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4.5: Group Theory Considerations
Group theory provides a powerful set of tools for predicting and interpreting vibrational spectra. In this section, we will consider
how Group Theory helps us to understand these important phenomena.

Transformation of Axes and Rotations 
It is possible to determine the symmetry species or irreducible representation by which each of the three Cartesian coordinate axes
transform. This is useful, particularly in determining selection rules in spectroscopy, as the components of a molecule’s dipole
moment will transform as these axes. The rotations are also useful in understanding the rotational selection rules.

Recall the character table for the  point group.

E  ’

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

It is useful to determine how each axis (x, y and z) is transformed under each symmetry operation. Once this is done, it will be easy
to determine the representation that transforms the axis in this way. A table might be useful. Recalling our designation of the 
operation as reflection through the xz plane, it can be shown easily that the axes transform as follows:

E  ’

x x -x x -x

y y -y -y y

z z z z z

The z-axis is unchanged by any of the symmetry operations. Another way of saying this is that the z-axis is symmetric with respect
to all of the operations. (In this point group, all of the symmetry elements happen to intersect on the z-axis, which is why it is
unchanged by any of the symmetry operations.) The conclusion is that the z-axis transforms with the  representation.

The other axes can be described the same way. Note that the x-axis is symmetric with respect to the  operation and the E
operation. (Everything is symmetric with respect to the E operation, oddly enough.) The x-axis is antisymmetric, however, with
respect to the  ’ and  operations. The results for all axes can be summarized in the character table.

E  ’

1 1 1 1 z

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 y

Rotations about the x, y and z axes can be characterized in a similar fashion. Consider the angular momentum vector for each
rotation and how it transforms. Such a vector can be constructed using he right-hand rule. If the fingers on your right hand point in
the direction of the rotation, your thumb points in the direction of the angular momentum vector.

Rotation about the z-axis (  ) is symmetric with respect to the operations E and , but antisymmetric with respect to operations 
 and  ’. Rotation about the x-axis is symmetric with respect to E and . Clearly, this operation transforms as the irreducible

representation . Rotation about the x-axis and y-axis can also be characterized as following the properties of the  and 
representations respectively. As such, the character table for  can be augmented to include this information.

C2v

C2v C2 σv σv

A1

A2

B1

B2

σv

C2v C2 σv σv

A1

σv

σv C2

C2v C2 σv σv

A1

A2

B1

B2

Rz C2

σv σv C2

A2 B2 B1

C2v
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E  ’E  ’

1 1 1 1 z  

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 y

Another interpretation of the transformation of the x, y and z-axes is that the representations that indicate the symmetries of these
axes in the point group also indicate how the ,  and  orbitals transform. The set of d orbital wavefunctions can also be used.
These transformations are generally given in another column in the character table. (This information is also useful for calculating
polarizabilities, and hence selection rules for Raman transitions!)

E  ’

1 1 1 1 z   - , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

Characterizing Vibrational Modes 
Vibrational wave functions describing the normal modes of vibrations will be eigenfunctions of the symmetry properties of the
group. As such, group theory can be quite useful in determining the vibrational selection rules needed to predict infrared spectra.

The number of vibrational degrees of freedom for a molecule is given by ( ) if the molecule is non-linear and ( ) if it
is linear. In these expressions, N is the number of atoms in the molecule. One way to think of these numbers is that it takes 3N
Cartesian coordinates (an x, y and z variable) for each atom in the molecule to fully specify the structure of a molecule. As such,
3N is the total number of degrees of freedom.

Since the molecule can translate through space in the x, y or z directions, three (3) degrees of freedom belong to translation. One
can also think of these three degrees of freedom being the three Cartesian coordinates needed to specify the location of the center of
mass of the molecule – or for the translation of the center of mass of the molecule.

For non-linear molecules, rotation can occur about each of the three Cartesian axes as well. So three (3) degrees of freedom belong
to rotation for non-linear molecules. Linear molecules only have rotational degrees of freedom about the two axes that are
perpendicular to the molecular axis (which remember is the C axis – and thus the z-axis.) So linear molecules only have two (2)
rotational degrees of freedom.

