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12.3: Heat Capacity, Enthalpy, and Calorimetry

Explain the technique of calorimetry
Calculate and interpret heat and related properties using typical calorimetry data
To use calorimetric data to calculate enthalpy changes.

Heat Capacity 
We now introduce two concepts useful in describing heat flow and temperature change. The heat capacity ( ) of a body of matter
is the quantity of heat ( ) it absorbs or releases when it experiences a temperature change ( ) of 1 degree Celsius (or
equivalently, 1 kelvin)

Heat capacity is determined by both the type and amount of substance that absorbs or releases heat. It is therefore an extensive
property—its value is proportional to the amount of the substance.

For example, consider the heat capacities of two cast iron frying pans. The heat capacity of the large pan is five times greater than
that of the small pan because, although both are made of the same material, the mass of the large pan is five times greater than the
mass of the small pan. More mass means more atoms are present in the larger pan, so it takes more energy to make all of those
atoms vibrate faster. The heat capacity of the small cast iron frying pan is found by observing that it takes 18,140 J of energy to
raise the temperature of the pan by 50.0 °C

The larger cast iron frying pan, while made of the same substance, requires 90,700 J of energy to raise its temperature by 50.0 °C.
The larger pan has a (proportionally) larger heat capacity because the larger amount of material requires a (proportionally) larger
amount of energy to yield the same temperature change:

The specific heat capacity ( ) of a substance, commonly called its specific heat, is the quantity of heat required to raise the
temperature of 1 gram of a substance by 1 degree Celsius (or 1 kelvin):

Specific heat capacity depends only on the kind of substance absorbing or releasing heat. It is an intensive property—the type, but
not the amount, of the substance is all that matters. For example, the small cast iron frying pan has a mass of 808 g. The specific
heat of iron (the material used to make the pan) is therefore:

The large frying pan has a mass of 4040 g. Using the data for this pan, we can also calculate the specific heat of iron:

Although the large pan is more massive than the small pan, since both are made of the same material, they both yield the same
value for specific heat (for the material of construction, iron). Note that specific heat is measured in units of energy per temperature
per mass and is an intensive property, being derived from a ratio of two extensive properties (heat and mass). The molar heat
capacity, also an intensive property, is the heat capacity per mole of a particular substance and has units of J/mol °C (Figure 

).
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Figure : Due to its larger mass, a large frying pan has a larger heat capacity than a small frying pan. Because they are made
of the same material, both frying pans have the same specific heat. (CC BY; Mark Blaser via OpenStax).

The heat capacity of an object depends on both its mass and its composition. For example, doubling the mass of an object doubles
its heat capacity. Consequently, the amount of substance must be indicated when the heat capacity of the substance is reported. The
molar heat capacity (C ) is the amount of energy needed to increase the temperature of 1 mol of a substance by 1°C; the units of C
are thus J/(mol•°C).The subscript p indicates that the value was measured at constant pressure. The specific heat ( ) is the amount
of energy needed to increase the temperature of 1 g of a substance by 1°C; its units are thus J/(g•°C).

We can relate the quantity of a substance, the amount of heat transferred, its heat capacity, and the temperature change either via
moles (Equation ) or mass (Equation ):

where

 is the number of moles of substance and
 is the molar heat capacity (i.e., heat capacity per mole of substance), and

 is the temperature change.

where

 is the mass of substance in grams,
 is the specific heat (i.e., heat capacity per gram of substance), and

 is the temperature change.

Both Equations  and  are under constant pressure (which matters) and both show that we know the amount of a
substance and its specific heat (for mass) or molar heat capcity (for moles), we can determine the amount of heat, , entering or
leaving the substance by measuring the temperature change before and after the heat is gained or lost.

