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8.4: Angular Momentum Coupling
Any system that has more than one source of angular momentum will be subject to coupling between those forms of angular
momentum. For example, consider the emission from an excited hydrogen atom, for which the electron is in the 2p subshell the
atom emits a photon as the electron relaxes to be in the ground 1s subshell. In fact, this transition is doubled as two lines can be
observed if viewed at high enough resolution.

Figure 

The transition is depicted in the above energy level diagram. The upper (2p) state is shown to be split into two components, one
labeled  and one . The lower state has only one component, labeled . Part of the job of quantum mechanics will be
to describe this splitting. The explanation comes in the form of angular momentum coupling.

There are two sources of angular momentum in the electronic wavefunction of the atom: the orbital angular momentum ( )

and the electron spin angular momentum ( ). These angular momenta can couple to yield a total angular momentum 

. The resultant angular momentum can be determined by the two angular momentum vectors adding in parallel of

antiparallel. The result is to split the state into two components.

Term Symbols 
Angular momentum in atoms can be summarized using a term symbol. The term symbol will indicate a number of different types
of angular momentum such as the total orbital angular momentum, total spin angular momentum and the total (spin + orbit) angular
momentum. In the limit that Russell-Saunders coupling (which will be described in detail shortly) provides a a good description
of the atom, the term symbol used will be of the form

where S is the total spin angular momentum and ( ) is the spin degeneracy, L is the total orbital angular momentum, and J
gives the total of the spin-orbit angular momentum. (The convention will be followed that lower-case letters are used to indicate
one-electron properties and upper-case letters are used to describe total atom properties.)

L and S must be calculated using vectoral sums of the single-electron angular momenta (whether orbital or spin.) The vectoral
sums can yield several values depending on the angle between the vectors. The possible magnitudes of the resultant vectors will be
quantized, with the range of magnitudes being given by a Clebsch series. Consider the addition of the angular momentum vectors
for two electrons in  subshells.

Figure 

As such, the possible values of L for a  configuration are
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As in the case of one-electron orbital angular momenta, the total orbital angular momentum is signified using a letter. The
following table shows which letters are used.

One-electron Total Atom

l Designation L Designation

0 s 0 S

1 p 1 P

2 d 2 D

3 f 3 F

4 g 4 G

The possible values of , are given by . (For all electrons, .)

So the possible values of ( ) are 3 and 1. In other words, both triplet and singlet states arise from a  configuration.

However, not all possible combinations of  and ( ) are possible. In fact, only those values that arise from distinguishable
combinations of miscrostate quantum number combinations are possible.

The Microstate Method 

The number of distinguishable microstates for a given electronic configuration is given by

where G is the number of spin-orbit states possible for a single electron and N is the number of electrons. For a  configuration, 
 and . So the number of microstates is given by

So there are 15 possible microstates possible. Each microstate will be characterized by a value of  and  for each electron
under consideration. A complete set of microstates for a  configuration is shown in the table below.  and  are indicated for
electrons 1 and 2 in the atom. Notice that only distinguishable combinations are shown!

Designation

 1 2 1 2    

1 +1 +1 +2 0

2 +1 0 +1 +1

3 +1 0 +1 0

4 +1 -1 0 +1

5 +1 -1 0 0
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Designation

6 +1 0 +1 0

7 +1 0 +1 -1

8 +1 -1 0 0

9 +1 -1 0 -1

10 0 0 0 0

11 0 -1 -1 +1

12 0 -1 -1 0

13 0 -1 -1 0

14 0 -1 -1 -1

15 -1 -1 -2 0

The “Designation” column in the above table is really for bookkeeping only. For example, it should be noted that there are two
miscrostates that yield  = +1,  = 0. One has been designated  and the other . In fact, the wavefunctions needed to
describe these term symbol components require linear combinations of both microstates.

The resulting microstates for a  configuration are ,  and . The methodology for determining this from the table of
microstates is as follows:

1. Find the largest value of  and the largest value of  that corresponds to that value.
2. From these, find L and S for the term symbol.
3. Mark combinations of  and  that match the pattern for a given term symbol.
4. Repeat from step 1 for remaining microstates. Keep repeating until there are no microstates left.

It is very important to approach this process methodically or errors will occur in determining microstate-term symbol correlations.

Utilizing this methodology to work through the above table, we start with the largest value for  which is +2. The largest value of
 that goes with it is 0. This indicates  and  values of 2 and 1 respectively.  indicates a  state.  indicates that 

 (or a singlet state.) So the resulting term is . This will have components of . Each
will have  = 0. This accounts for five of the microstates.

