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5.3: Linear Combinations of Eigenfunctions
It is not necessary that an electron be described by an eigenfunction of the Hamiltonian operator. Many problems encountered by
quantum chemists and computational chemists lead to wavefunctions that are not eigenfunctions of the Hamiltonian operator.
Science is like that; interesting problems are not simple to solve. They require adaptation of current techniques, creative energy,
and a good set of skills developed by studying solutions to previously solved interesting problems.

Consider a free electron in one dimension that is described by the wavefunction

with

where  and  have different magnitudes. Although such a function is not an eigenfunction of the momentum operator or the
Hamiltonian operator, we can calculate the average momentum and average energy of an electron in this state from the expectation
value integral. (Note: "in-this-state" means "described-by-this-wavefunction".)

Show that the function  defined by Equation  is not an eigenfunction of the momentum operator or the Hamiltonian
operator for a free electron in one dimension.

The function shown in Equation  belongs to a class of functions known as superposition functions, which are linear
combinations of eigenfunctions. A linear combination of functions is a sum of functions, each multiplied by a weighting
coefficient, which is a constant. The adjective linear is used because the coefficients are constants. The constants, e.g.  and  in
Equation , give the weight of each component (  and ) in the total wavefunction. Notice from the discussion previously
that each component in Equation  is an eigenfunction of the momentum operator and the Hamiltonian operator although the
linear combination function (i.e., ) is not.

The expectation value, i.e. average value, of the momentum operator is found as follows. First, write the integral for the expectation
value and then substitute into this integral the superposition function and its complex conjugate as shown below. Since we are
considering a free particle in one dimension, the limits on the integration are  and  with  going to infinity.

Cross-multiplying the two factors in parentheses yields four terms.

with
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An integral of two different functions, e.g. , is called an overlap integral or orthogonality integral. When such an
integral equals zero, the functions are said to be orthogonal. The integrals in  and  are zero because the functions  and  are
orthogonal. We know  and  are orthogonal because of the Orthogonality Theorem, described previously, that states that
eigenfunctions of any Hermitian operator, such as the momentum operator or the Hamiltonian operator, with different eigenvalues,
which is the case here, are orthogonal. Also, by using Euler's formula and following Example  below, you can see why these
integrals are zero.

For the integral part of  obtain

from Euler’s formula.

Solution

Here we have the integrals of a cosine and a sine function along the x-axis from minus infinity to plus infinity. Since these
integrals are the area under the cosine and sine curves, they must be zero because the positive lobes are canceled by the
negatives lobes when the integration is carried out from  to .

As a result of this orthogonality,  is just , which is

where  is the momentum  of state , and  is the momentum  of state . As explained in Chapter 3, an average
value can be calculated by summing, over all possibilities, the possible values times the probability of each value. Equation 

 has this form if we interpret  and  as the probability that the electron has momentum  and ,
respectively. These coefficients therefore are called probability amplitude coefficients, and their absolute value squared gives
the probability that the electron is described by  and , respectively. This interpretation of these coefficients as probability
amplitudes is very important.

Find the expectation value for the energy  for the superposition wavefunction given by Equation .
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Explain why  is the probability that the electron has energy  and  is the probability that the electron has

energy .

What is the expectation value for the energy when both components have equal weights in the superposition function, i.e. when
?
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