The specific heats of some common substances are given in Table . Note that the specific heat values of most solids are less
than 1 J/(g•°C), whereas those of most liquids are about 2 J/(g•°C). Water in its solid and liquid states is an exception. The heat
capacity of ice is twice as high as that of most solids; the heat capacity of liquid water, 4.184 J/(g•°C), is one of the highest known.
The specific heat of a substance varies somewhat with temperature. However, this variation is usually small enough that we will
treat specific heat as constant over the range of temperatures that will be considered in this chapter. Specific heats of some common
substances are listed in Table .

Table : Specific Heats of Common Substances at 25 °C and 1 bar

Substance Symbol (state) Specific Heat (J/g °C)

helium He(g) 5.193

water H O(l) 4.184

ethanol C H O(l) 2.376

ice H O(s) 2.093 (at −10 °C)

water vapor H O(g) 1.864
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Substance Symbol (state) Specific Heat (J/g °C)

nitrogen N (g) 1.040

air mixture 1.007

oxygen O (g) 0.918

aluminum Al(s) 0.897

carbon dioxide CO (g) 0.853

argon Ar(g) 0.522

iron Fe(s) 0.449

copper Cu(s) 0.385

lead Pb(s) 0.130

gold Au(s) 0.129

silicon Si(s) 0.712

quartz 0.730

The value of  is intrinsically a positive number, but  and  can be either positive or negative, and they both must have the
same sign. If  and  are positive, then heat flows from the surroundings into an object. If  and  are negative, then heat
flows from an object into its surroundings.

If a substance gains thermal energy, its temperature increases, its final temperature is higher than its initial temperature, then 
 and  is positive. If a substance loses thermal energy, its temperature decreases, the final temperature is lower than the

initial temperature, so  and  is negative.

A flask containing  of water is heated, and the temperature of the water increases from  to . How much
heat did the water absorb?

Solution

To answer this question, consider these factors:

the specific heat of the substance being heated (in this case, water)
the amount of substance being heated (in this case, 800 g)
the magnitude of the temperature change (in this case, from 21 °C to 85 °C).

The specific heat of water is 4.184 J/g °C (Table ), so to heat 1 g of water by 1 °C requires 4.184 J. We note that since
4.184 J is required to heat 1 g of water by 1 °C, we will need 800 times as much to heat 800 g of water by 1 °C. Finally, we
observe that since 4.184 J are required to heat 1 g of water by 1 °C, we will need 64 times as much to heat it by 64 °C (that is,
from 21 °C to 85 °C).

This can be summarized using Equation :

Because the temperature increased, the water absorbed heat and  is positive.
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 Example : Measuring Heat12.3.1

8.0 × g102 21 °C 85 °C
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How much heat, in joules, must be added to a  iron skillet to increase its temperature from 25 °C to 250 °C? The
specific heat of iron is 0.451 J/g °C.

 Answer

Note that the relationship between heat, specific heat, mass, and temperature change can be used to determine any of these
quantities (not just heat) if the other three are known or can be deduced.

A piece of unknown metal weighs 348 g. When the metal piece absorbs 6.64 kJ of heat, its temperature increases from 22.4 °C
to 43.6 °C. Determine the specific heat of this metal (which might provide a clue to its identity).

Solution

Since mass, heat, and temperature change are known for this metal, we can determine its specific heat using Equation :

Substituting the known values:

Solving:

Comparing this value with the values in Table , this value matches the specific heat of aluminum, which suggests that
the unknown metal may be aluminum.

A piece of unknown metal weighs 217 g. When the metal piece absorbs 1.43 kJ of heat, its temperature increases from 24.5 °C
to 39.1 °C. Determine the specific heat of this metal, and predict its identity.

 

Answer

; the metal is likely to be iron from checking Table .

A home solar energy storage unit uses 400 L of water for storing thermal energy. On a sunny day, the initial temperature of the
water is 22.0°C. During the course of the day, the temperature of the water rises to 38.0°C as it circulates through the water
wall. How much energy has been stored in the water? (The density of water at 22.0°C is 0.998 g/mL.)

