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10.6: Semi-Empirical Methods- Extended Hückel
An electronic structure calculation from first principles (ab initio) presents a number of challenges. Many integrals must be
evaluated followed by a self-consistent process for assessing the electron-electron interaction and then electron correlation effects
must be taken into account. Semi-empirical methods do not proceed analytically in addressing these issues, but rather uses
experimental data to facilitate the process. Several such methods are available. These methods are illustrated here by the
approaches built on the work of Hückel.

Extended Hückel Molecular Orbital Method (EH) 
One of the first semi-empirical methods to be developed was Hückel Molecular Orbital Theory (HMO). HMO was developed to
describe molecules containing conjugated double bonds. HMO considered only electrons in  orbitals and ignored all other
electrons in a molecule. It was successful because it could address a number of issues associated with a large group of molecules at
a time when calculations were done on mechanical calculators.

The Extended Hückel Molecular Orbital Method (EH) grew out of the need to consider all valence electrons in a molecular
orbital calculation. By considering all valence electrons, chemists could determine molecular structure, compute energy barriers for
rotation about bonds, and even determine energies and structures of transition states for reactions. The computed energies could be
used to choose between proposed transitions states to clarify reaction mechanisms.

In the EH method, only the  valence electrons are considered. The total valence electron wavefunction is described as a product of
the one-electron wavefunctions.

where  is the number of electrons and  identifies the molecular orbital. Each molecular orbital is written as an linear combination
of atomic orbitals (LCAO).

where now the  are the valance atomic orbitals chosen to include the 2s, 2p , 2p , and 2p  of the carbons and heteroatoms in the
molecule and the 1s orbitals of the hydrogen atoms. These orbitals form the basis set. Since this basis set contains only the atomic-
like orbitals for the valence shell of the atoms in a molecule, it is called a minimal basis set.

Each , with , represents a molecular orbital, i.e. a wavefunction for one electron moving in the electrostatic field of
the nuclei and the other electrons. Two electrons with different spins are placed in each molecular orbital so that the number of
occupied molecular orbitals N is half the number of electrons, , i.e. .

The number of molecular orbitals that one obtains by this procedure is equal to the number of atomic orbitals. Consequently, the
indices j and r both run from 1 to N. The  are the weighting coefficients for the atomic orbitals in the molecular orbital. These
coefficients are not necessarily equal, or in other words, the orbital on each atom is not used to the same extent to form each
molecular orbital. Different values for the coefficients give rise to different net charges at different positions in a molecule. This
charge distribution is very important when discussing spectroscopy and chemical reactivity.

The energy of the j  molecular orbital is given by a one-electron Schrödinger equation using an effective one electron Hamiltonian,
h , which expresses the interaction of an electron with the rest of the molecule.

is the energy eigenvalue of the j  molecular orbital, corresponding to the eigenfunction . The beauty of this method, as we will
see later, is that the exact form of h  is not needed. The total energy of the molecule is the sum of the single electron energies.

where  is the number of electrons in orbital .

The expectation value expression for the energy for each molecular orbital is used to find and then 

π

n

= (1) (2) (3) (3)… (n)ψvalence ψ1 ψ2 ψ3 ψ3 ψj (10.6.1)

n j

=ψj ∑
r=1

N

cjrφj (10.6.2)

φj x y z

ψj j= 1…N

n N = n/2

cjr

th

eff

=heffψj ϵjψj (10.6.3)

th ψj

eff

=Eπ ∑
j

njϵj (10.6.4)

nj j

Eπ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/1972?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Quantum_States_of_Atoms_and_Molecules_(Zielinksi_et_al)/10%3A_Theories_of_Electronic_Molecular_Structure/10.06%3A_Semi-Empirical_Methods-_Extended_Huckel
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/10%3A_Bonding_in_Polyatomic_Molecules/10.05%3A_The_pi-Electron_Approximation_of_Conjugation


10.6.2 https://chem.libretexts.org/@go/page/1972

The notation , which is called a bra-ket, just simplifies writing the expression for the integral. Note that the complex conjugate
now is identified by the left-side position and the bra notation  and not by an explicit *.

