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Preface
This text has grown out of several years of teaching this material at several different colleges. The feedback I have received from
my students has been incredibly. I have tried to choose example that seemed to work particularly well in aiding students to gain an
understanding of the material while grounding complex concepts in more familiar experiences and intuitions.

In writing this text, I have tried to maintain a connection to measurable phenomena when discussing the otherwise abstract
quantum mechanical models. In particular, I have attempted to follow the development of each model with specific spectroscopic
examples which utilize the basic models as foundations to understand the behavior of real chemical systems. My experience is that
the methodology works better than simply talking about quantum mechanics first, and then following with a discussion of
spectroscopy, as though the two topics are not related.

Also toward that end, I have included a great deal of the applications of group theory into the text. While group theory is often the
bailiwick of inorganic chemistry, I find that it is also very useful in the descriptions of molecular vibrations, molecular orbitals,
selection rules, and other topics that are typically discussed in a course in physical chemistry.

It is my sincere hope that by feathering these two topics into the discussion of quantum chemistry that students will not simply get
bogged down in the minutia of complex equations and math, but rather have the chance to see the “big picture.”

And, as always, I wish all students who study physical chemistry all of the best in their endeavors. May the expectation value of
your experience be satisfaction! 
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CHAPTER OVERVIEW

1: Foundations and Review
The study of any discipline requires some grounding in fundamentals. Without this common experience, there is little hope of
communicating any complex concepts. For example, in order to make use of a textbook, one must be comfortable with reading. In
a mathematically intensive discipline such as physical chemistry, ones comfort level must extend to following discussions that
incorporate mathematics and mathematical equations and relationships. As an example, consider the proof of conservation of
energy as a means to frame a discussion of this concept.

1.1: Some Newtonian Physics
1.2: Some Vectors and Dot Products
1.3: Classical Description of a Wave on a String
1.4: Failures of Classical Physics
1.5: On Superposition and the Weirdness of Quantum Mechanics
1.6: References
1.7: Vocabulary and Concepts
1.8: Problems
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1.1: Some Newtonian Physics
Consider the definition of acceleration (a) as the first time-derivative of velocity (v) and the second time-derivative of position
(x).

Newton’s second law states that force (F) is the product of mass (m) and acceleration.

Since momentum (p) is related to velocity and mass thought the definition

(and mass is invariant to time) the following must hold.

Now consider potential energy (U) – which is also related to force through the first derivative with respect to position.

This indicates that the following equation must hold for any particle that can be described by Newtonian motion.

The classical Hamiltonian (H) is the sum of kinetic energy (T) and potential energy (U). And as it turns out, the kinetic energy
can be expressed in terms of momentum.

So the Hamiltonian function, which gives the sum of the kinetic and potential energies is given by

The time-rate-of-change of the total energy can be found from the first derivative of H with respect to t.

And since

it follows that

a = =
dv

dt

xd2

dt2

F = ma

= m
dv

dt

= m
xd2

dt2

p = mv

= m = ma = F
dp

dt

d (mv)

dt

dv

dt

F = −
dU

dx

− =
dU

dx

dp

dt

T = =
mv2

2

p2

2m

H = +U
p2

2m

H
d

dt
= ( +U)

d

dt

p2

2m

= ⋅ 2p ⋅ +
1

2m

dp

dt

dU

dt

= ⋅ +
2mv

2m

dp

dt

dU

dx

dx

dt

= ( + )
dx

dt

dp

dt

dU

dx

− =
dU

dx

dp

dt

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/419494?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.01%3A_Some_Newtonian_Physics


1.1.2 https://chem.libretexts.org/@go/page/419494

This indicates that the total energy of a system that follows Newtonian physics does not change in time. Another way to state this is
that energy is conserved, or that total energy is a “constant of the motion”. This is also a mathematical proof that the sum of
potential and kinetic energy must be conserved in all processes, since this sum cannot change in time.

Many discussions in this text will rely on derivations such as above in order to make specific points about the nature of matter.
Keep in mind that the important points are the conclusions as well as the pathway to relating the conclusions to the initial
parameters of the problem. The more you can focus on these aspects, rather than getting bogged down in the specifics of the math,
the more sense quantum mechanics will make to you.

This page titled 1.1: Some Newtonian Physics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.

H
d

dt
= (− + )

dx

dt

dU

dx

dU

dx

= (0)
dx

dt

= 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/419494?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.01%3A_Some_Newtonian_Physics
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


1.2.1 https://chem.libretexts.org/@go/page/420466

1.2: Some Vectors and Dot Products
The concepts of linear combinations and orthogonality show up repeatedly in quantum chemistry. But these are generally not
new concepts to students at this level, as the same concepts are used to describe forces and motions in a standard physics course in
classical mechanics.

Consider a pair of vectors (  and ) in three-dimensional space can be described as a linear combination of basis vectors in the x, y
and z directions ( ,  and , respectively.)

The inner product of two vectors  and  is given the symbol . There are many possible definitions for an inner product, but
most students are familiar with the dot product. The dot product of these two vectors can be calculated by

If the dot product is zero, the two vectors are said to be orthogonal. In three dimensional space, this is oftentimes interpreted as the
vectors having a  angle between them as the dot product can also be calculated from

where u indicates the magnitude of the vector  and  is the angle formed between the two vectors  and . Given this definition,
the only way two vectors of non-zero magnitude can be orthogonal is if the  term vanishes. In other words, the angle
between them must be  or  radians.

The concept of orthogonality can also be extended to include functions. All that is necessary is a definition for an inner product for
two functions. The definition that we will encounter most in quantum mechanics is the integral over all relevant space of the
product of the two functions.

In the event that this integral is zero, the two functions are orthogonal in the same sense that two vectors whose dot product is zero
are orthogonal.

In addition to being orthogonal, vectors can also be normalized. A vector is said to be normalized if it has a unit magnitude. The
magnitude of a vector is determined by taking the square root of the dot product of the vector with itself.

The vector has unit magnitude and is normalized if its magnitude is unity.

In the case of vectors, ,  and  form an orthonormal set. That is to say that each vector in the set is orthogonal to the other two
and is normalized as each has a unit magnitude. This property can be defined for any set of vectors  by the following
relationship

where  is a function called the Kronecker Delta and has the properties

Similarly, functions ( ) can form an orthonormal set if

As we will see, this relationship is common in quantum mechanics, and has many useful properties which we will exploit as they
make calculations simpler. This will be particularly evident when we discuss the superposition theorem.
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1.3: Classical Description of a Wave on a String
The mathematics used in solving quantum mechanical problems follow be the same basic process for each of the different
problems we will examine. In this section, those mathematics will be developed in order to describe a (hopefully) familiar problem
in classical physics.

Consider a wave on a string of length a which is fixed at both ends (  and .) Classical physics tells us that the wave will
obey the following condition

where  gives the displacement of the string from equilibrium at position  and time .

Figure 

To solve this second order partial differential equation, we separate the function into the product of a function which deals only in
position and one which deals only in time.

Substituting this form in to the equation above and gathering spatial variables on one side and time variables on the other, we get

Notice how the partial derivatives become total derivatives since the functions on which they operate depend only on the variables
in the given derivative operators. Now dividing both sides by  yields

The only way this can be true is if each side is equal to a constant. Since I already know the answer, I am going to cheat and let that
constant be  since this will avoid imaginary numbers in the solution. So now we generate two separated second order
differential equations:

These two equations are of a special type called eigenvalue-eigenfunction relationship. In these type of relationships, the operator
(in this case a second derivative) operates on a function, yielding the same function multiplied by a constant. These type of
relationships exist throughout quantum mechanics.

The Spatial Solutions 
Let’s consider only the spatial portion for the time being. Being a second order normal differential equation, there will be two
linearly independent functions  which satisfy the equation. Two fairly obvious choices to this eigenvalue-eigenfunction
problem are

x = 0 x = a

φ (x, t) = φ(x, t)
∂2

∂x2

1

v2

∂2

∂t2
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1.3.1
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As mathematics would have it, any linear combination of these two solutions will also be a solution. Thus, it is convenient to write
a general solution that is a linear combination of the two linearly independent functions.

We will now employ the boundary conditions to find values for the variables ,  and . The boundary conditions are that the
string is fixed at both ends. Thus we know that  and 

Using the first condition, we see that

This can only be true if  since the cosine term will give a non-zero contribution for any non-zero value of  implying that
the string is displaced from its fixed position, which it can not be since it is fixed at that position. For the remainder of the solution
to this problem, the cosine term will be neglected since it must vanish in order to ensure that .

The second condition is that . This requires that

One way of making this true is if . This is known as a trivial solution since it implies that  is zero for any value of 
(meaning the string is never displaced from equilibrium at any point.) Many problems have trivial solutions, but these are generally
ignored as they add no useful insight into the physical behavior of a system.

To get the non-trivial solutions, it is useful to know when . This will be true if  is an integral multiple of . Thus,

Or

Another way to think of this is that the second condition ( ) can only be met if the length of the string ( ) is a half integral
multiple of the wavelength of the sine function.

Since there are several (an infinite number, really) possible values of , the solution implies an infinite number of functions as
solutions. Further, there is no reason to expect that  needs to be the same for each value of .

X(x) = A sin(kx) +B cos(kx)

A B k
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= 0
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nπ
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Figure 

Since we have only two boundary conditions, we can only determine two of the unknown quantities. The last one, , will govern
the amplitude of the particular function. A large value implies that the string will be displaced a large amount from its equilibrium
position. Thus, there may be a different value of  for each value of n (which is why the subscript is included.) For the time being
though, let’s leave  as a symbolic variable and evaluate it later.

Before continuing with the time portion of the problem, let’s note some interesting properties of the solutions of the spatial portion.
The functions  are called the “normal modes” of vibration for the string (sometimes they are called the time-independent
modes.) That means that a string which is prepared to vibrate with the displacements given by one of the functions  will have
a standing wave. In other words, the nodes (the places along the string where the string does not move or ) are
stationary.

Further, the functions  form an orthogonal set. This implies that

To prove this, it is useful to consider the following result that can be found in a standard table of integrals.

Substitution into the above expression yields

Since both  and  are integers,  and  will be integers as well and both sine terms will vanish. Hence, for any 
, the integral will vanish. As such, any pair of functions in this set are mutually orthogonal, or the functions form an

orthogonal set.
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But what happens when ? Again, it is useful to pull the following result from a standard table of integrals.

Substitution into this expression yields the following:

A convenient result comes from choosing values for  such that the result is unity.

 or 

 is called a normalization constant, and has a value chosen to insure that the integral of the square of the function over all
relevant space is unity. Another way of saying this is that  is chosen so as to normalize the function. We will see this concept
throughout our development of quantum mechanics. Note that  does not depend on . (This will not be the case for most
normalization constants.)

These functions

form an orthonormal set of functions. The have the property that

where  is the Kronecker delta and has the property

The Time Solutions 
The solution to the time dependence part of the problem is very similar to that of the spatial part. Recall that the equation

must be satisfied. The value of k has already been determined from the special solutions and is given by . For convenience,
let’s make the substitution

such that  gives a frequency to the oscillation of the string that is parameterized by the velocity of the wave. Further, if n is
doubled, the frequency of the wave is doubled. This would be manifested in the audible tone of the vibrating string going up by one
octave. Those familiar with the acoustic nature of overtones on strings (such as those that can be produced on the strings of a
guitar) are familiar with this concept.

The substitution creates the rather familiar looking eigenvalue-eigenfunction problem

As was the case in the spatial part, the second order ordinary differential equation must have two linearly independent solutions,
and any linear combination of those two functions will also be a solution to the equation. Thus, one can write
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The rest of the development requires a simple trick. Since there are no remaining boundary conditions by which we can evaluate 
and , we can choose a constant \sigma such that

 and 

so that the time function can be expressed

and since

the function can be expressed

In this expression,  is a phase shift in time. For a given choice of ,  can be forced to be zero. Given this constraint, the time
function can be expressed

The final result, then, for the normalized wavefunctions that describe the motion of the string are given by

The Superposition Principle 

For the following discussion, we will only concern ourselves with the time-independent solutions (the spatial functions) for
simplicity. The time functions could be included to give the time evolution of each component of a superposition of waves, but the
discussion of the mathematics involved would be identical to that for the spatial part of the problem. As such, we will focus just on
the result for a fixed point in time of .

As it turns out, any well-constructed wave (specifically one that obey the boundary conditions of the original problem) can be
expressed as a linear combination of normal mode waves.

where \Phi(x) gives the function that describes the shape of the arbitrary wave,  are the time-independent functions that were
derived in the previous section, given by

And the factor  gives the amplitude of the  component of the superposition.

The coefficients  (known as Fourier coefficients) are easily calculated from the following expression

This is easily shown by making the substitution  into the above equation.

Since integration is a linear operation, and multiplication is distributive, the result can be simplified
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using the orthonormality property of the functions  as developed above. The sum is also easy to simplify based on the
properties of the Kronecker delta.

The description of the function  is known as a Fourier expansion, and is the same sort of mathematics used
by a Fourier Transform spectrometer. The spectrometer, through interferometry, measures the values of the amplitudes ( ) and
then mathematically reconstructs the spectrum by superimposing the constituent functions (x) and adding them all up.

To illustrate the concept, consider a function that is defined as

This function can be expanded in the basis set of normal mode (time independent) functions. The following MathCad worksheet
calculates the values of the coefficients and demonstrates the superposition of waves.

This sort of expansion in a set of basis functions occurs throughout chemistry including the construction of an  hybridized
orbital set used in the description of bonding in a methane molecule or the addition of p-orbitals to for -bonding and antibonding
orbitals. Expect to see this concept again!

This page titled 1.3: Classical Description of a Wave on a String is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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1.4: Failures of Classical Physics
Imagine being a scientist in the year 1900. At the time, there was significant debate in society as to whether or not science was a
valuable discipline for study. The argument was that Isaac Newton and others had already solved all of the important problems of
physics and as such, there was nothing more to be learned. There were still a few problems remaining that didn’t work perfectly
according to Newtonian physics, but the prevailing thought was that it was a simple matter of finding the one small piece that
people were missing and the entire package would be complete. As it turned out, they couldn’t have been more incorrect!

Every new detail that was discovered on these pesky problems seemed to indicate something that was not commensurate with
Newtonian physics at all. And the deeper investigators looked, the more perplexing the problems became – and the further from
classical physics the solutions took them.

But the modeling of these problems formed the foundations of a new quantum theory. That theory, while completely counter-
intuitive to scientists of the time, is now engrained in every aspect of how we think of the atomic and molecular nature of matter.
As such, no study of chemistry is complete without exploring this bizarre world of quantum mechanics. So sit back, relax, and
enjoy the story of the origins of the quantum theory.

Max Planck and Blackbody Radiation 
One of the problems that perplexed scientists at the turn of the 20  century was that of the description of black-body radiation. The
term “Black Body” was introduced by Gustav Kirchhoff in 1860. It refers to an object that absorbs all light that falls on it (i.e. it
reflects no light.) The thermal radiation emitted by a black body is called black body radiation.

Figure 

Figure 

Black-body radiation is the light that is given off from a body that glows from being hot. Examples of blackbody radiators include
incandescent light bulbs and the sun. In the laboratory, a black body radiator can be constructed by painting the inside of a metal
box black (so that light is not reflected inside) and heating the box. The light given off by the box will be black body radiation.

The emission spectrum of a black-body radiator was well established and reproducible. The intensity increases at all wavelengths
and the maximum intensity shifts to shorter wavelengths at higher temperatures. But while the experimental result was well

th
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established and agreed upon, there was no theoretical model that predicted the result. Existing classical models could predict either
the long-wavelength side of the spectrum or the short wavelength side, but not both.

Max Planck (1858-1947) produced the first theory that could predict both sides of the spectrum. He did this by making a ridiculous
assumption about the nature of light. Despite the prevailing classical theories of the wave-nature of light and numerous
experimental observations confirming these theories, Planck decided to model a light beam as a shower of energy packets (which
he called Quanta) where the energy was proportional to the frequency of the light wave.

In this model, E is the energy of a quantum, h is a constant of proportionality and  is the frequency of the light wave.

This dual nature of light (having properties of both particles and waves) was revolutionary, and was thus met with great skepticism.
Planck’s model, published in 1901 [1], can be expressed by

in which  is the intensity,  the temperature and  the speed of light, successfully described both sides of the black body radiation
curve. It also provided a value of , the constant of proportionality of

Planck was awarded the Nobel Prize in Physics in 1918 for this theory. But while interesting, Planck’s theory only provided one
possible explanation of the black body radiation problem. But without corroboration from other experiments involving other
phenomena, Planck’s theory of light quanta would not have gained any meaningful attention. That corroboration came in a paper
published by Albert Einstein describing a quantum theory of the photoelectric effect.

Albert Einstein and the Photoelectric Effect 
When Planck published his paper in 1901, Albert Einstein was working as a scientific expert in the Swiss patent office while
working to secure a professorship in physics. He read Planck’s paper. Through studying Planck’s work, Einstein was able to apply a
quantum theory of light to make sense out of another well-established, but as of then not understood experiment, the photoelectric
effect.

The photoelectric effect involves shining light on the polished surface of metal under a vacuum. If the light has a wavelength
shorter than a threshold value (characteristic of the individual metal), electrons are emitted from the surface.

Figure 

The challenge to understanding the result came from changing the intensity of the light. Classical physics tells us that the energy of
a wave is determined by its amplitude, or in the case of light, the intensity. An increase in the intensity of incident light, therefore,
should lead to an increase in the kinetic energy possessed by the emitted electrons. However, the kinetic energy of the electrons
seemed to be a function not of the intensity of the light, but rather it’s frequency. Einstein was able to explain [2] this using
Planck’s theory that light consisted of a shower of quant, each of which was a packet of energy the magnitude of which was
proportional to the frequency of the light. ( )
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In Einstein’s model, the kinetic energy of the photoelectrons was determined as the difference between the photon energy and the
“work function” or the energy necessary to rip an electron from the surface of the metal.

In this case, each quantum of light, or photon, can produce one photoelectron. If the energy of the photons are too small (less than 
), no photoelectrons are produced. But at frequencies that exceeded the threshold value, the kinetic energy was a linear function of

the light frequency, with the slope of that line giving a value for Planck’s constant of proportionality. Einstein’s model provided a
separate measurement for Planck’s constant but yielded an identical result. At this point, the scientific community could no longer
ignore this new quantum theory of light. Einstein was awarded the Nobel Prize in Physics in 1921 for explaining the photoelectric
effect.

Johannes Balmer and the Emission Spectrum of Hydrogen 

In 1885, J.J. Balmer [3](a high school teacher and amateur scientist) wrote about the series of lines in the visible emission spectrum
of atomic hydrogen. The lines formed a pattern

Figure 

where the spacing decreased in decreasing wavelength and seemed to converge on a series limit. The wavelengths ( ) of lines in
this spectrum fit the pattern:

where , or the series limit, and .

In modern terms, this expression is given as

where is known as the “Rydberg constant” for hydrogen, and has the value given by . Also, 
and either value must obey .

In Balmer’s paper, the expression is purely empirical (meaning it is based only on observation and not tied to any theoretical
value.) While he was unable to provide any theory for the pattern he had derived from data, he did state that such a simple pattern
could not be a coincidence.

The job of theoretical physics was to derive a theory of the H-atom that would yield energy levels, transitions between which
would produce the observed spectrum and the simple pattern determined by Balmer. The first quantum theory of the hydrogen atom
was proposed by Niel’s Bohr (who was born in 1885 – the year that Balmer’s paper was published!) Bohr’s model is consistent
with the wave nature of matter predicted by Louis de Broglie.

Louis de Broglie and wave nature of matter 
Louis de Broglie (1892-1987) was intrigued by the notion that light, which every sensible physicist knew propagated as waves,
could be described as though it was a stream of particles. Not to be outdone, he decided to examine the ramifications of doing
something equally preposterous – treat something everyone knew was a particle, as a wave. de Broglie proposed that all particles
would behave with a wave nature, and would have a wavelength determined by their momentum and Planck’s constant.
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Based on this theory, de Broglie predicted in his 1923 Ph.D. dissertation that interference patterns could be observed in electron
beams diffracted by regular patterns, much in the same way that such results could be seen with light waves or water waves. This
phenomenon was observed in electron beams diffracted off of nickel surfaces in 1927 [4]. de Broglie was awarded the Nobel Prize
in physics in 1929 for the work in his dissertation – the first time the prize was awarded for a PhD thesis!

Niels Bohr and the Hydrogen Atom 

Niels Bohr (1885-1962) was the first person to offer a quantum theory of the hydrogen atom that satisfactorily predicted the
patterns seen in the emission spectra of atomic hydrogen. Basically, Bohr suggested that the electron in a hydrogen atom orbited the
nucleus (a proton) in a circle, the circumference of which had to be an integral multiple of de Broglie wavelengths. (Bohr’s model
was actually published in 1913 [5] – 10 years before de Broglie’s Nobel Prize winning thesis, but it is easily explained based on the
de Broglie principle.)

Bohr suggested that the angular momentum of an orbiting electron had to be an integral multiple of Planck’s constant divided by 
.

This expression is easily rearranged to yield the de Broglie relationship:

Based on this relationship, and balancing the electrostatic attractive forces with the centripetal force acting on the orbiting electron,
Bohr was able to derive the value of the Rydberg constant for hydrogen and predict the pattern seen in the emission spectrum of
hydrogen.

While the theory does a remarkable job of describing the empirical model of Balmer, it has many shortcomings as well. For
example, a charged electron orbiting a charged proton should eventually see its orbit decay and the electron will crash into the
proton. Clearly this does not happen, contrary to the predictions of classical physics. Also, the Bohr theory is not applicable to
atoms that have more than one electron, meaning it has not real application on most of the atoms in which chemists have interest.
None the less, Bohr’s foothold into the quantum world was important. And some important aspects of a quantum theory can be
easily demonstrated using the model as well.

Heisenberg, Schrödinger and Dirac 

While quantum mechanics is most often taught (and will be discussed in this text) in terms of the formalisms of Erwin Schrödinger
(1887-1961), the first formal theory was derived by Werner Heisenberg (1901-1976) in 1925 (he was awarded the Nobel Prize in
physics in 1932 for this theory) using a matrix formalism. Schrödinger’s methodology uses integrals and eigenvalue-eigenfunction
relationships and was first published in 1926. Schrödinger was awarded the Nobel Prize in Physics in 1933. Two years later, he
proposed the famous “Schrödinger’s Cat” thought experiment (after consulting with Albert Einstein, who never fully excepted
quantum mechanics) aimed at disproving the very theory that had won Schrödinger the Nobel Prize. Schrödinger clearly lamented
his contributions to the scientific foofaraw that quantum theory would become. In particular, he was dissatisfied by the notion of
“quantum jumps” that were needed to describe electronic transitions in the hydrogen atom. In one heated debate with Niels Bohr,
Schrödinger exasperated

If we are going to have to put up with these damn quantum jumps, I’m sorry that I ever had anything to do with quantum theory. [6]

Paul Dirac’s (1902-1984) seminal textbook on quantum theory published in 1930 showed that the formalisms of Heisenberg and
Schrödinger were mathematically identical. Dirac shared the 1933 Nobel Prize with Schrödinger. Among the many significant
contributions that Dirac made, was a January 1928 paper in the Proceedings of the Royal Society that helped to explain the nature
of electron spin. The consequences of his relativistic interpretation of the nature of an electron also predicted the existence of
antimatter.

There is a lot more to the story of the development of quantum theory and a great many colorful characters involved. While this
text will focus on the applications of quantum theory to understand molecular behavior rather than the history of its development,
the history of the science is definitely something about which reading is extremely worthwhile.
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Also, given the efforts towards a unified field theory in physics, there is no time that studying quantum mechanics could be more
valuable. In the development of these theories, quantum mechanics and relativity often struggle against one another, but it is
quantum mechanics that always seems to win these struggles. As such, quantum theory is bound to play an enormous role as
modern physics continues to evolve. It is my sincerest hope that this introduction will not only provide a background required to
make sense out of modern chemistry, but also whet the appetite for more knowledge and understanding on this fascinating subject.
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1.5: On Superposition and the Weirdness of Quantum Mechanics
In order to better appreciate the fascinating (and sometimes shocking!) results of the quantum world, let’s consider some
measurable properties of electrons. Consider in particular two specific properties they exhibit. It doesn’t really matter what these
properties actually are, but it does matter that there are only two possible outcomes when measuring these properties. For the
purposes of this discussion, we can call these properties Latin and Greek, and the two measurable values of these properties are X
or Y (for Latin) and a or b (for Greek.)

For the purposes of this discussion, let us assume that we can build a perfect sorting box for each property. For example, we can
build a “Latin” box that will direct electrons though an aperture based on whether the electron is detected to have the value X, and
a different aperture if the electron is found to have the value Y. Such a box would work as follows:

Figure 

Similarly, we can build a “Greek” box that will sort in the same manner, except according to the measured value of the Greek
property:

Figure 

Are the Properties Repeatable? 
We can use these boxes to test whether or not the measured values of the Greek and Latin properties are repeatable. In order to do
this, consider directing the X aperture output of a Latin box into a second Latin box. If the measured value of the property is
repeatable, we would expect all of the electrons to exit the second Latin box through the X aperture. Pictorially, the second box
would look as follows

Figure 

demonstrating that the property is indeed repeatable. The same behavior is observed using the Greek box, in that previously
measured a electrons will always exit the a aperture of the Greek box.

Are the Properties Correlated? 
A reasonable question to ask is whether or not the properties are correlated. An example of this correlation would be observed if
previously measured X electrons were more likely to be measured as a electrons afterward. The apparatus for testing for this kind
of correlation might look as follows:
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Figure 

As is suggested in the diagram, the outcome of the Greek measurement does not show any preference for a or b for previously
measured X electrons. The outcome for measuring a electrons with a Latin box is similar, in that half of the electrons exit the X
aperture and half exit the Y aperture. The conclusion, therefore, would be that the Latin and Greek properties are not correlated.

Now, suppose we try a third variation and create a three-box experiment. In this experiment, we will use a Latin box to select the X
electrons out of an initial random stream of electrons. These will then run through a Greek box. We will then take the a aperture
output of the Greek box and run that through a Latin box. The box arrangement for this experiment would look as follows:

Figure 

What do you expect for the percentages of electrons leaving the Latin box apertures? As it turns out, half of the a electrons leaving
the Greek box will exit the X aperture and half will exit the Y aperture. As crazy as it seems, it appears that measuring the Greek
property made the electrons “forget” that they were previously measured to be X electrons!

This has an important implication about the nature of these sorting boxes. It implies that it would be impossible to build a
compound box (a larger box constructed for Latin and Greek boxes) that would simultaneously sort electrons by both Latin and
Greek properties. In other words, the following device would not work:

Figure 

The reason this box will not work is that the electrons do not behave as though they carry definite values of Latin or Greek
properties. Rather, these properties have to be determined at the time of measurement. The result is contrary to the behavior of any
particle that is well-described by Newtonian physics!

To help illustrate this, consider randomizing the state of a quarter ($0.25) by flipping it. We know that it will land as either heads or
tails. But we can also imagine it landing with the head (or tail) upright or upside down. The coin can, in effect, land in one of four
states. For convenience, let’s label them as HU, TU, HD, and TD (H/T for heads or tails, and U/D for up or down.

1.5.4

1.5.5

1.5.6

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420469?pdf


1.5.3 https://chem.libretexts.org/@go/page/420469

Figure 

For a classical object, like a coin, we expect all of the physical properties to persist. For example, if we flip the coin, and then
measure in order, heads or tails, up or down, and then heads or tails, we expect the results of the first and third measurements to
yield the same result.

But in the case of the electron, measuring the Greek property seemed to cause the electron to completely forget what was measured
about the Latin property. This leads us to the conclusion that there is not an internal property that determines the outcome of the
measurement of that Latin property – ant least not one that can survive the measurement of the Greek property.

Do the Properties Interfere with One Another? 
While it is true that electrons can not be definitively sorted simultaneously by Latin and Greek properties due to the lack of
persistence of the measured outcomes when mixing boxes, one might ask if measuring one outcome interferes with the
measurement of a second. Consier a new type of compound box, into which we will introduce two new devices: mirrors, and what
we can consider a “combining” box. The role of the mirrors is simply to redirect a beam, but they will not alter the beam in any
other way that its direction of travel. Similarly, the “combining” box will only collect the beams and cause them to travel in the
same direction.

The box will be designed to accept the input of a beam of electrons previously selected as X electrons. It will then sort by Latin or
Greek properties, redirect and combine the beams and then measure for either Latin or Greek properties at the exit aperture. Such a
compound device might look as follows:

Figure 

Such a device could be configured for four different interesting experiments. These experiments are described below:

1. Sort the X electrons using a Latin box, and measure the Latin property at the exit

1.5.7
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2. Sort the X electrons using a Latin box, and measure the Greek property at the exit
3. Sort the X electrons using a Greek box, and measure the Greek property at the exit
4. Sort the X electrons using a Greek box, and measure the Latin property at the exit

The results of these experiments are summarized in the table below:

Experiment Input Sorter Detector Result?

I 100% X Latin Latin 100% X

II 100% X Latin Greek 50% a, 50% b

III 100% X Greek Greek 50% a, 50% b

IV 100% X Greek Latin ???

Let’s consider the results individually.

Experiment I 

Figure 

The results of this experiment are not surprising based on the results of the previous sections. Consider the path that the electrons
will take as they pass through the apparatus. All of the X electrons incident on the box will be sorted to exit the X aperture of the
Latin box and travel to the detector where they will again be measured as X electrons. This is the expected result because the
property is measured to be repeatable by successive boxes of the same type.

Experiment II 

Figure 

Again, the result is not too surprising. We expect all of the electrons to exit the “sorting” box along the X pathway. And since the
Greek property is not correlated to the Latin property, when measured at the Greek detector, we expect 50% a and 50% b electrons
to be detected.
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Experiment III 

Figure 

In this experiment, things are getting to be more interesting, as we have to consider electrons exiting the “sorting” box along both
the a and b paths, each accounting for half of the initial X electrons. Of the electrons that travel along the a path (which is expected
to be 50% of the incident X electrons), we expect them all to be measured as a electrons. Similarly for those electrons which follow
the b path, we expect them to be detected as b electrons at the detector.

Experiment IV 

Figure 

In this configuration, one might expect half of the incident X electrons to exit the sorter along the a path, and when detected, half
will be X, and half will be Y. Similarly for those electrons that travel along the b path, half will be detected as X and half will be
detected as Y. This would result in a total of 50% X and 50% Y. And this result seems perfectly reasonable based on our initial
results.

But the quantum world has a huge surprise for us. In this experiment 100% of the electrons are detected as X electrons! How is this
possible? It seems to completely contradict the notion that measuring the Greek property causes the electron to lose its Latin
identity. On its face, this result seems completely absurd and impossible, but the behavior is observed on electrons, photons, and
even large molecules such as buckyballs (  molecules)!

Further Developments 

Let’s consider a new apparatus in which beam stoppers can be introduced to block the individual a and b paths inside the box. This
setup might look something like what is depicted in the diagram below.

1.5.11
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Figure 

This suggests four new experiments, the designs and results of which are listed in the table below:

Experiment a-path b-path

A open open 100% X 0% Y

B open blocked 25% X 25% Y

C blocked open 25% X 25% Y

D blocked blocked 0% X 0% Y

These results allow us to draw some important (but classically troubling) conclusions about the pathway the electrons are taking
through the box.

Do they take the a-path or the b-path? 

If the a-path is open (experiments A and B) we detect electrons at the exit, but the intensity is reduced by 50% if the b-path is
blocked (Experiment B). This result is consistent with the interpretation that half of the electrons take the a-path and half take the
b-path, and also is consistent with what we expect based on previous experiments. However, because we now see a split of both X
and Y electrons detected at the exit rather than 100% X, we have to conclude that they electrons are not simply taking the b-path.
And further, we can conclude that they are not simply taking the a-path given the results of experiment C!

Are they somehow taking both paths? 

It may seem like a silly question, but if they were taking both paths, blocking one of the paths would result in a half electron being
detected at the exit if the incident beam was slowed sufficiently – and that never happens! Electrons are always detected whole and
intact. So we can conclude that the electrons are also not magically splitting into half with each half taking one of the paths.

Is it possible they take neither path? 

The results of experiment D for us to reject this possibility as well, since blocking both paths eliminates any detected signals at the
exit. They must be somehow using the pathways but without picking one or the other, and also not using both!

The Superposition Solution 
This is where we have to resort to a new kind of descript of the state of these electrons. We call this state a superposition state. We
will explore what this means in great detail, and how we can use the stationary states of waves to form bases in which these
superpositions can be expressed, much as we described an arbitrary wave on a string as a superposition of standing waves, each
with a unique amplitude.

In the case of our last set of experiments, it would be reasonable to conclude that the superposition state has some sort of an
oscillatory amplitude of X and Y states, such that when the beams are combined, the amplitudes of the Y states are removed
through destructive interference. And, while this description may eventually be shown to be incorrect or incomplete through further
experimentation (a possibility that always exists in science) it is at least consistent with the experiments summarized here.
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How to use this information going forward 

In this chapter, we have seen how to model waves using classical models, and how supposition allows us to extend our
understanding beyond simple stating waves. We have also seen how classical physics was challenged as new observations and
technologies forces scientists to develop new models and tools in order to predict behavior in the Universe. It is important to view
this as an active and dynamic process.

Remember to always think like a scientist. Our best models are useful only because they are consistent with the current state-of-
the-art observations of the behavior of nature. And like in any area of scientific endeavor, there will be continual tweaks and
sometimes even Earth-shattering changes brought for as new experiments allow us to see Nature through more detailed lenses.

But it is this point that makes the study of Quantum Mechanics so exiting right now, as we are on the cusp (perhaps) of these new
discoveries and observations as scientists are able to use new instrumentation to make new observations every day. The hope of this
book is that it will help you to develop enough insight into the Chemical application if Quantum Theory to enjoy and appreciate the
intricacies of this scientific journey as these new discoveries and observations challenge our current best models of Nature.

This page titled 1.5: On Superposition and the Weirdness of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored,
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1.7: Vocabulary and Concepts
acceleration

basis set

black body radiation

correlated

eigenfunction

eigenvalue

force

Fourier coefficients

Hamiltonian

kinetic energy

Kronecker Delta

linear combinations

mass

momentum

normalization constant

normalize

normalized

orthogonality

orthonormal

position

potential energy

superposition

superposition theorem

velocity

wavefunctions
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1.8: Problems
1. Consider a sphere with a mass of 1.00 kg rolling on a frictionless parabolic surface where the relationship between the height (

) and the position ( ) is given by

a. At what point on the surface (what value of x) will the sphere have the maximum kinetic energy?
b. What will the potential energy be at the point you specified in a?
c. If the sphere begins at rest at position x = -1.00 m, what is its potential energy?
d. Given that the sum of potential and kinetic energy is a constant, derive an expression for kinetic energy as a function of position

for the system.

2. Consider the vectors u and v given by

where i and j are unit vectors in the x and y directions respectively.

a. Calculate the magnitudes of vectors u and v.
b. Find expressions for vectors  and  which are unit vectors parallel to u and v respectively.
c. Are the vectors u and v orthogonal? Demonstrate this mathematically.
d. Consider a vector . find values for  and  in order to express w as a linear combination of  and .
e. 

3. Consider a string that is distorted from equilibrium at time  such that its wavefunction is given by

where .

a. Show that the functions  form an orthogonal set of functions. To do this, show that

 for 

b. Show that

c. Show that

 and 

4. Calculate the kinetic energy and de Broglie wavelength for the following particles traveling at a velocity of 500 m/s.
a. an electron
b. a nitrogen molecule
c. a ball bearing with mass = 0.500 g

5. The wavelength of light from one line of an argon ion laser is 488 nm.

Metal Work Function (eV)

Al 4.08

Fe 4.5

Co 5.0

Cu 4.7

h x

h = x2

u

v

= 3i +2j

= 2i– j

e1 e2

w = 3i– 6j c1 c2 e1 e2

w = +c1e1 c2e2

t = 0

Ψ(x) = (x) + (x)
1
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√
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√
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√
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Metal Work Function (eV)

Ag 4.73

Au 5.1

Na 2.28

K 2.3

Cs 2.1

a. Calculate the energy of a photon of this energy in

i. J
ii. kJ/mol

iii. eV
b. Of the elements in the table to the left, which (if any) would produce photoelectrons if light of  is focused on the

surface?
c. What would be the kinetic energy of a photoelectron ejected from the surface of cesium produced by light of ?
d. What is the longest wavelength of light that will produce photoelectrons from the surface of silver?

This page titled 1.8: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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1

CHAPTER OVERVIEW

2: Particle in a Box
In this chapter, we will develop the theoretical problem of a particle in a box. The purpose here is to explore the capabilities of
quantum mechanics and see how some of the mathematical machinery works. The reason for "kicking the tires" of quantum theory
with this particular problem is that the math is fairly simple (at least by comparison!) and the results are relatively easy to interpret.
After developing a toolbox of methods in this chapter, we can focus more on the results as applied to more complex problems of
greater chemical importance.

2.1: Background
2.2: The Postulates of Quantum Mechanics
2.3: The One-Dimensional Particle in a Box
2.4: The Tools of Quantum Mechanics
2.5: Superposition and Completeness
2.6: Problems in Multiple Dimensions
2.7: The Free Electron Model
2.8: Entanglement and Schrödinger's Cat
2.9: References
2.10: Vocabulary and Concepts
2.11: Problems
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2.1: Background
At the beginning of the 1900 s, there was actually a great deal of debate as to whether or not science was a valuable subject for
study. At the time, Newtonian physics had proven to be a very reliable model for predicting the behavior of the observable
universe. However, as was discussed in Chapter 1, the figurative scientific roof was about to collapse with the advent of a quantum
theory.

Quantum theory attempts to do many of the same things that classical (Newtonian) physics does. The goal is to be able to model
the behavior of particles and predict how they will behave in the future. In classical physics, this is accomplished by deriving an
equation of motion for a particle. With such an equation, and a few initial parameters (such as position, velocity and acceleration at
time ) the entire trajectory of a particle can be predicted as time moves forward.

The equivalent construct in the quantum theory is a wavefunction. The wavefunction for a system contains all of the information
needed to predict what can be measured and observed in terms of the properties of the particle or system. The rules describing a
wavefunction are not arbitrary, however. Based on a few simple postulates (given below) the requirements of the wavefunction are
outlined, and the entire quantum theory is defined.

This page titled 2.1: Background is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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2.2: The Postulates of Quantum Mechanics
There are only a small number of postulates of quantum mechanics. Upon them is built all of the conclusions of this powerful
theory.

Postulate 1 

The state of a quantum-mechanical system is completely specified by a function  that depends on the coordinates of the
particle  and the time . This function, called the wavefunction has the important property that

is the probability of finding the particle within the infinitesimally small volume element dxdydz located at position  at time .

Postulate 2 

To every physical observable in classical mechanics, there corresponds an operator in quantum mechanics. This operator will be
both linear and Hermitian.

Postulate 3 

In any measurement of the observable associated with the operator , the only values that will ever be observed are the
eigenvalues  which satisfy the eigenvalue equation

It is important to note that the wavefunction describing the particle need not be an eigenfunction of the operator Â. However, well
defined wavefunctions (those meeting the requirements of all of the postulates of quantum mechanics) will have the possibility of
being described as a linear combination of eigenfunctions of any of the needed operators. The Superposition Principle is invaluable
in working with this concept.

Postulate 4 

If a system is in a state described by a normalized wavefunction (  ) then the average measured value of the observable
corresponding to  is given by

Postulate 5 

The wavefunction of a system evolves in time according to the time dependent Schrödinger equation

Each of these postulates has important consequences and ramifications as to what quantum theory can (and cannot) tell us about a
particle or system. In the remainder of this section, we will explore each postulate individually in order to lay a foundation of what
quantum mechanics can predict for us about the nature of matter.

Postulate 1: a Squared Wavefunction is a Probability Distribution 

This postulate describes the commonly accepted interpretation of a wavefunction. First and foremost, a wavefunction is a
mathematical function. It must be single valued in that for each point in space, there is only one value that can be calculated from
the function. When considering all space which a particle may occupy, the squared wavefunction must create a smooth  and
continuous probability distribution describing where the particle might be observed to be located. (for our purposes, "smooth"
means that the first derivative of the function must be continuous.) Since the square of the wavefunction is a probability
distribution for the location of the particle, any location in space where the squared wavefunction is zero, has a corresponding
probability of zero that the particle will be observed at that location.

Ψ(r, t)

(r) (t)

(r, t)Ψ(r, t)dxdydzΨ
∗

r t

Â

a

ϕ = aϕÂ

Ψ

Â

⟨a⟩ = ∫ Ψdτ  or  ⟨a⟩ =Ψ∗Â
∫ ΨdτΨ∗Â

∫ ΨdτΨ∗

Ψ(r, t) = iℏ Ψ(r, t)Ĥ
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Consider a particle of mass  in box of length  that is prepared such that it’s wave function is given by

Calculate the probability that the particle will have a position measurement reveal the particle to be in the middle half of the
box (with the measured position satisfying .)

Solution
The squared wavefunction gives the probability distribution for where the particle’s position will be measured to be.

The total probability will be given by the following integral.

Note that the final probability is unitless!

 The wavefunction will be smooth provided that the potential energy function is not discontinuous. A discontinuous potential
energy function (such as a step function) will lead to a wavefunction that which single-valued, will not have a continuous first
derivative, and therefore, not be "smooth" in the strictest sense.

The wavefunction contains all of the information about a system that is needed to understand how the system behaves and how it
will behave in the future, at least within the limits of the quantum theory! Information on such properties as energy, momentum and
position are all contained in the wavefunction.

Postulate 2: Quantum Mechanical Operators 
The second postulate describes the nature of quantum mechanical operators and their relationship to those properties of a system
which we can observe. The operators are the tools that pull physical information from the wavefunction and reveal the properties of
the quantum mechanical system. The following table shows some operators and their corresponding physically observable
quantities.

Physical Observable One Dimension Three Dimensions

Position

Momentum

Energy

Kinetic

 Example 2.2.1

m a
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Physical Observable One Dimension Three Dimensions

Potential

Each of these operators will have two very important properties. 1) Each is linear and 2) each is Hermitian. In one dimension, an
operator  is defined to be linear if the following condition holds:

where a and b are scalar values. An example of a linear operator is multiplication by a constant or a function. Taking a derivative
(or integrating) is also a linear operation, as is adding a constant or a function. An example of a non-linear operator is taking a
logarithm or raising a function to a power other than one.

The Hermitian nature of quantum mechanical operators has many important consequences. An operator (  is Hermitian if it
satisfies the following relationship:

for well-behaved  functions  and , where the asterisk  indicated the complex conjugate of the function or operator. Hermitian
operators have the important properties that 1) their

 A well-behaved function is one that is normalizable and continuous over the relevant space of the problem.

Is the operator  a Hermitian operator?

Solution
For an operator  to be Hermitian, the following relationship must hold (for wellbehaved functions  and  :

So if we choose arbitrary functions  and , we can evaluate the left-hand side of the above relationship by noting the pattern 
 and integrating by parts. Using this approach

Making the substitutions that

it should be clear that

So

In order for  and  to meet the criteria that they are normalizable, they must vanish as  approaches . As such,

And we are left with

Û U(x) U(r)

( )Â

(af(x) +bg(x)) = a f(x) +b g(x)Â Â Â

)Â

∫ fdτ = ∫ f dτg∗Â Â
∗
g∗

2 f g (∗)

2

 Example 2.2.1

d

dx

Â f g

∫ fdτ = ∫ f dτg∗Â Â
∗
g∗

f g

d(uv) = udv+vdu

∫ udv= uv−∫ vdu

u = g∗

dv= fdx
d

dx
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dx
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v= f

∫ fdx = −∫ f dxg∗ d

dx
f |g∗ ∞

−∞

d

dx
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Which clearly can not be true. Therefore, the operator  is not Hermitian. You should, however, be able to use the same

method to show that the operator  is in fact Hermitian!

Postulate 3: Measurable Values 
Postulate three states that the only measurable values for a system are those values that are eigenvalues of the corresponding
quantum mechanical operator. The first measurable value which we will explore is the energy of the system (see below.) Because
the wavefunction provides a probability distribution, it also provides a means of predicting the statistics for a theoretical infinite set
of measurements on a system. The ramifications of that point are developed in the discussion of the fourth postulate.

