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4.9: Properties of Quantum Mechanical Systems
Consideration of the quantum mechanical description of the particle-in-a-box exposed two important properties of quantum
mechanical systems. We saw that the eigenfunctions of the Hamiltonian operator are orthogonal, and we also saw that the position
and momentum of the particle could not be determined exactly. We now examine the generality of these insights by stating and
proving some fundamental theorems. These theorems use the Hermitian property of quantum mechanical operators, which is
described first.

Since the eigenvalues of a quantum mechanical operator correspond to measurable quantities, the eigenvalues must be real, and
consequently a quantum mechanical operator must be Hermitian.

Proof

We start with the premises that ψ and φ are functions,  represents integration over all coordinates, and the operator Â is
Hermitian by definition if

This equation means that the complex conjugate of Â can operate on ψ* to produce the same result after integration as Â
operating on φ, followed by integration. To prove that a quantum mechanical operator Â is Hermitian, consider the eigenvalue
equation and its complex conjugate.

Note that a* = a because the eigenvalue is real. Multiply Equations  and  from the left by ψ* and ψ, respectively, and
integrate over all the coordinates. Note that ψ is normalized. The results are

Since both integrals equal a, they must be equivalent.

The operator acting on the function, , produces a new function. Since functions commute,
Equation  can be rewritten as

This equality means that Â is Hermitian.

Eigenfunctions of a Hermitian operator are orthogonal if they have different eigenvalues. Because of this theorem, we can
identify orthogonal functions easily without having to integrate or conduct an analysis based on symmetry or other
considerations.

Proof

ψ and φ are two eigenfunctions of the operator Â with real eigenvalues  and , respectively. Since the eigenvalues are real, 
 and .

Hermitian Theorem

∫ dτ

∫ ψdτ = ∫ ( )ψdτψ∗Â Â
∗
ψ∗ (4.9.1)

ψ = aψÂ (4.9.2)

= = aÂ
∗
ψ∗ a∗ψ∗ ψ∗ (4.9.3)
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∫ ψdτ = a∫ ψdτ = aψ∗Â ψ∗ (4.9.4)

∫ ψ dτ = a∫ ψ dτ = aÂ
∗
ψ∗ ψ∗ (4.9.5)

∫ ψdτ = ∫ ψ dτψ∗Â Â
∗
ψ∗ (4.9.6)

∫ ψdτ = ∫ ψ dÂ
∗

ψ∗Â Â
∗
ψ∗ τ∗

4.9.6

∫ ψdτ = ∫ ( )ψdτψ∗Â Â
∗
ψ∗ (4.9.7)

Orthogonality Theorem

a1 a2

=a∗
1 a1 =a∗

2 a2

ψ = ψÂ a1 (4.9.8)
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Multiply the first equation by φ* and the second by ψ and integrate.

Subtract the two equations in (4-45)to obtain

The left-hand side of (4-46) is zero because Â is Hermitian yielding

If a1 and a2 in (4-47) are not equal, then the integral must be zero. This result proves that nondegenerate eigenfunctions of the
same operator are orthogonal.

Draw graphs and use them to show that the particle-in-a-box wavefunctions for n = 2 and n = 3 are orthogonal to each other.

If the eigenvalues of two eigenfunctions are the same, then the functions are said to be degenerate, and linear combinations of
the degenerate functions can be formed that will be orthogonal to each other. Since the two eigenfunctions have the same
eigenvalues, the linear combination also will be an eigenfunction with the same eigenvalue. Degenerate eigenfunctions are not
automatically orthogonal but can be made so mathematically. The proof of this theorem shows us one way to produce
orthogonal degenerate functions.

Proof

If ψ and φ are degenerate but not orthogonal, define  where  is the overlap integral , then ψ and Φ will
be orthogonal.

Find  that normalizes Φ if  where ψ and φ are normalized and S is their overlap integral.

If two operators commute, then they can have the same set of eigenfunctions. By definition, two operators  and commute if
the effect of applying  then  is the same as applying  then , i.e. . For example, the operations brushing-your-
teeth and combing-your-hair commute, while the operations getting-dressed and taking-a-shower do not. This theorem is very
important. If two operators commute and consequently have the same set of eigenfunctions, then the corresponding physical
quantities can be evaluated or measured exactly simultaneously with no limit on the uncertainty. As mentioned previously, the
eigenvalues of the operators correspond to the measured values.

