch indicator solution and continue titrating until the blue color of the starch–I  complex disappears (Figure 9.41).
Use a blank titration to correct the volume of titrant needed to reach the end point for reagent impurities.

Questions

1. Is this an example of a direct or an indirect analysis?

This is an indirect analysis because the chlorine-containing species do not react with the titrant. Instead, the total chlorine
residual oxidizes I  to I , and the amount of I  is determined by titrating with Na S O .

2. Why does the procedure rely on an indirect analysis instead of directly titrating the chlorine-containing species using KI as a
titrant?

Because the total chlorine residual consists of six different species, a titration with I  does not have a single, well-defined
equivalence point. By converting the chlorine residual to an equivalent amount of I , the indirect titration with Na S O  has a
single, useful equivalence point.

Even if the total chlorine residual is from a single species, such as HOCl, a direct titration with KI is impractical. Because the
product of the titration, I , imparts a yellow color, the titrand’s color would change with each addition of titrant, making it
difficult to find a suitable indicator.

3. Both oxidizing and reducing agents can interfere with this analysis. Explain the effect of each type of interferent has on the
total chlorine residual.

An interferent that is an oxidizing agent converts additional I  to I . Because this extra I  requires an additional volume of
Na S O  to reach the end point, we overestimate the total chlorine residual. If the interferent is a reducing agent, it reduces back
to I  some of the I  produced by the reaction between the total chlorine residual and iodide. As a result. we underestimate the
total chlorine residual.

Figure 9.41 Endpoint for the determination of the total chlorine residual. (a) Acidifying the sample and adding KI forms a brown
solution of I . (b) Titrating with Na S O  converts I  to I  with the solution fading to a pale yellow color as we approach the end
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point. (c) Adding starch forms the deep purple starch–I  complex. (d) As the titration continues, the end point is a sharp transition
from a purple to a colorless solution. The change in color from (c) to (d) typically takes 1–2 drops of titrant.

9.4.3 Quantitative Applications
Although many quantitative applications of redox titrimetry have been replaced by other analytical methods, a few important
applications continue to be relevant. In this section we review the general application of redox titrimetry with an emphasis on
environmental, pharmaceutical, and industrial applications. We begin, however, with a brief discussion of selecting and
characterizing redox titrants, and methods for controlling the titrand’s oxidation state.

Adjusting the Titrand’s Oxidation State

If a redox titration is to be used in a quantitative analysis, the titrand must initially be present in a single oxidation state. For
example, iron can be determined by a redox titration in which Ce  oxidizes Fe  to Fe . Depending on the sample and the method
of sample preparation, iron may initially be present in both the +2 and +3 oxidation states. Before titrating, we must reduce any
Fe  to Fe . This type of pretreatment can be accomplished using an auxiliary reducing agent or oxidizing agent.

A metal that is easy to oxidize—such as Zn, Al, and Ag—can serve as an auxiliary reducing agent. The metal, as a coiled wire or
powder, is added to the sample where it reduces the titrand. Because any unreacted auxiliary reducing agent will react with the
titrant, it must be removed before beginning the titration. This can be accomplished by simply removing the coiled wire, or by
filtering.

An alternative method for using an auxiliary reducing agent is to immobilize it in a column. To prepare a reduction column an
aqueous slurry of the finally divided metal is packed in a glass tube equipped with a porous plug at the bottom. The sample is
placed at the top of the column and moves through the column under the influence of gravity or vacuum suction. The length of the
reduction column and the flow rate are selected to ensure the analyte’s complete reduction.

Two common reduction columns are used. In the Jones reductor the column is filled with amalgamated zinc, Zn(Hg), prepared by
briefly placing Zn granules in a solution of HgCl . Oxidation of zinc

provides the electrons for reducing the titrand. In the Walden reductor the column is filled with granular Ag metal. The solution
containing the titrand is acidified with HCl and passed through the column where the oxidation of silver

provides the necessary electrons for reducing the titrand. Table 9.17 provides a summary of several applications of reduction
columns.