Postulate 4: Expectation Values 

An expectation value is an average value that would be expected based on an infinite number of measurements. Since
wavefunctions give us probability information, it stands to reason that we can calculate a great deal of statistical information about
a system based on the wavefunction and the corresponding operators. This will be discussed in detail in section D with regards to
expectation values calculated for position, momentum and energy. It is important to note that the expectation value does not
indicate the most probable measurement or observation that will be made, nor must it even give a value that can ever be measured;
it just gives the average.

This postulate has very important (and controversial) ramifications. It forms the basis for how the Heisenberg Uncertainty Principle
can be discussed. The problem is that quantum mechanics cannot tell you what will be measured, but rather only the probability
that a certain value can be measured for a specific property. While a subtle point, it shakes the very nature of our intuition as to
what it means for a system to have a certain property. In most cases, the properties we associate with classical particles do not even
exist in quantum mechanical particles (at least in any sense to which we are accustomed) until those properties are measured. This
has led to numerous debates as to the validity of quantum mechanics as a model, and even led one of the original developers of
quantum theory (Erwin Schrödinger) to change his mind completely on the model.

Postulate 5: the evolution of a system in time 

The  postulate indicates how a system will evolve in time. It also gives the definition of the time dependent Schrödinger
equation.

We will explore many of these properties based on the particle in a box problem in order to gain some insight into what quantum
mechanics can and can not tell us about a system. The particle in a box problem actually has limited physical application (although
it does have some), but does provide a "thought sandbox" in which we can explore the concepts, powers and limitations of the
quantum theory. Hopefully then when we apply the theory to problems of greater chemical interest, we can focus more on the
conclusions than on the specific mathematics.

This page titled 2.2: The Postulates of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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2.3: The One-Dimensional Particle in a Box
Imagine a particle of mass  constrained to travel back and forth in a one dimensional box of length . For convenience, we define
the endpoints of the box to be located at  and  . The derivation of wavefunctions and energy levels and the properties of
the system using the tools of quantum mechanics will be instructive as we move forward in our studies of quantum mechanics.

The Hamiltonian 
Whenever we begin a new quantum mechanical problem, the first challenge is to write the Hamiltonian that describes the system.
This always has two parts - a Kinetic Energy term (which is always the same for each particle) and a Potential Energy term (that
is different for each new system.)

The kinetic energy term in one dimension for a single particle is always given by

This operator can be derived from the momentum operator based on the relationship between momentum and kinetic energy that
comes from classical physics. Namely

As such,

The potential energy function is also fairly simple for this problem. The potential energy is infinite outside of the box  and 
 and zero every place else. This forces the particle to be in the box at all times. It also limits the relevant space of the

problem to lie between  and   since the infinite potential energy precludes the particle from ever existing outside of the
limits of  and .

Figure 

So for the problem, limited to the space inside the box, the Hamiltonian can be written

And the Schrödinger equation can be written as

m a

x = 0 x = a

= −T̂
ℏ2

2m

d2

dx2

T =
p2

2m

=T̂
p2

2m

= (−iℏ )
1

2m

d

dx

=
(−iℏ)2

2m

d2

dx2

= −
ℏ2

2m

d2

dx2

(x < 0

x > a)

x = 0 x = a

x = 0 x = a

U(x) =∣

∞

0

∞

 if 

 if 

 if 

x < 0

0 ≤ x ≤ a

x > a

2.3.1

= −Ĥ
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where  is the wavefunction describing the state of the particle. There are a number of approaches that can be used to solve this
equation to find the wavefunctions  which satisfy the differential equation.

The Solution 

We will solve this problem two different ways. First, we will solve it using the de Broglie wavelength (an algebraic solution) and
then using the Schrödinger equation (an eigenvalue/eigenfunction approach.)

The de Broglie Approach 

Before trying to solve the problem using Schrödinger’s equation, let’s use the de Broglie condition to solve the problem
algebraically. Recall that de Broglie suggested that a particle can be treated as a wave, the wavelength of which is given by 

, where  is Planck’s constant, and  is the momentum of the particle.

The necessary conditions on the de Broglie wave are that the wave itself must vanish at the ends of the box (in order to satisfy the
first postulate, since the particle can never escape the box.) This will happen for very specific wavelengths which are dependent on
the length of the box itself. This is very common in physics for any system with a wave nature. When the wave is constrained to a
specific geometry, the system will "ring" with frequencies (and thus wavelengths) characteristic of the medium and the geometry.
Quantum mechanical systems are no different in that regard.

Figure 

What will be required in order to create a standing wave is that the length of the box  must be an integral multiple of half de
Broglie wavelengths .

Given that the de Broglie wavelength is related to momentum, it is simple to derive the following relationship, indicating the
possible values for momentum.

ψ(x)
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λ = h/p h p
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Given the relationship between momentum and kinetic energy, the expected expression for energy levels can be derived.

And since the energy depends on , the spacings between successive energy levels increases as the energy increases.

Figure 

Now let’s see if we can derive this expression based on the Schrödinger equation.

The Schrödinger equation: the wavefunctions 
The time-independent Schrödinger equation can be written

Where  is the Hamiltonian operator that was derived in section B.2,  is the wavefunction describing the system, and , the
eigenvalue of the Hamiltonian, gives the energy. The wavefunctions are derived so that they are eigenfunctions of the Hamiltonian
operator. Substituting the specific statement of the Hamiltonian

For convenience, we can gather all of the constants in one place by making a substitution

The particular choice if the form of this substitution is made to simplify the solutions by avoiding (for now) imaginary functions.
With the substitution, the Schrödinger equation can be rewritten as

As was the case for the classical wave-on-a-string problem, this is a second order ordinary differential equation, and this has two
linearly independent solutions. A general solution is given by a linear combination of two linearly independent solutions, so one
way to write a solution is

Now we can focus on evaluating  and  based on the boundary conditions. The boundary conditions are that the wavefunction
must go to 0 at the ends of the box, in accordance with the first postulate.

The first boundary condition, , yields the following result:
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H ψ E

− ψ = Eψ
ℏ2

2m

d2

dx2

− = −k2 2mE

ℏ2

ψ = − ψ
d2

dx2
k2

ψ = A sin(kx) +B cos(kx)

A, B k

ψ(0) = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420475?pdf


2.3.4 https://chem.libretexts.org/@go/page/420475

So  and the cosine term must vanish. Focusing only on what has not vanished from the solutions, the second boundary
condition, , can be applied.

There are two trivial ways to make this true. One is to make  and the other is to make  0 . Both are trivial solutions and
unimportant (but fun to mention in class!) The other way to force the function to 0 at  is to insure that the sine function is
zero by forcing

where  is an integer , since the sine function crosses zero every  radians. This is an important point: the
application of a boundary condition leads to the introduction of a quantum number and fixed the results to only functions where
that number has a value taken from a very specific list. In fact, the origin of quantum numbers in all problems is the result of the
application of boundary conditions.

Solving for  and substituting yields

This is as far as the boundary conditions can get us. The value of  is determined based on the first postulate of quantum
mechanics, which says that the square of the wavefunction must give a probability distribution as to where the particle can be
measured to be. Since all measurements must place the particle in the box, the sum of probabilities at all of the possible locations in
the box must equal unity. This implies the condition that

Solving for A yields

Notice that the value of A did not depend on the quantum number n. Normalization constants usually do have some dependence on
the quantum numbers that arise from the application of boundary conditions, but this is one of the rare problems in which the
normalization constant does not.

The Schrödinger Equation: the energy levels 
Whenever we solve a quantum mechanical problem, there are two important things at which we must look: the energy levels and
the wavefunctions. To chemists, the energy levels are the most important part, as the energy levels govern the chemistry the system
can do. To a physicist, it is the wavefunctions that are important as they contain all of the information about the physical nature of
the system.

The energy levels can be derived using the normalized wavefunctions and the Schrödinger equation.
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Comparison (or solving for ) yields the following

which looks similar to, but not exactly like the result produced using the de Broglie relationship. In fact, it is the identical result!
Making the substitution , it is easy to show that

These energy levels depend on , and so doubling the quantum number  quadruples the energy. Another way of saying this is
that the energy level spacings (the difference in energy between two successive levels) increase with increasing  or energy.

It is also interesting to note that the energy levels are given by a real (non-imaginary) expression. This is to be expected since the
energy is the eigenvalue of a Hermitian operator, the Hamiltonian, and thus must be a real value.

Properties of the Wavefunctions 
The wavefunctions for the one-dimensional particle in a box problem are given by

These wavefunctions have many important properties.

Orthogonality 

Similar to the relationship of Hermitian operators having real eigenvalues, the eigenfunctions of Hermitian operators must be
orthogonal. Our wavefunctions are actually an infinite set of function, any pair of which must cause the inner product integral to
vanish. Mathematically, this looks like

This relationship is easy to verify. To do so, we will make use of the following result taken from a standard table of integrals.

Noting that  and , substitution into the above relationship yields

And since  and  are integer,  and  must also be integers. And the sine of an integral multiple of  is always zero, it
is easy to show that this function vanishes for any .
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Normalization 

When  the integral becomes

which can be evaluated using the result from a table of integrals

So making the substitution 

This result shouldn’t be surprising since the value  was chosen to ensure the result! Specifically, it was chosen so as to

normalize the wave functions.

Show that the wavefunction

is normalized for a particle in a box of length .

Solution
The wavefunction is normalized if

This can be demonstrated by plugging the wavefunction into the relationship and testing to see if it is true:

Therefore the wavefunction is normalized!
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2.4: The Tools of Quantum Mechanics
Quantum mechanics is a model that can predict many properties of systems. The prediction of these properties can be made by
examining the results of operations on the wavefunctions describing systems. In order to develop a quantum mechanical "toolbox",
we utilize the results of the Particle in a Box model.

Expectation Values 
The fourth postulate of quantum mechanics gives a recipe for calculating the expectation value of a particular measurement. The
expectation value is a prediction of the average value measured based on an infinite number of measurements of the property.

The Expectation value of Energy  

One of the most useful properties to know for a system is its energy. As chemists, the energy is what is most useful to understand
for atoms and molecules as all of the thermodynamics of the system are determined by the energies of the atoms and molecules in
the system.

For illustrative convenience, consider a system that is prepared such that its wavefunction is given by one of the eigenfunctions of
the Hamiltonian.

These functions satisfy the important relationship

This greatly simplifies the calculation of the expectation value! To get the expectation value of E, we need simply the following
expression:

Making the substitution from above yields:

48

In fact it is easy to prove that for a system whose wavefunction is an eigenfunction of any operator, the expectation value for the
property corresponding to that operator is the eigenvalue for the given operator operating on the wavefunction. The proof for this is
almost trivial!

Proof: For a system prepared in a state such that its wavefunction is given by , and  satisfies the relationship

The expectation value for the property associated with operator Â will be the eigenvalue .
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since the wavefunction  is normalized.

The Expectation value of position  

To illustrate the concept, let’s calculate  or the expectation value of position for a particle in a box that is in the  eigenstate

Again, it helps to find the result for the integral in a table of integrals.

Substitution yields

This result is interesting for two reasons. First off,  is the middle of the box. So the result implies that we might find the particle
on the left side of the box half the time and the right side of the box the other half. Averaging all of the results yields a mean value
of the middle of the box. Secondly, the result is independent of the quantum number  - which means that we get the same result
irrespective of the quantum state in which the system is. This is a remarkable result, really, (well, not really, but it is fun to claim it
is) since it means that for the  eigenstate, which has a node at the center of the box, meaning we will never measure the
particle to be there, still has an expectation value of position centered in the box. This should really drive home the idea that an
expectation value is an average. We need never measure the particle to be at the position indicated by the expectation value. The
average of the measured positions must, instead, be at the position indicated by the expectation value.

The Expectation Value of Momentum  

It is also easy to calculate the expectation value for momentum, . In fact, it is almost trivially easy! Based on the fourth
postulate,  is found from the expression

At this point it is convenient to make a substitution. If we let  then . Now the problem can be restated in terms

of . But since we have changed from  to , we must change the limits of integration to the values of  at the endpoints. As it
turns out,  and  are both 0 !
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Wow! The expectation value of momentum is zero! What makes this so remarkable is that the particle is always moving since it has
a non-zero kinetic energy. (How can this be?) Keeping in mind that the expectation value is the average of a theoretical infinite
number of measurements, and that momentum is a vector quantity it is easy to see why the average is zero. Half of the time, the
momentum is measured in the positive  direction and the other half in the negative  direction. These cancel one another and the
average result is zero.

Variance 
Quantum mechanics provides enough information to also calculate the variance of a theoretical infinite set of measurements. Based
on normal statistics, the variance of any value be calculated from

That result does not come from quantum mechanics, by the way. Quantum mechanics just tells us how to calculate the expectation
values. The above expression for variance can be applied to any set of measurements of any property on any system.

So, to calculate  and  it is simply necessary to know  and . Two of those quantities we already know from
the previous sections.

The variance in  

To calculate , we set up the usual expression.

From a table of integrals, it can be found that

Letting  and noting that  and  for any value of , we see that

Notice that this result has units of length squared (due to the  dependence) which is to be expected for .

Based on these results, it is easy to calculate the variance, and thus the standard deviation of the theoretical infinite set of
measurements of position.
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The variance in  

The relationship between energy and momentum simplifies the calculation of  greatly. Recall that

And since all of the energy in this system is kinetic energy, it follows that

Further,  (or  ) is simply the energy expression since the wavefunctions are eigenfunctions of the Hamiltonian! 

Basically, this means that the expectation value for energy for a system in an eigenstate is always given by the eigenvalue of the
Hamiltonian. In a later section we’ll discuss the expectation value of energy when the system is not in an eigenstate.

Another important aspect of the above relationship is how the integral simply went away. It didn’t, really. It’s just that the
wavefunctions are normalized, so the integral is unity. Recall that for orthonormalized wavefunctions

which is a property of which we will make great use throughout our development of quantum theory.

So from the result for the expectation value for energy, it follows that

Note that the variance of the position measurement decreases with increasing .

For momentum, the variance is given by

The variance of momentum measurements increases with increasing  !
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We shall place these results on hold for now, and revisit them when we look at the Heisenberg Uncertainty Principle. But in order
to make sense of that rather important consequence of quantum theory, we must first examine commutators and the relationship
between pairs of operators as this will have a profound impact on what can be known (or measured) by their associated physical
observables.

The Heisenberg Uncertainty Principle 

One of the more interesting (and controversial!) consequences of the quantum theory can be seen in the Heisenberg Uncertainty
Principle. Before examining the Heisenberg Uncertainty principle, it is necessary to examine the relationship that can exist between
a pair of quantum mechanical operators. In order to do this, we define an operator for operators, called the commutator.

The Commutator 

For a pair of operators  and , the commutator  is defined as follows

If the end result of the commutator operating on  is zero, then the two operations are said to commute. This means that for the
particular pair of operations, it does not matter which order they on the function - the same result is obtained either way.

Relationships for Commutators 

There are a number of important mathematical relationships for commutators. First, every operator commutes with itself, and with
any power of itself.

Second, given the definition of the commutator relationship, it should be fairly obvious that

Also, there is a linearity relationship for commutators (of linear operators).

Proof: Show that two operators have a common set of eigenfunctions, the operators must commute.

Solution: Consider operators  and  that have the same set of eigenfunctions  such that

For any arbitrary function  that can be expressed as a linear combination of 

the commutator of  and  operating on  will give the following result.

And since  and  are linear (as all quantum mechanical operators must be)
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f(x)

[ , ] = 0Â Â
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And so it is clear that the operators  and  must commute.

When Operators do not Commute 

An example of operators that do not commute are  and . The commutator of these two operators is evaluated below, using a
well-behaved function .

The second term requires the product rule to evaluate. Recall that

And so the above expression can be simplified by noting that

And so

So the final result of the operation is to multiply the function by . Another way to state this is to note

The Heisenberg Uncertainty Principle 

Among the many contributions that Werner Heisenberg made to the development of quantum theory, one of the most important was
the discovery of the uncertainty principle. Heisenberg’s observation was based on the prediction of interference of electron beams
that was predicted by de Broglie. The uncertainty principle states that for the observables corresponding to a pair of operators 
and , the following result must hold

The most popularly taught statement of the uncertainty principle is based on the uncertainty product for position and momentum.

This result is easy to derive from the above expression.
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n

cnbnϕn B̂ ∑
n

cnanϕn

= −∑
n

cnbnÂϕn ∑
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As we saw in a previous section, we have a means of evaluating  and  to verify this relationship for a given state of a particle
in a box. (This evaluation is left as an exercise.)

This page titled 2.4: The Tools of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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2.5: Superposition and Completeness
As stated previously, a system need not be in a state that is described by a single eigenfunction of the Hamiltonian. A system can be
prepared such that any well-behaved, single valued, smooth function that vanishes at endpoints. When the wavefunction is not an
eigenfunction of the Hamiltonian, the Superposition Principle can be used to greatly simplify how we work with the wave
function. This is true because the so-called normal solutions  to the Schrödinger Equation

using the language of linear algebra, span the space of well-behaved functions that can describe the physics of the particle. That
means that any arbitrary function that is 1) continuous, and 2) obeys the boundary conditions, can be expressed as a linear
combination of these normal solutions:

where the coefficients  are calculated using the Fourier Transform shown below.

Superposition 

This description also has a number of other important ramifications. Consider a particle in a box system prepared so that the
wavefunction is given by

where

The first question one might ask is, "Is the wavefunction  normalized?" Well, let’s see!

(Notice how the property  has been used to simplify the problem, by making the integral of the cross product in the
middle vanish, and the integrals of the first and third terms go to unity.) So the wavefunction is normalized. Now, let’s evaluate the
expectation value of energy .
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So the expectation value is given by the average of  and . This result is only possible if half of the time the energy is
measured, the observed value is  and the other half . In other words, the probability of measuring  is  and that of  is .
It is also important to note that these probabilities are given by the Fourier coefficients of

It can be concluded that the probability of measuring  is given by .

Completeness 

Imagine the following scenario. A quantum mechanical particle of mass  in a onedimensional box of length  is prepared such
that its wavefunction is given by . Instantaneously, the length of the box increases to . The particle is no longer in an
eigenstate of the new system. Rather, its wavefunction will look like the function depicted below in the MatchCad worksheet.

The function can be described as a superposition of wavefunctions that are eigenfunctions of the Hamiltonian that reflects the new
length of the box. A MathCad worksheet that reflects this expansion is given on the next page. The larger the value of  selected,
the better the representation of the wavefunction.

⟨E⟩ = Ψ Ψdx∫
a

0
Ĥ
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Figure 

The above problem is analogous to what happens when an atom undergoes radioactive decay by something such as -particle
emission from the nucleus. In that case, the nuclear charge suddenly changes (changing the potential energy function and thus the
Hamiltonian.) The change happens effectively instantaneously compared to the time required for the atom to react. The atom
suddenly finds itself in a non-eigenstate, the nature of which will govern how the atom changes in time to respond to the nuclear
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decay. The superposition of eigenfunctions of the new Hamiltonian will give a description of the atom immediately following the
decay, and the overall wavefunction will evolve in time based on how it is predicted to do so according to the fifth postulate.

The superposition theorem allows for a complete description of a wavefunction according to the needs to the quantum theory - even
if the wavefunction being described by a superposition of states is not an eigenfunction of the Hamiltonian! (Now how much would
you pay?)

This page titled 2.5: Superposition and Completeness is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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2.6: Problems in Multiple Dimensions
As luck would have it, not all quantum mechanical problems are expressible in terms of a single dimension. In fact, most problems
will require multiple "dimensions" as they will involve not only electronic state descriptions, but also vibrational descriptions and
rotational descriptions as well. In this section, we will discuss how variables are separated in the multidimensional problems, using
a particle in a three-dimensional box as an example.

The Particle in a Rectangular Box 
Consider a particle of mass  constrained to a three dimensional rectangular box with sides of lengths  and  in the  and 
directions respectively. For this problem, the Hamiltonian will look as follows

One important thing to notice is that this Hamiltonian can be written as a sum of three separate operators, each affecting only a
single variable.

When the Hamiltonian takes a form like this, it will also be possible to express the eigenfunctions as a product of functions. Let’s
give it a try.

The time independent Schrödinger equation looks as follows

To simplify things, let’s gather variables and make the substitution

To proceed, we make an assumption that the wavefunction can be expressed as a product of functions.

The wave equation then becomes

Dividing both sides by  yields

Since each of these terms is in a different variable, the only way the equation can be true is if each term on the left is equal to a
constant. These constants are chosen in a convenient way so as to make the solution of the problem simple. So again, to proceed,
we make a substitution.
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where

These substitutions allow us to separate the problem into three problems in single variables. Further, we know what the solutions to
these equations are!

The total wavefunction, therefore is

And the energy levels can be expressed as

The key element to notice here is that the wavefunctions are expressed as a product and the eigenfunction as a sum. This is a
common pattern as it always happens when the operator can be expressed as a sum as was the case for this operator.

This pattern arises often in chemistry, where, for example, the total wavefunction of a molecule might be described as the product
of wavefunctions describing the electronic state, the vibrational state and the rotational state.

In the limit that this is a good description, the energy of the molecule can be expressed as a sum of energies.

Degeneracy 
Let’s now consider the case where the particle is confined to a cubic space - a rectangular solid where all edges have the same
length. If that length is , the wavefunction becomes

The energy levels are given by

This result leads to an important possibility. Specifically, several eigenstates of the system can have the same energy. Consider the
set of quantum numbers and energies shown in the following table.
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Notice that several energies can be generated by a number of combinations of quantum numbers. The degeneracy is indicated by
the number of quantum states that yield the same energy. There are many examples in quantum mechanics where several
eigenstates yield the same energy. This can have important consequences on the nature of the system being described. This is
perhaps the simplest system in which this phenomenon is observed. (Well, a particle in a 2-D box is simpler.)

Level Degeneracy

1 1 1 1 3 1

2 1 1 2 6 3

3 1 2 1 6 3

4 2 1 1 6 3

5 1 2 2 9 3

6 2 1 2 9 3

7 2 2 1 9 3

8 1 1 3 11 3

9 1 3 1 11 3

10 3 1 1 11 3

11 2 2 2 12 1

12 1 2 3 14 6

13 2 3 1 14 6

14 3 2 1 14 6

15 1 3 2 14 6

16 3 2 1 14 6

17 2 1 3 14 6

Linear Combinations of Degenerate Wavefunctions 
Oftentimes, it is convenient to describe systems using linear combinations of wavefunctions. An example of this is the creation of
molecular orbitals as linear combinations of atomic orbitals. Another is the construction of hybrid orbitals such as the  hybrid
set that is often used to describe the bonding in methane or other hydrocarbons.

These linear combinations have important properties. In the case that the basis wavefunctions are degenerate eigenfunctions of the
same operator (say, the Hamiltonian operator for instance) the linear combinations will also be eigenfunctions of that operator.
However, this will not generally be the case for linear combinations of non-degenerate eigenfunctions. The proof of this is fairly
straight forward.

Proof: Show that any linear combination of two functions that are eigenfunctions of the same operator, and have the same
eigenvalues is also an eigenfunction of the operator.

Solution: Consider two functions  and  that are eigenfunctions of the operator .

Any linear combination of the functions  and  will also be an eigenfunction of the operator .

nX ny nz E/( /8 )h2 ma2

sp3

 Theorem 2.6.1

f g Â

 Âf  = af  and  g = agÂ

f g Â
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The Particle on a Ring Problem 
Consider a quantum mechanical particle of mass  constrained to a circular path of radius . In Cartesian coordinates, we can
write the potential energy function for this system as

However, it is much more convenient to work in coordinates that reflect the symmetry of the problem. In plane polar coordinates,
the potential energy function is defined as

And since the Laplacian operator is given by

we can write the time-independent Schrödinger equation as

As usual, we proceed by separating variables. Let’s let . We now get

Now we can divide both sides by the function  and simply get rid of it. In this problem the only thing we need to know about
the  is that is it a constant . 

So after a trivial rearrangement, we see

This is starting to look more like something we can manage to solve by inspection! Let’s make a substitution. Let

We’ll evaluate  later. But now it is easy to show that

is a solution to the eigenvalue, eigenfunction problem. Let’s try!

So the eigenfunctions are given by  and the eigenvalues are given by .

To proceed, we will employ a cyclical boundary condition. Since all wavefunctions must be single valued, we see that
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So ...

Or dividing both sides by , we see

This is going to quantize the possible values which  can take. And since the Euler relation tells us that

we see that

which can only be true if  is an integer. As it turns out, it doesn’t matter if  is positive or negative. It just has to be an integer.

As promised, this quantizes the energies possible for the system.

where the moment of inertia  is given by the mass times the radius squared.

Finally, we can obtain the value of the normalization constant  to normalize the wavefunctions.

And we see that

So, in summary, the wavefunctions are given by

And the energies are given by

This page titled 2.6: Problems in Multiple Dimensions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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2.7: The Free Electron Model
Consider a long molecule that is a conjugated polyene. Kuhn (Kuhn, 1949) has suggested a model for the electrons involved in this 

-bond system in which an electron is said to have a finite potential energy when it is "on" the molecule and an infinite potential
energy when it is "off" the molecule. The model (known as the free electron model) is very much analogous to the particle in a box
problem as we have presented it in class.

Let’s consider a conjugated polyene molecule in which there are twelve atoms in the conjugated polyene chain. Each atom
contributes one  electron and each bond contributes  (the  bond length in benzene.) We can consider each energy
level in the system as one orbital. As in all other cases involving electrons, each orbital can contain two electrons. Using the model,
we can predict the wavelength of light the molecule will absorb to excite one electron from the HOMO to the LUMO (highest
occupied molecular orbital to the lowest unoccupied molecular orbital.)

First, there are 11 bonds in the chain. Since each bond contributes , the "box" is  long. The energy levels of the
molecular orbitals are then given by:

where  is Plank’s constant  is the mass of an electron   and 
is the length of the box .

The energy levels will be filled with the  electrons packing two electrons per orbital. Thus, the HOMO will be the state with 
. The LUMO will be the state with  - the next state up in energy. The difference in energy is what we want in order to

predict the wavelength of light the molecule will absorb.

So the energy of excitation will be . This corresponds to an absorption wavelength of  (which is in the
visible region of the spectrum.) How would the absorption wavelength change for more or fewer atoms in the conjugated polyene
chain? The solution is left as an exercise.

This page titled 2.7: The Free Electron Model is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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2.8: Entanglement and Schrödinger's Cat
There are many elements of the quantum theory that produce bizarre results (at least compared to our intuition as residents in a
classical physics world. As it turns out, some of the early pioneers of a quantum theory (such as Albert Einstein and Erin
Schrödinger) found these elements of strangeness too much to handle. Both expended a great deal of energy to eliminate quantum
mechanics as an accepted theory that would shape modern science. As it turns out, all of the bizarreness predicted by quantum
mechanics has withstood the tests of experimentation, despite the concerns and well-thought objections of these two scientific
giants.

Entanglement and Spooky Action at a Distance 
One of Einstein’s objections came in the form of what he named "spooky action at a distance." To understand this phenomenon,
consider the decomposition of a p-meson into an electron and a positron. Since the original particle has zero spin, in order to
conserve angular momentum, must be "spinning" in opposite directions. In other words, one has  and the other has 

.

The wavefunction that describes this system prior to the measurement of the spin of either particle is given by

which allows for the possibility that either particle is spin up or spin down to be equally lightly. But the spins of the two particles
are intimately coupled to one another. If the electron is spin up  then the positron must be spin down  (and vice
versa.) This property is an example of entanglement where the properties of one particle are entangled with those of the other
through the wavefunction that describes the entire system.

Now suppose that the spin of the electron is measured and determined, the spin of the other is determined at the same time. As
such, the measurement of the property of one particle causes the wavefunction of the other particle to change instantaneously. This
is what Einstein referred to as "spooky action at a distance." This action would require information to be transferred across space at
a speed faster than the speed of light, violating Einstein’s theory of relativity.

This paradox has been studied extensively and remains a topic of research interest. It should be noted that whenever these sort of
issues crop up, it is quantum mechanics that seems to prevail over relativity. (Sorry Einstein!)

Schrödinger’s Cat 

Erwin Schrödinger’s involvement in trying to dissuade the scientific community from embracing quantum theory is particularly
peculiar, as it was the development of the wave equation that is still used today that won him the Nobel Prize in 1933. None the
less, Schrödinger found himself quite troubled by the conclusions of the quantum theory. Toward that end, in 1935, he published a
paper in which he described a thought experiment that had to give the scientific world pause where quantum theory was concerned.

The problem was stated thusly. Imagine a box inside of which no observation could be made unless the box was opened. Inside,
was placed a cat, a bottle of poison (prussic acid) and a radioactive atom. If the atom decays, a hammer will drop on the poison,
killing the cat. The experiment was to wait one half-life of the atom. At that point, the wavefunction for the atom was given by

This implies that it is equally likely that the atom has decayed as not decayed. And since the life of the cat was tied to the state of
the atom, it is equally likely that the cat is dead or alive. Therefore, the "wavefunction" for the cat would be given by

This implies that the cat is neither dead nor alive, but both with equal probability! And even for the most lethargic of cats, it is very
clear that animal is either alive or not. The notion that it is both is simply preposterous! This is the conclusion of which
Schrödinger hoped to convince the scientific world. Alas, experimentation has failed to uphold Schrödinger’s notion that quantum
mechanics provides an incorrect description of the atom.
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There have been numerous treatises on these topics and beyond. (The strangeness of quantum mechanics has been a very thought
provoking topic indeed!) After completing a course in quantum mechanics (such as this one) a student should be well prepared to
explore some of these very intriguing and perplexing predictions.

This page titled 2.8: Entanglement and Schrödinger's Cat is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420948?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.08%3A_Entanglement_and_Schrodinger's_Cat
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


2.9.1 https://chem.libretexts.org/@go/page/420480

2.9: References
Kuhn, H. J. (1949). Journal of Chemical Physics, 17, 1198.

This page titled 2.9: References is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420480?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.09%3A_References
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.09%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


2.10.1 https://chem.libretexts.org/@go/page/420481

2.10: Vocabulary and Concepts
commute

equation of motion

Hamiltonian

Heisenberg Uncertainty Principle

Kinetic Energy

orthogonal

spooky action at a distance

Superposition Principle

wavefunction

This page titled 2.10: Vocabulary and Concepts is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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2.11: Problems
1. Consider the functions  and .

a. Find a value for A such that  is normalized on the interval .
b. Are the functions  and  orthogonal over the interval  ?

2. Consider each of the following functions and the associated intervals. Indicate whether or not the given function is suitable as a
wavefunction over the given interval.
a. 
b. 
c. 
d. 
e. 

3. Consider the following operators. Determine whether or not they are Hermitian. 
a.  
b.  
c.  
d. 

4. Consider an operator Â and associated set of eigenfunctions  that satisfies

Show that if the operator is Hermitian that the eigenvalues  must be real-valued.

5. Consider the data in the table.
a. Calculate  and .
b. Calculate  for the data set.
c. Does  ? If not, what is the difference?

6. Consider a particle of mass  in a rectangular solid box with edge lengths given by  a, . Find the
degeneracies of the first 10 energy levels for the system.

1

2

3

4

5

7. Consider a particle of mass  that is in a one-dimensional box of length . The system is prepared so that the wavefunction is
given by .
a. Find a value of  that normalizes the wavefunction.
b. Find the expectation values for  and  and .
c. Find the expectation values for  and  and ).
d. Given that the variance for a measurement is given by  calculate the variances  and .
e. Find the value of . Does it exceed  ?

8. Consider a particle of mass  in a box of length . The system is prepared such that the wavefunction is given by 
.

a. Find a value of A that normalizes the wavefunction.
b. What are the units on the wavefunction?
c. Find .
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d. Is  ? Why or why not?

9. Consider the following pairs of operators and determine whether or not the operators commute. 
a.  
b.  
c. 

10. Consider a particle of mass  in a box of length  for which the wavefunction is given by

where .

a. Show that the wavefunction  is normalized.
b. Graph the wavefunction .
c. What is the expectation value for energy  for the system?
d. What is the most likely energy to be measured for the system?

11. Consider benzene  as modeled using the free-electron model.
a. Using a  bond length of , calculate the circumference of the ring and its radius.
b. Based on the model, what are the degeneracies of the four lowest energy levels?
c. Placing two electrons per particle-on-a-ring "orbital", calculate the energy gap (and corresponding wavelength of light

driving a transition) between the HOMO and the LUMO based on this model.
d. How does the value you found in part c compare to the observed band-origin of the  transition of benzene 

 ?

This page titled 2.11: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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1

CHAPTER OVERVIEW

3: An Introduction to Group Theory
Many problems in chemistry can be simplified based on the symmetry of molecules and/or the symmetries of atomic and molecular
orbitals. Since this course will deal mostly in the mathematical models used to describe molecular motions (rotations and vibration)
and the orbitals needed to describe the electronic structure of atoms and molecules, some introduction to the mathematics of
symmetry is useful. The concepts discussed in this chapter will be used through the text to demonstrate how symmetry can be used
to simplify the descriptions of atomic and molecular behavior.

3.1: Overview
3.2: Group Theory in Chemistry
3.3: Determining the Point Group for a Molecule- the Schoenflies notation
3.4: Multiplication Operation for Symmetry Elements
3.5: More Definitions- Order and Class
3.6: Representations
3.7: The "Great Orthogonality Theorem"
3.8: Character and Character Tables
3.9: Direct Products
3.10: Vocabulary and Concepts
3.11: Problems
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3.1: Overview
Group Theory is the mathematical theory associated with the mathematical properties of groups. In chemistry, group theory is the
mathematics of symmetry. A group ( ) is a set of elements ( , , etc.) that can be associated through a mathematical operation
(sometimes referred to as a multiplication operation, eg. ) and satisfying the following criteria:

1. The group must have an identity element ( ) such that for each element A in the group, . (It can be
proven that for a given group and multiplication operation, the identity element is unique.)

2. Each element  in the group must have an inverse ( ) that is also a member of the group and that satisfies the criterion 
. (It can be proven that each element has one and only one inverse.)

3. The group must be closed under multiplication. That means that for any pair of elements in the group A and B for which 
,  must also be a member of the group.

Note that the multiplication operation need not be commutative. The order of multiplication may matter. There is no guarantee that
. Many groups that satisfy this property are called abelian groups.

The set of numbers 1 and –1 form an abelian group under the normal operation of simple multiplication. A simple group
multiplication table table can be constructed for this group.

1 -1

1 1 -1

-1 -1 1

Clearly, the identity element in this group is 1 since multiplication by 1 gives the same number back. Also, both members happen
to be their own inverse since

 and 
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3.2: Group Theory in Chemistry
In Chemistry, group theory is useful in understanding the ramifications of symmetry within chemical bonding, quantum mechanics
and spectroscopy. The group elements we are concerned with are symmetry operations.

Symbol Operation Description Element Mathematical example

E identity
This is the “don’t do
anything to it” operation

E.

Proper rotation

This is an operation in
which the object is
rotated about an axis by
an angle of  radians.
The axis will be referred
to as the “  axis”.

. The axis with the
largest value of n is
designated the “principle
rotation axis” and the z-
axis is always assigned
as lying along the
principle rotation axis.

Etc.

Reflection plane
This operation involves
reflection of the object
through a mirror plane.

,  or .  and 
contain the principle
rotation axis, whereas 
planes are perpendicular
to the principle rotation
axis.

(for reflection through
the  plane)

Inversion center
This operation involves
reflection trough a point.

i. The inversion center
(if it exists) will always
be located at the center
of mass of a molecule.

Improper rotation

This operation involves a
rotation through a 
axis followed by
reflection by a  plane.

.  

E(x, y, z) = (x, y, z)

Cn 2π
n

Cn

Cn

(x, y, z) = (y, −x, z)C4

(x, y, z) = (−x, −y, z)C2

σ

σv σd σh σv σd

σh

(x, y, z) = (−x, y, z)σv

yz

(x, y, z) = (x, y, −z)σh

(x, y, z) = (y, x, z)σd

i i(x, y, z) = (−x, −y, −z)

Sn
Cn

σh

Sn
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Figure 

A symmetry operation is a geometrical manipulation that leaves an object in a geometry that is indistinguishable from that which it
had before the manipulation. There are five important types of symmetry operations with which we are concerned. Each type of
operation has an associated symmetry element. Using standardized notation, these operations and elements can be summarized as
follows.

A given molecule may have several of the above symmetry elements. The particular combination will define a group, and that
group can be given a named based on the type of symmetry elements it contains. Further, all of the convenient wavefunctions that
describe the vibrations, rotations and molecular orbitals of the molecule will be eigenfunctions of the symmetry elements, forcing
some very useful mathematical properties upon the wavefunctions.

A tennis racquet has all of the same symmetry elements as a water molecule or a formaldehyde molecule. Let’s identify these
symmetry elements and write out a group multiplication table for the group to which that particular set belongs.

The most obvious symmetry element is always the identity element (E). Every object possesses this symmetry element. Some
objects are so asymmetrical that this is the only symmetry element they possess. Certainly, a tennis racquet possesses the
symmetry element E.

The next most useful element to examine is the reflection plane. An object may or may not possess this type of symmetry. A
tennis racquet has two vertical ( ) reflection planes. One is in the plane of the strings and the other is perpendicular to the face
of the racquet. This happens often that an object has more than one of a given type of symmetry element. For our purposes, we
will designate the plane that is perpendicular to the face of the racquet as  and the one that is parallel to the face of the
racquet as .

A tennis racquet possesses neither an inversion center ( ) nor an improper rotation axis ( ).

The set of symmetry elements that the object does possess ( , ,  and ) define a group that goes by the label . Any
object that has these and only these symmetry elements is said to have  symmetry. It is easy to demonstrate that the set of
symmetry elements that define  define a group.

3.2.1

 A case study: the symmetry of a tennis racket

σv

σv
σ′
v

i Sn

E C2 σv σ′
v C2v

C2v

C2v

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420484?pdf


3.2.3 https://chem.libretexts.org/@go/page/420484

This page titled 3.2: Group Theory in Chemistry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420484?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.02%3A_Group_Theory_in_Chemistry
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


3.3.1 https://chem.libretexts.org/@go/page/420485

3.3: Determining the Point Group for a Molecule- the Schoenflies notation
The first step in determining the point group for a molecule is to determine the structure of the molecule. Once this is done, identify
all of the symmetry elements the molecular structure possesses. Once this has been accomplished, you can use the preceding
flowchart to determine the correct point group using the Scheonflies notation system.

Determine the point group for a methane molecule.

Solution
A methane molecules has tetrahedral symmetry. It contains the following symmetry elements: E, 4  (one each along a C-H
bond) axes, 6  planes (one each containing the carbon and a pair of hydrogen atoms), 3  axes (each on bisecting an HCH
bond angle.) It also has 3  axes (each one co-linear with a  axis.) The molecule belongs to the point group , as can be
discerned from the following analysis.

Figure 

1. Is the molecular Linear? No
2. Does the molecule have two or more  axes? Yes
3. Does the molecule have a  axis? No
4. Does the molecule have any  planes? Yes
5. Does the molecule have an inversion center? No

The molecule belongs to the  Point Group.

Determine the point group for .

Solution
Chloromethane has the same tetrahedral shape as methane, but belongs to the point group . The molecule has the following
symmetry elements: ,  (along the C-Cl bond axis) and 3  planes (each containing the chlorine and carbon atoms plus
one hydrogen atom. The classification of the molecule goes as follows:

Figure 

1. Is the molecule linear? No
2. Does the molecule have two or more  axes? No
3. Does the molecule have a  axis? Yes
4. Are there n  axes perpendicular to the principle axis? No
5. Does the molecule have a  plane? No
6. Does it have n  planes? Yes

 Example 3.3.1

C3

σ C2

S4 C2 Td

3.3.1

Cn≥3

Cn≥4

σ

Td

 Example 3.3.2

C ClH3

C3v

E C3 σv

3.3.2

Cn≥3

Cn

C2

σh

σv
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The molecule belongs to the  point group.

Determine the point group for benzene.

Solution
Benzene has a planar geometry and belongs to the point group D . The molecule possesses the following symmetry elements: 

, , 6 , 6 ,  and i. The classification of the molecule goes as follows:

Figure 

1. Is the molecule linear? No
2. Does the molecule have two or more  axes? No
3. Does the molecule have a  axis? (n = 6 for benzene) Yes
4. Are there n  axes perpendicular to the principle axis? Yes
5. Does the molecule have a  plane? Yes

The molecule belongs to the point group 

Classify ethane by its point group.

Solution
Ethene has a planar geometry. The molecule possesses the following symmetry elements: , 3 , 3 , and . The
classification of the molecule goes as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more  axes? No
3. Does the molecule have a  axis? Yes ( )
4. Are there n  axes perpendicular to the principle axis? Yes
5. Does the molecule have a  plane? Yes

The molecule belongs to the  point group.

Classify the isomers of dichloroethene by their point groups.

Solution
Dichloroethene has three isomers. All of them have a planar geometry. The cis- and gem- isomers have the following
symmetry elements: , , and . (The 1,1- (or gem-) isomer has the same elements as the cis- isomer.) The classification
of the molecule goes as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more  axes? No
3. Does the molecule have a  axis? Yes ( )
4. Are there  axes perpendicular to the principle axis? No
5. Does the molecule have a  plane? No

C3v

 Example 3.3.3

6h

E C6 C2 σv σh

3.3.3

Cn≥3

Cn

C2

σh

D6h

 Example 3.3.4

E C2 σ i

Cn≥3

Cn n = 2

C2

σh

D2h

 Example 3.3.5

E C2 2σv

Cn≥3

Cn n = 2

nC2

σh
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6. Does the molecule have  planes? Yes

The cis-isomer belongs to the  point group.

The trans-isomer has the following symmetry elements: , , , and . The classification of the molecule goes as follows:

1. Is the molecule linear? No
2. Does the molecule have two or more  axes? No
3. Does the molecule have a  axis? Yes ( )
4. Are there  axes perpendicular to the principle axis? No
5. Does the molecule have a  plane? Yes

The trans-isomer belongs to the  point group.

This page titled 3.3: Determining the Point Group for a Molecule- the Schoenflies notation is shared under a CC BY-NC-SA 4.0 license and was
authored, remixed, and/or curated by Patrick Fleming.

nσv

C2v

E C2 σh i

Cn≥3

Cn n = 2

nC2

σh

C2h
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3.4: Multiplication Operation for Symmetry Elements
Multiplication is fairly simple when it comes to symmetry operations. One simply applies the operations from right to left. Going
back to the tennis racket example, it is fairly simple to visualize each symmetry element. To show this, it is useful to construct a
group multiplication table. To do this, it is useful to pick a corner of the object and imagine where it is transported under a pair of
sequential operations. Then imagine what operation will affect the same transformation directly. By applying them pairwise, one
can generate the group multiplication table:

What should jump right out from this multiplication table is that the group  1) is abelian (actually, this will become clear after
the term is defined) and 2) has the property that each element happens to be its own inverse! For some objects (such as a three-
legged stool or an ammonia molecule) this will not be the case.

This page titled 3.4: Multiplication Operation for Symmetry Elements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Patrick Fleming.

C2v E C2 σv σ′
v

E E C2 σv σ′
v

C2 C2 E σ′
v σv

σv σv σ′
v E C2

σ′
v σ′

v σv C2 E

C2v
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3.5: More Definitions- Order and Class
An important definition is the order of a group. The order ( ) is simply the number of symmetry elements in the group. For the 

 point group, the order is .

Another important concept defines the number of classes of operations a point group contains. Two operations (  and ) belong to
the same class if there is a third operation ( ) in the group that relates them by the similarity transform

According to this definition, the operations  and  are said to be complementary. A complete set of complementary operations
within a group defines a class. This will be demonstrated later, using the  point group operations.

In the case of the  point group, no two elements are in the same class. This has some very important ramifications for the point
group. A group for which this the case is said to be an abelian group. Not all point groups will have this property however.

This page titled 3.5: More Definitions- Order and Class is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.

h

C2v h = 4

A B

C

AC = BC −1

A B
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C2v
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3.6: Representations
A representation is any mathematical construct that will reproduce the group multiplication table. In general, there are an infinite
number of representations possible for a given group, however, most of them will be related through simple relationships, and thus
can be constructed from (or reduced to) other representations. Those that cannot be reduced to linear combinations of other
representations are called irreducible representations. The irreducible representations are particularly useful as they can be used
to predict the mathematical properties of any function that is an eigenfunction of all of the symmetry elements of a group. The
number of classes of operations always gives the number of irreducible representations. Each irreducible representation can be
labeled as .

