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7.4: Molecular Orbital Theory- Electron Delocalization

To use molecular orbital theory to predict bond order

None of the approaches we have described so far can adequately explain why some compounds are colored and others are not, why
some substances with unpaired electrons are stable, and why others are effective semiconductors. These approaches also cannot
describe the nature of resonance. Such limitations led to the development of a new approach to bonding in which electrons are not
viewed as being localized between the nuclei of bonded atoms but are instead delocalized throughout the entire molecule. Just as
with the valence bond theory, the approach we are about to discuss is based on a quantum mechanical model.

Previously, we described the electrons in isolated atoms as having certain spatial distributions, called orbitals, each with a
particular orbital energy. Just as the positions and energies of electrons in atoms can be described in terms of atomic orbitals
(AOs), the positions and energies of electrons in molecules can be described in terms of molecular orbitals (MOs) A particular
spatial distribution of electrons in a molecule that is associated with a particular orbital energy.—a spatial distribution of electrons
in a molecule that is associated with a particular orbital energy. As the name suggests, molecular orbitals are not localized on a
single atom but extend over the entire molecule. Consequently, the molecular orbital approach, called molecular orbital theory is a
delocalized approach to bonding.

Molecular Orbital Theory: A Delocalized Bonding Approach

Although the molecular orbital theory is computationally demanding, the principles on which it is based are similar to those we
used to determine electron configurations for atoms. The key difference is that in molecular orbitals, the electrons are allowed to
interact with more than one atomic nucleus at a time. Just as with atomic orbitals, we create an energy-level diagram by listing the
molecular orbitals in order of increasing energy. We then fill the orbitals with the required number of valence electrons according to
the Pauli principle. This means that each molecular orbital can accommodate a maximum of two electrons with opposite spins.

Molecular Orbitals Involving Only ns Atomic Orbitals

We begin our discussion of molecular orbitals with the simplest molecule, H , formed from two isolated hydrogen atoms, each with
a 1s  electron configuration. As we explained in Chapter 9, electrons can behave like waves. In the molecular orbital approach, the
overlapping atomic orbitals are described by mathematical equations called wave functions. The 1s atomic orbitals on the two
hydrogen atoms interact to form two new molecular orbitals, one produced by taking the sum of the two H 1s wave functions, and
the other produced by taking their difference:

The molecular orbitals created from Equation  are called linear combinations of atomic orbitals (LCAOs) Molecular orbitals
created from the sum and the difference of two wave functions (atomic orbitals). A molecule must have as many molecular orbitals
as there are atomic orbitals.

A molecule must have as many molecular orbitals as there are atomic orbitals.
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Figure : Molecular Orbitals for the H  Molecule. (a) This diagram shows the formation of a bonding σ  molecular orbital for
H  as the sum of the wave functions (Ψ) of two H 1s atomic orbitals. (b) This plot of the square of the wave function (Ψ ) for the
bonding σ  molecular orbital illustrates the increased electron probability density between the two hydrogen nuclei. (Recall that
the probability density is proportional to the square of the wave function.) (c) This diagram shows the formation of an antibonding 

 molecular orbital for H  as the difference of the wave functions (Ψ) of two H 1s atomic orbitals. (d) This plot of the square of
the wave function (Ψ ) for the  antibonding molecular orbital illustrates the node corresponding to zero electron probability
density between the two hydrogen nuclei.

Adding two atomic orbitals corresponds to constructive interference between two waves, thus reinforcing their intensity; the
internuclear electron probability density is increased. The molecular orbital corresponding to the sum of the two H 1s orbitals is
called a σ  combination (pronounced “sigma one ess”) (part (a) and part (b) in Figure ). In a sigma (σ) orbital, (i.e., a bonding
molecular orbital in which the electron density along the internuclear axis and between the nuclei has cylindrical symmetry), the
electron density along the internuclear axis and between the nuclei has cylindrical symmetry; that is, all cross-sections
perpendicular to the internuclear axis are circles. The subscript 1s denotes the atomic orbitals from which the molecular orbital was
derived: The ≈ sign is used rather than an = sign because we are ignoring certain constants that are not important to our argument.

Conversely, subtracting one atomic orbital from another corresponds to destructive interference between two waves, which reduces
their intensity and causes a decrease in the internuclear electron probability density (part (c) and part (d) in Figure ). The
resulting pattern contains a node where the electron density is zero. The molecular orbital corresponding to the difference is called 

 (“sigma one ess star”). In a sigma star (σ*) orbital An antibonding molecular orbital in which there is a region of zero electron
probability (a nodal plane) perpendicular to the internuclear axis., there is a region of zero electron probability, a nodal plane,
perpendicular to the internuclear axis:

The electron density in the σ  molecular orbital is greatest between the two positively charged nuclei, and the resulting electron–
nucleus electrostatic attractions reduce repulsions between the nuclei. Thus the σ  orbital represents a bonding molecular orbital. A
molecular orbital that forms when atomic orbitals or orbital lobes with the same sign interact to give increased electron probability
between the nuclei due to constructive reinforcement of the wave functions. In contrast, electrons in the  orbital are generally
found in the space outside the internuclear region. Because this allows the positively charged nuclei to repel one another, the 
orbital is an antibonding molecular orbital (a molecular orbital that forms when atomic orbitals or orbital lobes of opposite sign
interact to give decreased electron probability between the nuclei due to destructive reinforcement of the wave functions).
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Antibonding orbitals contain a node perpendicular to the internuclear axis; bonding
orbitals do not.