Table 9.17 Examples of Reactions For Reducing a Titrand’s Oxidation State Using a Reduction Column

Oxidized Titrand Walden Reductor Jones Reductor

Cr — Cr (aq) + e  → Cr (aq)

Cu Cu (aq) +e  → Cu (aq) Cu (aq) + 2e  → Cr(s)

Fe Fe (aq) + e  → Fe (aq) Fe (aq) + e  → Fe (aq)

TiO —
TiO (aq) + 2H (aq) + e  → Ti (aq) +

H O(l)

MoO MoO (aq) + e → MoO (aq)
MoO (aq) + 4H (aq) + 3e → Mo (aq) +

2H O(l)

VO
VO (aq) + 2H (aq) + e  → VO (aq) +

H O(l)
VO (aq) + 4H (aq) + 3e  → V (aq) +

2H O(l)

Several reagents are commonly used as auxiliary oxidizing agents, including ammonium peroxydisulfate, (NH ) S O , and
hydrogen peroxide, H O . Peroxydisulfate is a powerful oxidizing agent

3
–

4+ 2+ 3+

3+ 2+

2

Zn(Hg)(s) → (aq) +Hg(l) +2Zn2+ e− (11.4.42)

Ag(s) + (aq) → AgCl(s) +Cl− e− (11.4.43)
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capable of oxidizing Mn  to MnO , Cr  to Cr O , and Ce  to Ce . Excess peroxydisulfate is easily destroyed by briefly
boiling the solution. The reduction of hydrogen peroxide in acidic solution

provides another method for oxidizing a titrand. Excess H O  is destroyed by briefly boiling the solution.

Selecting and Standardizing a Titrant

If it is to be used quantitatively, the titrant’s concentration must remain stable during the analysis. Because a titrant in a reduced
state is susceptible to air oxidation, most redox titrations use an oxidizing agent as the titrant. There are several common oxidizing
titrants, including MnO , Ce , Cr O , and I . Which titrant is used often depends on how easy it is to oxidize the titrand. A
titrand that is a weak reducing agent needs a strong oxidizing titrant if the titration reaction is to have a suitable end point.

The two strongest oxidizing titrants are MnO  and Ce , for which the reduction half-reactions are

Solutions of Ce4+ usually are prepared from the primary standard cerium ammonium nitrate, Ce(NO3)4•2NH4NO3, in 1 M
H2SO4. When prepared using a reagent grade material, such as Ce(OH)4, the solution is standardized against a primary standard
reducing agent such as Na2C2O4 or Fe2+ (prepared using iron wire) using ferroin as an indicator. Despite its availability as a
primary standard and its ease of preparation, Ce4+ is not as frequently used as MnO4– because it is more expensive.

Note
The standardization reactions are

Solutions of MnO  are prepared from KMnO , which is not available as a primary standard. Aqueous solutions of permanganate
are thermodynamically unstable due to its ability to oxidize water.

This reaction is catalyzed by the presence of MnO , Mn , heat, light, and the presence of acids and bases. A moderately stable
solution of permanganate can be prepared by boiling it for an hour and filtering through a sintered glass filter to remove any solid
MnO  that precipitates. Standardization is accomplished against a primary standard reducing agent such as Na C O  or Fe
(prepared using iron wire), with the pink color of excess MnO  signaling the end point. A solution of MnO  prepared in this
fashion is stable for 1–2 weeks, although the standardization should be rechecked periodically.

Note
The standardization reactions are

Potassium dichromate is a relatively strong oxidizing agent whose principal advantages are its availability as a primary standard
and the long term stability of its solutions. It is not, however, as strong an oxidizing agent as MnO  or Ce , which makes it less
useful when the titrand is a weak reducing agent. Its reduction half-reaction is

Although a solution of Cr O  is orange and a solution of Cr  is green, neither color is intense enough to serve as a useful
indicator. Diphenylamine sulfonic acid, whose oxidized form is red-violet and reduced form is colorless, gives a very distinct end
point signal with Cr O .

