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5.3: Solution to the Schrödinger Equation
The time-independent Schrödinger equation can be written as follows.

Since the Hamiltonian can be expressed as a sum of operators, one in  and the other in , it follows that the wavefunction should
be able to be expressed as a product of two functions.

Making this substitution, the equation becomes

With minimal rearrangement, the following result can be derived

And dividing both sides by  produces

This expression suggests that the sum of two functions, one only in  and the other only in , when added together, yields a
constant. As the two variables  and  are independent of one another, the only way this can be true is if each equation is itself
equal to a constant.

where  and  are constants of separation (the form of which is chosen for convenience) which satisfy the following
relationship.

Rotation in the xy plane  

We’ll tackle the equation in  first. One way to picture this part of the equation is that it describes the rotation of a molecule in the
xy plane only (defined by .) Given this constraint, it is clear that the  term becomes unity, . The
problem then becomes

If a substitution is made for the constants on the right-hand side of the equation,

we get
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which should look like a familiar problem. Instead of using sine and cosine functions this time though, we will use an imaginary
exponential function instead.

The boundary condition for this problem is that the function  must be single valued. Therefore

So

Dividing both sides by  and expressing the second exponential as a product yields

Using the Euler relationship

we see that

In order for this to be true, the sine term must vanish and the cosine term must become unity. This is true if  is an integer, either
positive or negative and including zero.

Energy Levels 

As such, the energy of a rigid rotator limited to rotation in the xy plane is given by

It is important to note that these functions are doubly degenerate for any non-zero value of  as there are always two values of 
that yield the same energy.

Normalization 

The wavefunctions can be normalized in the usual way.

As was the case with the particle in a box problem, the normalization factor does not depend on the quantum number. The
wavefunctions can be expressed

Φ(ϕ) = − Φ(ϕ)
d2

dϕ2
m2

l

Φ(ϕ) = Amle
i ϕml

Φ(ϕ)

Φ(ϕ) = Φ(ϕ+2π)

=Amle
i ϕm1 Am1e

i (ϕ+2π)ml

Aml

ei ϕml

1

= ei ϕml ei 2πml

= ei 2πml

= cosα+ i sinαeiα

1 = cos(2 π) + i sin(2 π)ml ml

ml

= … , −2, −1, 0, 1, 2, …ml

= = 0, ±1, ±2, …Eml

m2
l
ℏ2

2μr2
ml

ml ml

( )dϕ∫
2π

0

( )Amle
i ϕml

∗
Amle

i ϕml

1

2π

−−−
√

= 1

= dϕA2
ml ∫

2π

0

e−i ϕml ei ϕml

= dϕA2
ml ∫

2π

0

= [ϕA2
ml ]2π0

= 2πA2
ml

= Aml

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/420504?pdf


5.3.3 https://chem.libretexts.org/@go/page/420504

Rotation in three dimensions 
We are now ready to tackle the more complicated problem of rotation in three dimensions. Recall the Schrödinger equation as was
previously written.

We already know the form of the solutions for the  part of the equation. However, due to the  term in the  equation,
it is possible that the solution to the  part of the equation will introduce a new constraint on the quantum number .

Energy Levels 

The only well-behaved functions (functions that satisfy all of the boundary conditions) have energies given by

The quantum number  indicated the angular momentum.  is the z-axis component of angular momentum. The z-axis is treated
differently than the  - or -axes due to the unique manner in which the z-axis is treated in the choice of the spherical polar
coordinate system (since  is taken as the angle of the position vector with the positive z-axis.) Also, as will be shown later, the
operator , the z-axis angular momentum component operator, has a special relationship with the Hamiltonian (as does the

squared angular momentum operator, .)

Degeneracy 

The interpretation of the quantum number  is that it gives the magnitude of the z-axis component of the angular momentum
vector. And since no vector can have a component with a magnitude greater than that of the vector itself, the constraint on  that
is introduced by this solution is

so for a given value of , there are  values of  that fit the constraint. And since the energy expression does not depend on 
, it is clear that each energy level has a degeneracy that is given by . That can be demonstrated as in the diagram below

for an angular momentum vector of magnitude .

Figure 

As can be seen in the diagram, there are five possible values of  and . These five values correspond to the 
 degeneracy predicted for a state with total angular momentum given by  (and therefore  ). When we see

the wavefunctions in more detail, there will be a new reason for this constraint on the quantum number .

Wavefunctions 

For convenience, we’ll first look at the solutions where . The wavefunctions under this constraint have two parts, a
normalization constant and a Legendre polynomial in . The Legendre polynomials are another set of orthogonal
polynomials, similar to the Hermite polynomials that occur in the solution to the harmonic oscillator problem. The Legendre
polynomials can be generated by the following relationship
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The first few Legendre polynomials are given below.
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A recursion relation for the Legendre Polynomials is given by

When , the spherical harmonic function  becomes just , since the  dependence disappears.
The  part of the wavefunctions are given by

The functions are slightly different for . In this case, the functions involve a set of functions that are related to the Legendre
Polynomials called the associated Legendre polynomials. These functions are generated from the Legendre polynomials via the
following relationship.

Note that for any value of , the derivative of  vanishes.

And this is the origin of the constraint on .

The associated Legendre polynomials depend on both  and . Also, given the  dependence, the sign of  does not matter.
(The only place that the sign of  matter is in the  function.) The first few associated Legendre Polynomials are given in the
table below.
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