Proof

If  and  commute and  is an eigenfunction of  with eigenvalue , then

=Â
∗
ψ∗ a2ψ

∗ (4.9.9)

∫ ψdτ = ∫ ψdτψ∗Â a1 ψ∗ (4.9.10)

∫ ψ dτ = ∫ ψ dτÂ
∗
ψ∗ a2 ψ∗ (4.9.11)

∫ ψdτ −∫ ψ dτ = ( − )∫ ψdτψ∗Â Â
∗
ψ∗ a1 a2 ψ∗ (4.9.12)

0 = ( − )∫ ψdτa1 a2 ψ∗ (4.9.13)

Exercise 4.9.44

Schmidt Orthogonalization Theorem

Φ = φ−Sψ S ∫ ψdτψ∗

∫ ϕdτ = ∫ (φ−Sψ)dτ = ∫ ψdτ −S ∫ ψdτψ∗ ψ∗ ψ∗ ψ∗ (4.9.14)

= S−S = 0 (4.9.15)

Exercise 4.9.45

N Φ = N(φ−Sψ)

Commuting Operator Theorem

Â B̂

Â B̂ B̂ Â =ÂB̂ B̂Â

Â B̂ ψ Â b
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Equation (4-49) says that  is an eigenfunction of  with eigenvalue b, which means that when  operates on ψ, it cannot
change ψ. At most,  operating on  can produce a constant times ψ.

Equation  shows that Equation  is consistent with Equation . Consequently ψ also is an eigenfunction of 
with eigenvalue .

Write definitions of the terms orthogonal and commutation.

Show that the operators for momentum in the x-direction and momentum in the y-direction commute, but operators for
momentum and position along the x-axis do not commute. Since differential operators are involved, you need to show whether

where f is an arbitrary function, or you could try a specific form for f, e.g. f = 6xy.

lthough it will not be proven here, there is a general statement of the uncertainty principle in terms of the commutation
property of operators. If two operators  and  do not commute, then the uncertainties (standard deviations σ) in the physical
quantities associated with these operators must satisfy

where the integral inside the square brackets is called the commutator, and ││signifies the modulus or absolute value. If  and
 commute, then the right-hand-side of equation (4-52) is zero, so either or both σA and σ B could be zero, and there is no

restriction on the uncertainties in the measurements of the eigenvalues a and b. If  and  do not commute, then the right-
hand-side of equation (4-52) will not be zero, and neither σA nor σB can be zero unless the other is infinite. Consequently, both
a and b cannot be eigenvalues of the same wavefunctions and cannot be measured simultaneously to arbitrary precision.

Show that the commutator for position and momentum in one dimension equals –i ħ and that the right-hand-side of Equation
(4-52) therefore equals ħ/2 giving 

In a later chapter you will learn that the operators for the three components of angular momentum along the three directions in
space (x, y, z) do not commute. What is the relevance of this mathematical property to measurements of angular momentum in
atoms and molecules?

ψ = ψ = bψ = b ψB̂Â ÂB̂ Â Â (4.9.16)

ψÂ B̂ Â

Â ψ

ψ = aψÂ (4.9.17)

( ψ) = (aψ) = a ψ = abψ = b(aψ)B̂ Â B̂ B̂ (4.9.18)

4.9.18 4.9.17 4.9.16 Â

a

Exercise 4.9.46

Exercise 4.9.47

f(x, y) = f(x, y)P̂ xP̂ y P̂ yP̂ x (4.9.19)

f(x) = f(x)P̂ xx̂ x̂P̂ x (4.9.20)

General Heisenberg Uncertainty Principle

Â B̂

≥ | ∫ [ − ]ψdτσAσB ψ∗ ÂB̂ B̂Â (4.9.21)

Â

B̂

Â B̂

Exercise 4.9.48

≥σxσpx
ℏ
2

Exercise 4.9.49
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Write the definition of a Hermitian operator and statements of the Orthogonality Theorem, the Schmidt Orthogonalization
Theorem, and the Commuting Operator Theorem.

Reconstruct proofs for the Orthogonality Theorem, the Schmidt Orthogonalization Theorem, and the Commuting Operator
Theorem.

Write a paragraph summarizing the connection between the commutation property of operators and the uncertainty principle.
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Exercise 4.9.50

Exercise 4.9.51

Exercise 4.9.52
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