The sum of the irreducible representations by which the vibrational modes transform can be found fairly easily using group theory.
The first step is to determine how the three Cartesian axes transform under the symmetry operations of the point group. As an
example, let’s use water ( ), which belongs to the  point group since it is familiar. Later, we will work though a more
complex example.

Consider the character table for the  point group.

E

1 1 1 1 z  , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

The sum of the representations by which the axes transform will be given by .

CC2v2v CC22 σσvv σσvv

A1

A2 Rz

B1 Ry

B2 Rx

px py pz

C2v C2 σv σv

A1 x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

3N −6 3N −5

OH2 C2v

C2v

C2v C2 σv σ′
v

A1 −x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

+ +B1 B2 A1
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E  ’E  ’

1 1 1 1 z

1 -1 1 -1 x

1 -1 -1 1 y

3 -1 1 1  

The reducible representation (  ) is then multiplied by the representation generated by counting the number of atoms in the
molecule that remain unmoved by each symmetry element. This representation for water is generated as follows:

E  ’

- -

- -

3 1 1 3

Figure 

The reducible representation that describes the transformation of the Cartesian coordinates of each of the atoms in the molecule are
given by the product of  as shown in the following table.

E  ’

3 -1 1 1

3 1 1 3

9 -1 1 3

Note that the order of  is given by . This is the sum of representations needed to describe the transformation of each of the
Cartesian coordinates for each atom. f the representation for the Cartesian coordinates (  ) is subtracted from , the
remainder describes the sum of representations by which the rotations and vibrations transform, and this result should be of order (

). Let’s see . . .

E  ’

9 -1 1 3

3 -1 1 1

6 0 0 2

So far, so good. Now let’s subtract the sum of the representations by which the rotations transform. The remainder of this operation
should be of order ( ) and give the sum of irreducible representations by which the vibrations transform.

E  ’

6 0 0 2

CC2v2v CC22 σσvv σσvv

Γ1 A1

Γ2 B1

Γ3 B2

Γxyz + +A1 B1 B2

Γxyz

C2v C2 σv σv

O ✓ ✓ ✓ ✓

H1 ✓ ✓

H2 ✓ ✓

Γunmoved

4.5.1

⋅Γxyz Γunmoved

C2v C2 σv σv

Γxyz

Γunmoved

= ⋅Γtotal Γxyz Γunmoved

Γtotal 3N

Γxyz Γtotal

3N −3

C2v C2 σv σv

Γtotal

Γxyz

Γvib+rot

3N −6

C2v C2 σv σv

Γvib+rot
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E  ’

3 -1 -1 -1

3 1 1 3

E  ’

1 1 1 1

1 1 1 1

1 -1 -1 1

3 1 1 3

A quick calculation shows that this result is generated by the sum of  +  + . To see this, we can use the Great
Orthogonality Theorem. (I told you it was great!) In this case, the number of vibrational modes that transform as the  irreducible
representation is given by the relationship

For the  representation, this sum looks as follows.

The result for the  representation should come to zero since no vibrational modes transform as . For the  representation,
this sum looks as follows.

For  and  the sum looks as follows:

Let’s see if that makes sense! Consider the three normal-mode vibrations in water. These (the symmetric stretch, the bend and the
antisymmetric stretch) can be depicted as follows:

It is fairly simple to show that the symmetric stretch and the bending mode both transform as the  representation. Similarly, the
antisymmetric stretching mode transforms as the  representation. (Note that we have chosen the xz plane (or the  plane) to lie
perpendicular to the molecule!)

