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5.1: The Free Particle
We obtain the Schrödinger equation for the free particle using the following steps. First write

Next define the Hamiltonian,

and substitute the potential energy operator

and the kinetic energy operator

to obtain the Schrödinger equation for a free particle

A major problem in Quantum Mechanics is finding solutions to differential equations, e.g. Equation . Differential equations
arise because the operator for kinetic energy includes a second derivative. We will solve the differential equations for some of the
more basic cases, but since this is not a course in Mathematics, we will not go into all the details for other more complicated cases.
The solutions that we consider in the greatest detail will illustrate the general procedures and show how the physical concept of
quantization arises mathematically.

We already encountered Equation  in the last chapter Chapter 4. There, we used our knowledge of some basic functions to
find the solution. Now we solve this equation by using some algebra and mathematical logic. First we rearrange Equation  and
make the substitution

The substitution in Equation  is only one way of making a simplification. You could also use a different formulation for
the substitution

but then you would find later that  corresponds to the wavevector  which equals  and . So choosing a squared
variable like  in Equation  is a choice made with foresight. Trial-and-error is one method scientists use to solve
problems, and the results often look sophisticated and insightful after they have been found, like choosing  rather than .

Since  is the kinetic energy,

and we saw in previous chapters that the momentum  and the wavevector  are related,

we also could recognize that  is just  as shown here in Equation .
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The result for Equation  after rearranging and substitution of result from Equation  is

This linear second-order differential equation can be solved in the same way that a algebraic quadratic equation is solved. It is
separated into two factors, and each is set equal to 0. This factorization produces two first-order differential equations that can be
integrated. The details are shown in the following equations.

Equation  will be true if either

or

Rearranging and designating the two equations and the two solutions simultaneously by a + sign and a – sign produces

which leads to

and finally

The constants  and  result from the constant of integration. The values of these constants are determined by some physical
constraint that is imposed upon the solution. Such a constraint is called a boundary condition. For the particle in a box, discussed
previously, the boundary condition is that the wavefunction must be zero at the boundaries where the potential energy is infinite.
The free particle does not have such a boundary condition because the particle is not constrained to any one place. Another
constraint is normalization, and here the integration constants serve to satisfy the normalization requirement.

Figure : Propagation of free particle waves in 1d - real part of the complex amplitude is blue, imaginary part is green. The
probability (shown as the color opacity) of finding the particle at a given point x is spread out like a waveform, there is no definite
position of the particle. (public domain).

2mE

ℏ2
=( )( )

2m

ℏ2

p2

2m

=( )( )
2m

ℏ2

ℏ2 k2

2m

= k2

(5.1.9)

(5.1.10)

(5.1.11)

5.1.5 5.1.11

( + )ψ(x) = 0
d2

dx2
k2 (5.1.12)

( + )ψ(x) =( + ik)( − ik)ψ(x) = 0
d2

dx2
k2 d

dx

d

dx
(5.1.13)

5.1.13

( + ik)ψ(x) = 0
d

dx
(5.1.14)

( − ik)ψ(x) = 0
d

dx
(5.1.15)

= ±ik dx
d (x)ψ±

(x)ψ±
(5.1.16)

ln (x) = ±ikx+ψ± C± (5.1.17)

(x) =ψ± A±e
±ikx (5.1.18)

A+ A−

5.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://chem.libretexts.org/@go/page/4502?pdf
http://mathwiki.ucdavis.edu/Analysis/Differential_Equations/Differential_Equations_for_Engineers/Higher_order_linear_ODEs/Second_order_linear_ODEs
http://mathwiki.ucdavis.edu/Analysis/Differential_Equations/First_Order_Differential_Equations
https://math.libretexts.org/TextMaps/Analysis/Book%3A_Partial_Differential_Equations_(Walet)/3%3A_Boundary_and_Initial_Conditions/3.0%3A_Introduction_to_Boundary_and_Initial_Conditions
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Quantum_States_of_Atoms_and_Molecules_(Zielinksi_et_al)/04%3A_Electronic_Spectroscopy_of_Cyanine_Dyes/4.03%3A_The_Particle-in-a-Box_Model


5.1.3 https://chem.libretexts.org/@go/page/4502

Show that the operator  equals  and that the two factors commute since  does not

depend on . The answer is Equation .

Use the normalization constraint to evaluate  in Equation .

Solution

Since the integral of  over all values of x from  to  is infinite, it appears that the wavefunction  cannot be
normalized. We can circumvent this difficulty if we imagine the particle to be in a region of space ranging from  to  and
consider  to approach infinity.

The normalization then proceeds in the usual way as shown below. Notice that the normalization constants are real even
though the wavefunctions are complex.

