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8.5: The Pauli Exclusion Principle

One explanation as to why the differences between the term symbols that arise from a p? configuration relative to a pp
configuration is the Pauli Exclusion principle. The usual statement of the Pauli Exclusion Principle is that no two electrons in an
atom can have the same set of four quantum numbers n, I, m; and mg. Another explanation is to simply announce that

Electrons are Fermions!
This approach is useful if you happen to know the properties of Fermions, but does not provide much insight if you do not.
A Fermion is a particle with half-integral spin. An obvious example (according to the statement above) is an electron which has
s= % . Other examples include protons and neutrons and fluorine-19 nuclei (all with I = 3 ), aluminum-27 nuclei (I = g) etc.

Fermions have the property that the total wavefunction of a system containing two equivalent fermions must change sign if the two
particles are exchanged.

The other type of particle is called a Boson. This is a particle with integral spin. Examples of bosons include deuterium nuclei or
nitrogen-14 nuclei (both with I =1) or helium-4 nuclei (I =0). A system containing two equivalent bosons must have a
wavefunction that does not change sign for the exchange of two equivalent bosons.

¥(1,2) =-9(2,1) (for fermions)
¥(1,2) =9(2,1) (for bosons)

In order to explore the properties of these types of particles, it is useful to define an operator that exchanges two equivalent
particles (1 and 2).

0%(1,2) =¥(2,1)
O¢m(1)wn(2) = ¢m(2)wn(1)

In the limit that spin and orbital wavefunctions are separable (the total wavefunction can be expressed as the product of a spin
function and an orbital function)

Wior = 1;[)orbital wspin

both the spin and orbital functions must be eigenfunctions of the electron exchange operator. We shall explore the properties of this
operation on spin wavefunction to explore the difference between single and triplet spin wavefunctions as derived from a pp pr p?
configuration.

Consider how the microstates shown in Table 1 behave under the exchange operation.

0¥, =0a(1)a(2) = a(2)a(l) =T,
0¥, = 0a(1)B(2) = a(2)B8(1) = T3
0%; = 0B(1)a(2) = B(2)er(1) = Ty
0w, = 0B(1)8(2) = B(2)B(1) = ¥4

Wavefunctions ¥; and ¥, are eigenfunctions of O. Wavefunctions ¥, and W3 are not eigenfunctions of O, but they are clearly
related to one another through the electron exchange operation as the operation converts one into the other. The relationship
suggests that linear combinations of W5 and W3 can be taken in order to construct spin wavefunctions that are eigenfunctions of 0.
One linear combination is symmetric (eigenvalue = +1) and the other is be antisymmetric (eigenvalue = -1). The correct,
normalized linear combinations are as follows.

1

U, = %(‘1’2 +¥3) =
1

¥, = E(‘I’z —¥3) = E(a(l)ﬂ@) —B(1)(2))

(a(1)B(2) +B(1)a(2))

)
-3l

Under the electron exchange operator, these linear combinations behave as follows.
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R “ 1
0%, =0 [ 5 (@(2)B(1)+ A1) = T,
o1, =0 [

So ¥, is symmetric with respect to electron interchange and ¥, is antisymmetric with respect to electron interchange. Noting that
¥, and ¥y are natural symmetric eigenfunctions of the exchange operator, it is easy to group the spin wavefunctions into triplet

and singlet components according to symmetry with respect to the operator O. The summary of these results is shown in the table

below.
Wavefunction S Mg
0, a(l)a(2) +1
Triplet Symmetric T, % («(1)B(2) + B(1)a(2)) 0
v, B(1A(2) -1
Singlet Antisymmetric v, % ((1)B(2) — B(1)0(2)) 0

It can be seen that there are three components of the triplet spin wavefunction and only one component to the singlet function, as
implied by the names “triplet” and “singlet.” More importantly, it is clear that to generate the ground state wavefunction for the
atom, one must include contributions from paired electron spin functions (¥, ). So the statement of Hund’s rule that maximizing
the number of electrons with the same value of m; attains the lowest energy state is clearly incorrect, as it excludes the necessary
component with Mg =0.

For equivalent electrons (electrons in the same subshell, or the p? case) the symmetric spin wavefunction set (the triplet functions)
must take antisymmetric orbital function (P). The singlet spin function, which is antisymmetric to electron exchange, must take a
symmetric orbital function (D or S.) As such, the three term symbols generated are 1D, 3P and !S. If the electrons are not
equivalent, as is the case in a pp configuration, all combinations of the triplet and singlet spin functions with D, P and S orbital
functions are possible and the resulting terms are 3D, 3P, 35,1 D, 1P and 1 S.

The 3D, ! P and S functions are not possible in the p* case, as these would require microstates that are either duplicates of other
microstates, or microstates that involve two electrons in the same orbital with the same value of mg. The latter is a clear violation
of the Pauli Exclusion Principle since both electrons would then have the same values of n, I, m; and m;.

This page titled 8.5: The Pauli Exclusion Principle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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