Energy-Level Diagrams

Because electrons in the σ  orbital interact simultaneously with both nuclei, they have a lower energy than electrons that interact
with only one nucleus. This means that the σ  molecular orbital has a lower energy than either of the hydrogen 1s atomic orbitals.
Conversely, electrons in the  orbital interact with only one hydrogen nucleus at a time. In addition, they are farther away from
the nucleus than they were in the parent hydrogen 1s atomic orbitals. Consequently, the  molecular orbital has a higher energy
than either of the hydrogen 1s atomic orbitals. The σ  (bonding) molecular orbital is stabilized relative to the 1s atomic orbitals,
and the  (antibonding) molecular orbital is destabilized. The relative energy levels of these orbitals are shown in the energy-
level diagram (a schematic drawing that compares the energies of the molecular orbitals (bonding, antibonding, and nonbonding)
with the energies of the parent atomic orbitals) in Figure 

Figure : Molecular Orbital Energy-Level Diagram for H The two available electrons (one from each H atom) in this diagram
fill the bonding σ  molecular orbital. Because the energy of the σ  molecular orbital is lower than that of the two H 1s atomic
orbitals, the H  molecule is more stable (at a lower energy) than the two isolated H atoms.

A bonding molecular orbital is always lower in energy (more stable) than the component
atomic orbitals, whereas an antibonding molecular orbital is always higher in energy
(less stable).

To describe the bonding in a homonuclear diatomic molecule (a molecule that consists of two atoms of the same element) such as
H , we use molecular orbitals; that is, for a molecule in which two identical atoms interact, we insert the total number of valence
electrons into the energy-level diagram (Figure ). We fill the orbitals according to the Pauli principle and Hund’s rule: each
orbital can accommodate a maximum of two electrons with opposite spins, and the orbitals are filled in order of increasing energy.
Because each H atom contributes one valence electron, the resulting two electrons are exactly enough to fill the σ  bonding
molecular orbital. The two electrons enter an orbital whose energy is lower than that of the parent atomic orbitals, so the H
molecule is more stable than the two isolated hydrogen atoms. Thus molecular orbital theory correctly predicts that H  is a stable
molecule. Because bonds form when electrons are concentrated in the space between nuclei, this approach is also consistent with
our earlier discussion of electron-pair bonds.

Bond Order in Molecular Orbital Theory

In the Lewis electron structures, the number of electron pairs holding two atoms together was called the bond order. In the
molecular orbital approach, bond order One-half the net number of bonding electrons in a molecule. is defined as one-half the net
number of bonding electrons:

To calculate the bond order of H , we see from Figure  that the σ  (bonding) molecular orbital contains two electrons, while
the  (antibonding) molecular orbital is empty. The bond order of H  is therefore
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This result corresponds to the single covalent bond predicted by Lewis dot symbols. Thus molecular orbital theory and the Lewis
electron-pair approach agree that a single bond containing two electrons has a bond order of 1. Double and triple bonds contain
four or six electrons, respectively, and correspond to bond orders of 2 and 3. We can use energy-level diagrams such as the one in
Figure  to describe the bonding in other pairs of atoms and ions where n = 1, such as the H  ion, the He  ion, and the He
molecule. Again, we fill the lowest-energy molecular orbitals first while being sure not to violate the Pauli principle or Hund’s rule.

Figure : Molecular Orbital Energy-Level Diagrams for Diatomic Molecules with Only 1s Atomic Orbitals. (a) The H  ion,
(b) the He  ion, and (c) the He  molecule are shown here.
for the H2+ ion the H has one unpaired electron in the 1s orbital so the H2+ has one unpaired electron in the sigmas 1 s orbital. for
He2+ ion, He has a full 1 s orbital and He+ has one upaired electron in the 1 s orbital. This means that the sigmal 1s orbital is full
and the sigmal*1s orbital has one upaired electron. For the He2 molecule, each He has a full 1 s orbital. This means that sigma 1s
and sigma * 1s orbital are full.

Figure  shows the energy-level diagram for the H  ion, which contains two protons and only one electron. The single
electron occupies the σ  bonding molecular orbital, giving a (σ )  electron configuration. The number of electrons in an orbital is
indicated by a superscript. In this case, the bond order is

Because the bond order is greater than zero, the H  ion should be more stable than an isolated H atom and a proton. We can
therefore use a molecular orbital energy-level diagram and the calculated bond order to predict the relative stability of species such
as H . With a bond order of only 1/2 the bond in H  should be weaker than in the H  molecule, and the H–H bond should be
longer. As shown in Table , these predictions agree with the experimental data.

Figure  is the molecular orbital energy-level diagram for He . This ion has a total of three valence electrons. Because the
first two electrons completely fill the σ  molecular orbital, the Pauli principle states that the third electron must be in the 
antibonding orbital, giving a  electron configuration. This electron configuration gives a bond order of

As with H , the He  ion should be stable, but the He–He bond should be weaker and longer than in H . In fact, the He  ion can
be prepared, and its properties are consistent with our predictions (Table ).

Table : Molecular Orbital Electron Configurations, Bond Orders, Bond Lengths, and Bond Energies for some Simple Homonuclear
Diatomic Molecules and Ions

Molecule or Ion Electron Configuration Bond Order Bond Length (pm) Bond Energy (kJ/mol)

H (σ ) 1/2 106 269

H (σ ) 1 74 436

He 1/2 108 251

He 0 not observed not observed

Finally, we examine the He  molecule, formed from two He atoms with 1s  electron configurations. Figure  is the molecular
orbital energy-level diagram for He . With a total of four valence electrons, both the σ  bonding and  antibonding orbitals must
contain two electrons. This gives a  electron configuration, with a predicted bond order of (2 − 2) ÷ 2 = 0, which
indicates that the He  molecule has no net bond and is not a stable species. Experiments show that the He  molecule is actually less
stable than two isolated He atoms due to unfavorable electron–electron and nucleus–nucleus interactions.
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In molecular orbital theory, electrons in antibonding orbitals effectively cancel the stabilization resulting from electrons in bonding
orbitals. Consequently, any system that has equal numbers of bonding and antibonding electrons will have a bond order of 0, and it
is predicted to be unstable and therefore not to exist in nature. In contrast to Lewis electron structures and the valence bond
approach, molecular orbital theory is able to accommodate systems with an odd number of electrons, such as the H  ion.

