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10.3: Basis Functions
The molecular spin-orbitals that are used in the Slater determinant usually are expressed as a linear combination of some chosen
functions, which are called basis functions. This set of functions is called the basis set. The fact that one function can be
represented by a linear combination of other functions is a general property. All that is necessary is that the basis functions span-
the-space, which means that the functions must form a complete set and must be describing the same thing. For example, spherical
harmonics cannot be used to describe a hydrogen atom radial function because they do not involve the distance r, but they can be
used to describe the angular properties of anything in three-dimensional space.

This span-the-space property of functions is just like the corresponding property of vectors. The unit vectors 
 describe points in space and form a complete set since any position in space can be specified by a linear combination of

these three unit vectors. These unit vectors also could be called basis vectors.

Explain why the unit vectors  do not form a complete set to describe your classroom.

Just as we discussed for atoms, parameters in the basis functions and the coefficients in the linear combination can be optimized in
accord with the Variational Principle to produce a self-consistent field (SCF) for the electrons. This optimization means that the
ground state energy calculated with the wavefunction is minimized with respect to variation of the parameters and coefficients
defining the function. As a result, that ground state energy is larger than the exact energy, but is the best value that can be obtained
with that wavefunction.

Slater-type atomic orbitals (STOs) 

Intuitively one might select hydrogenic atomic orbitals as the basis set for molecular orbitals. After all, molecules are composed of
atoms, and hydrogenic orbitals describe atoms exactly if the electron-electron interactions are neglected. At a better level of
approximation, the nuclear charge that appears in these functions can be used as a variational parameter to account for the shielding
effects due to the electron-electron interactions. Also, the use of atomic orbitals allows us to interpret molecular properties and
charge distributions in terms of atomic properties and charges, which is very appealing since we picture molecules as composed of
atoms. As described in the previous chapter, calculations with hydrogenic functions were not very efficient so other basis functions,
Slater-type atomic orbitals (STOs), were invented.

A minimal basis set of STOs for a molecule includes only those STOs that would be occupied by electrons in the atoms forming the
molecule. A larger basis set, however, improves the accuracy of the calculations by providing more variable parameters to produce
a better approximate wavefunction, but at the expense of increased computational time.

For example, one can use more than one STO to represent one atomic orbital, as shown in Equation , and
rather than doing a nonlinear variational calculation to optimize each zeta, use two STOs with different values for zeta. The linear
variation calculation then will produce the coefficients (  and ) for these two
functions in the linear combination that best describes the charge distribution in the molecule. The function with the large zeta
accounts for charge near the nucleus, while the function with the smaller zeta accounts for the charge distribution at larger values of
the distance from the nucleus. This expanded basis set is called a double-zeta basis set.

Plot the normalized radial probability density for a 2s hydrogenic orbital for lithium using an effective nuclear charge of
1.30.
Fit that radial probability density with the radial probability density for 1 STO by varying the zeta parameter in the STO.
Also fit the radial probability density for the hydrogenic orbital with that for the sum of 2 STOs, as in Equation (

), by varying the zeta parameters for each and their coefficients in the sum.
Report your values for the zeta parameters and the coefficients and provide graphs of these functions and the corresponding
radial probability densities. What are your conclusions regarding the utility of using STOs with single or double zeta values
to describe the charge distributions in atoms and molecules?
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The use of double zeta functions in basis sets is especially important because without them orbitals of the same type are constrained
to be identical even though in the molecule they may be chemically inequivalent. For example, in acetylene the p  orbital along the
internuclear axis is in a quite different chemical environment and is being used to account for quite different bonding than the p
and p  orbitals. With a double zeta basis set the p  orbital is not constrained to be the same size as the p  and p  orbitals.

Explain why the , , and  orbitals in a molecule
might be constrained to be the same in a single-zeta basis set calculation, and how the use of a double-zeta basis set would
allow the , , and  orbitals to differ.

The use of a minimal basis set with fixed zeta parameters severely limits how much the electronic charge can be changed from the
atomic charge distribution in order to describe molecules and chemical bonds. This limitation is removed if STOs with larger n
values and different spherical harmonic functions, the  in the definition of STO’s in Chapter 9, are
included. Adding such functions is another way to expand the basis set and obtain more accurate results. Such functions are called
polarization functions because they allow for charge polarization away form the atomic distribution to occur.

Gaussian Basis Function 
While the STO basis set was an improvement over hydrogenic orbitals in terms of computational efficiency, representing the STOs
with Gaussian functions produced further improvements that were needed to accurately describe molecules. A Gaussian basis
function has the form shown in Equation . Note that in all the basis sets, only the radial part of the orbital
changes, and the spherical harmonic functions are used in all of them to describe the angular part of the orbital.

Unfortunately Gaussian functions do not match the shape of an atomic orbital very well. In particular, they are flat rather than steep
near the atomic nucleus at r = 0, and they fall off more rapidly at large values of r.

Make plots of the following two functions

to illustrate how Gaussian functions differ from hydrogenic orbitals and Slater-type orbitals. The constants multiplying the
exponentials normalize these functions. Describe the differences you observe between a Gaussian and a Slater-type function.

To compensate for this problem, each STO is replaced with a number of Gaussian functions with different values for the
exponential parameter . These Gaussian functions form a primitive Gaussian basis set. Linear
combinations of the primitive Gaussians are formed to approximate the radial part of an STO. This linear combination is not
optimized further in the energy variational calculation but rather is frozen and treated as a single function. The linear combination
of primitive Gaussian functions is called a contracted Gaussian function. Although more functions and more integrals now are part
of the calculation, the integrals involving Gaussian functions are quicker to compute than those involving exponentials so there is a
net gain in the efficiency of the calculation.

Gaussian basis sets are identified by abbreviations such as N-MPG . N is the number of Gaussian primitives used for each inner-
shell orbital. The hyphen indicates a split-basis set where the valence orbitals are double zeta. The M indicates the number of
primitives that form the large zeta function (for the inner valence region), and P indicates the number that form the small zeta
function (for the outer valence region). G identifies the set a being Gaussian. The addition of an asterisk to this notation means that
a single set of Gaussian 3d polarization functions is included. A double asterisk means that a single set of Gaussian 2p functions is
included for each hydrogen atom.

For example, 3G means each STO is represented by a linear combination of three primitive Gaussian functions. 6-31G means each
inner shell (1s orbital) STO is a linear combination of 6 primitives and each valence shell STO is split into an inner and outer part
(double zeta) using 3 and 1 primitive Gaussians, respectively.
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The 1s Slater-type orbital  with  is represented as a sum of three primitive
Gaussian functions,

This sum is the contracted Gaussian function for the STO.

a. Make plots of the STO and the contracted Gaussian function on the same graph so they can be compared easily. All
distances should be in units of the Bohr radius. Use the following values for the coefficients, C, and the exponential
parameters, .

b. index j Cj

1 0.1688 0.4

2 0.6239 0.7

3 3.425 1.3

c. Change the values of the coefficients and exponential parameters to see if a better fit can be obtained.
d. Comment on the ability of a linear combination of Gaussian functions to accurately describe a STO.
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