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6.2: The Quantum Mechanical H-atom

As is so often the case for quantum mechanical systems, the story of the hydrogen atom begins with writing down the Hamiltonian
describing the system.

The Potential Energy and the Hamiltonian

The time-independent Schrodinger equation has the following form.
Hy (r,6,¢) = By (r,6,¢)
hZ
[_ZVQ + U(r)] (r,0,¢) =Ey(r,0,9)

where m is the reduced mass for the electron/nucleus system. The Laplacian operator has the form
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The potential energy is given by the electrostatic attraction of the electron to the nucleus.
Ze?
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where Z is the charge on the nucleus in electron charges (also given by the atomic number), e is the charge on an electron and ¢ is the
vacuum permittivity.
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Figure 6.2.1

The % dependence means that the electrostatic attraction diminishes as the distance between the electron and the nucleus is increased. The
potential energy approaches zero as r goes to co, at which point the atom ionizes.

Putting this all together allows the Hamiltonian to be expressed as
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The wavefunctions can be expressed as a product of a radial part and an angular part since the CityplaceHamilton is separable into these
two parts.

¥ (r,0,9) = R(r)Y,™ (6, 9)
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The angular part of the function, Y;m’ (8, ¢) are the spherical harmonics and are eigenfunctions of the L~ operator. Substitution into the
Schrodinger equation yields
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Since the spherical harmonics are eigenfunctions of the L operator, the following substitution can be made.
L'y (6, ¢) = RU1L+ 1)Y™ (6,4)
After making this substitution and dividing both sides by ¥;™ (6, ¢), we get
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R(r) = ER(r)

However, since I shows up in the equation in which we are solving for the radial wavefunctions R(r), it is not to be unexpected that the
solution to the radial part of the equation will place new constraints on the quantum number /. In fact, the radial wavefunctions themselves
depend on [ and a principle quantum number number 7.

The Energy Levels

Applying the boundary condition that the radial wavefunction R(r) must vanish as » — oo, the only wavefunctions that behave properly
have the following eigenvalues

uZ%e* 1
E=——r——— n=1,23,...
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Notice also that this expression vanishes as n approaches oo, which is the ionization limit of the atom. Also, since the energy expression
depends only on n (and not on ! and m; ) it is expected that there will be a great deal of degeneracy in the wavefunctions.

Taking differences between two energies levels (to derive an expression for the energy differences that can be observed in the spectrum of

hydrogen), it is seen that
B Bone uZzet ( 1 1 ) _ pZte ( 1 1 )
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which is exactly the form of the Rydberg Equation. Now dividing both sides by hc in order to convert from energy units to wavenumber

units

Ey — Ep» uZet 1 1
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using the reduced mass for the hydrogen atom and a nuclear charge of +1. So this model also predicts the correct value for the Rydberg
constant Ry .

The Rydberg Constant for Heavier Nuclei
The expression for the Rydberg constant is
pet

Ra= (hc)2R2(4me)?

which has a value of Ry = 109677.581 ¢m L In this expression, yu is the reduced mass of the electron-proton system in the hydrogen
atom. But what happens when the mass of the nucleus is extremely large? First, consider the reduced mass.
memy

n=——
Me +My
Where m, is the mass of an electron and my is the mass of the nucleus. In the case that the nuclear mass is extremely large compared to
the mass of an electron, the total mass is approximately equally to the mass of the nucleus.

(me+mpy) =my

In this case, the reduced mass becomes
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And the Rydberg constant expression comes to

mee
(hc)2h?(4meg)?
=109737.316 cm ™!

where R, indicates the Rydberg constant for an infinite mass nucleus atom. It is this value that is usually found in tables of physical
constants.

But for lighter atoms, such as hydrogen, the value of the Rydberg constant deviates form this value. In fact, hydrogen shows the largest
deviation for any atom, given that it has the lightest nucleus. Compared to experimental precision, this deviation is important (even for
atoms where the mass of an electron is only 1 x 107® times that of the nucleus!) if one hopes to fit data to experimental precision.

To address this problem, we look back to the expression for the Rydberg constant for an arbitrary mass nucleus, Rj;.
pe
(hc)2h?(4meg)?

() Tty ~ o)
- - R,
me+my /) (hc)2h?(4meg)? me +my

Clearly as the mass of the nucleus (my ) becomes larger, the value of Rj; will approach that of R, asymptotically.