 Exercise 12.3.1

5.00 × g102

5.07 × J104

 Example : Determining Other Quantities12.3.2

12.3.4

q = m ΔTcs = m ( − )cs Tfinal Tinitial

6, 640 J = (348 g) (43.6 −22.4) °Ccs

c = = 0.900 J/g °C
6, 640 J

(348 g)(21.2°C)

12.3.1

 Exercise 12.3.2

c = 0.45 J/g °C 12.3.1

 Example : Solar Heating12.3.3
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Passive solar system. During the day (a), sunlight is absorbed by water circulating in the water wall. At night (b), heat stored
in the water wall continues to warm the air inside the house.

Given: volume and density of water and initial and final temperatures

Asked for: amount of energy stored

Strategy:

A. Use the density of water at 22.0°C to obtain the mass of water (m) that corresponds to 400 L of water. Then compute 
for the water.

B. Determine the amount of heat absorbed by substituting values for , , and  into Equation .

Solution:

A The mass of water is

The temperature change (ΔT) is 38.0°C − 22.0°C = +16.0°C.

B From Table , the specific heat of water is 4.184 J/(g•°C). From Equation , the heat absorbed by the water is thus

Both q and ΔT are positive, consistent with the fact that the water has absorbed energy.

Some solar energy devices used in homes circulate air over a bed of rocks that absorb thermal energy from the sun. If a house
uses a solar heating system that contains 2500 kg of sandstone rocks, what amount of energy is stored if the temperature of the
rocks increases from 20.0°C to 34.5°C during the day? Assume that the specific heat of sandstone is the same as that of quartz
(SiO ) in Table .

Answer

Even though the mass of sandstone is more than six times the mass of the water in Example , the amount of thermal
energy stored is the same to two significant figures.

Heat "Flow" to Thermal Equilibrium 
When two objects at different temperatures are placed in contact, heat flows from the warmer object to the cooler one until the
temperature of both objects is the same. The law of conservation of energy says that the total energy cannot change during this

ΔT

m cs ΔT 12.3.1

mass of O = 400 ( )( ) = 3.99 × g OH2 L
1000 mL

1 L

0.998 g

1 mL
105 H2

12.3.1 12.3.4

q = m ΔT = (3.99 × ) (16.0 ) = 2.67 × J = 2.67 × kJcs 105 g
⎛

⎝

4.184 J

⋅g Co

⎞

⎠
Co 107 104

 Exercise : Solar Heating12.3.3

2 12.3.1

2.7 × kJ104
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process:

The equation implies that the amount of heat that flows from a warmer object is the same as the amount of heat that flows into a
cooler object. Because the direction of heat flow is opposite for the two objects, the sign of the heat flow values must be opposite:

Thus heat is conserved in any such process, consistent with the law of conservation of energy.

The amount of heat lost by a warmer object equals the amount of heat gained by a cooler
object.

Substituting for  from Equation  gives

which can be rearranged to give

When two objects initially at different temperatures are placed in contact, we can use Equation  to calculate the final
temperature if we know the chemical composition and mass of the objects.

If a 30.0 g piece of copper pipe at 80.0°C is placed in 100.0 g of water at 27.0°C, what is the final temperature? Assume that no
heat is transferred to the surroundings.

Given: mass and initial temperature of two objects

Asked for: final temperature

Strategy: Using Equation  and writing  for both the copper and the water, substitute the
appropriate values of , , and  into the equation and solve for .

Solution
We can adapt Equation  to solve this problem, remembering that :

Substituting the data provided in the problem and Table  gives

If a 14.0 g chunk of gold at 20.0°C is dropped into 25.0 g of water at 80.0°C, what is the final temperature if no heat is
transferred to the surroundings?