C2v C2 σv σv

Γrot

Γvib

C2v C2 σv σv

A1

A1

B2

Γvib

A1 A1 B2

ith

= (R) (R)Ni

1

h
∑
R

χi χvib

A1

NA1
=

=

=

=

( (E) ⋅ (E) + ( ) ⋅ ( ) + ( ) ⋅ ( ) + ( ) ⋅ ( ))
1

h
χA1

χvib χA1
C2 χvib C2 χA1

σv χvib σv χA1
σ

′

v χvib σ
′

v

((1) ⋅ (3) +(1) ⋅ (1) +(1) ⋅ (1) +(1) ⋅ (3))
1

4

(8)
1

4
2

A2 A2 A2

NA2
=

=

((1) ⋅ (3) +(1) ⋅ (1) +(−1) ⋅ (1) +(−1) ⋅ (3))
1

4

(0) = 0
1

4

B1 B2

NB1 =

=

((1) ⋅ (3) +(−1) ⋅ (1) +(1) ⋅ (1) +(−1) ⋅ (3))
1

4

(0) = 0
1

4

NB2
=

=

((1) ⋅ (3) +(−1) ⋅ (1) +(−1) ⋅ (1) +(1) ⋅ (3))
1

4

(4) = 1
1

4

A1

B2 σv
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Figure 

Find the symmetries of the normal vibrational modes of ammonia.

Solution
Recall the character table for the  point group:

E 2 3 \sigma

1 1 1 z  

1 1 -1  

E 2 -1 0 , , 

The representation for  can be found in the same way as before. Once we have ,  is determined as before.

E 2 3

3 1 1

4 1 2

12 1 2

E 2 3

12 1 2

3 1 1

3 0 -1

6 0 2

The GOT can be used to find how many modes of each symmetry are present.

Mode Freq. (cm ) Sym.

Umbrella 1139

4.5.2

 Example 4.5.1

C3v

C3v C3

A1

A2 Rz

x y Rx Ry

Γtotal Γtotal Γvib

C3v C3 σv

Γxyz

Γunmoved

Γtotal

C3v C3 σv

Γtotal

Γxyz

Γrot

Γvib

-1

A1
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Mode Freq. (cm ) Sym.

Bend 1765 E

Antisym. Str. 3464 E

Sym. Str. 3534

So there are two (2)  modes and two (2) doubly degenerate E modes of vibration. These can be summarized in the table to
the right.

-1

A1

NA1 = [(1) ⋅ (6) +2(1) ⋅ (0) +3(1) ⋅ (2)]
1

6

= (12) = 2
1

6

NA2 = [(1) ⋅ (6) +2(1) ⋅ (0) +3(−1) ⋅ (2)]
1

6

= (0) = 0
1

6

NE = [(2) ⋅ (6) +2(−1) ⋅ (0) +3(0) ⋅ (2)]
1

6

= (12) = 2
1

6

A1
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E ’

15 -1 3 3

3 -1 1 1

3 -1 -1 -1

9 1 3 3

Figure 

Solution
 is an example of a molecule with a “see saw” geometry. It belongs to the point group  like water. Let’s find the

symmetries of the normal modes of vibration using group theory. First, we must generate .

E ’

3 -1 1 1

5 1 3 3

15 -1 3 3

Now, subtract  and  to generate  as shown above.

So this implies that there are nine degrees of freedom due to vibration. This is the result we expect since for the 5-atom non-
linear molecule, (3N-6) = 9. To generate the number of vibrational modes that transform as the  irreducible representation,
the follow expression must be evaluated.

Similarly,

 Example : The vibrational modes of 4.5.2 SF4

4.5.3

SF4 C2v

Γtotal

C2v C2 σv σv

Γxyz

Γunmoved

Γtotal

C2v C2 σv σv

Γtotal

Γxyz

Γrot

Γvib

Γxyz Γrot Γvib

A1

NA1
= ( (E) ⋅ (E) + ( ) ⋅ ( ) + ( ) ⋅ ( ) + ( ) ⋅ ( ))

1

h
χA1

χvib χA1
C2 χvib C2 χA1

σv χvib σv χA1
σ′
v χvib σ′

v

= ((1) ⋅ (9) +(1) ⋅ (1) +(1) ⋅ (3) +(1) ⋅ (3))
1

4

= (16)
1

4
= 4

NA2
= ((1) ⋅ (9) +(1) ⋅ (1) +(−1) ⋅ (3) +(−1) ⋅ (3))

1

4

= (4) = 1
1

4

NB1
= ((1) ⋅ (9) +(−1) ⋅ (1) +(1) ⋅ (3) +(−1) ⋅ (3))

1

4

= (8) = 2
1

4

NB2 = ((1) ⋅ (9) +(−1) ⋅ (1) +(−1) ⋅ (3) +(1) ⋅ (3))
1

4

= (8) = 2
1

4
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So there should be 4 vibrational modes of  symmetry, 1 of  symmetry and two each of  and  symmetry. A
calculation of the structure and vibrational frequencies in  at the B3LYP/6-31G(d) level of theory  yields the following.