To construct a representation for a group, one must assign each operation a mathematical element. For the  point group, we can
get away with using either 1 or –1 for each element. (This is a consequence of each operation belonging to its own class.) The
simplest representation can be constructed by assigning each symmetry element as 1. The group multiplication table will hold, as
can be seen below.

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Note that each product gives a value that corresponds to the correct element. For example, we let  = 1 and  = 1. The product
of  *  yields . And since the value we assigned = 1 . . and . . everything worked. This particular representation
seems pretty trivial since it has to work for any multiplication table that can ever be written! In fact, every point group has this type
of representation. Since 1 gives all of the elements of this representation, this is called the totally symmetric representation.

Another representation (  ) can be constructed in which E and  are represented by a 1 and  and are represented by –1. In
this case, the multiplication table looks as follows:

1 1 -1 -1

1 1 1 -1 -1

1 1 1 -1 -1

-1 -1 -1 1 1

-1 -1 -1 1 1

It should be clear again (or easily enough verified) that this has the same pattern as the group multiplication table.

Two other representations can be constructed in this manner (with all of the elements given as either 1 or –1). Together with the
first representation, these can be summarized as in the following table.

E

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

These irreducible representations (  ) go by a standardized set of naming rules. First, the irreducible representations are all singly
degenerate (no two-by-two or three-by-three matrices were needed for the representations) so all of the irreducible representations
are given the symbol A or B. A is used if the representation is symmetric (1) with respect to the principle rotation axis (  ) and B

Γi

C2v

C2v

C2 σv

C2 σv σ′
v σ′

v 1 ∗ 1 = 1

Γ2 C2 σv  σ′
v

C2v

C2v C2 σv σ′
v

Γ1 A1

Γ2 A2

Γ3 B1

Γ4 B2

Γi

C2
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if it is antisymmetric (-1) with respect to the principle axis. The subscript is 1 if the representation is symmetric with respect to the 
 reflection plane, and 2 if the representation is antisymmetric with respect to this plane of reflection. If an irreducible

representation requires a set of two-by-two matrices, the representation is designated E, and three-by-three matrix irreducible
representations are labeled T.

We’ll discuss more on the difference between a reducible and irreducible representation later. First, lets work through a slightly
more difficult point group. The  point group is not abelian and requires matrices for some of the irreducible representations.

The Symmetry of a Triangular Pyramid: a more complex point group 
An example of a point group that requires two-by-two matrix elements for the irreducible representations is the  point group.
This point group (which describes the symmetry elements of an ammonia molecule or a pyramid with an equilateral triangular
base) consists of the symmetry elements , ,  (or ), , and .

In the figure to the left, the  axis runs perpendicular to the base of the pyramid (you are looking straight down on the top of the
pyramid) and the  operation might correspond to a clockwise rotation of the figure about that axis. The  axis is the same as
the  axis, but the  operation corresponds to a counterclockwise rotation by  radians. Note that this operation is equivalent
to performing the  operation twice (hence the alternative notation of .) The , and  elements are reflection planes that
lie perpendicular to the base, but each containing one edge of the pyramid. The reader is left to imagine the identity element.

If the corners of the base of the pyramid are labeled for convenience, the effect of each symmetry operation can be represented as
follows.

Following these permutations, it is possible to construct the group multiplication table. The group multiplication table for this
group (  ) looks as follows:

E

E E

E

E

E

E

E

From this information, it is possible to separate the operations into classes. Note, for example that  and 
and . Using these relationships, the similarity transforms of  involving these operations all yield .

Similarly, the similarity transforms on  using these operations all yield .

This is sufficient to indicate that the operations  and  belong to the same class. However, to show that these are the only two
operations in this class. Consider the similarity transforms based on the operators E,  and  on  :

σv

C3v

C3v

E C3 C ′
3 C 2

3 σv σ′
v σ′′

v

C3

C3 C ′
3

C3 C ′
3

2π/3
C3 C 2

3
σv σ′

v σ′′
v

E ∗ (1, 2, 3) = (1, 2, 3) ∗ (1, 2, 3) = (1, 3, 2)σv

∗ (1, 2, 3) = (3, 1, 2) ∗ (1, 2, 3) = (3, 2, 1)C3 σ′
v

∗ (1, 2, 3) = (2, 3, 1) ” ∗ (1, 2, 3) = (2, 1, 3)C 2
3 σv

C3v

C3v C3 C
2

3
σv σ′

v σ′′
v

C3 C 2
3 σv σ′
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The fact that the result of a similarity transform on either  or  never results in , or , is a consequence of the proper
rotation operations belonging to a different class than the reflection planes. In fact, there are three classes of operations for this
point group. This implies that there are three irreducible representations for this point group.

Figure 

Another useful approach is to use matrix operators to affect the changes to the object caused by the symmetry operation. The
choice of matrix operators depends on the basis set of functions being used to model the system. In this case, we will use position
vectors of the corners of the bas of the pyramid. Other choices of basis might be the atomic orbitals on the atoms in a molecule.
This is a very convenient choice when the task of constructing symmetry-adapted linear combinations of atomic orbitals for the
purpose of modeling molecular orbitals. But I digress . . .

Consider the position vectors of the corners of the base of our trigonal pyramid. They can be specified by indicating the 
coordinates if the origin is located in the plane of the base along the axis where all of the symmetry elements intersect.

Corner x y z

1 0 0

2 1/2 0

3 -1/2 0

4 0 0 h

Only corners 1, 2 and 3 will be important since none of the symmetry elements moves the fourth corner! Assuming unit length for
the base edges and a height of h for the pyramid, the following table gives the  coordinates for each of the four corners.

From the previous discussion, we have already determined the effects of each of the symmetry operations.

The task now is to construct matrix representations for each of the symmetry operations that will affect the above stated changes
when matrix multiplication is used as the operation.

The identity element is easy. It will be the 3x3 identity matrix given by

(E ∗ ∗ E = (E ∗ ) ∗ E = E ∗ =)−1 C3 C3 C3 C3

( ∗ ∗ = ( ∗ ) ∗ = E ∗ =C3)−1 C3 C3 C 2
3 C3 C3 C3 C3

( ∗ ∗ = ( ∗ ) ∗ = ∗ =C 2
3 )−1 C3 C 2

3 C3 C3 C 2
3 C 2

3 C 2
3 C3

C3 C 2
3 σv σ′

v σ′′
v

3.6.1

(x, y, z)
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–

√
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∗ (1, 2, 3) = (3, 1, 2) ∗ (1, 2, 3) = (3, 2, 1)C3 σ′
v

∗ (1, 2, 3) = (2, 3, 1) ∗ (1, 2, 3) = (2, 1, 3)C 2
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v
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⎛
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This is easily confirmed since

for any choice of ,  and . The other operations are a little trickier, but not too hard. It can be shown that the matrix that affects a
rotation of  radians about the z-axis is given by

So that the resultant of this operation is given by

For a rotation of  radians, it is useful to note the following.

So the transformation of corner 1 of the pyramid is accomplished as follows for the  operation.

The operation has transformed corner 1 into corner 3. It is also easily shown that the operator matrix also transforms corner 2 into
corner 1, and corner 3 into corner 2. This is just as expected according to the expression shown above:

Additionally, the matrix must satisfy the multiplication table relationship of .

This is the rotation matrix for a rotation of  radians. Hence, the product worked out as expected since the  operation is
equivalent to the rotation of  radians.

The matrix representations for the  planes can be worked out by one of two methods. One is to set up the matrix equation for
how a point is transformed. The other is by using the group multiplication table to generate a matrix as the product of two other
operations in the group for which the matrix has already been established.

To demonstrate these methods, recall from above that the  operation exchanges corners 2 and 3. The matrix for this operation
must satisfy the following expression:

The matrix that will affect this transformation is:

Now, using the group multiplication table, we can generate and  by the relationships
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1 1 1

-1 -1 -1

E

or

The set of matrices can now be used as a representation of the group. However, these matrices can be seen as a reproducible
representation of the group since they are in block-diagonal form.

This representation can be broken down into two simpler representations. The first consists only of the lower right block of each of
the matrices above. This yields the totally symmetric representation. The other is a representation of 2x2 matrices that are made
from the upper left block of each of the matrices above. There is one other irreducible representation for the  point group. It is
given in the table below without derivation, but it is easy to demonstrate that it satisfies the group multiplication table.

E C

1 1 1

1 1 1

E
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3.7: The "Great Orthogonality Theorem"
One thing that is important about irreducible representations is that they are orthogonal. This is the property that makes group
theory so very useful in chemistry, because orthogonality makes integrals zero. It’s always easier to do the integrals when
orthogonality tells us the result will be zero before doing any complicated math!

The Great Orthogonality Theorem (GOT) can be stated:

(Any theorem with that many subscripts must have something truly useful to say!) In this notation,  indicates the row m,
column n element of the  irreducible representation for symmetry operation R. The m and n are needed since not all irreducible
representations are made up of just 1 and –1. Many irreducible representations need to use matrices to represent each symmetry
element. For these cases,  gives the dimension of the matrices used in the . In our example of the  point group, all
irreducible representations have , so the GOT can be stated more simply (for this point group specifically) as

Consider applying this statement to the  and  irreducible representations (  and  ) for the  point group.

Similarly, considering using the GOT on just  (the  irreproducible representation) yields the following

Recall that the order of the group (h) is 4 because there are four symmetry elements in the group.

In the case of the  point group, there is a 2x2 matrix representation. Consider the upper right member of each of the 
matrices (row 1, column 2) and apply the GOT to these elements along with the elements of .

Similarly, applying the GOT to the row 1, column 1 elements of  we see

Now tell me . . isn’t that truly a Great Orthogonality Theorem ? (Now how much would you pay?) Once we introduce the
concept of character, we will restate the GOT in terms of class characters.

This page titled 3.7: The "Great Orthogonality Theorem" is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.
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3.8: Character and Character Tables
Most summaries of group theory do not give the full matrix specifications for each irreducible representation in each important
point group. Rather, a very useful quantity is defined, called the character. An important property that elements of the same class
will share is that they have the same character. As such, it is only necessary to show the character once for each class of operations
in the group.

The character of an element is given by the sum of the diagonal elements of the matrix used to represent the symmetry operation.

C E C s

A 1 1 1

A 1 1 -1

E

To evaluate the characters of each of the classes within each irreproducible representation, we need only generate a representation
for one operation within each class. The three irreducible representations for some characteristic operators in each class can be
expressed as follows:

Using the expressions above, the character table for the  group can be expressed as

E 2 3 

1 1 1

1 1 -1

E 2 -1 0

Note that the character of the identity element is always given as the dimension of the matrices used in the irreducible
representation.

The GOT can be expressed in terms of characters.

This statement has a number of important and useful properties and consequences. One relationship deals with the sum of the
squares of the characters of the identity elements.

These expressions can be used to find and verify the characters for other point groups. For example, consider the partial character
table for the point group .

A typical kind of exam or quiz question might be to fill in the missing values. In this case, all of the values are missing! So let’s
tackle the problem based on what we know from definitions, and complete the problem by using of the GOT.

E 2 2 2 
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E 2 2 2 

     

     

E      

First off, the order of the group is . Second, every group has a totally symmetric representation. This is the  representation
and has members that are all 1. Let’s fill that in (using red for clarity.)

E 2 2 2 

     

     

     

E      

Additionally, we can fill in the column for the identity element. All of the A and B representations are singly degenerate, and the E
representation is doubly degenerate. So using the expression

That yields the following (shown in ):

E 2 2 2 

1 1 1 1 1

    

    

    

E     

And it clearly satisfies

Now using the definition that A representations have a character of 1 for the (are symmetric with respect to) the principle rotation
axis and B representations have a character of –1 for (or are antisymmetric with respect to) the principle axis rotation. Thus, we can
fill in

E 2 2 2 

1 1 1 1 1

1    

1    

1    

E 2    

C4v C4 C2 σv σd

B1

B2

h = 8 A1

C4v C4 C2 σv σd

A1 1 1 1 1 1

A2
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B2

= h∑
i

[ (E)]χi
2
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C4v C4 C2 σv σd

A1

A2 1

B1 1

B2 1

2

∑i [ (E)]χi
2

= (1 +(1 +(1 +(1 +(2)2 )1 )2 )1 )2

= 8 = h

C4v C4 C2 σv σd

A1

A2 1

B1 −1

B2 −1

?
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But should we do about the character of the  operation under the irreducible doubly degenerate representation E? One solution
comes from another important consequence of the GOT. This can be stated as

Using this relationship, we can solve for the character of the  operation under the E irreducible representation.

The only value of x that will satisfy this expression is x = 0. We can enter this value and also apply the definitions that the  and 
 representations are symmetric with respect to the  operation and the  and  representations are antisymmetric with

respect to .

E 2 2 2 

1 1 1 1 1

1 1   

1 -1   

1 -1   

E 2 0   

Again, the question mark can be removed as above.

Once again, as luck would have it, the only value of x that satisfies the equation is x = 0. Now, we can apply the GOT to the
representations for , and  to generate an equation with two unknowns to determine the characters of  and  for
representations  and . We can solve it because we know x and y can only be 1 or –1. (These are the only values possible for
singly degenerate representations.)

E 2 2 2 

1 1 1 1 1

1 1 -1

1 -1  1  

1 -1  -1  

E 2 0  0  

The only combination that works is  and . The character table now looks as follows:

Completion of the rest of the character table is left as an exercise.

This page titled 3.8: Character and Character Tables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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3.9: Direct Products
The intensity of a transition in the spectrum of a molecule is proportional to the magnitude squared of the transition moment matrix
element.

By knowing the symmetry of each part of the integrand, the symmetry of the product can be determined as the direct product of
the symmetries of each part ,  and . This is helpful, since the integrand must not be antisymmetric with respect to any
symmetry elements or the integral will vanish by symmetry. Before exploring that concept, let’s look at the concept of direct
products.

This is a concept many people have seen, in that the integral of an odd function over a symmetric interval, is zero. Recall what it
means to be an “odd function” or an “even function.

Symmetry definition Integrals

Even

Odd

Consider the function . A graph of this function looks as follows:

Figure 

One notes that the area under the curve on the side of the function for which  has exactly the same magnitude but opposite
sign of the area under the other side of the graph. Mathematically,

Intensity  ∝ ∫ (ψ ")dτ∣∣ ( )ψ′ ∗μ⃗  ∣∣
2

(ψ′)∗ (ψ”) μ

f(−x) = f(x) f(x)dx = 2 f(x)dx∫ a

−a
∫ a

0

f(−x) = −f(x) f(x)dx = 0∫ a

−a

f(x) = ( −3x)x3 e−x2

3.9.1

x > 0

f(x)dx∫ a

−a
= f(x)dx+ f(x)dx∫ 0

−a
∫ a

0

= − f(x)dx+ f(x)dx = 0∫ a

0
∫ a

0
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It is also interesting to note that the function f(x) can be expressed as the product of two functions, one of which is an odd function (
 ) and the other which is an even function (  ). The result is an odd function. By determining the symmetry of the

function as a product of the eigenvalues of the functions with respect to the inversion operator, as discussed below, one can derive a
similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator (in one dimension) affects a
change of sign on .

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either +1 or –1. For the function used in
the previous example,

where

 and 

Here,  is an odd function and  is an even function. The product is an odd function. This property is summarized for any 
, in the following table.

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x)

even even even 1 1 1

even odd odd 1 -1 -1

odd odd even -1 -1 1

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for the irreducible representation by which the
function transforms! In a similar manner, any function that can be expressed as a product of functions (like the integrand in the
transition moment matrix element) can be determined as the direct product of the irreducible representations by which each part of
the product transforms.

Consider the point group  as an example. Recall the character table for this point group.

E  ’

1 1 1 1 z  , 

1 -1 -1 1 y

1 -1 1 -1 x

1 1 -1 -1  

The direct product of irreducible representations can by the definition

So for the direct product of  and , the following table can be used.

E  ’

1 -1 1 -1

1 -1 -1 1

1 1 -1 -1

The product is actually the irreducible representation given by  ! As it turns out, the direct product will always yield a set of
characters that is either an irreducible representation of the group, or can be expressed as a sum of irreducible representations. This

−3xx3 e−x2

x

f(x) = f(−x)î

f(x) = g(x)h(x)

g(x) = −3xx3 h(x) = e−x2

g(x) h(x)

f(x) = g(x)h(x)

C2v

C2v C2 σv σv

A1 −x2 y2 z2

B2 Rx yz

B1 Ry xz

A2 Rz xy

(R) = (R) ⊗ (R)χprod χi χj

B1 B2

C2v C2 σv σv

B1

B2

⊗B1 B2

A2
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suggests that a multiplication table can be constructed. An example (for the  point group) is given below.

Studying this table reveals some useful generalizations. Two things in particular jump from the page. These are summarized in the
following tables.

A B

A A B

B B A

1 2

1 1 2

2 2 1

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric

symmetric*antisymmetric = antisymmetric

antisymmetric*antisymmetric = symmetric

Noting that A indicates that an irreducible representation is symmetric with respect to the  operation and B indicates that an
irreducible representation is antisymmetric . . and that the subscript 1 indicates that an irreducible representation is symmetric with
respect to the  operation, and that a subscript 2 indicates that an irreducible representation is antisymmetric . . the rest seems to
follow! Some point groups have irreducible representations use subscripts g/u or primes and double primes. The g/u subscript
indicates symmetry with respect to the inversion ( ) operator, and the prime/double prime indicates symmetry with respect to a 
plane (generally the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for products involving doubly degenerate
representations? As an example, consider the  point group.

E 2 3

1 1 1 z  

1 1 -1  

E 2 -1 0 ( ,  )

Consider the direct product of  and E.

E 2 3 

1 1 -1

E 2 -1 0

2 -1 0

C2v

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

C2

σv

i σ

C3v

C3v C3 σv

A1

A2 Rz

(x, y) Rx Ry

A2

C3v C3 σv

A2

⊗ EA2
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This product is clearly just the E representation. Now one other example – Consider the product .

E 2 3

E 2 -1 0

E 2 -1 0

4 1 0

To find the irreducible representations that comprise this reducible representation, we proceed in the same manner as determining
the number of vibrational modes belonging to each symmetry.

This allows us to build a table of direct products. Notice that the direct product always has the total dimensionality that is given by
the product of the dimensions.

E

E

E

E E E

The concepts developed in this chapter will be used extensively in the discussions of vibrational, rotational and electronic degrees
of freedom in atoms and molecules.

This page titled 3.9: Direct Products is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

E⊗E

C3v C3 σv

E ⊗ E

NA1

NA2

NE

=

=

=

[(1)(4) +2(1)(1) +3(1)(0)] = 1
1

6

[(1)(4) +2(1)(1) +3(−1)(0)] = 1
1

6

[(2)(4) +2(−1)(1) +3(0)(0)] = 1
1

6

C3v A1 A2

A1 A1 A2

A2 A2 A1

+ +EA1 A2
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3.10: Vocabulary and Concepts
abelian

abelian group

character

class

closed

commutative

complementary

direct product

Great Orthogonality Theorem

group

group multiplication table

Group Theory

identity element

inverse

irreducible representations

multiplication operation

order

principle rotation axis

representation

Scheonflies notation

similarity transform

symmetry element

symmetry operations

totally symmetric representation

This page titled 3.10: Vocabulary and Concepts is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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3.11: Problems
1. Find the symmetry elements and point groups for the following molecules

a. 
b. 
c. Pyridine
d. Naphthalene
e. 
f. 

2. Consider diazine, which has three isomers. Determine which isomer(s) has/have  symmetry and which has/have 
symmetry.

3. Complete the following character table.

E 2 A 2 B C 3 D 3 F

1 1 1 1 1 1

1 1 1 1 -1 -1

  1    

1 -1 1 -1 -1 1

  1    

  -1    

4. Complete the following direct product table.

     

   

    

     

     

5. Consider the following group multiplication table. Separate the operations into classes.

E A B C D F

E E A B C D F

A A B E F C D

B B E A D F C

C C D F E A B

D D F C B E A

F F C D A B E

6. Demonstrate that the , ,  and E irreducible representations are orthogonal to the  irreducible representation under the
point group .

SF4

CHCl3

ICl5
P Cl5

C2v D2h

A1

A2

B1

B2

E1

E2

C4h Ag Bg Eg Au Bu Eu

Ag Ag Bg Eg Au Bu Eu

Bg Bg

Eg Eg + +Ag Bg Eg + +Au Bu Eu

Au Au Ag

Bu Bu

Eu Eu

A2 B1 B2 A1

C4v
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7. A point group has 8 operations which fall into five classes. How many irreducible representations will it have? How many will
be singly degenerate? How many will be doubly degenerate?

This page titled 3.11: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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1

CHAPTER OVERVIEW

4: The Harmonic Oscillator and Vibrational Spectroscopy
One of the four important problems in quantum mechanics that can be solved analytically is that of the Harmonic Oscillator. This
problem is very important to chemists as it provides the model for vibrating molecules and explains what we see in infrared and
Raman spectra of molecules. In this chapter we will develop the problem, discuss the limitations of the simple problem and how we
deal with them, and the applications of the conclusions to molecular spectroscopy and the measurement of molecular properties.

4.1: The Potential Energy Surface for a Diatomic Molecule
4.2: Solving the Schrödinger Equation
4.3: Strengths and Weaknesses
4.4: Vibrational Spectroscopy Techniques
4.5: Group Theory Considerations
4.6: References
4.7: Vocabulary and Concepts
4.8: Problems

This page titled 4: The Harmonic Oscillator and Vibrational Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Patrick Fleming.
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4.1: The Potential Energy Surface for a Diatomic Molecule
5.2: The Equation for a Harmonic-Oscillator Model of a Diatomic Molecule Contains the Reduced Mass of the MoleculeConsider
the potential energy surface for a diatomic molecule. The functional form can be seen in the following graph.

Figure 

In the surface, it is easy to see the “hard wall” on the left side, where the repulsive force between atoms is strong (which is why the
curve is so steep) and the “soft wall” on the right side of the well, where the restorative force of the chemical bond exists. The bond
length at the potential minimum is indicated by , the equilibrium bond length.

The function can be expressed as a Taylor series expansion. For convenience, we can define  ). We will also define the
zero of energy to be the bottom of the potential well. Given these definitions and the Taylor expansion about  which can be
expressed by

We can evaluate these terms qualitatively based on the above diagram and the definitions provided above. The first two terms of
the expansion are zero, by the choice of the zero of energy and because the derivative is zero at the potential minimum. The third
and fourth terms are simplified by making the following substitutions

 and 

The new function can be rewritten as

And if the series is truncated at the  term, it yields the familiar Harmonic Oscillator potential energy function that corresponds to
a Hook’s Law oscillator.

Transforming to Center of Mass Coordinates 

Consider a diatomic molecule that can be modeled as two masses (  and  ) attached by a spring that has a force constant k.
The location of atom 1 is  and that of atom 2 is . The equilibrium length of the spring is .

Figure 

The force acting on either atom can be expressed in two ways.

4.1.1

re

x = (r−re
x = 0

U(x) = U(0) + (x) + ( ) + ( ) +⋯U(x)
d

dx

∣

∣
∣
x=0

1

2
U(x)

d2

dx2

∣

∣
∣
x−0

x2 1

6
U(x)

d3

dx3

∣

∣
∣
x−0

x3

≡ kU(x)
d2

dx2

∣

∣
∣
x−0

≡ γU(x)
d3

dx3

∣

∣
∣
x−0

U(x) = k + γ +⋯
1

2
x2 1

6
x3

x2

U(x) = k
1

2
x2

m1 m2

z1 z2 re
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and

where m is either  or  and  is the displacement from the equilibrium distance, given by

The force acting on atom 1 is in the opposite direction of that acting on atom 2. This suggests two equations that will govern the
motion of atom 1 and atom 2 respectively.

 and 

Dividing both equations by the masses yields the following pair of equations.

 and 

Add these two equations yields

The term  has important significance, as it is the reciprocal of the reduced mass.

The reduced mass is introduced as a consequence of moving to center of mass coordinates. It is the mass of a single object that
would move with the same frequency of oscillation were it attached to a fixed point by a spring of the same force constant. It is
important to note that  has units of mass. Also, in the limit that  and  have the same value (let’s call it  )

This result makes a great deal of sense because for equal masses, the motion of the molecule will involve equal and opposite
motions of the two atoms relative to the center of mass (which will be the middle of the bond.) Thus, a single mass oscillating with
the same frequency is moving relative to a distance that is in the middle of the spring. Hence, the mass will have to be half of the
mass of one of the atoms, or the frequency would be different.

The other important limit is when one mass is significantly larger than the other. Consider what happens when 

This result makes a great deal of sense because if one mass is significantly larger than the other, it will be the light atom that
undergoes the larger motion. In the limit that , the center of mass is located at  and the heavy atom becomes a fixed
point in the motion.

The next task is to simplify things further by introducing a mass-weighted coordinate, Z.

F = ma

F = −kx

m1 m2 x

x = ( − − )z2 z1 re

= k ( − − )m1
d2

dt2
z1 z2 z1 re − = k ( − − )m2

d2

dt2
z2 z2 z1 re

= ( − − )
d2

dt2
z1

k

m1
z2 z1 re − = ( − − )

d2

dt2
z2

k

m2
z2 z1 re

− =( + ) k ( − − )
d2

dt2
z1

d2

dt2
z2

1

m1

1

m2
z2 z1 re

( + )
1

m1

1

m2

( + ) = =
1

m1

1

m2

+m1 m2

m1m2

1

μ

μ =
m1m2

+m1 m2

μ m1 m2 m1

μ =
m1m1

+m1 m1

= =
m2

1

2m1

m1

2

>>m1 m2

μ =
m1m2

+m1 m2

≈ =
m1m2

m1
m2

= ∞m1 z1

Z ≡
+m1z1 m2z2

+m1 m2
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This expression gives the location of the center of mass of the molecule. The utility of this substitution is found in taking the
difference of the two equations

 and 

which yields

Dividing both sides by (  ) yields

Finally, making the substitution for the center of mass

which tells us that the center of mass of the system does not move in time.

This page titled 4.1: The Potential Energy Surface for a Diatomic Molecule is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by Patrick Fleming.

= k ( − − )m1
d2

dt2
z1 z2 z1 re − = k ( − − )m2

d2

dt2
z2 z2 z1 re

+mm1
d2

dt2
z1 2

d2

dt2
z2

( + )
d2

dt2
m1z1 m2z2

=

=

0

0

+m1 m2

( ) ( + )
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+m1 m2
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dt2
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dt2
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=

0

0
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4.2: Solving the Schrödinger Equation
It is convenient to make the substitution that

This allows us to write the Hamiltonian for the system then as

where  is the reduced mass given by

 is the force constant of the bond and  is defined by

as previously state. The Schrödinger equation is then given by

Energy Levels 

The boundary conditions require that the square of the wavefunction must have a finite area below it in order to ensure that the
wavefunction is normalizable. The only way this happens is if the following conditions are met

The resulting energy levels are the set of eigenvalues that correspond to the functions that satisfy the above stated boundary
condition. These energies have values given by

Notice how the use of the boundary conditions is what leads to the instruction of quantized energies.

Figure 

The resulting energy levels are evenly spaced with increasing energy. The actual spacing is determined by the physical
characteristics of a given molecule, namely the reduced mass and the force constant.

Spectroscopic Constants and Force Constants 

Vibrational spectroscopy is often done using units of . Energies expressed in terms of this unit are called term values. The
termvalue is given as the energy divided by Planck’s constant and the speed of light ( ). Standard notation uses the symbol 
to indicate the term value for vibrational energy.  is given by
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where

The vibrational constant  can be determined experimentally for specific molecules. Consider the following values for various
molecules.

Molecule k (N/m)  (kg)

2989.74 516

2649.67 412

2309.5 314

916.64 347

1580.93 1177

2359.61 3116

Two important points can be made from this data. First, a typical force constant for a single bond is on the order of a couple
hundred N/m. Secondly, multiple bonds lead to significantly larger force constants. This is not too surprising since the force
constant gives a measure of the stiffness of the bond.

The Wavefunctions 

The wavefunctions for the harmonic oscillator are determined by solving the Schrödinger equation. As stated before, the only
wavefunctions that obey the boundary conditions have eigenvalues given by

where  The wavefunctions themselves can be determined by solving the differential equation using a power-series
solution. In the end, we find that the resulting function involve a set of orthogonal polynomials known as the Hermite
Polynomials. We will discuss some properties of this important set of functions before discussing the wave functions themselves.

Hermite Polynomials 

The Hermite polynomials are a set of orthogonal polynomials. Like all sets of orthogonal polynomials, they have 1) a generator
formula, 2) an orthogonality relationship and 3) a (or several) recursion relations that relate one function in the series to others.

The Hermite polynomials can be generated using the following function

Using this function, the first few Hermite polynomials can be generated.

v

0 1

1 2y

2

Further members of the set of functions can be generated using one of the important recursion relations.

Using this function, we can generate a longer list of Hermite polynomials without having to take so many derivatives.
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v
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 Etc.

Another important relationship between these functions is that

In addition to these relationships, the Hermite polynomials have an important orthogonality relationship.

The Hermite polynomials also have important symmetry properties. Each function in the set is an eigenfunction of the inversion
operator. The inversion operator is a symmetry operator that is defined by the operation (in one dimension)

Functions that are eigenfunctions of this operator can be classified as being either even function or odd function.

Even

Odd

Even functions are symmetric eigenfunctions of the inversion operator and odd functions are antisymmetric eigenfunctions as
their eigenvalues are +1 and -1 respectively. Even and odd functions also have important properties when integrated over
symmetric intervals.

Even

Odd

These properties can greatly simplify integration involving these types of functions!

The Harmonic Oscillator Wavefunctions 

The wavefunctions for the Harmonic Oscillator have three important parts: 1) a normalization constant, 2) a Hermite polynomial
and 3) an exponential function that insures the orthogonality of the wavefunctions.

where
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Figure 

Expectation Values 
The simplicity of the wavefunctions makes the calculation of expectation values very simple for the harmonic oscillator problem.

Position 

The expectation value of position can be determined solely based on symmetry arguments. Recall that harmonic oscillator
wavefunctions are either even or odd functions. The symmetry of the products of even or odd functions can be summarized as
follows.

even odd

even even odd

odd odd even

It is easy to recognize this multiplication table as arising from taking the products of the eigenvalues of the functions with respect
to the inversion operator.

1 -1

1 1 -1

-1 -1 1

These results will be used to demonstrate that the expectation value of position is the same for all of the stationary wavefunction.
Consider the integral required to calculate this value.

The wavefunction  is either an even or odd function depending only on whether v is even or odd. Since the  operator is itself an
odd function (always), there are only two possibilities for the total symmetry of the integrand.

x Integrand Symmetry

even odd even odd

odd odd odd odd

The pattern emerges due to the fact that the product of even and odd function produces a resulting function according to the
following symmetry multiplication table.

4.2.3

⟨x⟩ = ⋅ x ⋅ dx∫
∞

−∞
ψv ψv

ψv x̂

ψv ψv

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420495?pdf


4.2.5 https://chem.libretexts.org/@go/page/420495

Regardless of whether the wavefunction is an even or odd function, the product

is always an odd function. And as we have seen before, the integral of an odd function over any symmetric interval is zero by
symmetry.

Therefore, the expectation value of x, , is always 0 for any eigenstate of the harmonic oscillator. The means that , the
equilibrium bond length.

Momentum 

The evaluation of the expectation value of momentum can be made following the same symmetry arguments. In order to do this,
one must consider the effect of taking a derivative of a function.

Consider the following even function

The first derivative of this function is given by

which is an odd function. The derivative of this function

yields an even function. The following set of properties will hold for the symmetries of functions and their derivatives.

even odd

odd even

As such, the symmetry of the integrand for the calculation of the expectation value of momentum

must always be an odd function, since the  takes the first derivative of the wavefunction.

Integrand Symmetry

even odd odd

odd even odd

The result is that the expectation value of momentum, , must also be 0 for any eigenstate of the harmonic oscillator problem.
Again, this can be reasoned by noting that half of the time the momentum measured will be in the direction of the bond stretching,
and the other half of the time in the direction of the bond being compressed. On average, these two circumstances will cancel,
yielding an average value of .

Energy 

As with any eigenstate, the expectation value of energy  is easy to calculate. Recall that the wavefunctions were determined to
be eigenfunctions of the Hamiltonian.

As such, The expectation value of energy is trivially easy to find for a system in an eigenstate.
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since the wavefunctions are normalized. The expectation value of energy is always an eigenvalue of the Hamiltonian for a system
that is in an eigenstate of the Hamiltonian.

Tunneling 

One of the curious consequences of quantum mechanics can be seen in the form of tunneling. This odd behavior becomes possible
whenever the square of the wavefunction extends beyond a classical barrier to the motion of the particle r molecule. In the case of
the harmonic oscillator, this is seen as possible since the squared wavefunction extends beyond the classical turning points of the
oscillation.

The classical turning point is defined as the point in the motion where all energy has been converted from kinetic energy to
potential energy. At this point, the motion switches direction as potential energy is converted back into kinetic energy. Since there
is a non-zero value of the squared wavefunction beyond this point for all eigenstates, there is a non-zero probability of measuring
the position of the system to lie beyond these classical turning points. And then if there is a new potential well accessible if the
system tunnels through the classical barrier, there is a non-zero probability of finding the system in that well, meaning that the
system may have changed states completely!

This result is another example of the bizarreness of quantum mechanics. If one were to consider a classical ball that is thrown
against the wall at the front of the classroom, one expects that the ball will return to the thrower after bouncing off the wall every
time. But for a quantum mechanical ball, there is a non-zero possibility of finding the ball on the other side of the wall! If this were
to be the case, the ball would have been said to have tunneled through the wall.

The probability for this happening is proportional to that fraction of the area under the squared wavefunction curve that lies beyond
the classical barrier. This probability will be decreased for heavier objects as the fraction of wavefunction beyond the classical
barrier will be smaller.

Figure 

This page titled 4.2: Solving the Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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4.3: Strengths and Weaknesses
Keeping in mind that the harmonic oscillator model is an approximate model, it should not come as a surprise that there are a
number of shortcomings to it.

The harmonic oscillator does not place any constraints on bond length. At the short bond length side of the potential, there is
nothing in the model to prevent the bond length from becoming zero or even negative (implying that it is possible for one atom to
pass through the other in a molecule. Additionally, the harmonic oscillator does not allow for molecular dissociation as the
potential energy just keeps increasing with increasing bond length. None the less, the harmonic oscillator model works quite well
for small displacements from the equilibrium bond length.

The Morse Potential 

One improved form of a potential energy function was provided by Phillip Morse (Morse, 1929). The Morse potential is given by
the following function

where  is the dissociation energy of the molecule. While this function still allows for negative bond lengths, it does allow for
molecular dissociation at long bond lengths.

Figure 

The force constant for the Morse potential is determined by evaluating the second derivative of the potential energy function at the
potential minimum.

Based on the expression given above for the Morse potential, the following result is obtained.

Anharmonicity 

A solution to the Schrödinger equation using the Morse potential produces an additional constant in the energy expression for
vibrational energy.

The new constant, , is called an anharmonicity constant, as it accounts for deviation from the harmonic potential. For a more
general potential energy function, the expression for the vibrational term value can be expressed as a longer power series in 

.

For well-behaved molecules, the magnitude of the anharmonicity constants decreases with increasing order in . Thus, the
series can be truncated at some point and will provide an adequate model for the purposes of fitting experimental data.
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4.4: Vibrational Spectroscopy Techniques
Infrared and Raman spectroscopy are two experimental methods that are commonly used by chemists to measure vibrational
frequencies (  ). Infrared spectroscopy generally involves direct absorption whereas Raman spectroscopy involves scattering of
light.

Infrared Spectra 
Infrared spectroscopy is a commonly used technique in the identification of molecular compounds. It is also a very convenient
technique to use in determining molecular force constants, since the spectrum records vibrational frequencies.

Based on the results of the harmonic oscillator problem, the selection rules for an infrared spectrum are determined to be

That means that as a molecule absorbs or emits a single infrared photon (meaning the electronic state of the molecule does not
change) the vibrational quantum number can go up or down (depending on absorption or emission) by one quantum. For a typical
experiment, the theory predicts a single band in the spectrum of a molecule, and that band will be centered at a frequency equal to 

 for the molecule.

A schematic diagram of a typical infrared absorption spectroscopy experiment is shown below. The light is produced at the source
(typically an incandescent light bulb or a glowbar), passes through the sample where some of the light can be absorbed, and then
the monochrometer (which is typically either a grating or an interferometer) which is used to distinguish between the various
frequencies of light, and finally the light is detected by a detector. Plotting detected intensity as a function of frequency produces
the spectrum.

Figure 

Determining a Force Constant 

Consider the experimentally determined we value for carbon monoxide (CO.) The spectrum shows a strong absorption at 
 due to CO. Using this value for  (it is actually a little off due to anharmonicity), the force constant can be

determined for the molecule.

Using a value of  kg for the reduced mass of the molecule, the force constant is found to be 1856 N/m. The literature
value for this force constant is . Given that this calculation did not treat anharmonicity, the agreement is pretty good!

Progressions in Electronic Spectra 

Electronic transition in diatomic molecules which can be observed in the visible and ultraviolet regions of the spectrum can have a
great deal of vibrational structure as the molecule is free to vibrate in both the upper and lower states. Figure  shows
vibrational progressions in the emission spectrum of  near 2800 Å (Fleming & Mathews, 1996).
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Figure : A-X transition of  near 2800 Å.

These progressions can be analyzed to provide dissociation energies for the electronic states involved in the transition.

If the vibrational energy function is truncated at the  level (as predicted by the Morse potential) the vibrational term value will
reach a maximum value at some value of v. Any further vibrational excitation is predicted to lower the molecular energy. This is
actually the dissociation limit. Therefore, the maximum value of  for a bound state (  ) is the largest value of v for which the
vibrational energy spacing is positive. The dissociation energy of the molecule is then given by the sum of vibrational energy
spacings from  to .

Determining a Dissociation Energy 

To find the value of the dissociation energy, it is convenient to define the difference between successive vibrational terms as

Using the expression for  as predicted by the Morse potential,

This suggests that a set of values of  vs.  should yield a straight line with a slope equal to -2   and an intercept
equal to . And  is determined by setting  to zero and solving for  (Figure ).

Figure : Birge-Sponer method to determine the dissociation energy of a molecule from the vibrational spacings.
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The Birge-Sponer method (Gaydon, 1946) can be used to determine the sum of vibrational spacings, and thus the dissociation of a
molecule. The method involves plotting  vs. . The dissociation energy is taken as the area under the curve.

Vibrations of Polyatomic Molecules 
Nonlinear molecules have  vibrational degrees of freedom, where N is the number of atoms in the molecule. Thus, a
triatomic molecule such as water has three vibrational degrees of freedom. These account for the three vibrational modes of water
(symmetric stretch, bend and antisymmetric stretch.)

Figure 

Each mode will have a characteristic frequency. If each mode is treated as a harmonic oscillator, the total vibrational energy is
given by

where  is the frequency of the  vibrational mode, and  is the quantum number indicating the number of quanta of the 
mode excited. If anharmonicity is to be included, the expression becomes

where  is the anharmonicity term that couples the vibrational modes.

This page titled 4.4: Vibrational Spectroscopy Techniques is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.

ΔGv+ 1

2

(v+1)

3N −6

4.4.4

G = ( + / )∑
i=1

3N−6

ωi vi
1 2

ωi ith vi ith

G = ( + / ) − ( + / ) ( + / )∑
i=1

3N−6

ωi vi
1 2 ∑

i=1

3N−6

∑
j=1

3N−6

xij vi
1 2 vj

1 2

xij

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420497?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.04%3A_Vibrational_Spectroscopy_Techniques
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


4.5.1 https://chem.libretexts.org/@go/page/420498

4.5: Group Theory Considerations
Group theory provides a powerful set of tools for predicting and interpreting vibrational spectra. In this section, we will consider
how Group Theory helps us to understand these important phenomena.

Transformation of Axes and Rotations 
It is possible to determine the symmetry species or irreducible representation by which each of the three Cartesian coordinate axes
transform. This is useful, particularly in determining selection rules in spectroscopy, as the components of a molecule’s dipole
moment will transform as these axes. The rotations are also useful in understanding the rotational selection rules.

Recall the character table for the  point group.

E  ’

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

It is useful to determine how each axis (x, y and z) is transformed under each symmetry operation. Once this is done, it will be easy
to determine the representation that transforms the axis in this way. A table might be useful. Recalling our designation of the 
operation as reflection through the xz plane, it can be shown easily that the axes transform as follows:

E  ’

x x -x x -x

y y -y -y y

z z z z z

The z-axis is unchanged by any of the symmetry operations. Another way of saying this is that the z-axis is symmetric with respect
to all of the operations. (In this point group, all of the symmetry elements happen to intersect on the z-axis, which is why it is
unchanged by any of the symmetry operations.) The conclusion is that the z-axis transforms with the  representation.

The other axes can be described the same way. Note that the x-axis is symmetric with respect to the  operation and the E
operation. (Everything is symmetric with respect to the E operation, oddly enough.) The x-axis is antisymmetric, however, with
respect to the  ’ and  operations. The results for all axes can be summarized in the character table.

E  ’

1 1 1 1 z

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 y

Rotations about the x, y and z axes can be characterized in a similar fashion. Consider the angular momentum vector for each
rotation and how it transforms. Such a vector can be constructed using he right-hand rule. If the fingers on your right hand point in
the direction of the rotation, your thumb points in the direction of the angular momentum vector.

Rotation about the z-axis (  ) is symmetric with respect to the operations E and , but antisymmetric with respect to operations 
 and  ’. Rotation about the x-axis is symmetric with respect to E and . Clearly, this operation transforms as the irreducible

representation . Rotation about the x-axis and y-axis can also be characterized as following the properties of the  and 
representations respectively. As such, the character table for  can be augmented to include this information.

C2v

C2v C2 σv σv

A1

A2

B1

B2

σv

C2v C2 σv σv

A1

σv

σv C2

C2v C2 σv σv

A1

A2

B1

B2

Rz C2

σv σv C2

A2 B2 B1

C2v
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E  ’E  ’

1 1 1 1 z  

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 y

Another interpretation of the transformation of the x, y and z-axes is that the representations that indicate the symmetries of these
axes in the point group also indicate how the ,  and  orbitals transform. The set of d orbital wavefunctions can also be used.
These transformations are generally given in another column in the character table. (This information is also useful for calculating
polarizabilities, and hence selection rules for Raman transitions!)

E  ’

1 1 1 1 z   - , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

Characterizing Vibrational Modes 
Vibrational wave functions describing the normal modes of vibrations will be eigenfunctions of the symmetry properties of the
group. As such, group theory can be quite useful in determining the vibrational selection rules needed to predict infrared spectra.

The number of vibrational degrees of freedom for a molecule is given by ( ) if the molecule is non-linear and ( ) if it
is linear. In these expressions, N is the number of atoms in the molecule. One way to think of these numbers is that it takes 3N
Cartesian coordinates (an x, y and z variable) for each atom in the molecule to fully specify the structure of a molecule. As such,
3N is the total number of degrees of freedom.

Since the molecule can translate through space in the x, y or z directions, three (3) degrees of freedom belong to translation. One
can also think of these three degrees of freedom being the three Cartesian coordinates needed to specify the location of the center of
mass of the molecule – or for the translation of the center of mass of the molecule.

For non-linear molecules, rotation can occur about each of the three Cartesian axes as well. So three (3) degrees of freedom belong
to rotation for non-linear molecules. Linear molecules only have rotational degrees of freedom about the two axes that are
perpendicular to the molecular axis (which remember is the C axis – and thus the z-axis.) So linear molecules only have two (2)
rotational degrees of freedom.

The sum of the irreducible representations by which the vibrational modes transform can be found fairly easily using group theory.
The first step is to determine how the three Cartesian axes transform under the symmetry operations of the point group. As an
example, let’s use water ( ), which belongs to the  point group since it is familiar. Later, we will work though a more
complex example.

Consider the character table for the  point group.

E

1 1 1 1 z  , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

The sum of the representations by which the axes transform will be given by .