Ry =

The Wavefunctions

The hydrogen atom wavefunctions ¢ (r, 6, ¢) can be expressed as a product of radial and angular functions.

wnlml (T7 01 ¢) = Rnl (T) yzml (07 ¢)
The angular part is simply the spherical harmonics that were described in Chapter 5, depend on the quantum numbers ! and m;. More
details of how the spherical harmonics are generally presented as H-atom angular functions is discussed in section 3.i. The radial part of
the wave functions, RY, (6, ¢) will be described in a later section.
The Angular Part of the Wavefunctions

Each orbital wave function can be designated with a letter than indicates the value of [ as assigned in the following table.

l Designation
0 s
1 P
2 d
B f

The angular parts of the wavefunctions are given by the spherical harmonics. After taking linear combinations to eliminate the imaginary
part of the wave functions, the familiar shapes of s, p, d and f orbitals are generated. For example, the p, and p, orbitals are generated as
linear combinations of the p_; and p; orbitals.

pe=—(Y' =¥, ') xsinfcos ¢

1
2
1

=—(Y'+Y. 1) xsinfsin
Py “/5( 1 1 ) ¢

Similar linear combinations are used to generate the dy2_y2, dgy, dy. and d,, functions.
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There are multiple choices for how to take linear combinations to generate the f orbital functions (the best choice being determined by the
geometry of the complex in which an f-orbital containing atom exists), so these are rarely shown in textbooks! The tables below give the
angular parts of s, p and d hydrogen atom orbitals. The linear combinations shown above have been used to eliminate the imaginary parts
of the wave functions. The result is what is usually plotted for the shapes of these orbitals.

l Orbital Y™ (6, ¢)
0 s /T
4
3
Dz - sin() cos(¢)
1 Dy \/g sin(6) sin(¢)
P \/g cos(0)
l Orbital Y™ (6, ¢)
5
d,s Tor (3cos?(6) — 1)
dy. 15 sin(6) cos(8) sin(¢)
167
15
2 dy. —— sin(6) cos(8) cos(¢)
167
dgy 614_571' sin®(6) sin(2¢)
dy2_2 15 sin? (6) cos(2¢)

8
|
<
[=2]
W~
3

These functions generate the familiar angular parts of the hydrogen atom wavefunctions. Some depictions are shown in the figure below.
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s-orbitals

p-orbitals

d-orbitals

The Radial Part of the Wavefunctions

The radial part of the wavefunction has three parts. 1) a normalization constant, 2) an associated Laguerre Polynomial and 3) an
exponential part that ensures the wavefunction vanishes as » — oco. The associated Laguerre polynomials are derived from the Laguerre
polynomials (much like the associated Legendre Polynomials were from the Legendre polynomials.) The Laguerre polynomials can be
derived from the expression

e’ d"
L, (z)= gy z"e
The first few Laguerre polynomials are given by

n Ly (x)
0 1
1 —z+41
2 1 (22 — 4z +2)

2
3 %(—m3+9w2 — 18z +6)

A recursion formula for these functions is given by
Lpyi(z)=@2n+1—-2) L, (x) —n*L, 1(z)
The associated Laguerre polynomials can be generated using the expression
de
Ly(z) = %Ln(m)
This expression is used to generate an associated Laguerre polynomial of degree n —w and order w. The functions of interest to the

hydrogen atom radial problem are the associate Laguerre polynomials of degree n —[—1 and order 2]+ 1. It can be shown that these
functions can be generated from the relationship

21+1 " +1 [(n+)1]?
LY (@) = I; (-1)* (n—1—1—k)! (20 +1+k)lk! a*

Note that when n — [ — 1 is less than zero, the functions vanish. This leads to the restriction on the quantum number [ that comes from the
solutions to the radial part of the problem.
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The first few associated Laguerre polynomials that appear in the hydrogen atom wavefunctions are shown below.

I<n-1

n l Lffrll (z) # nodes
1 0 Li() -1 0
0 Li() —2!(2-z) 1
’ 1 Li(x) —31 0
0 Li() —3!(3 — 3z — »5z?) 2
3 1 L () —4l(4-z) 1
2 Li () —5! 0

Notice that if (2/+1) exceeds (n+1), the derivative causes the function to go to zero, as was the case for the associated Legendre
Polynomials when m; exceeds I. This provides the constraint on I that was expected to be found in the solution to the radial part given that
I shows up in the equation to be solved.