Mode Freq. (cm ) Symmetry Mode Freq. (cm ) Symmetry

1 189 6 584

2 330 7 807

3 436 8 852

4 487 9 867

5 496    

The calculation also allows for the simulation of the infrared spectrum of .

Figure 

What would be exceptionally useful is if group theory could help to identify which vibrational modes are active – or if any are
inactive. Fortunately, it can! (And now how much would you pay?) The tools for determining selection rules depend on direct
products.

Intensity 

Group theory provides tools to calculate when a spectral transition will have zero intensity, and this will not be seen. In this section,
we will se how group theory can help to determine the selection rules that govern which transitions can and cannot be see.

The intensity of a transition in the spectrum of a molecule is proportional to the magnitude squared of the transition moment matrix
element.

By knowing the symmetry of each part of the integrand, the symmetry of the product can be determined as the direct product of
the symmetries of each part (\psi’) , (\psi”) and \mu. This is helpful, since the integrand must not be antisymmetric with respect to
any symmetry elements or the integral will vanish by symmetry. Before exploring that concept, lets look at the concept of direct
products.

This is a concept many people have seen, in that the integral of an odd function over a symmetric interval, is zero. Recall what it
means to be an “odd function” or an “even function.

Symmetry definition Intensity

Even

A1 A2 B1 B2

SF4
1

-1 -1

A1 A1

B1 B2

A2 B1

A1 A1

B2

SF4

4.5.4

Intensity ∝ ∫ (ψ ")dτ∣∣ ( )ψ′ ∗μ⃗  ∣∣
2

∗

f(−x) = f(x) f(x)dx = 2 f(x)dx∫
a

−a ∫
a

0
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Symmetry definition Intensity

Odd

Consider the function . A graph of this function looks as follows:

One notes that the area under the curve on the side of the function for which x  0 has exactly the same magnitude but opposite
sign of the area under the other side of the graph. Mathematically,

It is also interesting to note that the function f(x) can be expressed as the product of two functions, one of which is an odd function (
 ) and the other which is an even function (  ). The result is an odd function. By determining the symmetry of the

function as a product of the eigenvalues of the functions with respect to the inversion operator, as discussed below, one can derive a
similar result.

The even/odd symmetry is an example of inversion symmetry. Recall that the inversion operator (in one dimension) affects a
change of sign on x.

“Even” and “odd” functions are eigenfunctions of this operator, and have eigenvalues of either +1 or –1. For the function used in
the previous example,

where

 and 

Here,  is an odd function and  is an even function. The product is an odd function. This property is summarized for any 
, in the following table.

g(x) h(x) f(x) ig(x)=__g(x) ih(x)=__h(x) if(x)=__f(x)

even even even 1 1 1

even odd odd 1 -1 -1

odd odd even -1 -1 1

Note that the eigenvalue (+1 or –1) is simply the character of the inversion operation for the irreducible representation by which the
function transforms! In a similar manner, any function that can be expressed as a product of functions (like the integrand in the
transition moment matrix element) can be determined as the direct product of the irreducible representations by which each part of
the product transforms.

Consider the point group  as an example. Recall the character table for this point group.

E  ’

1 1 1 1 z   - , 

1 1 -1 -1  xy

1 -1 1 -1 x xz

1 -1 -1 1 y yz

The direct product of irreducible representations can by the definition

f(−x) = −f(x) f(x)dx = 0∫
a

−a

f(x) = ( −3x)x3 e−x2

>

f(x)dx∫ a

−a = f(x)dx+ f(x)dx∫ 0
−a ∫ a

0

= − f(x)dx+ f(x)dx = 0∫ a

0 ∫ a

0

−3xx3 e−x2

f(x) = f(−x)î

f(x) = g(x)h(x)

g(x) = −3xx3 h(x) = e−x2

g(x) h(x)

f(x) = g(x)h(x)

C2v

C2v C2 σv σv

A1 x2 y2 z2

A2 Rz

B1 Ry

B2 Rx

(R) = (R) ⋅ (R)χprod χi χj
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So for the direct product of  and , the following table can be used.