In contrast to Lewis electron structures and the valence bond approach, molecular orbital
theory can accommodate systems with an odd number of electrons.

Use a molecular orbital energy-level diagram, such as those in Figure , to predict the bond order in the He  ion. Is this a
stable species?

Given: chemical species

Asked for: molecular orbital energy-level diagram, bond order, and stability

Strategy:
A. Combine the two He valence atomic orbitals to produce bonding and antibonding molecular orbital
B. s. Draw the molecular orbital energy-level diagram for the system.
C. Determine the total number of valence electrons in the He  ion. Fill the molecular orbitals in the energy-level diagram

beginning with the orbital with the lowest energy. Be sure to obey the Pauli principle and Hund’s rule while doing so.
D. Calculate the bond order and predict whether the species is stable.

Solution:
A Two He 1s atomic orbitals combine to give two molecular orbitals: a σ  bonding orbital at lower energy than the atomic
orbitals and a  antibonding orbital at higher energy. The bonding in any diatomic molecule with two He atoms can be
described using the following molecular orbital diagram:

B The He  ion has only two valence electrons (two from each He atom minus two for the +2 charge). We can also view
He  as being formed from two He  ions, each of which has a single valence electron in the 1s atomic orbital. We can now fill
the molecular orbital diagram:
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Each He+ has one unpaired electron in the 1 s orbital. This means that He2 2+ has a full sigma 1 s orbital.

The two electrons occupy the lowest-energy molecular orbital, which is the bonding (σ ) orbital, giving a (σ )  electron
configuration. To avoid violating the Pauli principle, the electron spins must be paired. C So the bond order is

He  is therefore predicted to contain a single He–He bond. Thus it should be a stable species.

Use a molecular orbital energy-level diagram to predict the valence-electron configuration and bond order of the H  ion. Is
this a stable species?

Answer

H  has a valence electron configuration of  with a bond order of 0. It is therefore predicted to be unstable.

So far, our discussion of molecular orbitals has been confined to the interaction of valence orbitals, which tend to lie farthest from
the nucleus. When two atoms are close enough for their valence orbitals to overlap significantly, the filled inner electron shells are
largely unperturbed; hence they do not need to be considered in a molecular orbital scheme. Also, when the inner orbitals are
completely filled, they contain exactly enough electrons to completely fill both the bonding and antibonding molecular orbitals that
arise from their interaction. Thus the interaction of filled shells always gives a bond order of 0, so filled shells are not a factor when
predicting the stability of a species. This means that we can focus our attention on the molecular orbitals derived from valence
atomic orbitals.

A molecular orbital diagram that can be applied to any homonuclear diatomic molecule with two identical alkali metal atoms (Li
and Cs , for example) is shown in part (a) in Figure , where M represents the metal atom. Only two energy levels are
important for describing the valence electron molecular orbitals of these species: a σ  bonding molecular orbital and a σ
antibonding molecular orbital. Because each alkali metal (M) has an ns  valence electron configuration, the M  molecule has two
valence electrons that fill the σ  bonding orbital. As a result, a bond order of 1 is predicted for all homonuclear diatomic species
formed from the alkali metals (Li , Na , K , Rb , and Cs ). The general features of these M  diagrams are identical to the diagram
for the H  molecule in Figure . Experimentally, all are found to be stable in the gas phase, and some are even stable in
solution.

Figure  : Molecular Orbital Energy-Level Diagrams for Alkali Metal and Alkaline Earth Metal Diatomic (M ) Molecules. (a)
For alkali metal diatomic molecules, the two valence electrons are enough to fill the σ  (bonding) level, giving a bond order of 1.
(b) For alkaline earth metal diatomic molecules, the four valence electrons fill both the σ  (bonding) and the σ * (nonbonding)
levels, leading to a predicted bond order of 0.
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Similarly, the molecular orbital diagrams for homonuclear diatomic compounds of the alkaline earth metals (such as Be ), in which
each metal atom has an ns  valence electron configuration, resemble the diagram for the He  molecule in part (c) in Figure .
As shown in part (b) in Figure , this is indeed the case. All the homonuclear alkaline earth diatomic molecules have four
valence electrons, which fill both the σ  bonding orbital and the σ * antibonding orbital and give a bond order of 0. Thus Be ,
Mg , Ca , Sr , and Ba  are all expected to be unstable, in agreement with experimental data.In the solid state, however, all the
alkali metals and the alkaline earth metals exist as extended lattices held together by metallic bonding. At low temperatures,  is
stable.

Use a qualitative molecular orbital energy-level diagram to predict the valence electron configuration, bond order, and likely
existence of the Na  ion.

Given: chemical species

Asked for: molecular orbital energy-level diagram, valence electron configuration, bond order, and stability

Strategy:
A. Combine the two sodium valence atomic orbitals to produce bonding and antibonding molecular orbitals. Draw the

molecular orbital energy-level diagram for this system.
B. Determine the total number of valence electrons in the Na  ion. Fill the molecular orbitals in the energy-level diagram

beginning with the orbital with the lowest energy. Be sure to obey the Pauli principle and Hund’s rule while doing so.
C. Calculate the bond order and predict whether the species is stable.