Answer

80.0°C

+ = 0qcold qhot (12.3.5)

= −qcold qhot (12.3.6)

q 12.3.4

+ = 0[m ΔT ]cs cold [m ΔT ]cs hot

= −[m ΔT ]cs cold [m ΔT ]cs hot (12.3.7)

12.3.7

 Example : Thermal Equilibration of Copper and Water12.3.4

12.3.7 ΔT = −Tfinal Tinitial
m cs Tinitial Tfinal

12.3.7 ΔT = −Tfinal Tinitial

+ = 0[m ( − )]cs Tfinal Tinitial Cu
[m ( − )]cs Tfinal Tinitial OH2

12.3.1

(30 g) (0.385 J/(g°C))( −80°C) +(100 g)(4.184 J/(g°C))( −27.0°C)Tfinal Tfinal

(11.6 J C) −924 J + (418.4 J C) −11, 300 JTfinal /o Tfinal /o

(430 J/ (g C))Tfinal ⋅o

Tfinal

= 0

= 0

= 12, 224 J

= 28.4 Co

 Exercise : Thermal Equilibration of Gold and Water12.3.4A
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A 28.0 g chunk of aluminum is dropped into 100.0 g of water with an initial temperature of 20.0°C. If the final temperature of
the water is 24.0°C, what was the initial temperature of the aluminum? (Assume that no heat is transferred to the
surroundings.)

Answer

90.6°C

Measuring Heat "Flow" 
One technique we can use to measure the amount of heat involved in a chemical or physical process is known as calorimetry.
Calorimetry is used to measure amounts of heat transferred to or from a substance. To do so, the heat is exchanged with a calibrated
object (calorimeter). The change in temperature of the measuring part of the calorimeter is converted into the amount of heat (since
the previous calibration was used to establish its heat capacity). The measurement of heat transfer using this approach requires the
definition of a system (the substance or substances undergoing the chemical or physical change) and its surroundings (the other
components of the measurement apparatus that serve to either provide heat to the system or absorb heat from the system).
Knowledge of the heat capacity of the surroundings, and careful measurements of the masses of the system and surroundings and
their temperatures before and after the process allows one to calculate the heat transferred as described in this section.

A calorimeter is a device used to measure the amount of heat involved in a chemical or physical process.

Figure : In a calorimetric determination, either (a) an exothermic process occurs and heat, q, is negative, indicating that
thermal energy is transferred from the system to its surroundings, or (b) an endothermic process occurs and heat, q, is positive,
indicating that thermal energy is transferred from the surroundings to the system.

The thermal energy change accompanying a chemical reaction is responsible for the change in temperature that takes place in a
calorimeter. If the reaction releases heat (q  < 0), then heat is absorbed by the calorimeter (q  > 0) and its temperature
increases. Conversely, if the reaction absorbs heat (q  > 0), then heat is transferred from the calorimeter to the system (q
< 0) and the temperature of the calorimeter decreases. In both cases, the amount of heat absorbed or released by the calorimeter is
equal in magnitude and opposite in sign to the amount of heat produced or consumed by the reaction. The heat capacity of the
calorimeter or of the reaction mixture may be used to calculate the amount of heat released or absorbed by the chemical reaction.
The amount of heat released or absorbed per gram or mole of reactant can then be calculated from the mass of the reactants.

The amount of heat absorbed or released by the calorimeter is equal in magnitude and opposite in sign to the amount of heat
produced or consumed by the reaction.

Constant-Pressure Calorimetry 

Because  is defined as the heat flow at constant pressure, measurements made using a constant-pressure calorimeter (a device
used to measure enthalpy changes in chemical processes at constant pressure) give  values directly. This device is particularly
well suited to studying reactions carried out in solution at a constant atmospheric pressure. A “student” version, called a coffee-cup

 Exercise : Thermal Equilibration of Aluminum and Water12.3.4B

12.3.2
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calorimeter (Figure ), is often encountered in general chemistry laboratories. Commercial calorimeters operate on the same
principle, but they can be used with smaller volumes of solution, have better thermal insulation, and can detect a change in
temperature as small as several millionths of a degree (10 °C).

Figure : A Coffee-Cup Calorimeter. This simplified version of a constant-pressure calorimeter consists of two Styrofoam
cups nested and sealed with an insulated stopper to thermally isolate the system (the solution being studied) from the surroundings
(the air and the laboratory bench). Two holes in the stopper allow the use of a thermometer to measure the temperature and a stirrer
to mix the reactants.