After substituting Equation  into , we obtain for each molecular orbital

which can be rewritten as

where the index  for the molecular orbital has been dropped because this equation applies to any of the molecular orbitals.

Consider a molecular orbital made up of three atomic orbitals, e.g. the three carbon  orbitals of the allyl radical, where the
internuclear axes lie in the xy-plane. Write the LCAO for this MO. Derive the full expression, starting with Equation 
and writing each term explicitly, for the energy expectation value for this LCAO in terms of heff. Compare your result with
Equation  to verify that Equation  is the general representation of your result.

Write a paragraph describing how the Variational Method could be used to find values for the coefficients cjr in the linear
combination of atomic orbitals.

To simplify the notation we use the following definitions. The integrals in the denominator of Equation  represent the overlap
between two atomic orbitals used in the linear combination. The overlap integral is written as . The integrals in the numerator of
Equation  are called either resonance integrals or coulomb integrals depending on the atomic orbitals on either side of the
operator h  as described below.

 is the overlap integral.  because we use normalized atomic orbitals. For atomic orbitals r and s on
different atoms,  has some value between 1 and 0: the further apart the two atoms, the smaller the value of .

 is the Coulomb Integral. It is the kinetic and potential energy of an electron in, or described by, an atomic
orbital, , experiencing the electrostatic interactions with all the other electrons and all the positive nuclei.

 is the Resonance Integral or Bond Integral. This integral gives the energy of an electron in the region of
space where the functions  and  overlap. This energy sometimes is referred to as the energy of the overlap charge. If  and 

 are on adjacent bonded atoms, this integral has a finite value. If the atoms are not adjacent, the value is smaller, and assumed
to be zero in the Hückel model.

In terms of this notation, Equation  can be written as

We now must find the coefficients, the c's. One must have a criterion for finding the coefficients. The criterion used is the
Variational Principle. Since the energy depends linearly on the coefficients in Equation , the method we use to find the best
set of coefficients is called the Linear Variational Method.
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Linear Variational Method 

The task is to minimize the energy with respect to all the coefficients by solving the N simultaneous equations produced by
differentiating Equation  with respect to each coefficient.

for 

Actually we also should differentiate Equation  with respect to the , but this second set of N equations is just the complex
conjugate of the first and produces no new information or constants.

To carry out this task, rewrite Equation  to obtain Equation  and then take the derivative of Equation  with
respect to each of the coefficients.

Actually we do not want to do this differentiation N times, so consider the general case where the coefficient is. Here t represents
any number between 1 and N.

This differentiation is relatively easy, and the result, which is shown by Equation , is relatively simple because some terms
in Equation  do not involve and others depend linearly on. The derivative of the terms that do not involve c  is zero (e.g.

The derivative of terms that contain is just the constant factor that multiples the, (e.g.  ). Consequently, only

terms in Equation  that contain contribute to the result, and whenever a term contains, that term appears in Equation 
 without the because we are differentiating with respect to. The result after differentiating is

If we take the complex conjugate of both sides, we obtain

Since

and

then Equation  can be reversed and written as

or upon rearranging as

There are  simultaneous equations that look like this general one; N is the number of coefficients in the LCAO. Each equation is
obtained by differentiating Equation  with respect to one of the coefficients.

Explain why the energy , show that  (write out the integral expressions and take the complex conjugate of , and
show that  (write out the integral expressions, take the complex conjugate of , and use the Hermitian property of
quantum mechanical operators).
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Rewrite your solution to Exercise  for the 3-carbon  system found in the allyl radical in the form of Equation 
and then derive the set of three simultaneous equations for the coefficients. Compare your result with Equation  to
verify that Equation  is a general representation of your result.

This method is called the linear variational method because the variable parameters affect the energy linearly unlike the shielding
parameter in the wavefunction that was discussed in Chapter 9. The shielding parameter appears in the exponential part of the
wavefunction and the effect on the energy is nonlinear. A nonlinear variational calculation is more laborious than a linear
variational calculation.

Equations  and  represent a set of homogeneous linear equations. As we discussed for the case of normal mode
analysis in Chapter 6, a number of methods can be used for solving these equations to obtain values for the energies, , and the
coefficients, the .