Iodine is another important oxidizing titrant. Because it is a weaker oxidizing agent than MnO , Ce , and Cr O , it is useful
only when the titrand is a stronger reducing agent. This apparent limitation, however, makes I  a more selective titrant for the

2+
4
– 3+

2 7
2– 3+ 4+

(aq) +2 (aq) +2 → 2 O(l)H2O2 H+ e− H2 (11.4.45)
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(aq) +8 (aq) +5 ⇌ M (aq) +4 O(l)MnO−
4 H+ e− n2+ H2 (11.4.46)

(aq) + ⇌ (aq)Ce4+ e− Ce3+ (11.4.47)

C (aq) +F (aq) → C (aq) +F (aq)e4+ e2+ e3+ e3+ (11.4.48)

2C (aq) + (aq) → 2C (aq) +2C (g) +2 (aq)e4+ H2C2O4 e3+ O2 H+ (11.4.49)

4
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4

4 (aq) +2 O(l) ⇌ 4Mn (s) +3 (g) +4O (aq)MnO−
4 H2 O2 O2 H− (11.4.50)
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(aq) +5F (aq) +8 (aq) → M (aq) +5F (aq) +4 O(l)MnO−
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2 (aq) +5 (aq) +6 (aq) → 2M (aq) +10C (g) +8 O(l)MnO−
4 H2C2O4 H+ n2+ O2 H2 (11.4.52)
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analysis of a strong reducing agent in the presence of a weaker reducing agent. The reduction half-reaction for I  is

Because iodine is not very soluble in water, solutions are prepared by adding an excess of I . The complexation reaction

increases the solubility of I  by forming the more soluble triiodide ion, I . Even though iodine is present as I  instead of I , the
number of electrons in the reduction half-reaction is unaffected.

Solutions of I  are normally standardized against Na S O  using starch as a specific indicator for I .

Note
The standardization reaction is

An oxidizing titrant such as MnO , Ce , Cr O , and I , is used when the titrand is in a reduced state. If the titrand is in an
oxidized state, we can first reduce it with an auxiliary reducing agent and then complete the titration using an oxidizing titrant.
Alternatively, we can titrate it using a reducing titrant. Iodide is a relatively strong reducing agent that could serve as a reducing
titrant except that a solution of I– is susceptible to the air-oxidation of I  to I .

Note
A freshly prepared solution of KI is clear, but after a few days it may show a faint yellow coloring due to the presence of I .

Instead, adding an excess of KI reduces the titrand, releasing a stoichiometric amount of I . The amount of I  produced is then
determined by a back titration using thiosulfate, S O , as a reducing titrant.

Solutions of S O  are prepared using Na S O •5H O, and must be standardized before use. Standardization is accomplished by
dissolving a carefully weighed portion of the primary standard KIO  in an acidic solution containing an excess of KI. The reaction
between IO  and I

liberates a stoichiometric amount of I . By titrating this I  with thiosulfate, using starch as a visual indicator, we can determine
the concentration of S O  in the titrant.

Note
The standardization titration is

which is the same reaction used to standardize solutions of I . This approach to standardizing solutions of S O . is similar to
the determination of the total chlorine residual outlined in Representative Method 9.3.

Although thiosulfate is one of the few reducing titrants that is not readily oxidized by contact with air, it is subject to a slow
decomposition to bisulfite and elemental sulfur. If used over a period of several weeks, a solution of thiosulfate should be
restandardized periodically. Several forms of bacteria are able to metabolize thiosulfate, which also can lead to a change in its
concentration. This problem can be minimized by adding a preservative such as HgI  to the solution.

Another useful reducing titrant is ferrous ammonium sulfate, Fe(NH ) (SO ) •6H O, in which iron is present in the +2 oxidation
state. A solution of Fe  is susceptible to air-oxidation, but when prepared in 0.5 M H SO  it remains stable for as long as a month.
Periodic restandardization with K Cr O  is advisable. The titrant can be used to directly titrate the titrand by oxidizing Fe  to Fe .

2
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Alternatively, ferrous ammonium sulfate is added to the titrand in excess and the quantity of Fe  produced determined by back
titrating with a standard solution of Ce  or Cr O .

Inorganic Analysis

One of the most important applications of redox titrimetry is evaluating the chlorination of public water supplies. Representative
Method 9.3, for example, describes an approach for determining the total chlorine residual by using the oxidizing power of chlorine
to oxidize I  to I . The amount of I  is determined by back titrating with S O .

The efficiency of chlorination depends on the form of the chlorinating species. There are two contributions to the total chlorine
residual—the free chlorine residual and the combined chlorine residual. The free chlorine residual includes forms of chlorine that
are available for disinfecting the water supply. Examples of species contributing to the free chlorine residual include Cl , HOCl and
OCl . The combined chlorine residual includes those species in which chlorine is in its reduced form and, therefore, no longer
capable of providing disinfection. Species contributing to the combined chlorine residual are NH Cl, NHCl  and NCl .