Before we practice calorimetry problems involving chemical reactions, consider a simpler example that illustrates the core idea
behind calorimetry. Suppose we initially have a high-temperature substance, such as a hot piece of metal (M), and a low-
temperature substance, such as cool water (W). If we place the metal in the water, heat will flow from M to W. The temperature of
M will decrease, and the temperature of W will increase, until the two substances have the same temperature—that is, when they
reach thermal equilibrium. If this occurs in a calorimeter, ideally all of this heat transfer occurs between the two substances, with
no heat gained or lost by either the calorimeter or the calorimeter’s surroundings. Under these ideal circumstances, the net heat
change is zero:

This relationship can be rearranged to show that the heat gained by substance M is equal to the heat lost by substance W:

The magnitude of the heat (change) is therefore the same for both substances, and the negative sign merely shows that 
and  are opposite in direction of heat flow (gain or loss) but does not indicate the arithmetic sign of either q value (that
is determined by whether the matter in question gains or loses heat, per definition). In the specific situation described, 
is a negative value and q  is positive, since heat is transferred from M to W.

12.3.3

−6 

12.3.3

+ = 0q substance M q substance W (12.3.8)

= −q substance M q substance W (12.3.9)

qsubstance M

qsubstance W

qsubstanceM

substance W
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Figure : In a simple calorimetry process, (a) heat, , is transferred from the hot metal, , to the cool water, , until (b) both
are at the same temperature.

A 360-g piece of rebar (a steel rod used for reinforcing concrete) is dropped into 425 mL of water at 24.0 °C. The final
temperature of the water was measured as 42.7 °C. Calculate the initial temperature of the piece of rebar. Assume the specific
heat of steel is approximately the same as that for iron (Table T4), and that all heat transfer occurs between the rebar and the
water (there is no heat exchange with the surroundings).

Solution

The temperature of the water increases from 24.0 °C to 42.7 °C, so the water absorbs heat. That heat came from the piece of
rebar, which initially was at a higher temperature. Assuming that all heat transfer was between the rebar and the water, with no
heat “lost” to the surroundings, then heat given off by rebar = −heat taken in by water, or:

Since we know how heat is related to other measurable quantities, we have:

Letting f = final and i = initial, in expanded form, this becomes:

The density of water is 1.0 g/mL, so 425 mL of water = 425 g. Noting that the final temperature of both the rebar and water is 42.7
°C, substituting known values yields:

Solving this gives = 248 °C, so the initial temperature of the rebar was 248 °C.

A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9
°C. Calculate the initial temperature of the piece of copper. Assume that all heat transfer occurs between the copper and the
water.

Answer

The initial temperature of the copper was 335.6 °C.

12.3.4 q M W

 Example : Heat between Substances at Different Temperatures12.3.5

= −qrebar qwater

(c×m×ΔT = −(c×m×ΔT)rebar )water

× ×( − ) = − × ×( − )crebar mrebar Tf,rebar Ti,rebar cwater mwater Tf,water Ti,water

(0.449 J/g °C)(360g)(42.7°C − ) = −(4.184 J/g °C)(425 g)(42.7°C −24.0°C)Ti,rebar

= +42.7°CTi,rebar
(4.184 J/g °C)(425 g)(42.7°C −24.0°C)

(0.449 J/g °C)(360 g)

Ti,rebar

 Exercise 12.3.5A
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A 248-g piece of copper initially at 314 °C is dropped into 390 mL of water initially at 22.6 °C. Assuming that all heat transfer
occurs between the copper and the water, calculate the final temperature.

Answer

The final temperature (reached by both copper and water) is 38.8 °C.

This method can also be used to determine other quantities, such as the specific heat of an unknown metal.

A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at
22.0 °C. The final temperature is 28.5 °C. Use these data to determine the specific heat of the metal. Use this result to identify
the metal.

