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9.15: Mean Free Path

9.15.1: Collision energy

Consider two particles  and  in a system. The kinetic energy of these two particles is

We can describe kinetic energy in terms of center-of-mass  and relative momentum , which are given by

and

where

is the total mass of the two particles, and

is the reduced mass of the two particles.

Substituting these terms into equation , we find

Note that the kinetic energy separates into a sum of a center-of-mass term and a relative momentum term.

Now the relative position of the two particles is  so that the relative velocity is  or . Thus,
if the two particles are approaching each other such that , then . However, by equipartitioning the relative
kinetic energy, which is mass independent, we get

which is called the collision energy

9.15.2: Collision cross-section

Consider two molecules in a system. The probability that they will collide increases with the effective “size” of each particle.
However, the size measure that is relevant is the apparent cross-section area of each particle. For simplicity, suppose the particles
are spherical, which is not a bad approximation for small molecules. If we are looking at a sphere, what we perceive as the size of
the sphere is the cross section area of a great circle. Recall that each spherical particle has an associated “collision sphere” that just
encloses two particles at closest contact, i.e., at the moment of a collision, and that this sphere is a radius , where  is the diameter
of each spherical particle. The cross-section of this collision sphere represents an effective cross section for each particle inside
which a collision is imminent. The cross-section of the collision sphere is the area of a great circle, which is . We denote this
apparent cross section area . Thus, for spherical particles  and  with diameters  and , the individual cross sections are

The collision cross section,  is determined by an effective diameter  characteristic of both particles. The collision
probability increases of both particles have large diameters and decreases if one of them has a smaller diameter than the other.
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Hence, a simple measure sensitive to this is the arithmetic average

and the resulting collision cross section becomes

which, interestingly, is an average of the two types of averages of the two individual cross sections, the arithmetic and geometric
averages!

9.15.3: Average collision Frequency

Consider a system of particles with individual cross sections . A particle of cross section  that moves a distance  in a time 
will sweep out a cylindrical volume (ignoring the spherical caps) of volume  (Figure 27.6.1 ). If the system has a number density 

, then the number of collisions that will occur is

Figure 27.6.1 : Collision cylinder. Any particle that partially overlaps with this volume will
experience a collision with a test particle tracing out this volume. (CC BY-NC; Ümit Kaya)

We define the collision frequency for a single molecule, , also known as the average collision rate as , i.e.,

where  is the average speed of a particle

Equation  is not quite correct because it is based on the assumption that only the molecule of interest is moving. If we take
into account the fact that all of the particles are moving relative to one another, and assume that all of the particles are of the same
type (say, type ), then performing the average over a Maxwell-Boltzmann speed distribution gives
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where  is the reduced mass.

Thus,

and

The reciprocal of  is a measure of the average time between collisions for a single molecule.

9.15.4: Mean Free Path

The mean free path is the distance a particle will travel, on average, before experiencing a collision event. This is defined as the
product of the average speed of a particle and the time between collisions. The former is , while the latter is . Hence, we
have

The mean free path can also be described using terms from the ideal gas law, because :

9.15.5: Random Walks
In any system, a particle undergoing frequent collisions will have the direction of its motion changed with each collision and will
trace out a path that appears to be random. In fact, if we treat the process as statistical, then, we are, in fact, treating each collision
event as a random event, and the particle will change its direction at random times in random ways! Such a path might appear as
shown in Figure . Such a path is often referred to as a random walk path.

Figure : Random walk path. The Path of a Single Particle in a Gas Sample. The frequent changes in direction are the result of
collisions with other gas molecules and with the walls of the container.

In order to analyze such paths, let us consider a random walk in one dimension. We’ll assume that the particle move a mean-free
path length  between collisions and that each collision changes the direction of the particles motion, which in one dimension,
means that the particle moves either to the right or to the left after each event. This can be mapped onto a metaphoric “coin toss”
that can come up heads “H” or tails “T”, with “H” causing motion to the right, and “T” causing motion to the left. Let there be 
such coin tosses, let  be the number of times “H” comes up and  denote the number of times “T” comes up. Thus, the progress of
the particle, which we define as net motion to the right, is given by . Letting , this is just . Thus, we need to
know what the probability is for obtaining a particular value of  in a very large number  of coin tosses. Denote this .

In  coin tosses, the total number of possible sequences of “H” and “T” is . However, the number of ways we can obtain 
heads and \)j\) tails, with  is a binomial coefficient . Now

so that . Similarly,
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so that . Thus, the probability  is

We now take the logarithm of both sides:

and use Stirling’s approximation:

and write  as
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Now, if we let  and , and if we let  be a continuous random variable, then the corresponding probability
distribution  becomes

which is a simple Gaussian distribution. Now,  is the number of collisions, which is given by , so we can write the probability
distribution for the particle to diffuse a distance  in time  as

Define  as the diffusion constant, which has units of (length) /time. The distribution then becomes

Note that this distribution satisfies the following equation:

which is called the diffusion equation. The diffusion equation is, in fact, more general than the Gaussian distribution in Equation 
. It is capable of predicting the distribution in any one-dimensional geometry subject to any initial distribution  and

any imposed boundary conditions.

In three dimensions, we consider the three spatial directions to be independent, hence, the probability distribution for a particle to
diffuse to a location  is just a product of the three one-dimensional distributions:

and if we are only interested in diffusion over a distance , we can introduce spherical coordinates, integrate over the angles, and
we find that

9.15.6: Total collision frequency per unit volume
In equation 27.6.18,  represents the collision frequency for one specific molecule in a gas sample. If we wish to calculate the
total collision frequency per unit volume, the number density of the molecules, , must be taken into account. The total collision
frequency in a sample that contains only A molecules, , is

The factor of  must be included to avoid double counting collisions between similar molecules. (This is identical reasoning to the

fact that there is only one way to roll double 3 with two dice.)

If you have a gas sample that contains A molecules and B molecules, then

where
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Calculate the frequency of hydrogen-hydrogen collisions in a 1.00 cubic centimeter container at 1.00 bar and 298 K.

Solution
The collisional frquency requires knowledge of (1) the number denisty, the average speed (Equation ).

The value of  is 2.30 x 10  m .

The number density:

The average speed:

These are substituted into Equation  to get the collisional frequency
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 Example 9.15.1

9.15.4

σH2
-19 2

ρ =( ) =( ) = 2.43 × = 2.43 ×
NAPH2

RT

(6.022x mol )(1.00 bar)1023 e−1

(0.08314L ⋅ bar ⋅mo ⋅ )(298K)l−1 K−1
1022L−1 1025m−3 (9.15.5)
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Z ,H2 H2 =
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= 1.7x1035s−1m−3

= 1.7 × c1029s−1 m−3
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