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4.3: The Particle-in-a-Box Model
The particle-in-a box model is used to approximate the Hamiltonian operator for the  electrons because the full Hamiltonian is

quite complex. The full Hamiltonian operator for each electron consists of the kinetic energy term  and the sum of the

Coulomb potential energy terms  for the interaction of each electron with all the other electrons and with the nuclei (  is

the charge on each particle and  is the distance between them). Considering these interactions, the Hamiltonian for electron i given
below.

The Schrödinger equation obtained with this Hamiltonian cannot be solved analytically by anyone because of the electron-electron
interaction terms. Some approximations for the potential energy must be made.

We want a model for the dye molecules that has a particularly simple potential energy function because we want to be able to solve
the corresponding Schrödinger equation easily. The particle-in-a-box model has the necessary simple form. It also permits us to get
directly at understanding the most interesting feature of these molecules, their absorption spectra.

Figure : A diagram of the particle-in-a-box potential energy superimposed on a somewhat more realistic potential. The bond
length is given by β, the overshoot by δ, and the length of the box by L = bβ + 2δ, where b is the number of bonds.

As mentioned in the previous section, we assume that the π-electron motion is restricted to left and right along the chain in one
dimension. The average potential energy due to the interaction with the other electrons and with the nuclei is taken to be a constant
except at the ends of the molecule. At the ends, the potential energy increases abruptly to a large value; this increase in the potential
energy keeps the electrons bound within the conjugated part of the molecule. Figure  shows the classical particle-in-a-box
potential function and the more realistic potential energy function. We have defined the constant potential energy for the electrons
within the molecule as the zero of energy. One end of the molecule is set at , the other at , and the potential energy is
goes to infinity at these points.

For one electron located within the box, i.e. between  and , the Hamiltonian is

because , and the (time-independent) Schrödinger equation that needs to be solved is then

We need to solve this differential equation to find the wavefunction and the energy. In general, differential equations have multiple
solutions (solutions that are families of functions), so actually by solving this equation, we will find all the wavefunctions and all
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the energies for the particle-in-a-box. There are many ways of solving differential equations, and you will see some of them
illustrated here and in subsequent chapters. One way is to recognize functions that might satisfy the equation. This equation says
that differentiating the function twice produces the function times a constant. What kinds of functions have you seen that regenerate
the function after differentiating twice? Exponential functions and sine and cosine functions come to mind.

Use , , and  for the possible wavefunctions in Equation  and differentiate twice to demonstrate that
each of these functions satisfies the Schrödinger equation for the particle-in-a-box.

Exercise  leads you to the following three equations.

For the equalities expressed by these equations to hold,  must be given by

Kinetic energy is the momentum squared divided by twice the mass , so we conclude from Equation  that .

Solutions to differential equations that describe the real world also must satisfy conditions
imposed by the physical situation. These conditions are called boundary conditions.

For the particle-in-a-box, the particle is restricted to the region of space occupied by the conjugated portion of the molecule,
between  and . If we make the large potential energy at the ends of the molecule infinite, then the wavefunctions must
be zero at  and  because the probability of finding a particle with an infinite energy should be zero. Otherwise, the
world would not have an energy resource problem. This boundary condition therefore requires that .

Which of the functions , , or  is 0 when x = 0?

As you discovered in Exercise  for these three functions, only  when . Consequently only  is a
physically acceptable solution to the Schrödinger equation.

The boundary condition described above also requires us to set .

The sine function will be zero if  with . In other words,

with 

Note that  is not acceptable here because this makes the wave vector zero , so , and thus  is zero
everywhere. If the wavefunction were zero everywhere, it means that the probability of finding the electron is zero. This clearly is
not acceptable because it means there is no electron.
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Show that  at  if  and  is an integer.

It appears that a negative integer also would work for  because

which also satisfies the boundary condition at . The reason negative integers are not used is a bit subtle. Changing  to 
 just changes the sign (also called the phase) of the wavefunction from + to -, and does not produce a function describing a

new state of the particle. Note that the probability density for the particle is the absolute square of the function, and the
energies are the same for  and . Also, since the wave vector k is associated with the momentum (p = ħk), n > 0 means k >
0 corresponding to momentum in the positive direction, and  means  corresponding to momentum in the negative
direction. By using Euler’s formula one can show that the sine function incorporates both  and  since

so changing  to  and  to  does not produce a function describing new state, because both momentum states already are
included in the sine function.

The set of wavefunctions that satisfies both boundary conditions is given by

The normalization constant N is introduced and evaluated to satisfy the normalization requirement.

Finally we write the wavefunction:

Evaluate the integral in Equation  and show that .

By finding the solutions to the Schrödinger equation and imposing boundary conditions, we have found a whole set of
wavefunctions and corresponding energies for the particle-in-a box. The wavefunctions and energies depend upon the number n,
which is called a quantum number. In fact there are an infinite number of wavefunctions and energy levels, corresponding to the
infinite number of values for n . The wavefunctions are given by Equation  and the energies by Equation .
If we substitute the expression for k from Equation  into Equation , we obtain the equation for the energies 
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Substitute the wavefunction, Equation , into Equation  and differentiate twice to obtain the expression for the energy
given by Equation .

From Equation  we see that the energy is quantized in units of ; i.e. only certain values for the energy of the particle

are possible. This quantization, the dependence of the energy on integer values for n, results from the boundary conditions
requiring that the wavefunction be zero at certain points. We will see in other chapters that quantization generally is produced by
boundary conditions and the presence of Planck’s constant in the equations.

The lowest-energy state of a system is called the ground state. Note that the ground state ( ) energy of the particle-in-a-box is
not zero. This energy is called the zero-point energy.

Here is a neat way to deduce or remember the expression for the particle-in-a-box energies. The momentum of a particle has
been shown to be equal to . Show that this momentum, with  constrained to be equal to , combined with the classical

expression for the kinetic energy in terms of the momentum  produces Equation . Determine the units for 

from the units for , , and .

Why must the wavefunction for the particle-in-a-box be normalized? Show that φ(x) in Equation  is normalized.

Use a spreadsheet program, Mathcad, or other suitable software to construct an accurate energy level diagram and to plot the
wavefunctions and probability densities for a particle-in-a-box with  to . You can make your graphs universal, i.e. apply
to any particle in any box, by using the quantity  as your unit of energy and  as your unit of length. To make
these universal graphs, plot  on the y-axis of the energy-level diagram, and plot  from  to  on the x-axis of your
wavefunction and probability density graphs.

How does the energy of the electron depend on the size of the box and the quantum number n? What is the significance of
these variations with respect to the spectra of cyanine dye molecules with different numbers of carbon atoms and pi electrons?
Plot , , and  on the same figure and comment on the shape of each curve.

The quantum number serves as an index to specify the energy and wavefunction or state. Note that  for the particle-in-a-box
varies as  and as , which means that as  increases the energies of the states get further apart, and as  increases the
energies get closer together. How the energy varies with increasing quantum number depends on the nature of the particular system
being studied; be sure to take note of the relationship for each case that is discussed in subsequent chapters.
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