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21.7: The Discovery of Fission- The Atomic Bomb and Nuclear Power

Explain nuclear fission
Relate the concepts of critical mass and nuclear chain reactions
Summarize basic requirements for nuclear fission

Many heavier elements with smaller binding energies per nucleon can decompose into more stable elements that have intermediate mass numbers
and larger binding energies per nucleon—that is, mass numbers and binding energies per nucleon that are closer to the “peak” of the binding energy
graph near 56. Sometimes neutrons are also produced. This decomposition is called fission, the breaking of a large nucleus into smaller pieces. The
breaking is rather random with the formation of a large number of different products. Fission usually does not occur naturally, but is induced by
bombardment with neutrons. The first reported nuclear fission occurred in 1939 when three German scientists, Lise Meitner, Otto Hahn, and Fritz
Strassman, bombarded uranium-235 atoms with slow-moving neutrons that split the U-238 nuclei into smaller fragments that consisted of several
neutrons and elements near the middle of the periodic table. Since then, fission has been observed in many other isotopes, including most actinide
isotopes that have an odd number of neutrons. A typical nuclear fission reaction is shown in Figure .

Figure : When a slow neutron hits a fissionable U-235 nucleus, it is absorbed and forms an unstable U-236 nucleus. The U-236 nucleus then
rapidly breaks apart into two smaller nuclei (in this case, Ba-141 and Kr-92) along with several neutrons (usually two or three), and releases a very
large amount of energy.

Among the products of Meitner, Hahn, and Strassman’s fission reaction were barium, krypton, lanthanum, and cerium, all of which have nuclei that
are more stable than uranium-235. Since then, hundreds of different isotopes have been observed among the products of fissionable substances. A
few of the many reactions that occur for U-235, and a graph showing the distribution of its fission products and their yields, are shown in Figure 

. Similar fission reactions have been observed with other uranium isotopes, as well as with a variety of other isotopes such as those of
plutonium.

Figure : (a) Nuclear fission of U-235 produces a range of fission products. (b) The larger fission products of U-235 are typically one isotope
with a mass number around 85–105, and another isotope with a mass number that is about 50% larger, that is, about 130–150.

A tremendous amount of energy is produced by the fission of heavy elements. For instance, when one mole of U-235 undergoes fission, the products
weigh about 0.2 grams less than the reactants; this “lost” mass is converted into a very large amount of energy, about 1.8 × 10  kJ per mole of U-
235. Nuclear fission reactions produce incredibly large amounts of energy compared to chemical reactions. The fission of 1 kilogram of uranium-
235, for example, produces about 2.5 million times as much energy as is produced by burning 1 kilogram of coal.

As described earlier, when undergoing fission U-235 produces two “medium-sized” nuclei, and two or three neutrons. These neutrons may then
cause the fission of other uranium-235 atoms, which in turn provide more neutrons that can cause fission of even more nuclei, and so on. If this
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occurs, we have a nuclear chain reaction (Figure ). On the other hand, if too many neutrons escape the bulk material without interacting with a
nucleus, then no chain reaction will occur.

Figure : The fission of a large nucleus, such as U-235, produces two or three neutrons, each of which is capable of causing fission of another
nucleus by the reactions shown. If this process continues, a nuclear chain reaction occurs.

Material that can sustain a nuclear fission chain reaction is said to be fissile or fissionable. (Technically, fissile material can undergo fission with
neutrons of any energy, whereas fissionable material requires high-energy neutrons.) Nuclear fission becomes self-sustaining when the number of
neutrons produced by fission equals or exceeds the number of neutrons absorbed by splitting nuclei plus the number that escape into the
surroundings. The amount of a fissionable material that will support a self-sustaining chain reaction is a critical mass. An amount of fissionable
material that cannot sustain a chain reaction is a subcritical mass. An amount of material in which there is an increasing rate of fission is known as a
supercritical mass. The critical mass depends on the type of material: its purity, the temperature, the shape of the sample, and how the neutron
reactions are controlled (Figure ).

Figure : (a) In a subcritical mass, the fissile material is too small and allows too many neutrons to escape the material, so a chain reaction does
not occur. (b) In a critical mass, a large enough number of neutrons in the fissile material induce fission to create a chain reaction.