CC2v2v CC22 σσvv σσvv

A1

A2 Rz

B1 Ry

B2 Rx

px py pz

C2v C2 σv σv

A1 x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

3N −6 3N −5

OH2 C2v

C2v

C2v C2 σv σ′
v

A1 −x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

+ +B1 B2 A1
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E  ’E  ’

1 1 1 1 z

1 -1 1 -1 x

1 -1 -1 1 y

3 -1 1 1  

The reducible representation (  ) is then multiplied by the representation generated by counting the number of atoms in the
molecule that remain unmoved by each symmetry element. This representation for water is generated as follows:

E  ’

- -

- -

3 1 1 3

Figure 

The reducible representation that describes the transformation of the Cartesian coordinates of each of the atoms in the molecule are
given by the product of  as shown in the following table.

E  ’

3 -1 1 1

3 1 1 3

9 -1 1 3

Note that the order of  is given by . This is the sum of representations needed to describe the transformation of each of the
Cartesian coordinates for each atom. f the representation for the Cartesian coordinates (  ) is subtracted from , the
remainder describes the sum of representations by which the rotations and vibrations transform, and this result should be of order (

). Let’s see . . .

E  ’

9 -1 1 3

3 -1 1 1

6 0 0 2

So far, so good. Now let’s subtract the sum of the representations by which the rotations transform. The remainder of this operation
should be of order ( ) and give the sum of irreducible representations by which the vibrations transform.

E  ’

6 0 0 2

CC2v2v CC22 σσvv σσvv

Γ1 A1

Γ2 B1

Γ3 B2

Γxyz + +A1 B1 B2

Γxyz

C2v C2 σv σv

O ✓ ✓ ✓ ✓

H1 ✓ ✓

H2 ✓ ✓

Γunmoved

4.5.1

⋅Γxyz Γunmoved

C2v C2 σv σv

Γxyz

Γunmoved

= ⋅Γtotal Γxyz Γunmoved

Γtotal 3N

Γxyz Γtotal

3N −3

C2v C2 σv σv

Γtotal

Γxyz

Γvib+rot

3N −6

C2v C2 σv σv

Γvib+rot
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E  ’

3 -1 -1 -1

3 1 1 3

E  ’

1 1 1 1

1 1 1 1

1 -1 -1 1

3 1 1 3

A quick calculation shows that this result is generated by the sum of  +  + . To see this, we can use the Great
Orthogonality Theorem. (I told you it was great!) In this case, the number of vibrational modes that transform as the  irreducible
representation is given by the relationship

For the  representation, this sum looks as follows.

The result for the  representation should come to zero since no vibrational modes transform as . For the  representation,
this sum looks as follows.

For  and  the sum looks as follows:

Let’s see if that makes sense! Consider the three normal-mode vibrations in water. These (the symmetric stretch, the bend and the
antisymmetric stretch) can be depicted as follows:

It is fairly simple to show that the symmetric stretch and the bending mode both transform as the  representation. Similarly, the
antisymmetric stretching mode transforms as the  representation. (Note that we have chosen the xz plane (or the  plane) to lie
perpendicular to the molecule!)

C2v C2 σv σv

Γrot

Γvib

C2v C2 σv σv

A1

A1

B2

Γvib

A1 A1 B2

ith

= (R) (R)Ni

1

h
∑
R

χi χvib

A1

NA1
=

=

=

=

( (E) ⋅ (E) + ( ) ⋅ ( ) + ( ) ⋅ ( ) + ( ) ⋅ ( ))
1

h
χA1

χvib χA1
C2 χvib C2 χA1

σv χvib σv χA1
σ

′

v χvib σ
′

v

((1) ⋅ (3) +(1) ⋅ (1) +(1) ⋅ (1) +(1) ⋅ (3))
1

4

(8)
1

4
2

A2 A2 A2

NA2
=

=

((1) ⋅ (3) +(1) ⋅ (1) +(−1) ⋅ (1) +(−1) ⋅ (3))
1

4

(0) = 0
1

4

B1 B2

NB1 =

=

((1) ⋅ (3) +(−1) ⋅ (1) +(1) ⋅ (1) +(−1) ⋅ (3))
1

4

(0) = 0
1

4

NB2
=

=

((1) ⋅ (3) +(−1) ⋅ (1) +(−1) ⋅ (1) +(1) ⋅ (3))
1

4

(4) = 1
1

4

A1

B2 σv
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Figure 

Find the symmetries of the normal vibrational modes of ammonia.

Solution
Recall the character table for the  point group:

E 2 3 \sigma

1 1 1 z  

1 1 -1  

E 2 -1 0 , , 

The representation for  can be found in the same way as before. Once we have ,  is determined as before.

E 2 3

3 1 1

4 1 2

12 1 2

E 2 3

12 1 2

3 1 1

3 0 -1

6 0 2

The GOT can be used to find how many modes of each symmetry are present.

Mode Freq. (cm ) Sym.

Umbrella 1139

4.5.2

 Example 4.5.1

C3v

C3v C3

A1

A2 Rz

x y Rx Ry

Γtotal Γtotal Γvib

C3v C3 σv

Γxyz

Γunmoved

Γtotal

C3v C3 σv

Γtotal

Γxyz

Γrot

Γvib

-1

A1
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Mode Freq. (cm ) Sym.

Bend 1765 E

Antisym. Str. 3464 E

Sym. Str. 3534

So there are two (2)  modes and two (2) doubly degenerate E modes of vibration. These can be summarized in the table to
the right.

-1

A1

NA1 = [(1) ⋅ (6) +2(1) ⋅ (0) +3(1) ⋅ (2)]
1

6

= (12) = 2
1

6

NA2 = [(1) ⋅ (6) +2(1) ⋅ (0) +3(−1) ⋅ (2)]
1

6

= (0) = 0
1

6

NE = [(2) ⋅ (6) +2(−1) ⋅ (0) +3(0) ⋅ (2)]
1

6

= (12) = 2
1

6

A1
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E ’

15 -1 3 3

3 -1 1 1

3 -1 -1 -1

9 1 3 3

Figure 

Solution
 is an example of a molecule with a “see saw” geometry. It belongs to the point group  like water. Let’s find the

symmetries of the normal modes of vibration using group theory. First, we must generate .

E ’

3 -1 1 1

5 1 3 3

15 -1 3 3

Now, subtract  and  to generate  as shown above.

So this implies that there are nine degrees of freedom due to vibration. This is the result we expect since for the 5-atom non-
linear molecule, (3N-6) = 9. To generate the number of vibrational modes that transform as the  irreducible representation,
the follow expression must be evaluated.

Similarly,

 Example : The vibrational modes of 4.5.2 SF4

4.5.3

SF4 C2v

Γtotal

C2v C2 σv σv

Γxyz

Γunmoved

Γtotal

C2v C2 σv σv

Γtotal

Γxyz

Γrot

Γvib

Γxyz Γrot Γvib

A1

NA1
= ( (E) ⋅ (E) + ( ) ⋅ ( ) + ( ) ⋅ ( ) + ( ) ⋅ ( ))

1

h
χA1

χvib χA1
C2 χvib C2 χA1

σv χvib σv χA1
σ′
v χvib σ′

v

= ((1) ⋅ (9) +(1) ⋅ (1) +(1) ⋅ (3) +(1) ⋅ (3))
1

4

= (16)
1

4
= 4

NA2
= ((1) ⋅ (9) +(1) ⋅ (1) +(−1) ⋅ (3) +(−1) ⋅ (3))

1

4

= (4) = 1
1

4

NB1
= ((1) ⋅ (9) +(−1) ⋅ (1) +(1) ⋅ (3) +(−1) ⋅ (3))

1

4

= (8) = 2
1

4

NB2 = ((1) ⋅ (9) +(−1) ⋅ (1) +(−1) ⋅ (3) +(1) ⋅ (3))
1

4

= (8) = 2
1

4
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So there should be 4 vibrational modes of  symmetry, 1 of  symmetry and two each of  and  symmetry. A
calculation of the structure and vibrational frequencies in  at the B3LYP/6-31G(d) level of theory  yields the following.

Mode Freq. (cm ) Symmetry Mode Freq. (cm ) Symmetry

1 189 6 584

2 330 7 807

3 436 8 852

4 487 9 867

5 496    

The calculation also allows for the simulation of the infrared spectrum of .

Figure 

What would be exceptionally useful is if group theory could help to identify which vibrational modes are active – or if any are
inactive. Fortunately, it can! (And now how much would you pay?) The tools for determining selection rules depend on direct
products.

Intensity 

Group theory provides tools to calculate when a spectral transition will have zero intensity, and this will not be seen. In this section,
we will se how group theory can help to determine the selection rules that govern which transitions can and cannot be see.

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude squared of the transition moment matrix
element.

By knowing the symmetry of each part of the integrand, the symmetry of the product can be determined as the direct product of
the symmetries of each part (\psi’) , (\psi”) and \mu. This is helpful, since the integrand must not be antisymmetric with respect to
any symmetry elements or the integral will vanish by symmetry. Before exploring that concept, lets look at the concept of direct
products.

This is a concept many people have seen, in that the integral of an odd function over a symmetric interval, is zero. Recall what it
means to be an “odd function” or an “even function.

Symmetry definition Intensity

Even

A1 A2 B1 B2

SF4
1

-1 -1

A1 A1

B1 B2

A2 B1

A1 A1

B2

SF4

4.5.4

Intensity ∝ ∫ (ψ ")dτ∣∣ ( )ψ′ ∗μ⃗  ∣∣
2

∗

f(−x) = f(x) f(x)dx = 2 f(x)dx∫
a

−a ∫
a

0
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Symmetry definition Intensity

Odd

Consider the function . A graph of this function looks as follows:

One notes that the area under the curve on the side of the function for which x  0 has exactly the same magnitude but opposite
sign of the area under the other side of the graph. Mathematically,

It is also interesting to note that the function f(x) can be expressed as the product of two functions, one of which is an odd function (
 ) and the other which is an even function (  ). The result is an odd function. By determining the symmetry of the

function as a product of the eigenvalues of the functions with respect to the inversion operator, as discussed below, one can derive a
similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator (in one dimension) affects a
change of sign on x.

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either +1 or –1. For the function used in
the previous example,

where

 and 

Here,  is an odd function and  is an even function. The product is an odd function. This property is summarized for any 
, in the following table.

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x)

even even even 1 1 1

even odd odd 1 -1 -1

odd odd even -1 -1 1

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for the irreducible representation by which the
function transforms! In a similar manner, any function that can be expressed as a product of functions (like the integrand in the
transition moment matrix element) can be determined as the direct product of the irreducible representations by which each part of
the product transforms.

Consider the point group  as an example. Recall the character table for this point group.

E  ’

1 1 1 1 z   - , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

The direct product of irreducible representations can by the definition

f(−x) = −f(x) f(x)dx = 0∫
a

−a

f(x) = ( −3x)x3 e−x2

>

f(x)dx∫ a

−a = f(x)dx+ f(x)dx∫ 0
−a ∫ a

0

= − f(x)dx+ f(x)dx = 0∫ a

0 ∫ a

0

−3xx3 e−x2

f(x) = f(−x)î

f(x) = g(x)h(x)

g(x) = −3xx3 h(x) = e−x2

g(x) h(x)

f(x) = g(x)h(x)

C2v

C2v C2 σv σv

A1 x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

(R) = (R) ⋅ (R)χprod χi χj
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So for the direct product of  and , the following table can be used.

E  ’

1 -1 1 -1

1 -1 -1 1

  1 1 -1 -1

The product is actually the irreducible representation given by  ! As it turns out, the direct product will always yield a set of
characters that is either an irreducible representation of the group, or can be expressed as a sum of irreducible representations. This
suggests that a multiplication table can be constructed. An example (for the  point group) is given below.

Studying this table reveals some useful generalizations. Two things in particular jump from the page. These are summarized in the
following tables.

A B 1 2

A A B    1 1 2

B B A    2 2 1

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric

symmetric*antisymmetric = antisymmetric

antisymmetric*antisymmetric = symmetric

Noting that A indicates an irreducible representation is symmetric with respect to the  operation and B indicates that the
irreducible representation is antisymmetric . . and that the subscript 1 indicates that an irreducible representation is symmetric with
respect to the  operation, and that a subscript 2 indicates that the irreducible representation is antisymmetric . . the rest seems to
follow! Some point groups have irreducible representations use subscripts g/u or primes and double primes. The g/u subscript
indicates symmetry with respect to the inversion (i) operator, and the prime/double prime indicates symmetry with respect to a 
plane (generally the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for products involving doubly degenerate
representations? As an example, consider the  point group.

E 2 3

1 1 1 z  

1 1 -1  

E 2 -1 0 (x, y) ( ,  )

E 2 3   

1 1 -1   

E 2 -1 0   

B1 B2

C2v C2 σv σv

B1

B2

B1 ⊗ B2

A2

C2v

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

C2

σv

σ

C3v

C3v C3 σv

A1

A2 Rz

Rx Ry

C3v C3 σv

A2
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E 2 3

  E 2 -1 0   

Consider the direct product of  and E.

This product is clearly just the E representation. Now one other example – Consider the product .

E 2 3

E 2 -1 0

E 2 -1 0

4 1 0

To find the irreducible representations that comprise this reducible representation, we proceed in the same manner as determining
the number of vibrational modes belonging to each symmetry.

This allows us to build a table of direct products. Notice that the direct product always has the total dimensionality that is given by
the product of the dimensions.

E

E

E

E E E

Now that we have a handle on direct products, we can move on to selection rules.

Selection Rules 
According to quantum mechanics, transitions will only be allowed (have non-zero intensity) if the squared magnitude of the
transition moment (  ) is not zero. If the integral vanishes by symmetry, obviously the transition moment will
have zero magnitude and the transition is forbidden and will not be seen. In order to determine if the integral vanishes by
symmetry, it is necessary to determine the symmetry by which the dipole moment operator transforms.

This (  ) is a vector operator and can be decomposed into ,  and  components. As such, the transition moment is also a vector
property that can have x-, y- and/or z-axis components. Clearly, it will be important to determine how the three axes transform.
Fortunately, this information is contained in character tables! Consider the following two point groups,  and .

E 2 3

1 1 1  

1 1 -1  

E 2 -1 0

E  ’

1 1 1 1 z  

C3v C3 σv

A2 ⊗

A2

E⊗E

C3v C3 σv

E⊗E

NA1

NA2

NE

=

=

=

[(1)(4) +2(1)(1) +3(1)(0)] = 1
1

6

[(1)(4) +2(1)(1) +3(−1)(0)] = 1
1

6

[(2)(4) +2(−1)(1) +3(0)(0)] = 1
1

6

C3v A1 A2

A1 A1 A2

A2 A2 A1

+ +EA1 A2

|∫ ∗ ψ " dτ |ψ′ μ⃗  2

μ⃗  x y z

C3v C2v

C3v C3 σv

A1 z

A2 Rz

(x, y) ( , )Rx Ry

C2v C2 σv σv

A1
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E  ’

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 Y

In the case of , it is clear that the x-, y- and z-axes transform as the ,  and  irreducible representations respectively. In
the case of , the z-axis transforms as , but the x- and y-axes come as a pair and transform as the E irreducible representation.
It will always require two axes to complete the basis for a doubly degenerate representation.

Under the  point group, any vector quantity will transform as the sum of  +  +  as we saw for  before. Further, one
can say that the x-axis component transforms as , the y-axis component as  and the z-axis component as . By a similar
token, under the  point group, a vector quantity transforms as the sum of . The z-axis component transforms as  and
the x- and y-axis components come as a pair that transform by the E representation. All that is needed to complete the picture is to
determine the symmetries of the upper and lower state wave functions.

Infrared Active Transitions 

In order for a spectral transition to be allowed by electric dipole selection rules, the transition moment integral must not vanish.

This can be determined by using the irreducible representations by which the two wavefunctions transform and the three
components of the transition moment operator, which will be ,  and .

If the direct product of the integrand does not contain at least a component of the totally symmetric irreducible representation, the
integral will vanish by symmetry.

The three vibrational modes of  O transform by  (symmetric stretch),  (bend) and  (antisymmetric stretch.) Will the
symmetric stretch mode be infrared active?

Solution
For the symmetric stretch, which transforms as , the transition moment integrand will be have symmetry properties
determined by the product

where one of the irreducible representations from the set in the middle of the product may be used. (They are the irreducible
representations by which the ,  and  axes transform.) In this case, the z-axis must be used.

This is the only component that will not vanish.When the z-axis component must be used to make the transition moment
operator not vanish, the transition is said to be a parallel transition. Transition moments that lie along axis perpendicular to the
z-axis are said to be perpendicular transitions. Parallel and Perpendicular Transitions often have very different selection rules
and thus very different band contours.

Another Method 

Another method that can be used to see if a mode is infrared active is to take the direct product of the irreducible representations of
the wavefunction, and use  for the transition moment. If the resulting product has a component that is totally symmetric, the

C2v C2 σv σv

A2 Rz

B1 Ry

B2 Rx

C2v B1 B2 A1

C3v A1

C2v A1 B1 B2 Γxyz

B1 B2 A1

C3v +EA1 A1

∫ ψ " dτψ′∗μ⃗ 

x y z

∫ dτΓψ′ Γ
μ⃗ Γψ"

 Example 4.5.3

H2 A1 A1 B2

A1

ψ "ψ′
⎛

⎝
⎜
x

y

z

⎞

⎠
⎟ A1

⎛

⎝
⎜
B1

B2

A1

⎞

⎠
⎟A1

x y z

⋅ ⋅ =A1 A1 A1 A1

Γxyz
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mode will be infrared active.

Is the antisymmetric stretch mode of water predicted to be infrared active?

Solution
This mode transforms as the  irreducible representation.  is given by

So:

E

1 -1 -1 1

3 -1 1 1

3 1 -1 1

The resulting reducible representation will have a component of the totally symmetric irreducible representation.

So the  irreducible representation appears once in the product reducible representation. In fact, the component that does not
vanish is due to the presence of  in . Hence, the transition is predicted to be a perpendicular  transition, since the
transition moment lies along the y-axis.

Will the E modes in  be infrared active?

Solution
In the  point group,  is given by 

E 2 3 

E 2 -1 0

3 0 1

6 0 0

 clearly has the totally symmetric irreducible representation as a component.

In fact, it is the E component of  that makes this transition allowed (and so it is a perpendicular (  ) transition.

E 2 3 

E 2 -1 0

E 2 -1 0

4 1 0

 Example 4.5.4

B2 Γxyz

= + +Γxyz B1 B2 A1

C2v C2 σxz σyz

B2

Γxyz

Γprod

⋅ = (1)(3) +(1)(1) +(1)(−1) +(1)(1) = 4A1 Γprod

A1

B2 Γxyz ⊥

 Example 4.5.5

NH3

C3v Γxyz +EA1

C3v C3 σv

Γxyz

Γprod

Γprod

⋅ = (1)(6) +2(1)(0) +3(1)(0) = 6A1 Γprod

Γxyz ⊥

C3v C3 σv

Γprod

⋅ = (1)(4) +2(1)(1) +3(1)(0) = 6A1 Γprod
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Vibrational Raman Spectra 

Vibrational Raman spectroscopy is often used as a complementa  method to infrared spectroscopy. The selection rules for Raman
spectroscopy can be determined in much the same way, except that a polarizability integral must be used. The polarizability
operator can be expressed as a 3x3 tensor of the form

This tensor is symmetric along the diagonal, and the elements transform in the same ways as the functions , , , ,  and 
.

What are the vibrational mode symmetries for the molecule  which transforms as the D  point group? Which
modes will be infrared active? Which will be Raman active?

Solution
Set up the vibrational analysis table in the usual manner.

E (z) (y) (x) i

1 1 1 1 1 1 1 1  

1 1 -1 -1 1 1 -1 -1

1 -1 1 -1 1 -1 1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1   

1 1 -1 -1 -1 -1 1 1  

1 -1 1 -1 -1 1 -1 1  

1 -1 -1 1 -1 1 1 -1  

3 -1 -1 -1 -3 1 1 1   

3 -1 -1 -1 3 -1 -1 -1   

E (z) (y) (x) i

3 -1 -1 -1 -3 1 1 1

6 0 0 2 0 6 2 0

18 0 0 -2 0 6 2 0

3 -1 -1 -1 -3 1 1 1

 15 1 1 -1 3 5 1 -1

3 -1 -1 -1 3 -1 -1 -1

12 2 2 0 0 6 2 0

Decomposing to the individual components:

E (z) (y) (x) i sum #(h)

(1)(12) (1)(2) (1)(2) (1)(0) (1)(0) (1)(6) (1)(2) (1)(0) 24 3

Ry

α =
⎛

⎝
⎜

αxx

αyx

αzx

αxy

αyy

αzy

αxz

αyz

αzz

⎞

⎠
⎟

x2 y2 z2 xy xz

yz

 Example 4.5.6

CCH2 H2 2h

D2h C2 C2 C2 σxy σxz σyz

Ag , ,x2 y2 z2

B1g Rz xy

B2g Ry xz

B3g Rx yz

Au

B1u z

B2u y

B3u x

Γxyz

Γrot

D2h C2 C2 C2 σxy σxz σyz

Γxyz

Γunm

Γtot

Γxyz

Γrot

Γvib

D2h C2 C2 C2 σxy σxz σyz

⋅Ag Γvib

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420498?pdf


4.5.15 https://chem.libretexts.org/@go/page/420498

E (z) (y) (x) i sum #(h)

(1)(12) (1)(2) (-1)(2) (-1)(0) (1)(0) (1)(6) (-1)(2) (-1)(0) 16 2

(1)(12) (-1)(2) (1)(2) (-1)(0) (1)(0) (-1)(6) (1)(2) (-1)(0) 8 1

(1)(12) (-1)(2) (-1)(2) (1)(0) (1)(0) (-1)(6) (-1)(2) (1)(0) 0 0

(1)(12) (1)(2) (1)(2) (1)(0) (-1)(0) (-1)(6) (-1)(2) (-1)(0) 8 1

(1)(12) (1)(2) (-1)(2) (-1)(0) (-1)(0) (-1)(6) (1)(2) (1)(0) 8 1

(1)(12) (-1)(2) (1)(2) (-1)(0) (-1)(0) (1)(6) (-1)(2) (1)(0) 16 2

(1)(12) (-1)(2) (-1)(2) (1)(0) (-1)(0) (1)(6) (1)(2) (-1)(0) 16 2

So

Of these, the 6 gerade modes will be Raman active, and the five  modes ( ) will be infrared active. The  mode
will be dark.

1. Calculation performed using Gaussian 98 (http://www.gaussian.com/) using the WebMO (http://www.webmo.net/) web-based
interface.

This page titled 4.5: Group Theory Considerations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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D2h C2 C2 C2 σxy σxz σyz

⋅B1g Γvib

⋅B2g Γvib

⋅B3g Γvib

⋅Au Γvib

⋅B1u Γvib

⋅B2u Γvib

⋅B3u Γvib

= 3 +2 + + + +2 +2Γvib Ag B1g B2g Au B1u B2u B3u

Bnu n = 1, 2, 3 Au
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4.7: Vocabulary and Concepts
anharmonicity constant

direct product

even function

Hermite polynomials

odd function

potential energy surface

Taylor series

term values

tunneling
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4.8: Problems
1. For each molecule, calculate the reduced mass (in kg) and the force constant for the bond (in N/m).

Molecule  (cm  )  (kg) k (N/m)

2648.975   

559.72   

2169.81358   

365.3   

2. The typical carbonyl stretching frequency is on the order of 1600-1900 . Why is this value smaller than the value of 
for  given in the table above?

3. The first few Hermite polynomials are given below.

v

0 1

1

2

a. Use the recursion relation to generate the functions  (y) and  (y).
b. Demonstrate that the first three Hermite polynomials (  (y),  (y) and  (y)) form an orthogonal set.

4. The Morse Potential function is given by

where .

a. Find an expression for the force constant of a Morse Oscillator bond by evaluating
b. For ,  and . Use your above expression to evaluate k for the bond in

HCl.
c. On what shortcoming of the Harmonic Oscillator model does the Morse Potential improve? What shortcoming does the

Morse model share with that of a Harmonic Oscillator?

5. The following data are observed in the vibrational overtone spectrum in  (Meyer & Levin, 1929).

 (  )

2885.9

5666.8

8347.0

10923.1

13396.5

From these data, calculate a set of  values. Fit these results to the form

to determine values for  and  for .

ωe
−1 μ

Br1H 79

C35 l2

O12 C 16

G Cl69 a35

cm−1 ωe

CO

(y)Hv

2y

4 – 2y2

(y) = 2y (y)– 2v (y)Hv+1 Hv Hv−1

H3 H4

H0 H1 H2

U (x) = (1 − )De e−βx

x = (r– )re

Cl1H 35 = 7.31 × JDe 10−19 β = 1.8 ×1010m−1

Cl1H 35

← v”v′ ν̃obs cm−1

1 ← 0

2 ← 0

3 ← 0

4 ← 0

5 ← 0

ΔGv+
1

2

Δ = −2  (v+1)Gv+ 1
2

ωe ωexe

ωe ωexe HCl
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6. The following wavenumber frequencies are reported for the band origins for the  bands in an electronic transition of a
diatomic molecule. Using the Birge-Sponer method, determine the dissociation energy of the molecule in its ground electronic
state.

v" Wavenumber (  )  (  )

 19586.9  

 19522.3  

 19504.8  

 19465.9  

 19418.3  

 19375.1  

 19323.2  

 19275.7  

 19223.8  

 19167.6  

 19111.4  

 19050.9  

 18990.4  

 18925.6  

 18860.7  

 18795.9  

 18722.4  

 18653.3  

 18579.8  

 18506.3  

27 18428.5  

 18342.1  

 18259.9  

 18177.8  

 18091.5  

 17996.3  

 17909.8  

 17814.8  

 17719.7  

 17624.6  
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CHAPTER OVERVIEW

5: The Rigid Rotor and Rotational Spectroscopy
One of the most powerful tools for elucidating molecular structure is the analysis of rotationally resolved molecular spectra. These
can be observed in the microwave, infrared, and visible/ultraviolet regions of the spectrum. The rigid rotor (or rigid rotator)
problem provides the idealized model that chemists use to describe the rotational motion of a molecule. In this chapter, we will
explore the quantum mechanical model of a rotating body, and apply the results to lay the foundation for an understanding of the
rotational structure in molecular spectra. We’ll look at the shortcomings of the model when applying it to real molecules (which as
we saw in the previous chapter, do not have rigid bonds!) and apply these results to the interpretation of pure rotational spectra
(generally found in the microwave region of the spectrum) and rotationvibration spectra (accounting for the rotational structure that
is observed in infrared spectra of molecules.)

5.1: Spherical Polar Coordinates
5.2: Potential Energy and the Hamiltonian
5.3: Solution to the Schrödinger Equation
5.4: Spherical Harmonics
5.5: Angular Momentum
5.6: Application to the Rotation of Real Molecules
5.7: Spectroscopy
5.8: References
5.9: Vocabulary and Concepts
5.10: Problems

This page titled 5: The Rigid Rotor and Rotational Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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5.1: Spherical Polar Coordinates
The description of a rotating molecule in Cartesian coordinates would be very cumbersome. The problem is actually much easier to
solve in spherical polar coordinates. Consider a particle that is located in space at some arbitrary point (x,y,z). In spherical polar
coordinates, the position of a particle is also described by three variables, namely , and . These variables are defined according
to the diagram. The distance from the origin to the point is specified by r.  gives the angle formed by the position vector of the
point and the positive z-axis.  give the angle of rotation from the positive -axis of the projection of the position vector into the
xy plane. The ranges of possible values for  and  are given by

Figure 

The coordinates of any point can be transformed from spherical polar coordinates to Cartesian coordinates using the following
equations.

The coordinates can be transformed from Cartesian coordinates to spherical polar coordinates by these equations.

This page titled 5.1: Spherical Polar Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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r, θ ϕ

θ

ϕ x

r, θ ϕ

0 ≤ r ≤ ∞

0 ≤ θ ≤ π

0 ≤ ϕ ≤ 2π

5.1.1

x = r sinθ cos ϕ

y = r sinθ sinϕ

z = r cos θ

r

θ

ϕ

= + +x2 y2 z2
− −−−−−−−−−

√

= ( )tan−1 y

x

= ( )cos
−1 z

+ +x2 y2 z2
− −−−−−−−−−

√
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5.2: Potential Energy and the Hamiltonian
Since there is no energy barrier to rotation, there is no potential energy involved in the rotation of a molecule. All of the energy is
kinetic energy. This simplifies the writing of the Hamiltonian.

In Cartesian coordinates, the Hamiltonian can be written

In spherical polar coordinates, the Hamiltonian can be written

For the rigid rotor problem,  is taken to be a constant, simplifying the operator.

The expression  is the moment of inertia for the molecule. This value shows up often in problems involving the rotation of a
molecule.

While the expression for the Hamiltonian in spherical polar coordinates looks considerably more cumbersome than the Hamiltonian
expressed in Cartesian coordinates, it will still be simpler to solve the problem describing the rotation of a molecule.

This page titled 5.2: Potential Energy and the Hamiltonian is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.
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5.3: Solution to the Schrödinger Equation
The time-independent Schrödinger equation can be written as follows.

Since the Hamiltonian can be expressed as a sum of operators, one in  and the other in , it follows that the wavefunction should
be able to be expressed as a product of two functions.

Making this substitution, the equation becomes

With minimal rearrangement, the following result can be derived

And dividing both sides by  produces

This expression suggests that the sum of two functions, one only in  and the other only in , when added together, yields a
constant. As the two variables  and  are independent of one another, the only way this can be true is if each equation is itself
equal to a constant.

where  and  are constants of separation (the form of which is chosen for convenience) which satisfy the following
relationship.

Rotation in the xy plane  

We’ll tackle the equation in  first. One way to picture this part of the equation is that it describes the rotation of a molecule in the
xy plane only (defined by .) Given this constraint, it is clear that the  term becomes unity, . The
problem then becomes

If a substitution is made for the constants on the right-hand side of the equation,

we get

ψ(θ,ϕ) = Eψ(θ,ϕ)Ĥ

− ( sinθ + )ψ(θ,ϕ) = Eψ(θ,ϕ)
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1
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∂
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θ ϕ
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which should look like a familiar problem. Instead of using sine and cosine functions this time though, we will use an imaginary
exponential function instead.

The boundary condition for this problem is that the function  must be single valued. Therefore

So

Dividing both sides by  and expressing the second exponential as a product yields

Using the Euler relationship

we see that

In order for this to be true, the sine term must vanish and the cosine term must become unity. This is true if  is an integer, either
positive or negative and including zero.

Energy Levels 

As such, the energy of a rigid rotator limited to rotation in the xy plane is given by

It is important to note that these functions are doubly degenerate for any non-zero value of  as there are always two values of 
that yield the same energy.

Normalization 

The wavefunctions can be normalized in the usual way.

As was the case with the particle in a box problem, the normalization factor does not depend on the quantum number. The
wavefunctions can be expressed

Φ(ϕ) = − Φ(ϕ)
d2

dϕ2
m2

l

Φ(ϕ) = Amle
i ϕml

Φ(ϕ)

Φ(ϕ) = Φ(ϕ+2π)

=Amle
i ϕm1 Am1e

i (ϕ+2π)ml

Aml

ei ϕml

1

= ei ϕml ei 2πml

= ei 2πml

= cosα+ i sinαeiα

1 = cos(2 π) + i sin(2 π)ml ml

ml

= … , −2, −1, 0, 1, 2, …ml

= = 0, ±1, ±2, …Eml

m2
l
ℏ2

2μr2
ml

ml ml

( )dϕ∫
2π

0

( )Amle
i ϕml

∗
Amle

i ϕml

1

2π

−−−
√

= 1

= dϕA2
ml ∫

2π

0

e−i ϕml ei ϕml

= dϕA2
ml ∫

2π

0

= [ϕA2
ml ]2π0

= 2πA2
ml

= Aml

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420504?pdf


5.3.3 https://chem.libretexts.org/@go/page/420504

Rotation in three dimensions 
We are now ready to tackle the more complicated problem of rotation in three dimensions. Recall the Schrödinger equation as was
previously written.

We already know the form of the solutions for the  part of the equation. However, due to the  term in the  equation,
it is possible that the solution to the  part of the equation will introduce a new constraint on the quantum number .

Energy Levels 

The only well-behaved functions (functions that satisfy all of the boundary conditions) have energies given by

The quantum number  indicated the angular momentum.  is the z-axis component of angular momentum. The z-axis is treated
differently than the  - or -axes due to the unique manner in which the z-axis is treated in the choice of the spherical polar
coordinate system (since  is taken as the angle of the position vector with the positive z-axis.) Also, as will be shown later, the
operator , the z-axis angular momentum component operator, has a special relationship with the Hamiltonian (as does the

squared angular momentum operator, .)

Degeneracy 

The interpretation of the quantum number  is that it gives the magnitude of the z-axis component of the angular momentum
vector. And since no vector can have a component with a magnitude greater than that of the vector itself, the constraint on  that
is introduced by this solution is

so for a given value of , there are  values of  that fit the constraint. And since the energy expression does not depend on 
, it is clear that each energy level has a degeneracy that is given by . That can be demonstrated as in the diagram below

for an angular momentum vector of magnitude .

Figure 

As can be seen in the diagram, there are five possible values of  and . These five values correspond to the 
 degeneracy predicted for a state with total angular momentum given by  (and therefore  ). When we see

the wavefunctions in more detail, there will be a new reason for this constraint on the quantum number .

Wavefunctions 

For convenience, we’ll first look at the solutions where . The wavefunctions under this constraint have two parts, a
normalization constant and a Legendre polynomial in . The Legendre polynomials are another set of orthogonal
polynomials, similar to the Hermite polynomials that occur in the solution to the harmonic oscillator problem. The Legendre
polynomials can be generated by the following relationship
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The first few Legendre polynomials are given below.

0 1 1

1

2

3

A recursion relation for the Legendre Polynomials is given by

When , the spherical harmonic function  becomes just , since the  dependence disappears.
The  part of the wavefunctions are given by

The functions are slightly different for . In this case, the functions involve a set of functions that are related to the Legendre
Polynomials called the associated Legendre polynomials. These functions are generated from the Legendre polynomials via the
following relationship.

Note that for any value of , the derivative of  vanishes.

And this is the origin of the constraint on .

The associated Legendre polynomials depend on both  and . Also, given the  dependence, the sign of  does not matter.
(The only place that the sign of  matter is in the  function.) The first few associated Legendre Polynomials are given in the
table below.

0 0 1 1
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1

0

1

2
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5.4: Spherical Harmonics
The rigid rotor problem was solved using the Schrödinger equation

As it turns out, the solutions to this equation are very important in a number of areas in chemistry and physics. The eigenfunctions
are known as the spherical harmonics  and they appear in every problem that has spherical symmetry. The Spherical
Harmonics satisfy the relationship

Each function  has three parts: 1) a normalization constant, 2) an associated Legendre polynomial in , and 3) an
imaginary (for  ) exponential in .

The first few Spherical harmonics are shown in the table below.

0 0

0

0

Notice the  degeneracy in these functions, due to the  values of  for each value of . Also, it is useful to not that
these functions all have  angular nodes (values of  that cause the wavefunction to vanish.) For the  wavefunctions, these
nodes occur at  for  and at  for . The number of nodes in each wavefunction is a useful property to
know when discussing how these functions related to the radial wavefunction in the Hydrogen atom.

This page titled 5.4: Spherical Harmonics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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5.5: Angular Momentum
The Spherical Harmonics are involved in a number of problems where angular momentum is important (including the Rigid
Rotor problem, the H-atom problem and anything else where spherical symmetry is involved.) Angular momentum is a vector
quantity that is given by the cross product of position and momentum.

This quantity can be calculated from the following determinant.

Substituting the operators for the components of linear momentum, the operators that correspond to the three components of
angular momentum are

These can be used to determine the square of the angular momentum, which is given by the dot product of  with itself.

Similarly, the operator for the square of the angular momentum is given by

In spherical polar coordinates, the angular momentum operators are given by the expressions

And the angular momentum squared operator is given by

For the Rigid-Rotator problem, it is interesting to note that the Hamiltonian is very closely related to the angular momentum
squared operator.

The eigenfunctions of the  operator are the Spherical Harmonics, . These functions have the important properties that
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Seeing as the spherical harmonics are eigenfunctions of all three of these operators, what is implied about the commutator of these
two operators?

There are important relationships between the angular momentum operators. Each of the operators corresponding to the

components of angular momentum commutes with the  operator, but they do not commute with one another. This implies that
one can measure the squared angular momentum and only one component of angular momentum. This is generally taken as the z-
axis component of angular momentum as the z-axis has special properties due to the manner in which the spherical polar
coordinates have been defined.

The commutators involving two components of angular momentum are particularly interesting. Consider the commutator between
and  and .

Let’s define each term separately and then take the difference.

The second, third and fourth terms are easy to simplify as the derivatives do not affect the  or  variables. The first term, however,
requires some application of the chain rule.

Similarly,

Taking the difference will cancel all of the second derivative terms, leaving only the first derivative terms behind.

Similarly, it can be shown that
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5.6: Application to the Rotation of Real Molecules
While the spherical harmonics are the wavefunctions that describe the rotational motion of a rigid rotator, the names of the
quantum numbers are changed to reflect the type of angular momentum encountered in the problem. The quantum number  and 
should be familiar as these are the ones used in the hydrogen atom problem to describe the orbital angular momentum. However,
for rotational motion, these are replaced by  and . The energy levels of the rigid rotator are therefore given by

And since  does not appear in the energy level expression, each level has a  degeneracy. The spacings between energy
levels increases with increasing  due to the  dependence (which has a  term.) This pattern is shown in the diagram
below.

Figure 

For spectroscopic measurements, the rotational energy (given the symbol  ) is often expressed in spectroscopic units, such as 
. Also, a spectroscopic constant, B, is used to describe the energy level stack.

where the spectroscopic constant  is given by

Thus, by knowing the value of , the reduced mass, and measuring the value of , the rotational constant, one can determine the
value of , the bond length. This is the utility of rotational spectroscopy - it gives us detailed information about molecular structure!

Centrifugal Distortion 

As we know, since they vibrate, real molecules do not have rigid bonds. So it is no surprise to learn that the Rigid Rotor is really
just a limiting ideal model, much like the ideal gas law describes limiting ideal behavior.

Real molecules, especially when rotating with very high angular momentum, will tend to stretch. In other words, the average bond
length will increase with increasing . And given the inverse relationship between  and bond length( ), it is not surprising that
the effective  value is smaller at higher levels of . In fact, this centrifugal distortion problem is well treated by introducing a
"distortion constant"  such that

Naturally, one would expect the distortion constant to be small in the case of a strong, inflexible bond, but larger if the bond is
weaker. The approximation of Kraitzer suggests that the distortion constant is determined to a good approximation by
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For a well behaved molecule, he distortion constant  is always smaller in magnitude than . Some molecules require several
distortional constants to yield a reasonable description of their rotational energy level stack. If additional constants are needed, they
are introduced as coefficients in a power series of .

The power series is truncated at a point that yields a good fit to experimental observations for a given molecule.

This page titled 5.6: Application to the Rotation of Real Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Patrick Fleming.
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5.7: Spectroscopy
The experimental determination of spectroscopic rotational constants provides a very precise set of data describing molecular
structure. To see how experimental measurements inform the determination of molecular structure, let’s examine what is to be
expected in the pure rotational spectrum of a molecule first.

Microwave Spectroscopy 
The rotational selection rule in microwave absorption spectra is

(Selection rules are discussed in more detail in a later section.) The pattern of lines predicted to be observed in a microwave
spectrum (a pure rotational spectrum of a mole) can be derived by taking differences in rotational energy levels.

This suggests that a pure microwave spectrum should consist of a series of lines that are evenly spaces, the spacing between which
is . It also suggests that a plot of the line frequency divided by  should yield a straight and horizontal line,

The inclusion of distortion yields a slightly different conclusion.

This suggests that a plot of  vs.  should yield a straight line with slope -4D and intercept .

Consider the following set of data for the microwave spectrum of  (Lovas & Krupenie, 1974).

A plot of  vs.  yields a plot as the following.
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6

Figure 

Clearly, this is not a horizontal line. The conclusion is that centrifugal distortion is not negligible for this molecule. Including

distortion suggests that the plot that should be considered would involve  vs. . This yields the following:

Figure 

This does yield a straight line! From the fit, one calculates a B value of  and a D value of .

Calculating a Bond Length from Spectroscopic Data 

Spectroscopic data (and microwave data in particular) provides extremely high precision information from which bond lengths can
be determined. Based on the above data and the masses of carbon-12 (12.00000 amu) and oxygen-16 (15.99491463 amu) (Rosman
& Taylor, 1998) a reduced mass for  can be calculated as

Recalling the expression for the rotational constant B

The bond length is given by

Using the data from above, one calculates a bond length for CO to be . This value is actually the average value of the
bond length in the  level. The literature value for the equilibrium bond length (the bond length at the potential minimum) is
given by  (Bunker, 1970) which is slightly shorter (as is to be expected.) The extrapolation of data to determine
values at the potential minimum is discussed in a later section.
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v= 0

= 1.128323re Å
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Rotation-Vibration Spectroscopy 

Each vibrational level in a molecule will have a whole stack of rotational energy levels. As such, vibrational transitions will also
show rotational fine structure. This fine structure can be analyzed to determine very precise values for molecular structure in much
the same ways microwave data for the pure rotational spectrum can be. One method for analyzing this data is that of combination
differences although direct fitting of the data will give better results mathematically. Before beginning a discussion of combination
differences, however, it is necessary to discuss selection rules.

Selection Rules and Branch Structure 

Selection rules are determined for spectroscopic transitions as those transitions for which the transition moment integral does not
vanish. This is because the observed intensities of spectroscopic transitions are proportional to the squared magnitude of the
transition moment. The transition moment integral is given by

and so the intensities of transitions are given by

where a single prime (’) indicates the upper state of the transition and a double prime (") indicates the lower state. The operator 
corresponds to the change in the electric dipole moment of the molecule as it undergoes a transition from a state described by  " to
one described by  ’. Other operators may be used in this expression (magnetic dipole, electric quadrupole, etc.) but these lead to
significantly weaker transitions (by a factor of  or more!) When the electric dipole operator is used, the transitions for which the
transition moment is not zero are said to be allowed transitions, while all others are said to be forbidden transitions by electric
dipole selection rules. Since other types of transitions are so weak by comparison, a transition that is said to be allowed or
forbidden is assumed to mean by electric dipole selection rules unless specifically stated otherwise.

The selection rules for vibrational transitions are

For closed-shell molecules (molecules where all of the electrons are paired), the rotational selection rules are

 is possible for some open-shell molecules, but his topic will be discussed in more detail in Chapter 7.

The rotational fine structure of a transition can be separated into branches according to the specific change in the rotational
quantum number .

R-branch

0 Q-branch

P-branch

In Raman spectroscopy (which is an inelastic light scattering process rather than the direct absorption or emission of a photon, and
thus follows different selection rules) O- and S-Branches can be observed with  and  respectively.

The spectrum of possible branches and transitions that can be observed for all possible molecules can be quite daunting (and take
an entire graduate level course in molecular spectroscopy just to scratch the surface!) For the purposes of this discussion, we will
limit ourselves for the time being to just closed-shell molecules for which P- and R-branches can be observed.

Consider the following energy level diagram depicting the rotational energy levels in two different states. The diagram shows the
expected branch structure for a closed shell molecule. Notice that the transition lines get longer with increasing  in the R-branch,
but shorter with increasing  in the P-branch. The largest difference in transition energy is for successive lines in the spectrum is
that between the  and  lines. The band origin  will lie between these two lines, and is at the energy difference between
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the  and  " , the two non-rotating levels in the two vibrational levels. Also notice that the rotational energy spacings in
the upper state are smaller than those in the lower state. This is do to a smaller  value in the upper state  1), which has a
larger average bond length than the  level.

Energy Level Diagram 

Figure 

Combination Differences 

Consider the following partial energy level diagram:

Figure 

It is clear that since the  and  transitions share a common lower rotational level , the energy difference between the 
 and  transitions gives the energy difference between the  and  in the upper state of the transition. Similarly,

the difference between  and  in the lower state is given by . Thus, by taking differences of
transition energies in the proper combination, dependence on one of the states can be eliminated. Also, the difference  can
be found. This difference is defined by:

Using the rigid rotator model,

an expression for  can be easily derived:

= 0J ′ J = 0

B (v =

v= 0

5.7.3

5.7.4

R(J) P(J) ( )FJ

R(J) P (J) FJ+1 FJ−1

FJ+1 FJ−1 R(J −1) −P (J +1)

 F( J)Δ2

 F( J) ≡ −Δ2 FJ+1 FJ−1

= BJ(J +1)FJ

F (J)Δ2
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Thus the value of  that can be found for either the upper or lower states by combination differences from the energies of
the spectral lines, can be used to find the spectroscopic constant B.

