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9.5: Single-electron Wavefunctions and Basis Functions
Finding the most useful single-electron wavefunctions to serve as building blocks for a multi-electron wavefunction is one of the
main challenges in finding approximate solutions to the multi-electron Schrödinger Equation. The functions must be different for
different atoms because the nuclear charge and number of electrons are different. The attraction of an electron for the nucleus
depends on the nuclear charge, and the electron-electron interaction depends upon the number of electrons.

As we saw in our initial approximation methods, the most straightforward place to start in finding reasonable single-electron
wavefunctions for multi-electron atoms is with the atomic orbitals produced in the quantum treatment of hydrogen, the so-called
“hydrogenic” spin-orbitals. These traditional atomic orbitals, with a few modifications, give quite reasonable calculated results and
are still in wide use for conceptually understanding multi-electron atoms. In this section and in Chapter 10 we will explore some of
the many other single-electron functions that also can be used as atomic orbitals.

Hydrogenic spin-orbitals used as components of multi-electron systems are identified in the same way as they are for the hydrogen
atom. Each spin-orbital consists of a spatial wavefunction, specified by the quantum numbers (n, ) and denoted ls, 2s, 2p, 3s,
3p, 3d, etc, multiplied by a spin function, specified by the quantum number  and denoted  or . In our initial approximation
methods, we ignored the spin components of the hydrogenic orbitals, but they must be considered in order to develop a complete
description of multi-electron systems. The subscript on the argument of the spatial function reveals which electron is being
described (  is a vector that refers to the coordinates of electron 1, for example.) No argument is given for the spin function. An
example of a spin-orbital for electron 2 in a  orbital:

In the alternative shorthand notation for this spin-orbital shown below, the coordinates for electron 2 in the spatial function are
abbreviated simply by the number “2,” and the spatial function is represented by “ ” rather than " ". The argument “2”
given for the spin function refers to the unknown spin variable for electron 2. Many slight variations on these shorthand forms are
in use in this and other texts, so flexibility and careful reading are important.

In this chapter we will continue the trend of moving away from writing specific mathematical functions and toward a more
symbolic, condensed representation. Your understanding of the material in this and future chapters requires that you keep in mind
the form and properties of the specific functions denoted by the symbols used in each equation.

Write the full mathematical form of  using as much explicit functional detail as possible.

The basic mathematical functions and thus the general shapes and angular momenta for hydrogenic orbitals are the same as those
for hydrogen orbitals. The differences between atomic orbitals for the hydrogen atom and those used as components in the
wavefunctions for multi-electron systems lie in the radial parts of the wavefunctions and in the energies. Specifically, the
differences arise from the replacement of the nuclear charge Z in the radial parts of the wavefunctions by an adjustable parameter 
that is allowed to vary in approximation calculations in order to model the interactions between the electrons. We discussed such a
procedure for helium The Variational Method previously. The result is that electrons in orbitals with different values for the angular
momentum quantum number, , have different energies. Figure  shows the results of a quantum mechanical calculation on
argon in which the degeneracy of the 2s and 2p orbitals is found to be removed, as is the degeneracy of the 3s, 3p, and 3d orbitals.
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Figure : Ordering of energy levels for Ar. Energy level differences are not to scale.

The energy of each electron now depends not only on its principal quantum number, , but also on its angular momentum quantum
number, .

The presence of  in the radial portions of the wavefunctions also means that the electron probability distributions associated with
hydrogenic atomic orbitals in multi-electron systems are different from the exact atomic orbitals for hydrogen. Figure 
compares the radial distribution functions for an electron in a 1s orbital of hydrogen (the ground state), a 2s orbital in hydrogen (an
excited configuration of hydrogen) and a 1s orbital in helium that is described by the best variational value of . Our use of
hydrogen-like orbitals in quantum mechanical calculations for multi-electron atoms helps us to interpret our results for multi-
electron atoms in terms of the properties of a system we can solve exactly.

Figure : Radial distribution functions for 1s of hydrogen (red,  = 1), 2s of hydrogen (blue,  = 1) and 1s of helium (black,  =
1.6875).

Analyze Figure  and write a paragraph about what you can discern about the relative sizes of ground state hydrogen,
excited state hydrogen and ground state helium atoms.

While they provide useful stepping off points for understanding computational results, nothing requires us to use the hydrogenic
functions as the building blocks for multi-electrons wavefunctions. In practice, the radial part of the hydrogenic atomic orbital
presents a computational difficulty because the radial function has nodes, positive and negative lobes, and steep variations that
make accurate evaluation of integrals by a computer slow. Consequently other types of functions are generally used in building
multi-electron functions. These usually are related to the hydrogenic orbitals to aid in the analysis of molecular electronic structure.
For example, Slater-type atomic orbitals (STO’s), designated below as , avoid the difficulties imposed by the
hydrogenic functions. The STO’s, named after their creator, John Slater, were the first alternative functions that were used
extensively in computations. STO’s do not have any radial nodes, but still contain a variational parameter  (zeta), that corresponds
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to the effective nuclear charge in the hydrogenic orbitals. In Equation  and elsewhere in this chapter, the distance, , is
measured in units of the Bohr radius, .

a. Write the radial parts of the 1s, 2s, and 2p atomic orbitals for hydrogen.
b. Write the radial parts of the n = 1 and n = 2 Slater–type orbitals (STO).
c. Check that the above five functions are normalized.
d. Graph these five functions, measuring r in units of the Bohr radius.
e. Graph the radial probability densities for these orbitals. Put the hydrogen orbital and the corresponding STO on the same

graph so they can be compared easily.
f. Adjust the zeta parameter  in each case to give the best match of the radial probability density for the STO with that of the

corresponding hydrogen orbital.
g. Comment on the similarities and differences between the hydrogen orbitals and the STOs and the corresponding radial

probability densities.