Write the wavefunctions,  and , for the free particle, explicitly including the normalization factors found in Example 
.

Find solutions to each of the following differential equations.

A neat property of linear differential equations is that sums of solutions also are solutions, or more generally, linear combinations
of solutions are solutions. A linear combination is a sum with constant coefficients where the coefficients can be positive, negative,
or imaginary. For example

where  and  are the constant coefficients. Inserting the functions from Equation , one gets

By using Euler's formula,

Equation  is transformed into
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where we see that k is just the wavevector  in the trigonometric form of the solution to the Schrödinger equation. This result is

consistent with our previous discussion regarding the choice of  to represent .

Find expressions for  and  in Equation  for two cases: when  = +1 and when  = +1 and  = -1.

Verify that Equations  and  are solutions to the Schrödinger Equation (Equation ) with the eigenvalue 

.

Demonstrate that the wavefunctions you wrote for Exercise  are eigenfunctions of the momentum operator with
eigenvalues  and .

Determine whether  in Equation  is an eigenfunction of the momentum operator.

The probability density for finding the free particle at any point in the segment  to  can be seen by plotting  from -L
to +L. Sketch these plots for the two wavefunctions,  and , that you wrote for Exercise . Demonstrate that the area
between  and the x-axis equals 1 for any value of L. Why must this area equal 1 even as L approaches infinity? Are all
points in the space equally probable or are some positions favored by the particle?

We found wavefunctions that describe the free particle, which could be an electron, an atom, or a molecule. Each wavefunction is
identified by the wavevector . A wavefunction tells us three things about the free particle: the energy of the particle, the
momentum of the particle, and the probability density of finding the particle at any point. You have demonstrated these properties
in Exercises , , and . These ideas are discussed further in the following paragraphs.

We first find the momentum of a particle described by . We also can say that the particle is in the state . The value of
the momentum is found by operating on the function with the momentum operator. Remember this problem is one-dimensional so
vector quantities such as the wavevector or the momentum appear as scalars. The result is shown in Example .

Extract the momentum from the wavefunction for a free electron.

Solution

First we write the momentum operator and wavefunction as shown by I and II. The momentum operator tells us the
mathematical operation to perform on the function to obtain the momentum. Complete the operation shown in II to get III,
which simplifies to IV.

Example  is another way to conclude that the momentum of this particle is

ψ(x) = C cos(kx) +D sin(kx) (5.1.22)
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Here the Compton-de Broglie momentum-wavelength relation  appears from the solution to the Schrödinger equation and
the definition of the momentum operator! For an electron in the state , we similarly find . This particle is moving in
the minus x direction, opposite from the particle with momentum .

Since , what then is the meaning of the wavelength for a particle, e.g. an electron? The wavelength is the wavelength of the

wavefunction that describes the properties of the electron. We are not saying that an electron is a wave in the sense that an ocean
wave is a wave; rather we are saying that a wavefunction is needed to describe the wave-like properties of the electron. Why the
electron has these wave-like properties, remains a mystery.

We find the energy of the particle by operating on the wavefunction with the Hamiltonian operator as shown next in Equation 
. Examine each step and be sure you see how the eigenvalue is extracted from the wavefunction.

Notice again how the operator works on the wavefunction to extract a property of the system from it. We conclude that the energy
of the particle is

Which is just the classical relation between energy and momentum of a free particle, . Note that an electron with

momentum +ħk has the same energy as an electron with momentum -ħk. When two or more states have the same energy, the states
and the energy level are said to be degenerate.

We have not found any restrictions on the momentum or the energy. These quantities are not quantized for the free particle because
there are no boundary conditions. Any wave with any wavelength fits into an unbounded space. Quantization results from boundary
conditions imposed on the wavefunction, as we saw for the particle-in-a-box.

Describe how the wavelength of a free particle varies with the energy of the particle.

Summarize how the energy and momentum information is contained in the wavefunction and how this information is extracted
from the wavefunction.

The probability density of a free particle at a position in space  is

From this result we see that the probability density has units of 1/m; it is the probability per meter of finding the electron at the
point . This probability is independent of , the electron can be found any place along the x axis with equal probability.
Although we have no knowledge of the position of the electron, we do know the electron momentum exactly. This relationship
between our knowledge of position and momentum is a manifestation of the Heisenberg Uncertainty Principle, which says that as
the uncertainty in one quantity is reduced, the uncertainty in another quantity increases. For this case, we know the momentum
exactly and have no knowledge of the position of the particle. The uncertainty in the momentum is zero; the uncertainty in the
position is infinite.

p = ħk. (5.1.23)
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