When a sample of iodide-free chlorinated water is mixed with an excess of the indicator N,N-diethyl-p-phenylenediamine (DPD),
the free chlorine oxidizes a stoichiometric portion of DPD to its red-colored form. The oxidized DPD is then back titrated to its
colorless form using ferrous ammonium sulfate as the titrant. The volume of titrant is proportional to the free residual chlorine.

Having determined the free chlorine residual in the water sample, a small amount of KI is added, catalyzing the reduction
monochloramine, NH Cl, and oxidizing a portion of the DPD back to its red-colored form. Titrating the oxidized DPD with ferrous
ammonium sulfate yields the amount of NH Cl in the sample. The amount of dichloramine and trichloramine are determined in a
similar fashion.

The methods described above for determining the total, free, or combined chlorine residual also are used to establish a water
supply’s chlorine demand. Chlorine demand is defined as the quantity of chlorine needed to completely react with any substance
that can be oxidized by chlorine, while also maintaining the desired chlorine residual. It is determined by adding progressively
greater amounts of chlorine to a set of samples drawn from the water supply and determining the total, free, or combined chlorine
residual.

Another important example of redox titrimetry, which finds applications in both public health and environmental analyses is the
determination of dissolved oxygen. In natural waters, such as lakes and rivers, the level of dissolved O  is important for two
reasons: it is the most readily available oxidant for the biological oxidation of inorganic and organic pollutants; and it is necessary
for the support of aquatic life. In a wastewater treatment plant dissolved O  is essential for the aerobic oxidation of waste materials.
If the concentration of dissolved O  falls below a critical value, aerobic bacteria are replaced by anaerobic bacteria, and the
oxidation of organic waste produces undesirable gases, such as CH  and H S.

One standard method for determining the dissolved O  content of natural waters and wastewaters is the Winkler method. A sample
of water is collected without exposing it to the atmosphere, which might change the concentration of dissolved O . The sample is
first treated with a solution of MnSO , and then with a solution of NaOH and KI. Under these alkaline conditions the dissolved
oxygen oxidizes Mn  to MnO .

After the reaction is complete, the solution is acidified with H SO . Under the now acidic conditions I  is oxidized to I  by MnO .

The amount of I  formed is determined by titrating with S O  using starch as an indicator. The Winkler method is subject to a
variety of interferences, and several modifications to the original procedure have been proposed. For example, NO  interferes
because it can reduce I  to I  under acidic conditions. This interference is eliminated by adding sodium azide, NaN , reducing
NO  to N . Other reducing agents, such as Fe , are eliminated by pretreating the sample with KMnO , and destroying the excess
permanganate with K C O .

Another important example of redox titrimetry is the determination of water in nonaqueous solvents. The titrant for this analysis is
known as the Karl Fischer reagent and consists of a mixture of iodine, sulfur dioxide, pyridine, and methanol. Because the
concentration of pyridine is sufficiently large, I  and SO  react with pyridine (py) to form the complexes py•I  and py•SO . When
added to a sample containing water, I  is reduced to I  and SO  is oxidized to SO .

3+

4+
2 7

2–

–
3
–

3
–

2 3
2–

2
–

2 2 3

2

2

2

2

2

4 2

2

2

4
2+

2

2M (aq) +4O (aq) + (g) → 2Mn (s) +2 O(l)n2+ H− O2 O2 H2 (11.4.62)

2 4
–

3
–

2

Mn (s) +3 (aq) +4 (aq) → M + (aq) +2 O(l)O2 I− H+ n2+ I−
3 H2 (11.4.63)

3
–

2 3
2–

2
–

3
– –

3

2
–

2
2+

4

2 2 4

2 2 2 2

2
–

2 3

py ∙ +py ∙ S +py + O → 2py ∙ HI +py ∙ SI2 O2 H2 O3 (11.4.64)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/41595?pdf
https://chem.libretexts.org/Under_Construction/Purgatory/Book%3A_Analytical_Chemistry_2.0_(Harvey)/09_Titrimetric_Methods/9.4%3A_Redox_Titrations#Representative_Method_9.3


11.4.15 https://chem.libretexts.org/@go/page/41595

Methanol is included to prevent the further reaction of py•SO  with water. The titration’s end point is signaled when the solution
changes from the product’s yellow color to the brown color of the Karl Fischer reagent.

