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10.4: The Case of H₂⁺

One can develop an intuitive sense of molecular orbitals and what a chemical bond is by considering the simplest molecule, .
This ion consists of two protons held together by the electrostatic force of a single electron. Clearly the two protons, two positive
charges, repeal each other. The protons must be held together by an attractive Coulomb force that opposes the repulsive Coulomb
force. A negative charge density between the two protons would produce the required counter-acting Coulomb force needed to pull
the protons together. So intuitively, to create a chemical bond between two protons or two positively charged nuclei, a high density
of negative charge between them is needed. We expect the molecular orbitals that we find to reflect this intuitive notion.

The electronic Hamiltonian for  is

where  gives the coordinates of the electron, and  is the distance between the two protons. Although the Schrödinger equation
for  can be solved exactly because there is only one electron, we will develop approximate solutions in a manner applicable to
other diatomic molecules that have more than one electron.

For the case where the protons in  are infinitely far apart, we have a hydrogen atom and an isolated proton when the electron is
near one proton or the other. The electronic wavefunction would just be  or  depending upon which proton, labeled A
or B, the electron is near. Here 1s  denotes a 1s hydrogen atomic orbital with proton A serving as the origin of the spherical polar
coordinate system in which the position  of the electron is specified. Similarly  has proton B as the origin. A useful
approximation for the molecular orbital when the protons are close together therefore is a linear combination of the two atomic
orbitals. The general method of using

i.e. of finding molecular orbitals as linear combinations of atomic orbitals is called the Linear Combination of Atomic Orbitals -
Molecular Orbital (LCAO-MO) Method. In this case we have two basis functions in our basis set, the hydrogenic atomic orbitals
1s  and ls .

For , the simplest molecule, the starting function is given by Equation . We must determine values for the coefficients, 
 and . We could use the variational method to find a value for these coefficients, but for the case of  evaluating these

coefficients is easy. Since the two protons are identical, the probability that the electron is near A must equal the probability that the
electron is near B. These probabilities are given by  and , respectively. Consider two possibilities that satisfy the
condition ; namely, . These two cases produce two molecular orbitals:

The probability density for finding the electron at any point in space is given by  and the electronic charge density is just .
The important difference between  and  is that the charge density for  is enhanced between the two protons, whereas it is
diminished for  as shown in Figures .  has a node in the middle while  corresponds to our intuitive sense of what a
chemical bond must be like. The electronic charge density is enhanced in the region between the two protons. So  is called a
bonding molecular orbital. If the electron were described by , the low charge density between the two protons would not
balance the Coulomb repulsion of the protons, so  is called an antibonding molecular orbital.

Now we want to evaluate  and  and then calculate the energy. The bonding and antibonding character of  and  also
should be reflected in the energy. If  indeed describes a bonding orbital, then the energy of this state should be less than that of a
proton and hydrogen atom that are separated. The calculation of the energy will tell us whether this simple theory predicts  to be
stable or not and also how much energy is required to dissociate this molecule.
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Figure : a) The 1s basis functions and bonding and antibonding molecular orbitals plotted along the internuclear axis, which
is defined as the z-axis, for . The protons are located at , which corresponds to the experimental bond length. b) The
electron probability density for the bonding and antibonding molecular orbitals

From the information in Figure  for , calculate the difference in the electronic charge density (C/pm ) at a point
halfway between the two nuclei for an electron in the bonding molecular orbital compared to one in the antibonding molecular
orbital.

The constants  and  are evaluated from the normalization condition. Bracket notation, , is used in Equation  to
represent integration over all the coordinates of the electron for both functions  and . The right bracket represents a function,
the left bracket represents the complex conjugate of the function, and the two together mean integrate over all the coordinates.

Since the atomic orbitals are normalized, the first two integrals are just 1. The last two integrals are called overlap integrals and are
symbolized by S and S*, respectively, since one is the complex conjugate of the other.

Show that for two arbitrary functions  is the complex conjugate of  and that these two integrals are equal if
the functions are real.

The overlap integrals are telling us to take the value of ls  at a point multiply by the value of ls  at that point and sum (integrate)
such a product over all of space. If the functions don’t overlap, i.e. if one is zero when the other one isn’t and vice versa, these
integrals then will be zero. It also is possible in general for such integrals to be zero even if the functions overlap because of the
cancellation of positive and negative contributions, as was discussed in Section 4.4.

If the overlap integral is zero, for whatever reason, the functions are said to be orthogonal. Notice that the overlap integral ranges
from 0 to 1 as the separation between the protons varies from  to . Clearly when the protons are infinite distance
apart, there is no overlap, and when  both functions are centered on one nucleus and  becomes identical to 

, which is normalized to 1, because then .

With these considerations and using the fact that  wavefunctions are real so

Equation  becomes
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The solution to Equation  is given by

The energy is calculated from the expectation value integral,

which expands to give

Show that Equation  expands to give Equation .

The four integrals in Equation    can be represented by , , , and , respectively. Notice that A and B
appear equivalently in the Hamiltonian operator, Equation . This equivalence means that integrals involving  must be the
same as corresponding integrals involving , i.e.

and since the wavefunctions are real,

giving

Now examine the details of H  after inserting Equation  for the Hamiltonian operator.