Solution:
A Because sodium has a [Ne]3s  electron configuration, the molecular orbital energy-level diagram is qualitatively identical to
the diagram for the interaction of two 1s atomic orbitals. B The Na  ion has a total of three valence electrons (one from each
Na atom and one for the negative charge), resulting in a filled σ  molecular orbital, a half-filled σ and a 
electron configuration.

C The bond order is (2-1)÷2=1/2 With a fractional bond order, we predict that the Na  ion exists but is highly reactive.

Use a qualitative molecular orbital energy-level diagram to predict the valence electron configuration, bond order, and likely
existence of the Ca  ion.

Answer

Ca  has a  electron configurations and a bond order of 1/2 and should exist.

Molecular Orbitals Formed from ns and np Atomic Orbitals
Atomic orbitals other than ns orbitals can also interact to form molecular orbitals. Because individual p, d, and f orbitals are not
spherically symmetrical, however, we need to define a coordinate system so we know which lobes are interacting in three-
dimensional space. Recall that for each np subshell, for example, there are np , np , and np  orbitals. All have the same energy and
are therefore degenerate, but they have different spatial orientations.
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Just as with ns orbitals, we can form molecular orbitals from np orbitals by taking their mathematical sum and difference. When
two positive lobes with the appropriate spatial orientation overlap, as illustrated for two np  atomic orbitals in part (a) in Figure 

, it is the mathematical difference of their wave functions that results in constructive interference, which in turn increases the
electron probability density between the two atoms. The difference therefore corresponds to a molecular orbital called a 
bonding molecular orbital because, just as with the σ orbitals discussed previously, it is symmetrical about the internuclear axis (in
this case, the z-axis):

The other possible combination of the two np  orbitals is the mathematical sum:

In this combination, shown in part (b) in Figure , the positive lobe of one np  atomic orbital overlaps the negative lobe of the
other, leading to destructive interference of the two waves and creating a node between the two atoms. Hence this is an antibonding
molecular orbital. Because it, too, is symmetrical about the internuclear axis, this molecular orbital is called a 

 antibonding molecular orbital. Whenever orbitals combine, the bonding combination is always lower
in energy (more stable) than the atomic orbitals from which it was derived, and the antibonding combination is higher in energy
(less stable).

Figure  Formation of Molecular Orbitals from np  Atomic Orbitals on Adjacent Atoms.(a) By convention, in a linear molecule
or ion, the z-axis always corresponds to the internuclear axis, with +z to the right. As a result, the signs of the lobes of the np
atomic orbitals on the two atoms alternate − + − +, from left to right. In this case, the σ (bonding) molecular orbital corresponds to
the mathematical difference, in which the overlap of lobes with the same sign results in increased probability density between the
nuclei. (b) In contrast, the σ* (antibonding) molecular orbital corresponds to the mathematical sum, in which the overlap of lobes
with opposite signs results in a nodal plane of zero probability density perpendicular to the internuclear axis.

Overlap of atomic orbital lobes with the same sign produces a bonding molecular orbital, regardless of whether it corresponds
to the sum or the difference of the atomic orbitals.

The remaining p orbitals on each of the two atoms, np  and np , do not point directly toward each other. Instead, they are
perpendicular to the internuclear axis. If we arbitrarily label the axes as shown in Figure , we see that we have two pairs of np
orbitals: the two np  orbitals lying in the plane of the page, and two np  orbitals perpendicular to the plane. Although these two
pairs are equivalent in energy, the np  orbital on one atom can interact with only the np  orbital on the other, and the np  orbital on
one atom can interact with only the np  on the other. These interactions are side-to-side rather than the head-to-head interactions
characteristic of σ orbitals. Each pair of overlapping atomic orbitals again forms two molecular orbitals: one corresponds to the
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arithmetic sum of the two atomic orbitals and one to the difference. The sum of these side-to-side interactions increases the electron
probability in the region above and below a line connecting the nuclei, so it is a bonding molecular orbital that is called a pi (π)
orbital (a bonding molecular orbital formed from the side-to-side interactions of two or more parallel np atomic orbitals). The
difference results in the overlap of orbital lobes with opposite signs, which produces a nodal plane perpendicular to the internuclear
axis; hence it is an antibonding molecular orbital, called a pi star (π*) orbital An antibonding molecular orbital formed from the
difference of the side-to-side interactions of two or more parallel np atomic orbitals, creating a nodal plane perpendicular to the
internuclear axis..

The two np  orbitals can also combine using side-to-side interactions to produce a bonding  molecular orbital and an
antibonding  molecular orbital. Because the np  and np  atomic orbitals interact in the same way (side-to-side) and have the
same energy, the  and molecular orbitals are a degenerate pair, as are the  and  molecular orbitals.

Figure : Formation of π Molecular Orbitals from np  and np  Atomic Orbitals on Adjacent Atoms.(a) Because the signs of the
lobes of both the np  and the np  atomic orbitals on adjacent atoms are the same, in both cases the mathematical sum corresponds to
a π (bonding) molecular orbital. (b) In contrast, in both cases, the mathematical difference corresponds to a π* (antibonding)
molecular orbital, with a nodal plane of zero probability density perpendicular to the internuclear axis.

Figure  is an energy-level diagram that can be applied to two identical interacting atoms that have three np atomic orbitals
each. There are six degenerate p atomic orbitals (three from each atom) that combine to form six molecular orbitals, three bonding
and three antibonding. The bonding molecular orbitals are lower in energy than the atomic orbitals because of the increased
stability associated with the formation of a bond. Conversely, the antibonding molecular orbitals are higher in energy, as shown.
The energy difference between the σ and σ* molecular orbitals is significantly greater than the difference between the two π and π*
sets. The reason for this is that the atomic orbital overlap and thus the strength of the interaction are greater for a σ bond than a π
bond, which means that the σ molecular orbital is more stable (lower in energy) than the π molecular orbitals.