Organic Analysis

Redox titrimetry also is used for the analysis of organic analytes. One important example is the determination of the chemical
oxygen demand (COD) of natural waters and wastewaters. The COD provides a measure of the quantity of oxygen necessary to
completely oxidize all the organic matter in a sample to CO  and H O. Because no attempt is made to correct for organic matter
that can not be decomposed biologically, or for slow decomposition kinetics, the COD always overestimates a sample’s true oxygen
demand. The determination of COD is particularly important in managing industrial wastewater treatment facilities where it is used
to monitor the release of organic-rich wastes into municipal sewer systems or the environment.

A sample’s COD is determined by refluxing it in the presence of excess K Cr O , which serves as the oxidizing agent. The solution
is acidified with H SO  using Ag SO  to catalyze the oxidation of low molecular weight fatty acids. Mercuric sulfate, HgSO , is
added to complex any chloride that is present, preventing the precipitation of the Ag  catalyst as AgCl. Under these conditions, the
efficiency for oxidizing organic matter is 95–100%. After refluxing for two hours, the solution is cooled to room temperature and
the excess Cr O  is determined by back titrating using ferrous ammonium sulfate as the titrant and ferroin as the indicator.
Because it is difficult to completely remove all traces of organic matter from the reagents, a blank titration must be performed. The
difference in the amount of ferrous ammonium sulfate needed to titrate the sample and the blank is proportional to the COD.

Iodine has been used as an oxidizing titrant for a number of compounds of pharmaceutical interest. Earlier we noted that the
reaction of S O with I  produces the tetrathionate ion, S O . The tetrathionate ion is actually a dimer consisting of two
thiosulfate ions connected through a disulfide (–S–S–) linkage. In the same fashion, I  can be used to titrate mercaptans of the
general formula RSH, forming the dimer RSSR as a product. The amino acid cysteine also can be titrated with I . The product of
this titration is cystine, which is a dimer of cysteine. Triiodide also can be used for the analysis of ascorbic acid (vitamin C) by
oxidizing the enediol functional group to an alpha diketone

and for the analysis of reducing sugars, such as glucose, by oxidizing the aldehyde functional group to a carboxylate ion in a basic
solution.

An organic compound containing a hydroxyl, a carbonyl, or an amine functional group adjacent to an hydoxyl or a carbonyl group
can be oxidized using metaperiodate, IO , as an oxidizing titrant.

A two-electron oxidation cleaves the C–C bond between the two functional groups, with hydroxyl groups being oxidized to
aldehydes or ketones, carbonyl functional groups being oxidized to carboxylic acids, and amines being oxidized to an aldehyde and
an amine (ammonia if a primary amine). The analysis is conducted by adding a known excess of IO  to the solution containing the
analyte, and allowing the oxidation to take place for approximately one hour at room temperature. When the oxidation is complete,
an excess of KI is added, which converts any unreacted IO  to IO  and I .

The I  is then determined by titrating with S O  using starch as an indicator.
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Quantitative Calculations

The quantitative relationship between the titrand and the titrant is determined by the stoichiometry of the titration reaction. If you
are unsure of the balanced reaction, you can deduce the stoichiometry by remembering that the electrons in a redox reaction must
be conserved.

Example 9.11
The amount of Fe in a 0.4891-g sample of an ore was determined by titrating with K Cr O . After dissolving the sample in HCl,
the iron was brought into the +2 oxidation state using a Jones reductor. Titration to the diphenylamine sulfonic acid end point
required 36.92 mL of 0.02153 M K Cr O . Report the ore’s iron content as %w/w Fe O .

(Although we can deduce the stoichiometry between the titrant and the titrand without balancing the titration reaction, the
balanced reaction

does provide useful information. For example, the presence of H  reminds us that the reaction�fs feasibility is pH-dependent.)