An atomic bomb (Figure ) contains several pounds of fissionable material,  or , a source of neutrons, and an explosive device for
compressing it quickly into a small volume. When fissionable material is in small pieces, the proportion of neutrons that escape through the
relatively large surface area is great, and a chain reaction does not take place. When the small pieces of fissionable material are brought together
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quickly to form a body with a mass larger than the critical mass, the relative number of escaping neutrons decreases, and a chain reaction and
explosion result.

Figure : (a) The nuclear fission bomb that destroyed Hiroshima on August 6, 1945, consisted of two subcritical masses of U-235, where
conventional explosives were used to fire one of the subcritical masses into the other, creating the critical mass for the nuclear explosion. (b) The
plutonium bomb that destroyed Nagasaki on August 12, 1945, consisted of a hollow sphere of plutonium that was rapidly compressed by
conventional explosives. This led to a concentration of plutonium in the center that was greater than the critical mass necessary for the nuclear
explosion.

Fission Reactors
Chain reactions of fissionable materials can be controlled and sustained without an explosion in a nuclear reactor (Figure ). Any nuclear
reactor that produces power via the fission of uranium or plutonium by bombardment with neutrons must have at least five components: nuclear fuel
consisting of fissionable material, a nuclear moderator, reactor coolant, control rods, and a shield and containment system. We will discuss these
components in greater detail later in the section. The reactor works by separating the fissionable nuclear material such that a critical mass cannot be
formed, controlling both the flux and absorption of neutrons to allow shutting down the fission reactions. In a nuclear reactor used for the production
of electricity, the energy released by fission reactions is trapped as thermal energy and used to boil water and produce steam. The steam is used to
turn a turbine, which powers a generator for the production of electricity.

Figure : (a) The Diablo Canyon Nuclear Power Plant near San Luis Obispo is the only nuclear power plant currently in operation in
California. The domes are the containment structures for the nuclear reactors, and the brown building houses the turbine where electricity is
generated. Ocean water is used for cooling. (b) The Diablo Canyon uses a pressurized water reactor, one of a few different fission reactor designs in
use around the world, to produce electricity. Energy from the nuclear fission reactions in the core heats water in a closed, pressurized system. Heat
from this system produces steam that drives a turbine, which in turn produces electricity. (credit a: modification of work by “Mike” Michael L.
Baird; credit b: modification of work by the Nuclear Regulatory Commission)

Nuclear Fuels
Nuclear fuel consists of a fissionable isotope, such as uranium-235, which must be present in sufficient quantity to provide a self-sustaining chain
reaction. In the United States, uranium ores contain from 0.05–0.3% of the uranium oxide U O ; the uranium in the ore is about 99.3%
nonfissionable U-238 with only 0.7% fissionable U-235. Nuclear reactors require a fuel with a higher concentration of U-235 than is found in nature;
it is normally enriched to have about 5% of uranium mass as U-235. At this concentration, it is not possible to achieve the supercritical mass
necessary for a nuclear explosion. Uranium can be enriched by gaseous diffusion (the only method currently used in the US), using a gas centrifuge,
or by laser separation.
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In the gaseous diffusion enrichment plant where U-235 fuel is prepared, UF  (uranium hexafluoride) gas at low pressure moves through barriers that
have holes just barely large enough for UF  to pass through. The slightly lighter UF  molecules diffuse through the barrier slightly faster than the
heavier UF  molecules. This process is repeated through hundreds of barriers, gradually increasing the concentration of UF  to the level needed
by the nuclear reactor. The basis for this process, Graham’s law, is described in the chapter on gases. The enriched UF  gas is collected, cooled until
it solidifies, and then taken to a fabrication facility where it is made into fuel assemblies. Each fuel assembly consists of fuel rods that contain many
thimble-sized, ceramic-encased, enriched uranium (usually UO ) fuel pellets. Modern nuclear reactors may contain as many as 10 million fuel
pellets. The amount of energy in each of these pellets is equal to that in almost a ton of coal or 150 gallons of oil.