Solution
Assuming perfect heat transfer, heat given off by metal = −heat taken in by water, or:

In expanded form, this is:

Noting that since the metal was submerged in boiling water, its initial temperature was 100.0 °C; and that for water, 60.0 mL = 60.0
g; we have:

Solving this:

Comparing this with values in Table T4, our experimental specific heat is closest to the value for copper (0.39 J/g °C), so we
identify the metal as copper.

A 92.9-g piece of a silver/gray metal is heated to 178.0 °C, and then quickly transferred into 75.0 mL of water initially at 24.0
°C. After 5 minutes, both the metal and the water have reached the same temperature: 29.7 °C. Determine the specific heat and
the identity of the metal. (Note: You should find that the specific heat is close to that of two different metals. Explain how you
can confidently determine the identity of the metal).

Answer

This specific heat is close to that of either gold or lead. It would be difficult to determine which metal this was based solely
on the numerical values. However, the observation that the metal is silver/gray in addition to the value for the specific heat
indicates that the metal is lead.

When we use calorimetry to determine the heat involved in a chemical reaction, the same principles we have been discussing apply.
The amount of heat absorbed by the calorimeter is often small enough that we can neglect it (though not for highly accurate
measurements, as discussed later), and the calorimeter minimizes energy exchange with the surroundings. Because energy is
neither created nor destroyed during a chemical reaction, there is no overall energy change during the reaction. The heat produced

 Exercise 12.3.5B

 Example : Identifying a Metal by Measuring Specific Heat12.3.6

= −qmetal qwater

× ×( − ) = − × ×( − )cmetal mmetal Tf,metal Ti,metal cwater mwater Tf,water Ti,water

( )(59.7 g)(28.5°C −100.0°C) = −(4.18 J/g °C)(60.0 g)(28.5°C −22.0°C)cmetal

= = 0.38 J/g °Ccmetal
−(4.184 J/g °C)(60.0 g)(6.5°C)

(59.7 g)(−71.5°C)

 Exercise 12.3.6

= 0.13 J/g °Ccmetal
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or consumed in the reaction (the “system”), q , plus the heat absorbed or lost by the solution (the “surroundings”), q ,
must add up to zero:

This means that the amount of heat produced or consumed in the reaction equals the amount of heat absorbed or lost by the
solution:

This concept lies at the heart of all calorimetry problems and calculations. Because the heat released or absorbed at constant
pressure is equal to ΔH, the relationship between heat and ΔH  is

The use of a constant-pressure calorimeter is illustrated in Example .

When 5.03 g of solid potassium hydroxide are dissolved in 100.0 mL of distilled water in a coffee-cup calorimeter, the
temperature of the liquid increases from 23.0°C to 34.7°C. The density of water in this temperature range averages 0.9969
g/cm . What is  (in kilojoules per mole)? Assume that the calorimeter absorbs a negligible amount of heat and, because
of the large volume of water, the specific heat of the solution is the same as the specific heat of pure water.

Given: mass of substance, volume of solvent, and initial and final temperatures

Asked for: ΔH

Strategy:

A. Calculate the mass of the solution from its volume and density and calculate the temperature change of the solution.
B. Find the heat flow that accompanies the dissolution reaction by substituting the appropriate values into Equation .
C. Use the molar mass of  to calculate ΔH .

Solution:

A To calculate ΔH , we must first determine the amount of heat released in the calorimetry experiment. The mass of the
solution is

The temperature change is (34.7°C − 23.0°C) = +11.7°C.

B Because the solution is not very concentrated (approximately 0.9 M), we assume that the specific heat of the solution is the
same as that of water. The heat flow that accompanies dissolution is thus

The temperature of the solution increased because heat was absorbed by the solution (q > 0). Where did this heat come from? It
was released by KOH dissolving in water. From Equation , we see that

This experiment tells us that dissolving 5.03 g of  in water is accompanied by the release of 5.13 kJ of energy. Because
the temperature of the solution increased, the dissolution of KOH in water must be exothermic.