Figure  : The Relative Energies of the σ and π Molecular Orbitals Derived from np , np , and np  Orbitals on Identical
Adjacent Atoms. Because the two np  orbitals point directly at each other, their orbital overlap is greater, so the difference in energy
between the σ and σ* molecular orbitals is greater than the energy difference between the π and π* orbitals.

Although many combinations of atomic orbitals form molecular orbitals, we will discuss only one other interaction: an ns atomic
orbital on one atom with an np  atomic orbital on another. As shown in Figure , the sum of the two atomic wave functions (ns
+ np ) produces a σ bonding molecular orbital. Their difference (ns − np ) produces a σ* antibonding molecular orbital, which has a
nodal plane of zero probability density perpendicular to the internuclear axis.

= n (A) +n (B)πnpx px px (7.4.9)

= n (A) −n (B)π⋆
npx px px (7.4.10)
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Figure  : Formation of Molecular Orbitals from an ns Atomic Orbital on One Atom and an np  Atomic Orbital on an Adjacent
Atom.(a) The mathematical sum results in a σ (bonding) molecular orbital, with increased probability density between the nuclei.
(b) The mathematical difference results in a σ* (antibonding) molecular orbital, with a nodal plane of zero probability density
perpendicular to the internuclear axis.

Summary
Molecular orbital theory, a delocalized approach to bonding, can often explain a compound’s color, why a compound with unpaired
electrons is stable, semiconductor behavior, and resonance, none of which can be explained using a localized approach. A
molecular orbital (MO) is an allowed spatial distribution of electrons in a molecule that is associated with a particular orbital
energy. Unlike an atomic orbital (AO), which is centered on a single atom, a molecular orbital extends over all the atoms in a
molecule or ion. Hence the molecular orbital theory of bonding is a delocalized approach. Molecular orbitals are constructed
using linear combinations of atomic orbitals (LCAOs), which are usually the mathematical sums and differences of wave
functions that describe overlapping atomic orbitals. Atomic orbitals interact to form three types of molecular orbitals.

A completely bonding molecular orbital contains no nodes (regions of zero electron probability) perpendicular to the internuclear
axis, whereas a completely antibonding molecular orbital contains at least one node perpendicular to the internuclear axis. A
sigma (σ) orbital (bonding) or a sigma star (σ*) orbital (antibonding) is symmetrical about the internuclear axis. Hence all cross-
sections perpendicular to that axis are circular. Both a pi (π) orbital (bonding) and a pi star (π*) orbital (antibonding) possess a
nodal plane that contains the nuclei, with electron density localized on both sides of the plane.

The energies of the molecular orbitals versus those of the parent atomic orbitals can be shown schematically in an energy-level
diagram. The electron configuration of a molecule is shown by placing the correct number of electrons in the appropriate energy-
level diagram, starting with the lowest-energy orbital and obeying the Pauli principle; that is, placing only two electrons with
opposite spin in each orbital. From the completed energy-level diagram, we can calculate the bond order, defined as one-half the
net number of bonding electrons. In bond orders, electrons in antibonding molecular orbitals cancel electrons in bonding molecular
orbitals, while electrons in nonbonding orbitals have no effect and are not counted. Bond orders of 1, 2, and 3 correspond to single,
double, and triple bonds, respectively. Molecules with predicted bond orders of 0 are generally less stable than the isolated atoms
and do not normally exist.

Contributors and Attributions
Modified by Joshua Halpern (Howard University)

1. Orbitals or orbital lobes with the same sign interact to give increased electron probability along the plane of the internuclear
axis because of constructive reinforcement of the wave functions. Consequently, electrons in such molecular orbitals help to
hold the positively charged nuclei together. Such orbitals are bonding molecular orbitals, and they are always lower in energy
than the parent atomic orbitals.

2. Orbitals or orbital lobes with opposite signs interact to give decreased electron probability density between the nuclei because
of destructive interference of the wave functions. Consequently, electrons in such molecular orbitals are primarily located
outside the internuclear region, leading to increased repulsions between the positively charged nuclei. These orbitals are called
antibonding molecular orbitals, and they are always higher in energy than the parent atomic orbitals.

3. Some atomic orbitals interact only very weakly, and the resulting molecular orbitals give essentially no change in the electron
probability density between the nuclei. Hence electrons in such orbitals have no effect on the bonding in a molecule or ion.
These orbitals are nonbonding molecular orbitals, and they have approximately the same energy as the parent atomic orbitals.
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To apply Molecular Orbital Theory to the diatomic homonuclear molecule from the elements in the second period.

If we combine the splitting schemes for the 2s and 2p orbitals, we can predict bond order in all of the diatomic molecules and ions
composed of elements in the first complete row of the periodic table. Remember that only the valence orbitals of the atoms need be
considered; as we saw in the cases of lithium hydride and dilithium, the inner orbitals remain tightly bound and retain their
localized atomic character. We now describe examples of systems involving period 2 homonuclear diatomic molecules, such as N ,
O , and F .

1. The number of molecular orbitals produced is the same as the number of atomic orbitals used to create them (the "law of
conservation of orbitals").

2. As the overlap between two atomic orbitals increases, the difference in energy between the resulting bonding and
antibonding molecular orbitals increases.

3. When two atomic orbitals combine to form a pair of molecular orbitals, the bonding molecular orbital is stabilized about as
much as the antibonding molecular orbital is destabilized.