Matrix methods are the most convenient and powerful. First we write more explicitly the set of simultaneous equations that is
represented by Equation . The first equation has t = 1, the second t = 2, etc. N represents the index of the last atomic orbital in the
linear combination.

This set of equations can be represented in matrix notation.

Here we have square matrix H and S multiplying a column vector C' and a scalar . Rearranging produces

For the three atomic orbitals you used in Exercises  and , write the Hamiltonian matrix H, the overlap matrix S, and the
vector C'. Show by matrix multiplication according to Equation  that you produce the same Equations that you obtained
in Exercise .

The problem is to solve these simultaneous equations, or the matrix equation, and find the orbital energies, which are the , and
the atomic orbital coefficients, the , that define the molecular orbitals.

Identify two methods for solving simultaneous equations and list the steps in each.

In the EH method we use an effective one electron Hamiltonian, and then proceed to determine the energy of a molecular orbital
where  and .

Minimization of the energy with respect to each of the coefficients again yields a set of simultaneous equations just like Equation 
.

As before, these equations can be written in matrix form in Equation 
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Equation  accounts for one molecular orbital. It has energy , and it is defined by the elements in the C' column vector,
which are the coefficients that multiply the atomic orbital basis functions in the linear combination of atomic orbitals.

We can write one matrix equation for all the molecular orbitals.

where H is a square matrix containing the H , the one electron energy integrals, and C is the matrix of coefficients for the atomic
orbitals. Each column in C is the C' that defines one molecular orbital in terms of the basis functions. In extended Hückel theory,
the overlap is not neglected, and S is the matrix of overlap integrals. E is the diagonal matrix of orbital energies. All of these are
square matrices with a size that equals the number of atomic orbitals used in the LCAO for the molecule under consideration.

Equation  represents an eigenvalue problem. For any extended Hückel calculation, we need to set up these matrices and
then find the eigenvalues and eigenvectors. The eigenvalues are the orbital energies, and the eigenvectors are the atomic orbital
coefficients that define the molecular orbital in terms of the basis functions.

What is the size of the H matrix for HF? Write out the matrix elements in the H matrix using symbols for the wavefunctions
appropriate to the HF molecule. Consider this matrix and determine if it is symmetric by examining pairs of off-diagonal
elements. In a symmetric matrix, pairs of elements located by reflection across the diagonal are equal, i.e. Hrc = Hcr where r
and c represent the row and column, respectively. Why are such pairs of elements equal? Write out the S matrix in terms of
symbols, showing the diagonal and the upper right portion of the matrix. This matrix also is symmetric, so if you compute the
diagonal and the upper half of it, you know the values for the elements in the lower half. Why are pairs of S matrix elements
across the diagonal equal?

The elements of the H matrix are assigned using experimental data. This approach makes the extended Hückel method a semi-
empirical molecular orbital method. The basic structure of the method is based on the principles of physics and mathematics while
the values of certain integrals are assigned by using educated guesses and experimental data. The H  are chosen as valence state
ionization potentials with a minus sign to indicate binding. The values used by R. Hoffmann when he developed the extended
Hückel technique were those of H.A. Skinner and H.O. Pritchard (Trans. Faraday Soc. 49 (1953), 1254). These values for C and H
are listed in Table . The values for the heteroatoms (N, O, and F) are taken from Pople and Beveridge (Approximate
Molecular Orbital Theory, McGraw-Hill Book Company, New York, 1970).

Table : Ionization potentials of various atomic orbitals.

Atomic orbital Ionization potential (eV)

H 1s 13.6

C 2s 21.4

C 2p 11.4

N 2s 25.58

N 2p 13.9

O 2s 32.38

O 2p 15.85

F 2s 40.20

F 2p 18.66

The H  values are computed from the ionization potentials according to
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The rationale for this expression is that the energy should be proportional to the energy of the atomic orbitals, and should be greater
when the overlap of the atomic orbitals is greater. The contribution of these effects to the energy is scaled by the parameter .
Hoffmann assigned the value of  after a study of the effect of this parameter on the energies of the occupied orbitals of ethane.
The conclusion was that a good value for K is .

