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9.6: Herzberg Diagrams
One of the important reasons for describing the electronic structures and angular momentum coupling in diatomic molecules is to
apply these descriptions to the prediction of the rotational branch structure in molecular spectra. As always, the first concern when
predicting patterns in molecular spectra is the determination of selection rules. The selection rules for which the transition moment
does not vanish are summarized below.

Based on these selection rules, Herzberg diagrams can be used to predict the rotational branch structure and “first lines” in each
branch based on the symmetries of upper and lower states in a given transition.

In order to discuss this very useful tool, we shall begin by discussing the description of a single state, starting with simple
symmetry (  ). In order to proceed, it is important to note the +/- symmetry of rotational wavefunctions. Basically, the rotational
wavefunction is symmetric with respect to reflection through a plane containing the internuclear axis if R is even, and
antisymmetric if R is odd. Thus the symmetry of the total wavefunction, given by

is given by the product of the symmetries of ,  and . In the case of a  state,  is +.  is always + for
vibration of a diatomic molecule. The rotational contribution (  ) will alternate for increasing R or J. (In the case of a  state, 

 and  have the same value, since  and .)
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The above Herzberg diagram summarizes the +/- symmetry for the first few rotational levels.

Figure 

Based on this diagram, and the selection rule that +  - and , the branch structure for a  transition can be
predicted. Clearly, R- and P-branches are predicted in the rotational structure. This is the proper Herzberg diagram for the
description of the 1-0 rotation-vibration spectrum of HCl (or other closed shell heteronuclear diatomic molecules.) Notice that  

 (Q-branch) transitions are impossible since the parity (+/- symmetry) does not change in such transitions, and hence they are
forbidden.

The Herzberg diagram description of a  state is not too different than that for a  state. The only difference is that the +/-
symmetry changes such that levels with odd J are now + and those with even J are now -.
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Figure 

The description of a  state can be based on modifications to the descriptions of  and  states. Two important differences
must be taken into account. First, since J is given by the sum of  and R (or  and R in Hund’s case (a), but this will only be
important if , which is not the case for a singlet state.) Second, since  states (like , , etc.) have two components, both
must be included in the diagram.

Figure 

The description of a  transition can now be constructed. Note that P- Q- and R-branches are predicted. Also notice the
“first line” in each branch. If the  state is the upper state, the first lines in each branch are ,  and . (There can be no

 line as the  level is missing in the upper state.) This is a pattern is a one way to recognize a  transition.

A reversal of state, such that the  state is the upper state, causes the pattern to change. In the case of a  transition, he
first lines in each branch are predicted to be ,  and .

Figure 

A  transition becomes a little more complex as well. In this case, it can be seen that there are two Q-branches predicted!
These will be resolved only if the two  components of at least one of the  state are significantly different in energy. The first
lines are predicted to be , ,  and .

While the description here has been limited to singlet states of  and  symmetry, these tools can be extended to describe and
predict a great deal of rotational fine structure patterns in spectroscopic transitions (Herzberg, 1950). The patterns can get
extremely complex for systems with high spin or orbital angular momenta. The picture can become even more complex when
nuclear spin exists in the molecule which can couple to orbital, spin and/or rotational angular momenta. Entire books are dedicated
to sorting out these patterns and interpreting the spectra of molecules which require these considerations (Brink, 1994) (Bunker,
2009).
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