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8.5: Crystal Field Theory: Optical and Magnetic Properties

&b Learning Objectives

o To understand how crystal field theory explains the electronic structures and colors of metal complexes.

One of the most striking characteristics of transition-metal complexes is the wide range of colors they exhibit. In this section, we
describe crystal field theory (CFT), a bonding model that explains many important properties of transition-metal complexes,

interactions are purely electrostatic in nature. Even though this assumption is clearly not valid for many complexes, such as those
that contain neutral ligands like CO, CFT enables chemists to explain many of the properties of transition-metal complexes with a
reasonable degree of accuracy. The Learning Objective of this Module is to understand how crystal field theory explains the
electronic structures and colors of metal complexes.

d-Orbital Splittings

CFT focuses on the interaction of the five (n — 1)d orbitals with ligands arranged in a regular array around a transition-metal ion.
We will focus on the application of CFT to octahedral complexes, which are by far the most common and the easiest to visualize.
Other common structures, such as square planar complexes, can be treated as a distortion of the octahedral model. According to
CFT, an octahedral metal complex forms because of the electrostatic interaction of a positively charged metal ion with six
negatively charged ligands or with the negative ends of dipoles associated with the six ligands. In addition, the ligands interact with
) model, the
s between the

one other electrostatically. As you learned in our discussion of the valence-shell electron-pair repulsion (V.

lowest-energy arrangement of six identical negative charges is an octahedron, which minimizes repulsive intera
ligands.

We begin by considering how the energies of the d orbitals of a transition-metal ion are affected by an octahedral arrangement of
six negative charges. Recall that the five d orbitals are initially degenerate (have the same energy). If we distribute six negative
charges uniformly over the surface of a sphere, the d orbitals remain degenerate, but their energy will be higher due to repulsive
electrostatic interactions between the spherical shell of negative charge and electrons in the d orbitals (Figure 8.5.1a). Placing the
six negative charges at the vertices of an octahedron does not change the average energy of the d orbitals, but it does remove their
degeneracy: the five d orbitals split into two groups whose energies depend on their orientations. As shown in Figure 8.5.15 the d,2
and dy2-y2 orbitals point directly at the six negative charges located on the x, y, and z axes. Consequently, the energy of an electron
in these two orbitals (collectively labeled the ey orbitals) will be greater than it will be for a spherical distribution of negative
charge because of increased electrostatic repulsions. In contrast, the other three d orbitals (dxy, dx,, and dy,, collectively called the
tog orbitals) are all oriented at a 45° angle to the coordinate axes, so they point between the six negative charges. The energy of an
electron in any of these three orbitals is lower than the energy for a spherical distribution of negative charge.
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Figure 8.5.1: An Octahedral Arrangement of Six Negative Charges around a Metal Ion Causes the Five d Orbitals to Split into Two

Sets with Different Energies. (a) Distributing a charge of —6 uniformly over a spherical surface surrounding a metal ion causes the

energy of all five d orbitals to increase due to electrostatic repulsions, but the five d orbitals remain degenerate. Placing a charge of

—1 at each vertex of an octahedron causes the d orbitals to split into two groups with different energies: the dy2-y2 and d,2 orbitals

increase in energy, while the, dyy, dx;, and dy, orbitals decrease in energy. The average energy of the five d orbitals is the same as

for a spherical distribution of a -6 charge, however. Attractive electrostatic interactions between the negatively charged ligands and

the positively charged metal ion (far right) cause all five d orbitals to decrease in energy but does not affect the splittings of the

orbitals. (b) The two e, orbitals (left) point directly at the six negatively charged ligands, which increases their energy compared

with a spherical distribution of negative charge. In contrast, the three tp; orbitals (right) point between the negatively charged

ligands, which decreases their energy compared with a spherical distribution of charge.
The difference in energy between the two sets of d orbitals is called the crystal field splitting energy (A,), where the subscript o
stands for octahedral. As we shall see, the magnitude of the splitting depends on the charge on the metal ion, the position of the
metal in the periodic table, and the nature of the ligands. (Crystal field splitting energy also applies to tetrahedral complexes: A,.) It
is important to note that the splitting of the d orbitals in a crystal field does not change the total energy of the five d orbitals: the
two e, orbitals increase in energy by 0.6A,, whereas the three t,, orbitals decrease in energy by 0.4A,. Thus the total change in
energy is

2(0.6A,) +3(—0.44A,) =0.

