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2.2: The Postulates of Quantum Mechanics
There are only a small number of postulates of quantum mechanics. Upon them is built all of the conclusions of this powerful
theory.

Postulate 1 

The state of a quantum-mechanical system is completely specified by a function  that depends on the coordinates of the
particle  and the time . This function, called the wavefunction has the important property that

is the probability of finding the particle within the infinitesimally small volume element dxdydz located at position  at time .

Postulate 2 

To every physical observable in classical mechanics, there corresponds an operator in quantum mechanics. This operator will be
both linear and Hermitian.

Postulate 3 

In any measurement of the observable associated with the operator , the only values that will ever be observed are the
eigenvalues  which satisfy the eigenvalue equation

It is important to note that the wavefunction describing the particle need not be an eigenfunction of the operator Â. However, well
defined wavefunctions (those meeting the requirements of all of the postulates of quantum mechanics) will have the possibility of
being described as a linear combination of eigenfunctions of any of the needed operators. The Superposition Principle is invaluable
in working with this concept.

Postulate 4 

If a system is in a state described by a normalized wavefunction (  ) then the average measured value of the observable
corresponding to  is given by

Postulate 5 

The wavefunction of a system evolves in time according to the time dependent Schrödinger equation

Each of these postulates has important consequences and ramifications as to what quantum theory can (and cannot) tell us about a
particle or system. In the remainder of this section, we will explore each postulate individually in order to lay a foundation of what
quantum mechanics can predict for us about the nature of matter.

Postulate 1: a Squared Wavefunction is a Probability Distribution 

This postulate describes the commonly accepted interpretation of a wavefunction. First and foremost, a wavefunction is a
mathematical function. It must be single valued in that for each point in space, there is only one value that can be calculated from
the function. When considering all space which a particle may occupy, the squared wavefunction must create a smooth  and
continuous probability distribution describing where the particle might be observed to be located. (for our purposes, "smooth"
means that the first derivative of the function must be continuous.) Since the square of the wavefunction is a probability
distribution for the location of the particle, any location in space where the squared wavefunction is zero, has a corresponding
probability of zero that the particle will be observed at that location.
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Consider a particle of mass  in box of length  that is prepared such that it’s wave function is given by

Calculate the probability that the particle will have a position measurement reveal the particle to be in the middle half of the
box (with the measured position satisfying .)

Solution
The squared wavefunction gives the probability distribution for where the particle’s position will be measured to be.

The total probability will be given by the following integral.

Note that the final probability is unitless!

 The wavefunction will be smooth provided that the potential energy function is not discontinuous. A discontinuous potential
energy function (such as a step function) will lead to a wavefunction that which single-valued, will not have a continuous first
derivative, and therefore, not be "smooth" in the strictest sense.

The wavefunction contains all of the information about a system that is needed to understand how the system behaves and how it
will behave in the future, at least within the limits of the quantum theory! Information on such properties as energy, momentum and
position are all contained in the wavefunction.

Postulate 2: Quantum Mechanical Operators 
The second postulate describes the nature of quantum mechanical operators and their relationship to those properties of a system
which we can observe. The operators are the tools that pull physical information from the wavefunction and reveal the properties of
the quantum mechanical system. The following table shows some operators and their corresponding physically observable
quantities.
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Physical Observable One Dimension Three Dimensions

Potential

Each of these operators will have two very important properties. 1) Each is linear and 2) each is Hermitian. In one dimension, an
operator  is defined to be linear if the following condition holds:

where a and b are scalar values. An example of a linear operator is multiplication by a constant or a function. Taking a derivative
(or integrating) is also a linear operation, as is adding a constant or a function. An example of a non-linear operator is taking a
logarithm or raising a function to a power other than one.

The Hermitian nature of quantum mechanical operators has many important consequences. An operator (  is Hermitian if it
satisfies the following relationship:

for well-behaved  functions  and , where the asterisk  indicated the complex conjugate of the function or operator. Hermitian
operators have the important properties that 1) their

 A well-behaved function is one that is normalizable and continuous over the relevant space of the problem.

Is the operator  a Hermitian operator?

Solution
For an operator  to be Hermitian, the following relationship must hold (for wellbehaved functions  and  :

So if we choose arbitrary functions  and , we can evaluate the left-hand side of the above relationship by noting the pattern 
 and integrating by parts. Using this approach

Making the substitutions that

it should be clear that

So

In order for  and  to meet the criteria that they are normalizable, they must vanish as  approaches . As such,

And we are left with
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Which clearly can not be true. Therefore, the operator  is not Hermitian. You should, however, be able to use the same

method to show that the operator  is in fact Hermitian!

Postulate 3: Measurable Values 
Postulate three states that the only measurable values for a system are those values that are eigenvalues of the corresponding
quantum mechanical operator. The first measurable value which we will explore is the energy of the system (see below.) Because
the wavefunction provides a probability distribution, it also provides a means of predicting the statistics for a theoretical infinite set
of measurements on a system. The ramifications of that point are developed in the discussion of the fourth postulate.

Postulate 4: Expectation Values 

An expectation value is an average value that would be expected based on an infinite number of measurements. Since
wavefunctions give us probability information, it stands to reason that we can calculate a great deal of statistical information about
a system based on the wavefunction and the corresponding operators. This will be discussed in detail in section D with regards to
expectation values calculated for position, momentum and energy. It is important to note that the expectation value does not
indicate the most probable measurement or observation that will be made, nor must it even give a value that can ever be measured;
it just gives the average.

This postulate has very important (and controversial) ramifications. It forms the basis for how the Heisenberg Uncertainty Principle
can be discussed. The problem is that quantum mechanics cannot tell you what will be measured, but rather only the probability
that a certain value can be measured for a specific property. While a subtle point, it shakes the very nature of our intuition as to
what it means for a system to have a certain property. In most cases, the properties we associate with classical particles do not even
exist in quantum mechanical particles (at least in any sense to which we are accustomed) until those properties are measured. This
has led to numerous debates as to the validity of quantum mechanics as a model, and even led one of the original developers of
quantum theory (Erwin Schrödinger) to change his mind completely on the model.

Postulate 5: the evolution of a system in time 

The  postulate indicates how a system will evolve in time. It also gives the definition of the time dependent Schrödinger
equation.

We will explore many of these properties based on the particle in a box problem in order to gain some insight into what quantum
mechanics can and can not tell us about a system. The particle in a box problem actually has limited physical application (although
it does have some), but does provide a "thought sandbox" in which we can explore the concepts, powers and limitations of the
quantum theory. Hopefully then when we apply the theory to problems of greater chemical interest, we can focus more on the
conclusions than on the specific mathematics.

This page titled 2.2: The Postulates of Quantum Mechanics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by Patrick Fleming.
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