Nuclear Moderators
Neutrons produced by nuclear reactions move too fast to cause fission (Figure ). They must first be slowed to be absorbed by the fuel and
produce additional nuclear reactions. A nuclear moderator is a substance that slows the neutrons to a speed that is low enough to cause fission. Early
reactors used high-purity graphite as a moderator. Modern reactors in the US exclusively use heavy water  or light water (ordinary H O),
whereas some reactors in other countries use other materials, such as carbon dioxide, beryllium, or graphite.

Reactor Coolants
A nuclear reactor coolant is used to carry the heat produced by the fission reaction to an external boiler and turbine, where it is transformed into
electricity. Two overlapping coolant loops are often used; this counteracts the transfer of radioactivity from the reactor to the primary coolant loop.
All nuclear power plants in the US use water as a coolant. Other coolants include molten sodium, lead, a lead-bismuth mixture, or molten salts.

Control Rods
Nuclear reactors use control rods (Figure ) to control the fission rate of the nuclear fuel by adjusting the number of slow neutrons present to
keep the rate of the chain reaction at a safe level. Control rods are made of boron, cadmium, hafnium, or other elements that are able to absorb
neutrons. Boron-10, for example, absorbs neutrons by a reaction that produces lithium-7 and alpha particles:

When control rod assemblies are inserted into the fuel element in the reactor core, they absorb a larger fraction of the slow neutrons, thereby slowing
the rate of the fission reaction and decreasing the power produced. Conversely, if the control rods are removed, fewer neutrons are absorbed, and the
fission rate and energy production increase. In an emergency, the chain reaction can be shut down by fully inserting all of the control rods into the
nuclear core between the fuel rods.

Figure : The nuclear reactor core shown in (a) contains the fuel and control rod assembly shown in (b). (credit: modification of work by E.
Generalic, glossary.periodni.com/glossar...en=control+rod)

Shield and Containment System

During its operation, a nuclear reactor produces neutrons and other radiation. Even when shut down, the decay products are radioactive. In addition,
an operating reactor is thermally very hot, and high pressures result from the circulation of water or another coolant through it. Thus, a reactor must
withstand high temperatures and pressures, and must protect operating personnel from the radiation. Reactors are equipped with a containment
system (or shield) that consists of three parts:
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1. The reactor vessel, a steel shell that is 3–20-centimeters thick and, with the moderator, absorbs much of the radiation produced by the reactor
2. A main shield of 1–3 meters of high-density concrete
3. A personnel shield of lighter materials that protects operators from γ rays and X-rays

In addition, reactors are often covered with a steel or concrete dome that is designed to contain any radioactive materials might be released by a
reactor accident.

Video : Click here to watch a 3-minute video from the Nuclear Energy Institute on how nuclear reactors work.

Nuclear power plants are designed in such a way that they cannot form a supercritical mass of fissionable material and therefore cannot create a
nuclear explosion. But as history has shown, failures of systems and safeguards can cause catastrophic accidents, including chemical explosions and
nuclear meltdowns (damage to the reactor core from overheating). The following Chemistry in Everyday Life feature explores three infamous
meltdown incidents.

Nuclear Accidents
The importance of cooling and containment are amply illustrated by three major accidents that occurred with the nuclear reactors at nuclear power
generating stations in the United States (Three Mile Island), the former Soviet Union (Chernobyl), and Japan (Fukushima).

In March 1979, the cooling system of the Unit 2 reactor at Three Mile Island Nuclear Generating Station in Pennsylvania failed, and the cooling
water spilled from the reactor onto the floor of the containment building. After the pumps stopped, the reactors overheated due to the high
radioactive decay heat produced in the first few days after the nuclear reactor shut down. The temperature of the core climbed to at least 2200 °C,
and the upper portion of the core began to melt. In addition, the zirconium alloy cladding of the fuel rods began to react with steam and produced
hydrogen:

The hydrogen accumulated in the confinement building, and it was feared that there was danger of an explosion of the mixture of hydrogen and air
in the building. Consequently, hydrogen gas and radioactive gases (primarily krypton and xenon) were vented from the building. Within a week,
cooling water circulation was restored and the core began to cool. The plant was closed for nearly 10 years during the cleanup process.