The first term is just the integral for the energy of the hydrogen atom, . The second integral is equal to 1 by normalization; the
prefactor is just the Coulomb repulsion of the two protons. The last integral, including the minus sign, is represented by  and is
called the Coulomb integral. Physically  is the potential energy of interaction of the electron located around proton A with
proton B. It is negative because it is an attractive interaction. It is the average interaction energy of an electron described by the 1s
function with proton B.

Now consider .

In the first integral we have the hydrogen atom Hamiltonian and the H atom function 1s . The function ls  is an eigenfunction of
the operator with eigenvalue E . Since E  is a constant it factors out of the integral, which then becomes the overlap integral, S.
The first integral therefore reduces to E S. The second term is just the Coulomb energy of the two protons times the overlap
integral. The third term, including the minus sign, is given the symbol  and is called the exchange integral. It is called an
exchange integral because the electron is described by the 1s  orbital on one side and by the ls  orbital on the other side of the
operator. The electron changes or exchanges position in the molecule. In a Coulomb integral the electron always is in the same
orbital; whereas, in an exchange integral, the electron is in one orbital on one side of the operator and in a different orbital on the
other side.

Using the expressions for  and  and substituting into Equation  produces:
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The difference in energies of the two states  is then:

Equation  tells us that the energy of the  molecule is the energy of a hydrogen atom plus the repulsive energy of two
protons plus some additional electrostatic interactions of the electron with the protons. These additional interactions are given by

If the protons are infinitely far apart then only  is nonzero. To get a chemical bond and a stable  molecule,  (Equation
) must be less than zero and have a minimum, i.e.

must be sufficiently negative to overcome the positive repulsive energy of the two protons

for some value of . For large  these terms are zero, and for small , the Coulomb repulsion of the protons rises to infinity.

Show that Equation  follows from Equation .

We will examine more closely how the Coulomb repulsion term and the integrals , , and  depend on the separation of the
protons, but first we want to discuss the physical significance of , the Coulomb integral, and , the exchange integral.

Both  and  have been defined as

Note that both integrals are negative since all quantities in the integrand are positive. In the Coulomb integral,  is
the charge density of the electron around proton A, since r represents the coordinates of the electron relative to proton A. Since r
is the distance of this electron to proton B, the Coulomb integral gives the potential energy of the charge density around proton A
interacting with proton B. J can be interpreted as an average potential energy of this interaction because  is the

probability density for the electron at point r, and  is the potential energy of the electron at that point due to the interaction

with proton B. Essentially,  accounts for the attraction of proton B to the electron density of hydrogen atom A. As the two protons
get further apart, this integral goes to zero because all values for r  become very large and all values for  become very small.

In the exchange integral, K, the product of the two functions is nonzero only in the regions of space where the two functions
overlap. If one function is zero or very small at some point then the product will be zero or small. The exchange integral also
approaches zero as internuclear distances increase because the both the overlap and the 1/r values become zero. The product 

 is called the overlap charge density. Since the overlap charge density is significant in the region of space between
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the two nuclei, it makes an important contribution to the chemical bond. The exchange integral, , is the potential energy due to
the interaction of the overlap charge density with one of the protons. While J accounts for the attraction of proton B to the electron
density of hydrogen atom A,  accounts for the added attraction of the proton due the build-up of electron charge density between
the two protons.

Write a paragraph describing in your own words the physical significance of the Coulomb and exchange integrals for .

Figure  shows graphs of the terms contributing to the energy of . In this figure you can see that as the internuclear
distance R approaches zero, the Coulomb repulsion of the two protons goes from near zero to a large positive number, the overlap
integral goes for zero to one, and J and K become increasingly negative.
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Figure  a) The electrostatic energy (in hartrees, 27.2 eV) of two protons separated by a distance  in units of the Bohr radius
(52.92 pm). b) The overlap, Coulomb, and exchange integrals at different proton separations. The units for  and  are hartrees; 
has no units.

Figure  shows the energy of  relative to the energy of a separated hydrogen atom and a proton as given by Equation 
. For the electron in the antibonding orbital, the energy of the molecule, , always is greater than the energy of the

separated atom and proton.
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Figure : Energy of the  bonding molecular orbital  and the antibonding molecular orbital , relative to the
energy of a separated hydrogen atom and proton.
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For the electron in the bonding orbital, you can see that the big effect for the energy of the bonding orbital, E (R), is the balance

between the repulsion of the two protons  and  and , which are both negative.  and  manage to compensate for the

repulsion of the two protons until their separation is less than 100 pm (i.e the energy is negative up until this point), and a minimum
in the energy is produced at 134 pm. This minimum represents the formation of a chemical bond. The effect of S is small. It only
causes the denominator in Equation  to increase from 1 to 2 as  approaches 0.

For the antibonding orbital,  is a positive quantity and essentially cancels  so there is not sufficient compensation for the
Coulomb repulsion of the protons. The effect of the  in the expression, Equation , for  is to account for the absence
of overlap charge density and the enhanced repulsion because the charge density between the protons for  is even lower than
that given by the atomic orbitals.

This picture of bonding in  is very simple but gives reasonable results when compared to an exact calculation. The equilibrium
bond distance is 134 pm compared to 106 pm (exact), and a dissociation energy is 1.8 eV compared to 2.8 eV (exact).

Write the final expressions for the energy of  and , explain what these expressions mean, and explain why one describes
the chemical bond in H2+and the other does not.

Figure  shows that  and  hartree when . Explain why  equals 1 and  and  equal -1 hartree
when .
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