I Crystal field splitting does not change the total energy of the d orbitals.

Thus far, we have considered only the effect of repulsive electrostatic interactions between electrons in the d orbitals and the six
negatively charged ligands, which increases the total energy of the system and splits the d orbitals. Interactions between the
positively charged metal ion and the ligands results in a net stabilization of the system, which decreases the energy of all five d
orbitals without affecting their splitting (as shown at the far right in Figure 8.5.1a).

Electronic Structures of Metal Complexes

We can use the d-orbital energy-level diagram in Figure 8.5.1 to predict electronic structures and some of the properties of
transition-metal complexes. We start with the Ti3* ion, which contains a single d electron, and proceed across the first row of the
transition metals by adding a single electron at a time. We place additional electrons in the lowest-energy orbital available, while
keeping their spins parallel as required by Hund’s rule. As shown in Figure 24.6.2, for d'-d3 systems—such as [Ti(H,0)¢]*",
[V(H,0)c]**, and [Cr(H,0)6]3*, respectively—the electrons successively occupy the three degenerate tog orbitals with their spins

https://chem.libretexts.org/@go/page/41575


https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/41575?pdf

@%UMékmy

parallel, giving one, two, and three unpaired electrons, respectively. We can summarize this for the complex [Cr(H,0)g]>", for
example, by saying that the chromium ion has a d> electron configuration or, more succinctly, Cr>* is a d* ion.

Ti3+ Ti2+’ V3+ V2+, cr3+ cr2+' Mn3+ Mn2+, FeS+ Fe2+’ C°3+ c°2+ Ni2+
d’ dZ d3 d4 ds d6 d7 d8 d9 d10
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Figure 8.5.2: The Possible Electron Configurations for Octahedral d" Transition-Metal Complexes (n = 1-10). Two different

configurations are possible for octahedral complexes of metals with d*, d°, d5, and d’ configurations; the magnitude of A,

determines which configuration is observed.
When we reach the d* configuration, there are two possible choices for the fourth electron: it can occupy either one of the empty eg
orbitals or one of the singly occupied ty; orbitals. Recall that placing an electron in an already occupied orbital results in
electrostatic repulsions that increase the energy of the system; this increase in energy is called the spin-pairing energy (P). If A, is
less than P, then the lowest-energy arrangement has the fourth electron in one of the empty e, orbitals. Because this arrangement
results in four unpaired electrons, it is called a high-spin configuration, and a complex with this electron configuration, such as the
[Cr(H,0)6]*" ion, is called a high-spin complex. Conversely, if A, is greater than P, then the lowest-energy arrangement has the
fourth electron in one of the occupied tp4 orbitals. Because this arrangement results in only two unpaired electrons, it is called a
low-spin configuration, and a complex with this electron configuration, such as the [Mn(CN)g]>~ ion, is called a low-spin complex.
Similarly, metal ions with the d°, d®, or d’ electron configurations can be either high spin or low spin, depending on the magnitude
of A,.

In contrast, only one arrangement of d electrons is possible for metal ions with d®-d!° electron configurations. For example, the
[Ni(H,0)g]%* ion is d® with two unpaired electrons, the [Cu(H,0)g]?* ion is d® with one unpaired electron, and the [Zn(H,0)g]**
ion is d10 with no unpaired electrons.

If A, is less than the spin-pairing energy, a high-spin configuration results. Conversely, if
A, is greater, a low-spin configuration forms.

Factors That Affect the Magnitude of A,

The magnitude of A, dictates whether a complex with four, five, six, or seven d electrons is high spin or low spin, which affects its
magnetic properties, structure, and reactivity. Large values of A, (i.e., A, > P) yield a low-spin complex, whereas small values of
A, (i-e., A, < P) produce a high-spin complex. As we noted, the magnitude of A, depends on three factors: the charge on the metal
ion, the principal quantum number of the metal (and thus its location in the periodic table), and the nature of the ligand. Values of
A, for some representative transition-metal complexes are given in Table 8.5.1.

