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3.9: Postulates of Quantum Mechanics
We now summarize the postulates of Quantum Mechanics that have been introduced. The application of these postulates will be
illustrated in subsequent chapters.

Postulate 1 
The properties of a quantum mechanical system are determined by a wavefunction Ψ(r,t) that depends upon the spatial coordinates
of the system and time,  and . For a single particle system, r is the set of coordinates of that particle . For more
than one particle,  is used to represent the complete set of coordinates . Since the state of
a system is defined by its properties,  specifies or identifies the state and sometimes is called the state function rather than the
wavefunction.

Postulate 2 

The wavefunction is interpreted as probability amplitaude with the absolute square of the wavefunction,  interpreted
at the probability density at time . A probability density times a volume is a probability, so for one particle

is the probability that the particle is in the volume  located at  at time .

For a many particle system, we write the volume element as ; and  is the
probability that particle 1 is in the volume  at  and particle 2 is in the volume  at , etc.

Because of this probabilistic interpretation, the wavefunction must be normalized.

The integral sign here represents a multi-dimensional integral involving all coordinates: . For example, integration in three-
dimensional space will be an integration over , which can be expanded as:

 in Cartesian coordinates or
 in spherical coordinates or

 in cylindrical coordinates.

Postulate 3 
For every observable property of a system there is a quantum mechanical operator. The operator for position of a particle in three
dimensions is just the set of coordinates , , and , which is written as a vector

The operator for a component of momentum is

and the operator for kinetic energy in one dimension is

and in three dimensions

and
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The Hamiltonian operator  is the operator for the total energy. In many cases only the kinetic energy of the particles and the
electrostatic or Coulomb potential energy due to their charges are considered, but in general all terms that contribute to the energy
appear in the Hamiltonian. These additional terms account for such things as external electric and magnetic fields and magnetic
interactions due to magnetic moments of the particles and their motion.

Postulate 4 
The time-independent wavefunctions of a time-independent Hamiltonian are found by solving the time-independent Schrödinger
equation.

These wavefunctions are called stationary-state functions because the properties of a system in such a state, i.e. a system described
by the function , are time independent.

Postulate 5 
The time evolution or time dependence of a state is found by solving the time-dependent Schrödinger equation.

For the case where  is independent of time, the time dependent part of the wavefunction is  where  or equivalently 
, which shows that the energy-frequency relation used by Planck, Einstein, and Bohr results from the time-dependent

Schrödinger equation. This oscillatory time dependence of the probability amplitude does not affect the probability density or the
observable properties because in the calculation of these quantities, the imaginary part cancels in multiplication by the complex
conjugate.

Postulate 6 

If a system is described by the eigenfunction  of an operator  then the value measured for the observable property
corresponding to  will always be the eigenvalue , which can be calculated from the eigenvalue equation.

Postulate 7 

If a system is described by a wavefunction , which is not an eigenfunction of an operator , then a distribution of measured
values will be obtained, and the average value of the observable property is given by the expectation value integral,

where the integration is over all coordinates involved in the problem. The average value , also called the expectation value, is
the average of many measurements. If the wavefunction is normalized, then the normalization integral in the denominator of
Equation (3-47) equals 1.

Problems 
Exercise  What does it mean to say a wavefunction is normalized? Why must wavefunctions be normalized?
Exercise  Rewrite Equations(3-42) and (3-43) using the definitions of ħ, , and .
Exercise  Write a definition for a stationary state. What is the time dependence of the wavefunction for a stationary
state?
Exercise  Show how the energy-frequency relation used by Planck, Einstein, and Bohr results from the time-dependent
Schrödinger equation.
Exercise  Show how the de Broglie relation follows from the postulates of Quantum Mechanics using the definition of
the momentum operator.
Exercise  What quantity in Quantum Mechanics gives you the probability density for finding a particle at some
specified position in space? How do you calculate the average position of the particle and the uncertainty in the position of the

Ĥ

(r)ψ(r) = Eψ(r)Ĥ (3.9.8)
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particle from the wavefunction?
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