Solution

Because we have not been provided with the titration reaction, let’s use a conservation of electrons to deduce the stoichiometry.
During the titration the analyte is oxidized from Fe  to Fe , and the titrant is reduced from Cr O  to Cr . Oxidizing Fe  to
Fe  requires only a single electron. Reducing Cr O , in which each chromium is in the +6 oxidation state, to Cr  requires
three electrons per chromium, for a total of six electrons. A conservation of electrons for the titration, therefore, requires that
each mole of K Cr O  reacts with six moles of Fe .

The moles of K Cr O  used in reaching the end point is

which means that the sample contains

Thus, the %w/w Fe O  in the sample of ore is

Practice Exercise 9.20
The purity of a sample of sodium oxalate, Na C O , is determined by titrating with a standard solution of KMnO . If a 0.5116-g
sample requires 35.62 mL of 0.0400 M KMnO  to reach the titration’s end point, what is the %w/w Na C O  in the sample.

Click here to review your answer to this exercise.

As shown in the following two examples, we can easily extend this approach to an analysis that requires an indirect analysis or a
back titration.

Example 9.12
A 25.00-mL sample of a liquid bleach was diluted to 1000 mL in a volumetric flask. A 25-mL portion of the diluted sample was
transferred by pipet into an Erlenmeyer flask containing an excess of KI, reducing the OCl  to Cl , and producing I . The
liberated I  was determined by titrating with 0.09892 M Na S O , requiring 8.96 mL to reach the starch indicator end point.
Report the %w/v NaOCl in the sample of bleach.

Solution

To determine the stoichiometry between the analyte, NaOCl, and the titrant, Na S O , we need to consider both the reaction
between OCl  and I , and the titration of I  with Na S O .

2 2 7

2 2 7 2 3

C (aq) +6F (aq) +14 (aq) → 2C (aq) +2 (aq) +6F (aq) +7 O(l)K2 r2O7 e2+ H+ r3+ K+ e3+ H2 (11.4.67)

+

2+ 3+
2 7

2– 3+ 2+

3+
2 7

2– 3+

2 2 7
2+

2 2 7

(0.02153 M C ) ×(0.03692 L C ) = 7.949 × mol CK2 r2O7 K2 r2O7 10−4 K2 r2O7 (11.4.68)

7.949 × mol C × = 4.769 × mol F10−4 K2 r2O7
6 mol Fe2+

mol CK2 r2O7
10−3 e2+ (11.4.69)

2 3

4.769 × mol F × × = 0.3808 g F10−3 e2+ 1 mol Fe2O3

2 mol Fe2+

159.69 g Fe2O3

mol Fe2O3
e2O3 (11.4.70)

×100 = 77.86% w/w F
0.3808 g Fe2O3

0.4891 g sample
e2O3 (11.4.71)
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4 2 2 4
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First, in reducing OCl  to Cl , the oxidation state of chlorine changes from +1 to –1, requiring two electrons. The oxidation of
three I  to form I  releases two electrons as the oxidation state of each iodine changes from –1 in I  to –⅓ in I . A
conservation of electrons, therefore, requires that each mole of OCl  produces one mole of I .

Second, in the titration reaction, I . is reduced to I  and S O  is oxidized to S O . Reducing I  to 3I  requires two elections
as each iodine changes from an oxidation state of –⅓ to –1. In oxidizing S O  to S O , each sulfur changes its oxidation
state from +2 to +2.5, releasing one electron for each S O . A conservation of electrons, therefore, requires that each mole of
I  reacts with two moles of S O .

Finally, because each mole of OCl  produces one mole of I , and each mole of I  reacts with two moles of S O , we know
that every mole of NaOCl in the sample ultimately results in the consumption of two moles of Na S O .

The balanced reactions for this analysis are:

The moles of Na S O  used in reaching the titration’s end point is

which means the sample contains

Thus, the %w/v NaOCl in the diluted sample is

Because the bleach was diluted by a factor of 40 (25 mL to 1000 mL), the concentration of NaOCl in the bleach is 5.28% (w/v).

Example 9.13
The amount of ascorbic acid, C H O , in orange juice was determined by oxidizing the ascorbic acid to dehydroascorbic acid,
C H O , with a known amount of I , and back titrating the excess I  with Na S O . A 5.00-mL sample of filtered orange juice
was treated with 50.00 mL of 0.01023 M I . After the oxidation was complete, 13.82 mL of 0.07203 M Na S O  was needed to
reach the starch indicator end point. Report the concentration ascorbic acid in mg/100 mL.