Although zero discharge of radioactive material is desirable, the discharge of radioactive krypton and xenon, such as occurred at the Three Mile
Island plant, is among the most tolerable. These gases readily disperse in the atmosphere and thus do not produce highly radioactive areas.
Moreover, they are noble gases and are not incorporated into plant and animal matter in the food chain. Effectively none of the heavy elements of the
core of the reactor were released into the environment, and no cleanup of the area outside of the containment building was necessary (Figure ).

The Design and Safe Operation of a Nuclear ReactorThe Design and Safe Operation of a Nuclear Reactor
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Figure : (a) In this 2010 photo of Three Mile Island, the remaining structures from the damaged Unit 2 reactor are seen on the left, whereas
the separate Unit 1 reactor, unaffected by the accident, continues generating power to this day (right). (b) President Jimmy Carter visited the Unit 2
control room a few days after the accident in 1979.

Another major nuclear accident involving a reactor occurred in April 1986, at the Chernobyl Nuclear Power Plant in Ukraine, which was still a part
of the former Soviet Union. While operating at low power during an unauthorized experiment with some of its safety devices shut off, one of the
reactors at the plant became unstable. Its chain reaction became uncontrollable and increased to a level far beyond what the reactor was designed for.
The steam pressure in the reactor rose to between 100 and 500 times the full power pressure and ruptured the reactor. Because the reactor was not
enclosed in a containment building, a large amount of radioactive material spewed out, and additional fission products were released, as the graphite
(carbon) moderator of the core ignited and burned. The fire was controlled, but over 200 plant workers and firefighters developed acute radiation
sickness and at least 32 soon died from the effects of the radiation. It is predicted that about 4000 more deaths will occur among emergency workers
and former Chernobyl residents from radiation-induced cancer and leukemia. The reactor has since been encapsulated in steel and concrete, a now-
decaying structure known as the sarcophagus. Almost 30 years later, significant radiation problems still persist in the area, and Chernobyl largely
remains a wasteland.

In 2011, the Fukushima Daiichi Nuclear Power Plant in Japan was badly damaged by a 9.0-magnitude earthquake and resulting tsunami. Three
reactors up and running at the time were shut down automatically, and emergency generators came online to power electronics and coolant systems.
However, the tsunami quickly flooded the emergency generators and cut power to the pumps that circulated coolant water through the reactors.
High-temperature steam in the reactors reacted with zirconium alloy to produce hydrogen gas. The gas escaped into the containment building, and
the mixture of hydrogen and air exploded. Radioactive material was released from the containment vessels as the result of deliberate venting to
reduce the hydrogen pressure, deliberate discharge of coolant water into the sea, and accidental or uncontrolled events.

An evacuation zone around the damaged plant extended over 12.4 miles away, and an estimated 200,000 people were evacuated from the area. All
48 of Japan’s nuclear power plants were subsequently shut down, remaining shuttered as of December 2014. Since the disaster, public opinion has
shifted from largely favoring to largely opposing increasing the use of nuclear power plants, and a restart of Japan’s atomic energy program is still
stalled (Figure 0).

Figure : (a) After the accident, contaminated waste had to be removed, and (b) an evacuation zone was set up around the plant in areas that
received heavy doses of radioactive fallout. (credit a: modification of work by “Live Action Hero”/Flickr)

The energy produced by a reactor fueled with enriched uranium results from the fission of uranium as well as from the fission of plutonium
produced as the reactor operates. As discussed previously, the plutonium forms from the combination of neutrons and the uranium in the fuel. In any
nuclear reactor, only about 0.1% of the mass of the fuel is converted into energy. The other 99.9% remains in the fuel rods as fission products and
unused fuel. All of the fission products absorb neutrons, and after a period of several months to a few years, depending on the reactor, the fission
products must be removed by changing the fuel rods. Otherwise, the concentration of these fission products would increase and absorb more
neutrons until the reactor could no longer operate.

Spent fuel rods contain a variety of products, consisting of unstable nuclei ranging in atomic number from 25 to 60, some transuranium elements,
including plutonium and americium, and unreacted uranium isotopes. The unstable nuclei and the transuranium isotopes give the spent fuel a
dangerously high level of radioactivity. The long-lived isotopes require thousands of years to decay to a safe level. The ultimate fate of the nuclear
reactor as a significant source of energy in the United States probably rests on whether or not a politically and scientifically satisfactory technique
for processing and storing the components of spent fuel rods can be developed.
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