And the  values are determined by the combination differences

were the single prime (") refers to the upper state and the double prime (") refers to the lower state.

For most molecules, the rotational distortion constants are not negligible. In this case, the rotational term values are given by

Neglecting terms of higher order than  (since these terms are small for most molecules) the combination differences
relationship can be derived as

It would be convenient if the term involving  could be factored. Recognizing that

the "cube" can be "completed" by

And by dividing through by 

 F( J)Δ2 = B(J +1)(J +2) −B(J −1)(J)
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So using the spectral data, a plot of

should yield straight lines with slopes of  and an intercept of  for the upper and lower states respectively.

Additional Spectroscopic Constants 

Since each vibrational level has a different average bond length (increasing with increasing vibrational quantum number for a well-
behaved electronic state,) the rotational constant has a dependence on the vibrational quantum number .

where  is the equilibrium value of the rotational constant (and the constant from which  is derived),  and  are constants

that describe how rotation and vibration are coupled in a molecule. Usually this power series in  can be truncated at the 

 term (unless data for a great many vibrational levels are known.)

Similarly, the distortional term can be expanded in a power series in .

For most molecules,  is not determined within experimental uncertainty unless a great many vibrational levels have been
included in the fit.

A typical methodology would be to determine  for all of the vibrational levels for which data exists. (A single vibration-rotation
band analysis provides two values, one for the upper state and one for the lower state.) Then the  values are fit to the functional
form given by

truncating the power series so as to include the minimum number of adjustable parameters as are needed to yield a good fit to the
data. This process yields a value for  which can then be used to calculate . These values can then be compared to those found
in the literature (if such a value has been measured) or reported in the literature if it has not yet been measured! A similar approach
is used for the distortional term(s).

Line Intensity in Rotational Structure 
One element that we have not discussed in the subject of rotational spectroscopy (or the rotational fine structure in vibration-
rotation spectroscopy) is the intensities of the spectral lines. The intensity will be determined by two factors: 1) the population of
the originating state (lower state in absorption and upper state in emission spectra) which is well described for a thermalized sample
by a Maxwell-Boltzmann distribution, and 2) the line strength, which is determined by the quantum mechanical relationship
between the upper and lower states of the transition.
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The Maxwell-Boltzmann Distribution 

The Maxwell-Boltzmann distribution of energy level populations will be achieved by any system that is in thermal equilibrium
(usually implying that a sufficient number of molecular collisions occur for a gas phase sample, or that all of the parts of a sample
are in thermal contact with one another in condensed phase samples) to ensure thermal uniformity throughout the sample. The
distribution is given by the following expression:

where  is the fraction of molecules in the  quantum state, that has and energy given by  and a degeneracy given by .
The term  is the Boltzmann constant times the temperature on an absolute scale. The denominator, , is a partition function,
which is part of a normalization factor. The partition function is given by

In the case of rotational energy levels for closed-shell molecules, the subscript I can be replaced by the rotational quantum number 
.

In this expression, the rotational energy level degeneracies are always given by  and the rotational energy levels (if treated
as rigid rotor levels) are given by . Thus the expression for the rotational partition function, qrot, is given by

It is handy to note that  has a value of approximately  at room temperature. When the energy  exceeds
approximately , the exponential term becomes negligibly small.

Focusing on the numerator of the Maxwell-Boltzmann expression, it is clear that the effect of increasing  is mixed in the
expression. As  increases, the degeneracy increases (having the effect of increased fractional population in the level) but also the
exponential term gets smaller due to the higher energy (having the effect of a decreased fractional population in the energy level.)
A plot of factional population as a function of  (for  at  ) is shown below.

Figure 

Note that at low values of , the fractional population increases with increasing , to a point. Eventually, the exponential term takes
over and the population is extinguished. The  value  at which this changeover occurs is a function of the rotational constant

=
Ni

Ntot

die
− /kTEi

q

Ni

Ntot 
ith  Ei di

kT q

q =∑
i

die
− /kTEi

J

=qrot ∑
J

dJe
− /kTEJ

(2J +1)

hcBJ(J +1)

= (2J +1)qrot ∑
J

e−hcBJ(J+1)/kT

hc

kT
206 cm−1 Ei

10 ⋅ kT

J

J

J HCl 298 K

5.7.5

J J

J ( )Jmax

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420508?pdf


5.7.8 https://chem.libretexts.org/@go/page/420508

 and the temperature, and can be determined by solving the following expression for .

The result is

The intensity pattern is plainly visible in the rotation-vibration spectrum of . A simulated spectrum of the 1-0 band of 
is shown below, clearly showing the P- and R-branch structure, and the large gap between where the band origin can be found.

Figure 

Line Strength Considerations 

The second major consideration in spectral line intensity is the line strength. This is determined by the squared magnitude of the
transition moment integral.

The rotational contribution, often called the rotational line strength, to this expression is a HönlLondon factor. For closed shell
diatomic molecules, the Hönl-London factors are given by

A good way to think of these expressions is to view them as branching ratios. They indicate the relative fraction of molecules in a
given level that will undergo an R-branch transition compared to what fraction will undergo a P-branch transition. The molecules
the lower state must "decide" to undergo either an R-branch transition or a P-branch transition. The relative fraction of each type of
"decision" is the branching ratio.

Figure 

Notice that the sum of these two expressions gives the total degeneracy of the rotational level. Given this relationship, it should be
clear that the fractions of molecules undergoing each type of transition are given by
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For open shell molecules, the expressions can be quite a bit more complex, but that is a topic for a more detailed course on
molecular spectroscopy. However, some of the details of rotational structure of open shell molecules will be discussed in Chapter 8,
as the electronic portion of the molecular wavefunction can affect the rotational structure profoundly.
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5.9: Vocabulary and Concepts
allowed transitions

angular momentum

combination differences

forbidden transitions

Hönl-London factor

Legendre polynomial

line strength

Maxwell-Boltzmann distribution

moment of inertia

rigid rotor

selection rules

spherical harmonics

spherical polar coordinates

transition moment
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5.10: Problems
1. Consider the data given in the table for lines found in the pure rotational spectrum of . Determine an approximate value

for  and assign the spectrum (the lower  upper state rotational quantum numbers for each line.) Make a graph of  vs. 

 and determine

line

1

2

3

4

5

6

the best fit line. Use these results to determine  and  for the molecule. Compare your results to those found in the NIST
Webbook of Chemistry for the ground electronic state of CO.

2. Consider the following data for the rotation-vibration spectrum of . 
a. Using the differences in frequency, assign the location of the band origin and assign the  - and R-branches accordingly. 
b. Using combination differences, fir the data to find B’, D’, B" and D’. 
c. Use your results to find  and . 
d. Based on your value of , find a value for  for the molecule. 
e. Compare your results to those found in the NIST Webbook of Chemistry.
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line Freq. 

18  

19  

20  

21  

22  

23  

24  

3. A recursion formula for the Legendre Polynomials is given by

Based on  and  find expressions for  and .

4. The function describing the  spherical harmonic is 

a. Show that this function is normalized. To do this, you must use the limits on  and  of , and . Also,
for the angular part of the Laplacian, 

b. Using plane polar graph paper (or a suitable graphing program) plot the square of the function from problem 2 in the 
plane (which gives a cross-section of the probability function for the particular spherical harmonic.) Does the shape look
familiar?

5. Based on the given bond-length data, calculate values for the rotational constants for the following molecules:

Molecule Bond Length 

6. The spacing between lines in the pure rotational spectrum of  is . From this, find  and calculate the bond length
(  ) in the BN molecule.

7. From your result in problem 6, calculate the frequencies of the first 4 lines in the pure rotational spectrum of BN.

This page titled 5.10: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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1

CHAPTER OVERVIEW

6: The Hydrogen Atom
The hydrogen atom problem was one that was very perplexing to the pioneers of quantum theory. While its quantized nature was
evident from the known atomic emission spectra, there were no models that could adequately describe the patterns seen in the
spectra.

6.1: Older Models of the Hydrogen Atom
6.2: The Quantum Mechanical H-atom
6.3: Rydberg Spectra of Polyelectronic Atoms
6.4: References
6.5: Vocabulary and Concepts
6.6: Problems
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6.1: Older Models of the Hydrogen Atom
Two of the most important (historically) models of the hydrogen atom and it’s energy levels/spectra were proved by Johannes
Balmer, a high school teacher, and Niels Bohr, a Danish physicist. Balmer’s model was a completely empirical fit to existing data
for the emission spectrum of hydrogen, whereas Bohr provided an actual theoretical underpinning to the form of the model which
Balmer derived. In this section, we will discuss the development and ramifications of these two models.

Balmer’s Formula 
Balmer (Balmer, 1885) was the first to provide an empirical formula that gave a very good fit to the data, but offered no theoretical
reasoning as to why the formula had the simple form it did. Balmer felt, however, that despite the lack of a theoretical foundation,
such a simple pattern could not be the result of an “accident”.

Figure 

Balmer suggested the formula

to calculate the wavelengths ( ) of the lines in the visible emission spectrum of hydrogen. In this formula, , which
is the series limit (depicted as  in the figure above.) Balmer considered this to be a “fundamental constant” for hydrogen and
fully expected other elements to have similar fundamental constants.

In modern terms, Balmer’s formula has been extended to describe all of the emission lines in the spectrum of atomic hydrogen.

where  and  are integers with .  is the Rydberg constant for hydrogen and has the value

The job of subsequent investigators was to provide a theory that explained the form of the Rydberg Equation shown above and to
correctly predict the value of the Rydberg Constant.

This model describes all known series of emission lines in the spectrum of atomic hydrogen. Each series is characterized by the
lower state quantum number. The following table summarizes the names of these series.

Name Region

1 Lyman Vacuum Ultraviolet

2 Balmer Visible/Ultraviolet

3 Paschen Near Infrared

4 Brachen Infrared

5 Pfund Far Infrared
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The Bohr Model 

Niels Bohr (Bohr, 1913) was the first person to offer a successful quantum theory of the hydrogen atom in his 1913 paper. He was
later awarded the Nobel Prize in Physics in 1922 for his contributions to the understanding of atomic structures (as well as many
other significant contributions.) And while the Bohr model has significant shortcomings in terms of providing the best description
of a hydrogen atom, it still provides the basis (a “solar system model”) for how many people view atoms today.

Bohr’s model was mostly an extension of the Rutherford model of an atom, in which electrons exist in a cloud surrounding a dense,
positively charged nucleus. The Bohr model suggested a possible structure to this cloud in an attempt to give an explanation of the
empirical formula presented by Balmer. The strength of the Bohr model is that it does provide an accurate prediction not only of
the form of Balmer’s formula, but also of the magnitude of the Rydberg constant that appears in the formula.

Bohr’s approach was to balance the electrostatic attractive force between an electron and a positively charged nucleus, with the
centrifugal force the electron feels as it orbits the nucleus in a circular orbit. He derived these orbits by making the assumption that
the angular momentum of an orbiting electron is an integral multiple of .

While successful in predicting the form of the Rydberg Equation and the magnitude of , the Bohr model presented some
difficulty. First, it ignored the reality that a charged particle orbiting another (oppositely) charged nucleus would see its orbit decay
over time, eventually colliding with the nucleus. This clearly does not happen with hydrogen! Also, the Bohr model was not
extendable to larger atoms. Quantum mechanics would have to address these problems, while also providing the kind of
explanations for the Rydberg Equation provided by Bohr.

This page titled 6.1: Older Models of the Hydrogen Atom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by Patrick Fleming.
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6.2: The Quantum Mechanical H-atom
As is so often the case for quantum mechanical systems, the story of the hydrogen atom begins with writing down the Hamiltonian
describing the system.

The Potential Energy and the Hamiltonian 
The time-independent Schrödinger equation has the following form.

where m is the reduced mass for the electron/nucleus system. The Laplacian operator has the form

The potential energy is given by the electrostatic attraction of the electron to the nucleus.

where  is the charge on the nucleus in electron charges (also given by the atomic number), e is the charge on an electron and  is the
vacuum permittivity.

Figure 

The  dependence means that the electrostatic attraction diminishes as the distance between the electron and the nucleus is increased. The
potential energy approaches zero as r goes to , at which point the atom ionizes.

Putting this all together allows the Hamiltonian to be expressed as

The wavefunctions can be expressed as a product of a radial part and an angular part since the CityplaceHamilton is separable into these
two parts.

The angular part of the function,  are the spherical harmonics and are eigenfunctions of the  operator. Substitution into the
Schrödinger equation yields
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Since the spherical harmonics are eigenfunctions of the  operator, the following substitution can be made.

After making this substitution and dividing both sides by , we get

However, since  shows up in the equation in which we are solving for the radial wavefunctions , it is not to be unexpected that the
solution to the radial part of the equation will place new constraints on the quantum number . In fact, the radial wavefunctions themselves
depend on  and a principle quantum number number .

The Energy Levels 

Applying the boundary condition that the radial wavefunction  must vanish as , the only wavefunctions that behave properly
have the following eigenvalues

Notice also that this expression vanishes as  approaches , which is the ionization limit of the atom. Also, since the energy expression
depends only on  (and not on  and  ) it is expected that there will be a great deal of degeneracy in the wavefunctions.

Taking differences between two energies levels (to derive an expression for the energy differences that can be observed in the spectrum of
hydrogen), it is seen that

which is exactly the form of the Rydberg Equation. Now dividing both sides by  in order to convert from energy units to wavenumber
units

using the reduced mass for the hydrogen atom and a nuclear charge of +1. So this model also predicts the correct value for the Rydberg
constant .

The Rydberg Constant for Heavier Nuclei 

The expression for the Rydberg constant is

which has a value of . In this expression,  is the reduced mass of the electron-proton system in the hydrogen
atom. But what happens when the mass of the nucleus is extremely large? First, consider the reduced mass.

Where  is the mass of an electron and  is the mass of the nucleus. In the case that the nuclear mass is extremely large compared to
the mass of an electron, the total mass is approximately equally to the mass of the nucleus.

In this case, the reduced mass becomes
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And the Rydberg constant expression comes to

where  indicates the Rydberg constant for an infinite mass nucleus atom. It is this value that is usually found in tables of physical
constants.

But for lighter atoms, such as hydrogen, the value of the Rydberg constant deviates form this value. In fact, hydrogen shows the largest
deviation for any atom, given that it has the lightest nucleus. Compared to experimental precision, this deviation is important (even for
atoms where the mass of an electron is only  times that of the nucleus!) if one hopes to fit data to experimental precision.

To address this problem, we look back to the expression for the Rydberg constant for an arbitrary mass nucleus, .

Clearly as the mass of the nucleus (  ) becomes larger, the value of  will approach that of  asymptotically.

The Wavefunctions 

The hydrogen atom wavefunctions  can be expressed as a product of radial and angular functions.

The angular part is simply the spherical harmonics that were described in Chapter 5, depend on the quantum numbers  and . More
details of how the spherical harmonics are generally presented as H-atom angular functions is discussed in section 3.i. The radial part of
the wave functions,  will be described in a later section.

The Angular Part of the Wavefunctions 

Each orbital wave function can be designated with a letter than indicates the value of  as assigned in the following table.

Designation

0 s

1 p

2 d

3 f

The angular parts of the wavefunctions are given by the spherical harmonics. After taking linear combinations to eliminate the imaginary
part of the wave functions, the familiar shapes of s, p, d and f orbitals are generated. For example, the  and  orbitals are generated as
linear combinations of the  and  orbitals.

Similar linear combinations are used to generate the , ,  and  functions.
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There are multiple choices for how to take linear combinations to generate the f orbital functions (the best choice being determined by the
geometry of the complex in which an f-orbital containing atom exists), so these are rarely shown in textbooks! The tables below give the
angular parts of s, p and d hydrogen atom orbitals. The linear combinations shown above have been used to eliminate the imaginary parts
of the wave functions. The result is what is usually plotted for the shapes of these orbitals.

Orbital

0 s

1

Orbital

2

These functions generate the familiar angular parts of the hydrogen atom wavefunctions. Some depictions are shown in the figure below.
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Figure 

The Radial Part of the Wavefunctions 

The radial part of the wavefunction has three parts. 1) a normalization constant, 2) an associated Laguerre Polynomial and 3) an
exponential part that ensures the wavefunction vanishes as . The associated Laguerre polynomials are derived from the Laguerre
polynomials (much like the associated Legendre Polynomials were from the Legendre polynomials.) The Laguerre polynomials can be
derived from the expression

The first few Laguerre polynomials are given by

n  (x)

0

1

2

3

A recursion formula for these functions is given by

The associated Laguerre polynomials can be generated using the expression

This expression is used to generate an associated Laguerre polynomial of degree  and order . The functions of interest to the
hydrogen atom radial problem are the associate Laguerre polynomials of degree  and order . It can be shown that these
functions can be generated from the relationship

Note that when  is less than zero, the functions vanish. This leads to the restriction on the quantum number l that comes from the
solutions to the radial part of the problem.
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The first few associated Laguerre polynomials that appear in the hydrogen atom wavefunctions are shown below.

n # nodes

1 0 -1 0

2
0 1

1 0

3

0 2

1 1

2 0

Notice that if  exceeds , the derivative causes the function to go to zero, as was the case for the associated Legendre
Polynomials when  exceeds . This provides the constraint on l that was expected to be found in the solution to the radial part given that
 shows up in the equation to be solved.

Typically, x is replaced by a new function in , .  is defined as follows:

where  is the Bohr radius. The overall expression for the radial wavefunction is given as follows:

The first several radial wavefunctions are given below.

n l

1 0 1s

2

0 2s

1 2p

3

0 3s

1 3p

2 3d

where .  is the Bohr radius, which has a value of  m.

What is the expectation value of r for the electron if it is in the 1s subshell of an H atom?

Solution
The expectation value can be found from
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Where  comes from the r portion of the volume element  after it has been transformed into spherical polar coordinates.

Substituting the wavefunction from above yields

This expression simplifies to

A table of integrals shows

Substituting the above integral into the general form results in

What is the most probable value of  for the electron in a hydrogen atom in a 1s orbital?

Solution
The most probable value of  will be found at the maximum of the function

This can be found by taking the derivative and setting it equal to zero. First, let’s find the probability function

At the maximum, the derivative is zero.

So

After dividing both sides by , and placing the right-hand term on the other side of the equals sign, this simplifies to

This is further simplified by dividing both sides by :

⟨r⟩ = ⋅ r   dr∫
∞

0
ψ∗

1s ⋅ψ1s r
2

drr2 dx dy dz

⟨r⟩ = [ ] r[ ] dr∫
∞

0
2( )

1

a0

3

2

e
−

r

a0 2( )
1

a0

3

2

e
−

r

a0 r2

⟨r⟩ = 4 [ ]dr( )
1

a0

3

∫
∞

0
r3 e

−
2r
a0

dx =∫
∞

0
xne−ax n!

an+1

⟨r⟩ = 4( )
1

a0

3
⎛

⎝

⎜⎜⎜⎜

6

( )
2

a0

4

⎞

⎠

⎟⎟⎟⎟

= ( ) ( )
24

16

1

a3
0

a4
0

=
3

2
a0

 Example 6.2.2

r

r

P (r) =  r2[R (r)]
2

 P (r) =   =    r2 [2 ]( )
1

a0

3

2

e−
r

ao

2

4

a3
0

r2 e
−

2r
a0

P (r) = 0
d

dr

[     ] = (2r  −   ) = 0
d

dr

4

a3
o

r2 e
−

2r
a0

4

a3
3

e
−

2r
a0

2

a0
r2 e

−
2r
a0

4

a3
0

2r  =  e
− 2r

a0
2

a0
r2 e

− 2r
a0

e
− 2r

a0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420513?pdf


6.2.8 https://chem.libretexts.org/@go/page/420513

The rest of the algebra is straight forward (actually, all of the algebra was straight-forward, but who is counting?)

Nodes 

A hydrogen atom wavefunction can have nodes in either the orbital (angular) part of the wavefunction or the radial part. The total number
of nodes is always given by . The number of angular nodes is always given by . The number of radial nodes, therefore, is
determined by both n and l. Consider the following examples.

Nodes

radial angular total

1s 0 0 0

4d 2 1 3

5f 1 3 4

2d  - -

2p 0 1 1

Notice that it is impossible to form a 2d wavefunction as it violates the relationship that

causing the radial wavefunction to vanish. This is easy to see as the combination of  and  implies that there are -1 radial nodes,
which is clearly impossible.

Shells, Subshells and Orbitals 

It is convenient to name the different subdivisions of the electronic structure of a hydrogen atom. The subdivisions are based on the
quantum numbers n, l and . A shell is characterized by the quantum number . (Examples: the n=2 shell or the n=4 shell.) A subshell
is characterized by both the quantum number  and . (Examples: the 2s subshell or the 3d subshell.) An orbital is characterized by the
quantum number , , and  . (Examples: the 2  orbital or the 5f1 orbital.) It should be noted that an orbital can also be constructed
from a linear combination of other orbitals! (Example: the 2  orbital or the 3  orbital.)

Degeneracy 

The hydrogen atom wavefunctions have high degeneracies since the energy of a given level depends only on the principle quantum
number n. As such, all wavefunctions with the same value of n will have the same eigenvalue to the Hamiltonian, and are degenerate.
Recall the following relationships:

These relationships can be used to fill in the following table that indicates the degeneracies of the hydrogen atom energy levels.

Subshell n

     orbital total

1s 1 0 0 , 1 2

2s 2 0 0 , 4 8

2p  1 +1, 0, -1 ,   

3s 3 0 0 , 9 18

3p  1 +1, 0, -1 ,   
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Subshell n

3d  2 +2, +1, 0, -1, -2 ,   

4s 4 0 0 , 16 32

4p  1 +1, 0, -1 ,   

4d  2 +2, +1, 0, -1, -2 ,   

4f  3
+3, +2, +1, 0, -1,
-2, -3

,   

It is clear that the total degeneracy of a shell is given by .

The Overall Wavefunctions 

The total wavefunction, including both angular and radial parts, for hydrogen-like atoms is given by

The first few hydrogen atom orbital wavefunctions are given in the table below.

Shell Subshell Wavefunction

1 1s 0

2 2s 0

 2p 0

  

This page titled 6.2: The Quantum Mechanical H-atom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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6.3: Rydberg Spectra of Polyelectronic Atoms
To a very good approximation, the electronic spectra of highly excited atoms look a lot like the spectrum of hydrogen. These highly
excited states of atoms are called “Rydberg States” and to a good approximation, the excited electron in a Rydberg state “feels” the
nucleus of the atom as a point charge. As this occurs, the atom comes to be in a state that looks much like a state in a hydrogen-like
atom, with a heavy nucleus that has  charge (the residual ion if the excited electron is removed).

Figure 

In cases such as this, the energy levels of the excited electron can almost be treated using the Rydberg formula proposed by Balmer,
and with the correct Rydberg constant (  ) and nuclear charge. The formula does not work perfectly, but can be forced to fit the
data by introducing a “fudge factor.”

Approximating a Hydrogen-like Atom 
Scientists like to force the descriptions of real systems in terms of the limiting ideal cases with slight perturbations. In the case of
real atoms, there are two common ways that this is typically done. One is to fudge the nuclear charge and the other is to fudge on
the principle quantum number.

Shielding and Effective Nuclear Charge 

One “fudges” the nuclear charge by noting that the excited electron will not “see” the inner core ion as a point charge with 
charge. Instead, it will feel the full charge of the nucleus, but shielded by the electrons that remain in the ion. Thus, the effective
nuclear charge (  ) can be used.

where , the effective nuclear charge, is defined by

where  is the shielding constant and is determined by adding the effects of each of the inner electrons. The trouble with this
approach is that the degree of shielding is dependent on the excitation level of the excited electron. The shielding constant  should
reach a limiting value for highly excited Rydberg states of the atom.

Quantum Defect and the Effective Principal Quantum Number 

Another approach is to “fudge” on the principle quantum number of the excited electron. The utility of using this method is that
there is only one electron to treat, rather than a slew of electrons in the core ion, the shielding of each will be variable. In this
method, the effective principal quantum number  is defined as

where  is the quantum defect. The quantum defect has the useful property that it reaches a constant value for electrons in atoms
at high levels of excitation.

The ionization potential 

The ionization potential of an atom I defined by the enthalpy change at 0 K for the following reaction

a +1

6.3.1

RM

a +1
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= ( − )ν~ ( )Z∗ 2
RM
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If one pictures ionization as a series of excitations of the electron to be removed through a set of Rydberg states, one can deduce the
ionization potential of an atom. (This is how atomic spectroscopy is used to determine highly accurate ionization potentials.)

Using the effective principle quantum number , the energy levels can be expressed as

Consider the Rydberg series in , the first few levels of which is given below. For , the Rydberg constant can be calculated

Based on a guess of the ionization potential, an effective principle quantum number can be calculated for each level from

From , one can calculate the quantum defect ( ) and adjust the guess of the ionization potential until  becomes constant for
large .

Level Energy (  )

3p 3 0.883 2.117 16956.17

4p 4 0.867 3.133 30266.99

5p 5 0.862 4.138 35040.38

6p 6 0.860 5.140 37296.32

7p 7 0.858 6.142 38540.18

8p 8 0.858 7.142 39298.35

9p 9 0.857 8.143 39794.48

10p 10 0.857 9.143 40136.80

11p 11 0.857 10.143 40382.92

12p 12 0.857 11.143 40565.78

13p 13 0.857 12.143 40705.34

14p 14 0.856 13.144 40814.27

15p 15 0.856 14.144 40900.91

16p 16 0.857 15.143 40970.97

17p 17 0.857 16.143 41028.41

M ← + ΔH = IPM + e−

n∗

= −
E

hc

IP

hc

RM

(n∗)2

Na23 Na

=RNa ( )
mNa

+me mNa

R∞

=( ) (109737.316 c )
3.81763 × kg10−26

9.109 × kg +3.81763 × kg10−31 10−26
m−1

= 109734.698 cm−1

=n∗ RNa

IP −E

− −−−−−−
√

n∗ δ Σ

n

IP = 41449.48cm−1 =RNa 109734.7 cm−1

n δ n∗ cm−1
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Figure 

This method is extremely sensitive and can be used to determine very precise values of ionization potentials for atoms. The above
result is 5.145 eV, whereas the literature value for the ionization potential of sodium is 5.139 eV (Webelements). The slightly large
value determined from this data is a consequence of only using a limited number of excited levels, and not the highest energy
levels, which behave most Rydberg-like. A close examination of the data actually reveals that there is some curvature to the  vs 
curve at high values of . Since the curve is actually increasing at the larger values of , it is an indication that the guess for the
ionization potential is slightly high – a fact that is consistent with the literature value!

This page titled 6.3: Rydberg Spectra of Polyelectronic Atoms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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6.5: Vocabulary and Concepts
angular nodes

effective nuclear charge

effective principle quantum number

orbital

principle quantum number

quantum defect

Rydberg constant

shell

shielding constant

subshell
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6.6: Problems
1. Calculate the finite-mass Rydberg constant (  ) for

a. H
b. D
c. 
d. 

2. The 1s orbital wavefunction for hydrogen is given by

a. Show that this wavefunction is normalized.
b. Find the expectation value of  in units of  (the Bohr Radius.)

3. Show that the 2s wavefunction for hydrogen is
a. Normalized
b. An eigenfunction of the Hamiltonian. (What is the eigenvalue?)

4. The Laguerre Polynomial  is given by

The Associated Laguerre polynomials are generated from the relationship

a. Show that the Associated Laguerre polynomials , , and . (In fact, 
for any choice of .)

b. Given that the Associated Laguerre polynomials used in the radial wavefunctions of the Hydrogen atom problem are 
, derive a relationship between  and  that ensure that .

5. Using the Laguerre polynomials  and , show that

6. Sketch the radial wavefunctions for the 1s, 2s, 2p, 3s, 3p, and 3d orbital wavefunctions of Hydrogen.

7. Determine the number of nodes in each of the following hydrogen atom orbital wavefunctions:

wavefunction Total nodes Angular nodes Radial nodes

2s    

3p    

5d    

6f    

8. Determine the ionization potential for .
a. Find  for the He-3 isotope.
b. Use the relationship

RM
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9. Based on the following data, find the ionization energy of Rb, using the fact that at high excitation, the quantum defect ( )
becomes constant.

n (for the  transition) Wavenumber (  )

5 12578.950

6 23715.081

7 27835.02

8 29834.94

9 30958.91

10 31653.85

11 32113.55

12 32433.50

13 32665.03

14 32838.02

15 32970.66

16 33074.59

17 33157.54

18 33224.83

19 33280.13

20 33326.13

This page titled 6.6: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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1

CHAPTER OVERVIEW

7: Approximate Methods
The previous chapters all dealt with problems that can be solved analytically. However, there are many problems that are of
chemical interest that cannot be solved exactly. For these problems, we must employ some methods that will approximate a correct
and complete solution. Two such methods will be discussed in this chapter.

7.1: Perturbation Theory
7.2: Variational Method
7.3: Vocabulary and Concepts
7.4: Problems

This page titled 7: Approximate Methods is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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7.1: Perturbation Theory
Often times, a system represents only a small difference from an exactly solvable system. In these instances, perturbation theory
can be used to describe the system. To use perturbation theory, one must separate the Hamiltonian into two parts: one for which the

solution is known ( ) and the other part which will represent the perturbation to the system ( ).

The solution for the unperturbed system is known.

The energy levels and wavefunctions for the perturbed system are determined by applying a series of corrections (referred to as
first order, second order, etc.)

Oftentimes only the first and second order corrections are needed to give a reasonable description of the system. The first order
correction to the energy is given by

The second order correction to the energy depends on the first order correction to the wavefunctions.

The formula for generating the first order corrections to the wavefunctions is given by

Substitution into the expression for  yields

This page titled 7.1: Perturbation Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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7.2: Variational Method
The variational method is based on the Variational principle which says that a wavefunction that is not the true wavefunction will
always yield a value for the energy that is greater than the true ground state energy of the system. This principle can be proven
using the superposition theorem that was previously discussed.

Assume a trial wavefunction  describing a particle in a box, that can be expressed as a linear combination of the normal
particle in a box wavefunctions.

Assuming  is normalized, the expectation value of energy  is obtained from the expression

Substituting the expression for  from above

Noting that

Substitution yields

Gathering terms, one obtains

The Kronecker delta will destroy one of the summations since it will pick out only one value to be non-zero.

Thus if any components of the linear combination have a non-zero contribution (  for ) the expectation value has to
be larger than .

The Variational principle can be used to determine reasonable trial wavefunctions ( ) based on a set of approximate wavefunctions
( ). This is done by assuming the trial wavefunction can be expressed as a linear combination of the approximate wavefunctions

 Theorem : Variational Method7.2.1
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and then determining the contribution to the trial function by minimizing the energy with respect to the coefficients ( ) in the
expansion.

This will produce n equations with  unknown values of  which can be simultaneously solved to yield the optimal values of .
This methodology is used to a great extent in computational chemistry methods.

What is  for a system with the following wavefunction that approximates  (x) for a particle in a box?

Solution
The wavefunction is a reasonable, but not perfect, approximation of the  level of a particle in a box.

Figure 

The expectation value of energy is found in the usual manner.

This result is slightly larger than  since  and .
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In the variational method, an approximate form of a wave function can be used
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7.3: Vocabulary and Concepts
perturbation theory

variational method
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7.4: Problems
1. Consider a particle of mass  in a box defined between  and , that is prepared in the  state. If the

wavefunction is approximated by

a. Show that the expectation value of  exceeds  for a particle in a box.
b. By what percentage does the approximate energy exceed that of the  energy?

This page titled 7.4: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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CHAPTER OVERVIEW

8: Polyelectronic Atoms
One of the shortcomings of Bohr’s model of the hydrogen atom was that it was not extensible to atoms that had more than one
electron. The newly emerging quantum mechanics was hoped to do a better job. Unfortunately, while the hydrogen atom problem is
solvable analytically, issues arise when an attempt is made to solve the problem for atoms with multiple electrons. Regardless, the
first step in deriving this theory, then, is writing the Hamiltonian for the System.
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8.1: Potential Energy and the Hamiltonian
The potential energy of a poly electronic atom is all electrostatic in nature. There are attractive forces between electrons and the
nucleus and repulsive forces between the electrons themselves. For simplicity, we will consider the helium atom first, which has a
nucleus with a charge of +2 electron charges and two electrons with -1 charges each.

Figure 

The Hamiltonian for this system will have kinetic energy terms for both electrons and three terms to describe the potential energy
in the system. The attractive forces will lead to negative contributions to the potential energy and the repulsive (electron-electron)
force will contribute a positive value to the potential energy. In atomic units, this yields

The  (electron-electron repulsion term) makes the problem unseparable into terms that relate only to a single electron. This

creates a three body problem, which cannot be solved analytically.

The Orbital Approximation 
The way we deal with this problem is to simply ignore the electron-electron repulsion term in the solution, and treat it
phenomenologically after the fact. This is known as the orbital approximation, as it allows for the separation of the Hamiltonian
into two terms, one of which deals in electron 1 and the other in electron 2.

This is also the approximation that allows us to write electronic configurations for polyelectronic atoms. In the electronic
configuration, we assume that each electron has a hydrogen-like wavefunction.
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8.2: The Aufbau Principle
The aufbau principle(German for “building up” principle), or building up principle, suggests that we can construct a description
of an atom my adding subatomic particles one at a time, moving through the periodic table until we reach the element of interest.

Under this description, a carbon atom (atomic number 6) is similar to a boron (atomic number 5) atom, but with one additional
proton and some additional neutrons in the nucleus and one additional electron added to the electron cloud.

Electronic Configurations 

Consider carbon, which is atomic number 6. Most chemists advanced to a level to which they are prepared to take a course in
physical chemistry can construct an electronic configuration for .

: 

Or for , one would write

: 

It is a curious thing that that the 4s subshell fills before the 3d subshell, since in atomic hydrogen, the 3d subshell has a lower
energy. However, in polyelectronic atoms, (specifically for K and Ca) the 4s subshell is actually lower in energy than the 3d
subshell. As such, according to the aufbau principle, it is the 4s subshell that fills first of the two.

However, it is important to note that the relative energies of the subshells change with changing nuclear charge and differing
numbers of electrons. For example, in Sc, it is the 4s electrons that are higher in energy than the 3d electron. As such, the 4s
electrons are the first to be removed when the atom is ionized.

Shells, Subshells, Orbitals and Spin 

It is useful to develop some nomenclature to describe the different combinations of quantum numbers that describe the different
wavefunctions for the electrons in an atom. In order to do this, we need ot define a few terms that will come in handy later.

i. shell– characterized by the principle quantum number n
ii. subshell– characterized by n and the angular momentum quantum number l

iii. orbital– characterized by n, l and the azimuthal quantum number .

In addition to shells, subshells and orbitals, electrons have spin. The spin quantum number of an electron is . But generally
electrons are described as being “spin up” or “spin down” based on the value of the z-axis component of the spin, .  can take
values of  and . Each orbital can hold two electrons. If there are two electrons in the orbital, the spins must be pairs such
that one is “spin up” and the other is “spin down.”

This page titled 8.2: The Aufbau Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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8.3: Orbital Diagrams
Orbital diagrams are handy to depict electronic configurations without having to resort to just quantum numbers. In an orbital
diagram, each orbital is depicted using a box or a line and electrons are depicted with arrows pointing either up or down depending
on the value of .

This page titled 8.3: Orbital Diagrams is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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8.4: Angular Momentum Coupling
Any system that has more than one source of angular momentum will be subject to coupling between those forms of angular
momentum. For example, consider the emission from an excited hydrogen atom, for which the electron is in the 2p subshell the
atom emits a photon as the electron relaxes to be in the ground 1s subshell. In fact, this transition is doubled as two lines can be
observed if viewed at high enough resolution.

Figure 

The transition is depicted in the above energy level diagram. The upper (2p) state is shown to be split into two components, one
labeled  and one . The lower state has only one component, labeled . Part of the job of quantum mechanics will be
to describe this splitting. The explanation comes in the form of angular momentum coupling.

There are two sources of angular momentum in the electronic wavefunction of the atom: the orbital angular momentum ( )

and the electron spin angular momentum ( ). These angular momenta can couple to yield a total angular momentum 

. The resultant angular momentum can be determined by the two angular momentum vectors adding in parallel of

antiparallel. The result is to split the state into two components.

Term Symbols 
Angular momentum in atoms can be summarized using a term symbol. The term symbol will indicate a number of different types
of angular momentum such as the total orbital angular momentum, total spin angular momentum and the total (spin + orbit) angular
momentum. In the limit that Russell-Saunders coupling (which will be described in detail shortly) provides a a good description
of the atom, the term symbol used will be of the form

where S is the total spin angular momentum and ( ) is the spin degeneracy, L is the total orbital angular momentum, and J
gives the total of the spin-orbit angular momentum. (The convention will be followed that lower-case letters are used to indicate
one-electron properties and upper-case letters are used to describe total atom properties.)

L and S must be calculated using vectoral sums of the single-electron angular momenta (whether orbital or spin.) The vectoral
sums can yield several values depending on the angle between the vectors. The possible magnitudes of the resultant vectors will be
quantized, with the range of magnitudes being given by a Clebsch series. Consider the addition of the angular momentum vectors
for two electrons in  subshells.

Figure 

As such, the possible values of L for a  configuration are
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As in the case of one-electron orbital angular momenta, the total orbital angular momentum is signified using a letter. The
following table shows which letters are used.

One-electron Total Atom

l Designation L Designation

0 s 0 S

1 p 1 P

2 d 2 D

3 f 3 F

4 g 4 G

The possible values of , are given by . (For all electrons, .)

So the possible values of ( ) are 3 and 1. In other words, both triplet and singlet states arise from a  configuration.

However, not all possible combinations of  and ( ) are possible. In fact, only those values that arise from distinguishable
combinations of miscrostate quantum number combinations are possible.

The Microstate Method 

The number of distinguishable microstates for a given electronic configuration is given by

where G is the number of spin-orbit states possible for a single electron and N is the number of electrons. For a  configuration, 
 and . So the number of microstates is given by

So there are 15 possible microstates possible. Each microstate will be characterized by a value of  and  for each electron
under consideration. A complete set of microstates for a  configuration is shown in the table below.  and  are indicated for
electrons 1 and 2 in the atom. Notice that only distinguishable combinations are shown!

Designation

 1 2 1 2    

1 +1 +1 +2 0

2 +1 0 +1 +1

3 +1 0 +1 0

4 +1 -1 0 +1

5 +1 -1 0 0
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Designation

6 +1 0 +1 0

7 +1 0 +1 -1

8 +1 -1 0 0

9 +1 -1 0 -1

10 0 0 0 0

11 0 -1 -1 +1

12 0 -1 -1 0

13 0 -1 -1 0

14 0 -1 -1 -1

15 -1 -1 -2 0

The “Designation” column in the above table is really for bookkeeping only. For example, it should be noted that there are two
miscrostates that yield  = +1,  = 0. One has been designated  and the other . In fact, the wavefunctions needed to
describe these term symbol components require linear combinations of both microstates.

The resulting microstates for a  configuration are ,  and . The methodology for determining this from the table of
microstates is as follows:

1. Find the largest value of  and the largest value of  that corresponds to that value.
2. From these, find L and S for the term symbol.
3. Mark combinations of  and  that match the pattern for a given term symbol.
4. Repeat from step 1 for remaining microstates. Keep repeating until there are no microstates left.

It is very important to approach this process methodically or errors will occur in determining microstate-term symbol correlations.

Utilizing this methodology to work through the above table, we start with the largest value for  which is +2. The largest value of
 that goes with it is 0. This indicates  and  values of 2 and 1 respectively.  indicates a  state.  indicates that 

 (or a singlet state.) So the resulting term is . This will have components of . Each
will have  = 0. This accounts for five of the microstates.

The largest value of  for the remaining microstates is . the largest value of  that goes with  is .
This correlates to ,  or a  state. There are nine combinations of microstates for this term symbol, one each for each
combination of  and .

After these combinations are marked, the only remaining combination is , , which corresponds to a  state.

The number of microstates used for a given term symbol can be determined from ( ) and ( ), the orbital and spin
degeneracies respectively. Consider the following table. Notice that the total of  is the same as the number of
original microstates.
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1 1 1

Total 15

Spin-Orbit Coupling 

The one thing that has not been determined from the microstates themselves is the total angular momentum , which is given by
the vectoral sum of  and .  values must be determined for each term separately. This coupling of spin and orbit angular
momenta will split the term states further.

L S J Terms

2 0 2  

1 1 2, 1, 0 , , 

0 0 0  

Again, the values of the spin-orbit degeneracies, given by (2J+1) can be used to determine if the coupling scheme has been done
properly.

J (2J+1)

 2 5

2 5

1 3

0 1

 0 1

Total 15

Again, notice that the total matches the original number of microstates.

The Hole Rule 

When dealing with a subshell that is more than half filled, it is oftentimes easier (or at least less tedious) to employ the hole rule.
The hole rule involves treating electron holes rather than the electrons themselves. Consider  and  as an example of
complementary atoms. Carbon has a  configuration and oxygen a  configuration. (Added together, that makes a 
configuration, which closes the p-subshell and is why the two atoms are complementary.)

For each microstate in the  system, there exists one in the  system that when added together would complete the p-subshell. An
example is shown below.

Figure 

This relationship ensures that the exact same symmetry relationships hold for the  system as for the  system. Hence, the term
symbols that arise from a  system are ,  and . With spin-orbit coupling, the 3P will split into three components, , 
and . Of these,  will have the lowest energy according to Hund’s rule 3b, as these terms arise from a system where the
subshell is more than half filled.
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Hund’s Rules 

Hund’s rules are used to determine the lowest energy state within the manifold of states generated from a given electronic
configuration. The rules can be summarized as follows:

1. The lowest energy state will be the one with the largest value of S.
2. For multiple states with the same largest value of S, the lowest energy state will have the largest value of L.
3. For states with the same values of L and S, the lowest energy state will have

a. The smallest value of J, if the term arises from an electronic configuration in which the subshell is less than half filled
b. The largest value of J, if the term arises from an electronic configuration in which the subshell is more than half filled

For the case of a  configuration, the largest value of S generated is S = 1, for the  state. And within this state, the lowest
energy term will be , since  corresponds to a subshell that is less than half filled.

Determine the term symbols that arise from the  configuration of  N.

Solution
Consider a carbon atom in an excited state where the electronic configuration is given by

: [He] 2s  2  3

This is an example of a pp configuration (which is different than a  configuration since the two electrons have different
values of the principle quantum number n. In this case, a number of microstate combinations become distinguishable that
would not be before. A complete set of microstates for a pp configuration is given in the table below. In this case, since the

electrons are not equivalent, it is possible for both to be in orbitals where  = +1 with  =  since they are in different

subshells.

Designation

 2p 3p 2p 3p    

1 +1 +1 +2 +1

2 +1 +1 +2 0

3 +1 +1 +2 0

4 +1 +1 +2 -1

5 +1 0 +1 +1

6 +1 0 +1 0

7 +1 0 +1 0

8 +1 0 +1 -1

9 +1 -1 0 +1

10 +1 -1 0 0

11 +1 -1 0 0

p2 P3

3P0 p2
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Designation

12 +1 -1 0 -1

13 0 +1 +1 +1

14 0 +1 +1 0

15 0 +1 +1 0

16 0 +1 +1 -1

17 0 0 0 +1

18 0 0 0 0
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Designation

36 -1 -1 -2 -1

In this example, there are more term symbols generated due to the fact that the electrons are not in the same subshell. The
resulting term symbols are , , , ,  and . As such, this set of microstates includes some combinations of  and

 which would not be possible if the two electrons were in the same subshell.

This page titled 8.4: Angular Momentum Coupling is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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8.5: The Pauli Exclusion Principle
One explanation as to why the differences between the term symbols that arise from a  configuration relative to a pp
configuration is the Pauli Exclusion principle. The usual statement of the Pauli Exclusion Principle is that no two electrons in an
atom can have the same set of four quantum numbers n, l,  and . Another explanation is to simply announce that

Electrons are Fermions!

This approach is useful if you happen to know the properties of Fermions, but does not provide much insight if you do not.

A Fermion is a particle with half-integral spin. An obvious example (according to the statement above) is an electron which has 

. Other examples include protons and neutrons and fluorine-19 nuclei (all with ), aluminum-27 nuclei ( ) etc.