Solution

For a back titration we need to determine the stoichiometry between I  and the analyte, C H O , and between I  and the
titrant, Na S O . The later is easy because we know from Example 9.12 that each mole of I  reacts with two moles of Na S O .

The balanced reactions for this analysis are:

In oxidizing ascorbic acid to dehydroascorbic acid, the oxidation state of carbon changes from +⅔ in C H O  to +1 in C H O .
Each carbon releases ⅓ of an electron, or a total of two electrons per ascorbic acid. As we learned in Example 9.12, reducing
I  requires two electrons; thus, a conservation of electrons requires that each mole of ascorbic acid consumes one mole of I .

The total moles of I  reacting with C H O  and with Na S O  is

The back titration consumes

Subtracting the moles of I  reacting with Na S O  from the total moles of I  gives the moles reacting with ascorbic acid.
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OC (aq) +3 (aq) +2 (aq) → (aq) +C (aq) + O(l)l− I− H+ I−
3 l− H2 (11.4.72)

(aq) +2 (aq) → (aq) +3 (aq)I−
3 S2O2−

3
S4O2−

6
I− (11.4.73)

2 2 3

(0.09892 M N ) ×(0.00896 L N ) = 8.86 × mol Na2S2O3 a2S2O3 10−4 a2S2O3 (11.4.74)

8.86 × mol N × × = 0.03299 g NaOCl10−4 a2S2O3
1 mol NaOCl

2 mol Na2S2O3

74.44 g NaOCl

mol NaOCl
(11.4.75)

×100 = 0.132% w/v NaOCl
0.03299 g NaOCl

25.00 mL
(11.4.76)
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(aq) + (aq) → 3 (aq) + (aq) +2 (aq)C6H8O6 I−
3 I− C6H6O6 H+ (11.4.77)

(aq) +2 (aq) → (aq) +3 (aq)I−
3 S2O2−

3 S4O2−
6 I− (11.4.78)
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(0.01023 M ) ×(0.05000 L ) = 5.115 × molI−
3 I−

3 10−4 I−
3 (11.4.79)

0.01382 L N × × = 4.977 × mola2S2O3
0.07203 mol Na2S2O3

L Na2S2O3

1 mol I−
3

2 mol Na2S2O3
10−4 I−

3 (11.4.80)
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The grams of ascorbic acid in the 5.00-mL sample of orange juice is

There are 2.43 mg of ascorbic acid in the 5.00-mL sample, or 48.6 mg per 100 mL of orange juice.

Practice Exercise 9.21
A quantitative analysis for ethanol, C H O, can be accomplished by a redox back titration. Ethanol is oxidized to acetic acid,
C H O , using excess dichromate, Cr O , which is reduced to Cr . The excess dichromate is titrated with Fe , giving Cr
and Fe  as products. In a typical analysis, a 5.00-mL sample of a brandy is diluted to 500 mL in a volumetric flask. A 10.00-
mL sample is taken and the ethanol is removed by distillation and collected in 50.00 mL of an acidified solution of 0.0200 M
K Cr O . A back titration of the unreacted Cr O  requires 21.48 mL of 0.1014 M Fe . Calculate the %w/v ethanol in the
brandy.

Click here to review your answer to this exercise.

9.4.4 Evaluation of Redox Titrimetry

The scale of operations, accuracy, precision, sensitivity, time, and cost of a redox titration are similar to those described earlier in
this chapter for acid–base or a complexation titration. As with acid–base titrations, we can extend a redox titration to the analysis of
a mixture of analytes if there is a significant difference in their oxidation or reduction potentials. Figure 9.42 shows an example of
the titration curve for a mixture of Fe  and Sn  using Ce  as the titrant. A titration of a mixture of analytes is possible if their
standard state potentials or formal potentials differ by at least 200 mV.

Figure 9.42 Titration curve for the titration of 50.0 mL of 0.0125 M Sn  and 0.0250 M Fe  with 0.050 M Ce . Both the titrand
and the titrant are 1M in HCl.
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3 10−4 I−
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3 (11.4.81)

1.38 × mol × × = 2.43 × g10−5 I−
3

1 mol C6H8O6

mol I−
3

176.13 g C6H8O6

mol C6H8O6
10−3 C6H8O6 (11.4.82)
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