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2.3: The One-Dimensional Particle in a Box
Imagine a particle of mass  constrained to travel back and forth in a one dimensional box of length . For convenience, we define
the endpoints of the box to be located at  and  . The derivation of wavefunctions and energy levels and the properties of
the system using the tools of quantum mechanics will be instructive as we move forward in our studies of quantum mechanics.

The Hamiltonian 
Whenever we begin a new quantum mechanical problem, the first challenge is to write the Hamiltonian that describes the system.
This always has two parts - a Kinetic Energy term (which is always the same for each particle) and a Potential Energy term (that
is different for each new system.)

The kinetic energy term in one dimension for a single particle is always given by

This operator can be derived from the momentum operator based on the relationship between momentum and kinetic energy that
comes from classical physics. Namely

As such,

The potential energy function is also fairly simple for this problem. The potential energy is infinite outside of the box  and 
 and zero every place else. This forces the particle to be in the box at all times. It also limits the relevant space of the

problem to lie between  and   since the infinite potential energy precludes the particle from ever existing outside of the
limits of  and .

Figure 

So for the problem, limited to the space inside the box, the Hamiltonian can be written

And the Schrödinger equation can be written as
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where  is the wavefunction describing the state of the particle. There are a number of approaches that can be used to solve this
equation to find the wavefunctions  which satisfy the differential equation.

The Solution 

We will solve this problem two different ways. First, we will solve it using the de Broglie wavelength (an algebraic solution) and
then using the Schrödinger equation (an eigenvalue/eigenfunction approach.)

The de Broglie Approach 

Before trying to solve the problem using Schrödinger’s equation, let’s use the de Broglie condition to solve the problem
algebraically. Recall that de Broglie suggested that a particle can be treated as a wave, the wavelength of which is given by 

, where  is Planck’s constant, and  is the momentum of the particle.

The necessary conditions on the de Broglie wave are that the wave itself must vanish at the ends of the box (in order to satisfy the
first postulate, since the particle can never escape the box.) This will happen for very specific wavelengths which are dependent on
the length of the box itself. This is very common in physics for any system with a wave nature. When the wave is constrained to a
specific geometry, the system will "ring" with frequencies (and thus wavelengths) characteristic of the medium and the geometry.
Quantum mechanical systems are no different in that regard.

Figure 

What will be required in order to create a standing wave is that the length of the box  must be an integral multiple of half de
Broglie wavelengths .

Given that the de Broglie wavelength is related to momentum, it is simple to derive the following relationship, indicating the
possible values for momentum.
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Given the relationship between momentum and kinetic energy, the expected expression for energy levels can be derived.

And since the energy depends on , the spacings between successive energy levels increases as the energy increases.

Figure 

Now let’s see if we can derive this expression based on the Schrödinger equation.

The Schrödinger equation: the wavefunctions 
The time-independent Schrödinger equation can be written

Where  is the Hamiltonian operator that was derived in section B.2,  is the wavefunction describing the system, and , the
eigenvalue of the Hamiltonian, gives the energy. The wavefunctions are derived so that they are eigenfunctions of the Hamiltonian
operator. Substituting the specific statement of the Hamiltonian

For convenience, we can gather all of the constants in one place by making a substitution

The particular choice if the form of this substitution is made to simplify the solutions by avoiding (for now) imaginary functions.
With the substitution, the Schrödinger equation can be rewritten as

As was the case for the classical wave-on-a-string problem, this is a second order ordinary differential equation, and this has two
linearly independent solutions. A general solution is given by a linear combination of two linearly independent solutions, so one
way to write a solution is

Now we can focus on evaluating  and  based on the boundary conditions. The boundary conditions are that the wavefunction
must go to 0 at the ends of the box, in accordance with the first postulate.

The first boundary condition, , yields the following result:
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So  and the cosine term must vanish. Focusing only on what has not vanished from the solutions, the second boundary
condition, , can be applied.

There are two trivial ways to make this true. One is to make  and the other is to make  0 . Both are trivial solutions and
unimportant (but fun to mention in class!) The other way to force the function to 0 at  is to insure that the sine function is
zero by forcing

where  is an integer , since the sine function crosses zero every  radians. This is an important point: the
application of a boundary condition leads to the introduction of a quantum number and fixed the results to only functions where
that number has a value taken from a very specific list. In fact, the origin of quantum numbers in all problems is the result of the
application of boundary conditions.

Solving for  and substituting yields

This is as far as the boundary conditions can get us. The value of  is determined based on the first postulate of quantum
mechanics, which says that the square of the wavefunction must give a probability distribution as to where the particle can be
measured to be. Since all measurements must place the particle in the box, the sum of probabilities at all of the possible locations in
the box must equal unity. This implies the condition that

Solving for A yields

Notice that the value of A did not depend on the quantum number n. Normalization constants usually do have some dependence on
the quantum numbers that arise from the application of boundary conditions, but this is one of the rare problems in which the
normalization constant does not.

The Schrödinger Equation: the energy levels 
Whenever we solve a quantum mechanical problem, there are two important things at which we must look: the energy levels and
the wavefunctions. To chemists, the energy levels are the most important part, as the energy levels govern the chemistry the system
can do. To a physicist, it is the wavefunctions that are important as they contain all of the information about the physical nature of
the system.

The energy levels can be derived using the normalized wavefunctions and the Schrödinger equation.
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Comparison (or solving for ) yields the following

which looks similar to, but not exactly like the result produced using the de Broglie relationship. In fact, it is the identical result!
Making the substitution , it is easy to show that

These energy levels depend on , and so doubling the quantum number  quadruples the energy. Another way of saying this is
that the energy level spacings (the difference in energy between two successive levels) increase with increasing  or energy.

It is also interesting to note that the energy levels are given by a real (non-imaginary) expression. This is to be expected since the
energy is the eigenvalue of a Hermitian operator, the Hamiltonian, and thus must be a real value.

Properties of the Wavefunctions 
The wavefunctions for the one-dimensional particle in a box problem are given by

These wavefunctions have many important properties.

Orthogonality 

Similar to the relationship of Hermitian operators having real eigenvalues, the eigenfunctions of Hermitian operators must be
orthogonal. Our wavefunctions are actually an infinite set of function, any pair of which must cause the inner product integral to
vanish. Mathematically, this looks like

This relationship is easy to verify. To do so, we will make use of the following result taken from a standard table of integrals.

Noting that  and , substitution into the above relationship yields

And since  and  are integer,  and  must also be integers. And the sine of an integral multiple of  is always zero, it
is easy to show that this function vanishes for any .
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Normalization 

When  the integral becomes

which can be evaluated using the result from a table of integrals

So making the substitution 

This result shouldn’t be surprising since the value  was chosen to ensure the result! Specifically, it was chosen so as to

normalize the wave functions.

Show that the wavefunction

is normalized for a particle in a box of length .

Solution
The wavefunction is normalized if

This can be demonstrated by plugging the wavefunction into the relationship and testing to see if it is true:

Therefore the wavefunction is normalized!
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