C The last step is to use the molar mass of  to calculate  - the heat associated when dissolving 1 mol of :

reaction solution

+ = 0 qreaction qsolution (12.3.10)

= −qreaction qsolution (12.3.11)

rxn

Δ = = − = −m ΔTHrxn qrxn qcalorimater cs (12.3.12)

12.3.7

 Example : Heat of Solution12.3.7

3 ΔHsoln

soln

12.3.1

KOH soln

soln

(100.0 O)(0.9969 g/ )+5.03 g KOH = 104.72 gmL H2 mL

qcalorimater = m ΔTcs

= (104.72 ) (11.7 )g
⎛

⎝

4.184 J

⋅g Co

⎞

⎠
Co

= 5130 J

= 5.13 kJ

12.3.1

Δ = − = −5.13 kJHrxn qcalorimeter

KOH

KOH ΔHsoln KOH
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A coffee-cup calorimeter contains 50.0 mL of distilled water at 22.7°C. Solid ammonium bromide (3.14 g) is added and the
solution is stirred, giving a final temperature of 20.3°C. Using the same assumptions as in Example , find  for
NH Br (in kilojoules per mole).

Answer

16.6 kJ/mol

Constant-Volume Calorimetry 

Constant-pressure calorimeters are not very well suited for studying reactions in which one or more of the reactants is a gas, such
as a combustion reaction. The enthalpy changes that accompany combustion reactions are therefore measured using a constant-
volume calorimeter, such as the bomb calorimeter (A device used to measure energy changes in chemical processes. shown
schematically in Figure ). The reactant is placed in a steel cup inside a steel vessel with a fixed volume (the “bomb”). The
bomb is then sealed, filled with excess oxygen gas, and placed inside an insulated container that holds a known amount of water.
Because combustion reactions are exothermic, the temperature of the bath and the calorimeter increases during combustion. If the
heat capacity of the bomb and the mass of water are known, the heat released can be calculated.

Figure : A Bomb Calorimeter. After the temperature of the water in the insulated container has reached a constant value, the
combustion reaction is initiated by passing an electric current through a wire embedded in the sample. Because this calorimeter
operates at constant volume, the heat released is not precisely the same as the enthalpy change for the reaction. (CC BY-SA-NC;
anonymous)

Because the volume of the system (the inside of the bomb) is fixed, the combustion reaction occurs under conditions in which the
volume, but not the pressure, is constant. The heat released by a reaction carried out at constant volume is identical to the change in
internal energy ( ) rather than the enthalpy change (ΔH); ΔU is related to ΔH by an expression that depends on the change in
the number of moles of gas during the reaction. The difference between the heat flow measured at constant volume and the
enthalpy change is usually quite small, however (on the order of a few percent). Assuming that , the relationship
between the measured temperature change and ΔH  is given in Equation , where C  is the total heat capacity of the
steel bomb and the water surrounding it

ΔHsoln =( )( )
5.13 kJ

5.03 g

56.11 g

1 mol

= −57.2 kJ/mol

 Exercise : Heat of Dissolving12.3.7

12.3.7 ΔHsoln

4

12.3.4

12.3.4

ΔU

ΔU < ΔH

comb 12.3.13 bomb

Δ < = = ΔTHcomb qcomb qcalorimater Cbomb (12.3.13)
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To measure the heat capacity of the calorimeter, we first burn a carefully weighed mass of a standard compound whose enthalpy of
combustion is accurately known. Benzoic acid (C H CO H) is often used for this purpose because it is a crystalline solid that can
be obtained in high purity. The combustion of benzoic acid in a bomb calorimeter releases 26.38 kJ of heat per gram (i.e., its
ΔH  = −26.38 kJ/g). This value and the measured increase in temperature of the calorimeter can be used to determine C .
The use of a bomb calorimeter to measure the ΔH  of a substance is illustrated in Example .

Video : Video of view how a bomb calorimeter is prepared for action.