Fermions have the property that the total wavefunction of a system containing two equivalent fermions must change sign if the two
particles are exchanged.

The other type of particle is called a Boson. This is a particle with integral spin. Examples of bosons include deuterium nuclei or
nitrogen-14 nuclei (both with ) or helium-4 nuclei ( ). A system containing two equivalent bosons must have a
wavefunction that does not change sign for the exchange of two equivalent bosons.

In order to explore the properties of these types of particles, it is useful to define an operator that exchanges two equivalent
particles (1 and 2).

In the limit that spin and orbital wavefunctions are separable (the total wavefunction can be expressed as the product of a spin
function and an orbital function)

both the spin and orbital functions must be eigenfunctions of the electron exchange operator. We shall explore the properties of this
operation on spin wavefunction to explore the difference between single and triplet spin wavefunctions as derived from a pp pr 
configuration.

Consider how the microstates shown in Table 1 behave under the exchange operation.

Wavefunctions  and  are eigenfunctions of . Wavefunctions  and  are not eigenfunctions of , but they are clearly
related to one another through the electron exchange operation as the operation converts one into the other. The relationship
suggests that linear combinations of  and  can be taken in order to construct spin wavefunctions that are eigenfunctions of .
One linear combination is symmetric (eigenvalue = +1) and the other is be antisymmetric (eigenvalue = -1). The correct,
normalized linear combinations are as follows.

Under the electron exchange operator, these linear combinations behave as follows.
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So  is symmetric with respect to electron interchange and  is antisymmetric with respect to electron interchange. Noting that 
 and  are natural symmetric eigenfunctions of the exchange operator, it is easy to group the spin wavefunctions into triplet

and singlet components according to symmetry with respect to the operator . The summary of these results is shown in the table
below.

Wavefunction S

Triplet Symmetric 1

+1

0

-1

Singlet Antisymmetric 0 0

It can be seen that there are three components of the triplet spin wavefunction and only one component to the singlet function, as
implied by the names “triplet” and “singlet.” More importantly, it is clear that to generate the ground state wavefunction for the
atom, one must include contributions from paired electron spin functions (  ). So the statement of Hund’s rule that maximizing
the number of electrons with the same value of  attains the lowest energy state is clearly incorrect, as it excludes the necessary
component with .

For equivalent electrons (electrons in the same subshell, or the  case) the symmetric spin wavefunction set (the triplet functions)
must take antisymmetric orbital function ( ). The singlet spin function, which is antisymmetric to electron exchange, must take a
symmetric orbital function (  or .) As such, the three term symbols generated are ,  and . If the electrons are not
equivalent, as is the case in a pp configuration, all combinations of the triplet and singlet spin functions with D, P and S orbital
functions are possible and the resulting terms are , , , ,  and .

The ,  and  functions are not possible in the  case, as these would require microstates that are either duplicates of other
microstates, or microstates that involve two electrons in the same orbital with the same value of . The latter is a clear violation
of the Pauli Exclusion Principle since both electrons would then have the same values of , ,  and .

This page titled 8.5: The Pauli Exclusion Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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8.6: Atomic Spectroscopy
The complex spectra of atoms can be understood using term symbols, as they contain all of the symmetry and quantum number
values needed. The selection rules for systems that are well described by Russell-Saunders coupling are

Figure 

 (but not )

 (but not )

Consider a  transition. An energy level diagram for such a transition is shown to the right.

The selection rules predict two lines will be observed in the spectrum. The splitting between the lines will be related to the spin-
orbit coupling constant in the upper state. Note that for this transition,  and . (In spectroscopy recall that changes
are always calculated as the upper state value minus the lower state value as in ). The two lines predicted have 

 and  as depicted in the diagram.

Things get more complex for larger values of  and . For example, consider the transition between a  state and a  state
(with the  state as the upper state and both states increasing in energy with increasing J.)

Figure 

For this transition, six lines are predicted. The pattern formed by the lines can vary based on the relative values of the spin-orbit
coupling constants in each level. In general, the upper state will have the lower spin-orbit coupling constant, as electronic excitation
quenches spin-orbit coupling.

Landé Interval Rule 
The Landé Interval Rule describes the magnitude of the splittings in a term manifold. For example, it is predicted that the splitting
pattern in a 3P state is

Figure 

8.6.1
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The splitting between the  level and the  level is twice as large as that between the  component and the  component.
In general, the Landé Interval Rule can be stated

where A is the spin-orbit splitting constant for the level. The Landé Interval Rule works well for small splittings, where the spin-
orbit interaction can be treated as a perturbation to the Hamiltonian. There will generally be small deviations from the interval rule,
especially when relativistic effects become important. The Landé Interval can be used to interpret the complex splitting patterns
that can be seen in some atomic spectra.

The Deslandres Table 

A very useful tool that can be used in spectroscopy is the Deslandres table. In such a table, transitions are arranged according to
upper and lower state combinations in such a way as to accentuate the differences in energy between quantum levels. For example,
consider the following energy level diagram for  transition, where the six transitions have been labeled a-f for convenience.

Figure 

Looking at the diagram, it should be clear that the difference in energy between lines b and c must be identical to that between lines
d and e, since both differences give the difference in energy between the  and  components of the  level. Similarly,
the difference in energy between lines b and d must be equal to that between lines c and e, as that is the difference in energy
between the  and  levels in the  state.

A Deslandres table summarizes the information in the energy level diagram and also incorporates the values of the measured lines
in the spectrum. Symbolically, the Deslandres table for the above transition would look as follows

 
 3 3A’ 2 2A’ 1

2 a b d

2A”    

1 –  c e

A”     

0 –  –  f

The table contains not only the line frequencies, but also the differences between them. It is the constancy of differences that
confirms the assignment of the spectrum.

consider the following data for a  transition. Assign the lines and calculate the spin-orbit coupling constants for both
the upper and lower states based on your assignments.

Line Freq ( )

1 18492.74

3P2
3P1

3P1
3P0

– = hcA(J +1)EJ+1 EJ

D P3 –3

8.6.4

J = 2 J = 1 P3

J = 2 J = 1 D3

D3

P3

a− b b− d

c− b e− d

c− e

f − e

 Example 8.6.1

D P3 –3

cm−1
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Line Freq ( )

2 18511.98

3 18525.82

4 18540.84

5 18542.36

6 18545.06

The stick spectrum (simulated spectrum, with transitions indicated as sticks instead of lines with a definite line shape and
without intensity data indicated) looks as follows.

Figure 

Solution
It would be difficult to assign the spectrum simply based on the pattern seen above. In some cases, the spectral pattern can be
quite complex! A couple of things can be inferred, however, based on the energy level diagram above.

The smallest energy transition is for  and

the largest energy transition is either  or  (depending on the relative magnitudes of the spin-orbit splittings.)

Based on these observations, we can assign the 18492.74 line.

If 18545.06  is the  transition, then the difference should be 3A”. This predicts a lower level spin-orbit-
coupling constant of A” = 17.44 . And there must be a line at 18527.62 . But there is no such line! Hence, the
highest energy transition is not the  transition. It must be the  transition instead!

If the  line is the  transition, a value of  is predicted. This predicts a line at 
 which does exist! (This is idealized theoretical data for demonstration purposes. The Landé interval rule does

not always hold as strongly as that.)The difference between the  transition and the  transition is 19.24 
. In order to maintain a constant set of differences, there must be a line at 18511.98 , which there is. This is

assigned as the  transition.The only remaining line is 18540.84 , which is assigned as the  transition.
The final Deslandres table looks as follows.

 
3 3A’ 2 2A’ 1

2 18540.84 18511.98 18492.74

2A”    

1 --  18545.06 18525.82

A”     

0 --  --  18542.36

cm−1

8.6.5

3D1–3 P2

3D1–3 P0
3D2–3 P1

cm−1 3D1–3 P0

cm−1 cm−1

3D1–3 P0
3D2 −3 P1

18542.36 cm−1 3D1–3 P0 A” = 16.54 cm−1

18525.82 cm−1

3D2–3 P1
3D1–3 P1

cm−1 cm−1

3D2 −2 P2 cm−1 3D3–3 P2

D3

P3

28.86 19.24

33.08 33.08

19.24

16.54
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In conclusion, angular momentum coupling schemes can be used to describe the states in a polyelectronic atom. These states can be
used to predict the spectroscopy of these systems. In the next chapter, we will apply a number of the principles developed in this
chapter in order to understand the electronic structure of diatomic molecules. This has important ramifications on both
spectroscopy and bonding in these molecules, and also forms a foundation for how we think about electronic structure in larger
molecules.

This page titled 8.6: Atomic Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420527?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.06%3A_Atomic_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html


8.7.1 https://chem.libretexts.org/@go/page/420528

8.7: Vocabulary and Concepts
angular momentum

aufbau principle

Boson

Clebsch series

Deslandres table

Fermion

hole rule

Hund’s rules

Landé Interval Rule

miscrostate

orbital

orbital approximation

Pauli Exclusion principle

Russell-Saunders coupling

shell

spin-orbit splitting constant

subshell

term symbol

This page titled 8.7: Vocabulary and Concepts is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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8.8: Learning Objectives
After mastering the material covered in this chapter, one will be able to:

1. Describe the Orbital Approximation and explain how it leads to differences for polyelectronic atoms relative to the Hydrogen
atom results.

2. Utilize the Aufbau principle to determine the ground electronic state electronic configuration for a polyelectronic atom, taking
into account any important consequences of
a. the Pauli Exclusion Principle
b. Hund’s Rules of Maximum Multiplicity

3. Construct an orbital diagram depicting an electronic configuration, including using such a diagram to predict important
properties of the ground (or any) electronic state configuration of an atom. These properties may include

a. Paramagnetism or diamagnetism
b. Total spin multiplicity or the number of total spin multiplicities associated with a given electronic configuration.

4. Use Russell-Saunders angular momentum coupling to determine the term symbols that arise for a given electronic
configuration. Especially, one should be able to predict the lowest-energy term-state that arises from an electronic configuration
consistent with Hund’s Rules.

5. Employ electron exchange symmetry rules to construct symmetry-adapted linear combinations of spin functions that can be
used to satisfy the Pauli Exclusion Principle by creating total wavefunctions that are antisymmetric with respect to the exchange
of equivalent electrons.

6. Construct energy-level diagrams for term states that are consistent with Russell-Saunders coupling and the Lande Interval Rule.
a. Use these diagrams to predict the structure of electronic transition spectra involving these states.
b. Organize the data into a Deslandres Table to aid in the conformation of assignments and the calculation of spin-orbit

coupling constants.

This page titled 8.8: Learning Objectives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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8.9: Problems
1. Write a table of microstates and predict the term simple that arise for N with an electronic configuration of [He] . Which

is predicted to be the ground electronic state?
2. On the planet Zorg, electrons can exist in  orbitals, with  (and so ). All other rules apply (2

electrons per orbital, Hund’s Rules, etc.)
a. How many microstates arise from a  configuration?
b. Write a table of microstates for the  configuration. What term symbols arise from this set of microstates?

3. Using the accepted conventions, draw an orbital diagram for the d electrons in V.
a. What is the predicted ground state term?
b. How many additional microstates contribute to the term?

4. Consider a  transition (in which both states increase in energy with increasing .)
a. Draw an energy level diagram for the transition and predict the component transitions.
b. consider the following values: ,  and the  transition occurs at .

Based on these complete a Deslandres table describing all of the component transitions and the spin-orbit spacings in the 
 transition.

This page titled 8.9: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.
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CHAPTER OVERVIEW

9: Molecules
Quantum mechanics can be used to predict a large number of properties, especially those related to electronic spectroscopy, for
diatomic molecules. A number of the concepts discussed in this chapter can be expanded to explain a great deal of the behavior of
polyatomic molecules as well.

9.1: Potential Energy and the Hamiltonian
9.2: The Born-Oppenheimer Approximation
9.3: Molecular Orbital Theory
9.4: Hund's coupling cases (a) and (b)
9.5: Diatomic Term Symbols
9.6: Herzberg Diagrams
9.7: Vibronic Transitions
9.8: Term Symbols for Polyatomic Molecules
9.9: Group Theoretical Approach to Molecular Orbitals
9.10: References
9.11: Vocabulary and Concepts
9.12: Learning Objectives
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9.1: Potential Energy and the Hamiltonian
The first task of applying quantum mechanics to a problem is writing the Hamiltonian. This requires deriving an expression for
potential energy. Consider as an example, the simplest diatomic molecule, .

Figure 

In the above diagram, the blue dots indicate protons and the red dot, an electron. There will be attractive forces between the
electron and protons 1 and 2 (separated by  and  respectively) and a repulsive force between the two protons, separate by a
distance . In atomic units, the Hamiltonian can be written

where ,  and  indicate the kinetic energies of protons 1 and 2 and the electron, respectively. As was the case in the helium
atom, the  molecule involves a three body problem which cannot be solved analytically. As such, an approximation must be
made in order to proceed.
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9.2: The Born-Oppenheimer Approximation
The Born-Oppenheimer approximation (Born & Oppenheimer, 1927) is made in order to simplify the problem in the case of a
molecule. This approximation is based on the relative masses (and therefore the relative speeds) of the heavy nuclei compared to
the light electron. It says that if the nuclei move (such as due to molecular vibration) that the electron(s) will react to a change in
the potential energy field instantaneously. As such, the internuclear distance ( ) can be fixed, and the wave function for the
electron optimized. If the nuclear coordinates are fixed, the Hamiltonian becomes

and the value of  becomes a constant.

There are many cases where the Born-Oppenheimer approximation breaks down, such as Renner-Teller interactions and Jahn-Teller
interactions which involve strong coupling between vibrational motion of a molecule and the electronic state. For the purposes of
this text, we will stick to examples where the Born-Oppenheimer approximation is reasonable.

The Born-Oppenheimer approximation makes it possible to calculate a number of properties for molecules. Below is an example of
a potential energy surface of  calculated using molecular modeling software at the HF/6-31G(d) level of theory. Basically, the
program optimizes the wavefunctions describing the molecular orbitals based on a fixed internuclear separation. After populating
the resultant orbitals with electrons, a total molecular energy is generated. After repeating this process at several different
internuclear separation values, the curve can be constructed.

Figure 

Such calculations are based entirely on the electronic structure of the molecule. As such, some insight into the nature of molecular
orbitals and their wavefunctions is needed to proceed.
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9.3: Molecular Orbital Theory
There are a number of ways to describe the electronic structure in diatomic molecules and the wavefunctions that are needed for the
descriptions. Molecular Orbital theory provides one such example. There are many ways to describe molecular orbitals. One of
the most commonly used is the method of using linear combinations of atomic orbitals (LCAO).

Linear Combinations of Atomic Orbitals (LCAO) 
Consider a wavefunctions derived from the Schrödinger equation that can be expressed as linear combinations of the 1s orbitals
centered on each atom. The wavefunction can then be written

In this expression,  and  are the coordinates (position vectors) for nuclei 1 and 2.  an  refer to the 1s orbitals centered on
nuclei 1 and 2 respectively. Due to the symmetry of the molecule, the magnitudes of  and  must be the same.

In order to be normalized, the wave function must satisfy

The first and the third integrals in this expression are unity due to the fact that the 1s orbitals are themselves normalized. This the
expression becomes

The integral in this expression  does not vanish due to orthogonality as we have seen in other examples, since the
wavefunctions are centered in different locations. The magnitude of the integral, therefore, depends on the degree to which the two
orbitals overlap one another. The overlap integral is commonly given the symbol S. The magnitude of the normalization constant
for the molecular wavefunction will depend intimately on the magnitude of this overlap.

Solving for c, the following results

And the wavefunction can be written as

The value of the overlap integral S will depend on the size of the orbitals and also the internuclear separation. The above
wavefunction is an example of a bonding orbital as the value of the overlap S will be positive. Positive overlap is a stabilizing
condition and acts to hold a molecule together. But just as a linear combination can be constructed from the sum of the 1s orbitals
on the two H atoms, one can also be constructed from the difference.

This wavefunction will have negative overlap and thus produce an antibonding orbital which, if populated, has the effect of
destabilizing the molecule.

The Expectation Value for Energy 

The energies of these bonding and antibonding orbitals can be calculates from the following expressions

ψ( , ) = (1 ) + (1 )r1 r2 c1 s1 c2 s2

r1 r2 1s1 1s2

c1 c2

= = cc1 c2

1 = ∫ (1 +1 ) (1 +1 )dτc2 s1 s2 s1 s2

= ∫ 1 1 dτ +2 ∫ 1 1 dτ + ∫ 1 1 dτc2 s1 s1 c2 s1 s2 c2 s2 s2

1 = 2 +2 ∫ 1 1 dτc2 c2 s1 s2

= 2 (1 +∫ 1 1 dτ)c2 s1 s2

∫ 1 1 dτs1 s2

1 = 2 (1 +S)c2

c = [2(1 +S)]
1

2

ψ( , ) = (1 +1 )r1 r1
1

[2 (1 +S)]1/2
s1 s2

ψ( , ) = c (1 −1 )r1 r1 s1 s2
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In this expression,  and  are the Coulomb integrals defined by

It can be easily shown that  by symmetry. The other type of integral (besides S, the overlap integral which has already
been discussed) is , called the exchange integral.

The energy of the wavefunction is minimized by use of the variational principle. Specifically, the coefficients  and  must be
chosen so as to minimize the energy of the wavefunction. This is done by differentiating the energy expression and setting it equal
to zero (since the derivative will be zero at the minimum.) For simplicity, the expression is rearranged so that implicit
differentiation is easier to see.

Differentiation of this expression with respect to  and  yields two expressions which can be used to find the two unknowns, 
and .

Since  at the minimum, the second terms on the left sides of the above equations vanish. (How nice of them!)

These expressions can be rearranged.

So long as the Coulomb, Exchange and Overlap integrals can be determined, the coefficients can be as well. The non-trivial
solution for  and  can be found from the determinant of the matrix shown below being set to zero.

It can be shown (although it will not be shown here) that

where  is the energy of a 1s orbital in hydrogen and J is an expression that depends on internuclear distance (r), given by

Similarly,  can be determined from

where  is given by

⟨E⟩ =
∫ ψ dτψ∗Ĥ

∫ ψ dτψ∗

= =
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Notice that the expressions for both  and  vanish as  approaches . Given these substitutions, the determinant equation
becomes

Or

Being quadratic in , this expression yields two solutions for the energy. One will give the energy of the bonding orbital and the
other will be the energy of the antibonding orbital. (Now how much would you pay?) These energies are given by the expressions

and

The following diagrams show the radial wavefunctions (across the z-axis of the molecule) for both the bonding and antibonding
combinations of 1s orbitals. The graph on the left shows the value of the wavefunction, while the one on the right shows the square
of the wavefunction. Note the node in the middle of the molecule in the antibonding orbital!

The following figures show the axial wavefunction for the

bonding and the

antibonding orbitals (on the left) and the corresponding squared axial wavefunctions on the right.

Bonding:

Figure 

Antibonding:

Figure 

These orbitals are easy to visualize and understand based on a pictorial approach of linear combinations of orbitals as well. In the
pictorial approach, the emphasis is on the sign of the function in the overlap region.
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Bonding and Antibonding Orbitals Constructed from s Orbitals 

The combination of 1s orbitals can be visualized in the following diagram

Figure 

In this diagram, depicting the symmetric overlap to two 1s orbitals, it can be seen that the region of overlap will have a positive
value (as it is given by the product of two positive numbers. This is an example of a s orbital since it is cylindrically symmetric
about the internuclear axis.

Just as the symmetric combination can be depicted, the antisymmetric combination is also easy to generate.

Figure 

In this depiction, it should be clear that the region of overlap has a negative value. Another way to think about this is that the
wavefunction must change sign as it crosses from left to right. This implies a node between the nuclei!

As stated before, the positive overlap depicted in the first orbital is a stabilizing condition, and the negative overlap in the second is
destabilizing. This can be depicted in an orbital diagram.

Figure 

In this diagram, the atomic orbitals on the separated atoms are shown on the far right and left, and the orbitals in the middle column
are the molecular orbitals that arise from the linear combination of the atomic orbitals.  indicates the bonding orbital and 
indicates the antibonding orbital resulting from the symmetric and antisymmetric combinations of the 1s orbitals. The subscripts g
and u state for gerade and ungerade respectively. Gerade is a German word meaning even, which ungerade means odd.
Specifically, these terms (and subscripts) are used to indicate the symmetry of a function with respect to inversion. The g/u
symmetry can be determined by drawing an arrow through the middle of a picture of a molecular orbital. If the arrow ends in a
point with the opposite sign, the wavefunction is ungerade. However, it must be noted that this symmetry applies only to
homonuclear diatomic molecules (and other molecules that possess an inversion center symmetry elements.) More will be
discussed about molecular symmetry in later chapters.

Bonding and Antibonding Orbitals constructed from p Orbitals 

Bonding and antibonding  orbitals can be constructed from p-orbitals that are aligned on axis. In the diagram below, the upper
picture indicates an antibonding orbital while the lower image is a bonding orbital.

9.3.3

9.3.4

9.3.5
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Figure 

In addition to  orbitals,  orbitals can also be constructed.

Figure 

Clearly the -bonding orbital is ungerade, while the -antibonding orbital is gerade (if an inversion center exists within the
molecule. It is also important to note that -type overlap is smaller than \sigma-overlap, due to the need to get two nuclei so close
together for strong overlap of the p orbitals in a  orientation. As such, the  orbitals are less stabilizing or destabilizing relative to
the atomic orbital energies.

Figure 

The  boding and antibonding orbitals will be formed by the symmetric and antisymmetric combinations of the  orbitals on the
separated atoms, whereas the  orbitals will be formed from the  and  orbitals from the separated atoms.

Electronic Configurations 
Electronic configurations can be written for molecules just as they can be for atoms. Instead of being numbered by the principle
quantum number, however, molecular orbitals are numbered sequentially from the lowest energy orbital of a certain symmetry.
Consider the following list of electronic configurations for homonuclear diatomic molecules formed using the first ten elements.

Molecule Electronic Configuration Bond Order Electronic State

1

0 unbound

9.3.6

σ π

9.3.7

π π

π

π π

9.3.8

σ pz
π px py

H2 (1σg)2 1Σ+
g

He2 (1 (1σg)2 σ∗
u)2
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Molecule Electronic Configuration Bond Order Electronic State

1

0 unbound

1

2

3

2

1

0 unbound

In this table, the older shell notation is used to indicate a filling of the inner shell electrons, . These are given the
symbol KK.

Bond Order 

The bond order of a molecule is determined by adding the number of electrons in boding orbitals, subtracting the number of
electrons in antibonding orbitals and dividing the result by 2 (since there are two electrons per orbital.)

The larger the bond order, the stronger a chemical bond is predicted to be. Also, since strong bonds are short bonds, the larger the
bond order, the shorter a bond is predicted to be.

Ionization of a molecule may have a profound affect on the bond order, and therefore the bond length. Consider the molecule 
that has an electronic configuration given by

The addition of an electron to for  will require the electron to go into the  bonding subshell. This will have the effect of
strengthening the bond (since it increases the bond order.) Removal of an electron to form  would weaken the bond since it
involves the removal of a bonding electron.

Paramagnetism 

While the bond order of oxygen (  ) is correctly predicted by a Lewis Structure, the Lewis structure fails to predict that the
molecule will be paramagnetic. Paramagnetism is a property of a molecule or atom that occurs when the system has unpaired
electrons. These electrons each have a small magnetic moment which can align with an external magnetic field, lowering the
energy of the atom or molecule. As such, the atom or molecule will be attracted to a magnetic field.

Li2 KK(2σg)2 1Σ+
g

Be2 KK(2 (2σg)2 σ∗
u)2

B2 KK(2 (2 (3σg)2 σ∗
u)2 σg)2 1Σ+

g

C2 KK(2 (2 (3 (1σg)2 σ∗
u)2 σg)2 πu)2 3Σ−

g

N2 KK(2 (2 (3 (1σg)2 σ∗
u)2 σg)2 πu)4 1Σ+

g

O2 KK(2 (2 (3 (1 (1σg)2 σ∗
u)2 σg)2 πu)4 π∗

g )2 3Σ−
g

F2 KK(2 (2 (3 (1 (1σg)2 σ∗
u)2 σg)2 πu)4 π∗

g )4 1Σ+
g

Ne2 KK(2 (2 (3 (1 (1 (3σg)2 σ∗
u)2 σg)2 πu)4 π∗

g )4 σ∗
u)2

(1 (1σg)2 σ∗
u)2

Bond Order  =
#bonding−#antibonding

2

c2

: KK(2 (2 (3 (1c2 σg)2 σ∗
u)2 σg)2 πu)2

c−
2 1pu

c+
2

O2
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Figure 

Oxygen, which has an electronic configuration given by

Figure 

It is clear that there are two unpaired electrons. This is a property that cannot be predicted based on the Lewis Structure!

This page titled 9.3: Molecular Orbital Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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9.4: Hund's coupling cases (a) and (b)
There are clearly sources of angular momentum in a molecule due to orbital and spin considerations. But unlike atoms, molecules
can also have angular momentum contributions from molecular rotation. There are many ways to describe the coupling of these
different types of angular momentum. This text will focus on two specific cases, Hund’s coupling cases a and b.

Hund’s case (a) 
In Hund’s case (a) coupling, the orbital and spin angular momenta are strongly coupled to the internuclear axis of the molecule.
This defines the quantum number  and , which are the internuclear axis projections of L and S. The sum of  and  give the
total electronic angular momentum along the internuclear axis, .

 is then coupled to the end-over-end rotational angular momentum of the molecule ( ) to give , the total angular momentum.

Figure 

For a molecule that is well described by Hund’s case (a) coupling, that is in a  electronic state, the lowest value of J possible is 
. The one unit of angular momentum comes from the orbital part of the wave function, so  actually describes a non-

rotating molecule !

Hund’s case (a) does a good job of describing molecules which exhibit moderate spin-orbit coupling. If the coupling is extremely
strong, another case (case (c), for example) is needed to describe the molecule’s properties.

Hund’s case (b) 
Hund’s case (b) is slightly different from case (a) in that the spin angular momentum is uncoupled from the internuclear axis. As
such, in Hund’s case (b) coupling, the quantum numbers  and  are undefined. In this case, the end-over-end rotation (R) of the
molecule couples with  to produce N, which describes the sum of rotation plus orbital angular momentum.

N can then couple with  to give , the total angular momentum.

Figure 

Singlet states, with , are always well described by Hund’s case (b) coupling. Hund’s case (b) is a good description for
molecules where spin-orbit coupling is weak (or immeasurably small.)
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In the section describing the rotation of molecules as rigid rotators, the quantum number  was used to describe the total angular
momentum due to rotation. This is consistent with both Hund’s cases (a) and (b) for molecules in  states, where  and 

 (implying where appropriate that  as well.)

This page titled 9.4: Hund's coupling cases (a) and (b) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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9.5: Diatomic Term Symbols
A term symbol for a diatomic molecule contains a great deal of information about symmetry properties of the wavefunction which
describes the electronic state. The symmetry properties are closely related to the values of the quantum numbers which specify the
wavefunction. The pattern used to assign a symbol to a value for a quantum number is very similar to the pattern used for atomic
systems. The major difference is that the quantum numbers must reflect the cylindrical symmetry of diatomic molecules rather than
the spherical symmetry of atoms.

Quantum Number
One Electron Many Electrons

Atom (l) Molecule ( ) Atom (L) Molecule ( )

0 s S

1 p P

2 d D

3 f F

Just as there is a ( ) degeneracy in the spherical wavefunctions, there is also an important degeneracy pattern in the
wavefunctions of diatomic molecules.  and  states are singly degenerate whereas all other are doubly degenerate. Why this is
should become apparent as we develop the united atom method for decomposing spherical symmetry to cylindrical symmetry.

 or Wavefunction Symmetry Degeneracy

0 1

1 2

2 2

3 2

There are three methods commonly used to derive terms symbols for diatomic molecules. All of the methods are based on
determining the quantum number  and the total spin quantum number. In the case of homonuclear diatomic molecules, the
inversion symmetry is also important.

 states have another important symmetry designation.  states can have either + or - symmetry depending on whether or not the
state is symmetric with respect to reflection through a plane containing the internuclear axis. Symmetric states are designated as 

 state and antisymmetric ones are . ,  and all other states with  are doubly degenerate as they have both + and -
components.

There is always an odd number of S states generated for the United Atom method or the Separated Atom method. They will come
in pairs of ,  and the odd remaining state will have +/- symmetry as determined by the Wigner-Witmer rule. For this, one
must consider the associated atomic state (using either the United Atom or the Separated Atom method). The +/- symmetry is
determined by whether the indicated sum is even or odd according to the following table.

Method Sum Value Parity

United Atom even +

 odd -

Separated Atom even +

 odd -

λ Λ

σ Σ

π Π

δ Δ

ϕ Φ

2l +1

Σ σ

λ Λ

σ Σ

π Π

δ Δ

ϕ Φ

Λ

Σ Σ

Σ+ Σ− Π Δ L ≠ 0

Σ+ Σ−

L +∑ li

+∑ + +∑LA lA LB lB
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United Atom Method 

Think of the molecule as an atom with the same number of electrons. The atom will have spherical symmetry. The task is to reduce
the spherical symmetry of the atomic wavefunction to the cylindrical symmetry of the diatomic molecule. In this case, the z-axis of
the unified atom becomes the internuclear axis of the molecule. Thus, the quantum numbers will transform as

What molecular terms are predicted for the OH radical?

Solution
The unified atom with the same number of electrons as OH is fluorine. The ground state designation for atomic fluorine is .
For this state,  and so  can be -1, 0 or +1. The only values of  are 0 and 1. Therefore, the predicted terms will be 

 and . The multiplicity will be the same as the unified atom ( ). The  state will be symmetric with respect to
reflection though a plane containing the z-axis since

is even for fluorine. So the expected terms are

As it turns out, the ground state of OH is . The only way to confirm the ground state, however, is to use the molecular
orbital method.

Separated Atom Method 
A second method for determining molecular term symmetries is the separated atom method. This method is similar to the atomic
term symbol method of writing out an exhaustive list of microstates and then accounting for each one. The quantum numbers
which are important are determined from the sums of the z-component quantum numbers of the atomic wavefunctions. Thus, the
values of  which are possible will be given by all possible combinations of . Values of the same magnitude are then paired to
make the two degenerate components for any values of .

What molecular terms arise for HLi, formed from a ground state hydrogen atom and a ground state lithium atoms?

Solution
The ground state of lithium is . For this set of atoms, we can construct the following table to combine values of  to form
values of  and values of S as well.

H ( ) Li ( )  and S

0 0 0

S 1, 0

It is clear that the only value of  that can be generated from these separated atom states is , or a  state. The sum of 
 is given by , which is even. Hence, the  state has  symmetry. So the resulting

states are  and . The ground state of  is , but this can only be confirmed by the use of the molecular orbital
method.

ML

S

→ Λ

→ Λ

 Example 9.5.1

P2

L = 1 mL mL

Σ Π S = 1
2

Σ

L +∑ li

Π.2Σ+ and 2

Π2

Λ mL

Λ > 0

 Example 9.5.2

S2 mL

Λ

S
2

S
2

Λ

ML

1
2

1
2

Λ Λ = 0 Σ

+ +Σ +ΣLA LB lA lB 0 +0 +0 +0 = 0 Σ Σ+

1Σ+
g

3Σ+
g Li2

1Σ+
g
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What molecular terms are predicted for the OH radical?

Solution
The ground state atomic term for O is  and that for H is . The following table shows the possible combinations of  to
form  and the combinations of S which form the familiar Clebcsh series of resultant S values.

H ( ) O ( )  and S

0 +1, 0, -1 +1, 0, -1

S 1 , 

The combination of a P term and an S term gives one  ( ) and one ( ) term. The sum 
is given by  and is clearly odd. Therefore, the  state will be of  symmetry. The spin quantum numbers
which are possible are  and . Therefore, the possible term symbols are , ,  and . (The ground state of the OH
radical happens to be of  symmetry, but again, this can only be confirmed using a molecular orbital approach.) Notice that
there is no g/u symmetry indicated in this case because the molecule does not include an inversion center being a heteronuclear
diatomic molecule!

What molecular terms arise for CO formed from a ground state carbon atom and a ground state oxygen atom?

Solution
The ground state of both C and O is . the following table summarizes the decomposition of the two atomic states from
spherical to cylindrical symmetry.

C ( ) O ( )  and S

+1, 0, -1 +1, 0, -1 ±2, ±1, ±1, 0, 0, 0

S 1 1 2, 1, 0

The resultant state are ,  and . Of the three  states, two will form a pair of . The last S state must have its +/-
symmetry determined by the Wigner-Witmer rule.

So the final  state is . The spin states generated are quintet, triplet and singlet. So the set of molecular states generated are

, , , , , 

, , , , , 

, , , , , 

The ground state of CO is in fact , but as always, this can only be reliably predicted using the molecular orbital method.

The number of states generated from separated atoms increases rapidly as the angular momentum in the separated atoms increases.

Molecular Orbital Method 
The molecular orbital method requires the construction of a molecular orbital diagram. As was the case in the atomic term symbol
problem, the molecular terms can be constructed considering only partially filled subshells. The quantum numbers will then be
given by the vectoral sums of the one-electron quantum numbers. Consider the orbital diagram for the oxygen molecule.

 Example 9.5.3

P3 S2 mL

Λ

S
2

P
3

Λ

ML

1
2

3
2

1
2

Π Λ = ±1 Σ Λ = 0 + +Σ +ΣLA LB lA lB

1 +0 +4 +0 Σ Σ−

3
2

1
2

Π4 4Σ− Π2 2Σ−

Π2

 Example 9.5.3

P3

P3 P3 Λ

ML

Δ 2Π 3Σ Σ /Σ+ Σ−

+ +Σ +Σ = 1 +1 +2 +4 = 8 (even)LC LO lC lO

Σ Σ+

Δ5 Π5 Π5 5Σ+ 5Σ− 5Σ+

Δ3 Π3 Π3 3Σ+ 3Σ− 3Σ+

Δ1 Π1 Π1 1Σ+ 1Σ− 1Σ+

1Σ+
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Figure 

The only important electrons in this case are the two  electrons. (Ignore all of the ones in completely filled subshells - just as was
done in the case of atoms as these always contribute  and .) The orbital angular momentum  of one of the 
electrons will cancel that of the other as one will have a value of  and the other has . (This is similar to the atomic
case where one electron was in an orbital with  and the other in an orbital with . The sum of the two is zero.)
Thus,  will be 0. Hence the predicted term will be a  state.

Since one of the  orbitals is symmetric with respect to reflection through a plane containing the nuclei and the other is
antisymmetric, the predicted term will be antisymmetric with respect to this symmetry operation.

Thus, the state will be of  symmetry. In a similar manner, the gerade/ungerade symmetry can be determined by the product of
the one-electron orbital symmetries.

Finally, the spin multiplicity can be determined in the usual way.

The predicted terms for this electronic configuration are  and . The ground state of  is . And since this result was
generated using the molecular orbital method, the result is reliable that this is indeed the ground state of the  molecule!

This page titled 9.5: Diatomic Term Symbols is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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9.6: Herzberg Diagrams
One of the important reasons for describing the electronic structures and angular momentum coupling in diatomic molecules is to
apply these descriptions to the prediction of the rotational branch structure in molecular spectra. As always, the first concern when
predicting patterns in molecular spectra is the determination of selection rules. The selection rules for which the transition moment
does not vanish are summarized below.

Based on these selection rules, Herzberg diagrams can be used to predict the rotational branch structure and “first lines” in each
branch based on the symmetries of upper and lower states in a given transition.

In order to discuss this very useful tool, we shall begin by discussing the description of a single state, starting with simple
symmetry (  ). In order to proceed, it is important to note the +/- symmetry of rotational wavefunctions. Basically, the rotational
wavefunction is symmetric with respect to reflection through a plane containing the internuclear axis if R is even, and
antisymmetric if R is odd. Thus the symmetry of the total wavefunction, given by

is given by the product of the symmetries of ,  and . In the case of a  state,  is +.  is always + for
vibration of a diatomic molecule. The rotational contribution (  ) will alternate for increasing R or J. (In the case of a  state, 

 and  have the same value, since  and .)

Figure 

The above Herzberg diagram summarizes the +/- symmetry for the first few rotational levels.

Figure 

Based on this diagram, and the selection rule that +  - and , the branch structure for a  transition can be
predicted. Clearly, R- and P-branches are predicted in the rotational structure. This is the proper Herzberg diagram for the
description of the 1-0 rotation-vibration spectrum of HCl (or other closed shell heteronuclear diatomic molecules.) Notice that  

 (Q-branch) transitions are impossible since the parity (+/- symmetry) does not change in such transitions, and hence they are
forbidden.

The Herzberg diagram description of a  state is not too different than that for a  state. The only difference is that the +/-
symmetry changes such that levels with odd J are now + and those with even J are now -.

ΔS = 0

ΔΛ = 0, ±1

+ ↔ −, − ↔ +

1Σ+

=Ψtot ψelec ψvibψrot

ψelec ψvib ψrot
1Σ+ ψelec ψvib

yrot
1Σ+

R J Λ = 0 S = 0

9.6.1

9.6.2

↔ − ↔ + 1Σ+ ↔1 Σ+

Δ

J = 0

1Σ− 1Σ+
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Figure 

The description of a  state can be based on modifications to the descriptions of  and  states. Two important differences
must be taken into account. First, since J is given by the sum of  and R (or  and R in Hund’s case (a), but this will only be
important if , which is not the case for a singlet state.) Second, since  states (like , , etc.) have two components, both
must be included in the diagram.

Figure 

The description of a  transition can now be constructed. Note that P- Q- and R-branches are predicted. Also notice the
“first line” in each branch. If the  state is the upper state, the first lines in each branch are ,  and . (There can be no

 line as the  level is missing in the upper state.) This is a pattern is a one way to recognize a  transition.

A reversal of state, such that the  state is the upper state, causes the pattern to change. In the case of a  transition, he
first lines in each branch are predicted to be ,  and .

Figure 

A  transition becomes a little more complex as well. In this case, it can be seen that there are two Q-branches predicted!
These will be resolved only if the two  components of at least one of the  state are significantly different in energy. The first
lines are predicted to be , ,  and .

While the description here has been limited to singlet states of  and  symmetry, these tools can be extended to describe and
predict a great deal of rotational fine structure patterns in spectroscopic transitions (Herzberg, 1950). The patterns can get
extremely complex for systems with high spin or orbital angular momenta. The picture can become even more complex when
nuclear spin exists in the molecule which can couple to orbital, spin and/or rotational angular momenta. Entire books are dedicated
to sorting out these patterns and interpreting the spectra of molecules which require these considerations (Brink, 1994) (Bunker,
2009).

9.6.3
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9.7: Vibronic Transitions
Just as rotational motion is important in understanding vibrational spectra, vibrational (as well as rotational) motion(s) are
important in understanding electronic transition is molecules. Electronic transitions in which vibrational structure is resolved are
sometimes referred to a vibronic transition. When rotation is thrown in to the mix, the term “rovibronic transitions” is
sometimes used.

Vibronic transitions can be discussed in terms of the transition moment. Keeping in mind that the wavefunction for a vibronic state
can be expressed as a product

and that the transition moment is given by

Substitution yields

Since the dipole moment operator is a derivative operator, the chain rule must be employed, which yields

Since the electronic wavefunction must be orthogonal, the first term will vanish for transitions between two different electronic
states. The second term however, does not vanish. In face, the magnitude of the  will be determined by the overlap of
the two vibrational levels. (Note that since these represent vibrational wavefunctions in different electronic state, there is no reason
for the wavefunctions to be orthogonal.)

Franck-Condon Factors 
The intensity of a band in a vibronic transition will be governed by the magnitude of the Frank-Condon Factor for the band. The
Franck-Condon factor (FCF) is defined by

which is governed purely by the degree of overlap between the upper state vibrational wavefunction and that in the lower state. The
overlap will be large for  if the potential energy functions of the upper and lower states are similar (similar , , ,
etc.) and strong sequences will be observed in the spectrum. If, however, the equilibrium bond length changes significantly, the
maximum Franck-Condon overlap will occur for combinations of v’ and v” for which . In these cases, strong progressions
will be observed.

The Franck-Condon principle is closely associated with the Born-Oppenheimer approximation. In cases where the Born-
Oppenheimer breaks down, the Franck-Condon principle is compromised as well.

This page titled 9.7: Vibronic Transitions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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9.8: Term Symbols for Polyatomic Molecules
Term symbols are used to designate electronic states of polyatomic molecules, much the same as they are used to designate
electronic states for both atomic systems and diatomic molecules. These can be derived in much the same manner as we have
developed for diatomic molecules, by taking combinations of atomic orbitals, whose symmetries have been decomposed from the
spherical symmetry of the atoms to the lowered symmetry of the molecule.

An example would be , which is the most common triatomic ion in the universe. (It is also an excellent example of a three-
center two-electron bond in so far as it is the simplest example of a molecule possessing such a bond!) The combination of three 1s
orbitals on the three atoms will yield three molecular orbitals. The decomposition of symmetry is described in the following
section.

This page titled 9.8: Term Symbols for Polyatomic Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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9.9: Group Theoretical Approach to Molecular Orbitals
One of the more powerfully predictive things we can do with Group Theory is predict the symmetries of molecular orbitals.
Molecular orbital symmetries can have huge ramification on chemical bonding and chemical reactions.

The first thing we would like to be able to do is to predict the symmetries of the molecular orbitals that arise from the linear
combinations of atomic orbitals. This is not too difficult. In fact, the process has many aspects in common with determining
molecular vibration symmetries. The process can be summarized as follows:

1. Separate the molecule into groups of equivalent atoms.
2. For each set of equivalent atoms, determine the reducible representation that describe the atomic orbitals to be used in the

construction of molecular orbitals. This is determined by assuming that the point group is centered on an atom containing the
orbitals. Call this .

3. Determine  for the set of equivalent atoms.
4. Multiply    to determine  for each set of equivalent atoms.
5. Add all of the  that you have determined for each individual set of equivalent atoms. Call the result .
6.  can then be resolved into components. These components give the symmetries of the molecular orbitals that result from

the linear combinations of the atomic orbitals you have selected.

The Molecular Orbitals for a Water Molecule.

Solution
For this example, we shall consider the 1s orbitals on the H atoms, and the 2s and 2p orbitals on O. As it turns out, s orbitals
are always totally symmetric in any point group, since they possess spherical symmetry. The p orbitals will transform as the x,
y and z axes. So the following set of tables is used to generate  for water.

First, determine  describing the H atoms.

E

1 1 1 1

2 0 0 2

2 0 0 2

Next, determine  describing the four orbitals on the O atom.

E

1 1 1 1

3 -1 1 1

4 0 2 2

1 1 1 1

4 0 2 2

Next, determine  as the sum of 

E

2 0 0 2

4 0 2 2

6 0 2 4

Γao

Γunmoved

Γao ⊗ Γunmoved Γreducible

Γreducible ΓMO

ΓMO

 Example 9.9.1

ΓMO

ΓH

C2v C2 σxz σyz

ΓH(1s)

Γunm

ΓH

ΓO

C2v C2 σxz σyz

ΓO(2s)

ΓO(2p)

Γred

Γunm

ΓO

ΓMO +ΓH ΓO

C2v C2 σxz σyz

ΓH

ΓO

ΓMO
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Now, decompose  under C  symmetry!

E

6 0 2 4

-3 3 3 3 3

 3 -3 -1 1

- 1 -1 1 -1

 2 -2 -2 2

-2 2 -2 -2 2

 0 0 0 0

So

The molecular orbitals of water are shown below.

Figure : The above orbitals are generated based on a PM3 (semiempirical) orbital calculation of water. The numbering does
not match the actual orbitals, but the symmetries are correct.

The  orbital was not generated in this example because it is essentially the 1s orbital on oxygen, which was not included in the
basis set of functions we originally used. Also missing from our set are the  and  orbitals, which require the addition of 
and  orbitals on oxygen, which were not included. These orbitals are “virtual orbitals” as they are unoccupied.

The electronic configuration of  is given by

The overall symmetry of the electronic state is given by the product of the se symmetries, counting each one twice since each
orbital contains two electrons. In fact, all closed shell molecules (all subshells filled) will have an electronic symmetry that is
totally symmetric. In this case, the electronic state is .

