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3.9: Direct Products
The intensity of a transition in the spectrum of a molecule is proportional to the magnitude squared of the transition moment matrix
element.

By knowing the symmetry of each part of the integrand, the symmetry of the product can be determined as the direct product of
the symmetries of each part ,  and . This is helpful, since the integrand must not be antisymmetric with respect to any
symmetry elements or the integral will vanish by symmetry. Before exploring that concept, let’s look at the concept of direct
products.

This is a concept many people have seen, in that the integral of an odd function over a symmetric interval, is zero. Recall what it
means to be an “odd function” or an “even function.

Symmetry definition Integrals

Even

Odd

Consider the function . A graph of this function looks as follows:

Figure 

One notes that the area under the curve on the side of the function for which  has exactly the same magnitude but opposite
sign of the area under the other side of the graph. Mathematically,
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It is also interesting to note that the function f(x) can be expressed as the product of two functions, one of which is an odd function (
 ) and the other which is an even function (  ). The result is an odd function. By determining the symmetry of the

function as a product of the eigenvalues of the functions with respect to the inversion operator, as discussed below, one can derive a
similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator (in one dimension) affects a
change of sign on .

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either +1 or –1. For the function used in
the previous example,

where

 and 

Here,  is an odd function and  is an even function. The product is an odd function. This property is summarized for any 
, in the following table.

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x)

even even even 1 1 1

even odd odd 1 -1 -1

odd odd even -1 -1 1

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for the irreducible representation by which the
function transforms! In a similar manner, any function that can be expressed as a product of functions (like the integrand in the
transition moment matrix element) can be determined as the direct product of the irreducible representations by which each part of
the product transforms.

Consider the point group  as an example. Recall the character table for this point group.

E  ’

1 1 1 1 z  , 

1 -1 -1 1 y

1 -1 1 -1 x

1 1 -1 -1  

The direct product of irreducible representations can by the definition

So for the direct product of  and , the following table can be used.

E  ’

1 -1 1 -1

1 -1 -1 1

1 1 -1 -1

The product is actually the irreducible representation given by  ! As it turns out, the direct product will always yield a set of
characters that is either an irreducible representation of the group, or can be expressed as a sum of irreducible representations. This

−3xx3 e−x2

x

f(x) = f(−x)î

f(x) = g(x)h(x)

g(x) = −3xx3 h(x) = e−x2

g(x) h(x)

f(x) = g(x)h(x)
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C2v C2 σv σv
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B1 Ry xz
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(R) = (R) ⊗ (R)χprod χi χj
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suggests that a multiplication table can be constructed. An example (for the  point group) is given below.

Studying this table reveals some useful generalizations. Two things in particular jump from the page. These are summarized in the
following tables.

A B

A A B

B B A

1 2

1 1 2

2 2 1

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric

symmetric*antisymmetric = antisymmetric

antisymmetric*antisymmetric = symmetric

Noting that A indicates that an irreducible representation is symmetric with respect to the  operation and B indicates that an
irreducible representation is antisymmetric . . and that the subscript 1 indicates that an irreducible representation is symmetric with
respect to the  operation, and that a subscript 2 indicates that an irreducible representation is antisymmetric . . the rest seems to
follow! Some point groups have irreducible representations use subscripts g/u or primes and double primes. The g/u subscript
indicates symmetry with respect to the inversion ( ) operator, and the prime/double prime indicates symmetry with respect to a 
plane (generally the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for products involving doubly degenerate
representations? As an example, consider the  point group.

E 2 3

1 1 1 z  

1 1 -1  

E 2 -1 0 ( ,  )

Consider the direct product of  and E.

E 2 3 

1 1 -1

E 2 -1 0

2 -1 0

C2v

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

C2

σv

i σ

C3v

C3v C3 σv

A1

A2 Rz

(x, y) Rx Ry

A2

C3v C3 σv

A2

⊗ EA2
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This product is clearly just the E representation. Now one other example – Consider the product .

E 2 3

E 2 -1 0

E 2 -1 0

4 1 0

To find the irreducible representations that comprise this reducible representation, we proceed in the same manner as determining
the number of vibrational modes belonging to each symmetry.

This allows us to build a table of direct products. Notice that the direct product always has the total dimensionality that is given by
the product of the dimensions.

E

E

E

E E E

The concepts developed in this chapter will be used extensively in the discussions of vibrational, rotational and electronic degrees
of freedom in atoms and molecules.

This page titled 3.9: Direct Products is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

E⊗E
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E ⊗ E

NA1
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=

=

=

[(1)(4) +2(1)(1) +3(1)(0)] = 1
1

6

[(1)(4) +2(1)(1) +3(−1)(0)] = 1
1

6
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