The combustion of 0.579 g of benzoic acid in a bomb calorimeter caused a 2.08°C increase in the temperature of the
calorimeter. The chamber was then emptied and recharged with 1.732 g of glucose and excess oxygen. Ignition of the glucose
resulted in a temperature increase of 3.64°C. What is the ΔH  of glucose?

Given: mass and ΔT for combustion of standard and sample

Asked for: ΔH  of glucose

Strategy:

A. Calculate the value of q  for benzoic acid by multiplying the mass of benzoic acid by its ΔH . Then use Equation 
 to determine the heat capacity of the calorimeter (C ) from q  and ΔT.

B. Calculate the amount of heat released during the combustion of glucose by multiplying the heat capacity of the bomb by the
temperature change. Determine the ΔH  of glucose by multiplying the amount of heat released per gram by the molar
mass of glucose.

Solution:

The first step is to use Equation  and the information obtained from the combustion of benzoic acid to calculate C .
We are given ΔT, and we can calculate  from the mass of benzoic acid:

From Equation ,

6 5 2

comb bomb

comb 12.3.8
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12.3.1

 Example : Combustion of Glucose12.3.8

comb

comb

rxn comb
12.3.1 bomb comb

comb

12.3.1 bomb
qcomb

= (0.579 )(−26.38 kJ/ ) = −15.3 kJqcomb g g
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B According to the strategy, we can now use the heat capacity of the bomb to calculate the amount of heat released during the
combustion of glucose:

Because the combustion of 1.732 g of glucose released 26.7 kJ of energy, the ΔH  of glucose is

This result is in good agreement (< 1% error) with the value of  that calculated using enthalpies of
formation.

When 2.123 g of benzoic acid is ignited in a bomb calorimeter, a temperature increase of 4.75°C is observed. When 1.932 g of
methylhydrazine (CH NHNH ) is ignited in the same calorimeter, the temperature increase is 4.64°C. Calculate the ΔH  of
methylhydrazine, the fuel used in the maneuvering jets of the US space shuttle.

Answer

−1.30 × 10  kJ/mol

Summary 

Calorimetry measures enthalpy changes during chemical processes, where the magnitude of the temperature change depends on the
amount of heat released or absorbed and on the heat capacity of the system. Calorimetry is the set of techniques used to measure
enthalpy changes during chemical processes. It uses devices called calorimeters, which measure the change in temperature when a
chemical reaction is carried out. The magnitude of the temperature change depends on the amount of heat released or absorbed and
on the heat capacity of the system. The heat capacity (C) of an object is the amount of energy needed to raise its temperature by
1°C; its units are joules per degree Celsius. The specific heat ( ) of a substance is the amount of energy needed to raise the
temperature of 1 g of the substance by 1°C, and the molar heat capacity ( ) is the amount of energy needed to raise the
temperature of 1 mol of a substance by 1°C. Liquid water has one of the highest specific heats known. Heat flow measurements can
be made with either a constant-pressure calorimeter, which gives  values directly, or a bomb calorimeter, which operates at
constant volume and is particularly useful for measuring enthalpies of combustion.

Thermal energy itself cannot be measured easily, but the temperature change caused by the flow of thermal energy between objects
or substances can be measured. Calorimetry describes a set of techniques employed to measure enthalpy changes in chemical
processes using devices called calorimeters. To have any meaning, the quantity that is actually measured in a calorimetric
experiment, the change in the temperature of the device, must be related to the heat evolved or consumed in a chemical reaction.
We begin this section by explaining how the flow of thermal energy affects the temperature of an object.
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− = = = −7.34 kJ CCbomb

qcomb

ΔT

−15.3 kJ

2.08 Co
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= − ΔT = (−7.34 kJ C) (3.64 C) = −26.7 kJqcomb Cbomb /o o

comb

Δ =( )( ) = −2780 kJ/mol = 2.78 × kJ/molHcomb

−26.7 kJ
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mol
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under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/85abf193-
2bd...a7ac8df6@9.110).
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