1<n-1

Typically, x is replaced by a new function in r, p. p is defined as follows:
([ 22Zr

p= nagp

where ag is the Bohr radius. The overall expression for the radial wavefunction is given as follows:

1
/2 l+3/
—71—1) b
Rny(r) =— -tV <i> L2 (—2ZT) e~ nas
2n(n+0)1P | \nao A\ nag
The first several radial wavefunctions are given below.
n 1 Ry(p)
Zr
32 20
1 0 1s 2<£> S
ag
3/2
0 2 (=) C-peen
9 2(10
3/2
1 2p % <2Tfo peP/2
3/2
0 3s %(3%) (27— 18p+2p%) e *
0
1 (22\%
’ ! % 3 (32) ©op)ern
4

where p = Zr/ay. ag is the Bohr radius, which has a value of 5.29177249 x 10~ m.

v/ Example 6.2.1

What is the expectation value of r for the electron if it is in the 1s subshell of an H atom?

Solution
The expectation value can be found from
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() = / ¥, Tty 12

Where r2dr comes from the r portion of the volume element dz dy dz after it has been transformed into spherical polar coordinates.

Substituting the wavefunction from above yields

This expression simplifies to

A table of integrals shows

o0 '
_ n!
e “dx =
0 an+l

Substituting the above integral into the general form results in

v/ Example 6.2.2

What is the most probable value of r for the electron in a hydrogen atom in a 1s orbital?

Solution
The most probable value of r will be found at the maximum of the function

P(r)= r*[R(r)]’

This can be found by taking the derivative and setting it equal to zero. First, let’s find the probability function

At the maximum, the derivative is zero.

So
d| 4 _x 4 _x 2 2
—|—=rtew|=—(2re w ——re w | =0
dr | ad ag ag

4
After dividing both sides by - and placing the right-hand term on the other side of the equals sign, this simplifies to
]

_2r
2re w = —r‘e w

This is further simplified by dividing both sides by e & :
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The rest of the algebra is straight forward (actually, all of the algebra was straight-forward, but who is counting?)

T =q

Nodes

A hydrogen atom wavefunction can have nodes in either the orbital (angular) part of the wavefunction or the radial part. The total number
of nodes is always given by n—1. The number of angular nodes is always given by I. The number of radial nodes, therefore, is
determined by both n and I. Consider the following examples.

Nodes
radial angular total
1s 0 0 0
4d 2 1 B
5f 1 3 4
2d - -
2p 0 1 1

Notice that it is impossible to form a 2d wavefunction as it violates the relationship that

I1<n-1
causing the radial wavefunction to vanish. This is easy to see as the combination of n =2 and [ = 3 implies that there are -1 radial nodes,
which is clearly impossible.

Shells, Subshells and Orbitals

It is convenient to name the different subdivisions of the electronic structure of a hydrogen atom. The subdivisions are based on the
quantum numbers n, | and m;. A shell is characterized by the quantum number n. (Examples: the n=2 shell or the n=4 shell.) A subshell
is characterized by both the quantum number n and [. (Examples: the 2s subshell or the 3d subshell.) An orbital is characterized by the
quantum number n, [, and m; . (Examples: the 2p, orbital or the 5f1 orbital.) It should be noted that an orbital can also be constructed
from a linear combination of other orbitals! (Example: the 2p, orbital or the 3d,, orbital.)

Degeneracy

The hydrogen atom wavefunctions have high degeneracies since the energy of a given level depends only on the principle quantum
number n. As such, all wavefunctions with the same value of n will have the same eigenvalue to the Hamiltonian, and are degenerate.
Recall the following relationships:

I<n—1and m; <l

These relationships can be used to fill in the following table that indicates the degeneracies of the hydrogen atom energy levels.

Subshell n l my myg
orbital total

1 1

1s 1 0 0 +5 -3 1 2
1 1

2s 2 0 0 +5, -3 4 8
1 1

2p 1 +1,0,-1 +§, =
1 1

3s 3 0 0 +5, —3 9 18
1 1

3p 1 +1,0, -1 +5, 75
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Subshell n l

3d 2
4s 4 0
4p 1
4d 2
af 3

It is clear that the total degeneracy of a shell is given by 2n?

The Overall Wavefunctions

my

+2,+1,0,-1, -2

+1,0,-1

+2,+1,0,-1, -2

+3) +2) +1: 0) _1’
-2,-3
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The total wavefunction, including both angular and radial parts, for hydrogen-like atoms is given by

\I’nlml - Rnl (7') y;ml (0, ¢)

The first few hydrogen atom orbital wavefunctions are given in the table below.

Shell Subshell my
1 1s 0
2 2s 0
2p 0

+1

Wavefunction

Y100 iﬂ <£> " er

Pa141 ! (é) v pe*/2sin(f
V6dm \ ao

This page titled 6.2: The Quantum Mechanical H-atom is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
Fleming.
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