Fill in numerical values for the diagonal elements of the Extended Hückel Hamiltonian matrix for HF using the ionization
potentials given in Table .

The overlap matrix also must be determined. The matrix elements are computed using the definition  where  and 
 are the atomic orbitals. Slater-type orbitals (STO’s) are used for the atomic orbitals rather than hydrogenic orbitals because

integrals involving STO's can be computed more quickly on computers. Slater type orbitals have the form

where zeta, , is a parameter describing the screened nuclear charge. In the extended Hückel calculations done by Hoffmann, the
Slater orbital parameter  was 1.0 for the H  and 1.652 for the C  and C  orbitals.

Describe the difference between Slater-type orbitals and hydrogenic orbitals.

Overlap integrals involve two orbitals on two different atoms or centers. Such integrals are called two-center integrals. In such
integrals there are two variables to consider, corresponding to the distances from each of the atomic centers, r  and r . Such
integrals can be represented as

but elliptical coordinates must be used for the actual integration. Fortunately the software that does extended Hückel calculations
contains the programming code to do overlap integrals. The interested reader will find sufficient detail on the evaluation of overlap
integrals and the creation of the programmable mathematical form for any pair of Slater orbitals in Appendix B4 (pp. 199 - 200) of
the book Approximate Molecular Orbital Theory by Pople and Beveridge. The values of the overlap integrals for HF are given in
Table .

Using the information in Table , identify which axis (x, y, or z) has been defined as the internuclear axis. Fill in the
missing values in Table . This requires no calculation, only insight.

Table : Overlap Integrals for HF

F 2s F 2p F 2p F 2p H 1s

F 2s 0.47428

F 2p 0

F 2p 0.38434

F 2p 0

H 1s

K

K

K = 1.75
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Using the information in Tables  and , write the full Hückel  matrix and the  matrix that appears in Equation 
 for HF.

Our goal is to find the coefficients in the linear combinations of atomic orbitals and the energies of the molecular orbitals. For these
results, we need to transform Equation 

into a form that allows us to use matrix diagonalization techniques. We are hampered here by the fact that the overlap matrix is not
diagonal because the orbitals are not orthogonal. Mathematical methods do exist that can be used to transform a set of functions
into an orthogonal set. Essentially these methods apply a transformation of the coordinates from the local coordinate system
describing the molecule into one where the atomic orbitals in the LCAO are all orthogonal. Such a transformation can be
accomplished through matrix algebra, and computer algorithms for this procedure are part of all molecular orbital programs. The
following paragraph describes how this transformation can be accomplished.

If the matrix  has an inverse  Then

and we can place this product in a matrix equation without changing the equation. When this is done for Equation , we
obtain

Next multiply on the left by  and determine  so the product  is the identity matrix, i.e. a matrix that has 1's on the
diagonal and 0's off the diagonal is the case for an orthogonal basis set.

which then can be written as

where

The identity matrix is not included because multiplying by the identity matrix is just like multiplying by the number 1. It doesn’t
change anything. The  matrix can be diagonalized by multiplying on the left by the inverse of  to find the energies of the
molecular orbitals in the resulting diagonal matrix .

The matrix  obtained in the diagonalization step is finally back transformed to the original coordinate system with the 
matrix,  since .

Fortunately this process is automated in some computer software. For example, in Mathcad, the command genvals(H,S) returns a
list of the eigenvalues for Equation . These eigenvalues are the diagonal elements of . The command genvecs(H,S)
returns a matrix of the normalized eigenvectors corresponding to the eigenvalues. The i  eigenvalue in the list goes with the i
column in the eigenvector matrix. This problem, where  is not the identity matrix, is called a general eigenvalue problem, and gen
in the Mathcad commands refers to general.

Using your solution to Exercise , find the orbital energies and wavefunctions for HF given by an extended Hückel
calculation. Construct an orbital energy level diagram, including both the atomic and molecular orbitals, and indicate the
atomic orbital composition of each energy level. Draw lines from the atomic orbital levels to the molecular orbital levels to
show which atomic orbitals contribute to which molecular orbitals. What insight does your calculation provide regarding the
ionic or covalent nature of the chemical bond in HF?
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