The largest value of  for the remaining microstates is . the largest value of  that goes with  is .
This correlates to ,  or a  state. There are nine combinations of microstates for this term symbol, one each for each
combination of  and .

After these combinations are marked, the only remaining combination is , , which corresponds to a  state.

The number of microstates used for a given term symbol can be determined from ( ) and ( ), the orbital and spin
degeneracies respectively. Consider the following table. Notice that the total of  is the same as the number of
original microstates.
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1 1 1

Total 15

Spin-Orbit Coupling 

The one thing that has not been determined from the microstates themselves is the total angular momentum , which is given by
the vectoral sum of  and .  values must be determined for each term separately. This coupling of spin and orbit angular
momenta will split the term states further.

L S J Terms

2 0 2  

1 1 2, 1, 0 , , 

0 0 0  

Again, the values of the spin-orbit degeneracies, given by (2J+1) can be used to determine if the coupling scheme has been done
properly.

J (2J+1)

 2 5

2 5

1 3

0 1

 0 1

Total 15

Again, notice that the total matches the original number of microstates.

The Hole Rule 

When dealing with a subshell that is more than half filled, it is oftentimes easier (or at least less tedious) to employ the hole rule.
The hole rule involves treating electron holes rather than the electrons themselves. Consider  and  as an example of
complementary atoms. Carbon has a  configuration and oxygen a  configuration. (Added together, that makes a 
configuration, which closes the p-subshell and is why the two atoms are complementary.)

For each microstate in the  system, there exists one in the  system that when added together would complete the p-subshell. An
example is shown below.

Figure 

This relationship ensures that the exact same symmetry relationships hold for the  system as for the  system. Hence, the term
symbols that arise from a  system are ,  and . With spin-orbit coupling, the 3P will split into three components, , 
and . Of these,  will have the lowest energy according to Hund’s rule 3b, as these terms arise from a system where the
subshell is more than half filled.
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Hund’s Rules 

Hund’s rules are used to determine the lowest energy state within the manifold of states generated from a given electronic
configuration. The rules can be summarized as follows:

1. The lowest energy state will be the one with the largest value of S.
2. For multiple states with the same largest value of S, the lowest energy state will have the largest value of L.
3. For states with the same values of L and S, the lowest energy state will have

a. The smallest value of J, if the term arises from an electronic configuration in which the subshell is less than half filled
b. The largest value of J, if the term arises from an electronic configuration in which the subshell is more than half filled

For the case of a  configuration, the largest value of S generated is S = 1, for the  state. And within this state, the lowest
energy term will be , since  corresponds to a subshell that is less than half filled.

Determine the term symbols that arise from the  configuration of  N.

Solution
Consider a carbon atom in an excited state where the electronic configuration is given by

: [He] 2s  2  3

This is an example of a pp configuration (which is different than a  configuration since the two electrons have different
values of the principle quantum number n. In this case, a number of microstate combinations become distinguishable that
would not be before. A complete set of microstates for a pp configuration is given in the table below. In this case, since the

electrons are not equivalent, it is possible for both to be in orbitals where  = +1 with  =  since they are in different

subshells.

Designation

 2p 3p 2p 3p    

1 +1 +1 +2 +1

2 +1 +1 +2 0

3 +1 +1 +2 0

4 +1 +1 +2 -1

5 +1 0 +1 +1

6 +1 0 +1 0

7 +1 0 +1 0

8 +1 0 +1 -1

9 +1 -1 0 +1

10 +1 -1 0 0

11 +1 -1 0 0
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Designation

12 +1 -1 0 -1

13 0 +1 +1 +1

14 0 +1 +1 0

15 0 +1 +1 0

16 0 +1 +1 -1

17 0 0 0 +1

18 0 0 0 0

19 0 0 0 0

20 0 0 0 -1

21 0 -1 -1 +1

22 0 -1 -1 0

23 0 -1 -1 0

24 0 -1 -1 -1

25 -1 +1 0 +1

26 -1 +1 0 0

27 -1 +1 0 0

28 -1 +1 0 -1

29 -1 0 -1 +1

30 -1 0 -1 0

31 -1 0 -1 0

32 -1 0 -1 -1

33 -1 -1 -2 +1

34 -1 -1 -2 0

35 -1 -1 -2 0
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Designation

36 -1 -1 -2 -1

In this example, there are more term symbols generated due to the fact that the electrons are not in the same subshell. The
resulting term symbols are , , , ,  and . As such, this set of microstates includes some combinations of  and

 which would not be possible if the two electrons were in the same subshell.

This page titled 8.4: Angular Momentum Coupling is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Patrick Fleming.
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