Table 8.5.1: Crystal Field Splitting Energies for Some Octahedral (Ao)* and Tetrahedral (A) Transition-Metal Complexes

Octahedral Octahedral Tetrahedral

Complexes By (em”™y Complexes By (em”™y Complexes ()
[Ti(H,0)6]>" 20,300 [Fe(CN)g]* 32,800 VCly 9010
[V(H20)6]*" 12,600 [Fe(CN)g]* 35,000 [CoClL,* 3300
[V(H20)6]*" 18,900 [CoFgl*™ 13,000 [CoBrg]*” 2900
[CrClg]* 13,000 [Co(H20)6]** 9300 [Col4)* 2700

*Energies obtained by spectroscopic measurements are often given in units of wave numbers (cm™); the wave number is the reciprocal
of the wavelength of the corresponding electromagnetic radiation expressed in centimeters: 1 cm™! = 11.96 J/mol.
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Octahedral Octahedral Tetrahedral

Complexes By (em™) Complexes By (em™) Complexes ()
[Cr(H,0)g]** 13,900 [Co(H,0)6]>" 27,000
[Cr(H,0)g]*" 17,400 [Co(NH3)g]>" 22,900
[Cr(NH3)g]®" 21,500 [Co(CN)g]*~ 34,800
[Cr(CN)g]* 26,600 [Ni(H,0)]% 8500
Cr(CO)g 34,150 [Ni(NH3)g]?* 10,800
[MnClg]* 7500 [RhClg]*™ 20,400
[Mn(H,0)g]** 8500 [Rh(H,0)g]** 27,000
[MnClg]>~ 20,000 [Rh(NH3)g]>* 34,000
[Mn(H,0)g]>* 21,000 [Rh(CN)g]*~ 45,500
[Fe(H,0)q]* 10,400 [IrClg]>” 25,000
[Fe(H,0)q]%" 14,300 [Ir(NH3)e]* 41,000

*Energies obtained by spectroscopic measurements are often given in units of wave numbers (cm™'); the wave number is the reciprocal
of the wavelength of the corresponding electromagnetic radiation expressed in centimeters: 1 cm™! = 11.96 J/mol.

Source of data: Duward F. Shriver, Peter W. Atkins, and Cooper H. Langford, Inorganic Chemistry, 2nd ed. (New York: W. H.
Freeman and Company, 1994).

Charge on the Metal lon

Increasing the charge on a metal ion has two effects: the radius of the metal ion decreases, and negatively charged ligands are more
strongly attracted to it. Both factors decrease the metal-ligand distance, which in turn causes the negatively charged ligands to
interact more strongly with the d orbitals. Consequently, the magnitude of A, increases as the charge on the metal ion increases.
Typically, A, for a tripositive ion is about 50% greater than for the dipositive ion of the same metal; for example, for [V(H20)6]2+,
Ao = 11,800 cm™%; for [V(H,0)6]3*, Ao = 17,850 cm ™.

Principal Quantum Number of the Metal

For a series of complexes of metals from the same group in the periodic table with the same charge and the same ligands, the
magnitude of A, increases with increasing principal quantum number: A, (3d) < Ay (4d) < A, (5d). The data for hexaammine
complexes of the trivalent group 9 metals illustrate this point:

[Co(NH3)s]*: A, = 22,900 cm ™!
[Rh(NH3)¢]3": A, = 34,100 cm™!
[Ir(NH3)g]**: A, = 40,000 cm ™!
The increase in A, with increasing principal quantum number is due to the larger radius of valence orbitals down a column. In

addition, repulsive ligand-ligand interactions are most important for smaller metal ions. Relatively speaking, this results in shorter
M-L distances and stronger d orbital-ligand interactions.

The Nature of the Ligands

Experimentally, it is found that the A, observed for a series of complexes of the same metal ion depends strongly on the nature of
the ligands. For a series of chemically similar ligands, the magnitude of A, decreases as the size of the donor atom increases. For
example, A, values for halide complexes generally decrease in the order F~ > CI” > Br~ > I- because smaller, more localized
charges, such as we see for F~, interact more strongly with the d orbitals of the metal ion. In addition, a small neutral ligand with a
highly localized lone pair, such as NHs, results in significantly larger A, values than might be expected. Because the lone pair

points directly at the metal ion, the electron density along the M-L axis is greater than for a spherical anion such as F~. The
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experimentally observed order of the crystal field splitting energies produced by different ligands is called the spectrochemical
series, shown here in order of decreasing Ay:

CO~CN~ >NO, >en>NH;3 >SCN~ >H,0 > oxalate’~ > OH~ >F > acetate” > Cl~ >Br~ > 1~

strong-field ligands intermediate-field ligands weak-field ligands
The values of A, listed in Table 8.5.1 illustrate the effects of the charge on the metal ion, the principal quantum number of the
metal, and the nature of the ligand.