E  ’

1 -1 1 -1

1 -1 -1 1

  1 1 -1 -1

The product is actually the irreducible representation given by  ! As it turns out, the direct product will always yield a set of
characters that is either an irreducible representation of the group, or can be expressed as a sum of irreducible representations. This
suggests that a multiplication table can be constructed. An example (for the  point group) is given below.

Studying this table reveals some useful generalizations. Two things in particular jump from the page. These are summarized in the
following tables.

A B 1 2

A A B    1 1 2

B B A    2 2 1

This pattern might seem obvious to some. It stems from the idea that

symmetric*symmetric = symmetric

symmetric*antisymmetric = antisymmetric

antisymmetric*antisymmetric = symmetric

Noting that A indicates an irreducible representation is symmetric with respect to the  operation and B indicates that the
irreducible representation is antisymmetric . . and that the subscript 1 indicates that an irreducible representation is symmetric with
respect to the  operation, and that a subscript 2 indicates that the irreducible representation is antisymmetric . . the rest seems to
follow! Some point groups have irreducible representations use subscripts g/u or primes and double primes. The g/u subscript
indicates symmetry with respect to the inversion (i) operator, and the prime/double prime indicates symmetry with respect to a 
plane (generally the plane of the molecule for planar molecules).

This method works well for singly degenerate representations. But what does one do for products involving doubly degenerate
representations? As an example, consider the  point group.

E 2 3

1 1 1 z  

1 1 -1  

E 2 -1 0 (x, y) ( ,  )

E 2 3   

1 1 -1   

E 2 -1 0   

B1 B2

C2v C2 σv σv

B1

B2

B1 ⊗ B2

A2

C2v

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

C2

σv

σ

C3v

C3v C3 σv

A1

A2 Rz

Rx Ry

C3v C3 σv

A2
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E 2 3

  E 2 -1 0   

Consider the direct product of  and E.

This product is clearly just the E representation. Now one other example – Consider the product .

E 2 3

E 2 -1 0

E 2 -1 0

4 1 0

To find the irreducible representations that comprise this reducible representation, we proceed in the same manner as determining
the number of vibrational modes belonging to each symmetry.

This allows us to build a table of direct products. Notice that the direct product always has the total dimensionality that is given by
the product of the dimensions.

E

E

E

E E E

Now that we have a handle on direct products, we can move on to selection rules.

Selection Rules 
According to quantum mechanics, transitions will only be allowed (have non-zero intensity) if the squared magnitude of the
transition moment (  ) is not zero. If the integral vanishes by symmetry, obviously the transition moment will
have zero magnitude and the transition is forbidden and will not be seen. In order to determine if the integral vanishes by
symmetry, it is necessary to determine the symmetry by which the dipole moment operator transforms.

This (  ) is a vector operator and can be decomposed into ,  and  components. As such, the transition moment is also a vector
property that can have x-, y- and/or z-axis components. Clearly, it will be important to determine how the three axes transform.
Fortunately, this information is contained in character tables! Consider the following two point groups,  and .

E 2 3

1 1 1  

1 1 -1  

E 2 -1 0

E  ’

1 1 1 1 z  

C3v C3 σv

A2 ⊗

A2

E⊗E

C3v C3 σv

E⊗E

NA1

NA2

NE

=

=

=

[(1)(4) +2(1)(1) +3(1)(0)] = 1
1

6

[(1)(4) +2(1)(1) +3(−1)(0)] = 1
1

6

[(2)(4) +2(−1)(1) +3(0)(0)] = 1
1

6

C3v A1 A2

A1 A1 A2

A2 A2 A1

+ +EA1 A2

|∫ ∗ ψ " dτ |ψ′ μ⃗  2

μ⃗  x y z

C3v C2v

C3v C3 σv

A1 z

A2 Rz

(x, y) ( , )Rx Ry

C2v C2 σv σv

A1
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E  ’

1 1 -1 -1  

1 -1 1 -1 x

1 -1 -1 1 Y

In the case of , it is clear that the x-, y- and z-axes transform as the ,  and  irreducible representations respectively. In
the case of , the z-axis transforms as , but the x- and y-axes come as a pair and transform as the E irreducible representation.
It will always require two axes to complete the basis for a doubly degenerate representation.

