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8.6: Atomic Spectroscopy
The complex spectra of atoms can be understood using term symbols, as they contain all of the symmetry and quantum number
values needed. The selection rules for systems that are well described by Russell-Saunders coupling are
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Consider a  transition. An energy level diagram for such a transition is shown to the right.

The selection rules predict two lines will be observed in the spectrum. The splitting between the lines will be related to the spin-
orbit coupling constant in the upper state. Note that for this transition,  and . (In spectroscopy recall that changes
are always calculated as the upper state value minus the lower state value as in ). The two lines predicted have 

 and  as depicted in the diagram.

Things get more complex for larger values of  and . For example, consider the transition between a  state and a  state
(with the  state as the upper state and both states increasing in energy with increasing J.)

Figure 

For this transition, six lines are predicted. The pattern formed by the lines can vary based on the relative values of the spin-orbit
coupling constants in each level. In general, the upper state will have the lower spin-orbit coupling constant, as electronic excitation
quenches spin-orbit coupling.

Landé Interval Rule 
The Landé Interval Rule describes the magnitude of the splittings in a term manifold. For example, it is predicted that the splitting
pattern in a 3P state is
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The splitting between the  level and the  level is twice as large as that between the  component and the  component.
In general, the Landé Interval Rule can be stated

where A is the spin-orbit splitting constant for the level. The Landé Interval Rule works well for small splittings, where the spin-
orbit interaction can be treated as a perturbation to the Hamiltonian. There will generally be small deviations from the interval rule,
especially when relativistic effects become important. The Landé Interval can be used to interpret the complex splitting patterns
that can be seen in some atomic spectra.

The Deslandres Table 

A very useful tool that can be used in spectroscopy is the Deslandres table. In such a table, transitions are arranged according to
upper and lower state combinations in such a way as to accentuate the differences in energy between quantum levels. For example,
consider the following energy level diagram for  transition, where the six transitions have been labeled a-f for convenience.

Figure 

Looking at the diagram, it should be clear that the difference in energy between lines b and c must be identical to that between lines
d and e, since both differences give the difference in energy between the  and  components of the  level. Similarly,
the difference in energy between lines b and d must be equal to that between lines c and e, as that is the difference in energy
between the  and  levels in the  state.

A Deslandres table summarizes the information in the energy level diagram and also incorporates the values of the measured lines
in the spectrum. Symbolically, the Deslandres table for the above transition would look as follows

 
 3 3A’ 2 2A’ 1

2 a b d

2A”    

1 –  c e

A”     

0 –  –  f

The table contains not only the line frequencies, but also the differences between them. It is the constancy of differences that
confirms the assignment of the spectrum.

consider the following data for a  transition. Assign the lines and calculate the spin-orbit coupling constants for both
the upper and lower states based on your assignments.

Line Freq ( )

1 18492.74
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Line Freq ( )

2 18511.98

3 18525.82

4 18540.84

5 18542.36

6 18545.06

The stick spectrum (simulated spectrum, with transitions indicated as sticks instead of lines with a definite line shape and
without intensity data indicated) looks as follows.

Figure 

Solution
It would be difficult to assign the spectrum simply based on the pattern seen above. In some cases, the spectral pattern can be
quite complex! A couple of things can be inferred, however, based on the energy level diagram above.

The smallest energy transition is for  and

the largest energy transition is either  or  (depending on the relative magnitudes of the spin-orbit splittings.)

Based on these observations, we can assign the 18492.74 line.

If 18545.06  is the  transition, then the difference should be 3A”. This predicts a lower level spin-orbit-
coupling constant of A” = 17.44 . And there must be a line at 18527.62 . But there is no such line! Hence, the
highest energy transition is not the  transition. It must be the  transition instead!

If the  line is the  transition, a value of  is predicted. This predicts a line at 
 which does exist! (This is idealized theoretical data for demonstration purposes. The Landé interval rule does

not always hold as strongly as that.)The difference between the  transition and the  transition is 19.24 
. In order to maintain a constant set of differences, there must be a line at 18511.98 , which there is. This is

assigned as the  transition.The only remaining line is 18540.84 , which is assigned as the  transition.
The final Deslandres table looks as follows.

 
3 3A’ 2 2A’ 1

2 18540.84 18511.98 18492.74

2A”    

1 --  18545.06 18525.82

A”     

0 --  --  18542.36
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In conclusion, angular momentum coupling schemes can be used to describe the states in a polyelectronic atom. These states can be
used to predict the spectroscopy of these systems. In the next chapter, we will apply a number of the principles developed in this
chapter in order to understand the electronic structure of diatomic molecules. This has important ramifications on both
spectroscopy and bonding in these molecules, and also forms a foundation for how we think about electronic structure in larger
molecules.

This page titled 8.6: Atomic Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick
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