If the lowest unoccupied molecular orbital is of  symmetry, then the first excited state of the molecule will be

ΓMO 2v

C2v C2 σxz σyz

ΓMO

A1

B1

B2

= 3 + +2ΓMO A1 B1 B2

9.9.1

1a1

2b2 3b2 3px
3dxz

OH2

(1 (2 (1 (3 (1a1)2 a1)2 b2)2 a1)2 b1)2

1A1

B2

(1 (4b1)1 a1)1
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The total electronic symmetry is given by . The electronic configuration would give rise to both singlet and triplet
states.

To test whether or not the transition to this state is allowed, the transition moment integral must not vanish.

This integral clearly will not vanish by symmetry for the component along the x-axis. Hence, the transition to this excited state of
water will be a perpendicular transition.

Formaldehyde

Solution
To generate the molecular orbitals in formaldehyde, consider the 1s orbitals on H, the 2s and 2p orbitals on C and O.

First, determine  describing the H atoms.

E

1 1 1 1

2 0 0 2

2 0 0 2

Next, determine  and  describing the four orbitals on the C atom and the O atom.

E

1 1 1 1

3 -1 1 1

4 0 2 2

1 1 1 1

4 0 2 2

E

1 1 1 1

3 -1 1 1

4 0 2 2

1 1 1 1

4 0 2 2

The total reducible representation to be reduced is given by .

E

2 0 0 2

4 0 2 2

4 0 2 2

⊗ =B1 A1 B1

∫ ψ " dτ = ∫ ⋅ ⋅ dτψ′ μ
→

B1

⎛

⎝
⎜
B1

B2

A1

⎞

⎠
⎟ A1

 Example 9.9.2

ΓH

C2v C2 σxz σyz

ΓH (1s)

Γunm

ΓH

ΓC ΓO 

C2v C2 σxz σyz

ΓC(2s)

ΓC(2p)

Γred

Γunm

ΓC

C2v C2 σxz σyz

ΓO(2s)

ΓO(2p)

Γred

Γunm

ΓO

+ +ΓH ΓC ΓO

C2v C2 σxz σyz

ΓH

ΓC

ΓO
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E

10 0 4 6

Decomposition of this reducible representation shows

The electronic configuration for formaldehyde is given by

The (  ) and (  ) orbitals did not come from the above analysis as they are essentially the as orbitals on O and C that were not
included in the basis set. The lowest energy unoccupied orbital is (  ), so the first excited electronic state will have an electronic
configuration given by

This yield both triplet and singlet spin functions and an orbital function with symmetry given by . And as it turns out,
the first electronic transition in formaldehyde is orbitally forbidden since no choice of a component of the dipole moment operator
can be used to create a totally symmetric integrand for the electric dipole transition moment integral.

In order to see this transition in formaldehyde, there must be some involvement from vibrational motion that changes the symmetry
of the overall wavefunction. Recall that

if the Born-Oppenheimer approximation holds. The symmetries for the vibrational wavefunctions (which can be derived using the
method previously discussed) are given by

So excitation of a  or  vibrational mode (yielding an overall symmetry for the total wavefunction of either  or 
respectively) will cause the transition to “turn on”. This type of vibronically allowed transition is not uncommon (similar
behavior is observed in benzene) and is characterized by a missing 0-0 band in the electronic spectrum of the molecule.

This page titled 9.9: Group Theoretical Approach to Molecular Orbitals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by Patrick Fleming.
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9.11: Vocabulary and Concepts
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exchange integral
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9.12: Learning Objectives
After mastering the material covered in this chapter, one will be able to:

1. Describe the Born-Oppenheimer Approximation and how it is used to construct potential energy surfaces describing the
vibration of a diatomic molecule.

2. Construct a molecular orbital diagram for a diatomic molecule depicting both bonding and antibonding orbitals of s and p
symmetries including inversion symmetry (g/u) as appropriate for homonuclear diatomic molecules. Utilize the diagram to
a. Predict the ground state electronic configuration of a diatomic molecule, including

i. Magnetic properties
ii. Bond order

3. Describe the differences between Hund’s Angular Momentum Cases (a) and (b) and how these cases manifest in the resulting
energy levels in real molecules.

4. Determine molecular term symbols for diatomic molecules using the
a. United Atom Method
b. Separated Atom Method
c. Molecular Orbital Method

5. Construct Herzberg Diagrams and use them to
a. Determine the band structure of a spectroscopic transition, including the “first line” in each branch.

6. Derive the formulation for the Franck-Condon factor and explain how it determines relative intensity of vibrational bands in an
electron transition.

7. Utilize the tools of Group Theory to predict the symmetries of the molecular orbitals that arise from linear combinations of
atomic orbitals for a polyatomic molecule.

This page titled 9.12: Learning Objectives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
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CHAPTER OVERVIEW

10: Lasers
One of the most important tools in scientific measurement and the development of technology in general is the laser. The word
“laser” is an acronym for Light Amplification by Stimulated Emission Radiation. What a laser does is use a spectroscopic transition
to amplify the intensity of a light source by stimulating emission from the upper state of the transition. In order to do this, the
system must have a population inversion.

10.1: Fractional Population of Quantum States
10.2: Types of Lasers
10.3: Examples of Laser Systems
10.4: Laser Spectroscopy
10.5: References
10.6: Vocabulary and Concepts
10.7: Problems
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10.1: Fractional Population of Quantum States
A molecule will exist in a quantum state with an energy determined by that quantum state. For a sample containing a large number
of molecules, several quantum states will be available, and the molecules will be distributed among them. If the sample is
thermalized , the distribution will follow the Maxwell-Boltzmann distribution law.

Maxwell-Boltzmann Distribution Law 
According to the Maxwell-Botlzmann distribution law, the fraction of the number of molecules in the sample that are in a
specific quantum state will be given by

where  is the fraction of the total number of molecules in the  quantum state which has energy  relative to the lowest
energy the molecule can attain. If the fraction of molecules in each quantum state is added, the result must be unity.

Partition Functions 
To ensure this, a partition function is introduced to normalize the distribution.

And so

The partition function, which is a function of temperature as well as the physical properties of the molecules under consideration,
can be expressed as a product of partition functions for each type of motion available in the molecule. If electronic, vibrational and
rotational energy levels only are considered, the partition function can be expressed as

When considering each type of motion, it is important to consider both the energy levels and the degeneracies of states. As was
seen in the case of rotational motion (Chapter IV), at low energies, the degeneracy part of the expression dominates, but at higher
energies, the exponential part of the function takes over. If the energy is very large (relative to kT) then there will be essentially
no population in the  level. This is the case, in general, for electronic excitation; the energy level is so high in energy relative to
kT that there are essentially no molecules in excited electronic state except at extraordinarily high temperatures. In this case, where
the energy is very large relative to kT

Naturally, q will become larger for motions will small energy level differences (such as rotational motion) where the word “small”
is always considered relative to .

Based on the above equations and the degeneracies and energy level expressions for the harmonic oscillator (for ) and the rigid
rotor (for ) the following approximate expressions can be used to estimate partition functions for each type of motion.
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Expression Approx. Exp. Magnitude EstimateExpression Approx. Exp. Magnitude Estimate

1

1-10

100-1000

Rotational and Vibrational Temperatures 
The above discussion suggests that the temperature of a system can be determined by measuring the populations of individual
quantum states. This can be done using spectroscopic intensity data. A line or band in spectrum will be more intense if there are a
larger number of molecules in the originating state of the transition. (This is essentially Beer’s Law that says that spectral intensity
is proportional to concentration.)

Sometimes these analyses will yields results that are not consistent between different types of motion within the molecule. For
example, analysis of the vibrational intensity distribution may yield a temperature that is different than the analysis of the rotational
intensity distribution. For this reason, scientists often refer to the “vibrational temperature” or the “rotational temperature” of a
sample. These are non-equilibrium situations and are usually dependent on the dynamics of how a molecule was formed within a
sample. Some pathways may leave an excess of energy in vibrational modes whereas other may lead to rotationally hot product
molecules due to an excess of energy in rotational motion. Typically after a large number of collisions which energy may be
transferred from one molecule to another, these temperatures will equilibrate and the Maxwell-Boltzmann distribution law will
describe all fractional populations irrespective of the type(s) of motion that dominate(s) an energy level.

Population Inversion 
In the case where all available energy levels are singly degenerate, the Maxwell-Boltzmann distribution law suggests that
fractional population should decrease with increasing energy. In some cases, the non-equilibrium distribution of molecules through
the available quantum states becomes inverted. Again, this situation can be created by the specific dynamics of how a system is
prepared. In the case that a population inversion can be created, a laser can be made that uses the sample of molecules with this
inverted population as a gain medium to create the laser light output.

Figure 

Theoretically, any system in which a population inversion can be induced can be used as a gain medium for a laser.

1. The word “Thermalized” means that all of the molecules in the sample are in “thermal contact” with one another (typically due
to a large frequency of collisions with other molecules in the sample) so that there is an equilibrium established for the
exchange of energy between molecules in the sample.

This page titled 10.1: Fractional Population of Quantum States is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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10.2: Types of Lasers
There are many different types of lasers built on many different principles and techniques of creating population inversions. A
population inversion can be induced in a system through the fast absorption of light, a chemical reaction that creates a non-
equilibrium distribution of molecules, “zapping” a system with electrons, or many other ways. We will consider several of them in
this section.

Two-level laser 
The simplest type of laser is a two-level laser, although many argue that a true two-level laser cannot exist . None the less, it is
instructive to consider a simplified system with only two levels, in which a population inversion has been introduced. Once the
population inversion has been achieved, light of a frequency that matches the resonance between the two levels is passed through
the sample. This can “tickle” a molecule into dropping to the lower level by giving off a photon. If this happens, the stimulated
emission will be coherent (in phase and of the same frequency) as the stimulating photon. If many molecules are stimulated to emit,
the gain will be substantial and a strong beam of coherent, monochromatic light will be produced.

Figure 

Naturally as laser output is achieved, the upper-level population will deplete and that of the lower level will grow. When a
Maxwell-Boltzmann distribution is established, laser output will cease. So in order to keep the laser operating, the upper state must
be repopulated or the lower state must be depopulated. The nature of the laser is defined by the manner in which these
population/depopulation events occur. The manner in which the light is manipulated can also define the nature of the laser and how
it operates.

Three-level lasers 
There are several examples of three-level lasers. In these systems, a third level is introduced in order to either populate the upper
level of the laser transition or depopulate the lower level. This difference defines two types of three-level laser systems.

In the case that the third level (  ) lies above the upper level of the laser transition (  ), the following schematic energy level
diagram will result.

Figure 

In this system, The level  is populated by the absorption of light (which is what is depicted in the diagram above) or some other
method. The transition between  and  is much faster than the transition between  and the lower level of the laser transition,

. As such  will be populated quickly and a population inversion will be established. As this laser operates,  will be
depopulated, so a fresh supply of molecules in this level must be provided by the pump source cycling molecules out of  and
back to .

An example of this type of three-level laser is the ruby laser , in which the gain medium is a ruby crystal. The pump exciting
molecules from  to  is provided by a flash lamp. Since the flash lamp is pulsed, this system produces pulsed laser output. The
wavelength of the ruby laser output is 694.3 nm. The helium-neon (HeNe) laser (Microwave Determination of Average Electron
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Energy and Density in He–Ne Discharges, 1964) is another example of this type of laser. The HeNe laser is a continuous wave
laser (meaning it is not pulsed like the ruby laser) that produces red light at 632.8 nm.

A second type of three-level laser is one on which the third level (  ) lies below the lower level (  ) of the laser transition. In this
system, the upper level of the laser transition is populated either by a chemical or electrical pump or by a chemical reaction. The
lower level is depopulated by a fast transition (or a chemical reaction). Since this depopulation happens faster than the population
of  through the laser transition, a population inversion is maintained easily.

Figure 

An example of this type of laser is the chemical laser in which the upper level of the laser transition is populated through a
chemical reaction which creates vibrationally excited molecules (Spencer, Jacobs, Mirels, & Gross, 1969) (Kasper & Pimentel,
1965) (Hinchen, 1973). Such lasers typically produce output in the infrared.

Four-level lasers 

A four-level laser incorporates elements of both types of three-level lasers by having an energy level above the upper level of the
laser transition that rapidly populates  and one below the lower state of the laser transition that rapidly depopulates the lower
level, .

Figure 

Briefly, a pump (usually supplied by a flash lamp) excites molecules from  to . A fast transition from  to  populates the
upper state of the laser transition. A fast transition from  to  then depopulates the lower level of the laser transition,
maintaining a population inversion between  and  until  is no longer able to populate .

The Nd:YAG (Geusic, Marcos, & Van Uitert, 1964) (neodymium YAG) laser is an example of a four level laser. In this laser,
neodymium (III) ions entrained in a yttrium aluminum garnet crystal provide the four energy levels. The laser produces a polarized
pulsed output at 1064 nm.

Q-switching 

One of the important devices that makes a Nd:YAG laser (and many others) is a Q-switch. A Q-switch is a polarized filter that
changes direction fo polarization when an electrical potential is applied to it. In one orientation, the switch blocks laser output light
(preventing stimulated emission amplification) and in the other orientation, it allows for this light to pass.

The Q-switch is used to limit laser gain (which would deplete the upper level of the laser transition) until an optimal population
inversion is achieved. The Q-switch is then “opened” and laser output is generated until the population inversion is relaxed. The
timing is critical and must be tuned for each laser (and usually re-optimized several times a day while the laser is in operation, as
changes in temperature can change the characteristics of the YAG crystal dramatically.

1. Others argue that excimer lasers and dye lasers are two-level lasers. The difference depends on what is considered a “level”.
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2. There are actually two levels in a ruby laser that act as E 3. For a complete description, see (Maiman, 1960)
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10.3: Examples of Laser Systems
There are many types of laser commonly used in science today. The range of applications of lasers in science and technology is
extremely broad, ranging from household applications (such as television remote controls) to manufacturing applications (such as
laser cutting and welding, or laser lithography used in the manufacture of microelectronics), to medicine (including specific
procedures such as laser eye surgery) to basic fundamental science. The specific needs of a particular job determine which laser is
best for the job.

 laser 
A nitrogen laser is a continuous wave laser that provides ultraviolet output at 337 nm, but can be tuned to several wavelengths
near its strongest output line. The laser gain transition is the 0-0 band in the B-X transition of . The upper state is populated by
subjecting the gas to an electrical discharge. Applications of the  laser is pumping of dye lasers (described in section B.4.d),
diagnostics of air samples and laser desorption techniques.

Excimer Lasers 

An excimer laser is one in which the upper state of the transition is a metastable state of a molecule, and the lower state is
dissociative. Because the lower state is not bound, molecules that land in that state after emitting a photon immediately dissociate,
allowing for no buildup of population in the lower level of the laser transition. As such, any population in the upper state implies a
population inversion.

The upper (metastable) state is populated by a pulsed electrical discharge through a gas containing the precursors of the excimer
molecules. Since these precursors (usually involving HCl or HF gas) are particularly caustic (to say nothing of how reactive the
soup of radicals and ions produced by the electrical discharge are!) these laser require a very high level of maintenance. However,
because of the simplicity of the energy level scheme, these lasers are very easy to tune to provide strong laser output. These lasers
are used in a number of applications including the pumping of dye lasers and laser eye surgery. The pulses that emanate from these
laser have a time on the order of a few nanoseconds.

The output wavelength of an excimer laser is determined by the particular excimer formed in the discharge. The most commonly
used excimer lasers are XeCl (308 nm) and ArF (193 nm.) The following table shows several common excimers and their output
wavelengths.

Table: Common Excimers with Output Wavelengths

Excimer Wavelength (nm)

ArF 193

KrCl 222

KrF 248

XeCl 308

XeF 351

Rare Gas Ion Lasers 

Another important class of lasers is the rare gas ion laser. In this laser, the gain medium is provided by an ion of a noble as (such
as  ). The gas is ionized by means of an electrical discharge. These lasers typically have several wavelengths which can be
selected for the output. These lasers are used widely as pump lasers for dye lasers and also in Laserium light shows.

Tunable Dye Lasers 

Tunable dye lasers are a very flexible type of laser as they provide selectable output wavelengths. Many of them can be scanned
through a set of wavelengths which can be very useful in a number of applications (such as laser spectroscopy.) The gain medium
in a dye laser is provided by a strong fluorescent dye dissolved in a liquid solvent (such as methanol.) The range of output
wavelengths is determined by the specific dye. Commercially available dyes are available that span the entire visible spectrum.
Ring dye lasers are capable of very high resolution (narrow wavelength or frequency range.)

N2
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N2
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+
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Pulse Amplification 

Pulse amplification is a technique used to increase the output power of a laser. In this technique, a seed beam is passed through a
dye cell and is crossed by a pulsed pump beam which excites the dye, providing another stage of gain for the seed beam. Most dye
lasers have at least one stage of pulse amplification in them to achieve suitable power for the specific application.

Frequency Doubling 

Another useful technique that extends the wavelength output range of laser is frequency doubling. In this technique, laser output is
focused on a special crystal (such a beta-Barium Borate or BBO) which has nonlinear optical properties that allow it to fuse two
photons of frequency  into one photon with frequency . Frequency doubling is not a terrifically efficient process and usually
comes at a significant price to output intensity. However, the benefit of frequency doubling a tunable dye laser output is that one
can extend the tunable range of laser output into the ultraviolet.

Ultrafast Lasers 

A fairly recent development in technology is the development of ultrafast lasers. This class of device delivers laser output in very
short (on the order of femtoseconds) pulses of laser output. On this time scale, it is possible to take snapshots of chemical reaction
intermediates since the laser pulse time is comparable to the lifetime of a chemical intermediate. These lasers, however, have very
brad spectral output due to the Heisenberg uncertainty principle precluding simultaneously small uncertainties in time and
wavelength.

This page titled 10.3: Examples of Laser Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
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10.4: Laser Spectroscopy
Typical spectroscopy experiments require four elements: 1) a light source, 2) a sample, 3, a monochrometer and 4) a detector. In
laser methods, a laser can serve as both a light source and a monochrometer. It can also serve as just one of those two, or be used in
a totally different way such that it serves as neither!

Total Fluorescence 
In a total fluorescence experiment, the laser is used as both the light source as well as the monochrometer. The data obtained is
similar to that obtained in a regular absorption spectroscopy experiment.

Figure 

The laser used in this kind of experiment would typically be a tunable dye laser that will be scanned through a range of
wavelengths in order to map the absorption spectrum of the sample. The detector must be placed at an angle to the incident laser
beam in order to minimize direct exposure to the laser light, which will swamp the signal (and probably ruin the detector!) What is
detected is actually photons produced in the fluorescence of the sample, which is increased whenever the laser frequency coincides
with a resonance frequency.

Figure 

Monitoring fluorescence intensity as a function of excitation laser wavelength produces an absorption spectrum of the molecule. By
and large, the total fluorescence method yields information about the upper state of a transition since scanning the tunable laser
maps the energy levels in the upper state.

Dispersed Fluorescence 
In a dispersed fluorescence spectrum, The wavelength of the excitation laser is fixed and the fluorescence is collected by a
monochrometer and separated into its wavelength components.

Figure 

By separating the fluorescence into its wavelength components, the lower level energy levels are mapped. As such, this experiment
is similar to an emission spectrum, but has the advantage of having only a single upper level quantum state. This type of
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experiment yields information about the lower level of the transition.

Molecular Beam Spectroscopy (A Sub-Doppler Method) 

Laser excitation (total fluorescence) spectroscopy and dispersed fluorescence spectroscopy have resolution that is limited by the
instrumentation and the natural Doppler width of the lines in the spectrum (caused by the motion of molecules in the gas phase,
which can be parallel, antiparallel or at some angle to the direction of the laser beam propagation.) A number of techniques exist
that allow for sub-Doppler resolution (resolution that is better than the Doppler limit would otherwise allow.

This page titled 10.4: Laser Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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10.6: Vocabulary and Concepts
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dispersed fluorescence

Doppler limit

Doppler width

frequency doubling

Heisenberg uncertainty principle
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Maxwell-Boltzmann distribution

Maxwell-Botlzmann distribution

metastable state

partition function
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Pulse amplification
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rotational temperature

spectroscopy
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vibrational temperature
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10.7: Problems
1. A dye laser produces pulses of 15.0 mJ at a wavelength of 564 nm. How many photons are being produced per pulse?
2. In the above problem, consider the optical gain medium occupying a volume of 1.00 mL. What is the minimum concentration

(in mol/L) of chromophores needed to produce pulses of 15.0 mJ at 564 nm?
3. Consider a two-level system, in which the difference in energy is 1.0 eV. If both levels are singly degenerate, calculate the

fractional population of each level at 10 K, 100 K, and 1000 K.
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CHAPTER OVERVIEW

11: Quantum Strangeness

Figure 

In the television show “The Big Bang Theory”, Dr. Sheldon Cooper describes the best use of his time as a scientist to “employ his
rare and precious mental faculties to tear the mask off of nature and stare at the face of God.” [1] And while the fictitious character
may have an inflated view of the magnitude of his research efforts, he is not in poor company in terms of the feelings that science is
a tool to be used to see the nature of God in nature itself. Albert Einstein is quoted as saying “Science without religion is lame.
Religion without science is blind.” [2] Another quote attributed to Einstein is, “I want to know God’s thoughts; the rest is just
details.” [3] Of course, Einstein claimed some familiarity with the intentions of the Creator when he quipped in a letter to Max
Born, “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the "old one." I, at any rate, am convinced that He does not throw dice.” [4]

Figure 

Much has been made of Einstein’s opinions of God as a craps player. Through the 1920s and 1930s, Einstein and Niels Bohr had
many conversations on the ramifications of the quantum theory. In response to Einstein’s quip about a non-dice-playing deity, Bohr
is said to have responded, “Einstein, stop telling God what to do!”  Of course, Bohr was very well aware of the strangeness of the
quantum theory and how it shook the very roots of conventional wisdom about nature. Bohr is quoted as saying, “Anyone who is
not shocked by quantum theory has not understood it.” [5]

Naturally, Einstein found quantum theory quite shocking indeed. One of his earliest objections was that the quantum theory
required that one dismiss a deterministic view of the universe. The philosophy of Determinism states that if all is known about a
system at one point in time, then all can be known about that system at all points in time. Bohr, on the other hand, had no
difficulties in dismissing determinism in favor of a quantum theory. Eventually, the debate would focus on the indeterminacy
predicted by the Heisenberg Uncertainty Principle for complimentary variables (variables for which the corresponding quantum
mechanical operators do not commute, such as position and momentum.)

Figure 

In fact, the spirited (but mostly amiable) debates between Einstein and Bohr did the development of quantum theory an enormous
service. (not all of Bohr’s debates were amiable. Some of his discussions with Werner Heisenberg left Heisenberg reportedly in
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tears! Heisenberg said of these discussions, “Since my talks with Bohr often continued till long after midnight and did not produce
a satisfactory conclusion, ...both of us became utterly exhausted and rather tense.”) [6]

By poking at the forefronts of what the theory predicts and what it can not predict, the Bohr-Einstein debates pushed quantum
theory forward by enormous leaps. In this chapter, we will examine how various people have probed the “strangeness” of the
quantum theory and the bizarre behavior it predicts (or in some cases, the bizarre behavior that was discovered almost by accident.)
Much of the strangeness of quantum mechanics continues to be researched actively and colors such important topics as quantum
communications and quantum computing.

Figure 
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11.1: Nodes and Wave Nature
One of the first introductions students of the Quantum Theory receive involves the nodes in the wavefunctions of a one-
dimensional particle in a box. The probability of measuring the particle to exist at any given position in the box is given by the
square of the wavefunction. For the  level, the squared wavefunction is plotted above.

The figure shows that the probability of measuring the position of the particle at positions  and  or the maxima and
that there is zero probability of measuring the particle to exist at the endpoints or at , the middle position of the box. One
might wonder how the particle can travel from one side of the box to the other without ever actually being in the middle. If one
models the particle as a small ball bearing traveling from end to end in an evacuated, sealed glass tube (consistent with a
deterministic view in which the particle has a definite location at all times) the prediction is clearly troubling. For many, this creates
a dilemma.

The reconciliation of this dilemma requires that one abandon a notion of determinism in embracing the wave-nature of the particle.
Namely, if one accepts the wave description of the particle, the notion of a definite location become meaningless since the wave
must be delocalized across the entire box. In fact, the wave even exists at the central node despite the value of the wavefunction
being zero! This concept provides a clear challenge to the notion of determinism that is suggested by Newtonian physics. The idea
of “matter waves” also lead to a proposal by Louis de Broglie that matter-wave interference should be observable.

This page titled 11.1: Nodes and Wave Nature is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
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11.2: Quantum Interference
Thomas Young showed in 1803 [7] that light traveling through a pair of parallel slits will produce an interference pattern that
follows Bragg’s Law for diffraction. This was a huge problem to the existing Newtonian theory of light, as place CityNewton had
postulated that light is, in fact, a stream of particles. With the advent of a quantum theory, light was postulated to have a dual
nature, having properties of both particles and waves. This dual nature, of course would be applicable to the description of matter
as well according to Louis de Broglie. At this point, things started to get really interesting. But before we go into that, let’s think
about the two-slit experiment in terms of the Heisenberg Uncertainty Principle.

Figure 

Recall that the Uncertainty principle states that there is a small minimum value for the product of the uncertainties of position and
momentum.

This concept can be used to describe why a light wave is diffracted by a slit. As the photon or other wave-particle passes through
the slit, the uncertainty of the position of the wave-particle is basically given by the size of the slit. The uncertainty in momentum
then allows for the spreading of the wave-particle spatially. This is illustrated in the diagram. This interpretation is very useful in
understanding how Einstein used this experiment as a criticism of the Uncertainty Principle and of the Quantum Theory itself.

Figure 

In 1924 [8] [9], Louis de Broglie proposed a wave description of all matter by proposing his famous wavelength relationship

His predictions that matter-wave interference could be observed was confirmed in 1927 in independent experiments by George
Thomson, who observed diffraction patterns in electron beams passing through thin metal films [10] and by Clinton Davison and
Lester Germer, who observed electron diffraction on an electron beam focused on a crystalline nickel metal surface. [11] Thomson
and Davisson shared the Nobel Prize in Physics in 1937 for these discoveries.

While the observation of interference of matter waves gave a great deal of credibility to the emerging quantum theory, Einstein was
still troubled. In a series of interactions with Bohr, Einstein would propose thought experiments which he believed would uncover
an inconsistency in the quantum theory by violating the Heisenberg Uncertainty Principle. Bohr would then consider the
experiment and, in particular, the apparatus that would be used to make the measurements Einstein had proposed. Then, in
presenting the “apparatus” to Einstein, Bohr would explain the flaw in Einstein’s reasoning and how such a measurement could not
violate the predictions of quantum mechanics.

One such exchange occurred over the concept of the “two-slit” experiment. In this experiment, a beam of electrons travels through
a screen before arriving at a detector. In the screen, there are two slits through which the beam may pass. Each of these slits will
diffract the beam, and lead to an interference pattern as the beam hits a detector screen. The diffraction is confirmed by the
interference pattern observed on the detector.
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To make matters even more interesting, if one slit is blocked, the result is the disappearance of the interference pattern. Instead, the
recorded signal is consistent with the electrons traveling through the single unblocked slit.

For light waves, this phenomenon was well understood, thanks to the experiments of Young. But for matter waves, the picture
becomes someone bizarre. There is not much of a problem if one considers what happens when the beam is turned on continuously.
In this case, there are plenty of electrons making the transit and it is easy to imagine each as having a wave nature which can
interfere with all of the other electrons making the transit.

The real excitement happens when the electron source is slowed down so that only one electron is making the transit at a time. If
the resulting signals generated when the electrons reach the detector are integrated, over time an identical interference pattern
emerges! “How can that be?” I hear you cry. And the question would indeed be very profound.

One explanation is that each electron traverses the distance from the gun through the slits by taking both possible pathways. This
explanation is equivalent to saying that the electron becomes delocalized as soon as it leaves the source, takes all possible pathways
to the detector and then becomes localized once again when it interacts with the detector, revealing its final position. Such an
explanation would be very problematic to a person clinging to the philosophy of Determinism.

Einstein’s description of the phenomenon provided an important piece of the puzzle in terms of probing the limitations of quantum
theory. Einstein argued that a particle passing through a slit would only have its path altered if it imparted some momentum to the
screen containing the slit through a collision. That collision would have to cause the screen to move a tiny amount (due to
conservation of momentum.) And if that movement could be detected, then one would then simultaneously know both the position
of the particle (as it passed through the slit) and its momentum (due to the momentum imparted to the slit itself.) And this would
create a violation of the Heisenberg Uncertainty principle.

Bohr’s response was quick and decisive. He pointed to the fact that Einstein had only attempted to apply the Uncertainty Principle
to the wave-particle that passed through the slit and not to the slit itself. In fact, the uncertainty in the momentum of the slit will be
the same as the uncertainty in the momentum of the wave-particle (since similar methods are used to measure them.)

Further, the uncertainty of the position of the wave-particle is equal to the uncertainty of the position of the of the slit.

Additionally, the slit itself must satisfy the Uncertainty Principle in that

simple substitution shows that if the slit is governed by the Uncertainty Principle, then the wave-particle must be as well.

This argument does not prove that quantum mechanics is correct, but it does show that it is self-consistent.

Very recently, scientists have used a modified approach to the double-slit experiment to reopen the question. [12] In this
experiment, laser light shines on a screen with two pinholes. A clever detection system is used that detects only those photons that
pass through one of the pinholes (a particle-like behavior.) But at the same time, detecting wires are placed in the positions of the
destructive interference fringes (where no light should fall), confirming that no light is detected in these dark fringes (which is a
consequence of the wave nature of light.) As such, the experiments demonstrate that light can show both the wave and particle
nature simultaneously – something that Bohr had predicted to be impossible based on the idea of complementarity. Clearly, the
debate continues and forms the subject of current research.

Bohr and Einstein would have several of these types of debates over the course of the late 1920s. Each time, Einstein would
propose a thought experiment which he believed would violate the Uncertainty Principle, and each time Bohr would counter with a
demonstration that, in fact, there was no violation at all. It seemed that Einstein was defeated. However, that was far from the case!

However, before exploring Einstein’s next move, let’s consider another experiment that shows the strangeness of quantum
mechanics. It will be useful in framing a discussion of Einstein’s next move.

7. T. Young, "The Bakerian Lecture: Experiments and Calculations Relative to Physical Optics," Philosophical Transactions of the
Royal Society of London, pp. 1-16, 1804. W430W9405
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11.3: The Stern-Gerlach Experiment
One of the very interesting aspects of many small particles, including electrons, is that of spin. (The original Stern-Gerlach
experiment [13] was performed on a beam of silver atoms, but the result apply to electrons as well.) The property of spin creates a
magnetic moment for these particles. For electrons, which have , the component of angular momentum along an external
axis can take two possible values, . That means that an electron traveling through an inhomogeneous magnetic field can
align its magnetic moment either with or against the external field. The ramifications are very interesting.

Figure 

A beam of electrons that passes through an inhomogeneous magnetic field will be split into two beams. Those electrons whose
magnetic moment aligned with the field will be deflected in one direction, and those with a magnetic field aligned against the
external field will be deflected in the other. Each beam can then be considered as containing only electrons that are either “spin up”
( , ) or “spin down” ( , ). As such, if one of the beams passes through another magnetic field that it oriented
parallel to the first, no further splitting occurs since all of the electrons in that sub-beam have their spins aligned.

However, things get very interesting when the second magnetic field is oriented at  to the first. Since the magnetic moments of
the electrons are aligned perpendicular to the external magnetic field, there should be no effect. What actually happens is that the
beam again splits into two sub-beams, just as the original beam did!

If the second magnetic field is placed at some other angle, the beam will still split into two components, but the intensities will be
determined by the magnitude of the projection of the electron magnetic moment along the external axis. That magnitude is easily
calculable if one thinks of the spin wavefunction as a linear combination of two spin functions in the rotated axis system.

where  is the angle between the two magnetic fields. The factors of  are to normalize the wavefunction. The probabilities then

of measuring the spin as either an  or  state is given by the squares of the corresponding Fourier coefficients.

This conclusion will be useful in interpreting later results.

One very important question that the Stern-Gerlach result raises deals directly with Determinacy. The question is whether or not an
individual electron “knows” that it is  or  before interacting with the detector. The results (particularly for the experiments where
a beam of selected spin particles is resplit) suggests that it is the interaction with the detector that forces the particle into one state
or the other.

In this manner, the Stern-Gerlach result shows is that making a measurement on a system will, in fact, alter that system. The
interaction of the electrons with the external field causes an alignment of the individual magnetic moments (either with or against
the external field.)

The types of experiments (and specifically spin detectors) used in the Stern-Gerlach experiment can be used to help to frame the
next step in the Einstein-Bohr debates on the completeness of quantum mechanics.

13. W. Gerlach and O. Stern, "Das magnetische Moment des Silberatoms," Zeitschrift für Physik, vol. 9, p. 353–355, 1922.
W430W9405
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11.4: Spooky Action at a Distance
In 1935, Einstein raised the stakes in the quantum debate significantly. Along with his postdoctoral co-authors, Boris Podolsky and
Nathan Rosen, published one of the most famous papers in the history of the quantum theory debates. The EPR paper [14] (so
called based on the initials of the authors) would create a veritable firestorm within the community that championed the
Copenhagen interpretation of Quantum Mechanics.

The EPR paradox 
The EPR paper proposed a paradox in the form of a thought experiment, much as the several thought experiments proposed by
Einstein to Bohr at the various Solvay Conferences. In the paradox, Einstein used the concepts of a conserved center of mass and
conserved momentum in a fragmenting particle to show that either a measurement on one fragment must affect the properties of the
other, or that the quantum theory had to be incomplete.

The thought experiment involved the fragmentation of a particle into two fragment particles. The fragment particles would be
linked through a single wavefunction describing the entire system. After some time of traveling apart, it was assumed that the two
fragment particles could no longer interact as they were physically separated by a distance.

At some point following the fragmentation, the position is measure for one of the fragment particles. This, thought the conservation
of the center of mass, would determine the position of the other particle. Then, by measuring the momentum of the counter
fragment, the momentum of the first fragment would be determined through the conservation of momentum. As such, there would
be simultaneous knowledge of both position and momentum for both particles, in violation of the Uncertainty Principle.

Figure 

The argument in the EPR paper was that since a measurement on one fragment determined the properties of the counter fragment,
and that the two fragments were separated in space, that the properties of the counter fragment must have been determined all
along, irrespective of having been measured. (Einstein referred to the phenomenon of measurement on one fragment affecting
properties on the counter fragment as “Spooky action at a distance.) In other words, Indeterminacy as suggested by the Heisenberg
Uncertainty Principle must be a fallacy. The only other explanation possible was that the Quantum Theory had to be incomplete.
With this argument, people had to take very seriously the possibility that a theory of “local reality” in which properties exist with
definite values, as opposed to only coming to being through the interaction with a detector of some sort, as a distinct possibility.

Bohr responded within months. He attacked a specific assumption of the set up of the EPR paradox, namely that a measurement of
the properties of one particle would not “disturb the system in any way.”

Hidden Variables 

The EPR paradox was both eloquent and succinct. It touched off quite a storm within the community as well as it shock the very
foundations of the quantum theory. But perhaps even more interestingly, it spurned a whole new avenue of research into
understanding the ramifications. Specifically troubling was the idea that the wavefunction describing a system did not, in fact,
provide a complete description of that system.

Scientists began to wonder if there might be some “hidden variables” in a system that allowed properties to be both hidden under
the vagueness of a wavefunction and also determined by the definite values of the variables, irrespective of whether or not the
system was observed or measured.

In 1951, David Bohm published a textbook [15] on quantum theory that included a good deal of discussion on the EPR paradox. In
it, he suggested measuring the nuclear spins of hydrogen atoms that result from the dissociation of a singlet-state hydrogen
molecule. The spins would be correlated through the conservation of angular momentum and could thus take the place of the
measurements of position and momentum in the EPR version.

In Bohm’s version of the EPR experiment (sometimes called the EPRB experiment) the spin states of the hydrogen atoms would be
correlated as the atoms would be “entangled”. And since angular momentum had to be conserved, measurement of the spin of one
atom along the laboratory fixed z-axis would determine the value along the z-axis for the other atom. But what if the measurement
was made along the x- or y-axes? If the EPR definition of reality is to be believed, these values must also be determined (or real.)
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Of course quantum mechanics only allows for the measurement of one of the components, as the operators for the three
components do not commute. Thus, if the EPR definition of reality is correct, then the wavefunction by necessity must be
incomplete. There would need to be hidden variables.

Even more significantly, Bohm’s proposed experiments could be carried out in a laboratory, rather than being limited to the realms
of thought.

14. B. P. Albert Einstein and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?,"
Physical Review, vol. 47, pp. 777-780, 1935. W430W9405

15. D. Bohm, Quantum Theory, New York: Prentice-Hall, 1951. W430W9405
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11.5: Bell's Inequality
Bohm’s work on the EPR paradox reawakened an interest in the topic. One physicist who took a particular interest in the topic was
John S. Bell. Bell proposed a mathematical model that could in fact distinguish between local hidden variable theories and quantum
theory [16].

Consider a set of things U which can be subdivided into three overlapping subsets, A, B and C. Bell’s theorem states: the number
of members of A that are not a member of B plus all members of B that are not a member of C must be greater than or equal to the
number of members in the subset of A that are not also in subset B.

To show this, let’s first settle on some notation. We’ll call the number of items that are in subset A, but not in subset B by the
symbol  and the number of items in subset B but not in subset C by . Etcetera. This notation coupled with
the use of some Venn diagrams, the concept of the inequality should become clear.

Figure 

It should be clear that  can be easily shown to be given by the number of items in subset A, not in subset B and in subset
C, plus the number in A, not in B and not in C.

Figure 

Similar sums can be derived for  and 

Shown below is the sum for .
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Figure 

Adding the terms for  and  gives

This can be simplified by grouping the terms for  and  and recognizing that their sum gives 
.

So long as neither  nor  are negative (which they can not be) then we arrive at CityplaceBell’s
inequality:

Figure 

Employing the Stern-Gerlach results to Test Bell’s Inequality 
On the face of it, place CityBell’s result does not seem that extraordinary. In fact, it almost seems trivial. However, it is only trivial
when the results of tests that would place an object into group A, B or C are not correlated. When the results are correlated, the
result becomes a bit perplexing.

Consider the dissociation of a pion (also called a  meson), which is a subatomic particle with zero spin and zero charge. It can
decompose into a positron and an electron (to conserve charge), each traveling in opposite directions (such that momentum is
conserved.) The spins will also be entangled in such a way as to conserve angular momentum.

Figure 

In fact, the spin state of the electron/positron pair will be given by the familiar singlet spin function:

This suggests that if the positron (subscript +) is detected in the  spin state, the electron (subscript -) will necessarily be forced
into the  spin state. The wavefunction allows for equal probability that the positron will be detected in the  spin state or the 
spin state, but detection in either state forces an immediate collapse of the wavefunction for the electron. This is the “spooky action
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at a distance” that Einstein so vehemently rejected in the EPR paper [14]. Einstein also insisted that the spin state of the positron
was a “real” property that existed with a definite value for the entire transit of the positron from the decay event to the detector.
And quantum mechanics, in Einstein’s view, was incomplete in that it could not predict the “realness” of that spin state. If
Einstein’s view was correct, then correlated measurements of the two spin states would have to satisfy CityplaceBell’s inequality.

With the results of the Stern-Gerlach experiments, we can actually determine exactly what quantum mechanics will predict. To do
this, we will set up our detectors to detect the spin to the dissociated fragments, but we will rotate the detectors relative to one
another. In a laboratory-fixed coordinate system, we will set detector A at  rotation, B at  and C and . What we want to
know is the probability that if one detector measures its particle to be in spin state  that the other will measure its particle to be in
spin state . That probability will be related to the angle of rotation of the second detector relative to the first. According to the
Stern-Gerlach result, the probability is given by , where  and  are the angles of the second and first detectors in
the pair respectively.

So if we define  ) as the probability that detector A detects an  and detector B fails to detect a  spin, we can
construct the following table based on three specific experimental configurations:

Experiment Case

1 0.125

2 0.125

3 0.375

After collecting data from a very large set of measurements using these configurations, we will have can compare the experimental
distribution of outcomes to what is predicted by quantum mechanics, and thus conclude if it is possible to have a locality variable
that predetermines our outcomes, or if the measurements are purely probabilistic. If the locality variable exists, then Bell’s
Inequality must hold [17].

However, if Quantum Mechanics allows for a locality variable to redetermine the measured outcomes of the three experiments,
then the following must be true:

Except that it simply isn’t true. (In fact, it isn’t even true for extremely large values of the sum 0.125 + 0.125.) The above set of
experiments was proposed by Alain Aspect in 1976 [17], and results published in 1982 [18]. And while the results were criticized
due to the “detection loophole”, results of similar experiments being conducted up to 2015 [20] confirmed Aspect’s results. Alain
Aspect shared the 2022 Nobel Prize in Physics with John Clauser and Anton Zeillinger “for experiments with entangled photons,
establishing the violation of Bell inequalities and pioneering quantum information science”. [21]

Since Aspect’s result was derived completely independent of any theory of hidden variables, it should be clear that the result is
incompatible with any such theory. In fact, the result shows that one must divorce oneself from any ideas of local realism for
quantum mechanical particles. One simply must conclude that it is the observation that creates the reality and that no reality for
observable properties on quantum mechanical system can exist independent of their observation. (Of course, Sheldon Cooper
would also point out that one can be beaten up simply for referring to oneself as “one.) [19]

16. J. S. Bell, "On the Einstein Podolsky Rosen paradox," Physics Physique Fizika, vol. 1, p. 195, 1964. W430W9405
17. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, London: Cambridge University Press, 1987. W430W9405
18. A. Aspect, "Proposed experiment to test the nonseparability of quantum mechanics," Physical Review D, vol. 14, p. 1944, 1976.
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20. J. Markoff, "Sorry, Einstein. Quantum Study Suggests ’Spooky Action’ Is Real," New York Times, 21 October 2015.
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1. This quote, while very clever, is disputed, as a very similar quote is also attributed to Enrico Fermi.↩
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12.1: Appendix I

Some Useful Mathematical Identities 

Some Useful Integrals 

Some Useful Coordinate Transformations 
Plane Polar Coordinates: ; 

Spherical Polar Coordinates:  ; ; 

sin(α±β)   = sin(α)  cos (β)   ±cos (α)  sin(β)

cos (α±β)   = cos (α)  cos (β)   ∓sin(α)sin(β)

sin(x)   = x− + −⋯ +
x3

3!

x5

5!
(−1)n+1 x2n−1

(2n−1)!

cos (x)   = 1 − + −⋯ +
x2

2!

x4

4!
(−1)

n x2n

(2n)!

= cos (θ)   ± i sin(θ) cos (θ)   = sin(θ)   =e±iθ +eiθ e−iθ

2

−e− iθeiθ

2

∫ sin(αx) sin(βx)dx = − α ≠ β
sin[(α−β)x]

2 (α−β)

sin[(α+β)x]

2 (α+β)

∫ (αx)dx = − ∫ (αx)   dx =sin2 x

2

sin(2αx)

4α
sin3

cos (3αx) −9cos (αx)

12α

∫ x (αx)dx = − −sin2 x2

4

x sin(2αx)

4α

cos(2αx)

8α2

∫ (αx)dx = −( − ) sin(2αx) −x2 sin2 x3

6

x2

4α

1

8α3

x cos(2αx)

4α2

∫ cos(αx) cos(βx)dx = +
sin[(α−β)x]

2 (α−β)

sin[(α+β)x]

2 (α+β)

∫ (αx)dx = + sin(2αx) ∫ x (αx)dx = + +cos2 x

2

1

4α
cos2 x2

4

x sin(2αx)

4α

cos(2αx)

8α2

∫ (αx)dx = +( − ) sin(2αx) +x2 cos2 x3

6

x2

4α

1

8α3

x cos(2αx)

4α2

dx = (n a positive integer) dx =∫
∞

0

xne−αx n!

αn+1
∫

∞

0

e−αx2 π

4α

−−−
√

dx = dx =∫
∞

0
x2ne−αx2 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n−1)

2n+1αn

π

α

−−
√ ∫

∞

0
x2n+1e−αx2 n!