Under the  point group, any vector quantity will transform as the sum of  +  +  as we saw for  before. Further, one
can say that the x-axis component transforms as , the y-axis component as  and the z-axis component as . By a similar
token, under the  point group, a vector quantity transforms as the sum of . The z-axis component transforms as  and
the x- and y-axis components come as a pair that transform by the E representation. All that is needed to complete the picture is to
determine the symmetries of the upper and lower state wave functions.

Infrared Active Transitions 

In order for a spectral transition to be allowed by electric dipole selection rules, the transition moment integral must not vanish.

This can be determined by using the irreducible representations by which the two wavefunctions transform and the three
components of the transition moment operator, which will be ,  and .

If the direct product of the integrand does not contain at least a component of the totally symmetric irreducible representation, the
integral will vanish by symmetry.

The three vibrational modes of  O transform by  (symmetric stretch),  (bend) and  (antisymmetric stretch.) Will the
symmetric stretch mode be infrared active?

Solution
For the symmetric stretch, which transforms as , the transition moment integrand will be have symmetry properties
determined by the product

where one of the irreducible representations from the set in the middle of the product may be used. (They are the irreducible
representations by which the ,  and  axes transform.) In this case, the z-axis must be used.

This is the only component that will not vanish.When the z-axis component must be used to make the transition moment
operator not vanish, the transition is said to be a parallel transition. Transition moments that lie along axis perpendicular to the
z-axis are said to be perpendicular transitions. Parallel and Perpendicular Transitions often have very different selection rules
and thus very different band contours.

Another Method 

Another method that can be used to see if a mode is infrared active is to take the direct product of the irreducible representations of
the wavefunction, and use  for the transition moment. If the resulting product has a component that is totally symmetric, the

C2v C2 σv σv

A2 Rz

B1 Ry

B2 Rx

C2v B1 B2 A1

C3v A1

C2v A1 B1 B2 Γxyz

B1 B2 A1

C3v +EA1 A1

∫ ψ " dτψ′∗μ⃗ 

x y z

∫ dτΓψ′ Γ
μ⃗ Γψ"

 Example 4.5.3

H2 A1 A1 B2

A1

ψ "ψ′
⎛

⎝
⎜
x

y

z

⎞

⎠
⎟ A1

⎛

⎝
⎜
B1

B2

A1

⎞

⎠
⎟A1

x y z

⋅ ⋅ =A1 A1 A1 A1

Γxyz
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mode will be infrared active.

Is the antisymmetric stretch mode of water predicted to be infrared active?

Solution
This mode transforms as the  irreducible representation.  is given by

So:

E

1 -1 -1 1

3 -1 1 1

3 1 -1 1

The resulting reducible representation will have a component of the totally symmetric irreducible representation.

So the  irreducible representation appears once in the product reducible representation. In fact, the component that does not
vanish is due to the presence of  in . Hence, the transition is predicted to be a perpendicular  transition, since the
transition moment lies along the y-axis.

Will the E modes in  be infrared active?

Solution
In the  point group,  is given by 

E 2 3 

E 2 -1 0

3 0 1

6 0 0

 clearly has the totally symmetric irreducible representation as a component.

In fact, it is the E component of  that makes this transition allowed (and so it is a perpendicular (  ) transition.

E 2 3 

E 2 -1 0

E 2 -1 0

4 1 0

 Example 4.5.4

B2 Γxyz

= + +Γxyz B1 B2 A1

C2v C2 σxz σyz

B2

Γxyz

Γprod

⋅ = (1)(3) +(1)(1) +(1)(−1) +(1)(1) = 4A1 Γprod

A1

B2 Γxyz ⊥

 Example 4.5.5

NH3

C3v Γxyz +EA1

C3v C3 σv

Γxyz

Γprod

Γprod

⋅ = (1)(6) +2(1)(0) +3(1)(0) = 6A1 Γprod

Γxyz ⊥

C3v C3 σv

Γprod

⋅ = (1)(4) +2(1)(1) +3(1)(0) = 6A1 Γprod
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Vibrational Raman Spectra 

Vibrational Raman spectroscopy is often used as a complementa  method to infrared spectroscopy. The selection rules for Raman
spectroscopy can be determined in much the same way, except that a polarizability integral must be used. The polarizability
operator can be expressed as a 3x3 tensor of the form

This tensor is symmetric along the diagonal, and the elements transform in the same ways as the functions , , , ,  and 
.