4. The interaction between atomic orbitals is greatest when they have the same energy.

We illustrate how to use these points by constructing a molecular orbital energy-level diagram for F . We use the diagram in part
(a) in Figure ; the n = 1 orbitals (σ  and σ *) are located well below those of the n = 2 level and are not shown. As illustrated
in the diagram, the σ  and σ * molecular orbitals are much lower in energy than the molecular orbitals derived from the 2p atomic
orbitals because of the large difference in energy between the 2s and 2p atomic orbitals of fluorine. The lowest-energy molecular
orbital derived from the three 2p orbitals on each F is  and the next most stable are the two degenerate orbitals,  and .
For each bonding orbital in the diagram, there is an antibonding orbital, and the antibonding orbital is destabilized by about as
much as the corresponding bonding orbital is stabilized. As a result, the  orbital is higher in energy than either of the
degenerate  and  orbitals. We can now fill the orbitals, beginning with the one that is lowest in energy.

Each fluorine has 7 valence electrons, so there are a total of 14 valence electrons in the F  molecule. Starting at the lowest energy
level, the electrons are placed in the orbitals according to the Pauli principle and Hund’s rule. Two electrons each fill the σ  and
σ * orbitals, 2 fill the  orbital, 4 fill the two degenerate π orbitals, and 4 fill the two degenerate π  orbitals, for a total of 14
electrons. To determine what type of bonding the molecular orbital approach predicts F  to have, we must calculate the bond order.
According to our diagram, there are 8 bonding electrons and 6 antibonding electrons, giving a bond order of (8 − 6) ÷ 2 = 1. Thus
F  is predicted to have a stable F–F single bond, in agreement with experimental data.

 Learning Objectives
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Figure : Molecular Orbital Energy-Level Diagrams for Homonuclear Diatomic Molecules.(a) For F , with 14 valence
electrons (7 from each F atom), all of the energy levels except the highest,  are filled. This diagram shows 8 electrons in
bonding orbitals and 6 in antibonding orbitals, resulting in a bond order of 1. (b) For O , with 12 valence electrons (6 from each O
atom), there are only 2 electrons to place in the  pair of orbitals. Hund’s rule dictates that one electron occupies each
orbital, and their spins are parallel, giving the O  molecule two unpaired electrons. This diagram shows 8 electrons in bonding
orbitals and 4 in antibonding orbitals, resulting in a predicted bond order of 2.

We now turn to a molecular orbital description of the bonding in O . It so happens that the molecular orbital description of this
molecule provided an explanation for a long-standing puzzle that could not be explained using other bonding models. To obtain the
molecular orbital energy-level diagram for O , we need to place 12 valence electrons (6 from each O atom) in the energy-level
diagram shown in part (b) in Figure . We again fill the orbitals according to Hund’s rule and the Pauli principle, beginning
with the orbital that is lowest in energy. Two electrons each are needed to fill the σ  and σ * orbitals, 2 more to fill the 
orbital, and 4 to fill the degenerate  and  orbitals. According to Hund’s rule, the last 2 electrons must be placed in separate

π  orbitals with their spins parallel, giving two unpaired electrons. This leads to a predicted bond order of (8 − 4) ÷ 2 = 2, which
corresponds to a double bond, in agreement with experimental data (Table 4.5): the O–O bond length is 120.7 pm, and the bond
energy is 498.4 kJ/mol at 298 K.

None of the other bonding models can predict the presence of two unpaired electrons in O . Chemists had long wondered why,
unlike most other substances, liquid O  is attracted into a magnetic field. As shown in Figure , it actually remains suspended
between the poles of a magnet until the liquid boils away. The only way to explain this behavior was for O  to have unpaired
electrons, making it paramagnetic, exactly as predicted by molecular orbital theory. This result was one of the earliest triumphs of
molecular orbital theory over the other bonding approaches we have discussed.

Figure : Liquid O  Suspended between the Poles of a Magnet.Because the O  molecule has two unpaired electrons, it is
paramagnetic. Consequently, it is attracted into a magnetic field, which allows it to remain suspended between the poles of a
powerful magnet until it evaporates. Full video can be found at www.youtube.com/watch?featur...&v=Lt4P6ctf06Q.
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The magnetic properties of O  are not just a laboratory curiosity; they are absolutely crucial to the existence of life. Because Earth’s
atmosphere contains 20% oxygen, all organic compounds, including those that compose our body tissues, should react rapidly with
air to form H O, CO , and N  in an exothermic reaction. Fortunately for us, however, this reaction is very, very slow. The reason
for the unexpected stability of organic compounds in an oxygen atmosphere is that virtually all organic compounds, as well as H O,
CO , and N , have only paired electrons, whereas oxygen has two unpaired electrons. Thus the reaction of O  with organic
compounds to give H O, CO , and N  would require that at least one of the electrons on O  change its spin during the reaction.
This would require a large input of energy, an obstacle that chemists call a spin barrier. Consequently, reactions of this type are
usually exceedingly slow. If they were not so slow, all organic substances, including this book and you, would disappear in a puff
of smoke!

For period 2 diatomic molecules to the left of N  in the periodic table, a slightly different molecular orbital energy-level diagram is
needed because the  molecular orbital is slightly higher in energy than the degenerate  and  orbitals. The difference in
energy between the 2s and 2p atomic orbitals increases from Li  to F  due to increasing nuclear charge and poor screening of the 2s
electrons by electrons in the 2p subshell. The bonding interaction between the 2s orbital on one atom and the 2pz orbital on the
other is most important when the two orbitals have similar energies. This interaction decreases the energy of the σ  orbital and
increases the energy of the  orbital. Thus for Li , Be , B , C , and N , the  orbital is higher in energy than the  orbitals,
as shown in Figure  Experimentally, it is found that the energy gap between the ns and np atomic orbitals increases as the
nuclear charge increases (Figure  ). Thus for example, the  molecular orbital is at a lower energy than the  pair.

