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3.2: A Classical Wave Equation
The easiest way to find a differential equation that will provide wavefunctions as solutions is to start with a wavefunction and work
backwards. We will consider a sine wave, take its first and second derivatives, and then examine the results. The amplitude of a
sine wave can depend upon position, , in space,

or upon time, ,

or upon both space and time,

We can simplify the notation by using the definitions of a wave vector, , and the angular frequency,  to get

When we take partial derivatives of A(x,t) with respect to both  and , we find that the second derivatives are remarkably simple
and similar.

By looking for relationships between the second derivatives, we find that both involve ; consequently an equality is
revealed.

Recall that  and  are related; their product gives the velocity of the wave, . Be careful to distinguish between the similar
but different symbols for frequency  and the velocity v. If in ω = 2πν we replace ν with v/λ, then

and Equation  can be rewritten to give what is known as the classical wave equation in one dimension. This equation is very
important. It is a differential equation whose solution describes all waves in one dimension that move with a constant velocity (e.g.
the vibrations of strings in musical instruments) and it can be generalized to three dimensions. The classical wave equation in one-
dimension is

Complete the steps leading from Equation  to Equations  and  and then to Equation .
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