What are the vibrational mode symmetries for the molecule  which transforms as the D  point group? Which
modes will be infrared active? Which will be Raman active?

Solution
Set up the vibrational analysis table in the usual manner.

E (z) (y) (x) i

1 1 1 1 1 1 1 1  

1 1 -1 -1 1 1 -1 -1

1 -1 1 -1 1 -1 1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1   

1 1 -1 -1 -1 -1 1 1  

1 -1 1 -1 -1 1 -1 1  

1 -1 -1 1 -1 1 1 -1  

3 -1 -1 -1 -3 1 1 1   

3 -1 -1 -1 3 -1 -1 -1   

E (z) (y) (x) i

3 -1 -1 -1 -3 1 1 1

6 0 0 2 0 6 2 0

18 0 0 -2 0 6 2 0

3 -1 -1 -1 -3 1 1 1

 15 1 1 -1 3 5 1 -1

3 -1 -1 -1 3 -1 -1 -1

12 2 2 0 0 6 2 0

Decomposing to the individual components:

E (z) (y) (x) i sum #(h)

(1)(12) (1)(2) (1)(2) (1)(0) (1)(0) (1)(6) (1)(2) (1)(0) 24 3

Ry

α =
⎛

⎝
⎜

αxx

αyx

αzx

αxy

αyy

αzy

αxz

αyz

αzz

⎞

⎠
⎟

x2 y2 z2 xy xz

yz

 Example 4.5.6

CCH2 H2 2h

D2h C2 C2 C2 σxy σxz σyz

Ag , ,x2 y2 z2

B1g Rz xy

B2g Ry xz

B3g Rx yz

Au

B1u z

B2u y

B3u x

Γxyz

Γrot

D2h C2 C2 C2 σxy σxz σyz

Γxyz

Γunm

Γtot

Γxyz

Γrot

Γvib

D2h C2 C2 C2 σxy σxz σyz

⋅Ag Γvib
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E (z) (y) (x) i sum #(h)

(1)(12) (1)(2) (-1)(2) (-1)(0) (1)(0) (1)(6) (-1)(2) (-1)(0) 16 2

(1)(12) (-1)(2) (1)(2) (-1)(0) (1)(0) (-1)(6) (1)(2) (-1)(0) 8 1

(1)(12) (-1)(2) (-1)(2) (1)(0) (1)(0) (-1)(6) (-1)(2) (1)(0) 0 0

(1)(12) (1)(2) (1)(2) (1)(0) (-1)(0) (-1)(6) (-1)(2) (-1)(0) 8 1

(1)(12) (1)(2) (-1)(2) (-1)(0) (-1)(0) (-1)(6) (1)(2) (1)(0) 8 1

(1)(12) (-1)(2) (1)(2) (-1)(0) (-1)(0) (1)(6) (-1)(2) (1)(0) 16 2

(1)(12) (-1)(2) (-1)(2) (1)(0) (-1)(0) (1)(6) (1)(2) (-1)(0) 16 2

So

Of these, the 6 gerade modes will be Raman active, and the five  modes ( ) will be infrared active. The  mode
will be dark.

1. Calculation performed using Gaussian 98 (http://www.gaussian.com/) using the WebMO (http://www.webmo.net/) web-based
interface.

This page titled 4.5: Group Theory Considerations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.

D2h C2 C2 C2 σxy σxz σyz

⋅B1g Γvib

⋅B2g Γvib

⋅B3g Γvib

⋅Au Γvib

⋅B1u Γvib

⋅B2u Γvib

⋅B3u Γvib

= 3 +2 + + + +2 +2Γvib Ag B1g B2g Au B1u B2u B3u

Bnu n = 1, 2, 3 Au
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