Figure : Molecular Orbital Energy-Level Diagrams for the Diatomic Molecules of the Period 2 Elements. Unlike earlier
diagrams, only the molecular orbital energy levels for the molecules are shown here. For simplicity, the atomic orbital energy levels
for the component atoms have been omitted. For Li  through N , the  orbital is higher in energy than the  orbitals. In
contrast, the  orbital is lower in energy than the  orbitals for O  and F  due to the increase in the energy difference
between the 2s and 2p atomic orbitals as the nuclear charge increases across the row.

Completing the diagram for N  in the same manner as demonstrated previously, we find that the 10 valence electrons result in 8
bonding electrons and 2 antibonding electrons, for a predicted bond order of 3, a triple bond. Experimental data show that the N–N
bond is significantly shorter than the F–F bond (109.8 pm in N  versus 141.2 pm in F ), and the bond energy is much greater for N
than for F  (945.3 kJ/mol versus 158.8 kJ/mol, respectively). Thus the N  bond is much shorter and stronger than the F  bond,
consistent with what we would expect when comparing a triple bond with a single bond.

Use a qualitative molecular orbital energy-level diagram to predict the electron configuration, the bond order, and the number
of unpaired electrons in S , a bright blue gas at high temperatures.

Given: chemical species

Asked for: molecular orbital energy-level diagram, bond order, and number of unpaired electrons

Strategy:
A. Write the valence electron configuration of sulfur and determine the type of molecular orbitals formed in S . Predict the

relative energies of the molecular orbitals based on how close in energy the valence atomic orbitals are to one another.
B. Draw the molecular orbital energy-level diagram for this system and determine the total number of valence electrons in S .
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C. Fill the molecular orbitals in order of increasing energy, being sure to obey the Pauli principle and Hund’s rule.
D. Calculate the bond order and describe the bonding.

Solution:
A Sulfur has a [Ne]3s 3p  valence electron configuration. To create a molecular orbital energy-level diagram similar to those
in Figure  and Figure , we need to know how close in energy the 3s and 3p atomic orbitals are because their energy
separation will determine whether the  or the > molecular orbital is higher in energy. Because the ns–np energy gap
increases as the nuclear charge increases (Figure ), the  molecular orbital will be lower in energy than the  pair.

B The molecular orbital energy-level diagram is as follows:

Two filled sigma orbitals, one filled sigma * orbital, two filled pi orbitals, and two pi * orbitals with one unpaired electron.

Each sulfur atom contributes 6 valence electrons, for a total of 12 valence electrons.

C Ten valence electrons are used to fill the orbitals through  and , leaving 2 electrons to occupy the degenerate 
and  pair. From Hund’s rule, the remaining 2 electrons must occupy these orbitals separately with their spins aligned. With

the numbers of electrons written as superscripts, the electron configuration of S  is  with
2 unpaired electrons. The bond order is (8 − 4) ÷ 2 = 2, so we predict an S=S double bond.

Use a qualitative molecular orbital energy-level diagram to predict the electron configuration, the bond order, and the number
of unpaired electrons in the peroxide ion (O ).

Answer

 bond order of 1; no unpaired electrons

Molecular Orbitals for Heteronuclear Diatomic Molecules
Diatomic molecules with two different atoms are called heteronuclear diatomic molecules. When two nonidentical atoms interact to
form a chemical bond, the interacting atomic orbitals do not have the same energy. If, for example, element B is more
electronegative than element A (χ  > χ ), the net result is a “skewed” molecular orbital energy-level diagram, such as the one
shown for a hypothetical A–B molecule in Figure . The atomic orbitals of element B are uniformly lower in energy than the
corresponding atomic orbitals of element A because of the enhanced stability of the electrons in element B. The molecular orbitals
are no longer symmetrical, and the energies of the bonding molecular orbitals are more similar to those of the atomic orbitals of B.
Hence the electron density of bonding electrons is likely to be closer to the more electronegative atom. In this way, molecular
orbital theory can describe a polar covalent bond.
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Figure : Molecular Orbital Energy-Level Diagram for a Heteronuclear Diatomic Molecule AB, Where χ  > χ The bonding
molecular orbitals are closer in energy to the atomic orbitals of the more electronegative B atom. Consequently, the electrons in the
bonding orbitals are not shared equally between the two atoms. On average, they are closer to the B atom, resulting in a polar
covalent bond.

A molecular orbital energy-level diagram is always skewed toward the more
electronegative atom.

Nitric oxide (NO) is an example of a heteronuclear diatomic molecule. The reaction of O  with N  at high temperatures in
internal combustion engines forms nitric oxide, which undergoes a complex reaction with O  to produce NO , which in turn is
responsible for the brown color we associate with air pollution. Recently, however, nitric oxide has also been recognized to be
a vital biological messenger involved in regulating blood pressure and long-term memory in mammals.

Because NO has an odd number of valence electrons (5 from nitrogen and 6 from oxygen, for a total of 11), its bonding and
properties cannot be successfully explained by either the Lewis electron-pair approach or valence bond theory. The molecular
orbital energy-level diagram for NO (Figure ) shows that the general pattern is similar to that for the O  molecule
(Figure ). Because 10 electrons are sufficient to fill all the bonding molecular orbitals derived from 2p atomic orbitals,
the 11th electron must occupy one of the degenerate π  orbitals. The predicted bond order for NO is therefore (8-3) ÷ 2 = 2 1/2
. Experimental data, showing an N–O bond length of 115 pm and N–O bond energy of 631 kJ/mol, are consistent with this
description. These values lie between those of the N  and O  molecules, which have triple and double bonds, respectively. As
we stated earlier, molecular orbital theory can therefore explain the bonding in molecules with an odd number of electrons,
such as NO, whereas Lewis electron structures cannot.

