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3.6: Representations
A representation is any mathematical construct that will reproduce the group multiplication table. In general, there are an infinite
number of representations possible for a given group, however, most of them will be related through simple relationships, and thus
can be constructed from (or reduced to) other representations. Those that cannot be reduced to linear combinations of other
representations are called irreducible representations. The irreducible representations are particularly useful as they can be used
to predict the mathematical properties of any function that is an eigenfunction of all of the symmetry elements of a group. The
number of classes of operations always gives the number of irreducible representations. Each irreducible representation can be
labeled as .

To construct a representation for a group, one must assign each operation a mathematical element. For the  point group, we can
get away with using either 1 or –1 for each element. (This is a consequence of each operation belonging to its own class.) The
simplest representation can be constructed by assigning each symmetry element as 1. The group multiplication table will hold, as
can be seen below.

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Note that each product gives a value that corresponds to the correct element. For example, we let  = 1 and  = 1. The product
of  *  yields . And since the value we assigned = 1 . . and . . everything worked. This particular representation
seems pretty trivial since it has to work for any multiplication table that can ever be written! In fact, every point group has this type
of representation. Since 1 gives all of the elements of this representation, this is called the totally symmetric representation.

Another representation (  ) can be constructed in which E and  are represented by a 1 and  and are represented by –1. In
this case, the multiplication table looks as follows:

1 1 -1 -1

1 1 1 -1 -1

1 1 1 -1 -1

-1 -1 -1 1 1

-1 -1 -1 1 1

It should be clear again (or easily enough verified) that this has the same pattern as the group multiplication table.

Two other representations can be constructed in this manner (with all of the elements given as either 1 or –1). Together with the
first representation, these can be summarized as in the following table.

E

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

These irreducible representations (  ) go by a standardized set of naming rules. First, the irreducible representations are all singly
degenerate (no two-by-two or three-by-three matrices were needed for the representations) so all of the irreducible representations
are given the symbol A or B. A is used if the representation is symmetric (1) with respect to the principle rotation axis (  ) and B

Γi

C2v

C2v

C2 σv

C2 σv σ′
v σ′

v 1 ∗ 1 = 1

Γ2 C2 σv  σ′
v

C2v

C2v C2 σv σ′
v

Γ1 A1

Γ2 A2

Γ3 B1

Γ4 B2

Γi

C2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420488?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/03%3A_An_Introduction_to_Group_Theory/3.06%3A_Representations


3.6.2 https://chem.libretexts.org/@go/page/420488

if it is antisymmetric (-1) with respect to the principle axis. The subscript is 1 if the representation is symmetric with respect to the 
 reflection plane, and 2 if the representation is antisymmetric with respect to this plane of reflection. If an irreducible

representation requires a set of two-by-two matrices, the representation is designated E, and three-by-three matrix irreducible
representations are labeled T.

We’ll discuss more on the difference between a reducible and irreducible representation later. First, lets work through a slightly
more difficult point group. The  point group is not abelian and requires matrices for some of the irreducible representations.

The Symmetry of a Triangular Pyramid: a more complex point group 
An example of a point group that requires two-by-two matrix elements for the irreducible representations is the  point group.
This point group (which describes the symmetry elements of an ammonia molecule or a pyramid with an equilateral triangular
base) consists of the symmetry elements , ,  (or ), , and .

In the figure to the left, the  axis runs perpendicular to the base of the pyramid (you are looking straight down on the top of the
pyramid) and the  operation might correspond to a clockwise rotation of the figure about that axis. The  axis is the same as
the  axis, but the  operation corresponds to a counterclockwise rotation by  radians. Note that this operation is equivalent
to performing the  operation twice (hence the alternative notation of .) The , and  elements are reflection planes that
lie perpendicular to the base, but each containing one edge of the pyramid. The reader is left to imagine the identity element.

If the corners of the base of the pyramid are labeled for convenience, the effect of each symmetry operation can be represented as
follows.

Following these permutations, it is possible to construct the group multiplication table. The group multiplication table for this
group (  ) looks as follows:

E

E E

E

E

E

E

E

From this information, it is possible to separate the operations into classes. Note, for example that  and 
and . Using these relationships, the similarity transforms of  involving these operations all yield .

Similarly, the similarity transforms on  using these operations all yield .

This is sufficient to indicate that the operations  and  belong to the same class. However, to show that these are the only two
operations in this class. Consider the similarity transforms based on the operators E,  and  on  :
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The fact that the result of a similarity transform on either  or  never results in , or , is a consequence of the proper
rotation operations belonging to a different class than the reflection planes. In fact, there are three classes of operations for this
point group. This implies that there are three irreducible representations for this point group.

Figure 

Another useful approach is to use matrix operators to affect the changes to the object caused by the symmetry operation. The
choice of matrix operators depends on the basis set of functions being used to model the system. In this case, we will use position
vectors of the corners of the bas of the pyramid. Other choices of basis might be the atomic orbitals on the atoms in a molecule.
This is a very convenient choice when the task of constructing symmetry-adapted linear combinations of atomic orbitals for the
purpose of modeling molecular orbitals. But I digress . . .

Consider the position vectors of the corners of the base of our trigonal pyramid. They can be specified by indicating the 
coordinates if the origin is located in the plane of the base along the axis where all of the symmetry elements intersect.

Corner x y z

1 0 0

2 1/2 0

3 -1/2 0

4 0 0 h

Only corners 1, 2 and 3 will be important since none of the symmetry elements moves the fourth corner! Assuming unit length for
the base edges and a height of h for the pyramid, the following table gives the  coordinates for each of the four corners.

From the previous discussion, we have already determined the effects of each of the symmetry operations.

The task now is to construct matrix representations for each of the symmetry operations that will affect the above stated changes
when matrix multiplication is used as the operation.

The identity element is easy. It will be the 3x3 identity matrix given by
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This is easily confirmed since

for any choice of ,  and . The other operations are a little trickier, but not too hard. It can be shown that the matrix that affects a
rotation of  radians about the z-axis is given by

So that the resultant of this operation is given by

For a rotation of  radians, it is useful to note the following.

So the transformation of corner 1 of the pyramid is accomplished as follows for the  operation.

The operation has transformed corner 1 into corner 3. It is also easily shown that the operator matrix also transforms corner 2 into
corner 1, and corner 3 into corner 2. This is just as expected according to the expression shown above:

Additionally, the matrix must satisfy the multiplication table relationship of .

This is the rotation matrix for a rotation of  radians. Hence, the product worked out as expected since the  operation is
equivalent to the rotation of  radians.

The matrix representations for the  planes can be worked out by one of two methods. One is to set up the matrix equation for
how a point is transformed. The other is by using the group multiplication table to generate a matrix as the product of two other
operations in the group for which the matrix has already been established.

To demonstrate these methods, recall from above that the  operation exchanges corners 2 and 3. The matrix for this operation
must satisfy the following expression:

The matrix that will affect this transformation is:

Now, using the group multiplication table, we can generate and  by the relationships
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1 1 1

-1 -1 -1

E

or

The set of matrices can now be used as a representation of the group. However, these matrices can be seen as a reproducible
representation of the group since they are in block-diagonal form.

This representation can be broken down into two simpler representations. The first consists only of the lower right block of each of
the matrices above. This yields the totally symmetric representation. The other is a representation of 2x2 matrices that are made
from the upper left block of each of the matrices above. There is one other irreducible representation for the  point group. It is
given in the table below without derivation, but it is easy to demonstrate that it satisfies the group multiplication table.

E C

1 1 1

1 1 1

E
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