2αn+1

0 ≤ r ≤ ∞ 0 ≤ θ ≤ 2π

x = r cosθ y = r sinθ θ = arctan( ) r =
y

x
+x2 y2

− −−−−−
√

∇ = + = (r )+2 ∂2

∂x2

∂2

∂y2

1

r

∂

∂r

∂

∂r

1

r2

∂2

∂θ2

0 ≤ r ≤ ∞ 0 ≤ θ ≤ π 0 ≤ ϕ ≤ 2π

x = r sinθcosϕ y = r sinθ sinϕ z = r cosθ

= + + = ( )+ (sinθ )+∇2 ∂2

∂x2

∂2

∂y2

∂2

∂z2

1

r2

∂

∂r
r2 ∂

∂r

1

sinθr2

∂

∂θ

∂

∂θ

1

θr2 sin2

∂2

∂ϕ2
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12.2: Appendix II – Selected Character Tables

Nonaxial Groups 
E

A 1

E

A’ 1 1 , , , , , 

A” 1 -1 , , , 

E i

1 1 , , , , , , , 

1 -1 , ,  

 groups 
E

A 1 1 , , , , 

B 1 -1 , , , , 

E

A 1 1 1 , , 

E
1 ; 

1 ; 

E

A 1 1 1 1 , 

B 1 -1 1 -1 , 

E
1 -1 ; 

1 -1 ;  

E

A 1 1 1 1 1 , , 

1 , 

 1 ,  

1

 1   

E

1 1 1 1 1 1 , , 

1 -1 1 -1 1 -1

C1

Cs σ

x y Rz x2 y2 z2 xy

z Rx Ry xz yz

Ci

Ag Rx Ry Rz x2 y2 z2 xy xz yz

Au x y z

Cn

C2 C2

z Rz x2 y2 z2 xy

x y Rx Ry xz yz

C3 C3 C 2
3

z Rz +x2 y2 z2

ε ε∗ x+ iy + iRx Ry ( − , xy)x2 y2

ε∗ ε x− iy − iRx Ry (xz, yz)

C4 C4 C2 C 3
4

z Rz + ,x2 y2 z2

−x2 y2 xy

i −i x+ iy + iRx Ry (xz, yz)

−i i x− iy − iRx Ry

C5 C5 C 2
5 C 3

5 C 4
5

z Rz +x2 y2 z2

E1 ε ε2 ε2∗ ε∗ x+ iy + iRx Ry (xz, yz)

ε∗ ε2∗ ε2 ε x− iy − iRx Ry

E2 ε2 ε∗ ε ε2∗ ( − , xy)x2 y2

ε2∗ ε ε∗ ε2

C6 C6 C 2
6 C 3

6 C 4
6 C 5

6

A z Rz +x2 y2 z2

B
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E

1 -1
,  
, 

 1 -1   

1 1

 1 1   

 groups 
E

1 1 1 1  , ,

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

E 2 3

1 1 1  ,

1 1 -1 ,  

E 2 -1 0  

E 2 2 ’ 2 ”

1 1 1 1 1  ,

1 1 1 -1 -1 ,  

1 -1 1 1 -1  

1 -1 1 -1 1  

E 2 0 -2 0 0
 

E 2 2 ’ 5 

1 1 1 1  

1 1 1 -1  

2 0  

2 0  

E 2 2 3 ’ 3 ”

1 1 1 1 1 1  , 

1 1 1 1 -1 -1 ,  

1 -1 1 -1 1 -1   

1 -1 1 -1 -1 1   

C6 C6 C 2
6 C 3

6 C 4
6 C 5

6

E1 ε −ε∗ −ε ε∗ x+ iy + iRx Ry

x− iy − iRx Ry

(xz, yz)

ε∗ ε −ε∗ ε

E2 −ε∗ −ε −ε∗ −ε ( − , xy)x2 y2

−ε −ε∗ −ε −ε∗

Dn

D2 (z)C2 (y)C2 (x)C2

A1 x2 y2 z2

B1 z, Rz xy

B2 y, Ry xz

B3 x, Rx yz

D3 C2 C ′
2

A1 +x2 y2 z2

A2 z Rz

(x, y) ( , )Rx Ry
( − , xy)x2 y2

(xz, yz)

D4 C4 C2 C2 C2

A1 +x2 y2 z2

A2 z Rz

B1 −x2 y2

B2 xy

(x, y)

( , )Rx Ry

(xz, yz)

D5 C5 C5 C2

A1 + ,x2 y2 z2

A2 z, Rz

E1 2 cos( )72∘ 2 cos( )144∘ (x, y) ( , )Rx Ry (xz, yz)

E2 2 cos( )144∘ 2 cos( )72∘ ( − , xy)x2 y2

D6 C6 C3 C2 C2 C2

A1 +x2 y2 z2

A2 z Rz

B1

B2
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E 2 2 3 ’ 3 ”

2 -1 1 -2 0 0
 

2 -1 -1 2 0 0  

 groups 
E ’

1 1 1 1  , ,

1 1 -1 -1  

1 -1 1 -1

1 -1 -1 1

E 2 3

1 1 1 ,

1 1 -1  

E 2 -1 0  
, 

E 2 2 2 

1 1 1 1 1 ,

1 1 1 -1 -1  

1 -1 1 1 -1  

1 -1 1 -1 1  

E 2 0 -2 0 0
 

E 2 5 

1 1 1 1 ,

1 1 1 -1  

2 0  

2 0  , 

E 2 2 3 3

1 1 1 1 1 1 ,

1 1 1 1 -1 -1  

1 -1 1 -1 1 -1   

1 -1 1 -1 -1 1   

2 1 -1 -2 0 0
 

2 -1 -1 2 0 0  

D6 C6 C3 C2 C2 C2

E1
(x, y)

( , )Rx Ry

(xz, yz)

E2 ( − , xy)x2 y2

Cnv

C2v C2 σv σv

A1 z x2 y2 z2

A2 Rz xy

B1 x Ry xz

B2 y Rx yz

C3v C2 σv

A1 z +x2 y2 z2

A2 Rz

(x, y) ( , )Rx Ry
−x2 y2

xy)(xz, yz)

C4v C4 C2 σv σd

A1 z +x2 y2 z2

A2 Rz

B1 −x2 y2

B2 xy

(x, y)

( , )Rx Ry

(xz, yz)

C5v C5 C 2
5 σv

A1 z +x2 y2 z2

A2 Rz

E1 2 cos( )72∘ 2 cos( )144∘ (xz, yz)

E2 2 cos( )144∘ 2 cos( )72∘ (x, y) ( , )Rx Ry ( −x2 y2 xy)

C6v C6 C3 C2 σv σd

A1 z +x2 y2 z2

A2 Rz

B1

B2

E1
(x, y)

( , )Rx Ry

(xz, yz)

E2 ( − , xy)x2 y2
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 Groups 
E i

1 1 1 1 , ,

1 1 -1 -1  

1 -1 1 -1 , , , 

1 -1 -1 1 ,  

E

1 1 1 1 1 1 , 

1 1
 

 1 1   

" 1 1 1 -1 -1 -1

" 1 -1
 

 1 -1   

E i

1 1 1 1 1 1 1 1 , 

1 -1 1 -1 1 -1 1 -1 , 

1 -1 1 -1

 1 -1 1 -1  

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 -1 -1 1

 1 -1 -1 1  

E

' 1 1 1 1 1 1 1 1 1 1 ,

’ 1 1
 

 1 1   

' 1 1

 1 1   

" 1 1 1 1 1 -1 -1 -1 -1 -1

" -1 -1 - - - -

 -1 -1 - - - -   

" -1 -1 - - - -

Cnh

C2h C2 σh

Ag Rz x2 y2 z2

Au z

Bg Rx Ry xz xy yz

Bu x y

C3h C3 C 2
3 σh S3 S2

s

A′ Rz +x2 y2 z2

E ′ ε ε∗ ε ε∗ x+ iy

x− iy
( − , xy)x2 y2

ε∗ ε ε∗ ε

A z

E ε ε∗ −ε −ε∗ + iRx Ry

− iRx Ry

(xz, yz)

ε∗ ε −ε∗ −ε

C4h C4 C2 C3
4 S3

4 σh S4

Ag Rz +x2 y2 z2

Bg −x2 y2 xy

Eg i −i i −i + iRx Ry (xz, yz)

−i i −i i − iRx Ry

Au z

Bu

Eu i −i i −i x+ iy

−i i −i i x− iy

C5h C5 C 2
5 C 3

5 C 4
5 σh S5 S2

5 S3
5 S4

5

A Rz +x2 y2 z2

E1 ε ε2 ε2∗ ε∗ ε ε2 ε2∗ ε∗ x+ iy

x− iy

ε∗ ε2∗ ε2 ε ε∗ ε2∗ ε2 ε

E2 ε2 ε∗ ε ε2∗ ε2 ε∗ ε ε2∗ ( − , xy)x2 y2

ε2∗ ε ε∗ ε2 ε2∗ ε ε∗ ε2

A z

E1 ε ε2 ε2∗ ε∗ ε ε2 ε2∗ ε∗ + iRx Ry

− iRx Ry

(xz, yz)

ε∗ ε2∗ ε2 ε ε∗ ε2∗ ε2 ε

E2 ε ε2 ε2∗ ε∗ ε2 ε∗ ε ε2∗
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E

 -1 -1 - - - -   

 Groups 
E (z) (y) (x)

1 1 1 1 1 1 1 1  , ,

1 1 -1 -1 1 1 -1 -1

1 -1 1 -1 1 -1 1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1   

1 1 -1 -1 -1 -1 1 1  

1 -1 1 -1 -1 1 -1 1  

1 -1 -1 1 -1 1 1 -1  

E 2 3 ’ 2 3 

’ 1 1 1 1 1 1  ,

’ 1 1 -1 1 1 -1  

E’ 2 -1 0 2 -1 0 , , 

” 1 1 1 -1 -1 -1   

” 1 1 -1 -1 -1 1  

E” 2 -1 0 -2 1 0

E 2 2 ’ 2 ” 2 2 2 

1 1 1 1 1 1 1 1 1 1  
,

1 1 1 -1 -1 1 1 1 -1 -1  

1 -1 1 1 -1 1 -1 1 1 -1  

1 -1 1 -1 1 1 -1 1 -1 1  

2 0 -2 0 0 2 0 -2 0 0
, 

1 1 1 1 1 -1 -1 -1 -1 -1   

1 1 1 -1 -1 -1 -1 -1 1 1  

1 -1 1 1 -1 -1 1 -1 -1 1   

1 -1 1 -1 1 -1 1 -1 1 -1   

2 0 -2 0 0 -2 0 2 0 0  

E 2 2 3 ’ 3 ” 2 2 3 3 

1 1 1 1 1 1 1 1 1 1 1 1  
,

C5h C5 C 2
5 C 3

5 C 4
5 σh S5 S2

5 S3
5 S4

5

ε∗ ε2∗ ε2 ε ε2∗ ε ε∗ ε2

Dnh

D2h C2 C2 C2 i σxy σxx σyz

Ag x2 y2 z2

B1g Rz xy

B2g Ry xz

B3g Rx yz

Au

B1u z

B2u y

B3u x

D3h C3 C2 σh S3 σv

A1 +x2 y2 z2

A2 Rz

(Rx )Ry −x2 y2 xy)

A1

A2 z

(x, y) (xz, yz)

D4h C4 C2 C2 C2 i S4 σh σv σd

A1g
+x2 y2

z2

A2g Rz

B1g −x2 y2

B2g xy

Eg
(Rx

)Ry
(xz, yz)

A1u

A2u z

B1u

B2u

Eu (x, y)

D6h C6 C3 C2 C2 C2 i S3 S6 σh σv σd

A1g
+x2 y2

z2
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E 2 2 3 ’ 3 ” 2 2 3 3 

1 1 1 1 -1 -1 1 1 1 1 -1 -1  

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1   

1 -1 1 -1 -1 1 1 -1 1 -1 -1 1   

2 -1 1 -2 0 0 2 -1 1 -2 0 0
, 

2 -1 -1 2 0 0 2 -1 -1 2 0 0  

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1   

1 1 1 1 -1 -1 -1 -1 -1 -1 1 1  

1 -1 1 -1 1 -1 -1 1 -1 1 -1 1   

1 -1 1 -1 -1 1 -1 1 -1 1 1 -1   

2 -1 1 -2 0 0 -2 -1 1 2 0 0  

2 -1 -1 2 0 0 -2 1 1 -2 0 0   

 Groups 
E 2 2 ’ 2 

1 1 1 1 1  ,

1 1 1 -1 -1  

1 -1 1 1 -1  

1 -1 1 -1 1

E 2 0 -2 0 0
 , 

E 2 3 ’ 2 3 

1 1 1 1 1 1  ,

1 1 -1 1 1 -1  

2 -1 0 2 -1 0 , 
, 

, 

1 1 1 -1 -1 -1   

1 1 -1 -1 -1 1 z  

2 -1 0 -2 1 0  

E 2 2 2 4 ’ 4 

1 1 1 1 1 1 1  ,

1 1 1 1 1 -1 -1  

1 -1 1 -1 1 1 -1   

1 -1 1 -1 1 -1 1 z  

2 0 - -2 0 0  

D6h C6 C3 C2 C2 C2 i S3 S6 σh σv σd

A2g Rz

B1g

B2g

E1g
(Rx

)Ry
(xz, yz)

E2g ( − ,x2 y2

A1u

A2u z

B1u

B2u

E1u (x, y)

E2u

Dnd

D2d S4 C2 C2 σd

A1 +x2 y2 z2

A2 Rz

B1 −x2 y2

B2 z xy

(x, y) (Rx

)Ry

(xz, yz)

D3d C3 C2 i S6 σd

A1g +x2 y2 z2

A2g Rz

Eg (Rx )Ry
−x2 y2

xy) (xz, yz)

A1u

A2u

Eu (x, y)

D4d S8 C4 S8
3 C2 C2 σd

A1 +x2 y2 z2

A2 Rz

B1

B2

E1 2
−−√ 2

−−√ (x, y)
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E 2 2 2 4 ’ 4 

2 0 -2 0 2 0 0  
, 

2 - 0 -2 0 0

 Groups 

Cubic Groups 
E 8 3 6 6 

1 1 1 1 1  + +

1 1 1 -1 -1   

E 2 -1 2 0 0  
(2 - , 

3 0 -1 1 -1 , ,  

3 0 -1 -1 1 , ,

E 8 6 6 3 6 8 3 6

1 1 1 1 1 1 1 1 1 1  
+ +

1 1 -1 -1 1 1 -1 1 1 -1   

2 -1 0 0 2 2 0 -1 -2 0  
(2 -

,

3 0 -1 1 -1 3 1 0 -1 -1
, 

, 
 

3 0 1 -1 -1 3 -1 0 -1 1  
, ,

1 1 1 1 1 -1 -1 -1 -1 -1   

1 1 -1 -1 1 -1 1 -1 -1 1   

2 -1 0 0 2 -2 0 1 -2 0   

3 0 -1 1 -1 -3 -1 0 1 1  

3 0 1 -1 -1 -3 1 0 1 -1   

Icosahedral Group 

Linear Groups 
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D4d S8 C4 S8
3 C2 C2 σd

E2
−x2 y2

xy)

E3 2
−−√ 2

−−√ (Rx, )Ry (xz, yz)

Sn

Td C3 C2 S4 σd

A1 x2 y2 z2

A2

z2 −x2 y2

− )x2 y2

T1 (Rx Ry )Rz

T2 (x, y, z) (xy xz yz)

Oh C3 C2 C4 C2 i S4 S6 σh σd

A1g
x2 y2

z2

A2g

Eg

z2

−x2 y2

− )x2 y2

T1g
(Rx

Ry )Rz

T2g
(xy xz

yz)

A1u

A2u

Eu

T1u (x, y, z)

T2u
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Index
A
abelian group

3.1: Overview 
Albert Einstein

1.4: Failures of Classical Physics 
angular momentum

5.5: Angular Momentum 
angular momentum coupling

8.4: Angular Momentum Coupling 
angular nodes

6.2: The Quantum Mechanical H-atom 
anharmonicity constant

4.3: Strengths and Weaknesses 
aufbau principle

8.2: The Aufbau Principle 

B
Balmer’s formula

6.1: Older Models of the Hydrogen Atom 
Bell's inequality

11.5: Bell's Inequality 
blackbody radiation

1.4: Failures of Classical Physics 
bonding orbitals

9.3: Molecular Orbital Theory 
bosons

8.5: The Pauli Exclusion Principle 

C
Clebsch series

8.4: Angular Momentum Coupling 
commutator

2.4: The Tools of Quantum Mechanics 
completeness

2.5: Superposition and Completeness 
Coulomb integral

9.3: Molecular Orbital Theory 

D
degeneracy

2.6: Problems in Multiple Dimensions 
Deslandres table

8.6: Atomic Spectroscopy 
Doppler width

10.4: Laser Spectroscopy 
dye laser

10.3: Examples of Laser Systems 

E
effective nuclear charge

6.3: Rydberg Spectra of Polyelectronic Atoms 
eigenfunction

1.3: Classical Description of a Wave on a String 
eigenvalue problem

1.3: Classical Description of a Wave on a String 
entanglement

2.8: Entanglement and Schrödinger's Cat 
EPR paradox

11.4: Spooky Action at a Distance 
excimer laser

10.3: Examples of Laser Systems 
expectation values

2.4: The Tools of Quantum Mechanics 

F
fermions

8.5: The Pauli Exclusion Principle 
fluorescence

10.4: Laser Spectroscopy 
free electron model

2.7: The Free Electron Model 
frequency doubling

10.3: Examples of Laser Systems 

G
Great Orthogonality Theorem

3.7: The "Great Orthogonality Theorem" 
Group Theory

4.5: Group Theory Considerations 

H
Heisenberg uncertainty principle

2.4: The Tools of Quantum Mechanics 
Hermite polynomials

4.2: Solving the Schrödinger Equation 
Herzberg diagrams

9.6: Herzberg Diagrams 
hidden variable

11.4: Spooky Action at a Distance 
hole rule

8.4: Angular Momentum Coupling 
Hund's coupling

9.4: Hund's coupling cases (a) and (b) 

I
infrared spectroscopy

4.4: Vibrational Spectroscopy Techniques 
irreducible representations

3.6: Representations 

L
Landé Interval rule

8.6: Atomic Spectroscopy 
laser

10: Lasers 
laser spectroscopy

10.4: Laser Spectroscopy 
LCAO

9.3: Molecular Orbital Theory 

M
Max Planck

1.4: Failures of Classical Physics 
microstate method

8.4: Angular Momentum Coupling 
molecular orbital theory

9.3: Molecular Orbital Theory 
molecular term symbols

9.5: Diatomic Term Symbols 
Morse potential
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Glossary
angular node | An angular node will occur where
the angular part of the electronic wavefunction equals
zero.

ansatz | An educated guess or an additional
assumption made to help solve a problem, and which
is later verified to be part of the solution by its results.

atomic orbitals | Atomic orbital is a mathematical
function describing the location and wave-like
behavior of a single electron in an atom. This function
can be used to calculate the probability of finding any
electron of an atom in any specific region around the
atom's nucleus.

Beer's Law | The Beer-Lambert law relates the
optical attenuation of a physical material containing a
single attenuating species of uniform concentration to
the optical path length through the sample and
absorptivity of the species.

Bohr magneton | A physical constant and the
natural unit for expressing the magnetic moment of an
electron caused by either its orbital or spin angular
momentum. (μ eħ/2m )

Bosons | Bosons are particles with integer spin (s =
0, 1, 2, ... ).

Bound state | A state is called bound state if its
position probability density at infinite tends to zero for
all the time. Roughly speaking, we can expect to find
the particle(s) in a finite size region with certain
probability.

Bra–ket notation | The bra–ket notation is a way
to represent the states and operators of a system by
angle brackets and vertical bars, for example, |α> and |
α><β|.

Collapse | "Collapse" means the sudden process
which the state of the system will "suddenly" change
to an eigenstate of the observable during measurement.

commutator | The commutator of two operators
elements a and b is defined by [a,b]=ab-ba. The
commutator is zero if and only if a and b commute.

commute | The commutator of two operators
elements a and b is defined by [a,b]=ab-ba. The
commutator is zero if and only if a and b commute.

Correspondence principle | For every
observable property of a system there is a
corresponding quantum mechanical operator.

cyclic boundary condition | A boundary
condition associated with regularly repeating intervals.
For quantum rigid rotors, this implied the
wavefunction must equal itself upon a full rotation,
i.e., ψ(0º)=ψ(360º).

Degeneracy | If the energy of different states
(wavefunctions that are not scalar multiple of each
other) are the same, the states are called degenerate.

Degenerate energy level | If the energy of
different state (wave functions which are not scalar
multiple of each other) is the same, the energy level is
called degenerate. There is no degeneracy in 1D
system.

Density matrix | Physically, the density matrix is a
way to represent pure states and mixed states. The
density matrix of pure state whose ket is |α> is |α><α|.

Density operator | Physically, the density matrix is
a way to represent pure states and mixed states. The
density matrix of pure state whose ket is |α> is |α><α|.

dipole moment | The electric dipole moment is a
measure of the separation of positive and negative
electrical charges within a system and is a measure of
the system's overall polarity.

Dirac notation | The bra–ket notation is a way to
represent the states and operators of a system by angle
brackets and vertical bars, for example, |α> and |α><β|.

Eigenstates | An eigenstate of an operator A is a
vector satisfied the eigenvalue equation: A | a > = λ | a
>, where λ is a scalar (the eigenvalue).

eigenvalue | Any value of λ that is is a solution to
the eigenvalue problem (A·v=λ·v) is known as an
eigenvalue of the matrix A.

eigenvalue equation | An eigenvalue problem is
A·v=λ·v, where A is an n-by-n matrix, v is a non-zero
n-by-1 vector and λ is a scalar (that can be real or
complex).

eigenvector | Any value of v that is is a solution to
the eigenvalue problem (A·v=λ·v) is known as an
eigenvevctor of the matrix A.

Energy spectrum | The energy spectrum refers to
the possible energy of a system. 
For bound system (bound states), the energy spectrum
is discrete; for unbound system (scattering states), the
energy spectrum is continuous.

even function | A function is even if f(x)=f(-x)

Expectation value | The expectation value is the
probabilistic expected value of the result
(measurement) of an experiment. It can be thought of
as an average of all the possible outcomes of a
measurement as weighted by their likelihood, and as
such it is not the most probable value of a
measurement; indeed the expectation value may have
zero probability of occurring

Fermions | Fermions are particles with half-integer
spin (s = 1/2, 3/2, 5/2, ... ).

Fine Structure Constant | 1/137 . The fine
structure constant is a mathematical constant that is
given as the ratio of the classical and quantum
electromagnetic constants. It is also known as
Sommerfeld's constant.

forbidden transition | A eigentstate to eigenstate
transition with zero probability of being observed. This
is determined by the relevant transition moment
integral

g-factor | A dimensionless quantity that
characterizes the magnetic moment and angular
momentum of an atom, a particle or the nucleus. It is
essentially a proportionality constant that relates the
observed magnetic moment μ of a particle to its
angular momentum quantum number and a unit of
magnetic moment. (also known as spin gyromagnetic
ratio)

gyromagnetic ratio | The ratio of its magnetic
moment to its angular momentum, and it is often
denoted by the symbol γ, gamma (also known as
magnetogyric ratio)

Hamiltonian | The operator represents the total
energy of the system.

Hermite polynomials | A family of orthogonal
polynomials. In quantum mechanics, they results from
solving the harmonic oscillator model.

Hermitian | A Hermitian matrix is a complex square
matrix that is equal to its own conjugate transpose—
that is, the element in the i-th row and j-th column is
equal to the complex conjugate of the element in the j-
th row and i-th column, for all indices i and j. aij=aji* .
Hermitian matrices always have real eigenvalues.
Operators connected to physical observable are
Hermitian since observables must be real.

Hermitian operator | An operator satisfying A =
A .

Hilbert space | Given a system, the possible pure
state can be represented as a vector in a Hilbert space.
Each ray (vectors differ by phase and magnitude only)
in the corresponding Hilbert space represent a state.

Identity operator | Operator that does not change
the elements it operates on.

Indistinguishable particles | If a system shows
measurable differences when one of its particles is
replaced by another particle, these two particles are
called distinguishable.

Ket | A wave function expressed in the form  is
called a ket.

Lambshift | Relativistic correction of the difference
in energy levels of the S  and P hydrogen atom
not predicted by the Dirac equation

Laplacian | The Laplacian is a differential operator
that is given by the divergence of the gradient.

LCAO | This is is a simple method of quantum
chemistry that yields a qualitative picture of the
molecular orbitals in a molecule.

Legendre polynomials | A family of complete
and orthogonal polynomials with numerous
applications. In quantum mechanics, they results from
solving the rigid rotor model.

Linear combination of atomic orbitals | This
is is a simple method of quantum chemistry that yields
a qualitative picture of the molecular orbitals in a
molecule.

Maclaurin series | The Maclaurin series is an
expansion of a function in an infinite sum of
polynomial terms that are expressed in terms of the
function's derivatives at zero.

magnetogyric ratio | The ratio of its magnetic
moment to its angular momentum, and it is often
denoted by the symbol γ, gamma (also known as
magnetogyric ratio

Mixed state | A mixed state is a statistical ensemble
of pure state.

molecular orbitals | A molecular orbital is a
mathematical function describing the location and
wave-like behavior of a single electron in a molecule.
This function can be used to calculate chemical and
physical properties such as the probability of finding
an electron in any specific region. The LCAO
approximation is often used to approximate molecular
orbitals as a series of atomic orbitals

node | Location where the quantum mechanical
wavefunction is zero and therefore, with no probability
amplitude.

Normalized wave function | A wave function |a
> is said to be normalized if < a | a> = 1.

Observable | Mathematically, it is represented by a
Hermitian operator.

observer effect | When an observed system is
disturbed by the act of observation. This is often the
result of instruments that, by necessity, alter the state
of what they measure in some manner.

odd function | A function is odd if -f(x)=f(-x)

operator | A mathematical entity that transforms one
function into another [Richard Fitzpatrick]

orbital angular momentum | The classical
definition of angular momentum is L = r ✕ p. The
quantum-mechanical counterparts of these objects
share the same relationship where r is the quantum
position operator, p is the quantum momentum
operator, × is cross product, and L is the orbital
angular momentum operator. L (just like p and r) is a
vector operator whose components operators are L ,
L , L  which are the projection of L on the x, y, and z
axis, respectively

overtone | A band that occurs in a vibrational
spectrum of molecule that is associated with the
transition from the ground state (v=0) to the second
excited state (v=2).
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Pauli exclusion principle | The principle that two
or more identical fermions (e.g., electrons) cannot
occupy the same quantum state within the same
quantum system simultaneously. An alternative
formulation is that no two fermions can have the same
set of quantum numbers in a system

Pure state | A state which can be represented as a
wave function / ket in Hilbert space / solution of
Schrödinger equation is called pure state. See "mixed
state".

Quantum numbers | A way of representing a state
by several numbers

Radial distribution function | The square of the
radial distribution function describes the probability of
finding an a electron a given distance from the
nucleus. This is related to the radial probability density
by adding a factor of 4πr  (the volumen element of a
sphere). The radial distribution functions depend on
both n and l.

radial node | A radial node will occur where the
radial part of the electronic wavefunction equals zero.

radial probability density | The probability
density for the electron to be at a point located the
distance r from the nucleus. The radial radial
probability density depend on both n and l.

reduced mass | The "effective" inertial mass
appearing in the two-body problems. It is a quantity
which allows two-body problems to be solved as if
they were one-body problems.

rotational constant | A constant commonly used
to describe molecular free rotation that depends on the
distribution of mass within the molecule (i.e, moment
of inertia, I) and other constants: B=h/(8π cI)

selection rule | Selection rules describes when the
probability of transitioning from one level to another
cannot be zero. They explicitly come from evaluating
the relevant transition moment integral

selection rules | Selection rules describes when the
probability of transitioning from one level to another
cannot be zero. They explicitly come from evaluating
the relevant transition moment integral

spherical harmonics | Spherical harmonics are
functions of the spherical polar angles θ and φ and
appear as eigenfunctions of (squared) orbital angular
momentum. They form an orthogonal and complete
set. Any harmonic is a function that satisfies Laplace's
differential equation.

spin | Spin is a quantized property of all
particles, both matter and force, in the
Universe. Matter particles have half-integer
spin (1/2, 3/2,…) and force particles integer
spin (0, 1, 2,…). Spin is intrinsic angular
momentum possessed by the particles. The
spin of a particle is sort of analogous to that of
a spinning top, except that the particle can
only spin at one speed, can't stop or even slow
down, and is infinitesimally small. It is
important to note that in no way are the
particles actually spinning. [CC-BY-SA]
spin gyromagnetic ratio | A dimensionless
quantity that characterizes the magnetic moment and
angular momentum of an atom, a particle or the
nucleus. It is essentially a proportionality constant that
relates the observed magnetic moment μ of a particle
to its angular momentum quantum number and a unit
of magnetic moment. (also known as g-factor )

square-integrable | A square-integrable function is
a real- or complex-valued measurable function for
which the integral of the square of the absolute value
is finite.

State vector | synonymous to "wave function".

Stationary state | A stationary state of a bound
system is an eigenstate of Hamiltonian operator.
Classically, it corresponds to standing wave.

stationary states | This is a quantum state with all
observables independent of time. It is an eigenvector
of the Hamiltonian.

Taylor series | The Taylor series is an expansion of
a function in an infinite sum of polynomial terms that
are expressed in terms of the function's derivatives at a
single point.

Time-Independent Schrödinger Equation |
A modification of the Time-Dependent Schrödinger
equation as an eigenvalue problem. The solutions are
energy eigenstate of the system.

transition moment integral | The integral
representing the probability for a transition between an
initial eigenstate and a final eignestate by the
absorption or emission of photon(s)

uncertainty principle | The uncertainty
principle (put forward by Werner Heisenberg)
states that there will always be an intrinsic
uncertainty in determining both a particle's
position and momentum (i.e., you cannot
know both exactly at the same time). This has
nothing to do with science's ability to detect
the properties of momentum and position.
[CC-BY-SA]
wavenumber | The wavenumber is a unit of
frequency that is equal to the frequency (in Hertz)
divided by the speed of light. This is typically in unit
of cm . Since wavenumbers are proportional to
frequency, and to photon energy (by E=hν), it is also a
unit of energy.

zero point motion | Fluctuation in the position of
an object necessitated by having zero point energy.
This is a consequence of the Heisenberg uncertainty
principle.

Zero-point energy | Zero-point energy (ZPE) is
the lowest possible energy that a quantum mechanical
system may have.

Glossary has no license indicated.

2

2

-1

https://rationalwiki.org/wiki/Quantum_physics_terms
https://rationalwiki.org/wiki/Quantum_physics_terms
https://chem.libretexts.org/@go/page/279591


1 https://chem.libretexts.org/@go/page/424893

Detailed Licensing

Overview

Title: Quantum Chemistry with Applications in Spectroscopy (Fleming)

Webpages: 117

Applicable Restrictions: Noncommercial

All licenses found:

CC BY-NC-SA 4.0: 98.3% (115 pages)
Undeclared: 1.7% (2 pages)

By Page

Quantum Chemistry with Applications in Spectroscopy
(Fleming) - CC BY-NC-SA 4.0

Front Matter - CC BY-NC-SA 4.0
TitlePage - CC BY-NC-SA 4.0
InfoPage - CC BY-NC-SA 4.0
Table of Contents - Undeclared
Licensing - CC BY-NC-SA 4.0
Preface - CC BY-NC-SA 4.0

1: Foundations and Review - CC BY-NC-SA 4.0
1.1: Some Newtonian Physics - CC BY-NC-SA 4.0
1.2: Some Vectors and Dot Products - CC BY-NC-SA
4.0
1.3: Classical Description of a Wave on a String - CC
BY-NC-SA 4.0
1.4: Failures of Classical Physics - CC BY-NC-SA 4.0
1.5: On Superposition and the Weirdness of Quantum
Mechanics - CC BY-NC-SA 4.0
1.6: References - CC BY-NC-SA 4.0
1.7: Vocabulary and Concepts - CC BY-NC-SA 4.0
1.8: Problems - CC BY-NC-SA 4.0

2: Particle in a Box - CC BY-NC-SA 4.0
2.1: Background - CC BY-NC-SA 4.0
2.2: The Postulates of Quantum Mechanics - CC BY-
NC-SA 4.0
2.3: The One-Dimensional Particle in a Box - CC BY-
NC-SA 4.0
2.4: The Tools of Quantum Mechanics - CC BY-NC-
SA 4.0
2.5: Superposition and Completeness - CC BY-NC-SA
4.0
2.6: Problems in Multiple Dimensions - CC BY-NC-
SA 4.0
2.7: The Free Electron Model - CC BY-NC-SA 4.0
2.8: Entanglement and Schrödinger's Cat - CC BY-
NC-SA 4.0
2.9: References - CC BY-NC-SA 4.0
2.10: Vocabulary and Concepts - CC BY-NC-SA 4.0

2.11: Problems - CC BY-NC-SA 4.0
3: An Introduction to Group Theory - CC BY-NC-SA 4.0

3.1: Overview - CC BY-NC-SA 4.0
3.2: Group Theory in Chemistry - CC BY-NC-SA 4.0
3.3: Determining the Point Group for a Molecule- the
Schoenflies notation - CC BY-NC-SA 4.0
3.4: Multiplication Operation for Symmetry Elements
- CC BY-NC-SA 4.0
3.5: More Definitions- Order and Class - CC BY-NC-
SA 4.0
3.6: Representations - CC BY-NC-SA 4.0
3.7: The "Great Orthogonality Theorem" - CC BY-
NC-SA 4.0
3.8: Character and Character Tables - CC BY-NC-SA
4.0
3.9: Direct Products - CC BY-NC-SA 4.0
3.10: Vocabulary and Concepts - CC BY-NC-SA 4.0
3.11: Problems - CC BY-NC-SA 4.0

4: The Harmonic Oscillator and Vibrational
Spectroscopy - CC BY-NC-SA 4.0

4.1: The Potential Energy Surface for a Diatomic
Molecule - CC BY-NC-SA 4.0
4.2: Solving the Schrödinger Equation - CC BY-NC-
SA 4.0
4.3: Strengths and Weaknesses - CC BY-NC-SA 4.0
4.4: Vibrational Spectroscopy Techniques - CC BY-
NC-SA 4.0
4.5: Group Theory Considerations - CC BY-NC-SA
4.0
4.6: References - CC BY-NC-SA 4.0
4.7: Vocabulary and Concepts - CC BY-NC-SA 4.0
4.8: Problems - CC BY-NC-SA 4.0

5: The Rigid Rotor and Rotational Spectroscopy - CC
BY-NC-SA 4.0

5.1: Spherical Polar Coordinates - CC BY-NC-SA 4.0
5.2: Potential Energy and the Hamiltonian - CC BY-
NC-SA 4.0

https://libretexts.org/
https://chem.libretexts.org/@go/page/424893?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/zz%3A_Back_Matter/21%3A_Detailed_Licensing
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter/01%3A_TitlePage
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter/02%3A_InfoPage
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter/03%3A_Table_of_Contents
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter/04%3A_Licensing
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/00%3A_Front_Matter/05%3A_Preface
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.01%3A_Some_Newtonian_Physics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.02%3A_Some_Vectors_and_Dot_Products
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.03%3A_Classical_Description_of_a_Wave_on_a_String
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.04%3A_Failures_of_Classical_Physics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.05%3A_On_Superposition_and_the_Weirdness_of_Quantum_Mechanics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.06%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.07%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/01%3A_Foundations_and_Review/1.08%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.01%3A_Background
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.02%3A_The_Postulates_of_Quantum_Mechanics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.03%3A_The_One-Dimensional_Particle_in_a_Box
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.04%3A_The_Tools_of_Quantum_Mechanics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.05%3A_Superposition_and_Completeness
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.06%3A_Problems_in_Multiple_Dimensions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.07%3A_The_Free_Electron_Model
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.08%3A_Entanglement_and_Schrodinger's_Cat
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.09%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.10%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.11%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.01%3A_Overview
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.02%3A_Group_Theory_in_Chemistry
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.03%3A_Determining_the_Point_Group_for_a_Molecule-_the_Schoenflies_notation
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.04%3A_Multiplication_Operation_for_Symmetry_Elements
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.05%3A_More_Definitions-_Order_and_Class
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.06%3A_Representations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.07%3A_The_Great_Orthogonality_Theorem
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.08%3A_Character_and_Character_Tables
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.09%3A_Direct_Products
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.10%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.11%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.01%3A_The_Potential_Energy_Surface_for_a_Diatomic_Molecule
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.02%3A_Solving_the_Schrodinger_Equation
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.03%3A_Strengths_and_Weaknesses
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.04%3A_Vibrational_Spectroscopy_Techniques
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.05%3A_Group_Theory_Considerations
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.06%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.07%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/04%3A_The_Harmonic_Oscillator_and_Vibrational_Spectroscopy/4.08%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.01%3A_Spherical_Polar_Coordinates
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.02%3A_Potential_Energy_and_the_Hamiltonian
https://creativecommons.org/licenses/by-nc-sa/4.0/


2 https://chem.libretexts.org/@go/page/424893

 

5.3: Solution to the Schrödinger Equation - CC BY-
NC-SA 4.0
5.4: Spherical Harmonics - CC BY-NC-SA 4.0
5.5: Angular Momentum - CC BY-NC-SA 4.0
5.6: Application to the Rotation of Real Molecules -
CC BY-NC-SA 4.0
5.7: Spectroscopy - CC BY-NC-SA 4.0
5.8: References - CC BY-NC-SA 4.0
5.9: Vocabulary and Concepts - CC BY-NC-SA 4.0
5.10: Problems - CC BY-NC-SA 4.0

6: The Hydrogen Atom - CC BY-NC-SA 4.0
6.1: Older Models of the Hydrogen Atom - CC BY-
NC-SA 4.0
6.2: The Quantum Mechanical H-atom - CC BY-NC-
SA 4.0
6.3: Rydberg Spectra of Polyelectronic Atoms - CC
BY-NC-SA 4.0
6.4: References - CC BY-NC-SA 4.0
6.5: Vocabulary and Concepts - CC BY-NC-SA 4.0
6.6: Problems - CC BY-NC-SA 4.0

7: Approximate Methods - CC BY-NC-SA 4.0
7.1: Perturbation Theory - CC BY-NC-SA 4.0
7.2: Variational Method - CC BY-NC-SA 4.0
7.3: Vocabulary and Concepts - CC BY-NC-SA 4.0
7.4: Problems - CC BY-NC-SA 4.0

8: Polyelectronic Atoms - CC BY-NC-SA 4.0
8.1: Potential Energy and the Hamiltonian - CC BY-
NC-SA 4.0
8.2: The Aufbau Principle - CC BY-NC-SA 4.0
8.3: Orbital Diagrams - CC BY-NC-SA 4.0
8.4: Angular Momentum Coupling - CC BY-NC-SA
4.0
8.5: The Pauli Exclusion Principle - CC BY-NC-SA
4.0
8.6: Atomic Spectroscopy - CC BY-NC-SA 4.0
8.7: Vocabulary and Concepts - CC BY-NC-SA 4.0
8.8: Learning Objectives - CC BY-NC-SA 4.0
8.9: Problems - CC BY-NC-SA 4.0

9: Molecules - CC BY-NC-SA 4.0

9.1: Potential Energy and the Hamiltonian - CC BY-
NC-SA 4.0

9.2: The Born-Oppenheimer Approximation - CC BY-
NC-SA 4.0
9.3: Molecular Orbital Theory - CC BY-NC-SA 4.0
9.4: Hund's coupling cases (a) and (b) - CC BY-NC-
SA 4.0
9.5: Diatomic Term Symbols - CC BY-NC-SA 4.0
9.6: Herzberg Diagrams - CC BY-NC-SA 4.0
9.7: Vibronic Transitions - CC BY-NC-SA 4.0
9.8: Term Symbols for Polyatomic Molecules - CC
BY-NC-SA 4.0
9.9: Group Theoretical Approach to Molecular
Orbitals - CC BY-NC-SA 4.0
9.10: References - CC BY-NC-SA 4.0
9.11: Vocabulary and Concepts - CC BY-NC-SA 4.0
9.12: Learning Objectives - CC BY-NC-SA 4.0

10: Lasers - CC BY-NC-SA 4.0
10.1: Fractional Population of Quantum States - CC
BY-NC-SA 4.0
10.2: Types of Lasers - CC BY-NC-SA 4.0
10.3: Examples of Laser Systems - CC BY-NC-SA 4.0
10.4: Laser Spectroscopy - CC BY-NC-SA 4.0
10.5: References - CC BY-NC-SA 4.0
10.6: Vocabulary and Concepts - CC BY-NC-SA 4.0
10.7: Problems - CC BY-NC-SA 4.0

11: Quantum Strangeness - CC BY-NC-SA 4.0
11.1: Nodes and Wave Nature - CC BY-NC-SA 4.0
11.2: Quantum Interference - CC BY-NC-SA 4.0
11.3: The Stern-Gerlach Experiment - CC BY-NC-SA
4.0
11.4: Spooky Action at a Distance - CC BY-NC-SA
4.0
11.5: Bell's Inequality - CC BY-NC-SA 4.0
11.6: References - CC BY-NC-SA 4.0

12: Appendices - CC BY-NC-SA 4.0
12.1: Appendix I - CC BY-NC-SA 4.0
12.2: Appendix II – Selected Character Tables - CC
BY-NC-SA 4.0

Back Matter - CC BY-NC-SA 4.0

Index - CC BY-NC-SA 4.0
Glossary - CC BY-NC-SA 4.0
Detailed Licensing - Undeclared

https://libretexts.org/
https://chem.libretexts.org/@go/page/424893?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.03%3A_Solution_to_the_Schrodinger_Equation
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.04%3A_Spherical_Harmonics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.05%3A_Angular_Momentum
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.06%3A_Application_to_the_Rotation_of_Real_Molecules
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.07%3A_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.08%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.09%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/05%3A_The_Rigid_Rotor_and_Rotational_Spectroscopy/5.10%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.01%3A_Older_Models_of_the_Hydrogen_Atom
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.02%3A_The_Quantum_Mechanical_H-atom
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.03%3A_Rydberg_Spectra_of_Polyelectronic_Atoms
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.04%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.05%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/06%3A_The_Hydrogen_Atom/6.06%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/07%3A_Approximate_Methods
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/07%3A_Approximate_Methods/7.01%3A_Perturbation_Theory
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/07%3A_Approximate_Methods/7.02%3A_Variational_Method
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/07%3A_Approximate_Methods/7.03%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/07%3A_Approximate_Methods/7.04%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.01%3A_Potential_Energy_and_the_Hamiltonian
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.02%3A_The_Aufbau_Principle
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.03%3A_Orbital_Diagrams
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.04%3A_Angular_Momentum_Coupling
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.05%3A_The_Pauli_Exclusion_Principle
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.06%3A_Atomic_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.07%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.08%3A_Learning_Objectives
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/08%3A_Polyelectronic_Atoms/8.09%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.01%3A_Potential_Energy_and_the_Hamiltonian
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.02%3A_The_Born-Oppenheimer_Approximation
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.03%3A_Molecular_Orbital_Theory
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.04%3A_Hund's_coupling_cases_(a)_and_(b)
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.05%3A_Diatomic_Term_Symbols
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.06%3A_Herzberg_Diagrams
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.07%3A_Vibronic_Transitions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.08%3A_Term_Symbols_for_Polyatomic_Molecules
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.09%3A_Group_Theoretical_Approach_to_Molecular_Orbitals
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.10%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.11%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/09%3A_Molecules/9.12%3A_Learning_Objectives
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.01%3A_Fractional_Population_of_Quantum_States
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.02%3A_Types_of_Lasers
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.03%3A_Examples_of_Laser_Systems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.04%3A_Laser_Spectroscopy
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.05%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.06%3A_Vocabulary_and_Concepts
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/10%3A_Lasers/10.07%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.01%3A_Nodes_and_Wave_Nature
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.02%3A_Quantum_Interference
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.03%3A_The_Stern-Gerlach_Experiment
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.04%3A_Spooky_Action_at_a_Distance
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.05%3A_Bell's_Inequality
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/11%3A_Quantum_Strangeness/11.06%3A_References
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/12%3A_Appendices
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/12%3A_Appendices/12.01%3A_Appendix_I
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/12%3A_Appendices/12.02%3A_Appendix_II__Selected_Character_Tables
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/zz%3A_Back_Matter
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/zz%3A_Back_Matter/10%3A_Index
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/zz%3A_Back_Matter/20%3A_Glossary
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/zz%3A_Back_Matter/21%3A_Detailed_Licensing