The largest A, splittings are found in complexes of metal ions from the third row of the
transition metals with charges of at least +3 and ligands with localized lone pairs of
electrons.

Colors of Transition-Metal Complexes

The striking colors exhibited by transition-metal complexes are caused by excitation of an electron from a lower-energy d orbital to
a higher-energy d orbital, which is called a d—d transition (Figure 24.6.3). For a photon to effect such a transition, its energy must
be equal to the difference in energy between the two d orbitals, which depends on the magnitude of A,.

Figure 8.5.3: A d-d Transition. In a d—d transition, an electron in one of the tp, orbitals of an octahedral complex such as the

[Cr(H,0)g]>" ion absorbs a photon of light with energy equal to Ao, which causes the electron to move to an empty or singly

occupied eg orbital.
Recall that the color we observe when we look at an object or a compound is due to light that is transmitted or reflected, not light
that is absorbed, and that reflected or transmitted light is complementary in color to the light that is absorbed. Thus a green
compound absorbs light in the red portion of the visible spectrum and vice versa, as indicated by the color wheel. Because the
energy of a photon of light is inversely proportional to its wavelength, the color of a complex depends on the magnitude of A,,
which depends on the structure of the complex. For example, the complex [Cr(NHz3)g]>" has strong-field ligands and a relatively
large A,. Consequently, it absorbs relatively high-energy photons, corresponding to blue-violet light, which gives it a yellow color.
A related complex with weak-field ligands, the [Cr(H,0)g]>* ion, absorbs lower-energy photons corresponding to the yellow-green
portion of the visible spectrum, giving it a deep violet color.

We can now understand why emeralds and rubies have such different colors, even though both contain Cr3* in an octahedral
environment provided by six oxide ions. Although the chemical identity of the six ligands is the same in both cases, the Cr-O
distances are different because the compositions of the host lattices are different (Al,O5 in rubies and Be;Al,SigO;4 in emeralds).
In ruby, the Cr—O distances are relatively short because of the constraints of the host lattice, which increases the d orbital-ligand
interactions and makes A, relatively large. Consequently, rubies absorb green light and the transmitted or reflected light is red,
which gives the gem its characteristic color. In emerald, the Cr—O distances are longer due to relatively large [SigO4]'%" silicate
rings; this results in decreased d orbital-ligand interactions and a smaller A,. Consequently, emeralds absorb light of a longer
wavelength (red), which gives the gem its characteristic green color. It is clear that the environment of the transition-metal ion,
which is determined by the host lattice, dramatically affects the spectroscopic properties of a metal ion.

Gem-quality crystals of ruby and emerald. The colors of both minerals are due to the presence of small amounts of Cr3* impurities
in octahedral sites in an otherwise colorless metal oxide lattice.

Crystal Field Stabilization Energies

Recall that stable molecules contain more electrons in the lower-energy (bonding) molecular orbitals in a molecular orbital diagram
than in the higher-energy (antibonding) molecular orbitals. If the lower-energy set of d orbitals (the tp, orbitals) is selectively
populated by electrons, then the stability of the complex increases. For example, the single d electron in a d! complex such as
[Ti(H,0)]>* is located in one of the tyg orbitals. Consequently, this complex will be more stable than expected on purely
electrostatic grounds by 0.4A,. The additional stabilization of a metal complex by selective population of the lower-energy d
orbitals is called its crystal field stabilization energy (CFSE). The CFSE of a complex can be calculated by multiplying the number
of electrons in tyg orbitals by the energy of those orbitals (-0.4A,), multiplying the number of electrons in ey orbitals by the energy
of those orbitals (+0.6A,), and summing the two. Table 8.5.2 gives CFSE values for octahedral complexes with different d electron
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configurations. The CFSE is highest for low-spin d® complexes, which accounts in part for the extraordinarily large number of
Co(IIT) complexes known. The other low-spin configurations also have high CFSEs, as does the d® configuration.

