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2.6: Problems in Multiple Dimensions
As luck would have it, not all quantum mechanical problems are expressible in terms of a single dimension. In fact, most problems
will require multiple "dimensions" as they will involve not only electronic state descriptions, but also vibrational descriptions and
rotational descriptions as well. In this section, we will discuss how variables are separated in the multidimensional problems, using
a particle in a three-dimensional box as an example.

The Particle in a Rectangular Box 
Consider a particle of mass  constrained to a three dimensional rectangular box with sides of lengths  and  in the  and 
directions respectively. For this problem, the Hamiltonian will look as follows

One important thing to notice is that this Hamiltonian can be written as a sum of three separate operators, each affecting only a
single variable.

When the Hamiltonian takes a form like this, it will also be possible to express the eigenfunctions as a product of functions. Let’s
give it a try.

The time independent Schrödinger equation looks as follows

To simplify things, let’s gather variables and make the substitution

To proceed, we make an assumption that the wavefunction can be expressed as a product of functions.

The wave equation then becomes

Dividing both sides by  yields

Since each of these terms is in a different variable, the only way the equation can be true is if each term on the left is equal to a
constant. These constants are chosen in a convenient way so as to make the solution of the problem simple. So again, to proceed,
we make a substitution.
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where

These substitutions allow us to separate the problem into three problems in single variables. Further, we know what the solutions to
these equations are!

The total wavefunction, therefore is

And the energy levels can be expressed as

The key element to notice here is that the wavefunctions are expressed as a product and the eigenfunction as a sum. This is a
common pattern as it always happens when the operator can be expressed as a sum as was the case for this operator.

This pattern arises often in chemistry, where, for example, the total wavefunction of a molecule might be described as the product
of wavefunctions describing the electronic state, the vibrational state and the rotational state.

In the limit that this is a good description, the energy of the molecule can be expressed as a sum of energies.

Degeneracy 
Let’s now consider the case where the particle is confined to a cubic space - a rectangular solid where all edges have the same
length. If that length is , the wavefunction becomes

The energy levels are given by

This result leads to an important possibility. Specifically, several eigenstates of the system can have the same energy. Consider the
set of quantum numbers and energies shown in the following table.
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Notice that several energies can be generated by a number of combinations of quantum numbers. The degeneracy is indicated by
the number of quantum states that yield the same energy. There are many examples in quantum mechanics where several
eigenstates yield the same energy. This can have important consequences on the nature of the system being described. This is
perhaps the simplest system in which this phenomenon is observed. (Well, a particle in a 2-D box is simpler.)

Level Degeneracy

1 1 1 1 3 1

2 1 1 2 6 3

3 1 2 1 6 3

4 2 1 1 6 3

5 1 2 2 9 3

6 2 1 2 9 3

7 2 2 1 9 3

8 1 1 3 11 3

9 1 3 1 11 3

10 3 1 1 11 3

11 2 2 2 12 1

12 1 2 3 14 6

13 2 3 1 14 6

14 3 2 1 14 6

15 1 3 2 14 6

16 3 2 1 14 6

17 2 1 3 14 6

Linear Combinations of Degenerate Wavefunctions 
Oftentimes, it is convenient to describe systems using linear combinations of wavefunctions. An example of this is the creation of
molecular orbitals as linear combinations of atomic orbitals. Another is the construction of hybrid orbitals such as the  hybrid
set that is often used to describe the bonding in methane or other hydrocarbons.

These linear combinations have important properties. In the case that the basis wavefunctions are degenerate eigenfunctions of the
same operator (say, the Hamiltonian operator for instance) the linear combinations will also be eigenfunctions of that operator.
However, this will not generally be the case for linear combinations of non-degenerate eigenfunctions. The proof of this is fairly
straight forward.

Proof: Show that any linear combination of two functions that are eigenfunctions of the same operator, and have the same
eigenvalues is also an eigenfunction of the operator.

Solution: Consider two functions  and  that are eigenfunctions of the operator .

Any linear combination of the functions  and  will also be an eigenfunction of the operator .
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 Âf  = af  and  g = agÂ
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The Particle on a Ring Problem 
Consider a quantum mechanical particle of mass  constrained to a circular path of radius . In Cartesian coordinates, we can
write the potential energy function for this system as

However, it is much more convenient to work in coordinates that reflect the symmetry of the problem. In plane polar coordinates,
the potential energy function is defined as

And since the Laplacian operator is given by

we can write the time-independent Schrödinger equation as

As usual, we proceed by separating variables. Let’s let . We now get

Now we can divide both sides by the function  and simply get rid of it. In this problem the only thing we need to know about
the  is that is it a constant . 

So after a trivial rearrangement, we see

This is starting to look more like something we can manage to solve by inspection! Let’s make a substitution. Let

We’ll evaluate  later. But now it is easy to show that

is a solution to the eigenvalue, eigenfunction problem. Let’s try!

So the eigenfunctions are given by  and the eigenvalues are given by .

To proceed, we will employ a cyclical boundary condition. Since all wavefunctions must be single valued, we see that
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So ...

Or dividing both sides by , we see

This is going to quantize the possible values which  can take. And since the Euler relation tells us that

we see that

which can only be true if  is an integer. As it turns out, it doesn’t matter if  is positive or negative. It just has to be an integer.

As promised, this quantizes the energies possible for the system.

where the moment of inertia  is given by the mass times the radius squared.

Finally, we can obtain the value of the normalization constant  to normalize the wavefunctions.

And we see that

So, in summary, the wavefunctions are given by

And the energies are given by

This page titled 2.6: Problems in Multiple Dimensions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.

Aei θml = Aei (θ+2π)ml

= Aei θml ei2πml

Aei θml

1 = ei2πml

ml

= −1eiπ

1 = (−1)2ml

ml ml

= 0, ±1, ±2 …ml

= E
m2

l
ℏ2

2I

I

I = mr2

A

1 = dθA2 ∫
2π

0

ei θml ei θml

A =( )
1

2π

1/2

ψ(r, θ) = = 0, ±1, ±2, …( )
1

2π

1/2

ei θml ml

=  where I = mEml

m2
l ℏ2

2I
r2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420478?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Quantum_Chemistry_with_Applications_in_Spectroscopy_(Fleming)/02%3A_Particle_in_a_Box/2.06%3A_Problems_in_Multiple_Dimensions
https://creativecommons.org/licenses/by-nc-sa/4.0
http://www.csueastbay.edu/directory/profiles/chem/flemingpatrick.html