Linear Variational Method 
An alternative approach to the general problem of introducing variational parameters into wavefunctions is the construction of a
single-electron wavefunction as a linear combination of other functions. For hydrogen, the radial function decays, or decreases in
amplitude, exponentially as the distance from the nucleus increases. For helium and other multi-electron atoms, the radial
dependence of the total probability density does not fall off as a simple exponential with increasing distance from the nucleus as it
does for hydrogen. More complex single-electron functions therefore are needed in order to model the effects of electron-electron
interactions on the total radial distribution function. One way to obtain more appropriate single-electron functions is to use a sum of
exponential functions in place of the hydrogenic spin-orbitals.

An example of such a wavefunction created from a sum or linear combination of exponential functions is written as

The linear combination permits weighting of the different exponentials through the adjustable coefficients (cj) for each term in the
sum. Each exponential term has a different rate of decay through the zeta-parameter . The exponential functions in Equation 

 are called basis functions. Basis functions are the functions used in linear combinations to produce the single-electron orbitals
that in turn combine to create the product multi-electron wavefunctions. Originally the most popular basis functions used were the
STO’s, but today STO’s are not used in most quantum chemistry calculations. However, they are often the functions to which more
computationally efficient basis functions are fitted.

Physically, the  parameters account for the effective nuclear charge (often denoted with . The use of several zeta values in
the linear combination essentially allows the effective nuclear charge to vary with the distance of an electron from the nucleus. This
variation makes sense physically. When an electron is close to the nucleus, the effective nuclear charge should be close to the actual
nuclear charge. When the electron is far from the nucleus, the effective nuclear charge should be much smaller. See Slater's rules
for a rule-of-thumb approach to evaluate  values.

A term in Equation  with a small  will decay slowly with distance from the nucleus. A term with a large  will decay rapidly
with distance and not contribute at large distances. The need for such a linear combination of exponentials is a consequence of the
electron-electron repulsion and its effect of screening the nucleus for each electron due to the presence of the other electrons.

Make plots of  in Equation  using three equally weighted terms with  = 1.0, 2.0, and 5.0. Also plot each term
separately.
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Computational procedures in which an exponential parameter like  is varied are more precisely called the Nonlinear Variational
Method because the variational parameter is part of the wavefunction and the change in the function and energy caused by a change
in the parameter is not linear. The optimum values for the zeta parameters in any particular calculation are determined by doing a
variational calculation for each orbital to minimize the ground-state energy. When this calculation involves a nonlinear variational
calculation for the zetas, it requires a large amount of computer time. The use of the variational method to find values for the
coefficients, , in the linear combination given by Equation  above is called the Linear Variational Method because the
single-electron function whose energy is to be minimized (in this case ) depends linearly on the coefficients. Although the idea
is the same, it usually is much easier to implement the linear variational method in practice.

Nonlinear variational calculations are extremely costly in terms of computer time because each time a zeta parameter is changed,
all of the integrals need to be recalculated. In the linear variation, where only the coefficients in a linear combination are varied, the
basis functions and the integrals do not change. Consequently, an optimum set of zeta parameters were chosen from variational
calculations on many small multi-electron systems, and these values, which are given in Table , generally can be used in the
STOs for other and larger systems.

Table : Orbital Exponents for Slater Orbitals

Atom

H 1.24

He 1.69

Li 2.69 0.80

Be 3.68 1.15

B 4.68 1.50

C 5.67 1.72

N 6.67 1.95

O 7.66 2.25

F 8.56 2.55

Ne 9.64 2.88

Compare the value  = 1.24 in Table  for hydrogen with the value you obtained in Exercise . and comment on
possible reasons for any difference. Why are the zeta values larger for 1s than for 2s and 2p orbitals? Why do the  values
increase by essentially one unit for each element from He to Ne while the increase for the  values is much smaller?

The discussion above gives us some new ideas about how to write flexible, useful single-electron wavefunctions that can be used to
construct multi-electron wavefunctions for variational calculations. Single-electron functions built from the basis function approach
are flexible because they have several adjustable parameters, and useful because the adjustable parameters still have clear physical
interpretations. Such functions will be needed in the Hartree-Fock method discussed elsewhere.

This page titled 9.5: Single-electron Wavefunctions and Basis Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed,
and/or curated by David M. Hanson, Erica Harvey, Robert Sweeney, Theresa Julia Zielinski via source content that was edited to the style and
standards of the LibreTexts platform.
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