Table 8.5.2: CFSEs for Octahedral Complexes with Different Electron Configurations (in Units of Ao)

High Spin CFSE (A,) Low Spin CFSE (A,)
d® 0
d! 1 0.4
d? 11 0.8
d?3 111 1.2
d* 111 1 0.6 1111 1.6
d?® 111 11 0.0 10111 2.0
d® 1111 11 0.4 1111011 2.4
d’ 111101 11 0.8 1111011 1 1.8
d® 1111011 11 1.2
d?® 101111 111 0.6
dn 111111 17111 0.0

CFSEs are important for two reasons. First, the existence of CFSE nicely accounts for the difference between experimentally
measured values for bond energies in metal complexes and values calculated based solely on electrostatic interactions. Second,
CFSEs represent relatively large amounts of energy (up to several hundred kilojoules per mole), which has important chemical
consequences.

Octahedral d® and d® complexes and low-spin d°, d°, d’, and d* complexes exhibit large
CFSEs.

v/ Example 8.5.1

For each complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present.

a. [CoFg]®
b. [Rh(CO),Cl,]~

Given: complexes

Asked for: structure, high spin versus low spin, and the number of unpaired electrons

Strategy:
a. From the number of ligands, determine the coordination number of the compound.

b. Classify the ligands as either strong field or weak field and determine the electron configuration of the metal ion.
c. Predict the relative magnitude of A, and decide whether the compound is high spin or low spin.
d. Place the appropriate number of electrons in the d orbitals and determine the number of unpaired electrons.

Solution
a. A With six ligands, we expect this complex to be octahedral.

B The fluoride ion is a small anion with a concentrated negative charge, but compared with ligands with localized lone
pairs of electrons, it is weak field. The charge on the metal ion is +3, giving a d® electron configuration.

C Because of the weak-field ligands, we expect a relatively small A, making the compound high spin.

D In a high-spin octahedral d® complex, the first five electrons are placed individually in each of the d orbitals with their
spins parallel, and the sixth electron is paired in one of the t, orbitals, giving four unpaired electrons.
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b. A This complex has four ligands, so it is either square planar or tetrahedral.

B C Because rhodium is a second-row transition metal ion with a d® electron configuration and CO is a strong-field
ligand, the complex is likely to be square planar with a large A,, making it low spin. Because the strongest d-orbital
interactions are along the x and y axes, the orbital energies increase in the order d,>d,, and d,, (these are degenerate); d,y;
and d,2_2.

D The eight electrons occupy the first four of these orbitals, leaving the dx2-y2. orbital empty. Thus there are no unpaired
electrons.

? Exercise 8.5.1

For each complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present.

d. [Mn(H20)6]2+
b. [PtCl,]*~

Answers
a. octahedral; high spin; five
b. square planar; low spin; no unpaired electrons

Summary

Crystal field theory, which assumes that metal-ligand interactions are only electrostatic in nature, explains many important
properties of transition-metal complexes, including their colors, magnetism, structures, stability, and reactivity. Crystal field theory
(CFT) is a bonding model that explains many properties of transition metals that cannot be explained using valence bond theory. In
CFT, complex formation is assumed to be due to electrostatic interactions between a central metal ion and a set of negatively
charged ligands or ligand dipoles arranged around the metal ion. Depending on the arrangement of the ligands, the d orbitals split
into sets of orbitals with different energies. The difference between the energy levels in an octahedral complex is called the crystal
field splitting energy (A,), whose magnitude depends on the charge on the metal ion, the position of the metal in the periodic table,
and the nature of the ligands. The spin-pairing energy (P) is the increase in energy that occurs when an electron is added to an
already occupied orbital. A high-spin configuration occurs when the A, is less than P, which produces complexes with the
maximum number of unpaired electrons possible. Conversely, a low-spin configuration occurs when the A, is greater than P, which
produces complexes with the minimum number of unpaired electrons possible. Strong-field ligands interact strongly with the d
orbitals of the metal ions and give a large A, whereas weak-field ligands interact more weakly and give a smaller A,. The colors of
transition-metal complexes depend on the environment of the metal ion and can be explained by CFT.

8.5: Crystal Field Theory: Optical and Magnetic Properties is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by LibreTexts.
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