7.4.4 B A. 

 An Odd Number of Valence Electrons: NO
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Figure : Molecular Orbital Energy-Level Diagram for . Because  has 11 valence electrons, it is paramagnetic,
with a single electron occupying the  pair of orbitals.

Note that electronic structure studies show the ground state configuration of  to be 
in order of increasing energy. Hence, the  orbitals are lower in energy than the  orbital. This is because the 
molecule is near the transition of flipping energies levels observed in homonuclear diatomics where the sigma bond drops
below the pi bond (Figure ).

Molecular orbital theory can also tell us something about the chemistry of . As indicated in the energy-level diagram in
Figure , NO has a single electron in a relatively high-energy molecular orbital. We might therefore expect it to have
similar reactivity as alkali metals such as Li and Na with their single valence electrons. In fact,  is easily oxidized to the 

 cation, which is isoelectronic with  and has a bond order of 3, corresponding to an N≡O triple bond.

Nonbonding Molecular Orbitals
Molecular orbital theory is also able to explain the presence of lone pairs of electrons. Consider, for example, the HCl molecule,
whose Lewis electron structure has three lone pairs of electrons on the chlorine atom. Using the molecular orbital approach to
describe the bonding in HCl, we can see from Figure  that the 1s orbital of atomic hydrogen is closest in energy to the 3p
orbitals of chlorine. Consequently, the filled Cl 3s atomic orbital is not involved in bonding to any appreciable extent, and the only
important interactions are those between the H 1s and Cl 3p orbitals. Of the three p orbitals, only one, designated as 3p , can
interact with the H 1s orbital. The 3p  and 3p  atomic orbitals have no net overlap with the 1s orbital on hydrogen, so they are not
involved in bonding. Because the energies of the Cl 3s, 3p , and 3p  orbitals do not change when HCl forms, they are called
nonbonding molecular orbitals. A nonbonding molecular orbital occupied by a pair of electrons is the molecular orbital
equivalent of a lone pair of electrons. By definition, electrons in nonbonding orbitals have no effect on bond order, so they are not
counted in the calculation of bond order. Thus the predicted bond order of HCl is (2 − 0) ÷ 2 = 1. Because the σ bonding molecular
orbital is closer in energy to the Cl 3p  than to the H 1s atomic orbital, the electrons in the σ orbital are concentrated closer to the
chlorine atom than to hydrogen. A molecular orbital approach to bonding can therefore be used to describe the polarization of the
H–Cl bond to give .
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Figure : Molecular Orbital Energy-Level Diagram for HCl. The hydrogen 1s atomic orbital interacts most strongly with the
3p  orbital on chlorine, producing a bonding/antibonding pair of molecular orbitals. The other electrons on Cl are best viewed as
nonbonding. As a result, only the bonding σ orbital is occupied by electrons, giving a bond order of 1.

Electrons in nonbonding molecular orbitals have no effect on bond order.

Use a “skewed” molecular orbital energy-level diagram like the one in Figure  to describe the bonding in the cyanide ion
(CN ). What is the bond order?

Given: chemical species

Asked for: “skewed” molecular orbital energy-level diagram, bonding description, and bond order

Strategy:
A. Calculate the total number of valence electrons in CN . Then place these electrons in a molecular orbital energy-level

diagram like Figure  in order of increasing energy. Be sure to obey the Pauli principle and Hund’s rule while doing so.
B. Calculate the bond order and describe the bonding in CN .

Solution:
A The CN  ion has a total of 10 valence electrons: 4 from C, 5 from N, and 1 for the −1 charge. Placing these electrons in an
energy-level diagram like Figure  fills the five lowest-energy orbitals, as shown here:

Because , the atomic orbitals of N (on the right) are lower in energy than those of C.

B The resulting valence electron configuration gives a predicted bond order of (8 − 2) ÷ 2 = 3, indicating that the CN  ion has a
triple bond, analogous to that in N .
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Use a qualitative molecular orbital energy-level diagram to describe the bonding in the hypochlorite ion (OCl ). What is the
bond order?

Answer

All molecular orbitals except the highest-energy σ* are filled, giving a bond order of 1.

Although the molecular orbital approach reveals a great deal about the bonding in a given molecule, the procedure quickly becomes
computationally intensive for molecules of even moderate complexity. Furthermore, because the computed molecular orbitals
extend over the entire molecule, they are often difficult to represent in a way that is easy to visualize. Therefore we do not use a
pure molecular orbital approach to describe the bonding in molecules or ions with more than two atoms. Instead, we use a valence
bond approach and a molecular orbital approach to explain, among other things, the concept of resonance, which cannot adequately
be explained using other methods.

Summary
Molecular orbital energy-level diagrams for diatomic molecules can be created if the electron configuration of the parent atoms is
known, following a few simple rules. Most important, the number of molecular orbitals in a molecule is the same as the number of
atomic orbitals that interact. The difference between bonding and antibonding molecular orbital combinations is proportional to the
overlap of the parent orbitals and decreases as the energy difference between the parent atomic orbitals increases. With such an
approach, the electronic structures of virtually all commonly encountered homonuclear diatomic molecules, molecules with two
identical atoms, can be understood. The molecular orbital approach correctly predicts that the O  molecule has two unpaired
electrons and hence is attracted into a magnetic field. In contrast, most substances have only paired electrons. A similar procedure
can be applied to molecules with two dissimilar atoms, called heteronuclear diatomic molecules, using a molecular orbital
energy-level diagram that is skewed or tilted toward the more electronegative element. Molecular orbital theory is able to describe
the bonding in a molecule with an odd number of electrons such as NO and even to predict something about its chemistry.
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