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7.3: Solving the Rigid Rotor Schrödinger Equation
To solve the Schrödinger equation for the rigid rotor, we will separate the variables and form single-variable equations that can be
solved independently. Only two variables  and  are required in the rigid rotor model because the bond length, , is taken to be
the constant . We first write the rigid rotor wavefunctions as the product of a theta-function depending only on  and a -
function depending only on 

We then substitute the product wavefunction and the Hamiltonian written in spherical coordinates into the Schrödinger Equation 
:

to obtain

Since  is constant for the rigid rotor and does not appear as a variable in the functions, the partial derivatives with respect to
 are zero; i.e. the functions do not change with respect to . We also can substitute the symbol  for the moment of inertia,  in

the denominator of the left hand side of Equation , to give

To begin the process of separating the variables in Equation , multiply each side of the equation by  and  to

give

Simplify the appearance of the right-hand side of Equation  by defining a parameter :

Note that this  has no connection to a wavelength; it is merely being used as an algebraic symbol for the combination of constants
shown in Equation .

Inserting , evaluating partial derivatives, and rearranging Equation  produces

Carry out the steps leading from Equation  to Equation . Keep in mind that, if  is not a function of ,

Equation  says that the function on the left, depending only on the variable , always equals the function on the right,
depending only on the variable , for all values of  and . The only way two different functions of independent variables can be
equal for all values of the variables is if both functions are equal to a constant (review separation of variables). We call this constant

 because soon we will need the square root of it. The two differential equations to solve are the  -equation
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and the  -equation

The partial derivatives have been replaced by total derivatives because only a single variable is involved in each equation.

Show how Equations  and  are obtained from Equation .

The -equation is similar to the Schrödinger equation for the free particle. Since we already solved this differential equation in
Chapter 5, we immediately write the solutions:

Substitute Equation  into Equation  to show that it is a solution to that differential equation.

The normalization condition, Equation , is used to find a value for  that satisfies Equation .

The range of the integral is only from  to  because the angle  specifies the position of the internuclear axis relative to the x-
axis of the coordinate system and angles greater than  do not specify additional new positions.

Use the normalization condition, Equation  to show that

Values for  are found by using a cyclic boundary condition. The cyclic boundary condition means that since  and  refer
to the same point in three-dimensional space,  must equal , i.e.

For the equality in Equation  to hold,  must equal 1, which is true only when

In other words m can equal any positive or negative integer or zero.

Use Euler’s Formula to show that  equals 1 for  equal to zero or any positive or negative integer.

Thus, the  function is

Finding the  functions that are solutions to the -equation, Equation , is a more complicated process. Solutions are found
to be a set of power series called Associated Legendre Functions, which are power series of trigonometric functions, i.e. products
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and powers of sine and cosine functions. The  functions, along with their normalization constants, are shown in the third
column of Table .

Table : Spherical Harmonic Wavefunctions

m J

0 0

0 1

1 1

-1 1

0 2

1 2

-1 2

2 2

-2 2

The solution to the -equation requires that  in Equation  be given by

where

 can be 0 or any positive integer greater than or equal to m. Each pair of values for the quantum numbers,  and , identifies a
rotational state and a wavefunction. For clarity in remembering that  controls the allowed values of ,  is often referred to as 

, and we will now use that notation.

The combination of Equations  and  reveals that the energy of this system is quantized.

Compute the energy levels for a rotating molecule for J = 0 to J = 5 using units of .

Using Equation , you can construct a rotational energy level diagram. For simplicity, use energy units of . The lowest

energy state has  and . This state has an energy . There is only one state with this energy, i.e. one set of
quantum numbers, one wavefunction, and one set of properties for the molecule.

The next energy level is  with energy . There are three states with this energy because  can equal +1, 0, or ‑1. These

different states correspond to different orientations of the rotating molecule in space. These states are discussed in detail in Sections
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λ = J(J +1) (7.3.19)

J ≥ |m| (7.3.20)
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7.3 and 7.4. States with the same energy are said to be degenerate. The degeneracy of an energy level is the number of states with

that energy. The degeneracy of the  energy level is 3 because there are three states with the energy .

The next energy level is for . The energy is , and there are five states with this energy corresponding to 

. The energy level degeneracy is five. Note that the spacing between energy levels increases as J increases.
Also note that the degeneracy increases. The degeneracy is always  because  ranges from  to  in integer steps,
including 0.

For  to , identify the degeneracy of each energy level and the values of the mJ quantum number that go with each
value of the  quantum number. Construct a rotational energy level diagram (see Drawing Energy Level Diagrams) including

 = 0 through 5. Label each level with the appropriate values for the quantum numbers J and . Describe how the spacing
between levels varies with increasing .

A wavefunction that is a solution to the rigid rotor Schrödinger equation (defined in Equation ) can be written as a single
function Y , which is called a spherical harmonic function.

The spherical harmonic wavefunction is labeled with mJ and J because its functional form depends on both of these quantum
numbers. These functions are tabulated above for  through  and for  in Table  plots of some of the -
functions are shown in Figure .

Figure : Polar plots in which the distance from the center gives the value of the function  for the indicated angle .

The two-dimensional space for a rigid rotor is defined as the surface of a sphere of radius , as shown in Figure .
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Figure : Space for a rigid rotor is restricted to the surface of a sphere of radius . The only degrees of freedom are motions
along  or  on the surface of the sphere.

The probability of finding the internuclear axis at specific coordinates  and  within an infinitesimal area  on this curved
surface is given by

where the area element ds is centered at  and . The absolute square (or modulus squared) of the rigid rotor wavefunction 
 gives the probability density for finding the internuclear axis oriented at  to the z-axis and  to the x-axis,

and in spherical coordinates the area element used for integrating  and  is

Use calculus to evaluate the probability of finding the internuclear axis of a molecule described by the , 
wavefunction somewhere in the region defined by a range in  of 0° to 45°, and a range in of 0° to 90°. Note that a double
integral will be needed. Sketch this region as a shaded area on Figure .

Consider the significance of the probability density function by examining the J = 1, mJ = 0 wavefunction. The Spherical Harmonic
for this case is

The polar plot of  is shown in Figure . For  and , the probability of finding the internuclear axis is
independent of the angle  from the x-axis, and greatest for finding the internuclear axis along the z‑axis, but there also is a
probability for finding it at other values of  as well. So, although the internuclear axis is not always aligned with the z-axis, the
probability is highest for this alignment. Also, since the probability is independent of the angle , the internuclear axis can be
found in any plane containing the z-axis with equal probability.

The ,  function is 0 when  = 90°. Therefore, the entire xy-plane is a node. This fact means the probability of finding
the internuclear axis in this particular horizontal plane is 0 in contradiction to our classical picture of a rotating molecule. In the
classical picture, a molecule rotating in a plane perpendicular to the xy‑plane must have the internuclear axis lie in the xy‑plane
twice every revolution, but the quantum mechanical description says that the probability of being in the xy-plane is zero. This
conclusion means that molecules are not rotating in the classical sense, but they still have some, but not all, of the properties
associated with classical rotation. The properties they retain are associated with angular momentum.

For each state with  and , use the function form of the  spherical harmonics and Figure  to determine the
most probable orientation of the internuclear axis in a diatomic molecule, i.e. the most probable values for  and .
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Write a paragraph describing the information about a rotating molecule that is provided in the polar plot of  for the 
,  state in Figure . Compare this information to the classical picture of a rotating object.

This page titled 7.3: Solving the Rigid Rotor Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
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